
Lists in TEX’s Mouth

Alan Jeffrey

August 6, 2013

1 Why lists?

Originally, I wanted lists in TEX for a paper I was writing which contained a lot
of facts.

Fact i Cows have four legs.

Fact ii People have two legs.

Fact iii Lots of facts in a row can be dull.

These are generated with commands like

\begin{fact}

\Forward{Fac-yawn}

Lots of facts in a row can be dull.

\end{fact}

I can then refer to these facts by saying

\By[Fac-yawn,Fac-cows,Fac-people]

to get [i, ii, iii]. And as if by magic, the facts come out sorted, rather than in
the jumbled order I typed them. This is very useful, as I can reorganize my
document to my heart’s content, and not have to worry about getting my facts
straight.

Originally I tried programming this sorting routine in TEX’s list macros,
from Appendix D of The TEXbook, but I soon ran into trouble. The problem
is that all the Appendix D macros work by assigning values to macros. For
example:

\concatenate\foo=\bar\baz

expands out to

1

\ta=\expandafter{\bar}

\tb=\expandafter{\baz}

\edef\foo{\the\ta\the\tb}

which assigns the macro \foo the contents of \bar followed by the contents of
\baz. Programming sorting routines (which are usually recursive) in terms of
these lists became rather painful, as I was constantly having to watch out for
local variables, worrying about what happened if a local variable had the same
name as a global one, and generally having a hard time.

Then I had one of those “flash of light” experiences — “You can do lambda-
calculus in TEX,” I thought, and since you can do lists directly in lambda
calculus, you should be able to do lists straightforwardly in TEX. And so you
can. Well, fairly straightforwardly anyway.

So I went and did a bit of mathematics, and derived the TEX macros you see
here. They were formally verified, and worked first time (modulo typing errors,
of which there were two).

2 TEX’s mouth and TEX’s stomach

TEX’s programming facilities come in two forms — there are TEX’s macros

which are expanded in its mouth, and some additional assignment operations
like \def which take place in the stomach. TEX can often spring surprises on
you as exactly what gets evaluated where. For example, in LATEX I can put down
a label by saying \label{Here}. Then I can refer back to that label by saying
Section~\ref{Here}, which produces Section 2. Unfortunately, \ref{Here}
does not expand out to 2! Instead, it expands out to:

\edef\@tempa{\@nameuse{r@Here}}

\expandafter\@car\@tempa\@nil\null

This means that I can’t say

\ifnum\ref{Here}<4 Hello\fi

and hope that this will expand out to Hello. Instead I get an error message.
Which is rather a pity, as TEX’s mouth is quite a powerful programming lan-
guage (as powerful as a Turing Machine in fact).

3 Functions

A function is a mathematical object that takes in an argument (which could well
be another function) and returns some other mathematical object. For example
the function Not takes in a boolean and returns its complement. I’ll write
function application without brackets, so Notb is the boolean complement of
b.

2

Function application binds to the left, so f a b is (f a)b rather than f (ab).
For example, Orab is the boolean or of a and b, and OrTrue is a perfectly
good function that takes in a boolean and returns True.

The obvious equivalents of functions in TEX are macros — if I define a
function Foo to be:

Foox = True

then it can be translated into TEX as:

\def\Foo#1{\True}

So where Foo is a function that takes in one argument, \Foo is a macro that
takes in one parameter. Nothing has changed except the jargon and the font.
TEX macros can even be partially applied, for example if we defined:

Baz = OrTrue

then the TEX equivalent would be

\def\Baz{\Or\True}

Once \Baz is expanded, it will expect to be given a parameter, but when we are
defining things, we can go around partially applying them all we like.

Here, I’m using = without formally defining it, which is rather naughty. If
I say x = y, this means “given enough parameters, x and y will eventually
expand out to the same thing.” For example Foo = Baz, because for any x,

Foox

= True

= OrTruex

= Bazx

Normally, functions have to respect equality which means that:

• if x = y then f x = f y, and

• if x respects equality, then f x respects equality.

However, some TEX control sequences don’t obey this. For example, \string\Foo
and \string\Baz are different, even though Foo = Baz. Hence string doesn’t
respect equality. Unless otherwise stated, we won’t assume functions respect
equality, although all the functions defined here do.

All of our functions have capital letters, so that their TEX equivalents (\Not,
\Or and so on) don’t clash with standard TEX or LATEX macros.

3

3.1 Identity

The simplest function is the identity function, called Identity funnily enough,
which is defined:

Identity x = x

This, it must be admitted, is a pretty dull function, but it’s a useful basic
combinator. It can be implemented in TEX quite simply.

\def\Identity#1{#1}

The rules around this definition mean that it is actually part of Lambda.sty
and not just another example.

3.2 Error

Whereas Identity does nothing in a fairly pleasant sort of way, Error does
nothing in a particularly brutal and harsh fashion. Mathematically, Error is
the function that destroys everything else in front of it. It is often written as ⊥.

Errorx = Error

In practice, destroying the entire document when we hit one error is a bit much,
so we’ll just print out an error message. The user can carry on past an error at
their own risk, as the code will no longer be formally verified.

\def\Error

{\errmessage{Abandon verification all

ye who enter here}}

Maybe this function ought to return a more useful error message . . .

3.3 First and Second

Two other basic functions are First and Second, both of which take in two
arguments, and do the obvious thing. They are defined:

First xy = x

Secondxy = y

We could, in fact, define Second in terms of Identity and First. For any x

and y,

First Identity xy

= Identity y

= y

= Secondxy

4

So First Identity = Second. This means that anywhere in our TEX code we
have \First\Identity we could replace it by \Second. This is perhaps not the
most astonishing TEX fact known to humanity, but this sort of proof did enable
more complex bits of TEX to be verified before they were run.

The TEX definitions of \First and \Second are pretty obvious.

\def\First#1#2{#1}

\def\Second#1#2{#2}

Note that in TEX \First\foo\bar expands out to \foo without expanding out
\bar. This is very useful, as we can write macros that would take forever and a
day to run if they expanded all their arguments, but which actually terminate
quite quickly. This is called lazy evaluation by the functional programming
community.

3.4 Compose

Given two functions f and g we would like to be able to compose them to
produce a function that first applies g then applies f . Normally, this is written
as f ◦ g, but unfortunately TEX doesn’t have infix functions, so we’ll have to
write it Compose f g.

Compose f g x = f (g x)

¿From this definition, we can deduce that Compose is associative:

Compose (Compose f g)h

= Compose f (Composeg h)

and Identity is the left unit of Compose:

Compose Identity f = f

The reader may wonder why Identity is called a left unit even though it occurs
on the right of the Compose — this is a side-effect of using prefix notations
where infix is more normal. The infix version of this equation is:

Identity ◦ f = f

so Identity is indeed on the left of the composition.
Compose can be implemented in TEX as

\def\Compose#1#2#3{#1{#2{#3}}}

5

3.5 Twiddle

Yet another useful little function is Twiddle, which takes in a function and
reverses the order that function takes its (first two) arguments.

Twiddle f xy = f y x

Again, there aren’t many immediate uses for such a function, but it’ll come in
handy later on. It satisfies the properties

TwiddleFirst = Second

TwiddleSecond = First

ComposeTwiddleTwiddle = Identity

Its TEX equivalent is

\def\Twiddle#1#2#3{#1{#3}{#2}}

This function is called “twiddle” because it is sometimes written f̃ (and ∼ is
pronounced “twiddle”). It also twiddles its arguments around, which is quite
nice if your sense of humour runs to appalling puns.

4 Booleans

As we’re trying to program a sorting routine, it would be nice to be able to
define orderings on things, and to do this we need some representation of boolean
variables. Unfortunately TEX doesn’t have a type for booleans, so we’ll have to
invent our own. We’ll implement a boolean as a function b of the form

bxy =

{
x if b is true
y otherwise

More formally, a boolean b is a function which respects equality, such that for
all f , g and z:

b f g z = b (f z) (g z)

and for all f and g which respect equality,

b (f b) (g b) = b (f First) (g Second)

All the functions in this section satisfy these properties. Surprisingly enough,
so does Error, which is quite useful, as it allows us to reason about booleans
which “go wrong”.

6

4.1 True, False and Not

Since we are implementing booleans as functions, we already have the definitions
of True, False and Not.

True = First

False = Second

Not = Twiddle

So for free we get the following results:

NotTrue = False

NotFalse = True

ComposeNotNot = Identity

The TEX implementation is not exactly difficult:

\let\True=\First

\let\False=\Second

\let\Not=\Twiddle

4.2 And and Or

The definitions of And and Or are:

Andab =

{
b if a is true
False otherwise

Orab =

{
True if a is true
b otherwise

With our definition of what a boolean is, this is just the same as

Andab = abFalse

Orab = aTrueb

¿From these conditions, we can show that And is associative, and has left unit
True and left zeros False and Error:

And (Andab) c = Anda (Andbc)

AndTrueb = b

AndFalseb = False

AndErrorb = Error

7

Or is associative, has left unit False and left zeros True and Error:

Or (Orab) c = Ora (Orbc)

OrFalseb = b

OrTrueb = True

OrErrorb = Error

De Morgan’s laws hold:

Not (Andab) = Or (Nota) (Notb)

Not (Orab) = And (Nota) (Notb)

and And and Or left-distribute through one another:

Ora (Andbc) = And (Orab) (Orac)

Anda (Orbc) = Or (Andab) (Andac)

And and Or are not commutative, though. For example,

OrTrueError

= TrueTrueError

= True

but

OrErrorTrue

= ErrorTrueTrue

= Error

This is actually quite useful since there are some booleans that need to return
an error occasionally. If a is True when b is safe (i.e. doesn’t become Error)
and is False otherwise, we can say Orab and know we’re not going to get an
error. This is handy for things like checking for division by zero, or trying to
get the first element of an empty list.

Similarly, because of the possibility of Error, And and Or don’t right-
distribute through each other, as

Or (AndFalseError)True

6= And (OrFalseTrue) (OrErrorTrue)

As errors shouldn’t crop up, this needn’t worry us too much.

\def\And#1#2{#1{#2}\False}

\def\Or#1#2{#1\True{#2}}

8

4.3 Lift

Quite a lot of the time we won’t be dealing with booleans, but with predicates,
which are just functions that return a boolean. For example, the predicate
Lessthan is defined below so that Lessthan i j is true whenever i < j. Given a
predicate p we would like to be able to lift it to Lift p, defined:

Lift p f g x = px f g x

For example, Lift (Lessthan 0) f g takes in a number and applies f to it if it is
positive and g to it otherwise. This is quite useful for defining functions.

\def\Lift#1#2#3#4{#1{#4}{#2}{#3}{#4}}

4.4 Lessthan and TEXif

Finally, we would like to be able to use TEX’s built-in booleans as well as our
own. For example, we would like a predicate Lessthan such that:

Lessthan i j =

True if i < j

False if i ≥ j

Error otherwise

The Error condition happens if we try applying Lessthan to something that
isn’t a number — LessthanTrueFalse is Error1. This is fine as a mathemat-
ical definition, but how will we implement it? If we assume we have a macro
\TeXif, which converts TEX if-statements into booleans, we could just define:

\def\Lessthan#1#2{\TeXif{\ifnum#1<#2 }}

So the question is just how to define \TeXif. Unfortunately, the “obvious” code
does not work:

\def\TeXif#1#2#3{#1#2\else#3\fi}

For example, \TeXif\iftrue\True\True doesn’t expand out to \True. Instead,
it expands as:

\TeXif\iftrue\True\True

= \iftrue\True\else\True\fi

= \True\else\True\fi

= \else\fi

=

1Actually, that’s a little white lie — trying to persuade TEX to do run-time type checking

isn’t much fun. So the TEX implementation of this is actually a refinement where the Error

condition has been replaced by whatever it is TEX does if you try doing \ifnumx < y when

x and y aren’t numbers

9

Another common TEXnique is to use a macro \next to be the expansion text:

\def\TeXif#1#2#3%

{#1\def\next{#2}\else\def\next{#3}\fi

\next}

However, this uses TEX’s stomach to do the \def, and we are trying to do this
using only the mouth. One (slightly tricky) solution is to use pattern-matching
to gobble up the offending \else and/or \fi.

\def\gobblefalse\else\gobbletrue\fi#1#2%

{\fi#1}

\def\gobbletrue\fi#1#2%

{\fi#2}

\def\TeXif#1%

{#1\gobblefalse\else\gobbletrue\fi}

So if the TEX if-statement is true, \gobblefalse gobbles up the false-text,
otherwise \gobbletrue gobbles up the true-text. For example,

\TeXif\iftrue\True\True

= \iftrue\gobblefalse\else

\gobbletrue\fi\True\True

= \gobblefalse\else

\gobbletrue\fi\True\True

= \fi\True

= \True

Phew. And so we have booleans.

5 Lists

A list is a (possibly infinite) sequence of values. For example, the list [1, 2, 3]
contains three numbers, the list [] contains none, and the list [1, 2, 3, . . .] con-
tains infinitely many. A list is either empty (written []) or is comprised of a
head x and a tail xs (in which case it’s written x : xs). For example, 1 : 2 : 3 : []
is [1, 2, 3].

In a similar fashion to the implementation of booleans, a list xs is imple-
mented as a function of the form

xs f e =

{
e if xs is empty
f y ys if xs has head y and tail ys

Again, we are implementing a datatype as a function, a quite powerful trick,
just not one usually seen in TEX. We will assume that whenever a list x : xs
is applied to f and e, f x respects equality. This allows us to assume that if
xs = ys then x : xs = x : ys, which is handy.

10

5.1 Nil, Cons, Stream and Singleton

The simplest list is Nil, the empty list which we have been writing [].

Nil = Second

The other possible list is Consxxs, which has head x and tail xs.

Consxxs f e = f x xs

Every list can be constructed using these functions. The list [1, 2, 3] isCons 1 (Cons 2 (Cons 3Nil)),
and the list [a,a,a, . . .] is Streama where Stream is defined:

Streama = Consa (Streama)

There’s even at least one application for infinite lists, as we’ll see in Section 7.
The singleton list [a] is Singletona, defined as:

Singletona = ConsaNil

These all have straightforward TEX definitions.

\let\Nil=\Second

\def\Cons#1#2#3#4{#3{#1}{#2}}

\def\Stream#1{\Cons{#1}{\Stream{#1}}}

\def\Singleton#1{\Cons{#1}\Nil}

5.2 Head and Tail

So, we can construct any list we like, but we still can’t get any information out
of it. To begin with, we’d like to be able to get the head and tail of a list.

Headxs = xsFirstError

Tail xs = xsSecondError

For example, the tail of x : xs is

Tail (Consxxs)

= ConsxxsSecondError

= Secondxxs

= xs

The tail of [] is, as one would expect,

TailNil

= Nil SecondError

= Error

11

And the head of Streama is

Head (Streama)

= StreamaFirstError

= Consa (Streama)FirstError

= First a (Streama)

= a

So we can get the head of an infinite list in finite time. This is fortunate, as
otherwise there wouldn’t be much point in allowing infinite objects.

\def\Head#1{#1\First\Error}

\def\Tail#1{#1\Second\Error}

5.3 Foldl and Foldr

Using Head and Tail we can get at the beginning of any non-empty list, but in
general we need more information than that. Rather than write a whole bunch
of recursive functions on lists, I’ll implement two fairly general functions, with
which we can implement (almost) everything else.

Foldl and Foldr both take in functions and apply them recursively to a list.
Foldl starts at the left of the list, and Foldr starts at the right. For example,

Foldl f e [1, 2, 3] = f (f (f e 1) 2) 3

Foldr f e [1, 2, 3] = f 1 (f 2 (f 3 e))

These functions will be used a lot later on. Foldl can be defined:

Foldl f e xs = xs (Foldl′ f e) e

Foldl′ f e xxs = Foldl f (f e x)xs

So Foldl f e [] is

Foldl f eNil

= Nil (Foldl′ f e) e

= e

And Foldl f e (x : xs) is

Foldl f e (Consxxs)

= Consxxs (Foldl′ f e) e

= Foldl′ f e xxs

= Foldl f (f e x)xs

12

For example, Foldl f e [1, 2, 3] is

Foldl f e [1, 2, 3]

= Foldl f (f e 1) [2, 3]

= Foldl f (f (f e 1) 2) [3]

= Foldl f (f (f (f e 1) 2) 3) []

= f (f (f e 1) 2) 3

as promised. Similarly, we can define Foldr as

Foldr f e xs = xs (Foldr′ f e) e

Foldr′ f e xxs = f x (Foldr f e xs)

For Foldr f to respect equality, f x should respect equality.
When we do the unfolding, we discover that

Foldr f e [] = e

Foldr f e (x : xs) = f e (Foldr f e xs)

Foldr tends to be more efficient than Foldl, because Foldl has to run along
the entire list before it can start applying f , whereas Foldr can apply f straight
away. If f is a lazy function, this can make quite a difference. Foldl on infinite
lists, anyone?

\def\Foldl#1#2#3%

{#3{\Foldl@{#1}{#2}}{#2}}

\def\Foldl@#1#2#3#4%

{\Foldl{#1}{#1{#2}{#3}}{#4}}

\def\Foldr#1#2#3%

{#3{\Foldr@{#1}{#2}}{#2}}

\def\Foldr@#1#2#3#4%

{#1{#3}{\Foldr{#1}{#2}{#4}}}

5.4 Cat

Given two lists, we would like to be able to stick them together, which is what
Cat (short for “concatenate”) does. For example, Cat [1, 2] [3, 4] is [1, 2, 3, 4].
It can be defined using Foldr:

Catxsys = FoldrConsysxs

So

Cat [1, 2] [3, 4]

13

= FoldrCons [3, 4] [1, 2]

= Cons 1 (FoldrCons [3, 4] [2])

= Cons 1 (Cons 2 (FoldrCons [3, 4] []))

= Cons 1 (Cons 2 [3, 4])

= [1, 2, 3, 4]

The TEX code for \Cat is suspiciously similar to its mathematical definition.

\def\Cat#1#2{\Foldr\Cons{#2}{#1}}

5.5 Reverse

We can reverse any list with the function Reverse, defined using Foldl:

Reverse = Foldl (TwiddleCons)Nil

For example, Reverse [1, 2, 3] can be calculated:

Reverse [1, 2, 3]

= Foldl (TwiddleCons)Nil [1, 2, 3]

= TwiddleCons

(TwiddleCons (TwiddleConsNil 1) 2) 3

= Cons 3 (Cons 2 (Cons 1Nil))

= [3, 2, 1]

The TEX code for \Reverse doesn’t even take in any parameters.

\def\Reverse{\Foldl{\Twiddle\Cons}\Nil}

5.6 All, Some and Isempty

Given a predicate p, we can find out if all the elements of a list satisfy p with
All p. Similarly we can find if something in the list satisfies p with Somep.
For example,

All (Lessthan 1) [1, 2, 3] = False

Some (Lessthan 1) [1, 2, 3] = True

These can be defined

All p = Foldr (ComposeAndp)True

Somep = Foldr (ComposeOrp)False

14

For example, Isempty can be defined

Isempty = All (FirstFalse)

This is probably not the most efficient check in the world, but we hardly ever
need it — Foldl or Foldr will normally do the job.

\def\All#1{\Foldr{\Compose\And{#1}}\True}

\def\Some#1{\Foldr{\Compose\Or{#1}}\False}

\def\Isempty{\All{\First\False}}

5.7 Filter

Filter takes a predicate p and a list xs, and returns a list containing only those
elements of xs that satisfy p. For example,

Filter (Lessthan 1) [1, 2, 3] = [2, 3]

Filter can be defined as a Foldr:

Filterp = Foldr (Lift pConsSecond)Nil

Another easy bit of TEX:

\def\Filter#1%

{\Foldr{\Lift{#1}\Cons\Second}\Nil}

5.8 Map

Map takes a function f and a list xs and applies f to every element of xs. For
example,

Map f [1, 2, 3] = [f 1, f 2, f 3]

This is another job for Foldr.

Map f = Foldr (ComposeCons f)Nil

We shall see Map used later on, to convert from a list of names such as
[Fac-yawn, Fac-cows], to a list of labels such as [i, iii].

\def\Map#1{\Foldr{\Compose\Cons{#1}}\Nil}

15

5.9 Insert

The only function we need which isn’t easily defined as a reduction is Insert,
which inserts an element into a sorted list. For example,

InsertLessthan 3 [1, 2, 4, 5] = [1, 2, 3, 4, 5]

Insert takes in an ordering as its first parameter, so we’re not stuck with one
particular order. It is defined directly in terms of the definition of lists.

Insert oxxs = xs (Insert′ ox) (Singletonx)

Insert′ oxy ys = oxy

(Consx (Consy ys))

(Consy (Insert oxys))

We can then define the function all this has been leading up to, Insertsort
which takes an ordering and a list, and insert-sorts the list according to the
ordering. For example,

InsertsortLessthan [2, 3, 1, 2] = [1, 2, 2, 3]

We can implement this as a fold:

Insertsort o = Foldr (Insert o)Nil

And so we’ve got sorted lists.

\def\Insert#1#2#3%

{#3{\Insert@{#1}{#2}}{\Singleton{#2}}}

\def\Insert@#1#2#3#4%

{#1{#2}{#3}%

{\Cons{#2}{\Cons{#3}{#4}}}%

{\Cons{#3}{\Insert{#1}{#2}{#4}}}}

\def\Insertsort#1{\Foldr{\Insert{#1}}\Nil}

Interestingly, as we have implemented unbounded lists in TEX’s mouth, this
means we can implement a Turing Machine. So, if you believe the Church-
Turing thesis, TEX’s mouth is as powerful as any computer anywhere. Isn’t
that good to know?

6 Sorting reference lists

So, these are the macros I’ve got to play with — how do we apply them to sorting
lists of references? Well, I’m using LATEX, which keeps the current reference in

16

a macro called \@currentlabel, which is 6 at the moment, as this is Section 6.
So I just need to store the value of \@currentlabel somehow.

Fortunately, I’m only ever going to be making references to facts earlier on
in the document, in order to make sure I’m not proving any results in terms of
themselves. So I don’t need to play around with auxiliary files, and can just do
everything in terms of macros.

6.1 Number and Label

Each label in the document is given a unique number, in the order the labels
were put down. So the number of Fac-cows is \Number{Fac-cows}, which
expands out to 1, the number of Fac-people is 2, and so on.

Each number has an associated label with it. For example, the first label is
\Label{1}, which is i, the second label is ii and so on. So to find the label for
Fac-cows, we say \Label{\Number{Fac-cows}} which expands out to i.

These numbers and labels are kept track of in macros. For example, the
number of Fac-cows is kept in Number-Fac-cows . Similarly, the first label
is kept in Label-1 . As these macros have dashes in their names, they aren’t
likely to be used already.

So the TEX code for \Number and \Label is pretty simple.

\def\Number#1{\csname Number-#1\endcsname}

\def\Label#1{\csname Label-#1\endcsname}

6.2 Lastnum and Forward

The number of the most recent label is kept in \Lastnum.

\newcount\Lastnum

To put down a label Foo, I type \Forward{Foo}. This increments the counter
\Lastnum, and \xdefs Number-Foo to be the value of \Lastnum, which is
now 4. So \Number{Foo} now expands to 4. Similarly, it \xdefs Label-4 to
be \@currentlabel, which is currently 6.2. So \Label{\Number{Foo}} now
expands to 6.2.

\def\Forward#1%

{\global\advance\Lastnum by 1

\csnameafter\xdef{Number-#1}%

{\the\Lastnum}%

\csnameafter\xdef{Label-\the\Lastnum}%

{\@currentlabel}}

This uses \csnameafter\foo{bar}, which expands out to \foo\bar.

\def\csnameafter#1#2%

{\expandafter#1\csname#2\endcsname}

17

6.3 Listize, Unlistize and Show

At the moment, lists have to be built up using \Cons and \Nil, which is rather
annoying. Similarly, we can’t actually do anything with a list once we’ve built it.
We’d like some way of converting lists in the form [a,b,c] to and from the form
[a,b, c]. This is done with \Listize and \Unlistize. So \Listize[a,b,c]

expands to

\Cons{a}{\Cons{b}{\Cons{c}{\Nil}}}

Similarly, \Unlistize takes the list [a,b, c] and expands out to [a, b, c].
\Unlistize is done with a Foldr.

\def\Unlistize#1{[#1\Unlistize@{}]}

\def\Unlistize@#1{#1\Foldr\Commaize{}}

\def\Commaize#1#2{, #1#2}

The macro \Listize is just a TEX hack with pattern matching. It would have
been nice to use \@ifnextchar for this, but that uses \futurelet, which doesn’t
expand in the mouth. Oh well.

\def\Listize[#1]%

{\Listize@[#1,\relax]}

\def\Listize@#1,#2]%

{\TeXif{\ifx\relax#2}%

{\Singleton{#1}}%

{\Cons{#1}{\Listize@#2]}}

This only works for nonempty lists — \Listize[] produces the singleton list
\Singleton{}. It also uses \relax as its end-of-list character, so lists with
\relax in them have to be done by hand. You can’t win them all. So

$\Unlistize{\Listize[a,b,c]}$

produces [a,b, c]. This is such a common construction that I’ve defined a macro
\Show such that \Show\foo[a,b,c] expands out to

\Unlistize{\foo{\Listize[a,b,c]}}

For example, the equation

Filter (Lessthan 1) [1, 2, 3] = [2, 3]

was generated with

\begin{eqnarray*}

Filter\,(Lessthan\,1)\,[1,2,3]

&=& \Show\Filter{\Lessthan 1}[1,2,3]

\end{eqnarray*}

18

Many of the examples in this article were typeset this way.

\def\Show#1[#2]%

{\Unlistize{#1{\Listize[#2]}}}

6.4 By

Given these macros, we can now sort any list of references with Bylist, defined

Bylist xs = MapLabel

(InsertsortLessthan

(MapNumberxs))

This takes in a list of label names like Fac-yawn, converts it into a list of num-
bers with MapNumber, sorts the resulting list with InsertsortLessthan,
and finally converts all the numbers into labels like iii with MapLabel. For
example,

Bylist [Fac-yawn, Fac-cows]

= MapLabel (InsertsortLessthan

(MapNumber [Fac-yawn, Fac-cows]))

= MapLabel (InsertsortLessthan [3, 1])

= MapLabel [1, 3]

= [i, iii]

The TEX code for this is

\def\Bylist#1%

{\Map\Label

{\Insertsort\Lessthan

{\Map\Number{#1}}}}

So we can now stick all this together, and define the macro \By that prints out
lists of references. It is

\def\By{\Show\Bylist}

So \By[Fac-yawn,Fac-cows] is [i, iii]. Which is quite nice.

7 Other applications

Is all this worth it? Well, I’ve managed to get my lists of facts in order, but
that’s not the world’s most astonishing application. There are other things that
these lists are useful for, though.

19

For example, Damian Cugley has a macro package under development for
laying out magazines. MagTEX’s output routine needs to be quite smart, as
magazines often have gaps where illustrations or photographs are going to live.
In general, each block of text needs to be output in a different fashion from
every other block of text. This will be handled by keeping an infinite list of
output routines. Each time a box is cut off the scroll to be output, the head of
the list is chopped off and is used as the output routine for that box. That way,
quite complex page shapes can be built up.

Mainly, though, these macros were written just as a challenge. I learned
quite a lot about TEX and needed some TEXniques I’d never seen before. It
was also quite pleasing to see that TEX code can be formally verified, albeit
in a rather noddy way. Without some sort of abstract view of lists, these TEX
macros could not have been written.

8 Acknowledgements

Thanks to Jeremy Gibbons for letting me bounce ideas off him and spotting
the duff ones, to Damian Cugley for saying “Do you really think TEX is meant
to do this?”, and to the Problem Solving Club for hearing me out. This work
was sponsored by the Science and Engineering Research Council and Hewlett
Packard.

20

