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Abstract

Background and Objective. Surrogate endpoints are attractive for use in clinical trials instead of well-established end-
points because of practical convenience. To validate a surrogate endpoint, two important measures can be estimated in
a meta-analytic context when individual patient data are available: the R2

indiv or the Kendall’s τ at the individual level,
and the R2

trial at the trial level. We aimed at providing an R implementation of classical and well-established as well as
more recent statistical methods for surrogacy assessment with failure time endpoints. We also intended incorporating
utilities for model checking and visualization and data generating methods described in the literature to date.

Methods. In the case of failure time endpoints, the classical approach is based on two steps. First, a Kendall’s τ is
estimated as measure of individual level surrogacy using a copula model. Then, the R2

trial is computed via a linear
regression of the estimated treatment effects; at this second step, the estimation uncertainty can be accounted for via
measurement-error model or via weights. In addition to the classical approach, we recently developed an approach based
on bivariate auxiliary Poisson models with individual random effects to measure the Kendall’s τ and treatment-by-trial
interactions to measure the R2

trial. The most common data simulation models described in the literature are based on:
copula models, mixed proportional hazard models, and mixture of half-normal and exponential random variables.

Results. The R package surrosurv implements the classical two-step method with Clayton, Plackett, and Hougaard
copulas. It also allows to optionally adjusting the second-step linear regression for measurement-error. The mixed
Poisson approach is implemented with different reduced models in addition to the full model. We present the package
functions for estimating the surrogacy models, for checking their convergence, for performing leave-one-trial-out cross-
validation, and for plotting the results. We illustrate their use in practice on individual patient data from a meta-analysis
of 4069 patients with advanced gastric cancer from 20 trials of chemotherapy.

Conclusions. The surrosurv package provides an R implementation of classical and recent statistical methods for sur-
rogacy assessment of failure time endpoints. Flexible simulation functions are available to generate data according to
the methods described in the literature.
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1. Introduction

Surrogate endpoints are endpoints which can reliably
be used instead of well-established (true) endpoints and
which yield improved practical convenience in terms of
lower cost, more rapid occurrence, increased ease of assess-
ment, or reduced invasiveness [1]. Two conditions must be
fulfilled for surrogate endpoint to be reliable: it must be
strongly associatied with the true endpoint at the indi-
vidual level and the effect of the treatment on it must be
strongly assciated with the effect on the true endpoint. In
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a meta-analytic context and when the endpoints are gaus-
sian [2], the usual measure of individual level surrogacy is
the R2

indiv between the endpoints, which measures the part
of variability of the true endpoint T explained by the sur-
rogate endpoint S. At the trial level, the usual measure
of surrogacy is given by the R2

trial between the treatment
effects on the two endpoints, that measures the part of
variability of the treatment effect on T explained by the
treatment effect on S.

In the case of failure time (survival) endpoints, the
classical methods developed for normally-distributed end-
points cannot be used because of right censoring. Burzykowski
and colleagues [3] developed a meta-analytic model for fail-
ure time endpoints that measures individual level surro-
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gacy in terms of Kendall’s τ [4] and trial level surrogacy
in terms of R2

trial. This method is largely employed in nu-
merous applications in the medical literature. Because of
some limitations including convergence issues, the inter-
pretation of the results is difficult in some cases [5, 6].
There exists a well-known connection between the pro-
portional hazard model and the Poisson log-linear model,
which ensures that estimates of the regression parameters
are equivalent in the two models, upon appropriate param-
eterization [7, 8]. Recently, we used this connection in
the bivariate context of surrogate endpoint validation, by
proposing a joint model for the two treatment effects ad-
justed for individual dependence and baseline heterogene-
ity across trials [9]. We used bivariate mixed proportional
hazard models [10], which are the most natural adaptation
of the above-mentioned meta-analytic approach by Buyse
et al. [2] to the survival case. Indeed, the original approach
for gaussian data consisted of a single model, incorporat-
ing random effects for both the individual and the trial
level.

In the present paper, we show how the classical and
more recent models can be fitted by use of the R [11]
package surrosurv [12]. The package provides utilities
for convergence assessment and tools for leave-one-trial-
out cross-validation, which allow contrasting the observed
treatment effect in each trial to those predicted from the
others. User-friendly functions allow the user to clearly
show the results of the estimated models. We illustrate
the available functions using individual data of a meta-
analysis of 20 randomized trials of chemotherapy, includ-
ing 4069 patients with advanced/recurrent gastric cancer
[13, 14].

2. Computational methods and theory

Let Tij and Sij be the times to the true and the sur-
rogate endpoints, respectively, for patient j ∈ {1, . . . , ni}
in trial i ∈ {1, . . . , N}. Let Zij be the indicator of the
treatment arm to which the j-th patient in the i-th trial
has been randomized.

2.1. Two-step copula approach

The model proposed by Burzykowski et al. [3] for fail-
ure time endpoints consists in two steps, one for the indi-
vidual and one for the trial level.

Individual-level.. At the first step, the authors defined
the bivariate proportional hazard model by means of the
marginal hazard functions and of the copula function to
account for their dependence:

hSij(s;Zij) = hSi(s) exp
{
αiZij

}
hTij(t;Zij) = hTi(t) exp

{
βiZij

}
Cθ(SSij(s), STij(t))

(1)

where hSi(s) and hTi(s) are the trial-specific baseline haz-
ards, αi and βi the treatment effects, and SSij(s) and

STij(t) the survival functions associated to hSij and hTij .
The dependence parameter θ is reparametrized into the
individual-level Kendall’s τ , according to the copula func-
tion thanks to the tau() function in the R package copula
[15, 16].

In the surrosurv package, Weibull marginal hazards
are implemented, together with three copula functions:

• the Clayton copula [17]

Cθ(u, v) =
(
u−θ + v−θ − 1

)−1/θ
, (2)

with θ > 0 and Kendall’s τ = θ/(θ + 2);

• the Plackett copula [18]

Cθ(u, v) =
[
Q−R1/2

]
/
[
2(θ − 1)

]
, (3)

Q = 1 + (θ − 1)(u+ v),

R = Q2 − 4θ(θ − 1)uv,

with θ > 0 and Kendall’s τ computed using numer-
ical integration as no analytical expression is avail-
able;

• the Hougaard copula [19]

Cθ(u, v) = exp

(
−
[
(− lnu)1/θ + (− ln v)1/θ

]θ)
,

(4)
with θ ∈ (0, 1) and Kendall’s τ = 1− θ.

Further details on these three copula models can be found
in the vignette('copula', package = 'surrosurv').

Trial level.. At the second step, the estimates of the treat-
ment effects obtained at the first step are assumed to follow
the mixed model(

α̂i
β̂i

)
=

(
αi
βi

)
+

(
εai
εbi

)
, (5)(

αi
βi

)
∼ N

((
α
β

)
,D

)
(6)

D =

(
d2a dadbρtrial

dadbρtrial d2b

)
, (7)(

εai
εbi

)
∼ N

((
0
0

)
,Ωi

)
(8)

Ωi =

(
ω2
ai ωaiωbiρεi

ωaiωbiρεi ω2
bi

)
. (9)

where (αi, βi)
′ are the true treatment effects and (εai, εbi)

′

the estimation errors.
The trial-level surrogacy measure is R2

trial = ρ2trial. In
practice, we compute the ρtrial via a linear regression of the
βi’s over the αi’s adjusted by measurement error by fixing
the Ωi’s at their estimates from the first step [20] by using
the mvmeta package [21, 22]. This adjusted (for measure-
ment error) model is sometimes computationally challeng-
ing and does not always converge. The surrosurv package
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returns also the so-called unadjusted R2
trial, obtained using

a linear regression — equivalent to fixing all the elements
of Ωi equal to 0 — by weighting the observations (αi, βi)

′

by the trial size, in order to account somehow indirectly
and approximately for the standard error of the estimates.

2.2. One-step mixed Poisson approach

In a recent paper [9], we assumed that the bivariate
proportional hazard model given by the first two lines of
equation (1) holds conditionally on an individual random
effect uij ∼ N (0, σ2

indiv):{
hSij(s | uij) = hSi(s) exp {uij + αiZij}
hTij(t | uij) = hTi(t) exp {uij + βiZij} .

(10)

Note that this corresponds to a shared frailty model with
bivariate clusters [10]. The shared frailty term uij accounts
for individual level dependence.

It is well-known (see for instance [7, 23]) that the pa-
rameters of Cox models can be estimated by fitting a so-
called ‘auxiliary’ Poisson log-linear regression model, by
dividing the time scale into intervals k = 1, . . . ,K. The
auxiliary Poisson model provides the same estimator as
the Cox model if the bounds of the intervals are all the
observed event times, and an approximation of the Cox es-
timators otherwise. In the surrogacy assessment context,
the parameters of the bivariate frailty model (10) can be
estimated via a bivariate mixed Poisson modellog

(
µ
(k)
Sij

)
= µ

(k)
Si + uij + αiZij + log

(
y
(k)
Sij

)
log
(
µ
(k)
Tij

)
= µ

(k)
Ti + uij + βiZij + log

(
y
(k)
Tij

) (11)

with y
(k)
Sj and y

(k)
Tj the time spent at risk by subject i in

trial j for each endpoint during the period k.

Individual-level surrogacy.. The estimated variance of the
shared frailties uij is σ̂2

indiv and can be used to estimate
the Kendall’s τ̂ = 4

∫∞
0
sL(s)L(2)(s)ds − 1, where L(s)

and L(2)(s) are the Laplace transform of the frailty distri-
bution and its second derivative. As an analytic expression
of L(s) is not available for the log-normal frailty distribu-
tion, we approximated it using the Laplace method [24],
implemented in the fr.lognormal() function in the parfm
package [25, 26].

Trial-level surrogacy.. In model (11), the trial-specific treat-
ment effects are again assumed to follow the binormal dis-
tribution (7). Thus, the correlation ρtrial between the two
treatment effects provides us with the coefficient of deter-
mination R2

trial = ρ2trial, also referred to simply as R2.

Reduced Poisson models.. The surrosurv package can com-
pute four reduced versions of the full model (11) that may
turn out to be useful in case of convergence issues with the
full model.

• Model Poisson T has random trial-treatment inter-
actions αi and βi, but does not incorporate individ-
ual effects (uij ≡ 0). It assumes common baselines

between trials (µ
(k)
Si = µ

(k)
S , µ

(k)
Ti = µ

(k)
T ,∀i). This

model provides only the trial-level measure of surro-
gacy R2

trial.

• Model Poisson I contains individual random effects
uij , but not the trial-specific treatment effects (αi =
α, βi = β,∀i) and has common baselines between
trials. This model provides only the individual-level
measure of surrogacy τ .

• Model Poisson TI incorporates both random trial-
treatment interactions (αi, βi)

′ and individual ran-
dom effects uij , but still has common baselines be-
tween trials. It provides both individual-level and
trial-level measures of surrogacy τ and R2

trial.

• Model Poisson TIa extends the model Poisson TI
by accounting for trial-specific baseline risks, using
shared random effects at the trial level: µSi = µS +
mi, µTi = µT +mi, with mi ∼ N (0, σ2

m).

3. Program description with a data example

We illustrate the use of the functions in the surrosurv
package on the individual patient data of the advanced

GASTRIC meta-analysis [13, 14].

> library(surrosurv)

Loading required package: optimx

> packageVersion('surrosurv ')
[1] '1.1.24 '

The individual data of the 4069 patients, already made
public by [27], are also available directly in R in the surrosurv
package:

> data('gastadv ')
> nrow(gastadv)

[1] 4069

The data set contains the following variables:

> names(gastadv)

2 [1] "timeT" "statusT" "statusS"

[4] "timeS" "trialref" "trt" "id"

where timeT and timeS are the (possibly censored) times
for overall survival (T) and for progression-fre survival (S)
expressed in days, statusT and statusS are the associ-
ated indicators of censoring (0) or event (1), trialref is
the trial indicator (i), trt is the treatment arm (-0.5 for
control and 0.5 for chemotherapy), and id is the patient
indicator (j). Figure 1 shows the Kaplan–Meier curves for
overall survival, the true endpoint T , and progression-free
survival, the candiddate surrogate S.
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Figure 1: Kaplan–Meier curves for overall survival (T ) and progression-free survival (S) in the advanced GASTRIC meta-analysis [13]

3.1. Fitting the surrogacy models

The surrogacy models presented in Section 2 can be
fitted via the surrosurv() function.

The only mandatory argument for the surrosurv()

function is data, which has to be a data.frame with columns

• trialref, a factor (with observations in at least two
levels) containing the trial identifier;

• trt, the treatment arm, coded as -0.5 vs. 0.5;

• id, a factor containing the patient id;

• timeT and timeS, two positive-valued numerical vari-
ables, containing the observed or censored times of
the true endpoint T and of the candidate surrogate
S, respectively;

• statusT and statusS, the censoring/event (0/1) in-
dicators of T and S, respectively.

A second argument, models, can optionally contain
the list of the models to fit (any of clayton, plackett,
hougaard, poisson, poissonT, poissonI, poissonTI, or
poissonTIa). If not specified, all the models are fitted.

Two further parameters, intWidth and nInts, specify
the width and the number of time intervals for data Pois-
sonization. These parameters are passed to the function
poissonize(), described in the Appendix (Sec. Appendix
A). At most one of them can be specified. By default,
nInts = 8 which means that the study period is divided
into eight intervals, the length of which is fixed so that
1/8th of the observed events falls in each interval. This

choice is just based on our empirical experience, but we
advise users to check results for different values.

The optimizer algorithm used for maximization of the
likelihood can be chosen among those provided by the
optimx package [28, 29]. To this end, the optional argu-
ments cop.OPTIMIZER and poi.OPTIMIZER can be used for
the copula models and the Poisson models, respectively.

The last parameter, verbose, is a logical value stating
whether the function should print out the model being
fitted (default: FALSE).

The surrogacy models for the advanced GASTRIC can-
cer meta-analysis are obtained as follows:

> allSurroRes <- surrosurv(gastadv , verbose

= TRUE)

Computation may take very long. Please wait

...

- Estimating model: Clayton (5.3 mins)

- Estimating model: Plackett (4.8 mins)

5 - Estimating model: Hougaard (7.3 mins)

- Data poissonization (4.6 secs)

- Estimating model: Poisson T (1.2 mins)

- Estimating model: Poisson I (2.7 mins)

- Estimating model: Poisson TI (4 mins)

10 - Estimating model: Poisson TIa (2 mins)

Note that the computation time of the surrogacy model
estimation can be long. In this example, the computa-
tions required 27 mins on a PC with an Intel® quad-core
CPU E3-1280 V2 with 3.60 GHz clock speed and 16GB of
RAM. The results are an object of class surrosurv and
the estimated Kendall’s τ and R2 can be easily displayed:
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> allSurroRes

kTau R2

Clayton unadj 0.61 0.45

Clayton adj 0.61 0.41

5 Plackett unadj 0.62 0.45

Plackett adj 0.62 0.4

Hougaard unadj 0.32 0.45

Hougaard adj 0.32 0.38

PoissonT -.-- 1

10 PoissonI 0.51 -.--

PoissonTI 0.51 0.63

PoissonTIa 0.51 0.83

For each copula model, both the results with measurement
error adjustment (adj) and without adjustment (unadj)
are shown.

3.1.1. Assessing convergence

The function convergence() checks whether conver-
gence criteria are met by each of the fitted models. Three
convergence criteria are considered. The first criterion,
maxSgrad, verifies whether the maximum gradient is small
enough. The two other criteria, minHev and minREev, ver-
ify whether the minimum eigenvalue of the Hessian matrix
of the fixed parameters (H) and of the covariance matrix of
the random effects (RE) are big enough, in order to assure
the positive definitess of the two matrices. This check
ensures that the estimated variances are positive. Two
parameters can be used to tune the thresholds for ‘small
enough’ maximum gradient and for ‘big enough’ minmum
eigen value: kkttol (1e-2 by default), and kkt2tol (1e-8
by default).

> convergence(allSurroRes)

maxSgrad minHev minREev

Clayton unadj FALSE FALSE ---

Clayton adj FALSE FALSE TRUE

5 Plackett unadj FALSE FALSE ---

Plackett adj FALSE FALSE TRUE

Hougaard unadj FALSE TRUE ---

Hougaard adj FALSE TRUE TRUE

PoissonT TRUE TRUE FALSE

10 PoissonI TRUE TRUE ---

PoissonTI TRUE TRUE TRUE

PoissonTIa TRUE TRUE TRUE

If the values of the minimum gradient and of the max-
imum eigenvalues are needed, the function convals() can
be used:

> convals(allSurroRes)

maxSgrad minHev minREev

Clayton unadj 1.5e+00 -6.1e+00 ---

Clayton adj 1.5e+00 -6.1e+00 1.0e-02

5 Plackett unadj 2.3e+02 -5.2e+00 ---

Plackett adj 2.3e+02 -5.2e+00 8.9e-03

Hougaard unadj 1.4e+01 7.8e-01 ---

Hougaard adj 1.4e+01 7.8e-01 8.0e-03

PoissonT 1.3e-05 1.3e+02 6.3e-12

10 PoissonI 2.0e-05 6.8e+01 ---

PoissonTI 7.1e-06 6.7e+01 2.0e-02

PoissonTIa 5.0e-05 9.4e+07 1.0e-01

3.2. Prediction of the treatment effect

When fitting surrogacy models, an estimate of the treat-
ment effects on the two endpoints is computed for each
trial. The function predict(), applied to an object of
class surrosurv, returns the predictions of the treatment
effects for each trial. The minimal syntax is predict(

allSurroRes), but one can be interested in prediction of
only one of the fitted models:

> predict(allSurroRes , models = 'PoissonTI ')
Treatment effect prediction for surrosurv

object

Poisson TI

5 Trial 1 2 3 4

Treatment effects on S:

-0.52 -0.42 -0.38 -0.08 ...

10 Treatment effects on T:

-0.26 -0.08 -0.27 0.41...

This function returns an object of class predictSurrosurv
.

The predicted treatment effects can also be vizualied
graphically using the linear regression of the effect on T
given the effect on S, provided that usual assumptions
of linear regression hold. The usual surrogacy plot is ob-
tained using the function plot() for the classes surrosurv
and predictSurrosurv. For example, the surrogacy plots
for the adjusted Clayton copula and the Poisson TI mod-
els in the advanced GASTRIC meta-analysis (Fig. 2) can
be obtained as follows:

> plot(allSurroRes ,

c('Clayton adj', 'PoissonTI '))

The argument surro.stats controls whether the es-
timated Kendall’s τ and R2 must be displayed on the
plots; pred.ints controls whether the prediction intervals
must be plotted; show.ste controls whether the surrogate
threshold effect (STE) must be displayed on the plots. The
STE is the minimal treatment effect to be observed on the
surrogate endpoint S to predict a statistically significant
effect on the true endpoint T at a given significance level,
usually 0.05 [30]. The value of the STE estimated by each
surrogacy model can be obtained via the function ste(),
both in terms of regression parameter (beta) and in terms
of hazard ratio (HR):

> ste(allSurroRes)

beta HR
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Figure 2: Predictions for the advanced GASTRIC meta-analysis, as computed by the adjusted Clayton copula model, which had poor
convergence metrics, and by the Poisson TI model, which was deemed to have converged. HR = hazard ratio. STE = surrogate threshold
effect.

Clayton.unadj -0.61 0.54

Clayton.adj -0.44 0.65

5 Plackett.unadj -0.61 0.54

Plackett.adj -4.15 0.02

Hougaard.unadj -0.61 0.54

Hougaard.adj -1.30 0.27

PoissonT -0.17 0.84

10 PoissonTI -0.65 0.52

PoissonTIa -1.16 0.31

3.2.1. Leave-one-trial-out cross-validation

One technique used to assess the validity of the sur-
rogacy model is to apply the leave-one-out principle to
the trials in the meta-analysis. This means that, for each
trial, the observed treatment effect on S is compared to
its prediction obtained by entering the observed effect on
T in the surrogacy model fitted on the other N − 1 trials.
[31, 32, 33]. The function loovc() allows performing this
evaluation for a given list of models. The cross-validation
requires fitting as many models as the number of trials N .
As each model is usually very time-consuming to converge,
the function loovc() has been implemented to fit the N
models by parallel computing. The argument parallel is
a logical for allowing or not such a parallelization, whereas
nCores allows specifying the number of cores to use. By
default, parallel = TRUE and nCores is set to the min-

imum between N and the maximum number of cores on
the machine.

> loocvRes <- loocv(

gastadv ,

models = c('Clayton ',
'PoissonTI '))

5 Parallel computing on 8 cores

(the total number of cores detected)

The results of the crossvalidation can be printed

> loocvRes

Clayton copula (Unadjusted)

1 2 3 4

4 obsBeta -0.31 -0.21 -0.09 -0.02 ...

predict -0.40 -0.31 -0.07 -0.17 ...

lwr -0.76 -0.65 -0.42 -0.51 ...

upr -0.05 0.02 0.28 0.17 ...

kTau 0.60 0.60 0.61 0.60 ...

9 R2 0.49 0.49 0.45 0.46 ...

Clayton copula (Adjusted)

1 2 3 4

obsBeta -0.31 -0.21 -0.09 -0.02 ...

14 predict -0.39 -0.31 -0.09 -0.18 ...

lwr -0.69 -0.57 -0.35 -0.41 ...

upr -0.09 -0.04 0.17 0.06 ...

kTau 0.60 0.60 0.61 0.60 ...
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R2 0.46 0.45 0.42 0.46 ...

19

Poisson TI

1 2 3 4

obsBeta -0.31 -0.21 -0.09 -0.02 ...

predict -0.69 -0.40 0.08 -0.11 ...

24 lwr -1.22 -1.00 -0.76 -0.68 ...

upr -0.15 0.20 0.92 0.47 ...

kTau 0.51 0.52 0.51 0.51 ...

R2 0.70 0.65 0.47 0.60 ...

and plotted (Fig. 3) by showing, for each trial, the compar-
ison between the observed treatment effect on T , and its
prediction interval, based on the observed treatment effect
on S for the same trial and the surrogacy model fitted on
the other N − 1 trials:

> plot(loocvRes)

3.3. Utilities for data simulation

Few publications present simulation approaches adapted
to discuss statistical methods for evaluating failure time
surrogate endpoints [6, 34, 35, 36, 37]. To our knowledge,
the data generation methods used to date are based ei-
ther on the use of a Clayton copula or on a mixture of
half-normal and exponential random variables. Thanks to
the surrosurv package, data can be generated using these
two methods, in addition to an approach based on mixed
proportional hazard models that we employed recently [9].
These three data generation algorithms are detailed here
below. Of note, simulated data are useful to check the op-
erating characteristics of new statistical methods for sur-
rogate end point validation. Conversely, simulated data
do not play any role for validating surrogate endpoints in
medical applications.

3.3.1. Data generation based on a Clayton copula

The data generation method used in [6] and in [36, 37]
reflects the data generating process underlying the two-
step copula model (Sec. 2.1).

We implemented this approach for the Clayton family
(Eq. (2)), which is available using the function simData.

cc(). This function generates data as follows:

• trial-specific random effects are generated from(
mSi

mTi

)
∼ N

((
0

0

)
,

(
σ2
S σSσT ρm

σSσT ρm σ2
T

))
• trial-specific treatment effects are generated from(

αi
βi

)
∼ N

((
α
β

)(
d2a dadbρtrial

dadbρtrial d2b

))

• exponentially distributed individual times are simu-
lated for S, conditionally on the random effects gen-
erated before.

Sij = − log(USij)/λSij ,

with

λSij = exp(µS +mSi + αiZij),

USij ∼ U(0, 1)

• exponentially distributed individual times are simu-
lated for T | S, conditionally on the random effects
generated before and on the value of S

Tij | Sij = − log(U ′Tij)/λTij ,

with

λTij = exp(µT +mTi
+ βiZij),

U ′Tij =
[(
U
−θ/(1+θ)
Tij − 1

)
U−θSij + 1

]−1/θ
,

UTij ∼ U(0, 1).

The details of the arguments of the simData.cc() function
can be obtained using help(simData.cc).

3.3.2. Data generation based on a mixture of half-normal
and exponential random variables

The data geration method used in [34] and in [35] is
based on the results by Cowles [38], which showed that a
Weibull distribution can be expressed as a scaled mixture
of half-normal distribution and an exponential distribution
with unit rate parameter.

This approach is implemented in the function simData

.mx() and generates data as follows:

• trial-specific random effects are generated from(
mSi

mTi

)
∼ N

((
0

0

)
,

(
σ2
S σSσT ρm

σSσT ρm σ2
T

))
• trial-specific treatment effects are generated from(

αi
βi

)
∼ N

((
α
β

)(
d2a dadbρtrial

dadbρtrial d2b

))
• individual half-normal random variables Y ∗ij are gen-

erated from the distribution

f(y∗) =
2√
2π

exp

(
−y
∗2

2

)
, y∗ ∈ R+

• unit rate parameter exponential random variables
ΛSij and ΛTij are generated from − log(USij)Sij and
− log(UTij), with USij ∼ U(0, 1) and UTij ∼ U(0, 1)
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Figure 3: Leave-one-trial-out cross-validation results for the advanced GASTRIC meta-analysis. The black squares and the vertical grey
lines are the predicted values of the treatment effect on overall survival (OS), with the 95% prediction intervals (PI). Dots are the observed
treatment effects on OS (green = within the PI, magenta = out of the PI).
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• exponentially distributed individual times are simu-
lated for S and T from

Sij =
(
Y ∗ij
√

2ΛSij

)
exp(µS +mSi + αiZij),

Tij =
(
Y ∗ij
√

2ΛTij

)
exp(µS +mTi + αiZij).

The details of the arguments can be obtained using help

(simData.mx).

3.3.3. Data generation based on mixed proportional hazard
models

Recently we also generated data using individual ran-
dom effects to control individual-level surrogacy [9]. This
approach is implemented in the function simData.re()

and generates data as follows:

• trial-specific random effects and trial-specific treat-
ment effects were generated as in the Clayton copula
case

• individual random effects were generated from uij ∼
N (0, σ2), with σ2 depending on the scenario (accord-
ing to the Kendall’s τ)

• exponentially distributed individual times were sim-
ulated for S and T , conditionally on the random ef-
fects generated before. We used the inverse trans-
form method, which consists in transforming a uni-
form random variable by means of the inverse of the
probability distribution function of the random vari-
able to be generated [see for instance 39, § 2.1.2]

Sij = − log(USij)/λSij ,

with

λSij = exp(µS +mSi + αiZij + uij),

USij ∼ U(0, 1),

and
Tij = − log(UTij)/λTij ,

with

λTij = exp(µT +mTi
+ βiZij + uij),

UTij ∼ U(0, 1).

The details of the arguments can be obtained using help

(simData.re).

4. Mode of availability of the surrosurv package

The surrosurv package is an open-source project. Sta-
ble versions are released via the Comprehensive R Archive
Network (CRAN, https://cran.r-project.org/package=
surrosurv). Source code is available on GitHub (https:
//github.com/Oncostat/surrosurv).

5. Discussion

An increasing interest can be observed in surrogate
endpoints, mostly as they can accelerate drawing valid
conclusion from clinical trials, thus reducing development
costs and provide patients with new effective treatments
more quickly [40]. Composite endpoints, i. e. including
the true endpoint in addition to further events, have been
challenged because of their interpretability [41] or their
likeliness to overestimate the effect of new treatments [42].
Despite, they remain largely used as surrogate endpoints
in medical fields such as oncology and cardiovascular dis-
eases because of their meaningfulness for clinicians and be-
cause they are expected to better correlate with the final
outcome while increasing statistical power as compared to
this latter [43, 44, 45].

The validation of surrogate endpoints for clinical trials
relies on the principles that the surrogate must correlate
with the true endpoint and that the treatment effect on the
surrogate must correlate with the effect on the true end-
point [46, 47]. Consensus has been reached about the im-
portance of using data from several randomized controlled
trials and to combine them in a meta-analytic framework
[46, 2, 48, 1, 27]. Despite the usefulness of bringing sev-
eral trials of similar treatments together in the analysis,
an excess of heterogeneity of the study populations, of the
experimental and control treatments could affect the inter-
pretability of the results. Conversely, there needs to be a
range of treatment effects for the meta-analytic approach
to be useful and to reliably extrapolate the results to new
trials.

However, different statistical measures can be used for
assessing the validaty of surrogate endpoints and there re-
mains uncertainty about the quantitative definition of a
valid surrogate marker [49, 50]. The case of failure time
endpoints is particularly challenging from a statistical and
computational viewpoint [51, 52]. Two-step copula models
[3] are the state-of-the art statistical methodology, com-
monly used in numerous clinical publications over the last
15 years [53, 54, 55, 56, 31, 5, 14, 32, 57, 33, 58, 59], in-
cluding a surrogate evaluation conducted by the US FDA
[60]. Recently, we also proposed an alternative estimation
strategy [9], based on a single step estimation as in the
gaussian case [2]. This alternative approach exploits the
equivalence of parameter estimates between proportional
hazard models and auxiliary Poisson log-linear models.

Statistical software implementing the two-step copula
approach is available in SAS macros [61], allowing to es-
timate unadjusted and adjusted R2 as well as individual
level correlation for Clayton, Plackett, and Hougaard cop-
ulas. The R package Surrogate [62, 63] implements the
information-theoretic approach [64, 65], with a weighted
linear regression at the second step. The surrosurv pack-
age is the first to provide full implementation of the clas-
sical approach by Burzykowski et al. [3], with and with-
out adjustment for estimation error in the second step.
In addition, our package implements the recent Poisson
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approach presented in [9]. As compared to previously
available software, the surrosurv package also provides
utilities for prediction of treatment effect for new trials,
plots with prediction intervals, leave-one-trial-out cross-
validation, data simulation, and convergence diagnostics.

Two convergence metrics are provided, based on the
Karush–Kuhn–Tucker conditions [66]: maximum gradient
and minimum eigenvalue of the covariance matrix. The
first criterion requires that the (maximum) slope of the
negative likelihood at the estimate is close to zero, i. e.
the point is a (at least local) minimum. The second con-
dition checks that the (minimum) eigenvalue of the Hes-
sian matrix at the estimate is positive and far from zero,
i. e. the Hessian is positive definite and the variances are
strictly positive. This ensures that the maximum point
is really a minimum of the negative likelihood and not
a saddle point. Thresholds for a small-enough gradient
and big-enough eigenvalue are strictly arbitrary and no
guidance exists, to the best of our knowledge. Based on
our personal experience, we set the default values to 1e

-2 and 1e-8, respectively, but the users can choose their
own thresholds. Furthermore, the function convals() re-
turns the values of the two criteria, without comparison to
any prespecified threshold. For the Poisson approach, the
package also provides reduced models, which can be used
in the case of an application for which the complete model
seems overparametrized or too few information is available
to converge to a reliable estimate of all the parameters.

In this paper we present the surrosurv package which
provides an R implementation of classical and recent statis-
tical methods for surrogacy assessment of failure time end-
points. In addition to implementation of different meth-
ods, the surrosurv package provides many additional fea-
tures as compared to presently available software: utilities
are available to fit surrogacy models, assess their conver-
gence for reliable results, estimate surrogacy measures at
individual and trial levels, estimate the surrogate thresh-
old effect (STE), and perform leave-one-trial-out cross-
validation. In addition, flexible simulation functions are
can be used to generate data according to different meth-
ods described in the literature.
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