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Abstract

Time series disaggregation methods are used to disaggregate a low fre-
quency time series to a higher frequency series with or without additional
information contained in indicators. The `tsdisagg2' is an R package,
which implements the following disaggregation methods: Boot, Feibes
and Lisman (both versions), Chow and Lin (both versions), Fernández
and Litterman. This project was inspired by the CARMAX software,
built in TSP by Santos Silva.

1 Time series disaggregation

The temporal disaggregation methods have evolved over the years. In 1962,
Friedman suggested that it is possible to represent a time series as a linear
process based on periodic observations [10]. Later, several changes occurred to
the Friedman approach. On this paper, only the following approaches will be
considered: Boot, Feibes and Lisman [2] in 1967 considered approaches based
on univariate linear regression models (without the aid of associated series);
Chow and Lin [4] in 1971, Fernández [8] in 1981 and Litterman [12] in 1983
considered approaches based on multivariate linear regression models (with the
aid of associated series).

Let Y(N×1) be the vector of the observed N annual values. Thus, using
this methodology, it is intended to estimate y(n×1), the n periodic values, so
that Y = Cy where C is an aggregation matrix. This matrix is vital for the
de�nition of the disaggregation techique to use: interpolation, distribution or
extrapolation. The techinque depends on the type of variable that is available.
Interpolation for stock variables and distribution for �ow variables. It is noted
that n ≥ sN , wherein s is the frequency of observations (if s = 4, the observa-
tions are quarterly) . If n > sN , it is a case of extrapolation.

The �ow variables may comply with one of the following restrictions:

� the sum of sub-periodic values is equal to the value of respective period
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observation

Yi =

s∑
k=1

yi,k, i = 1, ..., N, k = 1, ..., s; (1)

� the value observed on each period is the average of sub-periods values

Yi =
1

s

s∑
k=1

yi,k, i = 1, ..., N, k = 1, ..., s. (2)

The stock variables may comply with one of the following restrictions:

� the periodic total is equal to the value of the �rst sub-period

Yi = yi,1 i = 1, ..., N ; (3)

� the periodic total is equal to the value of the last sub-period

Yi = yi,s, i = 1, ..., N. (4)

Let C(N×n) be the aggregation matrix which converts sub-periodic observed
values into periodic values, therefore:

C = IN ⊗ c,

where ⊗ is the Kronecker product and c(1×s) is the aggregation vector. For a
�ow variable (case of distribution) that complies to restriction (1), the aggre-
gation vector is given by c =

[
1 · · · 1

]
. If the variable complies to restriction

(2), then c =
[

1
s · · ·

1
s

]
. For a stock variable (case of interpolation) that com-

plies to restriction (3), c =
[
1 0 · · · 0

]
. If the variable complies to (4), then

c =
[
0 · · · 0 1

]
.

It is possible to represent a time series as a linear process based on periodic
observations, such as

y = Xβ + ε, (5)

where y(n×1) is the vector of values to be estimated, X(n×p) is the matrix of
observations of the available p indicators, β(p×1) is the vector of coe�cients and
ε(n×1) is a residual variable with mean zero and variance-covariance matrix given
by Σ(n×n) = σ2Ω, where Ω(n×n) is the correlation matrix of ε. The model (5) is
known as high frequency model.

As a consequence of the condition Y = Cy, the periodic variable, Y, can be
written as

Y = Ẋβ + ξ, (6)
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where Ẋ(N×p) = CX is the aggregated matrix of the available p indicators,
ξ(N×1) = Cε is a vector of random errors with variance-covariance matrix σ2

εW ,
with W(N×N) = CΩCT . The model (6) is known as low frequency model.

The pioneers of time series disaggregation methodologies based on regression
models were Chow and Lin (1971) [4] and since then, their methodology remains
the most widely used. The developments made to their methodology focus on
the autocorrelation pattern of errors generated by the model.

1.1 Methods

At an early stage of their research, Chow and Lin (1971) [4] found that residuals
of the annual values are distributed evenly through the periodic observations,
that is, they considered that residuals are stationary over time. In this case,

Ω = In, (7)

Later, Chow and Lin [4] suggested that the residuals follow an autoregressive
process AR(1), εt = ρεt−1 +δt, with t = 1, ..., n, where δt is a white noise process
and |ρ| < 1. Assuming that ε0 = 0,

Ω = [(In + ρL)T (In + ρL)]−1, (8)

where L(n×n) is the auxiliar matrix

L = −1×


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

. (9)

It should be noted that the last model requires the estimation of a new pa-
rameter, ρ.

Fernández (1981) [8] suggested a new method, similar to the aforemen-
tioned, which simpli�ed the process of disaggregation. However, this simplicity
is achieved through a strong assumption: ρ = 1. The author suggested that ε
follows a random walk process, εt = εt−1 + δt, with t = 1, ..., n, where δt is a
white noise process. This option simpli�es the problem because there is no need
to estimate the autocorrelation parameter. In this case,

Ω = [DTD]−1, (10)

with

D = In + L, (11)

where L is the auxiliar matrix presented on (9).

3



Litterman (1983) [12] suggested a di�erent approach, stating that the residu-
als are distributed through a random walk-Markov process. Thus, for t = 1, ..., n,
εt = εt−1 + ut, where ut is an AR(1) process, ut = ρut−1 + δt, δt is white noise
and |ρ| < 1. Assuming that ε0 = u0 = 0, then

Ω = [DT (In + ρL)T (In + ρL)D]−1, (12)

where L and D are the matrixes presented on (9) and (11), respectively.

In general, it is preferred that the time series disaggregation is performed
using the information contained in associated indicators. When indicators are
not available, it is appropriate to use simpler methods such as those suggested
by Boot, Feibes and Lisman (1967) [2]. These authors suggested two methods:
the �rst di�erences and the second di�erences methods. In the �rst, the only
covariate is a constant and ρ = 0, so

Ω = [DTD]−1, (13)

where D is the matrix presented on (11).
In the second method, which is a particular case of Litterman's method, the
only covariates are a constant and the time trend and ρ = 1, therefore

Ω = [DTDTDD]−1, (14)

where D is the matrix presented on (11).

1.2 Estimation

For the estimation of the high frequency series, there is a need to estimate the
parameters β, σ2

ε and ρ (when required). These parameters can not be estimated
based on model (5) because y is unknown. Thus, the estimation is performed
based on model (6). The BLU estimators for β and σ2

ε [1, 9, 13] are given by

β̂ =
[
ẊTW−1Ẋ

]−1

ẊTW−1Y (15)

and

σ̂2

ε = (N − p)−1
[
Y − Ẋβ̂

]T
W−1

[
Y − Ẋβ̂

]
. (16)

To perform statistical inference on β, it is considered, for a large sam-

ple, that β̂ ∼ NMV
(
E
[
β̂
]
, V ar

[
β̂
])
, where E

[
β̂
]

= β and V ar
[
β̂
]

=

σ̂2
ε

[
ẊTW−1Ẋ

]−1

. Considering those conditions, it is possible to test the null

hypothesis, H0 : β = β∗, through Wald z-test [3, 16], where the statistic, Zw, is
given by

Zw =
β̂ − β∗√
V ar

[
β̂
] ∼ NMV (0,1) . (17)
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The estimation of β and σ2
ε are based on the assumption that W is known.

However, frequently, this assumption is not veri�ed. Thus, the previous estima-
tion of ρ is required. For the estimation of ρ, it can be performed a grid search
for values within the interval (−1, 1) with increments of 0.01. The optimal value
is the one that maximizes the Objective Function (obtained from Concentrated
Log-Likelihood function [7])

Ψ(ρ|Y) = −iΨ log
∣∣∣Ŵ (ρ)

∣∣∣−N log
{[

Y − Ẋβ̂(ρ)
]T
Ŵ−1(ρ)

[
Y − Ẋβ̂(ρ)

]}
,

(18)
where

iΨ =

{
1, for a Maximum Likelihood estimation;

0, for a Generalized Least Squares estimation.

Recapping, with Y and X available, the estimation of β and ρ is possible.
Being in possession of β̂ and ρ̂, makes possible the estimation of ξ, such that
ξ̂ = Y − Ẋβ̂. Consequently, the estimator ŷ is obtained by correcting the
naive estimate of y, the linear combination Xβ̂, by distributing the residual
low frequency estimates, ξ̂, through that same estimate. This distribution is
performed through the matrix

G = ΩCTW−1,

known as Gain Projection Matrix [11]. Thus, the estimator for y is given by

ŷ = Xβ̂ +Gξ̂

= Xβ̂ + ΩCTW−1

[
Y − Ẋβ̂

]
.

(19)

The structure of ŷ ensures the important property of consistency Y = Cŷ.

2 About the `tsdisagg2' package

The `tsdisagg2' package was built in R [14] and was inspired by the CARMAX
software, built in TSP, by Santos Silva. His software was originally built in
1996, as a project for INE-Portugal.

The `tsdisagg2' package has only one available function, the tsdisagg2 func-
tion. This function implements the following time series disaggregation meth-
ods: Boot, Feibes and Lisman (both versions), Chow and Lin (both versions),
Fernández and Litterman.
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2.1 Arguments

The role of each argument is described on Table 1:

Table 1: Arguments from `tsdisagg2' function.

Arguments Description

y A data.frame, matrix, list or vector object with low frequency data.

x A data.frame, matrix, list or vector object with high frequency data.

da First year considered on low frequency data.

dz Last year considered on low frequency data.

s Frequency of observations; 3, 4 or 12; Default: s=4.

method Set disaggregation method; 0 or 1; `bfl1', `bfl2', `cl1', `cl2', `f' or `l');
Default: method=`cl1'

c Model will be estimated with a constant; 0 or 1; Default: c=0.

type Type of restriction; `first', `last', `sum' or `average'; Default:
type=`sum'.

rho Sets a value for ρ; Any value within the interval (−1, 1); Default: rho=0.

neg The grid search is performed for negative or positive values of ρ; 0 or 1;
Default: neg=0.

ML Maximum Likelihood or Generalized Least Squares ρ estimation; 0 or 1;
Default: ML=0.

plots Generates the plot of the estimated series and the plot with the values from
Objective Function; 0 or 1; Default: plots=0.

The de�nition of the disaggregation method depends on the method argu-
ment. Possible options for this argument are listed on Table 2.

Table 2: Methods of disaggregation.

Method Ω method

Chow e Lin (7) `cl1'

Chow e Lin (8) `cl2'

Fernández (10) `f'

Litterman (12) `l'

Boot, Feibes e Lisman (13) `bfl1'

Boot, Feibes e Lisman (14) `bfl2'

2.2 A quick example

The following example shows how to use tsdisagg2 function. Consider the low
frequency data shown on Table 3:
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Table 3: Low frequency series.

Period Variable Y

1995 203.92

1996 118.86

1997 139.82

1998 216.44

1999 291.03

2000 435.35

Consider that are known two indicators, associated to the low frequency
series, X1 and X2. The high frequency data is shown on Table 4:

Table 4: High frequency series.

Sub-period Variable X1 Variable X2

Mar-95 4778.96 58.65
Jun-95 5495.70 56.50
Sep-95 5145.27 45.16
Dec-95 4902.02 43.61
Mar-96 5883.39 34.30
Jun-96 5841.93 21.66
Sep-96 6201.72 32.07
Dec-96 6249.94 30.83
Mar-97 6413.88 16.46
Jun-97 6382.15 26.81
Sep-97 6723.71 43.86
Dec-97 6885.18 62.69
Mar-98 6928.36 59.60
Jun-98 7350.60 63.92
Sep-98 7844.95 54.86
Dec-98 8681.39 38.07
Mar-99 8857.55 70.07
Jun-99 8520.86 70.06
Sep-99 8328.24 64.12
Dec-99 7750.11 86.78
Mar-00 9154.53 100.85
Jun-00 7662.17 123.35
Sep-00 8045.06 115.17
Dec-00 8250.93 95.98

Consider that Y is a �ow variable which complies to restriction (1). It is
intended to disaggregate the (tranformed) low frequency series using Chow and
Lin's method (second version), resorting to the aid of those indicators. It is
intended a Maximum Likelihood estimation for negative values of ρ. From high
frequency series, it is possible to verify that observations were recorded with a
quarterly frequency. In R, the disaggregation of Y can be done by:

R> library(tsdisagg2)

R> annual=c( 203.92 , 118.86 , ..., 435.35 )

R> X1=c( 4778.96 , 5495.70 , ..., 8250.93 )

R> X2=c( 58.65, 56.50 , 45.16, ..., 95.98 )

R> object <- tsdisagg2( y=annual , x=cbind( X1, X2 ), da=1995 , dz
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=2000, method='cl2', ML=1, neg=1, plots=1 )

Consequently, the following outputs are generated:

X A title indicating the method of disaggregation (METHOD):

Chow and Lin (AR1 residuals)

X The parameter estimates (PARAMETERS ESTIMATION) and the �nal series
estimates:

Maximum Likelihood 'rho' estimation: -0.77

(Loglik: -29.28063 )

Sigma GLS: 4.56602

Sigma OLS: 6.843793

(Smooth: 30.79795 )

Model coefficients:

estimate standard error z-statistic p-value

X1 -0.0001829363 0.0002817168 -0.6493623 5.161042e-01

X2 1.0230230188 0.0323632102 31.6106780 2.633642e-219

Estimated values (Y-hat):

year period y-hat

1995 1 58.33331

1995 2 57.07181

1995 3 44.72631

1995 4 43.78857

1996 1 33.64482

... ... ...

2000 3 114.52033

2000 4 96.65684

Note: The Loglik label refers to the value of the Log-Likelihood function

`(β, σ2
ε , ρ|Y) = −

N

2
log
(
2πσ̂2

ε

)
−

1

2
log
∣∣∣Ŵ ∣∣∣− 1

2σ̂2
ε

[
Y − Ẋβ̂

]T
Ŵ−1

[
Y − Ẋβ̂

]
,

considering the optimal ρ̂. Labels Sigma OLS and Sigma GLS are related to naive and
robust estimates of σ2

ε (16), respectively. The Smooth value is an indicator of the
smoothing degree of the estimated series given by

ŷTDTDTDDŷn−1.

Lastly, in the Model coefficients table, are presented the β estimates and related

results from Wald z-test (17).
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X For each ρ tested, the respective Objective Function value (OBJECTIVE
FUNCTION):

rho value

0.09 -31.42703

... ...

-0.97 -31.19837

-0.98 -31.25062

-0.99 -31.30589

X Objective Function and estimated series plots.

The aforementioned output is not interactable. Though, the interaction with
generated results is still possible. As an example, to interact with the generated
model residuals, it is advisable the following R code:

R> names( object )

R> object$RESIDUALS
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