Package 'stoichcalc'

August 28, 2023
Type Package
Version 1.1-5
Title R Functions for Solving Stoichiometric Equations
Date 2023-08-28

Author Peter Reichert

Maintainer Peter Reichert peter.reichert@emeriti.eawag.ch
Description Given a list of substance compositions, a list of substances involved in a process, and a list of constraints in addition to mass conservation of elementary constituents, the package contains functions to build the substance composition matrix, to analyze the uniqueness of process stoichiometry, and to calculate stoichiometric coefficients if process stoichiometry is unique.
(See Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in enviromental models, Environmental Modelling and Software 25, 1241-1251, 2010 for more details.)

License GPL (>=2)
LazyLoad yes
NeedsCompilation no
Repository CRAN
Date/Publication 2023-08-28 10:40:02 UTC

R topics documented:

stoichcalc-package 2
calc.comp.matrix 4
calc.stoich.basis 6
calc.stoich.coef 8
Index 12

Description

Given a list of substance compositions, a list of substances involved in a process, and a list of constraints in addition to mass conservation of elementary constituents, the package contains functions to build the substance composition matrix, to analyze the uniqueness of process stoichiometry, and to calculate stoichiometric coefficients if process stoichiometry is unique (see reference given below for more details).

Details

Package:	stoichcalc
Type:	Package
Version:	$1.1-5$
Date:	$2023-08-28$
License:	GPL $>=2$
LazyLoad:	yes

The package contains the following three functions:
calc. comp.matrix constructs the substance composition matrix froma a list of substance composition vectors,
calc.stoich.basis calculates the basis of the stoichiometry space that is compatible with mass balances of elementary constituents and additional constraints, calc.stoich.coef calculates the stoichiometric coefficients of a process from involved substances, their composition and constraints.

Author(s)

Peter Reichert <peter.reichert @emeriti.eawag.ch>

References

Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in environmental models, Environmental Modelling and Software 25, 1241-1251, 2010.

See Also

calc. comp.matrix, calc.stoich.basis, calc.stoich.coef

Examples

```
subst.comp <-
    list(NH4 = c(H = 4*1/14, # gH/gNH4-N
    N = 1, # gN/gNH4-N
    charge = 1/14), # chu/gNH4-N
```

```
    NO3 = c(O = 3*16/14, # gO/gNO3-N
        N = 1, # gN/gNO3-N
        charge = -1/14), # chu/gNO3-N
HPO4 = c(0 = 4*16/31, # g0/gHP04-P
    H = 1*1/31, # gH/gHP04-P
    P = 1, # gP/gHP04-P
    charge = -2/31), # chu/gHP04-P
HCO3 = c(C = 1, # gC/gHCO3-C
        O = 3*16/12, # g0/gHCO3-C
        H = 1*1/12, # gH/gHCO3-C
        charge = -1/12), # chu/gHCO3-C
02 = c(0 = 1), # g0/g02-0
H = c(H = 1, # gH/molH
        charge = 1), # chu/molH
H2O = c(0 = 1*12, # g0/molH2O
    H = 2*1), # gH/molH2O
ALG = c(N = 0.06, # gN/gALG
    = 0.005, # gP/gALG
    = 0.50, # g0/gALG
    = 0.07, # gH/gALG
    =0.365), # gC/gALG
ZOO = c(N = 0.06, # gN/gZOO
    P = 0.01, # gP/gZ00
    0 = 0.50, # g0/gz00
    H = 0.07, # gH/gZ00
    C = 0.36), # gC/gZ00
POM = c(N = 0.04, # gN/gPOM
    = 0.007, # gP/gPOM
    =0.40, # g0/gPOM
    = 0.07, # gH/gPOM
    = 0.483), # gC/gPOM
DOM = c(N = 0.04, # gN/gDOM
    P = 0.007, # gP/gDOM
    O = 0.40, # g0/gDOM
    H = 0.07, # gH/gDOM
    C = 0.483)) # gC/gDOM
Y.ZOO <- 0.2; f.POM <- 0.2; f.DOM <- 0.1
alpha <- calc.comp.matrix(subst.comp)
subst.gro.ALG.NO3 <- c("NO3","HPO4","HCO3",
                "O2", "H", "H2O", "ALG")
basis.gro.ALG.NO3 <-
    calc.stoich.basis(alpha,subst.gro.ALG.NO3)
nu.gro.ALG.NO3 <-
    calc.stoich.coef(alpha = alpha,
                        name = "gro.ALG.NO3",
                        subst = subst.gro.ALG.NO3,
                        subst.norm = "ALG",
                        nu.norm = 1)
```

```
subst.gro.ZOO <- c("NH4","HPO4","HCO3","O2","H",
    "H2O", "ALG", "ZOO", "POM", "DOM")
basis.gro.Z00 <-
    calc.stoich.basis(alpha,subst.gro.ZOO)
const.gro.ZOO <- list(c("ZOO" = 1,"ALG" = Y.ZOO),
                    c("POM" = 1,"ALG" = f.POM),
                    c("DOM" = 1,"ALG" = f.DOM))
nu.gro.Z00 <-
    calc.stoich.coef(alpha = alpha,
                name = "gro.ZOO",
                subst = subst.gro.ZOO,
                subst.norm = "ZOO",
                nu.norm = 1,
                constraints = const.gro.ZOO)
nu <- rbind(nu.gro.ALG.NO3,
            nu.gro.Z00)
print(nu,digits=2)
```

calc. comp.matrix

Construct Composition Matrix

Description

Construct substance composition matrix from list of substance composition vectors

Usage

calc. comp.matrix(subst. comp, verbose=TRUE)

Arguments

subst. comp Named list of named composition vectors. The list must contain entries labelled by the substance names containing vectors of the mass fractions of elementary constituents (typically chemical elements, charge or COD resp. ThOD) that characterize the composition of the substance. Each element of these vectors must be labelled by the name of the corresponding elementary constituent.
verbose indicator for whether or not to write basic information to the console.

Details

This function compiles the substance composition matrix used in the other functions of the stoichcalc package. It can alternatively be composed manually or by a user-defined function. The main advantage of the use of this function is that substance compositions can be maintained in lists. This makes it much easier to remove and add substances and elementary constituents.

Value

Composition matrix of all substances (labelled columns) and mass fractions of elementary constituents (labelled rows).

Author(s)

Peter Reichert <peter.reichert @emeriti.eawag.ch>

References

Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in environmental models, Environmental Modelling and Software 25, 1241-1251, 2010.

See Also

calc.stoich.basis, calc.stoich.coef

Examples

```
subst.comp <-
    list(NH4 = c(H = 4*1/14, # gH/gNH4-N
            N = 1, # gN/gNH4-N
            charge = 1/14), # chu/gNH4-N
        NO3 = c(0 = 3*16/14, # gO/gNO3-N
            N = 1, # gN/gNO3-N
            charge = -1/14), # chu/gNO3-N
        HPO4 = c(0 = 4*16/31, # g0/gHPO4-P
            H = 1*1/31, # gH/gHPO4-P
            P = 1, # gP/gHP04-P
            charge = -2/31), # chu/gHP04-P
        HCO3 = c(C = 1, # gC/gHCO3-C
            O = 3*16/12, # gO/gHCO3-C
            H = 1*1/12, # gH/gHCO3-C
            charge = -1/12), # chu/gHCO3-C
        02 = c(0 = 1), # g0/g02-0
        H = c(H = 1, # gH/molH
            charge = 1), # chu/molH
        H2O = c(0 = 1*12, # g0/molH2O
            H = 2*1), # gH/molH2O
        ALG = c(N = 0.06, # gN/gALG
            P = 0.005, # gP/gALG
            0 = 0.50, # g0/gALG
            H = 0.07, # gH/gALG
            C = 0.365), # gC/gALG
        ZOO = c(N = 0.06, # gN/gZOO
            P = 0.01, # gP/gZOO
            0 = 0.50, # g0/gZOO
            H = 0.07, # gH/gZOO
            C = 0.36), # gC/gZOO
        POM = c(N = 0.04, # gN/gPOM
            P = 0.007, # gP/gPOM
            O = 0.40, # g0/gPOM
```

```
            H = 0.07, # gH/gPOM
            C = 0.483), # gC/gPOM
            DOM = c(N = 0.04, # gN/gDOM
            P = 0.007, # gP/gDOM
            0 = 0.40, # g0/gDOM
            H = 0.07, # gH/gDOM
            C = 0.483)) # gC/gDOM
alpha <- calc.comp.matrix(subst.comp)
print(alpha)
```

```
calc.stoich.basis Calculate Basis of Stoichiometric Space
```


Description

Calculate the basis of the stoichiometry space that is compatible with mass balances of elementary constituents and additional constraints

Usage

calc.stoich.basis(alpha, subst = NA, constraints = list(), eps = 1e-5, verbose = TRUE)

Arguments

alpha	Substance composition matrix of all substances (labelled columns) and mass fractions of elementary constituents (labelled rows). Typically calculated by the function calc.comp.matrix.
subst	Character vector of names of substances to be used for analysis (this must be a subset of the column names of alpha).
constraints	list of stoichiometric constraints in addition to mass conservation of elementary constituents. Each stoichiometric constraint must be stored as a vector contain- ing the coefficients of the linear equation in elementary constituents that defines the constraint. The elements of this vector must be labelled by the names of the corresponding elementary constituents.
eps	relative tolerance for checking ratios of stoichiometric coefficients (only used for informing user about substance pairs with fixed stoichiometric ratio) indicator for whether or not to write basic information to the console.

Details

This function is primarily used in the function calc.stoich.coef. However, it can also be used to check the number of required stoichiometric constraints in addition to mass conservation of elementary constituents for a given process. In this case the composition matrix should only contain the substances relevant for this process. The number of required constraints is then equal to the row dimension of the output matrix minus 1 .

Value

Matrix of basis vectors (in rows) that span the compatible stoichiometric space.

Author(s)

Peter Reichert peter.reichert@emeriti.eawag.ch

References

Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in environmental models, Environmental Modelling and Software 25, 1241-1251, 2010.

See Also

```
calc.comp.matrix, calc.stoich.coef
```


Examples

```
subst.comp <-
    list(NH4 = c(H = 4*1/14, # gH/gNH4-N
            N = 1, # gN/gNH4-N
            charge = 1/14), # chu/gNH4-N
        NO3 = c(0 = 3*16/14, # g0/gNO3-N
            N = 1, # gN/gNO3-N
            charge = -1/14), # chu/gNO3-N
            HPO4 = c(0 = 4*16/31, # g0/gHPO4-P
            H = 1*1/31, # gH/gHP04-P
            P = 1, # gP/gHPO4-P
            charge = -2/31), # chu/gHP04-P
            HCO3 = c(C = 1, # gC/gHCO3-C
            O = 3*16/12, # g0/gHCO3-C
            H = 1*1/12, # gH/gHCO3-C
                    charge = -1/12), # chu/gHCO3-C
            02 = c(0 = 1), # g0/gO2-0
            H = c(H = 1, # gH/molH
            charge = 1), # chu/molH
            H2O = c(0 = 1*12, # g0/molH2O
            H = 2*1), # gH/molH2O
            ALG = c(N = 0.06, # gN/gALG
            P = 0.005, # gP/gALG
            0 = 0.50, # g0/gALG
            H = 0.07, # gH/gALG
            C = 0.365), # gC/gALG
            ZOO = c(N = 0.06, # gN/gZOO
            P = 0.01, # gP/gZ00
            0 = 0.50, # g0/gZOO
            H = 0.07, # gH/gZOO
            C = 0.36), # gC/gZOO
            POM = c(N = 0.04, # gN/gPOM
            P = 0.007, # gP/gPOM
            0 = 0.40, # g0/gPOM
            H}=0.07,\quad# gH/gPO
```

```
        C =0.483), # gC/gPOM
        DOM = c(N = 0.04, # gN/gDOM
        P = 0.007, # gP/gDOM
        0 = 0.40, # g0/gDOM
        H = 0.07, # gH/gDOM
        C = 0.483)) # gC/gDOM
    Y.ZOO <- 0.2; f.POM <- 0.2; f.DOM <- 0.1
    alpha <- calc.comp.matrix(subst.comp)
    subst.gro.ALG.NO3 <- c("NO3","HPO4","HCO3",
        "O2", "H", "H2O", "ALG")
    basis.gro.ALG.NO3 <-
        calc.stoich.basis(alpha,subst.gro.ALG.NO3)
    subst.gro.ZOO <- c("NH4","HPO4","HCO3","O2","H",
                "H2O", "ALG", "ZOO", "POM", "DOM")
    basis.gro.ZOO <-
        calc.stoich.basis(alpha,subst.gro.Z00)
const.gro.ZOO <- list(c("ZOO" = 1,"ALG" = Y.ZOO),
                c("POM" = 1,"ALG" = f.POM),
                c("DOM" = 1,"ALG" = f.DOM))
basis.gro.ZOO <-
    calc.stoich.basis(alpha, subst.gro.Z00, const.gro.Z00)
```

```
calc.stoich.coef Calculate Stoichiometric Coefficients
```


Description

Calculate stoichiometric coefficients of a process from involved substances, their composition and constraints

Usage

calc.stoich.coef(alpha, name, subst, subst.norm, nu.norm = 1, constraints = list(), eps $=1 \mathrm{e}-5$, verbose $=$ TRUE)

Arguments

alpha Substance composition matrix of all substances (labelled columns) and mass fractions of elementary constituents (labelled rows). Typically calculated by the function calc.comp.matrix.
name
Name of the process

subst	Character vector of names of substances affected by the process (this must be a subset of the column names of alpha)
subst.norm	Name of the substance that should have a normalized (given) stoichiometric coefficient
nu.norm	Stoichiometric coefficient of the substance the name of which is specified in the argument subst.norm
constraints	List of stoichiometric constraints in addition to mass conservation of elementary constituents. Each stoichiometric constraint must be stored as a vector contain- ing the coefficients of the linear equation in elementary constituents that defines the constraint. The elements of this vector must be labelled by the names of the corresponding elementary constituents.
relative tolerance for checking ratios of stoichiometric coefficients (only used	
verbose	for informing user about substance pairs with fixed stoichiometric ratio) indicator for whether or not to write basic information to the console.

Details

This is the key function of the package for the calculation of stoichiometric coefficients of individual processes. The results for different processes can easily be bound to the comprehensive stoichiometric matrix of all processes by using rbind.

Value

Matrix consisting of one row of stoichiometric coefficients of the process or an error message if the process stoichiometry is not uniquely defined. The row name of the matrix is equal to the process name specified as an argument (to allow binding the stoichiometries of several processes to a comprehensive stoichiometric matrix), the column names are equal to the substance names provided by the substance composition matrix alpha.

Author(s)

Peter Reichert peter.reichert@emeriti.eawag.ch

References

Reichert, P. and Schuwirth, N., A generic framework for deriving process stoichiometry in environmental models, Environmental Modelling and Software 25, 1241-1251, 2010.

See Also

calc.comp.matrix, calc.stoich.basis

Examples

```
subst.comp <-
    list(NH4 = c(H = 4*1/14, # gH/gNH4-N
            N = 1, # gN/gNH4-N
            charge = 1/14), # chu/gNH4-N
            NO3 = c(0 = 3*16/14, # g0/gNO3-N
```

```
    N = 1, # gN/gNO3-N
    charge = -1/14), # chu/gNO3-N
    HPO4 = c(0 = 4*16/31, # g0/gHP04-P
        H= 1*1/31, # gH/gHP04-P
        P = 1, # gP/gHP04-P
        charge = -2/31), # chu/gHPO4-P
        HCO3 = c(C = 1, # gC/gHCO3-C
            O = 3*16/12, # gO/gHCO3-C
            H = 1*1/12, # gH/gHCO3-C
            charge = -1/12), # chu/gHCO3-C
        02 = c(0 = 1), # g0/g02-0
        H = c(H = 1, # gH/molH
        charge = 1), # chu/molH
        H2O = c(0 = 1*12, # gO/molH2O
            H = 2*1), # gH/molH2O
        ALG = c(N = 0.06, # gN/gALG
        P = 0.005, # gP/gALG
        0 = 0.50, # g0/gALG
        H = 0.07, # gH/gALG
        C = 0.365), # gC/gALG
        ZOO = c(N = 0.06, # gN/gZOO
        P = 0.01, # gP/gZOO
        0 = 0.50, # g0/gzOO
        H = 0.07, # gH/gZOO
        C = 0.36), # gC/gZOO
        POM = c(N = 0.04, # gN/gPOM
        P = 0.007, # gP/gPOM
        0 = 0.40, # g0/gPOM
        H = 0.07, # gH/gPOM
        C = 0.483), # gC/gPOM
        DOM = c(N = 0.04, # gN/gDOM
        P = 0.007, # gP/gDOM
        0 = 0.40, # g0/gDOM
        H = 0.07, # gH/gDOM
        C = 0.483)) # gC/gDOM
Y.ZOO<- 0.2; f.POM <- 0.2; f.DOM <- 0.1
alpha <- calc.comp.matrix(subst.comp)
subst.gro.ALG.NO3 <- c("NO3", "HPO4", "HCO3",
            "O2", "H", "H2O", "ALG")
basis.gro.ALG.NO3 <-
    calc.stoich.basis(alpha, subst.gro.ALG.NO3)
nu.gro.ALG.NO3 <-
    calc.stoich.coef(alpha= = alpha,
        name = "gro.ALG.NO3",
        subst = subst.gro.ALG.NO3,
        subst.norm = "ALG",
        nu.norm = 1)
```

```
subst.gro.ZOO <- c("NH4","HPO4","HCO3", "O2", "H",
    "H2O", "ALG", "ZOO", "POM", "DOM")
basis.gro.Z00 <-
    calc.stoich.basis(alpha,subst.gro.Z00)
const.gro.ZOO <- list(c("ZOO" = 1,"ALG" = Y.ZOO),
                    c("POM" = 1,"ALG" = f.POM),
                    c("DOM" = 1,"ALG" = f.DOM))
nu.gro.ZOO <-
    calc.stoich.coef(alpha = alpha,
                        name = "gro.Z00",
                                subst = subst.gro.ZOO,
                        subst.norm = "ZOO",
                        nu.norm = 1,
                constraints = const.gro.ZOO)
nu <- rbind(nu.gro.ALG.NO3,
                nu.gro.Z00)
print(nu,digits=2)
```


Index

```
* process stoichiometry
    calc.comp.matrix,4
    calc.stoich.basis,6
    calc.stoich.coef,8
    stoichcalc-package, 2
calc.comp.matrix, 2, 4, 6-9
calc.stoich.basis, 2, 5, 6, 9
calc.stoich.coef, 2, 5-7,8
stoichcalc(stoichcalc-package), 2
stoichcalc-package, 2
```

