
The rmpage package

Alpha documentation—trust nothing!

Rowland McDonnell
rebecca@astrid.u-net.com

Some time ago

Abstract

The rmpage package lets you change page layout parameters in small steps
over a range of values using options. It can set \textwidth appropriately for
the main fount, and ensure that the text fits inside the printable area of a
printer.

An rmpage-formatted document can be typeset identically without rmpage
after a single cut and paste operation. Local configuration can set defaults:
for all documents; or by class, by printer, and by paper size.

The geometry package is better if you want to set layout parameters to
particular measurements.

Contents

1 Introduction 5

1.1 LATEX’s standard classes . 6

1.2 How does rmpage help? . 7

1.3 Installing rmpage . 8

1.4 Compatibility . 8

1.5 What made me write rmpage 9

1.6 Future plans . 10

2 Using rmpage 11

2.1 rmpage’s view of a page . 11

2.2 Parameter naming conventions 12

2.3 Don’t read me . 12

2.4 Option naming conventions . 13

2.5 Changing the page layout . 13

2.5.1 Width of the main text block 14

2.5.2 Length of the main text block 15

2.5.3 Headers and footers . 16

2.5.4 Position of the main text block 17

2.5.5 Marginal paragraphs . 19

2.5.6 Multiple columns . 20

2.5.7 Paper size . 22

2.5.8 Founts . 23

2.5.9 Printers . 25

2.5.10 Date format . 25

2.5.11 The beton package . 25

2.5.12 Typesetting parameters 27

3 Old Using rmpage 28

3.1 Some options . 28

3.2 Some other options . 30

3.3 Layout details . 30

3.4 Paper sizes . 30

3.5 Setting the body text size . 32

3.6 Founts- . 33

3.7 Marginal paragraphs- . 33

3.8 The configuration files . 34

3.9 Sending rmpage-formatted documents elsewhere 36

3.10 Speed and what to do about it 37

2

4 A brief lecture on typography 40

4.1 Introduction . 40

4.2 Positioning the text body . 41

4.3 Size of the text body . 42

4.4 Typefaces . 43

5 All the options (rmpage v0.69 and rmplocal.cfg v0.11) 45

5.1 Options in rmpage . 45

5.1.1 Reporting dimensions and tracing calculations 45

5.1.2 Paper sizes . 46

5.1.3 Typesetting tightness 48

5.1.4 Textheight setting . 49

5.1.5 Headers and footers . 49

5.1.6 Columnsep . 50

5.1.7 Width of the text body 51

5.1.8 Width setting control 52

5.1.9 Margins . 52

5.1.10 Number of columns . 54

5.1.11 Paper orientation . 54

5.1.12 Headers and footers . 54

5.1.13 Positioning the text body vertically 55

5.1.14 Changing the date format 55

5.1.15 Dealing with the beton package 55

5.2 From the configuration file . 56

5.2.1 Other paper sizes . 56

5.2.2 Marginal paragraph options 59

5.2.3 Touch options . 61

5.2.4 More length options . 62

5.2.5 Number of columns . 62

5.2.6 Loading founts . 63

5.2.7 Stuff for beton support 66

5.2.8 Other synonyms for some options 66

5.2.9 Margin options . 66

5.2.10 Printer options . 66

5.2.11 Rowland’s curious options 69

6 How things work 71

6.1 \textheight calculation . 71

6.2 \textwidth calculation . 73

6.3 Hooks . 75

6.4 Marginal paragraphs . 76

6.5 Dealing with different classes 76

6.6 Different paper types and printers 76

6.7 Headers, footers, and marginal paragraphs 77

3

7 Configuring rmpage 79
7.1 Setting up a new installation 79
7.2 Configuration basics . 79

7.2.1 Unknown option error 80
7.2.2 Default options . 80

7.3 Configuring rmpage for particular classes 81
7.4 Defining a new printer type . 81
7.5 Dealing with particular combinations of printer and paper . . . 81
7.6 Telling rmpage about a new class 81

7.6.1 Dealing with options . 82
7.6.2 Things you can do with your new class number 83

4

Chapter 1

Introduction

This documentation needs re-writing and tidying up, and rmpage needs
finishing, but the package is 99% finished even if the documentation’s a mess
– I’m not happy with it but it’s probably usable, so here it is.

The rmpage package has five files: rmpage.tex (documentation),
rmpage.sty (the package file itself), rmplocal.gfc (a configuration file), and
rmpgen.cfg (another configuration file), and readme.

Only rmpage.sty and rmpgen.cfg need to be on your TEX search path –
read on to find out more about configuring rmpage.

I seem to have ground to a halt on this package – it’s worked fairly well
for some time and I don’t seem to have been able to get things together to
sort out the documentation and stuff. I’ve come across one bug only in the
last year, so I thought the best idea would be to upload the package to CTAN
so someone else could use it, and perhaps any feedback I get might persuade
me to pull my finger out and tidy it all up.

The dtx files aren’t ready to be typeset yet—this is the only LATEXable
documentation.

What I do with rmpage in the future depends mainly on what you tell
me: if you’ve used rmpage (or decided not to), I would consider it a great
kindness if you told me why. I’m also interested in what you like and
dislike, any suggestions you have, and anything else about this package and its
documentation—an email message just saying ‘rmpage is rubbish, geometry’s
much better for. . . ’ would be useful if that’s what you think.

The chapters on how things work and all the options still need a lot of work,
and the chapter on configuration isn’t how I’d like it to be. This document will
eventually be finished and included in a proper .dtx file. I thought releasing
this package now was best, because I’ve suddenly become employed, and this
final polishing will take quite a long time.

rmpage sets LATEX page layout parameters to user-controlled values, with-
out the user having to deal with particular measurements, check whether the
result will fit inside the printing area of the selected printer, and so on. This
is done with options like: wider, noheaders, lower, and morecolsep; all
changable layout parameters can be varied in small steps over a range of val-
ues.

rmpage only changes parameters like \textwidth and \columnsep: those
lengths that affect where the text goes on the page and how much of the page it

5

occupies. It doesn’t change layout parameters that affect the internal appear
of your text, such as paragraph indents, spacing around section headings and
the like. One of the design aims was to make changing page layout similar to
a wysiwyg word processor, where you can use the mouse to fiddle with the
page layout, making things a bit bigger and smaller until it’s just right.

There’s a configuration file for you to play with and hooks galore: rmpage
is meant to be configured the way you want it—if you normally use A4
paper and produce most documents without headers, you can configure
rmpage to give you that by default, over-ridable by passing options from
your document. If you follow the instructions, local configuration won’t
stop you producing documents with a modified layout that typeset identically
on different systems—you can even copy the modified layout data into your
document, and it’ll typeset identically on a LATEX installation without rmpage.

The package is meant to be used directly in LATEX documents, and for
creating local classes. I have used it, for example, to create a class for
producing theses according to the regulations. I can play about with the
layout as much as I like, because rmpage will ensure that the final document
is within specification—some of the code that does this can be seen in the
configuration file.

Aside: this documentation was hell to write—I hadn’t realized what a
monster this package was until I came to document it. With a bit of luck,
you’ll be able to use rmpage as your flexible friend like I do. I never write a
LATEX document without it. And strangely, even though rmpage has been over
a year in the making, and has been used constantly in that time, I spotted lots
of improvements that needed doing and bugs that needed removing while I
was writing this documentation, which I didn’t start seriously until I thought
I’d finished the first release version of the package. I have a suspicion that
writing detailed documentation of software is a very, very useful part of getting
it right, especially when the software’s moderately complicated. Personally,
I’m now suspicious of anything that isn’t documented thoroughly; I’ve looked
at the various packages I’ve got from CTAN and use myself, and I find that
those with thorough, clear documentation of what they do and how they do
it are the ones that seem most usesful and flexible. The poorer-documented
packages appear to be less well thought out and less able to do things my
way, rather than the author’s. By the way, when I refer to an explanation of
how something works, I’m not talking about the annotated code with added
jargon that the LATEX core appears to be turning into. This is fairly useful
and probably inevitable, but people like me who aren’t expert hackers can’t
understand it and can’t find out how to understand it, which is worse.

1.1 LATEX’s standard classes

LATEX’s standard classes have all been designed well, and the LATEX 2ε versions
have a cunning way of calculating \textwidth and \textheight that adapts
the page layout to the size of paper, which is useful for people like me who
never print on US letter paper.

But the standard LATEX page layout was intended for paper sizes near US
letter, and assumes you’ll be using headers and footers. If you’re not, things

6

begin to look a bit off; your printed pages have a larger white space at the
top than at the bottom, which looks ‘bottom heavy’—standard typographical
design has the larger gap at the bottom rather than the top, which looks
better to the eye, even if only because we’re used to it. Personally, I rarely
use headers, which means the standard LATEX classes produce an unpleasant
output most of the time. And for some reason, the standard classes don’t
allow enough space in the header box for type sizes bigger than 10pt. This is
one of life’s inexplicable mysteries.

If you have different sized margins, the standard classes always make the
outside margin the larger one, and the margins are in fixed proportions to
each other. This is fine for conventional typeography, but not so good if
you’re formatting things to go in a ring-binder, for example. Some flexibility
in this matter would be good.

And there’s the matter of the fixed text height and width of the standard
classes. Now then, this is a good idea in one respect, because the user doesn’t
get to typeset lines that are too long or too short without having to do a
bit of work. On the other hand, I for one have often LATEXed a letter which
has just run on to two pages; being able to extend the page a small amount
would be good under these circumstances. Admittedly, LATEX 2ε introduced
the \enlargethispage command which can help out, but if you make a page
more than one or two lines longer this way, the results look a bit iffy—this
command only extends \textheight, which reduces the size of the bottom
margin, and can make the page look bottom-heavy.

A more subtle problem with the standard fixed widths is that one factor
affecting the ease of reading is the line width in characters, not in inches. So
if you’re using a fount with a different number of characters per inch, you can
end up with a line that is noticably too long (Zapf Chancery), or too short
(Lucida Casual).

1.2 How does rmpage help?

rmpage has options (the details come later) to format a page for typesetting
with or without headers or footers, and always leaves enough space for a
\normalsize line of text in the header box. You can specify which margin
you want to be the larger one, and adjust the relative proportions of the inside
and outside margins. And there are options to change: the width and height of
the text taking into account the size of the main text fount; the position of the
text on the page (up and down, and left and right); space between columns,
above footers, below headers; size and position of marginal paragraphs; and
lots, lots, more, so hurry! Buy now while the sale’s still on!

rmpage isn’t like the geometry package: you rarely work with mea-
surements. rmpage’s options are of the form: wider/narrower or
moreheadsep/lessheadsep, and they scale sizes up and down over a large
range in fairly small steps if you want. And unlike the Koma-Script bundle of
packages, you’re not limited to a fixed aspect ratio printing area. Not that
there’s anything wrong with Koma-Script or geometry: they do a different job.

rmpage can take into account different founts, number of columns, and all
sorts of things, including the physical printing area of your printer.

7

Options exist to change all (I think I got them all) of LATEX’s basic page
layout parameters, and some new parameters that I created for: setting the
size of marginal paragraphs, and changing the position of the text area in
relation to the paper area. There are some LATEX page layout parameters that
you don’t get to affect directly; this is because of the way I looked at page
layout when I wrote rmpage. These include \evesidemargin, \topmargin,
and some others, which are fine for a computer assembling a page, but not so
good for me, trying to describe a layout I want in terms I like.

I have paramaterized everything that didn’t run away, so you can, for
example, write a thesis class that limits the text area as specified in the
regulations, but still allows the user some flexibility if it’s needed.

And rmpage knows about a lot more paper sizes, including envelopes and
ISO long sizes, which it attempts to handle in an intelligent fashion (it knows
one’s likely to want to print out 1/3 A3 on A4 paper, for example).

1.3 Installing rmpage

You can install rmpage by running LATEX on the file rmpage.ins. The dtx

files might be useful if you want to dig around inside rmpage, otherwise throw
them away with the ins files. Put the sty, pko, cfg, and gfc files somewhere
in your TEX search path.

The file rmpage.sty is the package you call from your LATEX document,
and the cfg files contains most of the options and locally-configurable things.
Please don’t change any of these files—make a copy called rmplocal.cfg

of either: rmpgen.cfg or rmplocal.gfc, and change that instead. The file
rmplocal.gfc is the same as rmpgen.cfg with some options commented out
to make it faster.

rmpage is meant to be configured to suit you; I suggest that everyone
changes the default options in rmplocal.cfg. Don’t do this just yet unless
you really want to—have a read of chapter 2 and section 7.1 first.

1.4 Compatibility

rmpage has been tested with the June 1996 release of LATEX. It appears to
work well with the article, report, letter, book, and slides classes, and
a number of local classes based on these. rmpage doesn’t work well with the
ltxdoc class, because of what ltxdoc does with marginal paragraphs. Mind
you, ltxdoc doesn’t seem to have much success with marginal paragraphs
anyway. rmpage seems happy with the ltxguide class, but I’ve not tested it
thoroughly.

Because rmpage only changes LATEX parameters at the beginning of a LATEX
run, it doesn’t in general have trouble working with other packages and classes
as long as rmpage is loaded last. rmpage includes code to help it work with the
PSNFSS packages, the beton package, and the foils class. The beton package
needed a little extra work because it changes \baselineskip after all packages
have been loaded; foils uses four (rather than three) extra-large base point
sizes, which again took a little extra code. The PSNFSS package support is

8

just for convenience, so you can load a fount with one option rather than a
\usepackage command and an option to rmpage.

In general, if rmpage is loaded after the document’s normal size fount has
been selected, and after the document class has finished setting the various
text layout parameters, there should be no problems—. If you are combining
rmpage with a package that also changes page layout parameters, you will
have to find out how both packages work to ensure you get what you want.
Loading rmpage last is usually enough to ensure everything works right. For
example, rmpage must be loaded after setspace has been used to set the line
spacing for a document, so that rmpage can set \textheight to a valid value.

Two things to watch for are changes to the main document fount,
and changes to \baselineskip. rmpage calculates \textheight as an
integer multiple of \baselineskip plus \topskip. If these are changed
after rmpage has been called, you’ll probably have lots of bad page breaks.
\textwidth is normally taken to be a certain number of average-sized
characters; if rmpage has a false idea about the typeface and size you are
using, \textwidth will probably not be set appropriately.

If you ensure that normal size in the normal body fount with the
normal \baselineskip has been selected before loading rmpage, every-
thing should always be fine. The beton package sets \baselineskip

\AtBeginDocument; other packages and classes which do this kind of
thing will almost certainly need attention to get rmpage to work right.

1.5 What made me write rmpage

I started using LATEX 2.09 about eight or nine years ago when I was an
undergraduate (’ere, Colin, ’ave you got a word processor on that bloody
great workstation of yours? No, but I’ve got something better. . .) and quickly
realised that the standard formats looked daft on A4 paper. No worries, there
was this a4l style file that sort of sorted things out. After a bit, I wanted
slightly wider columns, sometimes centred on the page and sometimes not. I
found out how to write style files and eventually I ended up with a suite of
simple style files that let you fiddle with the printing area by selecting one file
for the kind of text area you wanted: centred, not centred, wide, very wide,
long, standard LATEX length, my standard length, all hard-coded to A4 paper
with no headers.

I was chewing over the idea of introducing the idea of paper sizes myself,
so I could write style files that weren’t hard-coded to any particular paper
size, when LATEX 2ε came out with the job already done, and packages you
could pass options to and all that good stuff.

So what I did was use my original LATEX 2.09 packages to form the basis
of the original rmpage, which let you do everything the original styles did, but
all in one file instead of over a dozen, and let you format your text on any
size paper with or without headers or footers. I decided what I really wanted
was a package that gave me wysiwyg-style flexibility (you know, the way you
can extend line length just a bit with the mouse, without worrying about
the actual numbers) without producing poor layouts, and taking advantage of
LATEX’s ‘extensive macro capability’1 to build in a bit of intelligence.

1Whoever first used this phrase should be shot, after the politicians but before the lawyers

9

I looked at the LATEX 2ε way of calculating the text region, and used those
ideas in my package, and started adding options to change more aspects of
the printing area. And more, and more, and more. The result was a mess
that could change almost anything, and supported any size paper, different
printers, and so.

The transmogrification from the original large mess to the current large
mess was in two main steps: I started out by tidying up bits of code
piecemeal, rationalized command names and the like, and tried to work out
how everything worked together. I’d done as much of this as I could, then
started to document rmpage systematically for myself, making notes on what
I intended to change when I’d finished documenting the package.

Eventually I got fed up, and decided that a good spring cleaning was in
order. I read some typeography books, some British Standards (which are
mainly ISO standards too, so I’m not being parochial) looked at the koma-
script, vmargin, and geometry packages, and cleaned up the code good and
proper, none of this pussy-footing around with careful plans. I parameterized
some things which had escaped the first time round, changed the numbers
to give a rational, æsthetically pleasing, and functional spread of values for
everything2, and got the whole thing more-or-less sorted, with a few extra
bits thrown in where they were missing. The result seems much more useful
that my original careful plan would have produced, so I’m happy. Writing the
documentation has smoothed out several things I wasn’t very happy with to
begin with, improved some features, added some others, and unearthed more
bugs than was reasonable given that I’d tested the bloody thing, honest.

1.6 Future plans

What I do with rmpage depends mainly on what you tell me; if you’ve used
rmpage (or decided not to), I would consider it a great kindness if you let me
know what you think about it—two words or two pages: whatever you might
tell me would be useful and appreciated. I’m interested in what you like and
dislike, any suggestions you have, and anything else about this package and
its documentation, gonzo ontology, the books of Harlan Ellison and Robert
Anton Wilson, good beer, fast bikes, and prawn crackers, but don’t worry
about most of that.

I intend to make the rmpage code more elegant, and make rmpage more
useful—if you think of any useful changes or additions, please let me know.
Of course I’ll try to fix any bugs and misfeatures that you report.

I’m working on reducing the restrictions on the use of options—I hope
to arrange things so that more options can be used in an \ExecuteOptions

statement, and things like that.
A project that I’ll finish eventually is a version of rmpage that can be

processed with doc and docstrip in the conventional way, but don’t hold your
breath—it’s taken me perhaps two years to get this far. But I will fix bugs
quicker than that.

2That’s my story, and I’m sticking to it.

10

Chapter 2

Using rmpage

Section 2.5 on page 13 of this chapter describes how to use rmpage to change
the page layout. The sections before that are background information intended
to explain the jargon and conventions I use in this document, and a little about
the philosophy behind rmpage—all of which should make the rest of this an
easier read.

rmpage is a LATEX package written to change the page layout. You can
control it with options, and by editing a configuration file. You don’t need to
edit the configuration file for rmpage to be useful, but doing so can save you
time and effort. I suggest you read this chapter and play with rmpage a little,
then read chapter 7 on page 79 to find out about local configuration.

rmpage is a normal LATEX package, so put:

\usepackage{rmpage}

in the preamble of your document.
You can pass options directly to rmpage in the optional argument of the

\usepackage command, but I almost always put all my options in the optional
argument of the \documentclass command. This is because rmpage uses
several standard options; if I made a habit of passing options to rmpage

directly, I might forget that the document class needs to know about (for
example) the twocolumn option.

rmpage was designed to change LATEX’s page layout parameters, but it
doesn’t change all of them in a direct way—read on to see what I mean. If
you aren’t familiar with LATEX’s basic page layout parameters, have a look at
a copy of the LATEX manual, ask a convenient guru, or use the layout package
to show you what they are—I think that what they are is obvious from their
names, but I’m not a Finnish LATEX novice, so my opinion is clearly suspect.

Figure 3.1 on page 31 shows the output from the layout package’s \layout
command. I’ve fooled the \layout command into thinking this is a one-sided
document, and this document is formatted without headers, so you can’t see
clearly that there is a box of height \headheight a distance \headsep above
the main text body. This box contains the header, if one exists.

2.1 rmpage’s view of a page

The user interface to rmpage takes the view that a page consists of a physical
paper size, with a non-printable border around its inside edge. rmpage will

11

not produce a layout that attempts to put ink beyond the printable region
thus defined.

rmpage considers the main text block to consist of the header, body text,
and footer. This is the region that rmpage moves up and down with altitude

options, and left to right with offset options. The body text is part of
the main text block, and is the matter that fits inside the area defined by
\textwidth and \textheight.

Marginal paragraphs stick on the side of the main text block. They begin a
certain distance from the side of the body text, and extend to within a certain
distance of the edge of the page, or to a certain maximum width.

The space between the main text block and the edge of the paper: top,
bottom, left, and right; is considered as four different margins, measured from
the edges of the paper. LATEX’s \evensidemargin, \oddsidemargin, and
\topmargin parameters measure margins differently, from a point one inch in
from the top left hand corner of the paper.

Asking for noheaders or nofooters reduces the size of the space left for
the approriate element to 0 pt—respectively \headheight and \headsep, or
\footskip, so the main text block might consist of body text only.

2.2 Parameter naming conventions

I refer to various parameters in this document, so you might find it useful to
know what the names are supposed to mean.

In general, parameter names ending in clearance, clear, or margin refer
to a distance from the edge of the paper. Parameter names containing sep

refer to a distance between text elements on the page. mpar means marginal
paragraph; width refers to horizontal dimensions; height or length refer to
vertical dimensions.

Parameter names ending in option contain numbers that control what
value the parameter referred to is set to. Parameter names containing min or
max are minimum or maximum limits for the parameter referred to.

All rmpage’s parameters and commands begin with \RM; those beginning
with \RM@ are not meant to be set outside a class, package, or configuration
file. The one exception to this is the \sloppiness command.

2.3 Don’t read me

Without any options specified by your document or the configuration file, on
paper about A4 or US letter size, rmpage will produce a slightly different
format to the standard classes: \textwidth and the position of the text body
on the page will be a fraction of a point different; everything else should be the
same (if not, you’ve found a fault—please let me know). Smaller paper sizes,
around A5 or half US letter, will have a noticeable wider \textwidth. You can
force rmpage to make \textwidth and \textheight identical to the standard
values (so line and page breaks are not changed) with the stdwidth and
stdlength options; main text block positioning is never identical to standard.

rmpage with the standard configuration file follows LATEX’s defaults and
produces layouts very close to standard LATEX. You can change this by editing

12

the configuration file—see chapter 7 for the details. I wrote rmpage expecting
that everyone would edit the configuration file to match their preferences; for
example, if you usually don’t use headers, or if you usually don’t print on US
letter paper.

If you are using typefaces other than the standard Computer Modern
Roman, or a package that changes \baselineskip, have a look at section 1.4
on page 8 and section 2.5 on page 13—there are things that need doing to
avoid a poor layout.

The observant will notice that I prefer spelling things according to the
Oxford English Dictionary, rather than Webster’s. Fear not: I realize that
LATEX follows US English convention, so rmpage includes options spelt both
ways where there’s a difference.

2.4 Option naming conventions

rmpage’s options are largely of the form: narrowest, narrower,
narrowish, normalwidth; or mostheadsep, moreheadsep, moreishheadsep,
normalheadsep. These two examples are each part of an option set (they
continue with widish and lessishheadsep). Any option without touch or
t@uch in its name is considered a main option.

You should use only one main option from each set at a time—if you do use
more than one, rmpage will apply the settings of the option that is declared
last in the package file.

The touch options all step up or down one third of the way (usually in
a geometrical sequence) to the next main option. The t@uch options are
identical, but can only be used in class and package files. The following two
examples produce an identical \textwidth:

\usepackage[wider,t@uchwider,touchwider]{rmpage}

\usepackage[widest,touchnarrower]{rmpage}

The following three examples produce a smoothly increasing \textwidth:

\usepackage[touchwider]{rmpage}

\usepackage[widish,touchnarrower]{rmpage}

\usepackage[widish]{rmpage}

It’s complete okay, but slightly silly because it has no effect, to combine,
say, touchwider and touchnarrower.

2.5 Changing the page layout

rmpage is controlled by options passed to it in the conventional way, and by
various things you can do to the configuration file. This section explains the
basic use of most of the options. Chapter 5 on page 45 lists all the options
and what they do. Chapter 7 on page 79 deals with the configuration file.

13

2.5.1 Width of the main text block

According to the text books, the optimum width of a block of text is about
1.5–2.5 alphabets in the main fount. This is about 45–75 characters (including
spaces and punctuation) or ordinary English prose. When you set the width
of the main text block, rmpage measures the width of one column, and warns
you if it exceeds these limits. Note that the standard width is at the upper
limit for optimum readability; any increase will produce a warning. I very
strongly suggest you use multiple columns if you find yourself using a width
wider than widish.

rmpage has options for producing multiple column layouts: see sec-
tion 2.5.6 on page 20 for more details. If you are producing displayed ma-
terial (a single large table on a page, for example), read the section below,
called ‘On other width setting controls’.

rmpage sets the width of the main text block (the header, body text, and
footer) with these options, which are referred to as the width option set:

widest, wider, wide, widish,
normalwidth,
narrowest, narrower, narrow, narrowish.

Make sure you only use one of the above options at a time. The touch

options can be used with any of the main options; they are often exactly what’s
needed what used alone: touchwider and touchlonger have often reduced
my document’s page count to what I wanted.

The options:

touchwider touchnarrower

t@uchwider t@uchnarrower

give a width one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.
There are four main width options that pay no attention to the touch

options. They are:

stdwidth Exactly the width calculated by the standard classes
fullwidth The full width of the printable region
oneinchmargins The left and right margins sum to 2 in—average 1 in
halfinchmargins The left and right margins sum to 1 in—average 0.5 in

The fullwidth option fills the width of the printable region as well as it can,
ensuring the specified relationship between the inside and outside margins.
You will usually get a larger textwidth if you also ask for centre or center;
see section 2.5.4 on page 17.

The one- and halfinchmargins options give inside and outside margins
of that measurement only if you are printing centred; otherwise, the average
margin size is as specified (e.g., inside 1.2 in, outside 0.8 in; (1.2 + 0.8)/2 = 1)

Other width setting controls

The initial \textwidth is normally calculated as the smaller of two different
widths: one, a certain number of characters; the other, a certain fraction of

14

the \paperwidth. The precise figures depend on the width options you’ve
used.

This is not always appropriate—for example, if you are producing a weekly
timetable on A4 landscape paper, I can’t see why rmpage should pay attention
to the character-based width. So I created these options:

characterwidthset Choose the character-based width regardless
paperwidthset Choose the paper-based width regardless
bothwidthset Default: choose the smaller of the two widths

Note that rmpage never ignores its paper-based limits: saying
characterwidthset will produce a printable layout that takes notice of
all the restrictions documented elsewhere.

I’ve provided a ringbinding option which sets the minimum allowed inside
margin to at least 15 mm if you are printing in portrait orientation, and does
nothing but warn you if you are using landscape orientation. It’s probably
not a good idea to use this with long paper sizes, but no check is made.

2.5.2 Length of the main text block

rmpage sets the height of the main text block (the header, body text, and
footer) with these options, which are referred to as the length option set:

longest, longer, long, longish,
normallength,
shortest, shorter, short, shortish.

Make sure you only use one of the above options at a time. The touch

options can be used with any of the main options; they are often exactly
what’s needed what used alone: touchwider and touchlonger have often
reduced my document’s page count to what I wanted.

The options:

touchlonger touchshorter

t@uchlonger t@uchshorter

give a width one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.

The height you get is (where Z is an integer; the body text is Z + 1 lines
long):

Z × \baselineskip + \topskip + \headheight + \headsep + \footskip

The length of the main text block is set to be a certain fraction of
\paperheight, so \textheight will increase if you turn headers or footers
off.

15

2.5.3 Headers and footers

rmpage doesn’t select a page style to use or not use headers or footers—you’ve
got to arrange for that to be done separately with a \pagestyle command. It
does calculate a page layout that does or does not allow space for a header or
a footer. If you turn footers off and forget to choose a footer-free page style,
the result is mildly comical.

You can allow space (or not) for headers and footers using these options:

headers noheaders

footers nofooters

Telling rmpage not to allow space for either headers or footers will increase
\textheight, and vice-versa. See section 2.5.2 for more about this.

LATEX’s standard classes allow a box 12 pt high for headers. This is too
small for point sizes greater than 12 pt, so rmpage changes the size of the
box containing the header to be \baselineskip. If you want to use a header
which is a different height to that, define the command \RMheadheight to be
whatever the height is before calling rmpage. For example, if your header is
to be 32 pt high, do this:

\providecommand{\RMheadheight}{32pt}

\usepackage{rmpage}

If you don’t usually use headers, I suggest that you edit the configuration
file so, by default, rmpage calculates a page layout that doesn’t allow space
for them. See chapter 7 on page 79 for how to do this.

These options let you change the space between the header and the body
text—use only one of these at a time:

mostheadsep moreheadsep moreishheadsep

normalheadsep

lessishheadsep lessheadsep leastheadsep

These options let you change the space between the footer and the body
text—use only one of these at a time:

mostfootskip morefootskip moreishfootskip

normalfootskip

lessishfootskip lessfootskip leastfootskip

The footskip options scale the gap between the top of the footer and the
bottom of the body text—the calculation assumes that the footer is one line
high. The standard LATEX parameter \footskip is the distance from the
bottom of the body text to the bottom of the footer.

Both the option sets above have corresponding touch options—these can
be used with any of the main options above:

touchmorefootskip touchlessfootskip

t@uchmorefootskip t@uchlessfootskip

touchmoreheadsep touchlessheadsep

t@uchmoreheadsep t@uchlessheadsep

These options increase or decrease the corresponding parameter one third of
the way towards the value given by the next main option.

16

2.5.4 Position of the main text block

Vertical position

You can raise and lower the position of the main text block on the page using
the altitude set of options:

highest higher high highish

normalaltitude

lowish low lower lowest

Be sure you only use one of the main options above at a time. The touch

options below can be used with any of the main options.
The options:

touchhigher touchlower

t@uchhigher t@uchlower

give a width one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.
The text books say that the white space at the bottom of a page should be

larger than the white space at the top. LATEX’s and rmpage’s standard setting
splits the space evenly between top and bottom; this results in an apparently
larger space at the bottom—the printing appears to finish at the bottom of
the body text, because the footer is usually just a page number.

The altitude options consider the top margin to be the space above the top
of the header box, and the bottom margin to be the space below the footer
baseline. They work by changing the ratio between these two spaces; the sum
of the top and bottom margins is not changed.

But if you ask for a page layout which would result in text exceeding
the various vertical limits, rmpage will increase the top or bottom margin as
appropriate without attempting to retain a fixed ratio between them. For
example, if the layout would extend 2 mm off the top of the printable area,
the top margin would be increased by 2 mm and the bottom margin would
remain the same.

This is different to the horizontal position options, which do ensure a fixed
ratio between the inside and outside margins; if the inside margin is reduced,
the outside margin is reduced to retain the requested proportions.

These two ways of doing things were deliberate design decisions; if anyone
thinks I’ve got it wrong, please email me and try to persuade me that you’re
right.

Horizontal position

The horizontal positioning of the main text block is controlled by three types of
options which: vary the ratio between the larger and smaller margins, switch
the larger margin from the inside to the outside, and force both margins to
be the same size or not.

The options:

centre or center Equal inside and outside margins
notcentre or notcenter Usually unequal inside and outside margins.

17

control whether or not the text will be centred horizontally. Using the centre

option forces the inside and outside margins to be the same; the notcentre

option means they can be different. Be sure you only use one of these options
at a time.

The options:

stdmargins Outside margin larger
notstdmargins Inside margin larger

control which of the two margins on a page will be the larger when you
have requested a notcentred layout. LATEX’s convention, and standard
typographical convention, has the larger of the two margins on the outside.
This is given by stdmargins (an abbreviation for standard margins). The
notstdmargins option gives the opposite effect—it is not standard practice
to have the inside margin larger than the outside margin, although it is useful
when you’re producing material for a ring binder. Be sure you only use one
of these options at a time.

You can shift the main text block from right to left using the offset set
of options:

mostoffset moreoffset moreishoffset

normaloffset

lessishoffset lessoffset leastoffset

These options change the difference between the inside and outside margin:
leastoffset gives you centred printing, with equal inside and outside mar-
gins. mostoffset produces inside and outside margins in the proportions
87% : 13%.

These options produce a particular ratio between the inside and outside
margins. If you have asked for a very wide \textwidth which is limited by the
non-printing margin of your printer, \textwidth might be reduced to produce
margins in the requested proportions. If you have symmetrical left and right
non-printing margins on your printer, you can only completely fill the available
width if you request centred printing with the centre or leastoffset options.

Be sure you only use one of the main options above at a time. The touch

options below can be used with any of the main options.
The options:

touchmoreoffset touchlessoffset

t@uchmoreoffset t@uchlessoffset

give an offset one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.
An oddity to watch out for is this: leastoffset produces the least offset

between the left and right margins, namely none. If you use the leastoffset

and the touchlessoffset options together, you get what I call a negative
offset. That is, if you’ve asked for stdmargins, you’ll end up with a larger
inside margin than outside, and if you’ve asked for notstdmargins, you get a
larger outside margin than inside. rmpage will draw your attention to this is
it happens.

18

2.5.5 Marginal paragraphs

Marginal paragraphs begin a distance \marginparsep away from the side of
the main text block, and extend to a distance \RM@mparclearance from the
edge of the paper. The maximum width of a marginal paragraph is given by
\RM@maxmparwidth.

With a conventional layout on paper similar to A4, marginal paragraphs
usually fill the space from \marginparsep (about 4 mm) away from the main
text block, to \RM@mparclearance (about 10 mm) in from the edge of the
paper. \RM@maxmparwidth (about 50 mm) is not usually a limit.

All of these parameters can be controlled by options. \marginparsep is a
standard LATEX length which is initially set by the class file; the other two are
rmpage commands, and are initially set to a fraction of \paperwidth.

The options:

mostmparsep moremparsep moreishmparsep

normalmparsep

leastmparsep lessmparsep lessishmparsep

control the size of the gap between the marginal paragraph and the main text
block.

Be sure you only use one of the main options above at a time. The touch

options below can be used with any of the main options.

The options:

touchmoremparsep touchlessmparsep

t@uchmoremparsep t@uchlessmparsep

give an offset one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.

The options:

mostmparclearance moremparclearance moreishmparclearance

normalmparclearance

lessmparclearance lessishmparclearance leastmparclearance

control the size of the gap between the marginal paragraph and the edge of
the paper.

Be sure you only use one of the main options above at a time. The touch

options below can be used with any of the main options.

The options:

touchmoremparclearance touchlessmparclearance

t@uchmoremparclearance t@uchlessmparclearance

give an offset one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.

The options:

mostmaxmparwidth moremaxmparwidth moreishmaxmparwidth

normalmaxmparwidth

lessmaxmparwidth lessishmaxmparwidth leastmaxmparwidth

19

control the maximum size of marginal paragraphs; marginal paragraphs usu-
ally stop \RM@mparclearance away from the edge of the paper, but there
is the additional limit that marginal paragraphs cannot be larger than
RM@maxmparwidth.

Be sure you only use one of the main options above at a time. The touch

options below can be used with any of the main options.
The options:

touchmoremaxmparwidth touchlessmaxmparwidth

t@uchmoremaxmparwidth t@uchlessmaxmparwidth

give an offset one third of the way towards the next main option. The t@uch

options can only be used in a class or package file.
If you want an unusual layout with a very much larger than usual maximum

marginal paragraph width, or a very much larger than usual gap between the
marginal paragraph and the edge of the paper, the largebase options will
double the initial size of these parameters. This means that all the sizes
produced by the corresponding options above are doubled. The normalbase

options give the default size.
The additional options:

normalbasemaxmparwidth Normal maximum size marginal paragraphs
largebasemaxmparwidth Double sized maximum size marginal para-

graphs
normalbasemparclear Normal gap between the edge of the paper and

the end of marginal paragraphs.
largebasemparclear Double sized gap between the edge of the

paper and the end of marginal paragraphs.

are intended to be used only when the range of sizes given by the conventional
options aren’t enough; more and touchmore combine to double the size of any
of the marginal paragraph parameters (the precise factor is 2.0394).

2.5.6 Multiple columns

There are two things to consider with a multiple column layout: the text
columns themselves, and the gap in between.

The width of text columns

If you are producing a layout with more than one column, rmpage usually
needs to know how many columns, because it takes into account the width of
each text column, measured against the width of the average character.

If you’re using LATEX’s standard onecolumn or twocolumn options, rmpage
takes note:

onecolumn Default. Produce a layout assuming one text column
twocolumn Produce a layout assuming two text columns

You must pass these options to the class file by placing them in the optional
argument to the \documentclass command, or your text will not be set in
the number of columns you expect.

20

You might be producing a multiple column layout using the multicol
package. If so, you should use different options passed to rmpage to tell it how
many text columns your document will be set in. The following options—
onecolumnwidth is the default—tell rmpage to calculate a layout assuming
the text body will be set in the named number of text columns:

tencolumnwidth ninecolumnwidth eightcolumnwidth sevencolumnwidth

sixcolumnwidth fivecolumnwidth fourcolumnwidth threecolumnwidth

twocolumnwidth onecolumnwidth

Make sure you only use one of the twelve options above at a time.
If you are producing a document with different numbers of columns in

different places, try starting out by telling rmpage that you are using the
smallest number of columns in your document. For example, if your document
has three columns in some places and four columns in others, pass the
threecolumnwidth option to rmpage. If the width needs changing after that,
begin by trying the width options in section 2.5.1 on page 14.

The space between columns

The main options:

mostcolsep morecolsep moreishcolsep

normalcolsep

lessishcolsep lesscolsep leastcolsep

increase or decrease the separation between the columns—they scale the
standard LATEX \columnsep parameter. The default normalcolsep option
does nothing—you get LATEX’s standard column separation. Make sure you
only use one of these main options above at a time.

The touch options below are meant to be used with any of the main
options, and increase or decrease the gap between the columns one third of
the way towards the next main option.

touchmorecolsep touchlesscolsep

t@uchmorecolsep t@uchlesscolsep

If you don’t like LATEX’s standard \columnsep, the options below calculate
a different default value:

adaptivecolumnsep Calculates a normal \columnsep which is 2.3
times the average character width of the selected
fount—a 0.1 pt increase for 10 pt Computer Mod-
ern Roman; quite a bit different for other founts.

noadaptivecolumnsep Default: gives you the standard \columnsep,
which can be changed by any of the colsep op-
tions above

The \columnsep produced by the adaptivecolumnsep option can be
scaled by any of the colsep options.

21

2.5.7 Paper size

rmpage knows about three types of paper size options: main size, long size,
and orientation.

Orientation—landscape or portrait

There are two options to select the paper orientation:

landscape Ensures that the longest side is horizontal
portrait Default. Ensures that the shortest side is horizontal

Make sure you only use one of these at a time.

Long sizes

A long paper size is based on a larger paper size; it formed by cutting
off the specified fraction of a parent paper size, divided along the longer
edge. For example, the common long size 2/3 A4 is 210 mm × 2/3297 mm =
210 mm× 198 mm.

These sizes are only formally defined for ISO A and B sizes. rmpage will
make any main paper size into a long size with one of these options:

notlongpaper Default. Does nothing.
7/8longpaper Multiply the parent paper size length by 7/8
3/4longpaper Multiply the parent paper size length by 3/4
2/3longpaper Multiply the parent paper size length by 2/3
5/8longpaper Multiply the parent paper size length by 5/8
1/2longpaper Multiply the parent paper size length by 1/2
3/8longpaper Multiply the parent paper size length by 3/8
1/3longpaper Multiply the parent paper size length by 1/3
1/4longpaper Multiply the parent paper size length by 1/4
1/8longpaper Multiply the parent paper size length by 1/8

Make sure you only use one of these options at a time. They must be used
with a main paper size option; the letterpaper main paper size option is
used by default.

The resulting paper size is made portrait by default, or landscape if
you’ve used that option, and printing limits are calculated based on the
assumption that you will be printing on the parent paper size. That is, rmpage
assumes that if you’ve asked for 2/3 long A4, you’ll be printing on the top 2/3
of a sheet of A4, not a cut sheet of 2/3 A4. Or that if you’ve asked for 1/4
long A4, you’ll be printing 4 pages on one sheet of A4.

See the chapters 6 and 7 to find out how and why this is done, and how
to change these assumptions.

Main sizes

There’s a lot more paper sizes available now; have a look at sections 5.1.2
and 5.2.1 for the full list. Any of the main paper sizes can be turned into a
long paper size (see the section on long paper sizes above), and any paper size
can be made landscape or portrait.

The available paper sizes include:

22

letterpaper, executivepaper,
and legalpaper. US paper sizes
a0paper to a10paper ISO stationery sizes
b0paper to b10paper ISO poster sizes
c0paper to c7paper ISO envelopes
dlpaper and c7/6paper ISO envelopes
no10envelopepaper US envelopes
foolscapefoliopaper obsolete stationery

There’s over 70 sizes in all—to find out how paper sizes are declared to rmpage,
and how to add new one, see chapters 6 and 7.

2.5.8 Founts

The standard LATEX classes calculate a \textwidth on the assumption that
you will be using Computer Modern Roman as the main body text fount.
But the legibility of a line of text depends in part on the the width of a line
measured in characters, and different founts have a different average character
widths, so it’s sensible to calculate a different \textwidth if you’re using a
different main body text fount.

rmpage will calculate an appropriate \textwidth if you use one of the
options below to tell it what you are using as your main body text fount.

avantwidth PSFNSS Adobe Avant Garde.
bookmanwidth PSFNSS Adobe Bookman.
chancerywidth PSFNSS Adobe Zapf Chancery.
cmrwidth Default. Computer Modern Roman.
concretewidth Donald Knuth’s Concrete Roman.
courierwidth PSFNSS Adobe Courier.
helvetwidth PSFNSS Adobe Helvetica.
lucasualwidth bh Lucida casual.
newcentwidth PSFNSS Adobe New Century Schoolbook.
palatinowidth PSFNSS Adobe Palatino.
timeswidth PSFNSS Adobe Times.
utopiawidth PSFNSS Adobe Utopia.
thisfountwidthBases \textwidth on the currently selected fount.

The thisfountwidth is useful if you are using a fount not covered by the
standard options: it works by measuring the average character width of the
fount that was selected when rmpage was loaded. For this to work properly,
you must ensure that the main body text fount has been selected before loading
rmpage. For example, if you are loading Adobe Baskerville in your preamble,
you could ask rmpage to set an appropriate \textwidth like this:

\documentclass[thisfountwidth]{article}

\renewcommand{\rmdefault}{pgm}

\rmfamily

\usepackage{rmpage}

\begin{document}

...

23

If you haven’t told rmpage to shut up with the yorkshire option, it will
tell you which fount it’s using as the basis for \textwidth—this is useful for
people like me who get horribly confused by the details of fount selection.

If you want to use one of the PSNFSS packages to load a fount as well as
set a \textwidth based on this fount, you can use one of these options:

loadavant Requires the avant package.
loadbookman Requires the bookman package.
loadchancery Requires the chancery package.
loadhelvet Requires the helvet package.
loadnewcent Requires the newcent package.
loadpalatino Requires the palatino package.
loadtimes Requires the times package.
loadutopia Requires the utopia package.

Each of these loadfount options does three things:

1. Loads the named package

2. Calculates a \textwidth based on the named fount

3. Sets the typesetting parameters to looser values.

The typesetting parameters are only loosened a little. The change does
not affect the LATEX commands \fussy and \sloppy, so using the \onecolumn
and \twocolumn commands will over-ride this change. You can duplicate the
effect of this loosening with the \sloppiness command—see section 2.5.12
on page 27 for more details.

If you’ve asked for a twocolumn layout, you get typesetting parameters
close to the standard LATEX sloppy values, unless you over-ride this looseness.
Because the multicol package makes its own arrangements, you don’t get the
sloppy values if you asked for twocolumnwidth to tencolumnwidth; rmpage
sets the typesetting parameters as if you were using a one column layout.
Please email me if you have any thoughts on this matter.

The three loadfount options below are a little different to the PSNFSS
fount loading options above:

loadconcrete Requires the beton package; calculates \textheight based
on beton’s modified \baselineskip; sets \textwidth for
Concrete Roman; doesn’t loosen typesetting. See sec-
tion 2.5.11 on page 25 for more on beton.

loadcourier Makes the default roman fount Courier, sets an appropri-
ate \textwidth, and asks for loose typesetting. I think
this is ugly and crude: you might be better off using the
times package and \ttfamily

loadlucasual Requires the lucasual package; sets loose typeset-
ting and a \textwidth to match Lucida Casual.
Needs the lucasual files; available from CTAN at
fonts/psfonts/bh/lucasual/.

24

2.5.9 Printers

It can be useful to let rmpage know about your intended output device, because
it can ensure that the layout it produces will fit inside the printable region of
the paper. At the moment, there aren’t very many printer options that match
real printers. As I get more information, I shall add more real printer options.

You can add an option for your own printer, or change the way your
rmpage installation set non-printing margins for your printer—the details are
described in section 7.4 on page 81.

The available printer options that I’l admit to here are:

fullbleedprinter Prints right to the edge of the paper
generalprinter This should be fine for anyone
optimisticprinter

pessimisticprinter Uses the largest non-printing margins I’ve found
dw500printer Any HP 500 series inkjet
dw600printer Any HP 600 series inkjet

2.5.10 Date format

You can change the way the \today command prints the date with the options
below:

ukdate nicedate 5th November 1693
usdate othernicedate Default: July 4, 1776

Only the ukdate and nicedate options make any changes: the usdate and
othernicedate options do nothing.

The options names happened like this: I once wrote a LATEX style file called
nicedate, which produced the same effect as rmpage’s nicedate option—I like
dates printed like that, you see. When I included the nicedate code in rmpage,
it made sense to add a complementary option; hence othernicedate.

othernicedate seems preferable to nastydate, but it’s not terribly mem-
orable, so I created the synonyms ukdate and usdate. I’m not keen on these
option names, but I can at least remember them. If you can think of something
different, please let me know.

2.5.11 The beton package

The easy way of using Frank Jensen’s beton package—to use Donald Knuth’s
Concrete Roman founts—with rmpage is to pass the loadconcrete option
to rmpage. This will load the beton package, and set vertical and horizontal
layout parameters for the Concrete Roman founts:

\documentclass[loadconcrete,concrete-math]{article}

\usepackage{rmpage}

The example above tells rmpage to load the concrete founts using the beton
package. All global options are passed to all packages, so beton and rmpage are
passed loadconcrete and concrete-math. rmpage ignores concrete-math

25

and acts on loadconcrete; while beton ignores loadconcrete and acts on
concrete-math.

Because the beton package changes \baselineskip, but the changes
don’t take effect until the begin{document} command has been executed,
and rmpage needs to know about the value of \baselineskip when it’s
setting \textheight, the beton package needs special support in rmpage.
Everything’s taken care of if you use the loadconcrete option. If you want
to load beton with a \usepackage command, you should do this:

• Load beton before rmpage

• Pass the beton option to rmpage

• Pass the concretewidth option to rmpage—see section 2.5.8 on page 23.

Like this, for example:

\documentclass[beton,concretewidth]{report}

\usepackage{beton}

\usepackage{rmpage}

\begin{document}

...

There’s no need to pass the beton option to rmpage if you’re also passing the
stdbaselineskip option to beton, but it will do no harm.

rmpage needs code that is in beton v1.3, 5th March 1995, to get things
right. This version of beton was current in August 1996. I’ve made rmpage

check the definition of the beton command it uses, but if you have any doubts
that rmpage is doing its job properly, you can try this:

\documentclass[beton,chatty]{article}

\usepackage{beton}

\usepackage{rmpage}

\begin{document}

\typeout{\the\baselineskip\space according to beton}

\end{document}

Look through the console output for the lines that look like this (the numbers
will vary depending on paper size etc):

\textheight is:

48 x 13.0pt + 10.0pt = 634.0pt

This is a report of the number of lines in the text body (48 + 1 = 49 in this
case), and how the final \textheight is arrived at. The second number—
13 pt in this case—is \baselineskip as seen by rmpage. If this number is the
same as the \baselineskip according to beton—as reported on the console—
everything’s probably okay. (The last term in the sum above is \topskip).

26

2.5.12 Typesetting parameters

LATEX’s \sloppy command tells TEX to be less fussy about linebreaking.
It’s sometimes useful to be able to tell TEX to be less fussy than normal,
but not as sloppy as \sloppy. A good example is typesetting with founts
installed by Alan Jeffries’s fontInst package—-for example, the founts in the
PSNFSS bundle of packages. Because these founts have a tighter inter-word
space to Computer Modern Roman, Alan Jeffries recommends slightly looser
typesetting parameters to usual, but not as loose as \sloppy—the values
were reported by Sebastian Rahtz in his ‘Notes on setup of PostScript fonts
for LATEX2’, 14th August 1994. Oh dear: but Rahtz reports in ‘PSNFSS2e.tex’
(05/11/96) that fontinst now produces founts with looser inter-word spacing,
and suggests that the extra looseness is no longer required. I reckon a little
extra looseness helps (the founts do seem to be tighter than the computer
modern family), so the loadPSfount options have been changed to use the
looseish settings normally, or the sloppyish settings if you’ve asked for two
columns.

(What fontInst mainly does is make vf, tfm, fd, and sty files from afm files,
so you can use with LATEX founts which haven’t been created with Metafont.
It’s available from CTAN.)

rmpage has an option that selects similar typesetting parameters, and
variants: two fussier and two sloppier. Each option can in effect be selected
at any point in your document, using the \sloppiness command as shown.

tight Default. Standard LATEX \fussy settings. \sloppiness{0}
looseish \sloppiness{1}

loose Similar to Jeffries’s suggestion \sloppiness{2}

looser \sloppiness{3}

loosest \sloppiness{4}

sloppyishFor two columns \sloppiness{5}

The default changes to loose if you have use a loadfount option which loads
a FontInst fount. See section 2.5.8 on page 23 for more information.

Note that is not equivalent to ; because standard LATEX’s \sloppy and
\fussy commands change fewer parameters to rmpage’s \sloppiness com-
mands, the \fussy command won’t give you fussy typsetting if used after one
of rmpage’s typesetting commands or options.

27

Chapter 3

Old Using rmpage

3.1 Some options

rmpage is more useful when you start using options: there’s quite a lot of
them, grouped in fairly consistently named sets. For example, you can select
rmpage’s normal \textwidth by saying normalwidth. If you want a slightly
larger \textwidth, use the widish option instead. The wide, wider, and
widest options will give you a progressively wider \textwidth. On the other
hand, you can use the narrowish option to get a slightly narrower \textwidth
to standard, and the narrow,narrower, and narrowest options do exactly
what you might expect.

When you are dealing with a set of options like the width options above
(all 13 of them; there’s four odd ones I’ve not mentioned), be sure you only
use one at a time. rmpage doesn’t check, and you can get unexpected results
if there’s more than one option used from each set.

Text width narrowest, narrower, narrow, narrowish, normalwidth, wideish,
wide, wider, and widest select a progressively larger \textwidth. fullwidth
gives you the widest \textwidth that’ll fit inside the printing region;
stdwidth selects the same width as you would get with the standard
classes; oneinchmargins selects a \textwidth that gives you an av-
erage margin size of one inch—the inside and outside margins add up
to two inches; halfinchmargins is similar, but the inside and outside
margins add up to one inch rather than two.

rmpage looks out for the onecolumn and twocolumn options, and
calculates a possibly larger \textwidth if you say twocolumn. The class
file is responsible for telling TEX to set text in two columns, so these
options shouldn’t be passed to rmpage only.

If you’re using the multicol package, you can pass to rmpage the
options: twocolumnwidth, threecolumnwidth, fourcolumnwidth, and
so on up to tencolumnwidth. This will give you a \textwidth based
on that number of columns.

Text height shortest, shorter, short, shortish, normallength, longish,
long, longer, longest select a progressively longer \textheight. fulllength
gives you the longest \textheight that will fit inside the printing re-
gion; stdlength gives you the \textheight you’d get with the standard
class.

28

Headers and footers The headers and footers option leave space for head-
ers and footers respectively; noheaders and nofooters give you page
layout designed for no headers or no footers, respectively.

leastheadsep, lessheadsep, lessishheadsep, normalheadsep, moreishheadsep,
moreheadsep, and mostheadsep enlarge and shrink the gap between the
top of the text body and the bottom of the header; they work by scaling
the standard value—normalheadsep does nothing.

leastfootskip, lessfootskip, lessishfootskip, normalfootskip,
moreishfootskip, morefootskip, and mostfootskip enlarge and shrink
the gap between the bottom of the text body and the bottom of the
footer; they work by scaling the standard value—normalfootskip does
nothing.

Positioning the text body horizontally rmpage looks out for the stan-
dard LATEX class options: twoside and oneside. rmpage will produce
a layout either giving you a text body intended for printing on one side
of the paper, or alternating with odd pages on a right-hand page, and
even pages on a left-hand page.

The centre (or center) option places the text body on the page
with equal margins to the left and right. The notcentre (or notcenter)
option places the text body with possibly unequal margins to the left
and right.

If you’ve asked for notcentre, you will find that the larger margin
is on the inside (intended for ring-binding). This effect is produced with
the notstdmargins option. The stdmargins options reverses this, so
the larger margin is on the outside (just like the standard classes).

leastoffset, lessoffset, lessishoffset, normaloffset, moreishoffset,
moreoffset, and mostoffset enlarge and shrink the difference between
the larger and smaller margin. leastoffset gives you centred printing;
there are subtle differences between leastoffset and centre.

Positioning the text body vertically lowest, lower, low, lowish, normalaltitude,
highish, high, higher, and highest, shift the text body up and down
the page—they are referred to as the altitude option set in this document
(I know, but do you have any better ideas?)

Paper and printers landscape and portrait force that orientation, what-
ever the size paper.

There’s lots of new paper sizes: see section 3.4 on page 30. You can
ask for 7/8longpaper, 3/4longpaper, 5/8longpaper, and so on down
to 1/8longpaper. This calculates what’s called a long paper size, based
on the main paper size selected, by dividing the main paper size into
the specified fraction along the long edge. For example, A4 is 210 mm×
297 mm; 1/3 long A4 is 210 mm× 99 mm.

lj4printer tells rmpage you’re using a Hewlett-Packard LaserJet
4 printer, and it’ll calculate your page layout using appropriate non-
printing margins. There are similar options for several other printers;
you can add your own printer if it’s not already here, and set any to be
your default. For more details, see section 5.2.10 on page 66.

29

3.2 Some other options

Several option sets have corresponding touch options. These options increase
or decrease whatever the parameter is by an amount in between the current
main option and the next one. Generally, the sequence of values is a smooth
geometrical one.

For example, passing wide, touchwider to rmpage gives you a \textwidth

a third of the way up from wide to wider. wider, touchnarrower gives you
a \textwidth a third of the way down from wider to wide.

A touch option can be used with a main option (any option which doesn’t
have touch or t@uch in the name is a main option; not all main options
have touch options). The t@uch options should only be used in class and
package files. They have exactly the same effect as a touch option, so saying
wider, touchnarrrower, t@uchnarrower gives you the same width as wider,
touchwider.

Text width setting paperwidthset makes rmpage set the \textwidth go-
ing by paper-based \textwidth only; characterwidthset goes by character-
based \textwith only, but still pays attention to the printing limits
specified by the paper size and printer selected. bothwidthset is the
default setting.

paperwidthset was created so I could produce a layout for a time-
table, fitting on A4 landscape paper. Paying attention to the number of
characters in a line is inappropriate for that job, hence the option. The
other two options are the natural complements.

The touchlonger, touchshorter, touchwider, and touchnarrower op-
tions increase or decrease \textheight or \textwidth one third of the way (in
a geometrical sequence) towards the next main increment. That is, if you’ve
said wide and touchwider, the width you get will be one third of the way
towards the width given by wider.

3.3 Layout details

The standard LATEX package, layout, displays all the page layout parameters
and their values. This document loads the package and uses the \layout com-
mand to display the values. You can see the results of the \layout command
in figure 3.1.

Note that the layout for this document was calculated by rmpage, which
was told to leave no space for a header with the noheaders option; that is
why both \headheight and \headsep have zero size.

3.4 Paper sizes

rmpage knows about lots of paper sizes, including ISO long sizes. The ISO
standard which defines the A and B series of sizes also defines long sizes.
For example, A4 paper is defined as 210 × 297 mm. The long size 1/3 A4 is
210× 99 mm—the long size is the base size divided into the specifed number
of parts along the long edge. Because you can apply this division to any piece

30

Header

Body

Footer

Margin
Notes

i8� -

i7

?

6

i1� -

�-i3 i10� -

�-i9

6

?

i11

i2
?

6

6
?

i4
6
?

i5
6
?i6

1 one inch + \hoffset 2 one inch + \voffset

3 \oddsidemargin = 64pt 4 \topmargin = 3pt

5 \headheight = 0pt 6 \headsep = 0pt

7 \textheight = 663pt 8 \textwidth = 369pt

9 \marginparsep = 10pt 10 \marginparwidth = 53pt

11 \footskip = 30pt \marginparpush = 5pt (not shown)

\hoffset = 0pt \voffset = 0pt

\paperwidth = 597pt \paperheight = 845pt

Figure 3.1: The output of the \layout command

of paper you like, rmpage is happy to make non-ISO sizes into ISO-style long
sizes. This means that Americans who want to print small booklets with two
pages fitting on one sheet of letter paper can produce pages very easily with
rmpage, by asking for letterpaper and 1/2longpaper. You can do the same

31

thing with A4 paper, but why not just ask for a5paper? One commonly-used
long size is 2/3 A4, which is often used for company invoices and commercial
letters; it’s often used in landscape orientation (210 mm × 198 mm) so it fits
neatly into a world designed for A4-wide paper.

If you are going to print two pages on one sheet of US letter paper,
as I suggested, rmpage standard way of deciding what to set the non-
printing margins to might be inappropriate. If so, look at the printer
paper setting code in the configuration file, and specify clearances for
the appropriate printer and paper combinations. Section 7.5 on page 81
has more details on this.

A good reason for not asking for a4paper and then 1/2longpaper, is
that if the configuration file has particular settings for A5 paper, it won’t
apply them to this long paper size, even though it’s the same physical
size. A good reason for doing so is that you might want that.

rmpage accepts these paper options (and more):

a0paper to a10paper,
b0paper to b10paper,
c0paper c7paper,c7/6paper,dlpaper, no10envelopepaper,
etc

Options not listed here include some non-ISO envelope sizes, old British
book sizes and so on: the odder sizes are kept in the configuration file. See
section 5.2.1 on page 56 for more details.

You can get a long size by passing one of these options along with a paper
size option: notlongpaper, 7/8longpaper, 3/4longpaper, 2/3longpaper,
5/8longpaper, 1/2longpaper, 3/8longpaper, 1/3longpaper, 1/4longpaper,
or 1/8longpaper.

rmpage makes an honest attempt to work out how you’ll be printing these
long sizes out (see section 6.6), but its decision might apply limits that aren’t
what you want. If so, you’ll have to add some code to the configuration file
to over-ride its guess. Section 7.5 on page 81 has more on how to do this.

By the way, because A3 printers aren’t unheard of, and because you can
print (say) 1/3 long A2 on A3 paper, it makes perfect sense to include an
option to define A2 paper. It seemed churlish not to go all the way up to A0.
2/3 A4 is apparently a size commonly used for printing business invoices and
the like. If anyone really does use rmpage for producing A3 pages, please let
me know—it’s something I’ve been wondering about.

If anyone would like to let me know about more US paper sizes, I’d be
happy to include them in future versions of rmpage.

3.5 Setting the body text size

There’s more detail on how this works in sections 6.1 and 6.2.

The range of values available for \textwidth and \textheight is a com-
promise. I wanted to keep the number of options down, produce a wide spread
of values, with a small minimum step size.

32

The way things have turned out, the step size from one length option to the
next is, in general, different to the step size from one width option to the next.
So you can’t maintain a particular balance of top:outside and bottom:inside
margins (or whatever) by moving up to the next width and length option.
There’s no easy way round this—I wrote rmpage to set \textheight and
\textwidth independently, because that seemed most sensible at the time.
To ensure a fixed aspect ratio would mean I would have to re-write it to
include code to scale up and down through a range of aspect ratios, which
might have to be related to the aspect ratio of the paper, and allow you to
scale the overall size of the text body up and down. This is a big job. I’d
like to be able to set the text size that way as well as the way rmpage does
it at the moment, but it’ll have to wait—I suspect I’ll have to re-structure
the entire package to be able to support both ways of doing things without
getting completely mixed up.

I decided to set both the width and height of the text body by scaling up
and down geometric series. The \textheight series was chosen by deciding
that the longest length should fill an ordinary page of A4, assuming a 6 mm
non-printing border. The normallength length was set to the standard value
(this is only strictly true if you’re using headers and footers), which defined
the geometric series. The shortest length on A4 is about 163 mm, just over
half the page. It turns out that the series produces a central minimum step
(normallength plus touchlonger) that is about one line (13 pt, near enough),
so I think it’s appropriate.

The \textwidth paper-based width series was derived similarly; the fi-
nal values give a spread based on a widest value that fills an A4 page to
within about 7 mm of the edge, and down to just over half the page. The
\textwidth character-based width series has been more of a headache; the
current (rmpwnorm.pko v 0.52) version gives a spread from about 75 charac-
ters in the middle, to about 98 and 57 characters at the extremes. The central
minimum step (normalwidth plus touchlonger) is just under 2 characters,
which seems suitably small. The problem with the character-based width set-
ting is that the standard \textwidth is at the upper limit for easy reading;
the widest available width, being wider than this, is far, far, far too wide for
easy reading; but the minimum \textwidth doesn’t get close to the minimum
\textwidth for easy reading. But that probably won’t matter too much; the
minimum width is less than half an A4 page if you’re using 11 pt Computer
Modern Roman in one column, which seems small enough for most things
I can think of (you might want a layout which places figures and extensive
side notes in the margin; if most of the marginal note space were to be filled,
having a very large margin and small \textwidth makes sense.)

3.6 Founts-

3.7 Marginal paragraphs-

rmpage looks at the everything including the sunspot cycle and the phase of
the moon when it calculates the width of marginal paragraphs. Section 5.2.2
on page 59 lists all the options that control marginal paragraph size, and has

33

some more information.

Note this: the default margin for marginal notes is the outside margin
for twosided printing, and the right-hand margin for one sided printing. The
standard LATEX command \reversemarginpar will reverse the marginal note
placement; \normalmarginpar will put it back to normal. If you are printing
twocolumn, the marginal notes end up in the nearest margin.

rmpage pays attention to all of this, and makes the marginal notes as
large as possible given the margin they will appear in. The size is con-
strained by various parameters, controlled by the maxmparwidth, mparsep,
and mparclearance sets of options.

The clearance parameter—the length \RM@mparclearance—is the min-
imum gap between the marginal note and the edge of the paper, subject to
the additional restraint of the available printing area. It’s hardwired to 0.4 in
in standard LATEX 2ε; rmpage sets it to be a fraction of \paperwidth which
works out to be 0.4 in if you’re using US letter paper. The sep parameter—the
length \marginparsep—is the gap between the marginal note and the body
text—this is a standard LATEX parameter. The maxwidth parameter—the
length \RM@maxmparwidth—is the maximum allowed width: 2 in in standard
LATEX, a fraction of \paperwidth which works out to 2 in if you’re using US
letter paper with rmpage. There are also the small and large basemparclear

and basemaxmparwidth options. The large versions of these options set the
normal parameter size to twice the usual default value.

So if you’re going to switch to \reversemarginpar in your document, do
so before you load rmpage. If you’re going to switch from one to the other,
before you load rmpage select the one which allows the least space for marginal
paragraphs.

If you’re deeply interested in the workings of marginal paragraph size and
placement, have a look at the dtx files: I think the basic idea is obvious.
Note that the parameters \RM@mparclearance \RM@maxmparwidth can be set
to any positive value by one of the hooks (\RM@PrinterPaperSettings might
be a good one to use) in your configuration file: negative values are used by
way of flags to set initial values.

3.8 The configuration files

rmpage uses a configuration file to do lots of stuff. The way it works is
this: if you’re LATEXing with rmpage a file called ermintrude.tex, and a
file ermintrude.rmp exists on the TEX search path, then ermintrude.rmp is
used by rmpage as the configuration file for that run. If not, then rmpage looks
for a file given by the command \rmplocal. If that file exists (if the command
hasn’t been defined before rmpage is loaded, it’s set to rmplocal; the file is
searched for with and without the cfg extension added). If that file can’t be
found, rmpage looks for rmpgen.cfg, which is a standard configuration file
with everything enabled.

The file rmplocal.gfc is meant to be renamed rmplocal.cfg and changed
locally. Have a read of the comments in the file first, and change the optional
argument to the \ProvidesFile command to say that the file’s been changed
by you.

34

The idea is that you don’t change rmpgen.cfg; it exists so everyone has
a standard configuration file that will produce identical results. You can tell
rmpage to use it in any given document by saying:

|\newcommand{\RMconfigfile}{rmpgen.cfg}|

...

\usepackage{rmpage}

in the preamble of the document, before loading rmpage. But please do change
rmplocal.cfg, if you like.

The configuration file exists for these things:

• Declare additional standard options

• Declare user options

• Set local defaults

• Place code in various hooks to be executed inside rmpage, for supporting
local classes, particular combinations of printer and paper, and so on.

Every installation of rmpage should have a modified configuration file for
at least one reason: option processing is slow, and the fewer options you have,
the faster it works. Folk with twin 225MHz PPC604e processors, or something
huge and humming with the word ‘Sun’ on the front probably don’t care about
LATEXing speed, but I do.

The idea is this: edit rmpgen.cfg and comment out all the options you
think you won’t often use. You can always uncomment them later. There’s
quite a few of these standard options that are commented out to begin with;
you might want to uncomment some of them (if, for example, you’re in the
habit of printing on crown folio paper). By the way, don’t add or delete
anything anywhere above the local option declaration section; if you do, up-
grading to a new version of rmpage might turn out to be more awkward than
you’d like, and I’ll come round and pester you, steal all your milk and put my
feet up on the sofa.

Setting local defaults isn’t hard either: there’s an \ExecuteOptions state-
ment with my local defaults in it. Take them out and replace them with what
you want. If you use a LaserJet 4 printer and US letter paper, and most of
your output goes into ring binders, say:

\ExecuteOptions{lj4printer,letterpaper,usdate,notstdmargins}

Note that I’ve assumed someone printing on US letter paper want dates for-
matted US style. If you don’t want notstdmargins, say stdmargins.

There are some options that you can’t specify in any \ExecuteOptions

statement seen by rmpage: the touch options aren’t allowed—they must be
executed after their corresponding ‘ordinary’ options, which can’t be arranged
if they’re bunged in an \ExecuteOptions statement. Try it if you like: rmpage
will whinge at you.

If you want to declare a new printer type, for example, just copy one of
the existing option declarations to the section marked ‘begin local option
declaration’, change the name and the parameters, and there you go.

35

You might want to set up particular printer/paper settings; there’s a place
for that and an example of how to do it in rmplocal.cfg. Have a look and a
fiddle: if I could do it, it shouldn’t be hard for someone as clever as you.

Adding code to the hooks in a useful fashion is best left to those who like
fiddling around: have a look at the guts of rmpage.dtx and so on. Hopefully
you’ll get the hang of how I did things, and you’ll be able to add code to suit
your installation. I intend to document the whole thing properly eventually,
but I only have 24 hours in each day. Try to stick to the conventions I’ve
established: it’ll make it more likely that your code will work properly with
future versions of rmpage. My intention is to keep things more-or-less as they
are, but this is the first version on public release, and I don’t know what
changes will be needed yet.

3.9 Sending rmpage-formatted documents elsewhere

There’s a few potential problems with sending to other people documents that
you’ve formatted with the help of rmpage. One is that they might not have
rmpage, and another is that even if they do have rmpage, it is possible that you
have specified options that produce layout parameters that are dependent on
your particular printer, which your recipient might not have, and even if they
do have that particular printer, they might have local configuration code—
particularly printer/paper specific settings—that produces a slightly different
result.

There’s several different things you might do, depending on the circumstances—
the thing to do is think about where your document’s going, what’s going to
happen to it, and how you want it formatted.

In the usual run of things, a document that’s been formatted with LATEX
and intended for general release is likely to be printed on A4 paper and US
letter paper, so you have installation-dependent differences1 even without
rmpage—it’s always worth checking that this difference won’t cause a problem
(so US authors: check that your document works on A4 paper, and everyone
else in the world make an effort for those isolated Americans. Look, just go
metric, will you? I read maps in miles and drink beer in pints2, but really,
metric units make life so much easier. If us and the Italians have made the
switch, so can you. Italians? Yes, Italians: just which empire do you think is
referred to in the phrase ‘Imperial units’ Yes, that’s right, the Roman Empire.
How about advancing into the 19th century before the 21st begins, eh? Sorry,
a minor rant, but one that I think should be made occasionally.)

Ignoring paper sizes for the moment, if your recipent has a copy of rmpage,
format your document with the pessimisticprinter option, ensure that the
result is acceptable, and send the thing.

If your local configuration file has non-printer-specific settings that affect
the output, you might send a copy of it (included in the preamble of your
file before the \usepackage{rmpage} command, using the filecontents en-
vironment) under the name jobname.rmp. That is, if the document is in a file

1A4 paper is 210 mm×297 mm or 8.27 inches×11.69 inches; US letter paper is 8.5 inches×
11 inches or 215.9 mm × 279.4 mm

2real pints, not your sawn-off US version

36

called canes-venaciti.tex, call the configuration file canes-venaciti.rmp

and it will be used as the configuration file for that document only.

Or you could run LATEX with the chatty option specified to rmpage, and
copy all the page layout parameters from the console window and paste them
into the preamble of your document. If your version of LATEX doesn’t allow
you to copy text from the console window (OzTEX 2.0 for the Macintosh
does; I don’t know about other versions), copy the text from the log file.
Then comment out the call to rmpage. The problem with this is that it fixes
everything, including paper sizes, so a recipient who uses A4 paper won’t be
impressed if they3 get a document hard-formatted for US letter paper, and
vice-versa. Of course, you could provide two sets of page layout parameters,
with a note to the recipient to choose one or the other. This is messy, but it
might produce the most reliable and legible results.

A possible way round the paper problem is to assume that no-one will
be printing on anything other than US letter or A4 paper, and the people
receiving the document won’t mind if the layout isn’t very good. That way, you
might use the letter4paper paper size. This paper size is 210 mm×8.5 inches,
and documents formatted with it will fit on A4 and US letter paper without
formatting changes. Mind you, the results won’t be very nice, and worse on
US letter paper than on A4—letter4paper pages printed on A4 will be a
little too short, which enlarges the gap at the bottom. Very often, this isn’t
too noticeable. But letter4paper pages printed on US letter paper will have
the text body too far to the left, which tends to look very awkward.

3.10 Speed and what to do about it

rmpage chews up a lot of processor time when it is being processed at the
start of a LATEX run, but adds nothing to subsequent processing time—all it
does is change page layout parameters. Narrow columns or short pages give
TEX a harder time in line and page breaking, which might increase processing
time, but I wouldn’t worry about that if I were you—the underfull \hboxes
and \vboxes will cause you more problems that the extra 0.2s time.

One verion of rmpage (v0.65) added 18.5 s to a LATEX run on my Mac. The
same version of rmpage added 19.1s to the processing time when I used it with
the comments left in (before being processed by docstrip). This is an increase
of 0.6s or 3%. Version 0.86 added 16 s with comments, or 15 s without, an
increase of 7%. In this case, file size was reduced from 200 K to 85 K. It
seems that, on my computer, the main benefit of using docstrip to remove
comments from an input file is reduced file size, not reduced processing time.
A not-terribly-formal test concluded that each character in the first argument
to each \DeclareOption command added about 10 ms to processing time—I
saved 1.6 s with version 0.72 by commenting-out eight options containing 176
characters.

My computer is a Macintosh Performa 475 12/160 with a 25MHz 68LC040
microprocessor; I am told this processor is roughly equivalent to a 40MHz
80486SX. For the tests noted above I used OzTeX version 2.0.1 and 2.1 under
system B1 7.1 P5 SU3.

3A useful way of avoiding he/she that has an ancient history

37

You can speed up rmpage quite a lot. A large amount of the time taken
by rmpage is in processing options—LATEX 2ε’s option processing mechanism
is very slow. Commenting out options in the config file is very effective at
reducing processing time (it’s the length of the option names, not the amount
of code, that increases this processing time).

For example, rmpage version 0.66 increased the time to process a document
by 21.2s; with 73 options commented out, rmpage only added 12.1s. This is
an improvement of nearly 60%. This is why there are two config files supplied
with rmpage: a slow one with all the options enabled, and a faster one with
some options commented out.

You can make rmpage work faster by commenting out (don’t delete them—
you never know when you might need them) all the options you think you won’t
use very often. If you do want to use one of these commented-out options,
uncomment it (and all the options in the same group—you’ll see what this
means when you look at the file) and leave it uncommented. The Alpha text
editor for Macintoshes can comment out a group of lines if you select the lines
and press cmd-D; it can reverse the process if you press cmd-opt-D. I expect
other text editors can do the same job somehow: it might be worth finding
out how to do this with your text editor if you don’t already know

Some versions of TEX under some operating systems take quite a time to
find files to be input. If this is the case on your computer, you might be able
to reduce processing time quite a lot by placing frequently-used files in a place
that is searched early on. I have a list of folders in my TeX-inputs folder that
looks a bit like this:

aa LaTeX

ab Rat2e <--- rmpage is in here

ab tools

ac mfnfss

ac other 2e <--- other people’s packages

ac other fd

ac PSNFSS

ba .cfg files etc

ba other 2.09

ba Rat old

bb chicken <--- Liverpool John Moore’s University logo

bb new fds

bb other LaTeX

bb some AMS-LaTeX

za afm

za fontinst

za fontinst examples

za fontinst inputs

zz Graphics

zz Plain

zz Rat ex + tmp

It’s a compromise between speed and ease of management: I can change
parts of my LATEX system without getting a headache, and it’s not too slow

38

for me. The commonly-used folders are prefixed aa, ab, end so on; the rarely
used ones are prefixed zz. My version of LATEX is set up to search the folders
early on in the alphabet first: this is not necessarily the case with any other
version of LATEX, even versions of OzTEX with the tex-inputs list specified
differently.

Some TEX implementations take a lot of time to search multiple directories,
and are faster with fewer directories to search. If this is the case with your
implementation, putting your input files into fewer directories might help. The
only way I know to find if this is the case is to sit down and do lots of tests:
it might be quicker in the long run not to bother.

39

Chapter 4

A brief lecture on typography

I’m not a professional typographer, and this won’t turn you into one. Caveat
emptor1, and remember how much this cost you. If you want to learn about
typography, do the sensible thing and get some books out of the library. But
given that I’m giving you typographical controls, I’d better give you some idea
how to use them intelligently. If you have any expertise in typography and
think you can do better than this, please do! You’ve got my email address. . .

The notes below are what I think are the main points of ordinary typog-
raphy the average LATEX user needs to know about, dealing with the areas of
typography that rmpage gives you new control over; this had no pretensions
to being a course in typography—visit that library!

4.1 Introduction

The usual reason for writing something is so that people can read and di-
gest the content—the reader is usually not interested in the form of written
work, just the words themselves. It follows that the form in which your words
are presented should usually be un-noticed by the reader: easy to read, con-
ventional, and pleasing to the eye. The eye-catching typography used by
advertisers does have its place, but this short piece concentrates on mundane
typography: setting chunks of text, one word after another, line after line,
to form a document which is unobtrusive to read. After all, if you were bat-
tling with the mathematics of elastohydrodynamics, you wouldn’t appreciate
a layout that was as hard to decipher as the content.

First thing is this: it’s easy to make a right mess of things when you can
control the layout of a page, but many of the mistakes one can make are in
setting the paragraph indentation, vertical space around displayed material,
headings, and the like. rmpage doesn’t touch these, so you can forget about
fouling up that area of design for now. As for the things you can control:
don’t stray too far from the normal settings, and the results should be fine.

The easiest mistake to make is in setting the width of the body text—
\textwidth in LATEX terms. Typography texts warn that the most common
fault is making the body text too narrow (less than about 45 average charac-
ters); but my experience is that the average non-typographer is more likely to
make the body text too wide (more than about 75 average characters).

1buyer beware

40

The best advice to begin with is follow convention—most books on typog-
raphy make the point that your design has succeeded if no-one notices it, so
stick with the conventional. Of course, you’ve got to find out what conven-
tional is. Look at professionally designed typography: at how the text body
sits on the page of a book, and in magazines and newspapers—is the text high,
low, or in the middle? closer to the binding edge or the outside edge? How
big, in visual relationship to each other and the text body, are the margins
top, bottom, inside and outside? What about columns of text in magazines
and newspapers—how wide are they, what’s the gap between columns like in
relationship to the column width, the size of the average word space, and the
page margins? How does the column width affect readability—think about
the effect of column width on line-breaking and the flow of reading.

You’ll notice that conventionally, lines of text longer than about 75 char-
acters are avoided, as are lines less than about 45 characters; and the outside
margin is usually larger than the inside margin, for the very straighforward
reason that the outside margin is the one that’s most delicate and most han-
dled. If it’s big, damage to the paper is less likely to deface the text. The
bottom margin is usually bigger than the top margin for the same reason—and
even though this reason is a sound practical one, if you produce a page with
a smaller bottom margin than top margin, it looks very odd to most people.
It’s also fairly conventional for the aspect ratio of the text to match the aspect
ratio of the paper—if the text is half the width of the paper, it’ll be half the
height as well.

The standard LATEX classes produce a page layout that’s generally in line
with those conventions, so if you don’t pass extreme options to rmpage, you
can’t go far wrong. Of course, if you’re aiming for a particular effect for a good
reason, such as filling a page with a time-table, you might want the longest
and widest text area possible. If you find that you are using an extreme option
(longest, for example), think very carefully about why you are doing it, what
effect this option produces, and whether this is desirable. If you’re just trying
to cram that much text on one page, two columns is probably better.

Because typography is to some extent an artistic endeavour, there is no
such thing as an ideal layout, although some are clearly inappropriate. But
after a few hours at the keyboard, it’s easy to lose the ability to judge the
passing of time, let alone the effect a design has on a new reader. I find that
it often pays to trust initial reactions, especially when comparing a set of
alternatives. So, if you’re in doubt about which of your final two choices to
use, ask someone else what they think of them.

4.2 Positioning the text body

Convention has it that the outside margin is larger than the inside margin,
and that the bottom margin is larger than the top margin. It’s not unusual to
match the sizes of the outside margin and the top margin. The Koma-script
documentation reports that Jan Tschichold recommends that the bottom mar-
gin should be twice the size of the top margin, and the outside margin should
be twice the size of the inside margin.

The reason rmpage defaults to having the inside margin larger than the out-

41

side margin is this: most of what I typeset ends up in ring-binders, where you
need a large inside margin to avoid punching holes in the text. You can change
this default setting by editing an \ExecuteOptions statement in the configu-
ration file—see chapter 7. You can change this default in the rmplocal.cfg

file by putting the stdmargins option in the default \ExecuteOptions state-
ment. If you don’t like the amount by which the inside margin is bigger than
the outside margin—bearing in mind that one convention has the outside
margin matching the top margin—you can change it with the offset option
set.

If the top margin looks bigger than the bottom margin, the page looks
‘bottom heavy’ and rather odd. It is possible that the only reason for this
is that everyone lays out pages with a smaller top margin, but follow this
convention to begin with. rmpage actually makes the top and bottom margins
the same size, just as the standard classes do; the bottom margin looks larger
because the bottom margin appears to begin at the bottom of the text body;
LATEX measures it from the bottom of the footer.

i couldn’t figure out a reliable way of getting rmpage to calculate apparent
ratios of top and bottom margins, so you’ll have to balance this by eye. The
altitude, long, and short option sets can help.

4.3 Size of the text body

Conventionally, one text column is 1.5 to 2.5 alphabets wide; the standard
LATEX widths give you about 2.5 alphabets wide (which is about the average
width of 75 characters of normal prose, hence Lamport’s comment in the LATEX
book. 1.5 alphabets is about 44 average characters, but rmpage warns when
you get below 39 characters wide—TEX’s a better line breaker than a human
typesetter. rmpage warns you if you exceed the 75—39 character limits; too
wide and too narrow are both awkward to read, and too narrow makes for
rotten line breaks.2 rmpage does report the final \textwidth in terms of
what it thinks are average characters, which should help to give you an idea
of what’s going on.

If you must fill a very wide space, try using multiple columns. If you must
use narrow columns, ragged right setting sometimes looks better, although
a multiple-column narrow-columned layout might need to have \columnsep

adjusted with rmpage’s colsep options—look at a newspaper to get the idea.

The problem with long lines is this: when you get to the end of one line,
you need to find the start of the next one. If the lines are too long, this job is
made harder. The problem with short lines is twofold: the job of finding the
start of a line is a bother, so the less you have to do it the better; and short
lines make for rotten line breaks, which makes it harder to follow the text.

Tschichold recommends that the aspect ratio of the text body be made
to match the aspect ratio of the paper. This refers to the apparent aspect
ratios—apparent paper size depends on the binding used, and apparent text
body size depends on the nature of the headers and footers. I couldn’t come
up with a reliable way of calculating the comparative apparent aspect ratios,

2I’m lying: rmpage warns when you exceed the standard number of characters per line,
which is 78.5 characters for 10pt, 74.8 for 11pt, and 75.5 characters for 12pt.

42

so if you want these aspect ratios matched, you’ll have to do it by eye. The
altitude, offset, long, short, wide, narrow option sets can help. Note that
to my eye at least, matching aspect ratios often matters less than matching
top and outside margins, which does appear often to make a big difference to
my comfort with a layout on small (A5 or so) pages. And in any case, the
match need not be spot on—but quite what near enough is can’t be specified
exactly. Sometimes an almost-but-not-quite match is fine, sometimes it looks
awful and you’re better off with a deliberate ‘I’m clearly not trying to match
these dimensions’ layout.

4.4 Typefaces

The main thing the average LATEX user is concerned with is legibility, and the
computer modern typefaces score highly here. I have just seen a volume of
conference proceedings (Proceedings of the Applied Optics Divisional Confer-
ence of The Insitute of Physics, held at Reading 16–19 September 1996) in
which most papers were produced with LATEX, using the publisher’s style file.
To my eye, the papers typeset in Times look most legible at a glance; the
papers typeset in Computer Modern feel easier to read when you get down
to it. I mention this to make the point that just because something looks
right, doesn’t mean that it’s easier to read—not that Times is anything but a
famously legible typeface.

As a general rule, serif typefaces are easier to read in blocks of text, and
sans serif typefaces are easier to read as isolated words or phrases. This
explains the choice of typeface on road signs and in newspapers. Typefaces
with a heavy emphasis on vertical strokes—such as the Bodoni beloved of US
newspaper headlines—disrupt the left-right flow of reading, whereas typefaces
with a more horizontal emphasis, such as Times or Baskerville, ease the left-
right flow of reading.

Choosing founts is a tricky thing—read those typography books! But there
are some rules which can help you produce pleasant, legible pages. Before a
real expert shoots me down in flames, I don’t claim that the list below is ‘rules
for the correct use of typefaces’—it’s just, erm, ‘received wisdom’, sort of.

• Always use a serif typeface for your body text.

• Keep the number of type faces and type families in a design to a minimum—
use bold, italic, different sized, and maybe slanted type faces from the
one family where appropriate.

• Always follow convention—don’t invent a new convention unless you
really need to.

• Don’t mix similar but different typefaces—Times for the body copy and
New Century Schoolbook for captions looks awful.

• But do mix very different typefaces—Times for the body copy and Hel-
vetica (which I personally loath with a deep loathing) for captions or
headings, for example, can be very effective.

43

• Use a body text size from 9 pt to 12 pt; some books suggest no more
than 11 pt for body text, and I reckon 10 pt is a bit too small at 300 dpi,
but fine at 600 dpi.

• Never, ever, underline unless you absolutely have to on pain of severe
dandruff.

• And George Orwell said in his rules for good English, break any of these
rules rather than do anything outright barbarous.

44

Chapter 5

All the options (rmpage v0.69
and rmplocal.cfg v0.11)

Most of the options in rmpage work by setting an internal paramters, which is
later used to decide what value to set something to as part of a more involved
calculation. Sometimes more than one parameter is used in this decision. The
description of each option tells you what this parameter is set to, and what
effect the option has.

5.1 Options in rmpage

This is a list of the options contained in the file rmpage; there’s lots more
in the configuration file. None of the options in rmpage are commented out,
nor are any of the options in the configuration file rmpgen.cfg. Some of the
options in the configuration file rmplocal.gfc have been commented out for
speed’s sake; this file will be used by rmpage if you rename it rmplocal.cfg

5.1.1 Reporting dimensions and tracing calculations

These options control the amount of stuff that rmpage litters your console
window with. They do this by setting the \RM@chatlevel parameter, which
is looked at by a bunch of reporting commands—look at rmpage for the details
about these. The default is taciturn; you get a handful of dimensions and
warnings get printed on the console. I expect that most people won’t find
garrulous useful. The yorkshire causes rmpage to print nought: this is a
British regional joke that I’m allowed to make because I live in Lancashire,
which is another British regional joke. (C.f. Ian MacMillan on ‘4th Column’,
BBC R4 6/10/96: “’Ey oop. All right. That should be enough for a column.
Y’see, I’m from South Yorkshire, and we don’t talk a lot.’)

garrulous rmpage reports everything I thought might be useful someday. It
used to be worse. Sets \RM@chatlevel to 0

chatty rmpage reports all LATEX layout parameters that it changes, plenty of
rmpage’s own parameters, and some information about what’s going on
as it caluculates them. Sets \RM@chatlevel to 1

45

taciturn Default. rmpage reports the height and width of the text and paper,
the width of the text in characters, and a few other things. Warnings
are also printed. Sets \RM@chatlevel to 2.

yorkshire Allows rmpage to print errors only, although warnings are put in
the log file with a few other bits. Sets \RM@chatlevel to 3

5.1.2 Paper sizes

More paper types are defined in the configuration file, as are the long paper
sizes. Each paper size is given a code number, because it’s easier and faster
to check for a number than a name. If you want to define your own paper
sizes, I suggest you use code numbers above 1000 so that future versions of
rmpage don’t have standard sizes than conflict with your sizes. The paper size
number 0 doesn’t have much of a role in life yet, but I’m working on it.

The landscape and portrait options force the paper size to be in that
orientation; the standard class swap \textheight and \textwidth when you
ask for landscape. Landscape orientation is defined as the long side being
horizontal; portrait orientation is defined as the short side horizontal. 2/3 A4
is usually used in landscape orientation (210× 198 mm, as are DL envelopes.
Some printer drivers, when dealing with DL envelopes, call ‘landscape’, ‘por-
trait’, and vice-versa.

rmpage knows about lots of sizes; some of them are large, obsolete, or
untrimmed paper sizes which I don’t expect will be directly useful to anyone.
It just seemed inelegant to leave them out. Perhaps I have a warped sense of
æsthetics. If you have a Macintosh with QuickDraw GX, you can tell your
printer driver about any paper size that your printer is physically able to deal
with, so these odd sizes might be more useful than I think.

If any Americans would like to send me the dimensions of some more
US paper sizes (including envelopes), I’ll include them in future versions. The
only places I could find US paper size data were LATEX classes and my printer’s
manual.

According to BS4000:

The ISO A series is based on A0, with a surface area of 1 m2.
Each ISO B paper size is a geometric mean between adjacent A
sizes, with sides in the same proportions.

Each size shall be acheived by dividing the size immediately
above it into two equal parts, the division being parallel to the
shorter side. Consequently, the areas of two successive sizes shall
be in the ratio 2 : 1.

All the size in each series shall be geometrically similar to one
another.

What this means is that the ratio of the sides must be 1 :
√

2, so that A0
is 841 mm× 1189 mm.

Tolerances are specified thus:

sizes ≤ 150mm ±1.5mm
150mm < sizes ≤ 600mm ±2mm
600mm < sizesmm ±3mm

46

Long ISO sizes are created by dividing ordinary ISO sizes into slices, cut-
ting parallel to the short edge, e.g.,

1/3 A4 99× 210
1/4 A4 74× 210
1/8 A8 13× 74

2/3 A4 is apparently a common size commercially, used for invoices and
the like. It is defined as 198× 210mm. Note that the standard defines sizes to
the nearest millimetre, but rmpage does not round the calculated long sizes,
nor does it ensure that only ISO sizes are processed by the ‘long’ options.

rmpage does not limit you to making long sizes out of ISO paper only
because you can chop up any bit of paper you like. The reason rmpage does
not round long sizes to the nearest millimetre is that if you are printing on a
piece of ready-cut long paper, rmpage’s maximum deviation from the specified
size, 0.5 mm, is within tolerance; and if you are making your own long paper
by cutting up a straight size, rounding to the nearest millimetre on a 1/8 size
could result in a 4 mm error by the time you cut the strip furthest from your
datum edge, which is outside the specified tolerance for the size of the sheet
you are cutting. The fact that not rounding is easier to code is, of course,
entirely co-incidental and played no part in the design decision.

Data source for the old British book sizes: Pears Cyclopedia, 68th edition,
1959-1960. Pelham Books Ltd., 1959. (General Compendium, page N13). A,
B, and other untrimmed sizes taken from BS4000. C3, C4, C5, C6, DL, and
non-ISO envelope sizes taken from BS4264. C0, C1, C2, C7, and C7/6 taken
from The Cambridge Factfinder, Cambridge University Press, 1993.

Each paper type is given a number:

0=undefined, 1=letter, 2=legal, 3=executive,
9=letter4paper
10=a0, . . . , 20=a10 (a4=14, a5=15)
30=b0, . . . , 40=b10
50=c0, . . . , 57=c7, 58=dl, 59=c7/6,
60=bspopseedenvelope, 61=bspopnonisoenvelope,
62=bsbrochureenvelope, 63=bslegalenvelope,
64=bslargelegalenvelope, 65=bscalendarenvelope
66=no10envelopepaper
70=foolscap folio, 71=foolscap quarto, 72=foolscap octavo
73=crown folio, 74=crown quarto, 75=crown octavo
76=royal folio, 77=royal quarto, 78=royal octavo
79=imperial folio, 80=imperial quarto, 81=imperial octavo
82=large crown octavo
83=demy quarto, 84=demy octavo
85=medium quarto, 86=medium octavo
90=ra0, 91=ra1, 92=ra2,
93=sra0, 94=sra1, 95=sra2
96=metric double crown paper, 97=metric quad crown paper
98=metric large quad crown paper, 99=metric quad demy paper

47

100=metric small quad royal paper

The paper types are divided up like this:

3 US sizes recognised by 3 options (1-3)
1 bodge size recognised by 1 option (9)
11 A sizes defined by 11 options: for writing paper, books, etc. (10-20)
11 B sizes defined by 11 options: for posters, etc. (30-40)
10 C sizes plus dlpaper defined by 10 options: for envelopes, etc. (50-59)
6 BS4264 envelope sizes defined by 6 options: (60-65)
1 US envelope size defined by 1 option: (66)
17 old British sizes defined by 18 options. (70-86)
11 BS4000 untrimmed sizes defined by 11 options (90-100)

71 different paper sizes defined by 72 options.

letterpaper Sets \RM@papertype to 1 – 11in by 8.5in
legalpaper Sets \RM@papertype to 2 – 14in by 8.5in
executivepaper Sets \RM@papertype to 3 – 10.5in by 7.25in
a4paper Sets \RM@papertype to 14 – 297mm by 210mm
a5paper Sets \RM@papertype to 15 – 210mm by 148mm
b5paper Sets \RM@papertype to 35 – 250mm by 176mm
c6paper Sets \RM@papertype to 56 – 162mm by 114mm
dlpaper Sets \RM@papertype to 58 220mm by 110mm. Ordinary envelopes.
no10envelopepaper Sets \RM@papertype to 66 9.5in by 4.12in. Ordinary US

envelopes.

5.1.3 Typesetting tightness

These options only exists because rmpage can load the PSNFSS founts, and
Karl Berry says that these founts (produced with FontInst) have too little slack
in the inter-word space for TEX to be able to form paragraphs well with the
standard typesetting parameters.

These options must be executed before the load<fount> options. That’s
inevitable if I have these option declarations before the load<fount> op-
tion declarations, and use \ProcessOptions rather than \ProcessOptions*.
This is so that these options can over-ride the default typesetting tightness
(looseish) requested by the load<fount> options.

tight Default. Leaves the typesetting parameters alone. Defines \RM@looseoption
to be 0.

looseish Changes the typesetting parameters to be something in between
the adjacent options. Defines \RM@looseoption to be 1

loose Changes the typesetting parameters to something close to Alan Jef-
fries’s recommendations. Defines \RM@looseoption to be 2

looser Changes the typesetting parameters to be something in between the
adjacent options. Defines \RM@looseoption to be 3

loosest Changes the typesetting parameters to something close to twice as
sloppy as Karl Berry’s recommendations. Defines \RM@looseoption to
be 4

48

sloppyish Changes the typesetting parameters to be even looser than \sloppy,
for two column typesetting with PSFNSS founts. Defines \RM@looseoption
to be 5.

5.1.4 Textheight setting

These request a \textheight shorter or longer than normal. If you allow space
for headers and footers with the headers and footers options, normallength
gives you the same \textheight as you’d get with the standard classes. The
other lengths are scaled up and down from the normal value in a geometrical
sequence. (Actually, the total space above and below the text body including
headers and footers is the dimension that’s scaled in a geometrical sequence,
but that shouldn’t bother you too much.)

The touchlength options add or subtract one from the value set here.
There are also stdlength and fulllength options in the configuration

file; see section 5.2.4 on page 62.

shortest Sets \RM@lengthoption=3; this number gives you: \RM@totalheadfootclearance =
0.5200\paperheight

shorter Sets \RM@lengthoption=6

short Sets \RM@lengthoption=9

shortish Sets \RM@lengthoption=12

normallength Default. Sets \RM@lengthoption=15; this number gives you:
\RM@totalheadfootclearance = 0.2130\paperheight

longish Sets \RM@lengthoption=18

long Sets \RM@lengthoption=21

longer Sets \RM@lengthoption=24

longest Sets \RM@lengthoption=27; this number gives you: \RM@totalheadfootclearance =
0.0872\paperheight

5.1.5 Headers and footers

These options only deal with the gap between text body and the header (or
footer). See section 5.1.12 on page 54 for options to turn the headers and
footers on and off.

The way these options work is by setting a parameter which is passed to the
\RM@scalebyoption command, to scale the required page layout parameter
by a value in a geometric sequence. Have a look at the command in rmpage

for the details.
\headsep is just multiplied by the requested value. \footskip is the

distance from the bottom of the text body to the bottom of the footer. To
approximate a scaling of the distance between the top of the footer and the
bottom of the text, rmpage assumes that the footer is a single line that is
\baselineskip high, and subtracts \baselineskip from \footskip before
scaling, and adds it back afterwards. This seems to work well enough.

The value set by the options below can be modified by the touchheadsep

and touchfootskip options, which add or subtract one from the appropriate
parameter.

leastheadsep Sets \RM@headsepoption=3

49

lessheadsep Sets \RM@headsepoption=6

lessishheadsep Sets \RM@headsepoption=9

normalheadsep Default. Sets \RM@headsepoption=12

moreishheadsep Sets \RM@headsepoption=15

moreheadsep Sets \RM@headsepoption=18

mostheadsep Sets \RM@headsepoption=21

leastfootskip Sets \RM@footskipoption=3

lessfootskip Sets \RM@footskipoption=6

lessishfootskip Sets \RM@footskipoption=9

normalfootskip Default. Sets \RM@footskipoption=12

moreishfootskip Sets \RM@footskipoption=15

morefootskip Sets \RM@footskipoption=18

mostfootskip Sets \RM@footskipoption=21

5.1.6 Columnsep

\columnsep is a standard LATEX parameter: it is the space in between columns
of text on a multiple column page. The colsep options scale \columnsep using
the internal \RM@scalebyoption command: see section 6.7 on page 77 for
details. Briefly, normalcolsep does nothing; mostcolsep multiplies \colsep

by 2.5; leastcolsep divides \columnsep by 2.5; and intermediate options use
a factor in between along a geometrical sequence.

There are corresponding touchcolsep options. They must be executed
after these main options, which is easily arranged—see section 5.2.3 on page 61
for the details.

leastcolsep Sets \RM@columnsepoption to 3
lesscolsep Sets \RM@columnsepoption to 6
lessishcolsep Sets \RM@columnsepoption to 9
normalcolsep Default. Sets \RM@columnsepoption to 12
moreishcolsep Sets \RM@columnsepoption to 15
morecolsep Sets \RM@columnsepoption to 18
mostcolsep Sets \RM@columnsepoption to 21

If \RM@adaptivecolseptrue, then \columnsep is set to be a fraction of
the number of points per character. This isn’t always appropriate, and the
flag is set to false by default.

adaptivecolsep \columnsep is set to be 2.3 times the width of one average
character, according to rmpage’s reckoning. This new value can be scaled
by the mostcolsep to leastcolsep options.

The standard \columnsep is 2.03 times the width of one average
10 pt Computer Modern Roman character. This is a useful option if you
are creating a style based on a fount size larger than 12 pt. Otherwise, it
seems to be a good idea on Mondays, Wednesdays, and Fridays; not so
good on Tuesdays, Thursdays, and Saturdays; and on Sundays, I write
Ogham on tree bark.

noadaptivecolsep Default. \columnsep is not changed from its default
value, although it might be scaled by the mostcolsep to leastcolsep

options.

50

5.1.7 Width of the text body

The width options let you ask for a larger or smaller \textwidth. Follow-
ing the basic idea of the standard classes, rmpage calculates two different
\textwidths: one is based on the number of characters in a line; the other
is based on the size of the paper. The smaller of these two guesses is used
as the basis for the final \textwidth—\textwidth is also constrained by
\RM@mintextwidth, \RM@maxtextwidth, \RM@mininsidemargin, \RM@minoutsidemargin,
\RM@minleftclearance, and \RM@minrightclearance.

rmpage is inclined to print out warnings if it has to change its preferred
\textwidth because of one of the above restrictions—the yorkshire option
will silence these warnings if you find them irritating.

The normalwidth option gives a \textwidth close to the standard LATEX
width on US letter or A4 paper, where the character-based width is usually
used (wide founts like Lucida Casual are the exception to this). \textwidth

is larger than usual if you print on smaller paper, where the paper-based
\textwidth is used. The options ranging out to widest and narrowest re-
quest a \textwidth varying in a smooth geometrical sequence, but remember
that the smaller of the two widths (character-based and paper-based) is used,
and there are several other restrictions on \textwidth, so this smooth pro-
gression may not be apparent as you step up or down through the options.
The gory details are in the file rmpnorm.

You can control which of the two widths—character-based or paper-based—
is used as the final \textwidth. See the next section (section 5.1.8) for details.

The stdwidth option forces rmpage to calculate the \textwidth in the
same way as the standard classes, except that the final value is still subject to
the restrictions listed above. So it is possible to ask for stdwidth and get a
\textwidth that is not what you’d’ve got with the a standard class. rmpage

will warn you if this happens.

widest Paper-based textwidth is set to 1.3096 times the normalwidth value;
character-based textwidth is set to 1.9761 times the normalwidth value.
Sets \RM@widthoption to 26

wider Sets \RM@widthoption to 23

wide Sets \RM@widthoption to 20

wideish Sets \RM@widthoption to 17

normalwidth Default. Paper-based \textwidth is set to 0.7138\paperwidth;
character-based \textwidth is set to 78.5 characters (10 pt), 74.8 char-
acters (11 pt), or 75.5 characters (12 pt)—this produces a character-
based \textwidth very close to the standard width setting code. Sets
\RM@widthoption to 14

narrowish Sets \RM@widthoption to 11

narrow Sets \RM@widthoption to 8

narrower Sets \RM@widthoption to 5

narrowest Paper-based textwidth is set to 0.7636 times the normalwidth

value; character-based textwidth is set to 0.5061 times the normalwidth

value. Sets \RM@widthoption to 2

stdwidth Attempts to produce a page with the same \textwidth as the
standard classes would give. Sets \RM@widthoption to 32

51

halfinchmargins Attempts to produce a page with a total horizontal margin
space of one inch. If you have asked for centred printing, rmpage will
try to produce half inch margins either side. Sets \RM@widthoption to
31

oneinchmargins Attempts to produce a page with a total horizontal margin
space of two inches. If you have asked for centred printing, rmpage will
try to produce one inch margins either side. Sets \RM@widthoption to
30

fullwidth Produces the widest possible \textwidth given all other restric-
tions. Sets \RM@widthoption to 29

5.1.8 Width setting control

These control which dimensions rmpage takes notice of when setting \textwidth—
rmpage can look at the size of the paper and the number of characters when it’s
setting \textwidth. Normally it looks at both, and picks the one that results
in the smallest \textwidth. The code that does this is in the width setting
pko file; it works out what to do based on the value of the \RM@setwidthby

command.
If you ask for one of these widths: oneinchmargin, halfinchmargin, and

fullwidth, you shouldn’t also ask for characterwidthset, because the width
options ask for widths that are inherently based on the size of the paper.
rmpage will point out this mistake if you make it, and carry on as if you’d not
said characterwidthset.

I’m not that keen on these option names, especially bothwidthset which
is formed in a regular sequence with the other two, and ends up both ugly and
not very descriptive; if you can come up with something better, please let me
know.

bothwidthset Default. Use both paper and character based \textwidth re-
quests to set \textwidth. Defines\RM@setwidthby to be 0

characterwidthset Use the character based \textwidth request only to set
\textwidth. Defines \RM@setwidthby to be 1

paperwidthset Use the paper based \textwidth request only to set \textwidth.
Defines \RM@setwidthby to be 2

5.1.9 Margins

The options in this section control the horizontal position of the text body.
The twoside and oneside options are standard options that rmpage under-
stand; the rest of them are new in rmpage.

It’s probably best to read about all of these options, not just some of them,
because they all interact to some extent.

twoside Places the text body for printing on both sides of the paper, taking
into account the requested offest and which margin you want to be the
larger one (inside or out).

Sets \RM@twosidetrue and \@mparswitchtrue; the latter step is
performed by the standard classes. I’m not certain this is the right
thing to do; it means you get the standard classes’ effect if you pass

52

this option to rmpage only. But you might want to avoid the standard
classes’ effect. . . But if you’re that clever, you can reset the switch
yourself.

oneside Default. Places the text body for printing on both sides of the paper,
taking into account the requested offest and which margin you want to
be the larger one (inside or out). Sets \RM@twosidefalse

centre Forces the left and right margins to be the same size. Sets \RM@centretrue.
notcentre Default. Allows the left and right margins to be different sizes.

Sets \RM@centrefalse

The options in the list below control which margin is the larger one. Con-
ventional book typesetting and LATEX makes the outside margin the larger
one; rmpage makes the inside margin the larger one. This is because most
of what I produce is bound in loose-leaf ring-binders, where having a small
inside margin often results in a holes in the text.

You can change this default setting by changing the notstdmargins op-
tion to stdmargins in the default \ExecuteOptions statement in your local
configuration file. You will find this statement just below the line in the
configuration file that reads: change this line to match your local
preferences.

stdmargins Default. Outside margin is the larger one. Sets \RM@stdmarginstrue
notstdmargins Inside margin in the larger one. Sets \RM@stdmarginsfalse

You can control the relative proportions of the inside and outside margins
with the offset options. These offset options don’t do anything if the centre
option has been specified.

The default offset is 60% of the total horizontal margin space in the
larger margin, 40% in the smaller. This the the standard LATEX 2ε offset.
leastoffset gives you equal margins; touchlessoffset and leastoffset

together makes the nominally larger margin into the smaller one, by a small
amount. rmpage will warn you if this happens. mostoffset puts 87% of the
total horizontal margin space into the larger margin; this is about as far over
to one side as your printer is likely to be able to print.

There are touchoffset options in the standard configuration files—see
section 5.2.3 on page 61

Have a look at rmpnorm for more details if you need them.

leastoffset 50% larger margin. Sets \RM@offsetoption to 2
lessoffset 53% larger margin. Sets \RM@offsetoption to 5
lessishoffset 56% larger margin. Sets \RM@offsetoption to 8
normaloffset Default. 60% larger margin. Sets \RM@offsetoption to 11
moreishoffset 68% larger margin. Sets \RM@offsetoption to 14
moreoffset 77% larger margin. Sets \RM@offsetoption to 17
mostoffset 87% larger margin. Sets \RM@offsetoption to 20

The touchoffset options must be executed after the offset options. This is
easy to arrange: just declare the options with the touch options after the main
options, and use \ProcessOptions rather than \ProcessOptions* (that is,
these options must be processed in the order of declaration, rather than the
order given in the calling commands).

53

5.1.10 Number of columns

Note that the standard classes set the \@twocolumn flag true or false, depend-
ing. rmpage doesn’t, and works quite happily without it.

The config file has onecolumnwidth to tencolumnwidth options, which
change \textwidth but don’t change the number of columns that LATEX type-
sets text in. You can use the multicol package to do that.

onecolumn Default. This standard option is recognised by rmpage. This op-
tion makes the standard classes typeset one column to a page; rmpage
calculates a character-based \textwidth based on this. Defines \RM@textcols
to be 1.

twocolumn This standard option is recognised by rmpage. This option makes
the standard classes typeset two columns to a page; rmpage calculates
a character-based \textwidth based on this. Defines \RM@textcols to
be 2.

5.1.11 Paper orientation

These options really do force the appropriate orientation; the standard classes
just swap \textheight and \textwidth when asked for landscape. Remem-
ber that you’ll most likely want to print your envelopes landscape, even if
your printer driver thinks you mean portrait (Hewlett Packard’s DeskWriter
series 6.0 printer driver gets this wrong. Oops.) And 2/3 A4 is usually used
in landscape orientation, even though you’ll probably think it’s portrait—I
know I did.

portrait Default. Forces \textwidth to be less than \textheight. Sets
\RM@portraittrue

landscape Forces \textwidth to be more than \textheight. Sets \RM@portraitfalse

5.1.12 Headers and footers

Allows space for headers and footers, or not, as you wish. These options do
not affect the contents of headers and footers in any way: if you want to
change the LATEX \pagestyle, you must do that separately.

Turning headers and footers on and off changes \textheight: this is be-
cause of the way rmpage calculates \textheight.

rmpage first calculates the sum of the blank space above and below all the
text on the page; this is a constant fraction of \paperheight for any given
length option. What is left over after space has been allowed for headers and
footers is \textheight

noheaders Produce a layout for pages without headers. Sets \RM@headersfalse;
this results in \headheight and \headsep being set to 0 pt.

headers Default. Produce a layout for pages with headers. Sets \RM@headerstrue;
this results in \headheight being set to \baselineskip.

nofooters Produce a layout for pages without footers. Sets \RM@footersfalse;
this results in \footskip being set to 0 pt

footers Default. Produce a layout for pages with footers. Sets \RM@footerstrue.

54

5.1.13 Positioning the text body vertically

These options affect the ratio between the gap below all the text and the gap
above all the text. The touchaltitude options change this ratio in increments
of 1/24.

highest Top:bottom space = 0:8. Sets \RM@headfootbalance=0

higher Top:bottom space = 1:8. Sets \RM@headfootbalance=3

high Top:bottom space = 2:8. Sets \RM@headfootbalance=6

highish Top:bottom space = 3:8. Sets \RM@headfootbalance=9

normalaltitude Default. Top:bottom space = 4:8. Sets \RM@headfootbalance=12

lowish Top:bottom space = 5:8. Sets \RM@headfootbalance=15

low Top:bottom space = 6:8. Sets \RM@headfootbalance=18

lower Top:bottom space = 7:8. Sets \RM@headfootbalance=21

lowest Top:bottom space = 8:8. Sets \RM@headfootbalance=24

5.1.14 Changing the date format

usdate Default. Sets \RM@nicedatefalse, which causes nothing to happen;
the \today command is unmolested.

ukdate Sets \RM@nicedatetrue, which causes the \today command to be
re-defined to produce a date of the form ‘4th April 1984’. This is the
setting I use as a default; I do this by putting the ukdate option in the
local settings \ExecuteOptions statement in my local configuration file.

5.1.15 Dealing with the beton package

The code to let rmpage work with beton felt rather complicated to write. The
thing about the beton package is that it changes \baselineskip to something
non-standard. rmpage needs to know what \baselineskip is so that it can set
\textheight, but beton’s changes aren’t made until the \AtBeginDocument

hook is executed by LATEX, which is after rmpage has been loaded. I had to
steal code from beton v1.3 to deal with this, which might cause problems if
you try to use rmpage with other versions of beton.

The result is that if you are using the beton package without passing it
the standard-baselineskips option, you should specify either the beton

or the nobeton option to rmpage: the first option uses beton’s modified
\baselineskip to set \textheight; the second option uses the standard
\baselineskip, and can be ommitted if you have specified the standard-baselineskips
option to beton.

The problem with the beton option is that if you specify it, rmpage

uses code stolen from the guts of beton version 1.3 to set the appropriate
\baselineskip. There is no guarantee that this code will work with other
versions of beton.

beton calculate a \textheight based on the beton package’s \baselineskip

nobeton calculate a \textheight based on the standard \baselineskip

Both these options set the \RM@ifbeton command to a number.
It’s played about with before and after here. The final value of the
\RM@ifbeton command is given these meanings within rmpage:

55

0 beton package loaded and the beton option specified
1 The beton package has been loaded with neither the beton nor the

nobeton option specified
2 beton package loaded and the beton option not specified
3 The beton package not loaded with neither the beton nor the nobeton

option specified
4 The beton package not loaded and the nobeton option specified.

5.2 From the configuration file

The following options are all from the configuration file. There’s nothing
magical about this: they could all just as easily be in rmpage.sty at the
point where the configuration file is loaded. But the idea is that you can
change the configuration file, but not rmpage, and rmpage works faster with
fewer option. So comment out any of these options that you don’t use very
often (please don’t delete them: you never know when you might need them).

The distributed configuration file rmpgen.cfg has no options commented
out; this means it’s quite slow. The distributed configuration file rmplocal.gfc
does have some options commented out—rmpage works faster using this file.
rmpage will not use rmplocal.gfc as a configuration file unless you tell it to.
The most straightforward way to get rmpage to use this faster configuration
file is to rename it rmplocal.cfg.

The idea is that you don’t change rmpgen.cfg at all: it’s intended to be
a standard configuration file that any document can use to produce identical
output on any system by saying \newcommand{\RMconfigfile}{rmpgen.cfg}

in the preamble before the \usepackage{rmpage} command.
If you are short of disc space, you could delete rmpgen.cfg, but you might

find you have to re-install it one day to process a file that requires it.
rmplocal.cfg is intended to be changed by anyone. Please read the com-

ments in the file first, add a comment at the start of the file to identify
it as yours, and a note to the same effect in the optional argument of the
\ProvidesFile: life can get very confused otherwise. Don’t add or delete
anything except comment characters between the \ProvidesFile command
and the line LOCAL CODE BELOW HERE PLEASE. Make sensible changes below
the line LOCAL CODE BELOW HERE PLEASE; read the comments in the configu-
ration file and rmpage.dtx, and use the commands I use for doing things. If
you do this, your code should work perfectly with future versions of rmpage.

In the list below, options that look like this: obscurefunction, are com-
mented out in rmplocal.gfc, whilst options that look like this: usefulfunction,
are not commented out.

5.2.1 Other paper sizes

There are some notes on paper sizes in section 5.1.2 on page 46. I suspect that
the larger sizes and untrimmed sizes will be useless, but it seemed churlish to
leave them out.

undefinedpaper Sets \RM@papertype to 0 – does nothing to \paperheight

or \paperwidth. This paper type has no purpose in life, yet.

56

letter4paper Sets \RM@papertype to 9; this paper size is an unholy bodge
with the width of A4 and the height of US letter. Documents typeset
with this paper size will fit on A4 and US letter paper, and look terrible
on both. Size is 210mm by 8.5in.

a0paper Sets \RM@papertype to 10 – 1189mm by 841mm
a1paper Sets \RM@papertype to 11 – 841mm by 594mm
a2paper Sets \RM@papertype to 12 – 594mm by 420mm
a3paper Sets \RM@papertype to 13 – 420mm by 297mm
a6paper Sets \RM@papertype to 16 – 148mm by 105mm
a7paper Sets \RM@papertype to 17 – 105mm by 74mm
a8paper Sets \RM@papertype to 18 – 74mm by 52mm
a9paper Sets \RM@papertype to 19 – 52mm by 37mm
a10paper Sets \RM@papertype to 20 – 37mm by 26mm
b0paper Sets \RM@papertype to 30 – 1414mm by 1000mm
b1paper Sets \RM@papertype to 31 – 1000mm by 707mm
b2paper Sets \RM@papertype to 32 – 707mm by 500mm
b3paper Sets \RM@papertype to 33 – 500mm by 353mm
b4paper Sets \RM@papertype to 34 – 353mm by 250mm
b6paper Sets \RM@papertype to 36 – 176mm by 125mm
b7paper Sets \RM@papertype to 37 – 125mm by 88mm
b8paper Sets \RM@papertype to 38 – 88mm by 62mm
b9paper Sets \RM@papertype to 39 – 62mm by 44mm
b10paper Sets \RM@papertype to 40 – 44mm by 31mm
c0paper Sets \RM@papertype to 50 – 1297mm by 917mm
c1paper Sets \RM@papertype to 51 – 917mm by 648mm
c2paper Sets \RM@papertype to 52 – 648mm by 458mm
c3paper Sets \RM@papertype to 53 – 458mm by 324mm
c4paper Sets \RM@papertype to 54 – 324mm by 229mm
c5paper Sets \RM@papertype to 55 – 229mm by 162mm
c7paper Sets \RM@papertype to 57 – 114mm by 81mm
c7/6paper Sets \RM@papertype to 59 – 162mm by 81mm
bspopseedenvelopepaper Sets \RM@papertype to 60 – 152mm by 102mm.

BS4264 UK post office preferred envelope: seed packets, wage slips,
general packaging. The name is one I invented.

bspopnonisoenvelopepaper Sets \RM@papertype to 61 – 229mm by 102mm.
BS4264 UK post office preferred envelope: gen commercial, non iso sizes.
The name is one I invented.

bsbrochureenvelopepaper Sets \RM@papertype to 62 – 254mm by 178mm.
BS4264 envelope; bulky A5, catalogues, brochures. The name is one I
invented.

bslegalenvelopepaper Sets \RM@papertype to 63 – 270mm by 216mm.
BS4264 envelope; legal docs, catalogues, photos. The name is one I
invented.

bslargelegalenvelopepaper Sets \RM@papertype to 64 – 305mm by 127mm.
BS4264 envelope; insurance policies, legal docs. The name is one I in-
vented.

bscalendarenvelopepaper Sets \RM@papertype to 65 – 381mm by 254mm.
BS4264 envelope; bulky docs, calendars. The name is one I invented.

foolscapfoliopaper Sets \RM@papertype to 70 – 13.5in by 8.5in

57

foolscappaper Sets \RM@papertype to 70 – 13.5in by 8.5in
foolscapquartopaper Sets \RM@papertype to 71 – 8.5in by 6.75in
foolscapoctavopaper Sets \RM@papertype to 72 – 6.75in by 4.25in
crownfoliopaper Sets \RM@papertype to 73 – 15in by 10in
crownquartopaper Sets \RM@papertype to 74 – 10in by 7.5in
crownoctavopaper Sets \RM@papertype to 75 – 7.5in by 5in
royalfoliopaper Sets \RM@papertype to 76 – 20in by 12.5in
royalquartopaper Sets \RM@papertype to 77 – 12.5in by 10in
royaloctavopaper Sets \RM@papertype to 78 – 10in by 6.25in
imperialfoliopaper Sets \RM@papertype to 79 – 22in by 15.5in
imperialquartopaper Sets \RM@papertype to 80 – 15in by 11in
imperialoctavopaper Sets \RM@papertype to 81 – 11in by 7.5in
largecrownoctavopaper Sets \RM@papertype to 82 – 8in by 5.25in
demyoquartopaper Sets \RM@papertype to 83 – 11.25in by 8.75in
demyoctavopaper Sets \RM@papertype to 84 – 8.75in by 5.625in
mediumquartopaper Sets \RM@papertype to 85 – 12in by 9.5in
mediumoctavopaper Sets \RM@papertype to 86 – 9.5in by 6in
ra0paper Sets \RM@papertype to 90 – 1270mm by 960mm
ra1paper Sets \RM@papertype to 91 – 1270mm by 960mm
ra2paper Sets \RM@papertype to 92 – 1270mm by 960mm
sra0paper Sets \RM@papertype to 93 – 1280mm by 900mm
sra1paper Sets \RM@papertype to 94 – 900mm by 840mm
sra2paper Sets \RM@papertype to 95 – 640mm by 450mm
metricdoublecrownpaper Sets \RM@papertype to 96 – 770mm by 505mm
metricquadcrownpaper Sets \RM@papertype to 97 – 1010mm by 770mm
metriclargequadcrownpaper Sets \RM@papertype to 98 – 1060mm by 820mm
metricquaddemypaper Sets \RM@papertype to 99 – 1030mm by 890mm
metricsmallquadroyalpaper Sets \RM@papertype to 100 –

1270mm by 960mm

The long paper sizes are described in detail in section 5.1.2 on page 46.

notlongpaper Sets \RM@longpapertypelong to 0; not long—the default.
7/8longpaper Sets \RM@longpapertypelong to 1; 7/8 long. The selected

paper size has its longest dimension multiplied by 7/8.
3/4longpaper Sets \RM@longpapertypelong to 2; 3/4 long. The selected

paper size has its longest dimension multiplied by 3/4.
2/3longpaper Sets \RM@longpapertypelong to 3; 2/3 long. The selected

paper size has its longest dimension multiplied by 2/3.
5/8longpaper Sets \RM@longpapertypelong to 4; 5/8 long. The selected

paper size has its longest dimension multiplied by 2/3.
1/2longpaper Sets \RM@longpapertypelong to 5; 1/2 long. The selected

paper size has its longest dimension multiplied by 1/2. This is slightly
different for asking for the next size down in an ISO series; these long
sizes are not rounded to the nearest millimetre, as are standard ISO
paper sizes, and code which sets things up for particular printer/paper
combinations does not recognize 1/2 long A3 as A4 (for example).

3/8longpaper Sets \RM@longpapertypelong to 6; 3/8 long. The selected
paper size has its longest dimension multiplied by 3/8.

58

1/3longpaper Sets \RM@longpapertypelong to 7; 1/3 long. The selected
paper size has its longest dimension multiplied by 1/3.

1/4longpaper Sets \RM@longpapertypelong to 8; 1/4 long. The selected
paper size has its longest dimension multiplied by 1/4.

1/8longpaper Sets \RM@longpapertypelong to 9; 1/8 long. The selected
paper size has its longest dimension multiplied by 1/8.

5.2.2 Marginal paragraph options

The width of a marginal paragraph is set to the space left in the appropriate
margin, taking into account all the limits. rmpage thinks the appropriate
margin is this: in the case of multi-column printing, the smallest margin; in
the case of one sided printing, normal marginal paragraph placement, in the
outside margin; in the case of one sided printing, reverse marginal paragraph
placement, in the inside margin; in the case of two sided printing, normal
marginal paragraph placement, in the outside margin; and in the case of two
sided printing, reverse marginal pragraph placement, in the inside margin.

The size is calculated on this basis: the standard LATEX length \margin-

parsep gives the space between the text body and the marginal paragraph.
The new length \RM@mparclearance gives the minimum space between the
outside edge of the marginal paragraph and the edge of the paper (subject to
the additional restrictions of \RM@minrightclearance and \RM@minleftclearance

(but not \RM@mininsidemargin or \RM@minoutsidemargin; these apply to
the text body only). Within these limits, \marginparwidth cannot be set to
greater than the length \RM@maxmparwidth.

This way of setting marginal paragraphs is derived from the standard
LATEX 2ε method, which uses 2 in as the largest allowed size, and 0.4 in as the
minimum gap to the edge of the paper. rmpage’s equivalent parameters

You can scale the size of \marginparsep, \RM@mparclearance, and \RM@max-

mparwidth using the mparsep, mparclearance, and maxmparwidth option
sets. Look at section 3.7 on page 33 for more on marginal paragraphs.

If you think that the base value of any of these lengths is too small, you can
do something about it. With \marginparsep, you could use the \setlength

command to set it to a different value before loading rmpage. For example,

\setlength{\marginparsep}{2\marginparsep}

\usepackage{rmpage}

Because the other two parameters are given their initial values in rmpage,
this technique won’t work. The initial values of \RM@mparclearance and
\RM@maxmparwidth are calculated as a certain fraction of \paperwidth; the
initial value of the appropriate parameter is doubled if you specify the largebasemparclear
or largebasemaxmparwidth options. You can set either of these parameters
in the configuration file—the values -666 pt and -667 pt are reserved by rmpage

as flag values; any positive length that’s not too long is okay. Read the source
and consider setting these parameters on a class-by-class basis if you do need
to change them.

The \mparsep options scale the \marginparsep length using \RM@scale-

byoption. See section 6.7 on page 77 for the details.

59

leastmparsep Sets \RM@mparsepoption to 3
lessmparsep Sets \RM@mparsepoption to 6
lessishmparsep Sets \RM@mparsepoption to 9
normalmparsep Default. Sets \RM@mparsepoption to 12
moreishmparsep Sets \RM@mparsepoption to 15
moremparsep Sets \RM@mparsepoption to 18
mostmparsep Sets \RM@mparsepoption to 21

The ...basemparclear options need to be executed after \paperwidth

has been set. Easily done with \ProcessOptions rather than \ProcessOptions*,
and the papersize setting options declared above rather than below. The
\smallbasemparclear value is set after option processing if no other value
has been set. If \RM@mparclearance is -666 pt, the normalbasemparclear value
is set; if it’s -667 pt, the largebaselinemparclear value is set. The larger value is
double the smaller value. This setting is done just after the \RM@PrinterPaperSettings
hook is executed, which is well after \paperwidth is set. This value is scaled by
option (using the \RM@mparclearoption passed to the \RM@scalebyoption

command) just before it’s used, so one can use the \RM@BeforeWidthSetting

hook to change things.

normalbasemparclear Default. Sets \RM@mparclearance to -666pt.
largebasemparclear Sets \RM@mparclearance to -667pt
normalbasemaxmparwidth Default. Sets \RM@maxmparwidth to -666pt
largebasemaxmparwidth Sets \RM@maxmparwidth to -667pt

The gap between the edge of the paper and the edge of a marginal para-
graph is 0.4 in (10.16 mm) with LATEX’s standard classes. rmpage changes this
by introducing a new parameter, \RM@mparclearance, which is calculated as a
fraction of \paperwidth. Normal \RM@mparclearance with A4 portrait paper
is 9.88 mm; 0.4 in with US letter paper).

Touch options for \RM@mparclearance and \RM@maxmparwidth have been
added now.

leastmparclearance Sets \RM@mparclearoption to 3
lessmparclearance Sets \RM@mparclearoption to 6
lessishmparclearance Sets \RM@mparclearoption to 9
normalmparclearance Default. Sets \RM@mparclearoption to 12
moreishmparclearance Sets \RM@mparclearoption to 15
moremparclearance Sets \RM@mparclearoption to 18
mostmparclearance Sets \RM@mparclearoption to 21

\RM@maxmparwidth is set as a fraction of \paperwidth, such that with por-
trait US letter paper, you get 2 in as standard, just like the standard classes.
It’s scaled by option (see section 6.7 on page 77 for the details). If you want to
change the default base value of \RM@maxmparwidth, the \RM@BeforeWidthSetting
hook is an ideal place to do it.

leastmaxmparwidth Sets \RM@maxmparwidthoption to 3
lessmaxmparwidth Sets \RM@maxmparwidthoption to 6
lessishmaxmparwidth Sets \RM@maxmparwidthoption to 9

60

normalmaxmparwidth Default. Sets \RM@maxmparwidthoption to 12

moreishmaxmparwidth Sets \RM@maxmparwidthoption to 15

moremaxmparwidth Sets \RM@maxmparwidthoption to 18

mostmaxmparwidth Sets \RM@maxmparwidthoption to 21

5.2.3 Touch options

All the touch options add or subtract one from a counter that is used to
control the size of a page layout parameter. The effect of this is to give the
layout parameter a size in between the ‘main’ sizes. That is, if you ask for
wide and touchwider, \textwidth is set to a value 1/3 of the way (in a
geometrical sequence) from wide to wider. This results in even step sizes:
wide, touchwider, and t@uchwider give a width the same as wider and
touchnarrower.

The touch options are intended to be used in documents; the t@uch options
are intended to be used in class files. The reason is this: a class designer can
develop a suitable layout by passing options to rmpage. When this is done, the
options passed to rmpage can be passed using the \PassOptionsToPackage

command in a class file. Any touch options should be turned into t@uch

options, so that the controlled parameter can be incremented or decremented
by a touch option in a document. Whether this is a good thing is unclear,
but it’s certainly deliberate.

Note that all the touch options need to be executed after their correspond-
ing ‘straight’ options. To ensure this, none of the touch can be allowed in
an \ExecuteOptions statement. The \RM@notinexecuteoptions is used in
each of these option declarations: it produces an error message if used before
the \RM@donewithoptions flag is set true, which is immediately before the
\ProcessOptions statement.

You can find out more about the affected layout parameters by looking at
the documentation for the main options corresponding to the touch options
listed here.

t@uchlonger Adds 1 to \RM@lengthoption

t@uchshorter Adds -1 to \RM@lengthoption

touchlonger Adds 1 to \RM@lengthoption

touchshorter Adds -1 to \RM@lengthoption. See section 5.1.4.

touchmorecolsep Adds 1 to \RM@columnsepoption

touchlesscolsep Adds -1 to \RM@columnsepoption

t@uchmorecolsep Adds 1 to \RM@columnsepoption

t@uchlesscolsep Adds -1 to \RM@columnsepoption. See section 5.1.6.

touchmoremparsep Adds 1 to \RM@mparsepoption

touchlessmparsep Adds -1 to \RM@mparsepoption

t@uchmoremparsep Adds 1 to \RM@mparsepoption

t@uchlessmparsep Adds -1 to \RM@mparsepoption. See section 5.2.2.

touchmorefootskip Adds 1 to \RM@footskipoption

touchlessfootskip Adds -1 to \RM@footskipoption

t@uchmorefootskip Adds 1 to \RM@footskipoption

t@uchlessfootskip Adds -1 to \RM@footskipoption. See section 5.1.12.

touchmoreheadsep Adds 1 to \RM@headsepoption

61

touchlessheadsep Adds -1 to \RM@headsepoption

t@uchmoreheadsep Adds 1 to \RM@headsepoption

t@uchlessheadsep Adds -1 to \RM@headsepoption. See section 5.1.12.

t@uchwider Adds 1 to \RM@widthoption

t@uchnarrower Adds -1 to \RM@widthoption

touchwider Adds 1 to \RM@widthoption

touchnarrower Adds -1 to \RM@widthoption. See section 5.1.7.

t@uchmoreoffset Adds 1 to \RM@offsetoption

t@uchlessoffset Adds -1 to \RM@offsetoption

touchmoreoffset Adds 1 to \RM@offsetoption

touchlessoffset Adds -1 to \RM@offsetoption. See section 5.1.9.

t@uchhigher Adds -1 to \RM@headfootbalance

t@uchlower Adds 1 to \RM@headfootbalance

touchhigher Adds -1 to \RM@headfootbalance

touchlower Adds 1 to \RM@headfootbalance. See section 5.1.13.

t@uchlessmparclearance Adds -1 to \RM@mparclearoption

t@uchmoremparclearance Adds 1 to \RM@mparclearoption

touchlessmparclearance Adds -1 to \RM@mparclearoption

touchmoremparclearance Adds 1 to \RM@mparclearoption.
See section 5.2.2.

t@uchlessmaxmparwidth Adds -1 to \RM@maxmparwidthoption

t@uchmoremaxmparwidth Adds 1 to \RM@maxmparwidthoption

touchlessmaxmparwidth Adds -1 to \RM@maxmparwidthoption

touchmoremaxmparwidth Adds 1 to \RM@maxmparwidthoption.
See section 5.2.2.

5.2.4 More length options

These options need to be executed after the touchlength options; otherwise,
they’d be in rmpage.sty.

Most of the \textheight setting options are in rmpage proper; see 5.1.4
on page 49.

fulllength Sets \RM@lengthoption=30. Makes \textheight as long as
possible, taking into account the various restrictions and the need to
keep \textheight to an integer number times \baselineskip plus
\topskip.

stdlength Sets \RM@lengthoption=0. Makes \textheight the size it would
be if you were using the standard LATEX classes. I’m not sure I’ve checked
everything that needs to be checked to ensure that this option always
does what you’d expect, but I think I have. Note that rmpage still takes
notice of footers and headers when you use this option, so you can get
the standard \textheight with different vertical positioning of the text
body.

5.2.5 Number of columns

If you are typesetting text in more than one column, rmpage needs to know
so that it can set \textwidth appropriately.

62

The standard LATEX options onecolumn and twocolumn are recognized by
rmpage.

The ...columnwidth options tell rmpage that you will be typesetting your
text in that number of columns, but the only effect of the options is to change
the \textwidth calculation. If you want to change the number of columns
that your text is set in, you can use a package like multicol.

These options affect only the character-based \textwidth calculation—
for any given width option (normalwidth, narrower, or whatever) one
text column is allowed to be a certain number of characters wide. Use
the ...columnwidth options to tell rmpage how many columns wide your
text is, so it can calculate \textwidth appropriately.

rmpage makes the character-based \textwidth guess equal to a cer-
tain number of characters times the number of columns, plus \columnsep
times one less than the number of columns.

If your text is something like a single large table (for example, a timetable),
it might be more appropriate to use the paperwidthset option to set \textwidth
using the paper-based \textwidth only.

onecolumnwidth Default. Defines \RM@textcols to 1
twocolumnwidth Defines \RM@textcols to 2
threecolumnwidth Defines \RM@textcols to 3
fourcolumnwidth Defines \RM@textcols to 4
fivecolumnwidth Defines \RM@textcols to 5
sixcolumnwidth Defines \RM@textcols to 6
sevencolumnwidth Defines \RM@textcols to 7
eightcolumnwidth Defines \RM@textcols to 8
ninecolumnwidth Defines \RM@textcols to 9
tencolumnwidth multicol’s limit. Defines \RM@textcols to 10

5.2.6 Loading founts

All the options below change how \textwidth is set, and the options with
load in their name also call one of the standard PSNFSS packages to load the
fount (aside from Lucida Casual and Concrete, which aren’t PSFNSS founts,
and Courier, which is handled anomalously).

The only Lucida typeface I have is Lucida Casual, so that’s the only
Lucida typeface that rmpage deals with explicitly. If you do use others,
you can have an appropriate \textwidth set using the thisfountwidth

option.
Given that the PSFNSS distribution has support for all the Lucida

founts, I could be persuaded to include explicit support for them in
rmpage if anyone’s interested.

Remember that \textwidth is usually set to be a certain number of char-
acter wide. Well, not all founts have the same number of characters per inch.
If you say timeswidth to rmpage, it will calculate a \textwidth based on the
measured average width of one character in Times of the specified size.

This means that while the standard LATEX classes would give you a \text-

width that is far too wide for the Times fount (which is generally narrower

63

than Computer Modern Roman), rmpage will give you a \textwidth that is
pretty much the same number of characters across, which means you retain
good legibility (as well as similar line and page breaks).

If you say loadtimes, rmpage changes its \textwidth calculation, loads
the PSNFSS package that loads the Times fount family, and (very important,
this is) changes the typesetting parameters to similar values to the ones sug-
gested by Karl Berry, the chap who wrote the fontinst program that generated
the virtual founts used to typeset the PSNFSS founts.

If you specify a looseness option yourself—see section 5.1.3 on page 48—it
will over-ride the standard looseness set by a loadfount option. The load-

concrete option requests standard tight typesetting, and is anyway not rec-
ommended: if you want to use the concrete founts, try the beton package,
which does a very good job of setting up LATEX to use these founts. rmpage

can work happily with beton: see section 5.1.15 on page 55.

You can tell rmpage to set the \textwidth based on the width of a fount it
doesn’t know about with the thisfountwidth option. If you use this option,
rmpage will calculate a \textwidth based on the size of the fount that is
current when rmpage is loaded. So if you want a \textwidth based on, say,
Grunge Update (family name fgr on my computer), you could say:

\documentclass[thisfountwidth,12pt]{article}

\renewcommand{\rmdefault}{fgr}

\rmfamily

\usepackage{rmpage}

\begin{document}

...

rmpage will tell you which fount it is working with, and the results of its
calculations. If you get confused by LATEX’s fount selection scheme, read the
manual; it confuses me too.

The fount options work like this: each option sets the \RM@fountfamily

command to a particular value. Any option which sets the \RM@loadfount

flag true forces code later on in rmpage to load the appropriate fount, most
of them using one of the standard PSNFSS packages. The fount loading
code is written specially for each fount; there’s no easy way to add more
founts to the list that’s already dealt with. But you could add code to the
\RM@AfterProcessOptions hook if you want to do this; I suggest that this
code loads the fount, selects it, and defines \RM@fountfamily to be 12, to make
the width setting code measure its width. There are no hooks in rmpwnorm.pko

to add this sort of thing.

The thing about using the loadfount options is that the standard
PSNFSS packages don’t always set the default main document typeface
(the one you get when you ask for \rmfamily) to be the fount you’ve
asked for. So if you say loadhelvet, you’ll get a \textwidth based on
the width of the Helvetica typeface, but Helvetica is the fount you get
when you ask for \sffamily, which might not be what you want.

64

The thing to do is be sure which typeface will be the main document
face, and ask rmpage to set the \textwidth accordingly. You might
use the appropriate loadfount option for this, or load the founts you
want with separate calls to the appropriate packages in your document’s
preamble.

If you don’t have the file needed to load the requested fount family, rmpage
complains.

Fount families are set like this:

0=cmr

1=avant garde 2=bookman 3=zapf chancery 4=helvetica

5=new century schoolbook 6=palatino 7=times 8=utopia

9=lucida casual 10=courier 11=concrete 12=this fount width

13=lucida casual dirty trick

The dirty trick works like this: if you ask for loadlucidacasual, rather
than loadluccasua (\RM@fountfamily 13), the fount loading code later on
does a \RequirePackage{lucida-casual}, and then sets \RM@fountfamily

to 9. This lets Rowland use his own .fd files for Lucida Casual, and allows
access to the standard .fd files. The option to do this is in Rowland’s curious
option section of the configuration file.

cmrwidth Computer modern roman; redundant options.
Defines \RM@fountfamily to 0

loadcmr Loads nothing; does whinge a little.
avantwidth Avant Garde. Defines \RM@fountfamily to 1
loadavant Requires the avant package.
bookmanwidth Bookman. Defines \RM@fountfamily to 2
loadbookman Requires the bookman package.
chancerywidth Zapf Chancery. Defines \RM@fountfamily to 3
loadchancery Requires the chancery package.
helvetwidth Helvetica. Defines \RM@fountfamily to 4
loadhelvet Requires the helvet package.
newcentwidth New Century Schoolbook. Defines \RM@fountfamily to 5
loadnewcent Requires the newcent package.
palatinowidth Palatino. Defines \RM@fountfamily to 6
loadpalatino Requires the palatino package.
timeswidth Times. Defines \RM@fountfamily to 7
loadtimes Requires the times package.
utopiawidth Utopia. Defines \RM@fountfamily to 8
loadutopia Requires the utopia package.
lucasualwidth Lucida casual. Defines \RM@fountfamily to 9
loadlucasual Requires the lucasual package.
courierwidth Courier. Defines \RM@fountfamily to 10
loadcourier This option makes the default roman fount Courier. I think

this is ugly and crude: you might be better off using the times package
and \ttfamily

concretewidth Concrete. Defines \RM@fountfamily to 11
loadconcrete This option loads the beton package and sets \textwidth for

the Concrete Roman founts.

65

thisfountwidth Bases \textwidth on the current fount.
Defines \RM@fountfamily to 12

5.2.7 Stuff for beton support

standard-baselineskips Passes this option to beton so rmpage can detect
whether this option’s been passed to beton.

oldstyle-equation-numbers Passes this option to beton.

concrete-math Passes this option to beton.

5.2.8 Other synonyms for some options

Why oh why oh why do I have to make my package speak US English? (mutter
mumble grumble). Yes, all right, it’s how the convention’s worked out. And
I’ve put the original options to change the \today command here too. (It’s
like this: I once had a LATEX 2.09 style file called nicedate that changed the
\today command into something I liked. Then I wrote rmpage, and included
the nicedate code, activated by the nicedate option. Obviously, the nicedate
option needed a complementary option, and the obvious name for this option
was nastydate, which eventually got turned into othernicedate. After I
started turning rmpage into something for the rest of the world to look at
(which it wasn’t originally), I added the ukdate and usdate options. But I
still like nicedate, so I’ve kept it. So there.)

othernicedate The same as usdate; does nothing

nicedate The same as ukdate; changes date format.

verbose Synonym for chatty

silent Synonym for yorkshire

errorshow Synonym for yorkshire

warningshow Synonym for taciturn

infoshow Synonym for chatty

debugshow Synonym for garrulous

center The same as centre

notcenter The same as notcentre

5.2.9 Margin options

ringbinding This option sets the minimum allowed inside margin to be at
least 15 mm if you are printing in portrait orientation. It’s in the con-
fig file because it must be executed after the landscape and portrait

options. It does nothing but warn you if you use it in landscape orien-
tation.

Beware that this option takes no notice of long paper sizes at all,
and is likely to give iffy results if you combine it with them. If you have
any thoughts about this option, please email me—I’m not terribly happy
with it.

5.2.10 Printer options

Each printer option must set these ten parameters:

66

\RM@printertype A code number, defined below. This number is used by
rmpage to keep track of the printer used; you can tell rmpage to do
things for certain printers and not for others.

\RM@ptrrportclear The non-printing margin on the right-hand side in por-
trait orientation

\RM@ptrlportclear The non-printing margin on the left-hand side in portrait
orientation

\RM@ptrtportclear The non-printing margin at the top in portrait orienta-
tion

\RM@ptrbportclear The non-printing margin at the bottom in portrait ori-
entation

\RM@ptrrlandclear The non-printing margin on the right-hand side in land-
scape orientation

\RM@ptrllandclear The non-printing margin on the left-hand side in land-
scape orientation

\RM@ptrtlandclear The non-printing margin at the top in landscape orien-
tation

\RM@ptrblandclear The non-printing margin at the bottom in landscape ori-
entation

\RM@ptrpostol Nominally, the amount you expect the position of the paper
to vary. The value of this command is added to each of the \ptr...clear
parameters before they are used.

Printer types are:

0=fullbleed 1=general 2=pessimistic 3=optimistic
10=dw300 11=dw500 12=dw600 (HP deskwriter inkjet series)
20=lj2 21=lj3 22=lj4 (HP laserjet laser printer series)
30=canonbjx (Canon bubblejet flurble)
40+ others (whatever comes up)
1000+ local printers to avoid clashes

The figures for all these printers are guesses, except for the DW500 and
DW600: any data on printing margins for the printers above or other commonly-
used printers would be gratefully received. I need to know about printing lim-
its at the top, bottom, left, and right for portrait and landscape modes, and
whether the data is what the book says or what you measured (preferrably
both, but anything’ll help). If anyone really uses LATEX with an A3 printer,
do tell: it’s something I’ve been wondering about.

When I’ve got a better idea of what’s going on, I’ll define more printer
options.

\RM@ptrpostol generally set to 1 mm (paper sizes are to ±2 mm), except
for our DW520 which I keep a careful eye on.

fullbleedprinter Lets you print all the way to the edge of the paper.

\def\RM@printertype{0}

\def\RM@ptrrportclear{0mm} \def\RM@ptrrlandclear{0mm}

\def\RM@ptrlportclear{0mm} \def\RM@ptrllandclear{0mm}

67

\def\RM@ptrtportclear{0mm} \def\RM@ptrtlandclear{0mm}

\def\RM@ptrbportclear{0mm} \def\RM@ptrblandclear{0mm}

\def\RM@ptrpostol{0mm}

generalprinter Arbitrary settings that probably ensure a layout inside the
printing area on most A4 printers.

\def\RM@printertype{1}

\def\RM@ptrrportclear{8mm} \def\RM@ptrrlandclear{8mm}

\def\RM@ptrlportclear{8mm} \def\RM@ptrllandclear{8mm}

\def\RM@ptrtportclear{8mm} \def\RM@ptrtlandclear{8mm}

\def\RM@ptrbportclear{15mm} \def\RM@ptrblandclear{15mm}

\def\RM@ptrpostol{1mm}

pessimisticprinter This uses the worst limits I can remember meeting, so
it force documents inside the printing area on any printer.

\def\RM@printertype{2}

\def\RM@ptrrportclear{10mm} \def\RM@ptrrlandclear{19mm}

\def\RM@ptrlportclear{10mm} \def\RM@ptrllandclear{10mm}

\def\RM@ptrtportclear{10mm} \def\RM@ptrtlandclear{10mm}

\def\RM@ptrbportclear{19mm} \def\RM@ptrblandclear{10mm}

\def\RM@ptrpostol{1mm}

optimisticprinter This uses the best limits I’d expect from a real printer.

\def\RM@printertype{3}

\def\RM@ptrrportclear{3mm} \def\RM@ptrrlandclear{3mm}

\def\RM@ptrlportclear{3mm} \def\RM@ptrllandclear{3mm}

\def\RM@ptrtportclear{3mm} \def\RM@ptrtlandclear{3mm}

\def\RM@ptrbportclear{3mm} \def\RM@ptrblandclear{3mm}

\def\RM@ptrpostol{0.5mm}

dw300printer A guess.

\def\RM@printertype{11}

\def\RM@ptrrportclear{6mm} \def\RM@ptrrlandclear{15mm}

\def\RM@ptrlportclear{6mm} \def\RM@ptrllandclear{7mm}

\def\RM@ptrtportclear{7mm} \def\RM@ptrtlandclear{6mm}

\def\RM@ptrbportclear{15mm} \def\RM@ptrblandclear{6mm}

\def\RM@ptrpostol{1mm}

dw500printer Hewlett-Packard’s specification for its DeskWriter and DeskJet
500/510/520/540 printers.

\def\RM@printertype{11}

\def\RM@ptrrportclear{6mm} \def\RM@ptrrlandclear{15mm}

\def\RM@ptrlportclear{6mm} \def\RM@ptrllandclear{7mm}

\def\RM@ptrtportclear{7mm} \def\RM@ptrtlandclear{6mm}

\def\RM@ptrbportclear{15mm} \def\RM@ptrblandclear{6mm}

\def\RM@ptrpostol{1mm}

dw600printer Measured from a particular HP 600 series inkjet printer, with
a bit added.

68

\def\RM@printertype{12}

\def\RM@ptrrportclear{5mm} \def\RM@ptrrlandclear{15mm}

\def\RM@ptrlportclear{5mm} \def\RM@ptrllandclear{2mm}

\def\RM@ptrtportclear{2mm} \def\RM@ptrtlandclear{5mm}

\def\RM@ptrbportclear{15mm} \def\RM@ptrblandclear{5mm}

\def\RM@ptrpostol{1mm}

lj2printer an arbitrary guess

\def\RM@printertype{20}

\def\RM@ptrrportclear{7mm} \def\RM@ptrrlandclear{7mm}

\def\RM@ptrlportclear{7mm} \def\RM@ptrllandclear{7mm}

\def\RM@ptrtportclear{7mm} \def\RM@ptrtlandclear{7mm}

\def\RM@ptrbportclear{7mm} \def\RM@ptrblandclear{7mm}

\def\RM@ptrpostol{1mm}

lj3printer an arbitrary guess

\def\RM@printertype{21}

\def\RM@ptrrportclear{6mm} \def\RM@ptrrlandclear{6mm}

\def\RM@ptrlportclear{6mm} \def\RM@ptrllandclear{6mm}

\def\RM@ptrtportclear{6mm} \def\RM@ptrtlandclear{6mm}

\def\RM@ptrbportclear{6mm} \def\RM@ptrblandclear{6mm}

\def\RM@ptrpostol{1mm}

lj4printer an arbitrary guess

\def\RM@printertype{22}

\def\RM@ptrrportclear{5mm} \def\RM@ptrrlandclear{5mm}

\def\RM@ptrlportclear{5mm} \def\RM@ptrllandclear{5mm}

\def\RM@ptrtportclear{5mm} \def\RM@ptrtlandclear{5mm}

\def\RM@ptrbportclear{5mm} \def\RM@ptrblandclear{5mm}

\def\RM@ptrpostol{1mm}

canonbjxprinter an arbitrary guess

\def\RM@printertype{22}

\def\RM@ptrrportclear{7mm} \def\RM@ptrrlandclear{12mm}

\def\RM@ptrlportclear{7mm} \def\RM@ptrllandclear{7mm}

\def\RM@ptrtportclear{7mm} \def\RM@ptrtlandclear{7mm}

\def\RM@ptrbportclear{12mm} \def\RM@ptrblandclear{7mm}

\def\RM@ptrpostol{1mm}

5.2.11 Rowland’s curious options

These are curious options, defined by me (RJMM) to perform dark and eldritch
deeds. These aren’t intended for hoi polloi, mainly ’cos they’re a bit iffy in
places, but I like them and they might give you some ideas.

Our DW520 isn’t quite to spec.

R+R-dw520printer \def\RM@printertype{2}

\def\RM@ptrrportclear{7mm} \def\RM@ptrrlandclear{15mm}

69

\def\RM@ptrlportclear{6mm} \def\RM@ptrllandclear{7mm}

\def\RM@ptrtportclear{7mm} \def\RM@ptrtlandclear{7mm}

\def\RM@ptrbportclear{15mm} \def\RM@ptrblandclear{6mm}

\def\RM@ptrpostol{0.5mm}

lucidacasualwidth Lucida casual Defines \RM@fountfamily to 9
loadlucidacasual A dirty trick to load my .fd version of lucida casual rather

than the PSNFSS version. If you loadlucidacasual, \RM@fountfamily
is set to 9 after the lucida-casual package has been \RequirePackaged.
That’s done by code further on in rmpage, specially written for this dirty
trick.

I have written packages that do the same job as the standard size10.clo

etc., files, but for larger sizes. Because the standard LATEX \@ptsize param-
eter is intended to be a single digit, and I want to use several different sizes,
I have defined a new parameter that holds the point size of the main body
type, the command \RM@ptsize. This parameter is only defined for my larger
sizes.

Because my size packages can be loaded before or after rmpage, and be-
cause both need to know about the point size, rmpage says

\providecommand{\RM@ptsize}{666}

before the extra size options are executed. The options set \RM@ptsize to
the appropriate value if this hasn’t already been done. All my other packages
that recognize the larger point size options do something similar.

The other thing that rmpage does with these larger point size options is
set \@ptsize to the 12 pt value; this is to fool sections of rmpage into thinking
that it’s dealing with a 12 pt fount.

14pt Sets \RM@ptsize to 14 if needed and sets \@ptsize to 2 (meaning 12 12,
to fool rmpage)

24pt Sets \RM@ptsize to 24 if needed and sets \@ptsize to 2 (meaning 12 12,
to fool rmpage)

36pt Sets \RM@ptsize to 36 if needed and sets \@ptsize to 2 (meaning 12 12,
to fool rmpage)

70

Chapter 6

How things work

6.1 \textheight calculation

The way rmpage decides on the value of \textheight is this: the length op-
tions set a length called \RM@totalheadfootclearance to be certain fraction
of the \paperheight. The value of this command will be the sum of the blank
space above the header and below footer, after it has been checked against
several restrictions.

If the noheaders option has used, \headheight and \headsep are
both set to 0 pt; if the nofooters option has been used, \footskip is
set to 0 pt. So a given length option will fill the page to the same extent
whether or not headers or footers are used; turning headers and footers
off will increase \textheight.

The first check that’s made is that the \textheight produced by this
value of \RM@totalheadfootclearance will not exceed the bounds set by
\RM@mintextheight and \RM@maxtextheight. These two commands are in-
tended to be set by local code on a class-by-class basis in the configuration
file, using the \RM@OnClassType command in the \RM@AfterProcessOptions

hook, and define the allowed range of \textheight. This check defines the
commands:

\RM@maxpractextheight and \RM@mintotalheadfootclearance

\RM@minpractextheight and \RM@maxtotalheadfootclearance

They are calculated from the user supplied limits; they are based on the largest
and smallest values that \textheight is allowed to have, given the limits of
the discrete values it is allowed to take. The \practextheight parameters
are unused at the moment; they might come in handy one day.

The total space above and below the footer is divided into two: a cer-
tain fraction of this space to the gap at the top, the rest to the gap at
the bottom. These two lengths are saved in \RM@totalheadclearance and
\RM@totalfootclearance. The altitude options control this division of
space—see section 5.1.13 on page 55.

Checks are then made to ensure that nothing will be printed outside the
allowed printing region along the vertical axis. This is defined by the lengths
\RM@minheadclearance and \RM@minfootclearance, which are initially set

71

to the non-printing margin top and bottom. rmpage ensures that these two
lengths are at least as large as either \RM@mintopmargin or \RM@minbottommargin,
as appropriate—these two parameters are intended to be set class-by-class, so
you can ensure that your layout meets regulations, for example.

rmpage issues warnings if it decides to make either the top or bottom
gap larger to fit the text inside the printing region. The warnings are issued
because changing the top or bottom gap changes the \textheight and vertical
position of the text on the page; you might have been expecting a smooth
increment from the last altitude or \length option, or a particular balance
of space above and below the text given by a particular altitude option, and
it might be useful to know that you’ve not got what you might expect.

Finally, \textheight is set to a value such that:

\textheight = integer× \baselineskip + \topskip

The values of the three \RM@total...clearance parameters are increased
to match the reduction in the size of \textheight, and \topmargin is set to
whatever it needs to be.

The apparently special case of stdlength is handled by setting \RM@totalheadfootclearance
to a value that will yield the same \textheight as the standard classes; the
book, article, report, and letter classes use one value; the slides class
another. Have a look at rmpage.dtx and the standard class files to see how
this is done. Note that rmpage gives you the same \textheight as the stan-
dard classes whether or not you are using headers or footers—the number of
text body lines on the page is always the same (at least, it always has been in
testing). There are exceptions to this: it is possible to ask rmpage to position
a stdlength page on the paper in such a fashion that the text would end up
outside the printable region. In this case, rmpage will issue a warning and
reduce \textheight to fit inside the allowed area.

The parameters that define the available printing region along the
vertical axis are \RM@minheadclearance and \RM@minfootclearance.
The values of these \RM@...clearance parameters are set printer by
printer, and possibly paper-size by paper-size. rmpage ensure that they
are at least as large as either RM@mintopmargin or \RM@minbottommargin,
as appropriate.

If the particular combination of printer and paper has set the flag
\RM@jackup to be true, rmpage will lift the printing region to clear an
over-large non-printing margin at the bottom of the page. This is use-
ful for people with Hewlett-Packard inkjet printers. There is no similar
facility for automatically lowering the printing region or shifting it side-
ways. This is because a larger than expected space at the bottom of the
page is rarely a problem, but lower than normal or shifted sidedways is
usually a problem. These effects may be achieved, but you have to do it
by using options to have the specific effect you want.

Each printer option must define the commands:

\RM@ptrrportclear \RM@ptrlportclear \RM@ptrtportclear

\RM@ptrbportclear \RM@ptrrlandclear \RM@ptrllandclear

\RM@ptrtlandclear \RM@ptrblandclear \RM@ptrpostol

They define the non-printing clearances in landscape and portrait
orientation, and the assumed maximum positional error. Code can be

72

added in the \RM@PrinterPaperSettings hook to set particular clear-
ances for particular combinations of printer and paper (to cope with, for
example, the 19 mm non-printing margin at the bottom of an envelope
fed into an HP DeskWriter 520, which is much larger than the 15 mm
non-printing margin at the bottom of a normal bit of paper).

The beton package changes \baselineskip, but does so at the start
of the document, using the \AtBeginDocument hook provided by stan-
dard LATEX. rmpage needs to know what the \baselineskip of the main
document fount will be. To get round this problem, rmpage steals some
code from beton so it can set \baselineskip to the value it will have
after \AtBeginDocument. When the vertical page parameters have been
calculated, rmpage puts \baselineskip back to its initial value.

None of this happens unless you load the beton package, and specify
the beton option to rmpage. If you don’t want rmpage to use beton’s
\baselineskip, specify the nobeton option to rmpage. Note that you
must load the beton package before you load rmpage. Sorry.

6.2 \textwidth calculation

The way \textwidth is worked out is this: two different \textwidth ini-
tial guesses are calculated—one based on the width of a certain number
of characters allowed in each column, the other based on a certain frac-
tion of \paperwidth—and the smaller one is used as the basis for the final
\textwidth. The particular number of characters and fraction of \paperwidth
is set by the width option specified. The default normalwidth option gives
a character-based width very close to standard, but the paper-based width is
quite a bit larger than standard. This is only significant when rmpage uses
the paper-based width, as it usually does when you are printing on A5 paper.

The technique of choosing the smaller of two \textwidths: one based
on the number of characters, and the other based on the size of the
paper, was derived from the standard classes’ way of doing things—a
fixed width (different for each size) is compared to \paperwidth − 2 in,
and the smaller is used. The fixed width is different for each size; the
conventional classes use hardwired sizes, and the slides class uses 65/2×
width of (im).

rmpage asks for a normal text-based width based on the same number
of characters as the standard widths, and compares this to a paper-based
width that is calculated as 0.7138×\paperwidth. The fraction used gives
a larger \textwidth than the standard classes when typesetting on A5
paper, but a smaller \textwidth when typesetting large founts on A4
paper.

The normal character-based \textwidth calculated by rmpage is dif-
ferent to that calculated by the standard classes because the standard
classes round calculated dimensions down to the next lowest integer num-
ber of points. I think this is a mistake, because it introduces an unneces-
sary error in margin sizes, so rmpage doesn’t do it (unless you’re asking
for stdwidth, which does truncates the calculated value of \textwidth
only).

The special widths: oneinchmargins, halfinchmargins, and fullwidth,
all set the paper-based textwidth to a fixed value to leave the specified
amount of space either side, assuming that you have asked for centred
printing (fullwidth leaves no space).If you haven’t, the total space either

73

side will add up to what you’d expect, but you can get 1.5 in on one side,
and 0.5 in on the other, for example, if you’re using oneinchmargins.

stdwidth sets both the paper and character-based initial guesses to
the same value as the standard classes. If the selected initial \textwidth
value isn’t reduced, the result will be the same as the standard classes’
calculations (insert standard disclaimer here—not because I’m afraid
of being sued, but because I think you should check that the value of
\textwidth is what it should be if it’s really important. This is because
I think this is a complicated piece of software because TEX’s piggin’ awful
for doing maths, and I’ve not verified the algorithm to my own satisfac-
tion. I have tested it, and it appears to work the way I want, so that’ll
have to do for now.)

The first check ensures that this first guess is within the bounds of \RM@mintextwidth
or \RM@maxtextwidth. If it’s not, it’s made big or small enough.

If you’ve asked for characterwidthset, then the paper-based \textwidth

is set to a large value; similarly, if you’ve asked for paperwidthset, the
character-based \textwidth is set to a large value. If you’ve asked for an
inherently paper-based width like oneinchmargins, both the paper and
character-based \textwidths are set to the appropriate value. So if you
also ask for characterwidthset, rmpage will give you oneinchmargins

anyway, and a complaint.

Now the smallest of the two \textwidths is selected as the one to use for
real, and rmpage calculates \evensidemargin based on the requested offset—
the proportions in which the available horizontal space is divided between the
larger and smaller margins (see section 5.1.9 on page 52 for the details).

When rmpage checks \textwidth, it takes into account whether
you’re printing two sided or not. The checking code looks a bit compli-
cated, because there are two sets of limits that apply to the horizontal ex-
tent of the text: \RM@minrightclearance and \RM@minleftclearance;
and \RM@minoutsidemargin and \RM@mininsidemargin. rmpage looks
at the appropriate limits.

The \left and \right \minclearance parameters define the pos-
sible printing region, as set for the requested printer and paper combi-
nation; all text must fit inside these limits. The \inside and \outside

\minmargin parameters define the permitted extent of the main body
text, excluding marginal paragraphs. The \minmargin parameters are
defined to be 0pt by default; they were introduced so that I could write a
thesis class which had to ensure particular minimum margins to meet the
regulations. You can see how I used them in the \RM@AfterProcessOptions
hook definition in the configuration file.

If \evensidemargin is too small to allow the text to print on the page,
it is increased, and \textwidth decreased to maintain the requested offset
proportions.

Then the right-hand edge of \textwidth is checked to ensure that it is
within the allowed printing region. If it’s not, \textwidth is reduced. If so,
\evensidemargin must be increased to maintain the requested offset propor-
tions, and \textwidth reduced by the same amount to keep the right-hand
margin the same size.

74

If you’ve asked for \fullwidth, rmpage won’t attempt to retain the
offset proportions, nor will it issue as many warnings about decreasing
things to fit.

When that’s done, \oddsidemargin is set to the appropriate value: equal
to \evensidemargin if you’ve asked for one sided or centred printing; or
equal to the right-hand margin on an even-numbered page if you’re printing
two sided and not centred.

And finally, rmpage checks that the final value of \textwidth is still larger
than \RM@mintextwidth. If it’s not, rmpage can’t do anything about it, so
just issues an error message.

6.3 Hooks

There’s five hooks:

\RM@BeforeProcessOptions, \RM@AfterProcessOptions,
\RM@PrinterPaperSettings,
\RM@BeforeWidthSetting, \RM@AfterWidthSetting.

\RM@BeforeProcessOptions This hook is executed just before \ProcessOptions,
and before the \RM@donewithoptions flag has been set to true, so op-
tions which can only be specified in an \ExecuteOptions statement can
be requested.

\RM@AfterProcessOptions This hook is executed well after \ProcessOptions.
It is executed after most of the fiddling about prior to working out page
parameters has been done, just after the current class has been identified,
but before class-specific code is executed. This is the hook to use if you
want to add a new class: you should preferably set \RM@classtype with
a new option, declared either directly in the config file, or by using the
\RM@BeforeProcessOptions hook. Then put class-specific code in the
\RM@AfterProcessOptions hook; use the \RM@OnClassType command.

\RM@PrinterPaperSettings This hook is executed after the standard printer/paper
specific code has been executed. Use the \RM@OnPrinterType, \RM@OnPortraitPaperType,
\RM@OnLandscapePaperType, and \RM@OnPaperType commands here.

\RM@BeforeWidthSetting If you want to use a different file for width setting,
define \RM@widthsetter to be the name of the file in this hook. The
\RM@OnClassType command can be used to select which class this file
should be used for. This hook is executed after the \RM@OnClassType

command has been set by the standard code, and just before the width
setting file is loaded.

\RM@AfterWidthSetting This hook is executed on returning from the width
setting file. It’s here for æsthetic reasons.

75

6.4 Marginal paragraphs

There is more on setting the size of marginal paragraphs in section 6.7 on
page 77.

If you are going to use marginal notes in your document, ensure that
you specify \normalmarginpar or \reversemarginpar before loading rmpage.
This is because rmpage calculates the size of marginal paragraphs based on
the space available, and if rmpage thinks you’re going to put marginal notes
in the margin which is largest, and you really put them in the margin that is
smallest, it’ll get the calculation wrong and you’ll have marginal notes that
don’t fit on the page.

If you’re going to switch between \normalmarginpar and \reversemarginpar

in your document, select whichever one puts the marginal notes in the smallest
margin before you load rmpage. Messy, I know—sorry.

The standard LATEX classes, report and article, create marginal paragraphs
that are a fixed distance away from the text, with a minimum clearance from
the edge of the paper of 0.8in (one sided printing), or 0.4in (two sided printing),
and a maximum width of 2in.

rmpage says yah boo sucks to all this.

6.5 Dealing with different classes

rmpage gives each class a number; the number of the current class is stored
in the command \RM@classtype. Classes are detected in rmpage, and in the
config file. More than one class can have been loaded; the idea is that the first
loaded class is defined as the current class.

6.6 Different paper types and printers

rmpage knows about non-printing margins, and about different paper sizes and
orientations. Each printer has its own defined non-printing margins, which are
used to calculate the non-printing margins for each paper size.

The non-printing margins for the selected paper size are calculated and
stored in the commands:

\RM@minrightclearance \RM@mintopclearance

\RM@minleftclearance \RM@minbottomclearance

Each printer option must define nine commands so that rmpage can calcu-
late the non-printing margins for each paper size. These commands to define
the non-printing margins for each printer are:

Portrait orientation non-printing margins:
\RM@ptrrportclear right-hand side
\RM@ptrlportclear left-hand side
\RM@ptrbportclear bottom edge
\RM@ptrtportclear top edge
Landscape orientation non-printing margins: \RM@ptrrlandclearright-hand side

76

\RM@ptrllandclear left-hand side
\RM@ptrblandclear bottom edge
\RM@ptrtlandclear top edge
Assumed maximum positional error: \RM@ptrpostol

The \RM@ptrpostol command holds a length which is added to the \RM@minclearance
values right at the end of the non-printing margin calculations, after the
\RM@PrinterPaperSettings hook has been executed. Properly speaking,
there should be four of these: one for left-right error and one for up-down
error in both portrait and landscape orientation, but I think that one is prob-
ably adequate. The standard printer types set \RM@ptrpostol to 1 mm.

rmpage works out which printer clearance parameters to use as the non-
printing margins like this;

1. The flag \RM@portrait is set true if you are printing in portrait orien-
tation, false if you are printing landscape.

2. The flag \RM@portlandinvert is set true if you are using a long paper
size which reduces the length of the parent paper size to less than the
width of the parent paper size.

3. if (\RM@portrait and not \RM@portlandinvert)
or (not \RM@portrait and \RM@portlandinvert)

then use the portclear parameters

4. if (\RM@portrait and \RM@portlandinvert)
or (not \RM@portrait and not \RM@portlandinvert)

then use the landclear parameters

5. If you are using a long paper size that is greater than half the parent
size, set to 0 pt the non-printing margin at the edge where you cut the
parent size to create the long size (assumed to be either the right-hand
or bottom edge).

6. Execute the \RM@PrinterPaperSettings hook

7. Add the value of the command \RM@ptrpostol to the non-printing mar-
gins

6.7 Headers, footers, and marginal paragraphs

This section looks at how to control the size of the gap between the main
body text and: headers, footers, and marginal paragraphs, as well as the gap
between marginal paragraphs and the edge of the paper, the maximum width
of marginal paragraphs, and the gap between columns of text in a multiple-
column layout.

The details of how the size of marginal paragraphs is calculated are in
section 6.4 on page 76.

77

Some lengths used as page layout parameters are set to their final values
by the command:

\RM@scalebyoption{<length to be scaled>}{<option number>}

The <length to be scaled> is multiplied by a factor controlled the the
<option number>. The option number is set to 12 by default (which means
multiply by one), and is allowed to range from 1 to 23. The multipliers are
in a geometrical sequence from 0.3263 to 3.0646. The option least... sets
the option number to 3, and gives a multiplier of 0.4. The option most...

set the option number to 21, and gives a multiplier of 2.5. The touchmore...

and touchless... options add or subtract one from the option number, as
do the t@uchmore... and t@uchless... options (which are reserved for use
by class files).

These following lengths are scaled by option; the name of the counter
storing the controlling option number is given in each case.

1. \headsep—the gap between the top of the text and the box containing
the head. Controlled by \RM@headsepoption.

2. \footskip—the gap between the bottom of the text and the baseline
of the foot. rmpage scales the length (\footskip− \baselineskip), to
scale the apparent gap between the (assumed one line) footer and the
bottom of the text body. Controlled by \RM@footskipoption.

3. \columnsep—the gap between columns on a multi-column page (nothing
to do with tables). Controlled by \RM@columnsepoption.

4. \marginparsep—the gap between the text body and marginal para-
graphs. Controlled by \RM@mparsepoption.

5. \RM@mparclearance—the minimum gap between the edge of the paper
and marginal paragraphs. Controlled by \RM@mparclearoption.

6. \RM@maxmparwidth—the maximum width of marginal paragraphs. Con-
trolled by \RM@maxmparwidthoption.

The first four are standard LATEX lengths, and the only change rmpage

makes to them is with \RM@scalebyoption. The fifth and sixth lengths are
new parameters set by rmpage.

You can play about with all of these parameters by passing options to
rmpage.

If the spread of values given by the standard options isn’t enough, you can
say:

\setlength\columnsep{3\columnsep}

or some such in your preamble, before loading rmpage. This only works for
the standard LATEX parameters.

If you want to do something like this for \RM@mparclearance or \RM@maxmparwidth,
you can use the largebasemparclear or largebasemaxmparwidth options.
These multiply the corresponding parameter by 2 if it has not been set by a
configuration file.

78

Chapter 7

Configuring rmpage

The configuration file exists so you can tailor your installation of rmpage to
your preferences. Some obvious things to set are the default printer type, the
default paper type, the default date style, whether you want the inside or the
outside margin larger.

7.1 Setting up a new installation

rmpage will work entirely happily without local configuration, but you might
want to customize its behaviour, for example to speed it up. This chapter
explains how.

For the sake of compatibility with everyone else and future versions, please
keep the file rmpgen.cfg unchanged in your TEX search path, and make
changes only to a copy of one of the standard configuration files that came
with rmpage. I suggest you make a copy called rmplocal.cfg, from either
rmpgen.cfg (everything active) or rmplocal.gfc (fastest).

When you create your local configuration file, begin by doing two things:
add a comment on the top line identifying this file as yours; and change the
\ProvidesFile command to match the new name and identify the file as
yours—don’t forget to change the date and version number:

\ProvidesFile{rmplocal.cfg}

[1381/04/01 v0.1 Wat Tylers’s

local configuration file for the rmpage package.]

It’s okay to comment out and uncomment options, but don’t make any
other changes above the line in the configuration file that says: local code

below here please. I won’t complain if you do, but you’ll find it harder to
upgrade to new versions of rmpage.

7.2 Configuration basics

I assume that you have made a copy called rmplocal.cfg of either rmplocal.gfc
or rmpgen.cfg, and that you’ve changed the \ProvidesFile command. If
not, read the start of this chapter again. I will refer to rmplocal.cfg as the
config file in this chapter; there are other names a local configuation file might
have.

79

Please don’t change your config file above the line that says: local code

below here please. I won’t complain if you do, but you’ll find it harder to
upgrade to new versions of rmpage.

7.2.1 Unknown option error

If you are using a copy of rmplocal.gfc and LATEX complains about an un-
known option, edit your config file and uncomment the option you need. The
more options that are uncommented, the slower rmpage will work.

7.2.2 Default options

Look through your config file for the line change the command below to
match your local preferences. There’s an \ExecuteOptions statement
just below it. This statement sets your default options—my default settings
are below. I have a special printer type, because my printer is old, tired,
and out-of-spec; I usually print on A4 paper with a large inside margin so
I can put my printouts in a ring binder, and I like my dates like this: 5th
November 1996. You can change the argument of this statement to match your
preferences: if you’re an American with a LaserJet 4, replace the printer option
with lj4printer, change the paper type to letterpaper, and the date to
usdate. If most of your output goes in ring-binders, keep the notstdmargins

option; otherwise, change it to stdmargins to give a conventional large outside
margin.

%% CHANGE THE COMMAND BELOW TO MATCH YOUR LOCAL PREFERENCES

%% --

%%

\ExecuteOptions{R+R-dw520printer,a4paper,notstdmargins,nicedate}

%%

%% --

You can add almost any option you like to this statement: it sets the
defaults for everything you typeset with rmpage. Some of the options in
rmplocal have been commented out to speed things up, so you might need
to uncomment them to allow them to work. You can tell whether an option
needs uncommenting from the list of all the options in chapter 5 on page 45:
options that look like this: obscureoption are commented out; options that
look like this: usefuloption are not commented out. None of the options in
rmpage are commented out—you only need to edit the configuration file.

You can have additional default options for particular classes. Because the
options for particular classes are executed after the general defaults, they can
over-ride the general defaults. So it’s quite all right to say a4paper in the
ExecuteOptions statement above if you normally print out slides on B5 pa-
per, because the b5paper option executed later on will over-ride the original
a4paper option.

If you want different default options for different classes, or if you intend
to use the slides class, read the next section which explains all.

80

7.3 Configuring rmpage for particular classes

Just below the \ExecuteOptions statement which sets the global defaults,
there’s a section headed default options for particular classes. This
is the place intended for your class-specific default settings. rmpage provides
a command to do this:

\RM@OnClassExecuteOptions{<class name>}{<comma separated options>}

It’s just an \ExecuteOptions command that is only executed for the named
class. For example, my configuration file has the statement:

\RM@OnClassExecuteOptions{slides}

{centre,ukdate,R+R-dw520printer}

Which executes the given options only when I’m using the slides class. You
might like to change this statement to match your preferences.

You can have as many of these \RM@OnClassExecuteOptions statements
as you like, although one statement for each class is probably best. If you are
creating a class of your own, say a thesis class based on report, it’s probably
best to make sure that the default options for your thesis class are executed
after the default options for the report class. That way, the report class’s
defaults don’t over-ride your thesis class’s defaults.

If you want to create a new class with the help of rmpage, read section 7.6
on page 81 for more details.

7.4 Defining a new printer type

7.5 Dealing with particular combinations of printer
and paper

7.6 Telling rmpage about a new class

If you are going to define a new class type, there are two obvious ways of
doing it: either declare a new option which sets the \RM@classtype com-
mand to your new class number (above 100, please), or put a line in the
\RM@DefineNewClasses hook:

\DeclareOption{nuthesisclass}{\def\RM@classtype{101}}

or

\newcommand*{\RM@DefineNewClasses}{

\RM@SetClassType{nuthesis}{101}

}% endRM@DefineNewClasses

The advantage of not using an option is greater speed. The advantage of
using an option is that you can pass the option to rmpage, and be sure that
your particular settings are acted upon, even if you change the name of your
class.

You can set default options for a particular class in the config file: the
default options for particular classes section is for you to add:

81

\RM@ClassExecuteOptions{<class name>}{<options list>}

statements for each class you want to \ExecuteOptions for. make sure that
if you are building one class upon another (e.g., building nuthesis on report),
that you execute the options for the base class first (e.g., do report before
nuthesis).

The \RM@AfterProcessOptions hook is the ideal place to use the \RM@OnClassType
command to set up things for particular classes. You can set things like mini-
mum margins, maximum textwidth, and the like there. See the config file for
some examples.

7.6.1 Dealing with options

If you want to build a new class by modifying a standard class with the help
of rmpage, you need to think about what’s going to happen to options.

You can tell your new class, let’s call it the nuthesis class, to pass options
on to rmpage quite happily, by including a line:

\DeclareOption*{\PassOptionsToPackage{rmpage}

{\CurrentOption}}

in the option declaration section of your class file to pass all options you don’t
deal with to rmpage (not forgetting to say:

\ProcessOptions

...

\RequirePackage{rmpage}

later on).
The problem with this is that any options you have set up explicitly (for

example, you might have pass the wide option to rmpage to get a particular
\textwidth, and the user might have asked for narrow. Do you know which
one takes precendent?) might be over-ridden by the user.

The safest way to deal with this is to decide which of rmpage’s options you
will allow the user to use. You might stick with the

\DeclareOption*{\PassOptionsToPackage{rmpage}

{\CurrentOption}}

statement in your class file and prepare a special rmpage config file for your
new class, which has all other options commented out. If you call this config
file rmpage-nuthesis.cfg, include the line

\newcommand*{\RMconfigfile}{rmpage-nuthesis.cfg}

in your class file before loading rmpage. Or you might use:

\DeclareOption{<option name>}

{\PassOptionsToPackage{rmpage}{<option name>}}

to pass each allowed option on to rmpage, and ensure that you’re not passing
options to rmpage with \DeclareOption*.

If you have used rmpage to help you get printing dimensions right for a
fixed format and you don’t want the user to change anything, you might find it

82

best to set the various parameters directly in your class file, and forget about
using rmpage entirely. You can find out what they were set to by looking in
the log file; by the time I’ve released rmpage, everything that rmpage changes
damned well ought to be noted there, and if not you can curse me for a careless
fool, and specify the garrulous option to rmpage which will print everything
and then some in your TEX console window. Don’t try this if you’re going to
keep using rmpage to build your class—I have no idea what’ll happen.

7.6.2 Things you can do with your new class number

Changing textheight setting

You can define the command \RM@textheightgroup to any number you like.
It’s probably best to do this in the \RM@AfterProcessOptions hook.

Currently, the initial value of textheight is set by one of two blocks of code:
one is executed if \RM@textheightgroup is 0 (default); the other is executed
if \RM@textheightgroup is 1 (slides only).

If you set \RM@textheightgroup to anything other than 0 or 1 for any of
your classes, you will need to add some code to set textheight! Put your new
code in the \RM@BeforeTextheightSetting hook; have a look at rmpage to
see how I did it.

Changing textwidth setting

ALL THIS IS WRONG NOW!
You can also define the command \RM@widthsetter to be any filename you

like, using any of the hooks executed before the width setting code is used. If
the command is not defined just before the \RM@BeforeWidthSetting hook is
executed, it is defined to be rmpwnorm.pko (the extension stands for package
option). If the class type is 5 (slides), the command is then defined to be
rmpwslid.pko. This filename is the file loaded to set the various horizontal
parameters. By default, rmpwnorm.pko is loaded for all classes expect slides,
which uses rmpwslid. An example of this sort of thing is this fragment of
config file code:

\newcommand*{\RM@AfterProcessOptions}{

\RM@OnClassType{101}{% class 101 = nightmare university thesis class

% Use different textheight setting code to everything else.

\def\RM@textheightgroup{2}

% Set minimum margins as specified in the regulations.

% Everything else is done by the class file. These commands

% are defined to be 1742pt at the start of rmpage, so they

% can’t be set in the class file.

\def\RM@minoutsidemargin{15mm}

\def\RM@mininsidemargin{40mm}

\def\RM@mintopmargin{15mm}

\def\RM@minbottommargin{15mm}

% set minimum and maximum textwidth, as defined by the regs

\def\RM@mintextwidth{130mm}

\def\RM@maxtextwidth{160mm}

% load custom width setting code in file vulture-widths.jkl

\def\RM@widthsetter{vulture-widths.jkl}

}{}

}

83

%

%

%

\newcommand*{\RM@DefineNewClasses}{

\RM@SetClassType{rmcv}{20}

\RM@SetClassType{rmletter}{21}

\RM@SetClassType{bithesis}{22}

\RM@SetClassType{ljmueepexam}{23}

\RM@SetClassType{nuthesis}{101}

}% endRM@DefineNewClasses

%

%

% nightmare u. thesis uses fixed total text area height of 7in

\newcommand*{\RM@BeforeTextheightSetting}{

\RM@OnTextheightGroup{2}{%

\setlength\RM@totalheadfootclearance{\paperheight}

\addtolength\RM@totalheadfootclearance{-7in}

}

}% endRM@BeforeTextheightSetting

%

The code fragment above defines a new class type, nuthesis, number 101,
which is a class for preparing theses for Nightmare University. This class uses
textheight setting code that asks for a total text body height of as near to 7 in
as possible no matter what textheight options are specified, and horizontal text
parameters are set by the file called vulture-widths.jkl. The other limits
on the printing region specified by the university’s regulations are placed in
the \RM@AfterProcessOptions hook. What I have typed above is in addition
to any code which might be in those hooks anyway; don’t remove anything
unless you’ve got a good reason—who knows what might go wrong?

84

