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Abstract

The linear regression model has been widely used for descriptive, predictive, and infer-
ential purposes. This model relies on a set of assumptions, which are not always fulfilled
when working with empirical data. In this case, one solution could be the use of more
complex regression methods that do not strictly rely in the same assumptions. However,
in order to improve the validity of model assumptions, transformations are a simpler ap-
proach and enable the user to keep using the well-known linear regression model. But
how can a user find a suitable transformation? The R package trafo offers a simple user-
friendly framework for selecting a suitable transformation depending on the user needs.
The collection of selected transformations and estimation methods in the package trafo
complement and enlarge the methods that are existing in R so far.

Keywords: power transformations, optimal parameter, model assumptions, normality.

1. Introduction

To study the relation between two or more variables, the linear regression model is one
of the most employed statistical methods. For an appropriate usage of this model, a set
of assumptions needs to be fulfilled. These assumptions are, among others, related to the
functional form and to the error terms, such as linearity and homoscedasticity. However, in
practical applications, these assumptions are not always satisfied. This leads to the question
of how the practitioner can move on with the analysis in such case. One way to proceed
is to conduct the analysis ignoring the model assumption violations which is, of course, not
recommended as it would likely yield misleading results. Another solution is to use more
complex methods such as generalized linear regression models or non-parametric methods,
as they might fit the data and problem better. A third method, which also constitutes the
focus of the present paper, is the application of suitable transformations. In this work, we
mean by transformation that the response variable of the linear model is transformed with a
known transformation function. For more flexible transformation functions, we refer e.g., to
Hothorn, Möst, and Bühlmann (2018).

Transformations have the potential to correct certain violations and by doing so, enable
to continue the analysis with the known (linear) regression model. Due to its convenience,
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transformations such as the logarithm or the Box-Cox are commonly applied in many branches
of sciences; for example in economics (Hossain 2011) and neuroscience (Morozova, Koschutnig,
Klein, and Wood 2016). In order to simplify the choice and the usage of transformations
in the linear regression model, the R (R Core Team 2018) package trafo (Medina, Castro,
Kreutzmann, and Rojas-Perilla 2018) is developed. The present work is inspired by the
framework proposed in Rojas-Perilla (2018, pp. 9-45) and extends other existing R packages
that provide transformations.

Many packages that contain transformations do not focus especially on the usage of transfor-
mations (Venables and Ripley 2002; Fox and Weisberg 2011; Molina and Marhuenda 2015;
Ribeiro Jr. and Diggle 2016). Therefore, they often only include popular transformations like
the logarithmic or the Box-Cox transformation family. The package car (Fox and Weisberg
2011) expands the selection of transformations. It includes the Box-Cox, the basic power,
and the Yeo-Johnson transformation families, and uses the maximum likelihood approach for
the estimation of the transformation parameter. An exponential transformation proposed
by Manly (1976) is provided in the package caret (Kuhn 2008) and the multiple parameter
Johnson transformation in the packages Johnson (Fernandez 2014) and jtrans (Wang 2015).
While package MASS (Venables and Ripley 2002) and package car (Fox and Weisberg 2011)
only provide the maximum likelihood approach for the estimation of the transformation pa-
rameter for the Box-Cox family, the estimation can be conducted by a wide range of methods
in the AID package (Dag, Asar, and Ilk 2017). Most of the provided methods are based on
goodness of fit tests like the Shapiro-Wilk or the Anderson-Darling test. However, the AID
package only contains the Box-Cox transformation.

It is noticeable that none of the above-mentioned packages helps the user in the process of
deciding which transformation is actually suitable according to the users needs. Furthermore,
most packages do not provide tools to see at the first sight if the transformation improves the
untransformed model with regards to fulfilling the model assumptions. Therefore, package
trafo combines and extends the features provided by the packages mentioned above. Addi-
tionally to transformations that are already provided by existing packages, the trafo package
includes, among others, the Bickel-Doksum (Bickel and Doksum 1981), modulus (John and
Draper 1980), the neglog (Whittaker, Whitehead, and Somers 2005) and glog (Durbin, Hardin,
Hawkins, and Rocke 2002) transformations that are modifications of the Box-Cox and the log-
arithmic transformation, respectively, in order to deal with negative values in the response
variable. Furthermore, the selection of estimation methods for the transformation parameter
is enlarged by methods based on moments and divergence measures (see e.g., Taylor 1985;
Yeo and Johnson 2000; Royston, Lambert et al. 2011). The main benefits of the package trafo
can be summarized as follows:

� An initial check can be conducted that helps to decide if and which transformation is
useful for the researchers needs.

� The untransformed model and a model with a transformed dependent variable as well
as two transformed models can be run simultaneously, and thus the models can be easily
compared with regard to the model assumptions.

� Extensive diagnostics are provided in order to check if the transformation helps to fulfill
the model assumptions normality, homoscedasticity, and linearity.
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The remainder of this paper is structured as follows. In Section 2, the transformations and
estimation methods included in the package are presented. Section 3 demonstrates in form of
a case study the functionality of the package. Section 4 summarizes the user-defined function
feature of the package. In Section 5, some concluding remarks and potential extensions of the
package are discussed. Finally, Appendix A presents the mathematical derivations underlying
the package.

2. Transformations and estimation methods

The equation describing and summarizing the relationship between a continuous outcome
variable Y and different covariatesX (either discrete or continuous) is defined by yi = xTi β+ei,
with i = 1, . . . , n. This is also known as the linear regression model and is composed by a
deterministic and a random component, which rely on different assumptions. Among others,
these assumptions can be summarized as follows:

� Normality (N): The conditional distribution of y given x follows a normal distribution.
This is an optional, but often desired assumption.

� Homoscedasticity (H): The conditional variance of y given x is constant.

� Linearity (L): The conditional expectation of the outcome variable y given the contin-
uous covariates x is a linear function in x.

As already mentioned, different approaches have been proposed for achieving these model
assumptions. Some of them include using alternative estimation methods of the regression
terms or applying more complex regression models (see e.g., Nelder and Wedderburn 1972;
Berry 1993). In this paper, we focus on defining a parsimonious re-specification for the model,
such as the usage of non-linear transformations of the outcome variable. The transformations
implemented in the package trafo basically help to achieve normality. However, most of them
simultaneously correct other assumptions (see also Table 1 and Table 2).
The transformations can be classified into transformations without a transformation param-
eter and data-driven transformations with a transformation parameter that needs to be es-
timated. The first set of transformations presented in Table 1 comprises, among others, the
logarithmic transformation, which is considered due to its popularity and straightforward
application. The data-driven transformations presented in Table 2 are dominated by the

Table 1: Transformations without transformation parameter.

Transformation Source Formula Support N H L

Log (shift) Box and Cox (1964) log(y + s) y ∈ R 7 7 7

Glog Durbin et al. (2002) log(y +
√
y2 + 1) y ∈ R 7 7 7

Neglog Whittaker et al. (2005) Sign(y) log(|y|+ 1) y ∈ R 7 7

Reciprocal Tukey (1977) 1
y y 6= 0 7 7

Box-Cox transformation and its modifications or alternatives, e.g., the modulus or Bickel-
Doksum transformation. However, more flexible versions of the logarithmic transformation,
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as the log-shift opt, or the Manly transformation, which is an exponential transformation, are
also included in the package trafo.

Table 2: Data-driven transformations.

Transformation Source Formula Support N H L

Box-Cox (shift) Box and Cox (1964)

{
(y+s)λ−1

λ
if λ 6= 0;

log(y + s) if λ = 0.
y ∈ R 7 7 7

Log-shift opt Feng, Hannig, and Marron (2016) log(y + λ) y ∈ R 7 7 7

Bickel-Docksum Bickel and Doksum (1981)
|y|λSign(y)−1

λ
if λ > 0 y ∈ R 7 7

Yeo-Johnson Yeo and Johnson (2000)


(y+1)λ−1

λ
if λ 6= 0, y ≥ 0;

log(y + 1) if λ = 0, y ≥ 0;
(1−y)2−λ−1

λ−2
if λ 6= 2, y < 0;

−log(1− y) if λ = 2, y < 0.

y ∈ R 7 7

Square Root (shift) Medina et al. (2018)
√
y + λ y ∈ R 7 7

Manly Manly (1976)

{
eλy−1
λ

if λ 6= 0;

y if λ = 0.
y ∈ R 7 7

Modulus John and Draper (1980)

{
Sign(y)

(|y|+1)λ−1
λ

if λ 6= 0;

Sign(y) log (|y|+ 1) if λ = 0.
y ∈ R 7

Dual Yang (2006)

{
(yλ−y−λ)

2λ
if λ > 0;

log(y) if λ = 0.
y > 0 7

Gpower Kelmansky, Mart́ınez, and Leiva (2013)

{
(y+
√
y2+1)λ−1
λ

if λ 6= 0;

log(y +
√
y2 + 1) if λ = 0.

y ∈ R 7

Table 1 and 2 provide information about the range of the dependent variable that is supported
by the transformation. Some transformations are only suitable for positive values of y. This
is generally true for the logarithmic and Box-Cox transformations. However, in case that
the dependent variable contains negative values, the values are shifted by a deterministic
shift s such that y + s > 0 by default in package trafo. Furthermore, the tables emphasize
which assumptions the transformation helps to achieve. These are general suggestions and the
actual success always also depends on the data. For specific properties of each transformation
we refer to the original references. The square root shift transformation with a data-driven
shift in analogy to the log-shift opt transformation is, to the best of our knowledge, firstly
implemented in this work. In contrast, a square root transformation with deterministic shift,
for example, is suggested in Bartlett (1947).

Since the transformations in Table 2 contain transformation parameters that need to be
estimated, package trafo contains different methodologies for this estimation. The benefit of
each estimation method depends on the research analysis and the underlying data. They can
be summarized as follows:

� Maximum likelihood theory

� Distribution moments optimization: Skewness or kurtosis

� Divergence minimization: Following Kolmogorov-Smirnov (KS), Cramér-von-Mises (KM)
or Kullback-Leibler (KL) measurements
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Table 3: Diagnostic checks provided in the package trafo

Assumption Diagnostic check Fast check

Normality Skewness and kurtosis 7

Shapiro-Wilk test 7

Quantile-quantile plot
Histograms

Homoscedasticity Breusch-Pagan test 7

Residuals vs. fitted plot
Scale-location

Linearity Scatter plots between y and x 7

Observed vs. fitted plot

The maximum likelihood estimation method finds the set of values for the transformation
parameter that maximizes the likelihood function of the dataset under the selected trans-
formation (Box and Cox 1964). This is a standard approach that is also implemented in
several of the mentioned R packages (Venables and Ripley 2002; Fox and Weisberg 2011).
However, since the maximum likelihood estimation is rather sensitive to outliers, the skew-
ness or kurtosis optimization might be preferable for the estimation of the transformation
parameter in the presence of such outliers (see e.g., Royston et al. 2011). These methods are
especially favorable when it is important in the analysis to meet these moments. For instance,
skewness minimization should be used when it is important to get a symmetric distribution.
Additionally, if the focus lies on comparing the whole distribution of the transformed data
with a normal distribution, and not only some moments, different divergence measures as the
KS, KM or KL can be used (see e.g., Yeo and Johnson 2000). For all estimation methods,
a lambda range on which the functions are evaluated needs to be proposed. Therefore, de-
fault values are set for the predefined transformations. For more information about different
estimation methods we refer to Rojas-Perilla (2018, pp. 9-45).

Since the user can only decide if the transformation is helpful by checking the above mentioned
assumptions, the package trafo contains a wide range of diagnostic checks (e.g., Shapiro and
Wilk 1965; Breusch and Pagan 1979). A smaller selection is used in the fast check that helps
to decide if a transformation might be useful. Table 3 summarizes the implemented diagnostic
checks that are simultaneously returned for the untransformed and a transformed model or
two differently transformed models and indicates which diagnostics are conducted in the fast
check. Additionally, plots are provided that help to detect outliers such as the Cook’s distance
plot and influential observations by the residuals vs leverage plot.
Another feature of the package trafo is the possibility of defining a customized transformation.
Thus, a user can also use the infrastructure of the package for a transformation that suits the
individuals needs better than the predefined transformations. However, in this version of the
package trafo the user needs to define the transformation and the standardized transformation
in order to use this feature. For the derivation of the standardized transformation of all
predefined transformations, see Appendix A.
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Table 4: Core functions of package trafo

Function Description

assumptions() Enables a fast check which transformation is suitable.
trafo_lm() Compares the untransformed model with a transformed model.

trafo_compare() Compares two differently transformed models.
diagnostics() Returns information about the transformation and different

diagnostics checks in form of tests.
plot() Returns graphical diagnostics checks.

3. Case study

In order to show the functionality of the package trafo, we present – in form of a case study –
the steps a user faces when checking the assumptions of the linear model. For this illustration,
we use the data set called University from the R package Ecdat (Croissant 2016). This data
set contains variables about the equipment and costs of university teaching and research and
can be obtained as follows:

R> library(Ecdat)

R> data(University)

A practical question for the head of a university could be how study fees (stfees) raise the
universities net assets (nassets). Both variables are metric. Thus, a linear regression could
help to explain the relation between these two variables. A linear regression model can be
conducted in R using the lm function.

R> linMod <- lm(nassets ~ stfees, data = University)

The features in the package trafo that help to find a suitable transformation for this model and
to compare different models are summarized in Table 4 and illustrated in the next sections.

3.1. Finding a suitable transformation

It is well known that the reliability of the linear regression model depends on assumptions.
Amongst others, normality, homoscedasticity, and linearity are assumed. In this section, we
focus on presenting how the user can decide and assess, if and which, transformations help
to fulfill these model assumptions. Thus, a first fast check of these model assumptions can
be used in the package trafo in order to find out if the untransformed model meets these
assumptions or if using a transformation seems suitable. The fast check can be conducted by
the function assumptions. This function returns the skewness, the kurtosis and the Shapiro-
Wilk test for normality, the Breusch-Pagan test for homoscedasticity and scatter plots between
the dependent and the explanatory variables for checking the linear relation. All possible
arguments of the function assumptions are summarized in Table 5. In the following, we
only show the returned normality and homoscedasticity tests. The results are ordered by the
highest p value of the Shapiro-Wilk and Breusch-Pagan test.
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R> assumptions(linMod)

The default lambdarange for the log shift opt transformation is calculated

dependent on the data range. The lower value is set to -2035.751 and the upper

value to 404527.249

The default lambdarange for the square root shift transformation is calculated

dependent on the data range. The lower value is set to -2035.751 and the upper

value to 404527.249

Test normality assumption

Skewness Kurtosis Shapiro_W Shapiro_p

logshiftopt -0.4201 4.0576 0.9741 0.2132

boxcox -0.4892 4.2171 0.9621 0.0527

bickeldoksum -0.4892 4.2171 0.9621 0.0527

gpower -0.4892 4.2171 0.9621 0.0527

modulus -0.4892 4.2171 0.9621 0.0527

yeojohnson -0.4892 4.2171 0.9621 0.0527

dual -0.4837 4.2180 0.9619 0.0519

sqrtshift 0.6454 5.2752 0.9504 0.0139

log -1.1653 5.1156 0.9140 0.0004

neglog -1.1651 5.1150 0.9140 0.0004

glog -1.1653 5.1156 0.9140 0.0004

untransformed 2.4503 12.7087 0.7922 0.0000

reciprocal -3.7260 19.0487 0.5676 0.0000

Test homoscedasticity assumption

BreuschPagan_V BreuschPagan_p

modulus 0.1035 0.7477

yeojohnson 0.1035 0.7477

boxcox 0.1035 0.7476

bickeldoksum 0.1036 0.7476

gpower 0.1035 0.7476

dual 0.1128 0.7369

logshiftopt 0.1154 0.7341

neglog 0.7155 0.3976

log 0.7158 0.3975

glog 0.7158 0.3975

reciprocal 1.6109 0.2044

sqrtshift 5.4624 0.0194

untransformed 9.8244 0.0017

Following the Shapiro-Wilk test, the best transformation to fulfill the normality assumption
is the log-shift opt transformation followed by the Box-Cox, Bickel-Doksum, gpower, modulus
and Yeo-Johnson transformation. The similarity or even equality of the test results for dif-
ferent transformations is due to the the same functional form in the case of a positive λ and
positive values as e.g., the Box-Cox and Bickel-Doksum transformation, or to the rounding
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Table 5: Arguments of function assumptions

Argument Description Default

object Object of class lm.
method Estimation method for the transformation parameter. Maximum likelihood

std Normal or standardized transformation. Normal
... Addtional arguments can be added, especially for changing Default values of

the lambda range for the estimation of the parameter, e.g. lambda range of
manly_lr = c(0.000005,0.00005) each transformation

at four decimals. For improving the homoscedasticity assumption, all transformations help
except the square root (shift) transformation. As mentioned before, default values for the
lambda range for all transformations are predefined and these are used in this fast check.
Since the default values for the log-shift opt and square root (shift) transformation depend
on the range of the response variable, the chosen range is reported in the return. The Manly
transformation is not in the list since the default lambda range for the estimation of the
transformation parameter is not suitable for this data set. It does not fit since the Manly
transformation is an exponential transformation and therefore it rather fits for flat or left-
skewed data in contrast to most of the other transformations. In the case that the default
lambda range does not work, the user can change the lambda range for the transformations
manually. Similarly, the user can change the estimation methods for the transformation pa-
rameter. For instance, if symmetry is of special interest for the user the skewness minimization
might be a better choice than the default maximum likelihood method. In this case study all
assumptions are assumed to be equally important. Thus, we choose the Box-Cox transforma-
tion for the further illustrations even though some other transformations would be suitable
as well.

3.2. Comparing the untransformed model with a transformed model

For a more detailed comparison of the transformed model with the untransformed model, a
function called trafo_lm (for the arguments see Table 6) can be used as follows:

R> linMod_trafo <- trafo_lm(linMod)

The Box-Cox transformation is the default option such that only the lm object needs to
be given to the function. The object linMod_trafo is of class trafo_lm and the user can
conduct the methods print, summary and plot in the same way as for an object of class lm.
The difference is that the new methods simultaneously return the results for both models, the
untransformed model and the transformed model. Furthermore, a method called diagnostics

helps to compare results of normality and homoscedasticity tests. In the following, we will
show the return of the diagnostics method and some selected plots in order to check the
normality, homoscedasticity and the linearity assumption of the linear model.
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R> diagnostics(linMod_trafo)

Diagnostics: Untransformed vs transformed model

Transformation: boxcox

Estimation method: ml

Optimal Parameter: 0.1894257

Residual diagnostics:

Normality:

Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p

Untransformed model 2.4503325 12.708681 0.7921672 6.024297e-08

Transformed model -0.4892222 4.217105 0.9620688 5.267566e-02

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p

Untransformed model 9.8243555 0.00172216

Transformed model 0.1035373 0.74762531

The first part of the return shows information of the applied transformation. As chosen,
the Box-Cox transformation is used with the optimal transformation parameter around 0.19
which is estimated using the maximum likelihood approach that is also set as default. The
optimal transformation parameter differs from 0, which would be equal to the logarithmic
transformation, and 1, which means that no transformation is optimal. The Shapiro-Wilk test
rejects normality of the residuals of the untransformed model but it does not reject normality
for the residuals of the transformed model on a 5% level of significance. Furthermore, the
skewness shows that the residuals in the transformed model are more symmetric and the
kurtosis is closer to 3, the value of the kurtosis of the normal distribution. The results of
the Breusch-Pagan test clearly show that homoscedasticity is rejected in the untransformed
model but not in the transformed model. These two findings can be supported by diagnostic
plots shown in Figure 1.

R> plot(linMod_trafo)

In order to evaluate the linearity assumption, scatter plots of the dependent variable against
the explanatory variable can help. Figure 2 shows that the assumption of linearity is vi-
olated in the untransformed model. In contrast, the relation between the transformed net
assets and the study fees seems to be linear. As demonstrated above, the user can receive
diagnostics for an untransformed and a transformed model with only a little more effort in
comparison to fitting the standard linear regression model without transformation. While we
only show the example with the default transformation, the user can also easily change the
transformation and the estimation method. For instance, the user could choose the log-shift
opt transformation with the skewness minimization as estimation method.

R> linMod_trafo2 <- trafo_lm(object = linMod, trafo = "logshiftopt",

+ method = "skew")
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(a) Q-Q plots of the error terms.
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Figure 1: Selection of diagnostic plots obtained by using plot(linMod_trafo). (a) shows Q-
Q plots error terms of the untransformed and the transformed model. (b) shows the residuals
against the fitted values of the untransformed and the transformed model.
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Figure 2: Selection of obtained diagnostic plots by using plot(linMod_trafo). (a) shows
the scatter plot of the untransformed net assets and the study fees (b) shows scatter plot of
the transformed net assets and the study fees. The numbers specify the correlation coefficient
between the dependent and independent variable.

Table 6: Arguments of function trafo_lm.

Argument Description Default

object Object of class lm.
trafo Selected transformation. Box-Cox
lambda Estimation or a self-selected numeric value. Estimation
method Estimation method for the transformation parameter. Maximum likelihood

lambdarange Determines lambdarange for the estimation of the Default lambdarange
transformation parameter. for each transformation.

std Normal or standardized transformation. Normal
custom_trafo Add customized transformation. None
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3.3. Comparing two transformed models

The user can also compare different transformations with regard to meet the model assump-
tions. In many present-day applications, the logarithm is often used without longer considera-
tions about its usefulness. In order to compare the logarithm, e.g., with the selected Box-Cox
transformation, the user needs to specify two objects of class trafo as follows:

R> boxcox_uni <- boxcox(linMod)

R> log_uni <- logtrafo(linMod)

The utility of trafo objects is twofold. First, the user can use the functions for each trans-
formation in order to simply receive the transformed vector. The print method gives first
information about the vector and the method as.data.frame returns the whole data frame
with the transformed variable in the last column. The variable is named as the dependent
variable with an added t.

R> head(as.data.frame(boxcox_uni))

nassets stfees nassetst

1 3669.71 2821 19.71248

2 12156.00 4037 26.07723

3 185203.00 17296 47.24867

4 323100.00 18800 53.08840

5 32154.00 9314 32.42140

6 41669.00 7388 34.31882

Second, the objects can be used to compare linear models with differently transformed de-
pendent variable using function trafo_compare. The arguments of this functions are shown
in Table 7. The user creates an object of class trafo_compare by:

R> linMod_comp <- trafo_compare(object = linMod,

+ trafos = list(boxcox_uni, log_uni))

For this object, the user can use the same methods as for an object of class trafo_lm. In this
work, we only want to show the return of method diagnostics.

R> diagnostics(linMod_comp)

Diagnostics of two transformed models

Transformations: Box-Cox and Log

Estimation methods: ml and no estimation

Optimal Parameters: 0.1894257 and no parameter
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Table 7: Arguments of function trafo_compare.

Argument Description Default

object Object of class lm.
trafos List of objects of class trafo.

std Normal or standardized transformation. Normal

Residual diagnostics:

Normality:

Pearson residuals:

Skewness Kurtosis Shapiro_W Shapiro_p

Box-Cox -0.4892222 4.217105 0.9620688 0.0526756632

Log -1.1653028 5.115615 0.9140135 0.0003534879

Heteroscedasticity:

BreuschPagan_V BreuschPagan_p

Box-Cox 0.1035373 0.7476253

Log 0.7158162 0.3975197

The first part of the return points out that the Box-Cox transformation is a data-driven
transformation with a transformation parameter, while the logarithmic transformation does
not adapt to the data. Furthermore, we can see that normality is rejected for the model
with a logarithmic transformed dependent variable, while it is not rejected when the Box-Cox
transformation is used. The violation of the homoscedasticity assumption can be fixed by
both transformations.

4. Customized transformation

An additional user-friendly feature in the package trafo is the possibility of using the frame-
work also for self-defined transformations. In the following, we show this option for the glog
transformation.

In a first step, the transformation and the standardized or scaled transformation need to be
defined. The mathematical expression of these two functions is presented in the Appendix
A.2.

R> glog_trafo <- function(y) {

+ yt <- log(y + sqrt(y^2 + 1))

+ return(y = yt)}

R> glog_std <- function(y) {

+ zt <- log(y + sqrt(y^2 + 1)) * sqrt(geometric.mean(1 + y^2))

+ return(zt = zt)}

Second, the user inserts the two functions as a list argument to the trafo_lm function.
Furthermore, the user needs to specify for the trafo argument if the transformation is without
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a parameter ("custom_wo") or with one parameter ("custom_one"). The glog transformation
does not rely on a transformation parameter.

R> linMod_custom <- trafo_lm(linMod, trafo = "custom_wo",

+ custom_trafo = list(glog_trafo = glog_trafo, glog_std = glog_std))

One limitation of this feature is the necessity to insert both the transformation and the scaled
transformation since the latter is often not known by the user. Furthermore, the framework
is only suitable for transformations without and with one transformation parameter.

5. Conclusions and future developments

Even though the development in computing enables the use of complex methods nowadays,
transformations are still a parsimonious way to meet model assumptions in a linear regression
model. In Section 3, we demonstrated how the package trafo helps the user to decide easily if
and which transformation is suitable to fulfill the model assumptions normality, homoscedas-
ticity and linearity. To the best of our knowledge trafo is the only R package that supports
this decision process. Furthermore, the package trafo provides an extensive collection of trans-
formations usable in linear regression models and a wide range of estimation methods for the
transformation parameter. In future versions, we plan to enlarge this collection constantly,
also for other types of data, e.g, count data. Additionally, more methods that are available for
the class lm could be developed for objects of class trafo_lm. We would also like to expand
the infrastructure for linear mixed regression models.

A. Likelihood derivation of the transformations

A.1. Log (shift) transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled log (shift) transformation, given by
y∗i

J(y)1/n
, and for simplicity, we use a modification

of the definition of the geometric mean, denoted by ȳLS. Therefore, the Jacobian, the scaled,
and the inverse of the log (shift) transformation are given below.

The log (shift) transformation presented in Table 1 is defined as:

y∗i = log(yi + s).

In case, the fixed shift parameter s would not be necessary, the standard logarithm function
(logarithmic transformation with s = 0) is applied.

The modification of the definition of the geometric mean for this transformation is:

ȳLS =

[
n∏
i=1

yi + s

] 1
n

.
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Therefore, the expression of the Jacobian is defined as:

J(y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

1

yi + s

= ȳ−nLS .

The scaled transformation is given by:

z∗i = log(yi + s)ȳLS .

The inverse function of the log (shift) transformation is denoted as:

f(yi) = log(yi + s)

y∗i = log(yi + s)

yi = ey
∗
i − s

⇒ f−1(y∗i ) = ey
∗
i − s.

A.2. Glog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled glog transformation, given by
y∗i

J(y)1/n
, and for simplicity, we use a modification of the

definition of the geometric mean, denoted by ȳGL. Therefore, the Jacobian, the scaled, and
the inverse of the glog transformation are given below.

The glog transformation presented in Table 1 is defined as:

y∗i = log
(
yi +

√
y2
i + 1

)
if λ = 0.

The modification of the definition of the geometric mean for this transformation is:

ȳGL =

[
n∏
i=1

1 + y2
i

] 1
n

.
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Therefore, the expression of the Jacobian is defined as:

J(y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

1

yi +
√
y2
i + 1

(
1 +

2yi

2
√
y2
i + 1

)

=

n∏
i=1

1

yi +
√
y2
i + 1

(
yi +

√
y2
i + 1√

y2
i + 1

)

=

n∏
i=1

1√
y2
i + 1

= ȳ
−n
2
GL .

The scaled transformation is given by:

z∗i = log
(
yi +

√
y2
i + 1

)
ȳ

1
2
GL.

The inverse function of the glog transformation is denoted as:

f(yi) = log
(
yi +

√
y2
i + 1

)
y∗i = log

(
yi +

√
y2
i + 1

)
ey
∗
i − yi =

√
y2
i + 1

(ey
∗
i − yi)2 = y2

i + 1

ey
∗2
i − 2ey

∗
i yi = 1

yi = −(1− ey∗2i )

2ey
∗
i

⇒ f−1(y∗i ) = −(1− ey∗2i )

2ey
∗
i

.

A.3. Neglog transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled neglog transformation, given by
y∗i

J(y)1/n
, and for simplicity, we use a modification of

the definition of the geometric mean, denoted by ȳNL. Therefore, the Jacobian, the scaled,
and the inverse of the neglog transformation are given below.

The neglog transformation presented in Table 1 is defined as:

y∗i = sign(yi) log (|yi|+ 1) .

The modification of the definition of the geometric mean for this transformation is:

ȳNL =

[
n∏
i=1

(|yi|+ 1)

] 1
n

.
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Therefore, the expression of the Jacobian comes to:

J(y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

sign(yi)
1

|yi|+ 1

= sign

( n∏
i=1

yi

)( n∏
i=1

|yi|+ 1

)−1

= sign

( n∏
i=1

yi

)
ȳ−nNL.

The scaled transformation is given by:

z∗i = sign(yi) log (|yi|+ 1) sign

( n∏
i=1

yi

)
ȳNL.

The inverse function of the neglog transformation is denoted as:

f(yi) = sign(yi) log (|yi|+ 1)

y∗i = sign(yi) log (|yi|+ 1)

|yi| = esign(y∗i )y∗i − 1

⇒ f−1(y∗i ) = ±
[
esign(y∗i )y∗i − 1

]
.

A.4. Reciprocal transformation

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i , the

scaled reciprocal transformation, given by
y∗i

J(y)1/n
, and for simplicity, we use a modification

of the definition of the geometric mean, denoted by ȳR. Therefore, the Jacobian, the scaled,
and the inverse of the reciprocal transformation are given below.

The reciprocal transformation presented in Table 1 is defined as:

y∗i =
1

yi
.

The definition of the geometric mean is:

ȳR =

[
n∏
i=1

yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

− 1

y2
i

= −ȳ−2n
R .
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The scaled transformation is given by:

z∗i = − 1

yi
ȳ2
R.

The inverse function of the reciprocal transformation is denoted as:

f(yi) =
1

yi

y∗i =
1

yi

yi =
1

y∗i

⇒ f−1(y∗i ) =
1

y∗i
.

A.5. Box-Cox (shift) transformation

y∗i (λ) =

{
(yi+s)

λ−1
λ if λ 6= 0 (A);

log(yi + s) if λ = 0 (B).

Box-Cox (shift) transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled Box-Cox (shift)(A) transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity,

we use a modification of the definition of the geometric mean, denoted by ȳBC. Therefore,
the Jacobian, the scaled, and the inverse of the Box-Cox (shift)(A) transformation are given
below.

The Box-Cox (shift)(A) transformation presented in Table 2 is defined as:

y∗i (λ) =
(yi + s)λ − 1

λ
if λ 6= 0.

In case, the fixed shift parameter s is not necessary for making the dataset positive, the
standard Box-Cox transformation (with s = 0) is applied.

The definition of the geometric mean is:

ȳBC =

[
n∏
i=1

yi + s

] 1
n

.
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Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λ(yi + s)λ−1

λ

=

n∏
i=1

(yi + s)λ−1

= ȳ
n(λ−1)
BC .

The scaled transformation is given by:

z∗i (λ) =
(yi + s)λ − 1

λ

1

ȳλ−1
BC

.

The inverse function of the Box-Cox (shift)(A) transformation is denoted as:

f(yi) =
(yi + s)λ − 1

λ

y∗i =
(yi + s)λ − 1

λ

yi = (λy∗i + 1)
1
λ − s

⇒ f−1(y∗i ) = (λy∗i + 1)
1
λ − s.

Box-Cox (shift) transformation case (B)

This case is exactly equal to the log (shift) case.

A.6. Log-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled log-shift opt transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use

a modification of the definition of the geometric mean, denoted by ȳLSO. Therefore, the
Jacobian, the scaled, and the inverse of the log-shift opt transformation are given below.

The log-shift opt transformation presented in Table 2 is defined as:

y∗i (λ) = log(yi + λ).

The modification of the definition of the geometric mean for this transformation is:

ȳLSO =

[
n∏
i=1

yi + λ

] 1
n

.
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Therefore, the expression of the Jacobian is defined as:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

1

yi + λ

= ȳ−nLSO.

The scaled transformation is given by:

z∗i (λ) = log(yi + λ)ȳLSO.

The inverse function of the log-shift opt transformation is denoted as:

f(yi) = log(yi + λ)

y∗i = log(yi + λ)

yi = ey
∗
i − λ

⇒ f−1(y∗i ) = ey
∗
i − λ.

A.7. Bickel-Docksum transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled Bickel-Docksum transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we

use a modification of the definition of the geometric mean, denoted by ȳBD. Therefore, the
Jacobian, the scaled, and the inverse of the Bickel-Docksum transformation are given below.

The Bickel-Docksum transformation presented in Table 2 is defined as:

y∗i (λ) =
|yi|λsign(yi)− 1

λ
if λ > 0.

The modification of the definition of the geometric mean for this transformation is:

ȳBD =

[
n∏
i=1

|yi|

] 1
n

.

Therefore, the expression of the jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

sign(yi)λ|yi|λ−1

λ

= sign

( n∏
i=1

yi

)( n∏
i=1

|yi|
)λ−1

= sign

( n∏
i=1

yi

)
ȳ
n(λ−1)
BD .
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The scaled transformation is given by:

z∗i (λ) =
|yi|λsign(yi)− 1

λ

1

sign

(∏n
i=1 yi

)
ȳ

(λ−1)
BD

.

The inverse function of the Bickel-Docksum transformation is denoted as:

f(yi) =
|yi|λsign(yi)− 1

λ

y∗i =
|yi|λsign(yi)− 1

λ

|yi| =
[
sign(y∗i )(y

∗
i λ+ 1)

] 1
λ

⇒ f−1(y∗i ) = ±
[
sign(y∗i )(y

∗
i λ+ 1)

] 1
λ .

A.8. Yeo-Johnson transformation

y∗ij(λ) =


(yi+1)λ−1

λ if λ 6= 0, yi ≥ 0 (A);

log(yi + 1) if λ = 0, yi ≥ 0 (B);

− (1−yi)2−λ−1
2−λ if λ 6= 2, yi < 0 (C);

−log(1− yi) if λ = 0, yi < 0 (D).

Yeo-Johnson transformation case (A)

This case is exactly equal to the Box-Cox (shift) case (A), with s = 1.

Yeo-Johnson transformation case (B)

This case is exactly equal to the log (shift) case, with s = 1.

Yeo-Johnson transformation case (C)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled Yeo-Johnson(C) transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we

use a modification of the definition of the geometric mean, denoted by ȳYC. Therefore, the
Jacobian, the scaled, and the inverse of the Yeo-Johnson(C) transformation are given below.

The Yeo-Johnson(C) transformation presented in Table 2 is defined as:

y∗i (λ) = −(1− yi)2−λ − 1

2− λ
if λ 6= 2 and yi < 0.

The modification of the definition of the geometric mean for this transformation is:

ȳY C =

[
n∏
i=1

1− yi

] 1
n

.
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Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

(2− λ)(1− yi)1−λ

2− λ

=
n∏
i=1

(1− yi)1−λ

= ȳ
n(1−λ)
Y C .

The scaled transformation is given by:

z∗i (λ) = −(1− yij)2−λ − 1

2− λ
ȳ
n(1−λ)
Y C .

The inverse function of the Yeo-Johnson(C) transformation is denoted as:

f(yi) = −(1− yi)2−λ − 1

2− λ

y∗i = −(1− yi)2−λ − 1

2− λ
−y∗i (2− λ) = (1− yi)2−λ − 1

yi = 1−
[
− y∗i (2− λ) + 1

] 1
2−λ

⇒ f−1(y∗i ) = 1−
[
− y∗i (2− λ) + 1

] 1
2−λ .

Yeo-Johnson transformation case (D)

Let J(y) denote the Jacobian of a transformation from yi to y∗i . In order to obtain z∗i ,

the scaled Yeo-Johnson(D) transformation, given by
y∗i

J(y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳYD. Therefore, the Jacobian,
the scaled, and the inverse of the Yeo-Johnson(D) transformation are given below.

The Yeo-Johnson(D) transformation presented in Table 2 is defined as:

y∗i = − log(1− yi).

The modification of the definition of the geometric mean for this transformation is:

ȳY D =

[
n∏
i=1

1− yi

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ,y) =

n∏
i=1

dy∗i
dy

=

n∏
i=1

1

1− yi
= ȳ−nY D.
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The scaled transformation is given by:

z∗i = − log(1− yi)ȳY D.

The inverse function of the Yeo-Johnson(D) transformation is denoted as:

f(yi) = − log(1− yi)
y∗i = − log(1− yi)
yi = −e−y∗i + 1

⇒ f−1(y∗i ) = −e−y∗i + 1.

A.9. Square root-shift opt transformation

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i , the scaled square root-shift opt transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we

use a modification of the definition of the geometric mean, denoted by ȳSR. Therefore, the
Jacobian, the scaled, and the inverse of the square root-shift opt transformation are given
below.

The square root-shift opt transformation presented in Table 2 is defined as:

y∗i (λ) =
√
yi + λ.

The definition of the geometric mean is:

ȳSR =

[
n∏
i=1

yi + λ

] 1
n

.

Therefore, the expression of the Jacobian is defined as:

J(λ,y) =
n∏
i=1

dy∗i
dy

=
n∏
i=1

− 1

2
√
yi + λ

=
1

2
ȳ
−n
2
SR .

The scaled transformation is given by:

z∗i = − 1

yi
ȳ2
SR.

The inverse function of the square root-shift opt transformation is denoted as:

f(yi) =
√
yi + λ

y∗i =
√
yi + λ

yi = y∗2i − λ
⇒ f−1(y∗i ) = y∗2i − λ.
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A.10. Manly transformation

y∗i (λ) =

{
eλyi−1
λ if λ 6= 0 (A);

yi if λ = 0 (B).

Manly transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled Manly(A) transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳM. Therefore, the Jacobian,
the scaled, and the inverse of the Manly(A) transformation are given below.

The Manly(A) transformation presented in Table 2 is defined as:

y∗i (λ) =
eλyi − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳM =

[
n∏
i=1

eyi

] 1
n

=
[
e
∑n
i=1 yi

] 1
n

= eȳ.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λeλyi

λ

=

(
n∏
i=1

eyi

)λ
= ȳλnM

= eλnȳ.

The scaled transformation is given by:

z∗i (λ) =
eλyi − 1

λ

1

ȳλM

=
eλyi − 1

λ

1

eλȳ
.
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The inverse function of the Manly(A) transformation is denoted as:

f(yi) =
eλyi − 1

λ

y∗i =
eλyi − 1

λ

λy∗i + 1 = eλyi

yi =
log(λy∗i + 1)

λ

⇒ f−1(y∗i ) =
log(λy∗i + 1)

λ
.

Manly transformation case (B)

The variable remains equal, y∗i = yi.

A.11. Modulus transformation

y∗i (λ) =

{
sign(yi)

(|yi|+1)λ−1
λ if λ 6= 0 (A);

sign(yi) log (|yi|+ 1) if λ = 0 (B).

Modulus transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled modulos(A) transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use

a modification of the definition of the geometric mean, denoted by ȳMA. Therefore, the
Jacobian, the scaled, and the inverse of the modulus(A) transformation are given below.

The modulus(A) transformation presented in Table 2 is defined as:

y∗i (λ) = sign(yi)
(|yi|+ 1)λ − 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳMA =

[
n∏
i=1

|yi|+ 1

] 1
n

.
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Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

sign(yi)λ(|yi|+ 1)λ−1

λ

= sign

( n∏
i=1

yi

)( n∏
i=1

|yi|+ 1

)λ−1

= sign

( n∏
i=1

yi

)
ȳ
n(λ−1)
MA .

The scaled transformation is given by:

z∗i (λ) = sign(yi)
(|yi|+ 1)λ − 1

λ

1

sign

(∏n
i=1 yi

)
ȳ

(λ−1)
MA

.

The inverse function of the modulus(A) transformation is denoted as:

f(yi) = sign(yi)
(|yi|+ 1)λ − 1

λ

y∗i = sign(yi)
(|yi|+ 1)λ − 1

λ

|yi| =
[
sign(y∗i )λ+ 1

] 1
λ − 1

⇒ f−1(y∗i ) = ±
[(

sign(y∗i )λ+ 1
) 1
λ − 1

]
.

Modulus transformation case (B)

This case is exactly equal to the neglog transformation case.

A.12. Dual power transformation

y∗i (λ) =

{
yλi −y

−λ
i

2λ if λ > 0 (A);

log(yi) if λ = 0 (B).

Dual power transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled dual power(A) transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we

use a modification of the definition of the geometric mean, denoted by ȳDA. Therefore, the
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Jacobian, the scaled, and the inverse of the dual power(A) transformation are given below.
The dual power(A) transformation presented in Table 2 is defined as:

y∗i (λ) =
yλi − y

−λ
i

2λ
if λ > 0.

The modification of the definition of the geometric mean for this transformation is:

ȳDA =

[
n∏
i=1

(
yλ−1
i + y−λ−1

i

)] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =

n∏
i=1

dy∗i (λ)

dy

=

n∏
i=1

λyλ−1
i + λy−λ−1

i

2λ

=
1

2
ȳnDA.

The scaled transformation is given by:

z∗i (λ) =
yλi − y

−λ
i

2λ

2

ȳDA
.

The inverse function of the dual power(A) transformation is found by solving the quadratic
by completing the square as:

f(yi) =
yλi − y

−λ
i

2λ

y∗i =
yλi − y

−λ
i

2λ

2λy∗i = yλi − y−λi

2λy∗i = yλi −
1

yλi

2λy∗i =
y2λ
i − 1

yλi

2λy∗i y
λ
i = y2λ

i − 1

1 + λ2y∗2i = y2λ
i − 2λy∗i y

λ
i + λ2y∗2i

1 + λ2y∗2i = (yλi − λy∗i )2√
1 + λ2y∗2i + λy∗i = yλi

yi =
[√

1 + λ2y∗2i + λy∗i

] 1
λ

⇒ f−1(y∗i ) =
[√

1 + λ2y∗2i + λy∗i

] 1
λ
.
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Dual power transformation case (B)

This case is exactly equal to the Box-Cox (shift) transformation, case (B).

A.13. Gpower transformation

y∗i (λ) =


(
yi+
√
y2i+1

)λ
−1

λ if λ 6= 0 (A);

log
(
yi +

√
y2
i + 1

)
if λ = 0 (B).

Gpower transformation case (A)

Let J(λ, y) denote the Jacobian of a transformation from yi to y∗i (λ). In order to obtain

z∗i (λ), the scaled gpower(A) transformation, given by
y∗i (λ)

J(λ,y)1/n
, and for simplicity, we use a

modification of the definition of the geometric mean, denoted by ȳGA. Therefore, the Jacobian,
the scaled, and the inverse of the gpower(A) transformation are given below.

The gpower(A) transformation presented in Table 2 is defined as:

y∗i (λ) =

[
yi +

√
y2
i + 1

]λ
− 1

λ
if λ 6= 0.

The modification of the definition of the geometric mean for this transformation is:

ȳGA =

[
n∏
i=1

(
yi +

√
y2
i + 1

)λ−1
1 +

yi√
y2
i + 1

] 1
n

.

Therefore, the expression of the Jacobian comes to:

J(λ,y) =
n∏
i=1

dy∗i (λ)

dy

=
n∏
i=1

λ
(
yi +

√
y2
i + 1

)λ−1(
1 + 2yi

2
√
y2i+1

)
λ

= ȳnGA.

The scaled transformation is given by:

z∗i (λ) =

[
yi +

√
y2
i + 1

]λ
− 1

λ

1

ȳGA
.
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The inverse function of the gpower(A) transformation is denoted as:

f(yi) =

[
yi +

√
y2
i + 1

]λ
− 1

λ

y∗i =

[
yi +

√
y2
i + 1

]λ
− 1

λ

λy∗i + 1 =
[
yi +

√
y2
i + 1

]λ
(λy∗i + 1)

1
λ = yi +

√
y2
i + 1[

(λy∗i + 1)
1
λ − yi

]2
=
[√

y2
i + 1

]2

(λy∗i + 1)
2
λ − 2yi(λy

∗
i + 1)

1
λ + y2

i = y2
i + 1

−yi(λy∗i + 1)
1
λ =

1− (λy∗i + 1)
2
λ

2

yi = −

[
1− (λy∗i + 1)

2
λ

2(λy∗i + 1)
1
λ

]

⇒ f−1(yi) = −

[
1− (λyi + 1)

2
λ

2(λyi + 1)
1
λ

]
.

Gpower transformation case (B)

This case is exactly equal to the glog transformation case.
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