
Enhancements to the Picture Environment of
LATEX

Sunil Podar

Dept. of Computer Science

S.U.N.Y. at Stony Brook

Technical Report 86-17

Version 1.2: July 14, 1986.

Abstract

This document describes some new commands for the picture

environment of LATEX. Some of the picture drawing commands

of LATEX are very low-level. New higher-level commands are im-

plemented and described here. These commands enhance the

graphic capabilities of LATEX and provide a friendlier and more

powerful user interface than currently existent. Their imple-

mentation has been done with the aim of reducing the amount

of manual calculations required to specify the layout of objects.

With the addition of the commands described in this document,

it should be possible to draw more sophisticated pictures with

lesser effort than was previously possible.

2

Enhancements to the Picture Environment of LATEX

1 Introduction

LATEX provides a reasonably powerful picture drawing capability. There are

many useful commands provided although the user-interface has room for

improvement. The commands described in this document aim to achieve a

simpler and more powerful interface.

Most picture drawing commands require explicit specification of coordi-

nates for every object . Although explicit coordinates is the basis of the pic-

ture environment, it is possible to provide higher level commands which re-

duce the amount of coordinates that need to be manually calculated. There

are basically two approaches that can be taken in designing such commands:

• providing ability to specify a set of objects such that the entire set can

be plotted by specifying one or two coordinate pairs; \shortstack

command falls into this category.

• providing commands that do most of the computation internally and

require simple coordinate pairs to be specified; \multiput command

is one example of this approach.

The obvious advantage of having commands that fall into the above cate-

gories is that not only they are easier to specify initially, but any subsequent

modification to the layout requires minimal recalculations. For instance, to

modify the coordinates in a \multiput statement plotting n objects re-

quires recalculation of at most 4 coordinates, whereas the equivalent \put

statements may require upto 2n calculations and/or recalculations.

Another frequently used command, \line has severe limitations and

drawbacks. The arguments that the \line command expects are very non-

1

intuitive and requires extensive calculations — often the thought process in

writing a \line command involves:

1. calculating the coordinates of the two end-points.

2. calculating the horizontal and vertical distance.

3. figuring out if the desired slope is available and if not then repeating

steps 1 and 2 till a satisfactory slope is achieved.

4. translating above into an (x,y) pair for specifying a slope and a hori-

zontal distance for specifying the length of the line.

Above mechanism is a cumbersome way of specifying a line. It also

has the drawback that the length of the shortest line of different slopes

that can be drawn is different; for instance, assuming \unitlength=1pt,

\line(1,6){10} is the shortest line of the given slope that can be drawn; it

is considerably longer than the available line segment of this slope — 60.8pt

rather than about 11pt. It should be emphasized that this is a drawback

of only the implementation of the \line command and is not an inherent

limitation. This report describes a few line drawing commands all of which

overcome such a drawback, while providing a simpler syntax. They all take,

as arguments, only the coordinates of the end-points, thus eliminating all

other steps involved in specifying a line; it also seems to be a natural way

of perceiving a line in an environment where all the work is done in terms

of coordinates.

A few new commands are developed and described in this report. They

provide a simpler syntax and a higher-level user-interface. Also some of the

commands permit one to plot objects that were previously cumbersome or

difficult to plot. All existing commands still remain accessible. With the

new commands it should now be possible to make pictures with less effort

and make more sophisticated pictures than was possible earlier.

2

2 Commands

Following commands are described here:

\multiputlist \dottedline dottedjoin environment \jput

\matrixput \dashline dashjoin environment \picsquare

\grid \drawline drawjoin environment \putfile

All the examples in the following sections have been plotted with \unitlength = 1mm.

2.1 \multiputlist

SYNOPSIS:

\multiputlist(x,y)(Δx,Δy)[tbrl]{item1,item2,item3,...,itemN}

This command is a variation of the regular LATEX command \multiput.

The \multiput command permits one to put the same object at regularly

spaced coordinates. Often one wishes to put different objects at coordinates

that have regular increments – \multiputlist command can be used in

those cases. This command enables one to specify a collection of objects

with a single command thus simplifying the task of calculating coordinates.

All those objects may also be plotted separately using \put commands, but

any future revision of those coordinates may involve lot of manual work.

This command also encourages certain regularity and symmetry in laying

out various objects in a picture.

In the \multiputlist, as the coordinates are incremented, the objects

to be put are picked up from the list of items, i.e., first item in first position,

second item in second position, and so on. For example, numbers along the

X-axis in a graph may be plotted by simply specifying:

\multiputlist(0,0)(10,0){1.00,1.25,1.50,1.75,2.00}

This is almost equivalent to the sequence:

3

\put(0,0){1.00}

\put(10,0){1.25}

\put(20,0){1.50}

\put(30,0){1.75}

\put(40,0){2.00}

The difference is that each item is put in a \makebox(0,0)[tbrl]{...}

kind of construction which allows the specification of the reference point of

the box containing the item. The [tbrl] is optional and its absence makes

the item centered at the specified coordinate. Note that \put command

does not have such an option.

The objects in the list can be virtually anything including any \makebox,

\framebox, math characters, etc. This command can be usefully employed

in a situation where a variety of objects are to be put at coordinates that

have a regular increment along the x-axis and the y-axis.

Few comments about \multiputlist command:

• Individual items have to be grouped in {} if they contain “,”s.

• In the list of items, blanks are not ignored (of course, consecutive

blanks are coalesced into one, as always). For a list of items longer

than a line of input, put a % at the end in order to nullify the newline

if a blank is not intended to be a part of the item.

• Specifying individual items in a list format provides a powerful mecha-

nism for specifying a variety of objects in a single command. Moreover,

often real numbers need to be plotted and it is nontrivial to generate

real numbers or otherwise handle them in TEX; they need to be ex-

plicitly specified as objects in the desired format. The \multiputlist

command somewhat simplifies such a task.

4

• The implementation of \multiputlist uses two macros derived from

the ones given in the TEXbook, namely, \lop and \lopoff for list-

manipulation.

2.2 \matrixput

SYNOPSIS:

\matrixput(x,y)(Δx1,Δy1){n1}(Δx2,Δy2){n2}{object}

Above command is the two-dimensional equivalent of the regular LATEX

command \multiput. The \matrixput command is equivalent to:

\multiput(x,y)(Δx2,Δy2){n2}{object}

\multiput(x + Δx1,y + Δy1)(Δx2,Δy2){n2}{object}

. . .

\multiput(x + n1Δx1,y + n1Δy1)(Δx2,Δy2){n2}{object}

However, it is more efficient to use \matrixput than the equivalent n1

\multiput statements; first the objects along the dimension with larger

index are saved in a box and subsequently the box is copied along the other

dimension, resulting in a O(n1 + n2) execution time rather than O(n1 ∗ n2)

which would be the case with the equivalent \multiput statements. This

command can be useful in making pictures where a pattern is repeated

at regular intervals in two dimensions, such as certain kinds of transition

diagrams. An illustration of the \matrixput command is presented below.

5

� � � � � �

� � � � � �

� � � � � �
\matrixput(0,0)(10,0){6}(0,10){3}{\circle{4}}

\matrixput(2,0)(10,0){5}(0,10){3}{\line(1,0){6}}

\matrixput(0,2)(10,0){6}(0,10){2}{\line(0,1){6}}

Note: The \matrixput command does not restrict the Δx’s and the

Δy’s to be zero. The matrix of objects can be “skewed”, i.e., with nonzero

Δx’s and/or Δy’s.

2.3 \grid

SYNOPSIS:

\grid(width,height)(Δwidth,Δheight)[initial-X-integer,initial-Y-integer]

For example, the following are all valid commands:

\put(0,0){\grid(95,100)(9.5,10)}

\put(0,0){\grid(100,100)(10,5)[-10,0]}

\put(0,0){\tiny \grid(100,100)(5,5)[0,0]} % the numbers in \tiny font.

\put(50,50){\makebox(0,0){\tiny \grid(20,20)(4,4)}}

The \grid command makes a grid of size width units by height units

where vertical lines are drawn at intervals of Δwidth and horizontal lines

at intervals of Δheight. The major motivation for this command is that

making a grid in the picture initially can be very useful when laying out

pictures – it’s like having a graph underneath the picture which can be

eventually deleted or commented out. Moreover, one might actually want a

grid as an object in its own right! Figure 1 (on page 14) presents an example

of this command.

6

The width and height should be divisible by their respective Δ’s, oth-

erwise the grid will not be of correct dimensions. The numbers in [] at

the end are optional. Their absence makes a simple grid with lines. Their

presence makes a “numbered” grid with integers around the borders where

the numbers put have the starting value as specified in [. , .] argument

and are incremented by Δwidth and Δheight respectively. If specified, then

these starting numbers must be integers. The dimensions are all in units

and do not have to be integers, although in most cases one will want integers

only. There is an additional constraint when plotting a “numbered” grid —

the “Δ”-dimensions have to be integers, since one cannot easily generate

real numbers from within TEX. None of the errors of this kind are caught,

hence, if the grid comes out funny, one of the above-mentioned conditions

may have been violated.

The \grid command produces a box and thus needs to be \put at the re-

quired coordinates. The reference point of the grid is the bottom-left corner

and the numbers along the borders, if any, do not affect the reference point.

If it is desired to have another reference point, then the whole grid statement

may be put in a \makebox(0,0)[..]{...\grid...} kind of construction.

2.4 \dottedline

SYNOPSIS:

\dottedline[optional dotcharacter]{dotgap in units}(x1,y1)(x2,y2)...(xn,yn)

The above command connects the specified points by drawing a dotted-

line between each pair of coordinates. At least two points must be specified.

The dotted line is drawn with inter-dot gap as specified in the second ar-

gument (in unitlengths). Note that since integral number of dots have to

be plotted, the interdot-gap may not necessarily be exactly as specified, but

very close. It really doesn’t matter in visual appearance except when the

7

length of dottedline is very small. By default, a little square (\picsquare,

described later) is used as the dot, and can be changed by optionally speci-

fying another character. The thickness of dots is governed by currently ef-

fective \thinlines, \thicklines or \linethickness... declaration when

the default character is used. Note that some characters such as “*” in

roman font do not come out centered, although most other characters do.

One can obtain a solid line by specifying a very small inter-dot gap.

Since LATEX provides for only finite number of slopes for drawing lines, this

gives a general way of making lines with arbitrary slopes. However, if solid

lines are made using above technique, there is a good chance TEX will run

out of memory, hence it is suggested that this command be used only for

“dotted” lines. Another, much more efficient, way of making solid lines is

described later in the section on \drawline.

Each “dot” in the dottedline is plotted as a centered object, including

those at the end points. Thus, a dottedline with a large-sized dotcharacter

may appear to be longer although, technically speaking, correct. To clarify

the point, below are three lines of equal length and, in the case of dottedlines,

with equal spacing:

• •

\put(0,10){\line(1,0){70}}

\dottedline{3}(0,5)(70,5)

\dottedline[\bullet]{3}(0,0)(70,0)

2.5 \dashline

SYNOPSIS:

\dashline[stretch]{dash-length}[inter-dot-gap for dash](x1,y1)(x2,y2)...(xn,yn)

where stretch is an integer between -100 and infinity.

8

The above command connects the specified points by drawing a dashline

between each pair of coordinates. At least two points must be specified. A

\dashline is a dashed line where each dash is constructed using a dotted-

line1. The dash-length is the length of the dash and inter-dot-gap is the gap

between each dot that is used to construct the dash, both in unitlengths.

By default, a solid looking dash is constructed, but by specifying an

inter-dot-gap in the third argument, different looking dashes may be con-

structed. With a large inter-dot-gap (about >0.4mm), each dash will have

the appearance of a little dotted line. One can create a variety of dashlines

where each dash looks different. Here are a few sample dashlines:

\dashline{4}[0.7](0,18)(60,18)
\thicklines
\dashline{4}(0,11)(60,11)
\dashline[-30]{4}(0,7)(60,7)

The stretch in [] is an integer percentage and implies a certain “stretch”

for positive values and “shrink” for negative values; it is optional and by

default is “0” unless the default itself has been changed (described later).

The number “0” signifies that a minimum number of dashes be put such that

they are approximately equally spaced with the empty spaces between them.

A +ve number means increase the number of dashes by stretch percent, and

a −ve number means reduce by that percent. By reducing the number of

dashes, the empty space between dashes is stretched while maintaining the

symmetry. The lower limit on stretch is obviously -100 since at less than -

100% reduction one essentially gets nothing. On the upper side, the number,
1for efficiency, in the case of horizontal and vertical dashlines, the dash is constructed

using a rule.

9

theoretically, can be as large as infinity (barring arithmetic overflows) and

the macro does not check for any upper bound; one should normally not

require more than 100 percent increase (100 ⇒ double the number of dashes)

since that would essentially mean a “solid line” and it is more efficient to

use the \drawline command for drawing such lines, as described later.

The idea behind the stretch percentage option is that if several dashed

lines of different lengths are being drawn, then all the dashed lines with the

same −ve or +ve stretch will have similar visual appearance, as might be

desired if one were plotting a graph — one would like a particular “curve”

to look the same between all the points on that curve. Also, it can be used

to take any corrective actions, if the appearance of the default dashline does

not meet one’s approval.

The default stretch percentage can be changed by a \renewcommand on

the parameter

\dashlinestretch any time and it takes effect immediately. The argu-

ment is the integer percentage increase or reduction that will be applied to

all \dashline commands except the ones in which the percentage is explic-

itly given using [] optional parameter. For example, all dashlines could

be reduced by 50 percent by putting the following line before using any

\dashline command:

\renewcommand{\dashlinestretch}{-50} % ONLY INTEGERS PERMITTED.

An explicit argument to the \dashline command in [] overrides any

default values, so for instance, after the above declaration, if a dashline with

“0” stretch was desired, then one would simply say:

\dashline[0]{...}(x1,y1)(x2,y2) % where "0" implies no stretch or shrink

A note about dashlines of small length. All dashlines always have a

dash beginning at the first coordinate and another ending at the second

coordinate, which implies that a minimum of two dashes are plotted. For

10

small lines (or larger lines with accordingly larger sized dashes) the dash-

length is reduced as much as necessary to meet above conditions; in such

cases, if necessary, the −ve stretch arguments are ignored. Such dashlines

usually do not have an acceptable appearance, and may either be omitted or

be plotted separately as a dottedline or a dashline with a small dash-length.

2.6 \drawline

SYNOPSIS:

\drawline[stretch](x1,y1)(x2,y2)...(xn,yn)

where stretch is an integer between -100 and infinity.

The above command connects the specified points by drawing a line

between each pair of coordinates using line segments of the closest slope

available in the fonts. At the minimum two points must be specified. Since

there are only finite number of slopes available in the line segment fonts,

some lines appear jagged. A \drawline can be thick or thin depending on

the \thinlines or \thicklines declaration in effect; these are the only two

thicknesses available for such lines. This is also the most efficient, in terms

of memory and cpu usage, way of drawing lines of arbitrary slopes.

The stretch parameter has properties similar to those described earlier

in the context of dashlines. It is again a percentage and implies a certain

“stretch” or “shrink”; it is optional and by default is “0” unless the default

itself has been changed (described later). The same rules apply to the range

of the stretch value. In this case, the number “0” signifies that a minimum

number of dashes be put such that the line appears solid and each dash

“connected” at the ends. By reducing the number of dashes by specifying

a −ve stretch, one effectively gets a dashed line. On the other hand, by

specifying a +ve stretch, more dashes will be used in constructing the line,

giving a less jagged appearance.

11

A parameter, namely, \drawlinestretch, has been provided for \drawline’s

and its usage is identical to \dashlinestretch described earlier in the con-

text of \dashline.

A limitation of drawing lines using line-segment fonts is that the length

of segments is fixed and is not user-controllable. If explicit control over the

line-segment length is desired, then \dashline may be used. If the length of

the line to be drawn is smaller than the length of available line segment, then

a solid line is constructed using \dottedline with dots being very close; the

thickness of the line thus constructed is chosen appropriately. Note that in

such a case, only a solid line can be constructed between the two points,

i.e., dashed appearance can not be given to such small lines, and any −ve

stretch is ignored.

2.7 The join environments

SYNOPSIS:

\jput(x,y){object}

\begin{dottedjoin}[optional dotcharacter]{inter-dot-gap}

..... dottedlines drawn here for each \jput

statement.

\end{dottedjoin}

\begin{dashjoin}[stretch]{dash-length}[inter-dot-gap for dash]

..... dashlines drawn here for each \jput

statement.

\end{dashjoin}

\begin{drawjoin}[stretch]

..... drawlines drawn here for each \jput

statement.

\end{drawjoin}

12

Three environments, corresponding to the three kinds of lines described

earlier, are also provided. They are dottedjoin, dashjoin and drawjoin.

All the three environments use yet another new command \jput2 (join and

put) which is identical to the regular \put command of LATEX except that

it behaves differently when in any of the three environments.

All objects put using a \jput command within the scope of any of the

three environments are, in addition to being plotted, joined by lines of the

respective kind; in other words, a line of the specified kind is drawn be-

tween points plotted using \jput statement in the order they are encoun-

tered; a point refers to the x and y coordinates specified in the \jput state-

ment. Consecutive \jput statements are assumed to define adjacent points

— hence, the input should be accordingly ordered. Moreover, the plotted

point should be in a \makebox(0,0){...} (except, of course, centered ob-

jects such as \circle and \circle*) if it is to be centered on the specified

coordinate; without it the object’s bottom-left corner will be at the specified

coordinate. Each instance of any of the three join environments defines a

separate “curve” hence every set of points belonging to different “curves”

should be enclosed in separate join environments.

All the parameters, optional and mandatory, other than the coordinates

that go along with the line drawing commands, may be specified after the

\begin{...join} command as its arguments. Currently effective default

values are used when not specified in [], and may be changed anytime

using the \renewcommand as discussed previously.

The primary motivation for designing the join environments is for use

in plotting graphs and joining different curves by different looking lines. It

is not necessary that the \jput statements put some object; if the object is

null then one gets only lines — in such a case it is much simpler to use the
2could have redefined the \put statement; \jput behaves identically to \put when not

in any join environment.

13

respective line drawing command directly.

2.8 \picsquare

\picsquare is a simple macro that gives a little square dot with its center as

the reference point. The size of the square is dependent on the currently ef-

fective \thinlines, \thicklines or \linethickness... declaration. Most

of the commands described earlier that plot little dots, use this macro3. It

has been provided primarily to be used in conjunction with \putfile com-

mand described below. Only \picsquare has been made accessible to the

user.

2.9 \putfile

\putfile{filename}{object}

The command \putfile is similar to the \put command except that

the x and y coordinates required by the \put command are read from an

external file and the same object is plotted at each of those coordinates.

The motivation behind this command is that TEX does not have the

capability to do floating point calculations which would be required if one

wished to plot any parametric curve other than straight lines. Coordinates

for such curves can be easily generated by programs in other languages

and subsequently a “dotted” curve can be plotted via TEX or LATEX. Even

if coordinates for certain curves could be generated from within TEX, it is

much more efficient to use other languages — eventually only the coordinates

of the points are required. For instance, one can use the Unix4 facility spline

to generate smooth curves with equidistant “dots”.
3The \dottedline macro actually uses another similar macro \picsquare@bl, which

gives an identical square, but with the bottom-left corner as the reference point.
4Unix is a trademark of AT&T.

14

Format of the External File: The external file of coordinates must

have “x y ” pairs, one pair on each line, with a space between them. Also,

it is suggested that some extension such as “.put” be used for such data

files to distinguish them from regular text files in which case it must be

explicitly specified in the first argument so that TEX doesn’t look for a

“.tex” extension.

The “%” character remains valid as a comment character and such lines

are ignored. However, there should be at least one space after the second

entry if a comment is on the same line as data since % eats up the newline.

For example, to plot a smooth curve along a set of coordinates, one may

undertake the following steps:

1. have a file of “x y” coordinates for original data points, say, datafile.

2. run the command (for Unix systems): spline -200 datafile > data.put

3. in a picture environment in a LATEX file, put the command:

\putfile{data.put}{\picsquare}

(see previous section for explanation of \picsquare).

3 General Comments

A few remarks about efficiency and quirks:

• In most of the above commands, simply typing a [] for optional ar-

guments with nothing as the value will either cause an error or will

be interpreted as a null value; hence a [] should not be typed if an

optional argument is not meant to be specified.

• If too many “dots” are to be plotted in one picture, it is suggested

that a character other than the default be used — about 40–50% more

15

dots can be plotted in a picture using a period (.) or a \bullet (•) in

various sizes, rather than the default \picsquare, although the latter

seems to have a better visual appearance. The use a \picsquare also

enables one to have a better control over the thickness of dots and

lines.

A note on efficiency: when specifying a font or a fontsize for a charac-

ter it is more efficient to say:

{\tiny \dottedline[\bullet]{2}(0,0)(40,30)(80,10)}, rather

than

\dottedline[\tiny \bullet]{2}(0,0)(40,30)(80,10).

In the latter case, \tiny macro gets invoked for each instance of the

dotcharacter \bullet as the dottedline is plotted.

• If it is not very important as to how accurately spaced a dashed line

appears, then it is suggested that \drawline command with a −ve

stretch be used instead of \dashline, since the former is much more

cpu- and memory-efficient.

• \dottedline and \dashline come out much too thin with \thinlines.

Moreover, the thicker the \dashline, fewer “dots” are required to con-

struct dashes resulting in lesser memory and cpu usage. Thus, it is

recommended that they be plotted with \thicklines in effect, or with

a linethickness of about 1–2pt.

• In the case of \drawline, any explicit linethickness declarations (i.e.

using \linethickness command) are ignored. The only applica-

ble declarations are \thinlines and \thicklines since line-segment

fonts are available in only two thicknesses.

Above commands are available in the picture environment only since

they use many of the LATEX’s predefined picture commands. Extensive use

of some of the internal macros and variables of LATEX has been made for

16

efficiency sake, even though that makes these macros vulnerable to future

revisions of LATEX.

The dottedline macro gets complicated because TEX does not have any

builtin facility for floating point calculations or for calculating square-roots

or trigonometric functions. The inter-dot-gap in a dottedline has to be

treated as the actual distance between two dots along the “hypotenuse” and

not its projected distance along x-axis or y-axis, since the latter interpre-

tation would result in a different real inter-dot-gap for different slopes; it

would be incorrect if we were joining points on a graph. The dootedline

macro treats the inter-dot-gap as the actual distance between two dots and

draws the various segments of the “curve” with this distance fixed. The

macro accomplishes this by estimating the actual length of the line and the

number of segments of the specified distance that will fit between the two

end-points; a macro, namely, \sqrtandstuff calculates this square-root.

Some algebraic relations are used in estimating this square-root and are

described in appendix A.

Beware, if far too many dots are put in one picture, LATEX will run out of

memory (box full), so be kind to it. For instance, by reducing the inter-dot-

gap to about 0.3mm in the case of a \dottedline, one can get essentially

a solid line, but that would mean a LOT of dots and it may run out of

memory.

If many lines using above-mentioned macros are drawn, then a \clearpage

ought to be put at judicious places in the document so as to tell LATEX not to

keep those figures floating – LATEX sometimes keeps entire figures in memory

while trying to figure out how and where to lay them and it can frequently

run out of memory. A \clearpage may prevent running out of memory and

may reduce execution times. In case of such a memory-full error message,

a \clearpage in the region where the error occurred should be attempted

first and if that does not help then the number of “dots” in the picture will

17

have to be reduced.

A word about \drawline is in order. LATEX’s \line command takes an

ordered pair of integers to specify the slope of the line where the numbers

are between −6 and 6 such that the least common divisor is 1. For the

\drawline command, the given arbitrary slope has to be mapped to the

pair of integers representing the closest available slope. Another macro,

\lineslope is used to accomplish this task. The macro \lineslope takes

two arguments, the base and the height of the triangle whose hypotenuse

represents the line to be drawn and returns the ordered pair of integers

representing the closest slope; using a line segment of that slope, a jagged

line between the two specified end-points is then constructed. More details

can be found in the macro file epic.sty.

As noted earlier, the command \jput behaves identically as \put when

not in any of the join environments. The author considered obliterating the

\put command too radical a step. Also, there should have been a command

\jputfile corresponding to the \jput command (like the \putfile com-

mand) but that was considered unnecessary since typically the number of

coordinates plotted in a join environment would be an order less than what

might be the case with \putfile and can be easily typed explicitly in the

document using \jput commands. However, if it is desired to have all the

\put commands treated as though they were \jput, the following declara-

tion may be used:

\let\put\jput

Above declaration will make all the \put commands be treated as \jput;

in particular, \putfile command would then behave as though it were a

\jputfile when in any of the join environments. However, it is suggested

that such “tricks” be used with care.

Finally, commands to plot vectors of arbitrary slopes have not been

implemented. One way to plot them is to plot a line, and subsequently plot

18

a \vector of appropriate slopes and length zero at the required place.

Following pages contain some examples. The test-sample picture for

\drawline command (Figure 2) is also about the maximum amount of ob-

jects that one can put in one picture. Older versions of TEX and LATEX may

not be able to print pictures of this size.

19

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

�������
�������

���
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� � � � � � � ��
�

�
��

�

�

�

�

�

Figure 1: An Example of Various Line Drawing Commands

%\newcommand{\plotchar}{\makebox(0,0){\large \otimes}}

\unitlength = 1mm

\begin{picture}(100,100)(0,0)

\put(0,0){\tiny \grid(100,100)(5,5)[0,0]}

\drawline(10,5)(60,10)(85,20)(90,60)(100,95)

\drawline[-50](10,0)(65,5)(90,15)(95,55)

\thicklines

\dottedline{1.4}(10,10)(60,20)(75,35)(95,95)

\dashline{2}(80,90)(50,80)(30,50)(10,40)

\dashline{2}[0.5](80,80)(50,70)(30,40)(10,30)

\dashline[-30]{2}[0.5](80,70)(50,60)(30,30)(10,20)

20

\end{picture}

21

⊗⊗
⊗⊗

(60,3)(-60,3)

(60,-3)(-60,-3)

���
����

���
����

���
��

���
����

���
����

���
��

�������������������

�������������������

⊗⊗

⊗⊗

(60,13)(-60,13)

(60,-13)(-60,-13)

��
��
��
��
��
��
��
��
��

��
��

��
��

��
��

��
��

��

������������������

������������������

⊗⊗

⊗⊗

(60,23)(-60,23)

(60,-23)(-60,-23)

		
		
		
		
		
		
		
		
		

																		

⊗⊗

⊗⊗

(60,33)(-60,33)

(60,-33)(-60,-33)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(60,43)(-60,43)

(60,-43)(-60,-43)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(60,53)(-60,53)

(60,-53)(-60,-53)

⊗⊗

⊗⊗

(3,60)
(-3,60)

(3,-60)
(-3,-60)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(13,60)
(-13,60)

(13,-60)
(-13,-60)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(23,60)
(-23,60)

(23,-60)
(-23,-60)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(33,60)
(-33,60)

(33,-60)
(-33,-60)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(43,60)
(-43,60)

(43,-60)
(-43,-60)

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

⊗⊗

⊗⊗

(53,60)
(-53,60)

(53,-60)
(-53,-60)

Figure 2: Test Sample: Lines of various slopes with thinlines

22

⊗⊗
⊗⊗

(60,3)(-60,3)

(60,-3)(-60,-3)

� � � � � � � � � �

����������

� � � � � � � � � �

����������

⊗⊗

⊗⊗

(60,13)(-60,13)

(60,-13)(-60,-13)

�
�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�

�
�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�

⊗⊗

⊗⊗

(60,23)(-60,23)

(60,-23)(-60,-23)

�
�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�

�
�
�

�
�

�
�
�

�

�
�

�
�

�
�

�
�

�

⊗⊗

⊗⊗

(60,33)(-60,33)

(60,-33)(-60,-33)

�
�
�

�
�

�
�
�

�

	
	

	
	

	
	

	
	

	

	
	
	

	
	

	
	
	

	

�
�

�
�

�
�

�
�

�

⊗⊗

⊗⊗

(60,43)(-60,43)

(60,-43)(-60,-43)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⊗⊗

⊗⊗

(60,53)(-60,53)

(60,-53)(-60,-53)

⊗⊗

⊗⊗

(3,60)
(-3,60)

(3,-60)
(-3,-60)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⊗⊗

⊗⊗

(13,60)
(-13,60)

(13,-60)
(-13,-60)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⊗⊗

⊗⊗

(23,60)
(-23,60)

(23,-60)
(-23,-60)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⊗⊗

⊗⊗

(33,60)
(-33,60)

(33,-60)
(-33,-60)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⊗⊗

⊗⊗

(43,60)
(-43,60)

(43,-60)
(-43,-60)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

⊗⊗

⊗⊗

(53,60)
(-53,60)

(53,-60)
(-53,-60)

Figure 3: Test Sample: Dashed lines of various slopes using \drawline com-

mand with linethickness=1pt and drawlinestretch = -50

23

%Following commands were used to produce the graph on the next page.

\newcommand{\plotcharms}{\makebox(0,0){\otimes}}
\newcommand{\plotcharscs}{\circle{1.5}}
\newcommand{\plotcharcs}{\makebox(0,0){\diamond}}
\begin{figure}
\begin{center}
\begin{picture}(140,160)(-130,-10)
\linethickness{0.4mm}
\put(-130,0){\vector(1,0){140}}
\put(-130,0){\vector(0,1){150}}
\thicklines
\multiput(0,-1)(-10,0){14}{\line(0,1){2}}
\multiput(-131,0)(0,10){15}{\line(1,0){2}}
\multiputlist(0,-4)(-20,0){0,50,100,150,200,250,300} %numbers along X-axis
\multiputlist(-132,20)(0,20)[r]{10,20,30,40,50,60,70} %numbers along Y-axis
\put(-60,-10){\makebox(0,0){Interarrival Times (msec.)}}
\put(-141,75){\makebox(0,0){\shortstack{%
N\\o\\r\\m\\a\\l\\i\\z\\e\\d\\[3ex]L\\i\\f\\e\\t\\i\\m\\e\\s}}}
\thinlines
\put(-120,150){\makebox(0,0)[tl]{\fbox{\shortstack[l]{
{\makebox(4,2)[lb]{\put(2,1){\plotcharms}}}: Message Switching\\[0.5mm]
{\makebox(4,3)[lb]{\put(2,1){\plotcharscs}}}: Staged Circuit Switching\\[0.5mm]
{\makebox(4,3)[lb]{\put(2,1){\plotcharcs}}}: Circuit Switching\\[0.5mm]
{\makebox(2,0)[b]{}}
}}}}

%
\begin{dottedjoin}{2}
\thicklines
\jput(-120.00000, 34.44896){\plotcharms}
\jput(-60.00000, 35.55244){\plotcharms}
\jput(-40.00000, 36.57292){\plotcharms}
\jput(-30.00000, 37.71716){\plotcharms}
\jput(-20.00000, 40.15218){\plotcharms}
\jput(-12.00000, 48.16034){\plotcharms}
\jput(-8.00000, 67.75840){\plotcharms}
\jput(-7.60000, 74.27934){\plotcharms}
\jput(-7.20000, 83.02326){\plotcharms}
\end{dottedjoin}
%
\begin{dashjoin}{2}
\jput(-120.00000, 15.01202){\plotcharscs}
\jput(-60.00000, 15.95818){\plotcharscs}
\jput(-40.00000, 17.15990){\plotcharscs}
\jput(-30.00000, 18.16152){\plotcharscs}
\jput(-20.00000, 20.32388){\plotcharscs}
\jput(-12.00000, 27.05212){\plotcharscs}
\jput(-8.00000, 41.58512){\plotcharscs}
\jput(-7.60000, 45.3435){\plotcharscs}
\jput(-7.20000, 51.52414){\plotcharscs}
\end{dashjoin}
%
\begin{drawjoin}
\jput(-120.00000, 15.17960){\plotcharcs}
\jput(-80.00000, 16.71960){\plotcharcs}
\jput(-60.00000, 18.29430){\plotcharcs}

24

\jput(-56.00000, 19.81980){\plotcharcs}
\jput(-52.00000, 20.31963){\plotcharcs}
\jput(-48.00000, 50.24912){\plotcharcs}
\jput(-44.00000, 56.96844){\plotcharcs}
\end{drawjoin}
\end{picture}
\end{center}
\caption[]{A real-life example of a graph}
\end{figure}

25

�

�

050100150200250300

10

20

30

40

50

60

70

Interarrival Times (msec.)

N
o
r
m
a
l
i
z
e
d

L
i
f
e
t
i
m
e
s

⊗ : Message Switching
� : Staged Circuit Switching
� : Circuit Switching

⊗ ⊗ ⊗ ⊗ ⊗
⊗

⊗
⊗

⊗

�
�

�
�

�

�

�

�

�

� � � ��� ���

�

�
�
�
�
�
�
�
�
�

�
�
�

Figure 4: A real-life example of a graph

26

4 Installation and Usage of the Package

This package of new commands for the picture environment has been im-

plemented as a documentstyle option “epic”. To include these commands,

“epic” should be added as an option in the \documentstyle command, e.g.:

\documentstyle[epic]{article}

For the above option to work, one of the following will have to be done

prior to its use:

1. A copy of the macro file epic.sty be put in the standard place for

such macros (typically /usr/lib/tex/macros), or

2. A copy of epic.sty be put in some other directory, and the path de-

clared in the environment variable TEXINPUTS; e.g. for C-shell on

unix systems, put a command similar to the following in the “.cshrc”

file:

setenv TEXINPUTS .:/usr/lib/tex/macros:/users/podar/texlib

Above environment variable is the directory search path for files specified

in an \input or an \openin command.

5 Concluding Remarks

The implementation of the new commands for the picture environment has

been done with the LATEX version 2.09 and TEX version 2. They have also

been tested to work with LATEX version 2.08. These commands may not

work with earlier versions of TEX and LATEX.

Most of the commands have been tested fairly thoroughly. No major

revisions are anticipated in the near future, except, of course, bug fixes.

The author welcomes any comments, constructive or otherwise, suggestions

27

for improvements, any ideas for possible future revisions and, of course,

bugs. It is also requested that he be informed of any significant changes or

modifications made to these macros.

All the help and encouragement from colleagues in the Dept. of Com-

puter Science at SUNY at Stony Brook is gratefully acknowledged; in par-

ticular, Soumitra Sengupta’s and Divyakant Agrawal’s criticisms (often con-

structive), help with proofreading the numerous versions of this report and

general moral support were critical to the completion of this project and are

thankfully acknowledged.

Author’s address:

USMAIL: Dept. of Computer Science, SUNY at Stony Brook, Stony Brook, N.Y. 11794
CSNET: podar@sbcs.csnet
ARPA: podar%suny-sb.csnet@csnet-relay.arpa
UUCP: {allegra, hocsd, philabs, ogcvax}!sbcs!podar

References

[1] D. E. Knuth, “The TEXbook”, Addison-Wesley Publishing Co., 1984.

[2] L. Lamport, “LATEX: A Document Preparation System”, Addison-

Wesley Publishing Co., 1986.

Appendix A Estimating Pythagorean Square-root

For the line drawing commands described in the main sections of this doc-

ument, we need to estimate the Pythagorean square-root in order to deter-

mine the length of the line (along its slope). More precisely, we need to

estimate the number of segments of a given length needed to draw a line.

TEX does not provide for floating point calculations, and thus there are no

direct means of calculating the above square-root. Most standard numer-

ical techniques are iterative and would be too slow when used with TEX

28

for lack of floating point calculations, and in particular, real division, since

calculation of such a square-root is needed very frequently.

A simple non-iterative formula for estimating the square-root is derived

and described below.

Problem: Given a and b, to find c =
√

a2 + b2 using only operations in

{+,−, ∗, /}.
We can get very tight bounds on the square-root as follows. Without

loss of generality, let a ≥ b. We seek a simple n such that:

√
a2 + b2 ≥ a +

b

n

Squaring both sides, we have

⇔ a2 + b2 ≥ a2 +
b2

n2
+

2ab

n

⇔ (1 − 1
n2

)b2 ≥ 2ab

n

⇔ b

a
≥ 2n

(n2 − 1)

or (
b

a
)n2 − 2n − (

b

a
) ≥ 0

¿From the quadratic equation above, we finally get an expression for n,

n =
2 ±

√
4 + 4(b

a)2

2b
a

=
1 ±

√
1 + (b

a)2

b
a

Only the +ve root interests us since n has to be positive. Note that the

term under the root is bounded above and below (since b
a ≤ 1):

1 ≤
√

1 + (
b

a
)2 ≤

√
2

29

Hence, we have two values for n,

nl =
1 + 1

b
a

=
2a
b

; nu =
1 +

√
2

b
a

=
(1 +

√
2)a

b

which finally gives us a lower and an upper bound for c, the Pythagorean

square-root,

a +
b2

(1 +
√

2)a
≤ c ≤ a +

b2

2a

These are very tight bounds. Denoting the lower bound as cl and upper

one cu, below are some numerical results (c = exact square-root):

a b c cl cu

100.0 100.0 141.4213 141.4213 150.0

100.0 80.0 128.0642 126.5096 132.0

30.0 20.0 36.0555 35.5228 36.6667

With the above bounds, one can do a linear interpolation to get exact

values. In our case, since it is not required to be extremely accurate, for

estimating the square-root in the line drawing commands, we simply take

the midpoint of the two bounds. For small numbers, which is expected to

be the case most of the time, the error is very small.

With some algebra, we get the mid-point estimate of c,

c =
cl + cu

2
= a +

b2 ∗ (3 +
√

2)
a ∗ 4 ∗ (1 +

√
2)

= a +
0.457 b2

a
(a ≥ b)

The macro \sqrtandstuff uses the above formula for estimating the

number of points (for \dottedline macro) and number of segments (for

\dashline macro). The \sqrtandstuff macro, instead of calculating the

length of the line, directly calculates the number of segments of a given

30

length. For example, to draw a dotted line from (x1, y1) to (x2, y2) with the

inter-dot-gap as d, we estimate the number of dots n using the following

expression,

n =
Δx

d
+

0.457 (Δy
d)2

Δx
d

Δx = |x2 − x1| and Δy = |y2 − y1|

assuming Δx ≥ Δy (otherwise they may be inter-changed).

Note that since divisions in TEX are integer-divisions, it is simpler to deal

in “number of segments” rather than actual lengths (e.g. in the expression

above, Δx
d = number of segments along X-axis).

Caveat: The approach presented here for estimation of Pythagorean square-

root is an independent effort by the author. It may already exist in the

literature — the author is neither aware of it nor has he made any serious

attempts at uncovering it.

31

