
GeoAPI changes

TITLE: GeoAPI specific changes

AUTHORS: Martin Desruisseaux, Adrian Custer (Geomatys)
Jody Garnett, Cory Horner,
Graham Davis (Refractions Research)

DATE: June, 2007

CATEGORY: Change Proposal

Table of Contents
1. Background...2

1.1 Scope of this document...2
2. Contributors..3
3. References..3
4. Metadata...4

4.1 Return Collection <? extends Object>...4
4.2 Return Objects not primitives...8

5. Geometry (Spatial Schema)..11
5.1 Drop the spatialschema part in package name..11
5.2 Rename geometry.geometry package...12
5.3 Create geometry.PositionFactory...13
5.4 Add geometry.BoundingBox..14
5.5 Add geometry.Precision and geometry.PrecisionType..15
5.6 Add Geometry.getPrecision()...17
5.7 Create geometry.aggregate.AggregateFactory..17
5.8 Create geometry.complex.ComplexFactory...18
5.9 Add Envelope.getCoordinateReferenceSystem()..19
5.10 Modify geometry.coordinate.PointArray...20
5.11 Modify return type of Aggregate.getElements()..21
5.12 Modify return type of Complex.getElements()..22
5.13 Define equals(Object) and hashCode() in DirectPosition...23
5.14 Deprecate DirectPosition.clone()...24
5.15 Modify return types of SurfaceBoundary.getInteriors()...25

6. Referencing...27
6.1 Modify ProjectedCRS factory...27
6.2 Add convenience methods to MathTransformFactory..28

7. GO..30
7.1 Refactor GO enumerations..30

8. Filter..32
8.1 Extend the FilterFactory interface..32
8.2 BoundedSpatialOperator..34
8.3 Function.getParameters()..35

9. All packages..37
9.1 Replace the dependency to JSR-108 to a dependency to JSR-275..................................37

Page 1

1. Background

This document tracks the changes submitted since GeoAPI 2.0 release. The changes presented in
this proposal are intended to bring the GeoAPI interfaces back into close conformance with the
updated OGC Abstract Specifications. The last, and therefore current, release of the GeoAPI
library, version 2.0, was made on June 7th 2005. That release brought the GeoAPI interfaces into
conformance with OGC Abstract Specifications based on the ISO 19000 series of specifications
available at that time. Since then, several OGC Abstract Specifications have been updated. Also
in this same interval, several minor issues in the GeoAPI interfaces have been identified. It is
therefore desirable to update the GeoAPI interfaces.

The proposal presents two sets of modifications to the GeoAPI 2.0 Java interfaces. These
modifications would require small updates to the UML diagrams in the OGC GO-1
Implementation Specification document (03-064r10). These changes do not involve any changes
to the OGC Abstract Specifications themselves.

If accepted, the changes would lead to two new releases of the GeoAPI interface library,
tentatively numbered 2.1 and 2.2.

● GeoAPI 2.1 would include a series of minor modifications that are upward compatible for
interface users.

● GeoAPI 2.2 would include modifications that require changes in the source code of
interface users.

Note that in both cases, the changes are incompatible for implementors. It is close to impossible
to change an interface in the Java language without causing a compatibility break for
implementors. In this document, “compatibility” is always to be understood from the point of
view of interfaces users.

Known GeoAPI implementors include the GeoTools and JScience open source projects. The
former (GeoTools) already applied the proposed changes since our policy is to test the proposals
in at least one (ideally two) implementations before to bring them to OGC. The later (JScience)
implements only the “coordinate reference systems” part, which is probably the most stable
package in GeoAPI.

1.1 Scope of this document

This document presents changes that are GeoAPI extensions or address issues specific to the Java
language. The changes that aims only to bring GeoAPI into conformance with latest
specifications are presented in a separated document.

Page 2

2. Contributors

The following organizations (in alphabetical order) have contributed to GeoAPI development
through participation of individual employees:

● Axios Engineering
● Geomatys
● GeoSolutions
● Institut de Recherche pour le développement (IRD)
● Leica Geosystems Geospatial Imaging, LLC (LGGI)
● Refractions Research
● The Open Planning Project (TOPP)
● United States Forest Service (USFS)
● University of Applied Sciences Cologne

3. References

[1] GeoAPI interfaces: http://geoapi.sourceforge.net/2.0/javadoc

[2] ISO-19103: Conceptual schema language, revisions for 2003 and 2005

[3] ISO-19107: Feature geometry

[4] ISO-19111: Spatial referencing by coordinates, revisions 03-073r1 and 04-046r3

[5] ISO-19115: Geographic information – Metadata, revisions for 2003 and 2006

[6] OGC 03-064r10: GO-1 Application Objects

Every change proposed in this document has been applied to the “snapshot” javadoc which can be
browsed on-line here:

[7] http://geoapi.sourceforge.net/snapshot/javadoc/

Please note that not all interfaces in the above-cited javadoc are covered in this Request For
Changes.

Page 3

http://geoapi.sourceforge.net/2.0/javadoc
http://geoapi.sourceforge.net/snapshot/javadoc/

4. Metadata

4.1 Return Collection <? extends Object>

Enable Object-Relational mapping for frameworks like Hibernate by modifying the
constraint parameter of the return types from 'Collection <Object>' to 'Collection <?
extends Object>'
JIRA task: http://jira.codehaus.org/browse/GEO-94
JIRA task: http://jira.codehaus.org/browse/GEO-54

The use of Java Generics has a number of consequences depending on how and where they are
used. Through use we have discovered a number of subtle trade offs when combining Java
Collections with type narrowing.

In GeoAPI 2.0 we often made use of a return type of the form Collection<Identifier>. Java
type narrowing let's us further specify this relationship in a subclass to something more specific -
List<Identifier>. It does not however let us narrow the types of both the Collection and the
Element.

For GeoAPI 3.0 we propose changing the API in several places to be of the form Collection<?
extends Identifier>. With this syntax subclasses are free to narrow both the Collection type
and the element type – List<ReferenceIdentifier>.

The ability to type narrow the Collection and Element type is also available for implementations,
allowing them to hold their element type fixed if needed. So far implementations have found
reason to request this ability for reasons of mutability, persistence and event notification. We
must stress that this need resulted in the initial change request, the final decision is based on
allowing our interfaces to be as specific as possible.

4.1.1 Affected section(s), table(s), and figure(s)

The changes will not alter any specification documents.

4.1.2 Purposes of the proposed change

This is a compromise for facilitating metadata implementation using some frameworks like
Hibernate.

4.1.3 Reasons for change

This is a request from GeoAPI users who tried to implement metadata interfaces using the
Hibernate framework.

Page 4

http://jira.codehaus.org/browse/GEO-54
http://jira.codehaus.org/browse/GEO-94

4.1.4 Specific suggested changes

The constraint parameters in the return types of the following methods were changed from
'Collection <Type>' to 'Collection < ? extends Type>'

metadata.ExtendedElementInformation.getRationales()
returns Collection<? extends InternationalString>
not Collection<InternationalString>

metadata.ExtendedElementInformation.getSources()
returns Collection<? extends ResponsibleParty>
not Collection<ResponsibleParty>

metadata.MetaData.getSpatialRepresentationInfo()
returns Collection<? extends SpatialRepresentation>
not Collection<SpatialRepresentation>

metadata.MetaData.getReferenceSystemInfo()
returns Collection<? extends ReferenceSystem>
not Collection<ReferenceSystem>

metadata.MetaData.getMetadataExtensionInfo()
returns Collection<? extends MetadataExtensionInformation>
not Collection<MetadataExtensionInformation>

metadata.MetaData.getIdentificationInfo()
returns Collection<? extends Identification>
not Collection<Identification>

metadata.MetaData.getContentInfo()
returns Collection<? extends ContentInformation>
not Collection<ContentInformation>

metadata.Metadata.getDataQualityInfo()
returns Collection<? extends DataQuality>
not Collection<DataQuality>

metadata.MetaData.getPortrayalCatalogueInfo()
returns Collection<? extends PortrayalCatalogueReference>
not Collection<PortrayalCatalogueReference>

metadata.MetaData.getMetadataConstraints()
returns Collection<? extends Constraints>
not Collection<Constraints>

metadata.MetaData.getApplicationSchemaInfo()
returns Collection<? extends ApplicationSchemaInformation>
not Collection<ApplicationSchemaInformation>

metadata.MetadataExtensionInformation.getExtendedElementInformation()
returns Collection<? extends ExtendedElementInformation>
not Collection<ExtendedElementInformation>

metadata.PortrayalCatalogueReference.getPortrayalCatalogueCitations()
returns Collection<? extends Citation>
not Collection<Citation>

metadata.citation.Citation.getAlternateTitles()
returns Collection<? extends InternationalString>
not Collection<InternationalString>

metadata.citation.Citation.getDates()
returns Collection<? extends CitationDate>
not Collection<CitationDate>

metadata.citation.Citation.getIdentifiers()
returns Collection<? extends Identifier>
not Collection<String>

metadata.constraint.Constraints.getUseLimitation()
returns Collection<? extends InternationalString>
not Collection<InternationalString>

metadata.content.FeatureCatalogueDescription.getFeatureTypes()
returns Collection<? extends GenericName>
not Collection<GenericName>

metadata.content.FeatureCatalogueDescription.getFeatureCatalogueCitations()
returns Collection<? extends Citation>
not Collection<Citation>

metadata.distribution.DigitialTransferOptions.getOnLines()
returns Collection<? extends OnLineResource>
not Collection<OnLineResource>

Page 5

metadata.distribution.Distribution.getDistributionFormats()
returns Collection<? extends Format>
not Collection<Format>

metadata.distribution.Distribution.getDistributors()
returns Collection<? extends Distributor>
not Collection<Distributor>

metadata.distribution.Distribution.getTransferOptions()
returns Collection<? extends DigitalTransferOptions>
not Collection<DigitalTransferOptions>

metadata.distribution.Distributor.getDistributionsOrderProcesses()
returns Collection<? extends StandardOrderProcess>
not Collection<StandardOrderProcess>

metadata.distribution.Distributor.getDistributorFormats()
returns Collection<? extends Format>
not Collection<Format>

metadata.distribution.Distributor.getDistributorTransferOptions()
returns Collection<? extends DigitalTransferOptions>
not Collection<DigitalTransferOptions>

metadata.distribution.Format.getFormatDistributors()
returns Collection<? extends Distributor>
not Collection<Distributor>

metadata.extent.BoundingPolygon.getPolygons()
returns Collection<? extends Geometry>
not Collection<Geometry>

metadata.extent.Extent.getGeographicElements()
returns Collection<? extends GeographicExtent>
not Collection<GeographicExtent>

metadata.extent.Extent.getTemporalElements()
returns Collection<? extends TemporalExtent>
not Collection<TemporalExtent>

metadata.extent.Extent.getVerticalElements()
returns Collection<? extends VerticalExtent>
not Collection<VerticalExtent>

metadata.extent.SpatialTemporalExtent.getSpatialElements()
returns Collection<? extends GeographicExtent>
not Collection<GeographicExtent>

metadata.identification.DataIdentification.getSpatialResolution()
returns Collection<? extends Resolution>
not Collection<Resolution>

metadata.identification.DataIdentification.getExtent()
returns Collection<? extends Extent>
not Collection<Extent>

metadata.identification.Identification.getPointOfContacts()
returns Collection<? extends ResponsibleParty>
not Collection<ResponsibleParty>

metadata.identification.Identification.getResourceMaintenance()
returns Collection<? extends MaintenanceInformation>
not Collection<MaintenanceInformation>

metadata.identification.Identification.getGraphicOverviews()
returns Collection<? extends BrowseGraphic>
not Collection<BrowseGraphic>

metadata.identification.Identification.getResourceFormat()
returns Collection<? extends Format>
not Collection<Format>

metadata.identification.Identification.getDescriptiveKeywords()
returns Collection<? extends Keywords>
not Collection<Keywords>

metadata.identification.Identification.getResourceSpecificUsages()
returns Collection<? extends Usage>
not Collection<Usage>

metadata.identification.Identification.getResourceConstraints()
returns Collection<? extends Constraints>
not Collection<Constraints>

metadata.identification.Usage.getUserContactInfo()
returns Collection<? extends ResponsibleParty>

Page 6

not Collection<ResponsibleParty>
metadata.lineage.Lineage.getProcessSteps()

returns Collection<? extends ProcessStep>
not Collection<ProcessStep>

metadata.lineage.Lineage.getSources()
returns Collection<? extends Source>
not Collection<Source>

metadata.lineage.ProcessStep.getProcessors()
returns Collection<? extends ResponsibleParty>
not Collection<ResponsibleParty>

metadata.lineage.ProcessStep.getSources()
returns Collection<? extends Source>
not Collection<Source>

metadata.lineage.Source.getSourceExtents()
returns Collection<? extends Extent>
not Collection<Extent>

metadata.lineage.Source.getSourceSteps()
returns Collection<? extends ProcessStep>
not Collection<ProcessStep>

metadata.maintenance.ScopeDescription.getAttributes()
returns Set<? extends AttributeType>
not Set

metadata.maintenance.ScopeDescription.getFeatures()
returns Set<? extends FeatureType>
not Set

metadata.maintenance.ScopeDescription.getFeatureInstances()
returns Set<? extends FeatureType>
not Set

metadata.quality.DataQuality.getReports()
returns Collection<? extends Element>
not Collection<Element>

metadata.quality.Scope.getLevelDescription()
returns Collection<? extends ScopeDescription>
not Collection<ScopeDescription>

metadata.spatial.Georeferenceable.getParameterCitation()
returns Collection<? extends Citation>
not Collection<Citation>

metadata.spatial.GridSpatialRepresentation.getAxisDimensionsProperties()
returns List<? extends Dimension>
not List<Dimension>

metadata.spatial.VectorSpatialRepresentation.getGeometricObjects()
returns Collection<? extends GeometricObjects>
not Collection<GeometricObjects>

4.1.5 Consequences of the change

Implementors can return collections declaring more specific element types than the ones defined
by GeoAPI. In GeoAPI 2.0, it was considered an implementation detail to keep hidden from
users' eyes, but users argued that the flexibility to expose their implementation specific classes
was important.

Because of the nature of generic type implementation in Java (by “erasure”), this change is
invisible to users restricted to Java 1.4 like the Geotools and Geoserver communities. It is an
incompatible change for users of Java 1.5 and above like the uDig community, who will need to
update their code.

In practice, known users affected by this change have already updated their code on the basis of
GeoAPI milestones, because they are the same users that requested the change.

This change has a consequence on the future of metadata interfaces in GeoAPI: collections will
be read-only. In GeoAPI 2.0, it was possible to update a metadata element as we see below:

Page 7

citations.getIdentifiers().add("Some title");

GeoAPI 2.0 said nothing about whether or not the above was authorized; the door was kept open
for future GeoAPI specifications. With the proposed change this door will be closed, and the
above will no longer be possible. Some argued this is a good thing, since unmodifiable metadata
interfaces have some value. The way to create or update metadata would be left to implementor,
or to some future GeoAPI specification.

If this change is approved, it doesn't mean that metadata will never be modifiable in GeoAPI, but
that they will not be modifiable in the above way.

4.1.6 Consequences if not approved

The door for writable collections in metadata interfaces would be kept open for future GeoAPI
versions, but users of Hibernate or similar frameworks would have difficulties implementing
metadata interfaces and may be tempted to abandon GeoAPI.

Users who already took advantage of covariance with GeoAPI milestones would have to revert
their changes.

4.2 Return Objects not primitives

The return types of several methods have been altered from primitives (int, boolean) to
their object equivalents (Integer, Boolean) and Number return types have been altered
to Double.
JIRA task: http://jira.codehaus.org/browse/GEO-103

We suggest altering the return types of Number to Double, of some boolean to Boolean, and
of int to Integer.

In GeoAPI 2.0, we were accustomed to expressing mandatory attributes using Java primitive
types (e.g. int) and optional attributes by Java wrappers (e.g. Integer) because only the later
allow to return null for missing values. Some users considered this policy as a complication
compared to an uniform policy (everything as Java wrappers). In addition, it has been argued that
even if a missing mandatory attribute is not allowed according to ISO 19115, invalid or
incomplete metadata are common in the wild and GeoAPI should not block users and
implementors facing such an invalid metadata.

The changes from ISO 19115:2000 to ISO 19115:2003 brings another argument. Some
mandatory attributes in the previous ISO specification became optional in the latest one. When
using primitive types as in GeoAPI 2.0, such a change in the ISO specification forces us to
change the return type from primitive to wrapper, e.g. from int to Integer, which is an
incompatible change. Changing everything to wrappers would allow us to handle future ISO
19115 obligation changes (if any) in a more upward compatible way.

Users also requested that existing methods returning java.lang.Number should return
java.lang.Double for more straightforward matching with ISO 19115 and for allowing
introspection.

Page 8

http://jira.codehaus.org/browse/GEO-103

4.2.1 Affected section(s), table(s), and figure(s)

These changes should not have any effect on specification documents but will only alter the
realization of the specification in the Java Language.

4.2.2 Purposes of the proposed change

Provides a more uniform API, handle future ISO 19115 obligation changes (if any) without
compatibility break in method signature, admit the existence of invalid or incomplete metadata in
practice.

4.2.3 Reasons for change

This is a request from GeoAPI users.

4.2.4 Specific suggested changes

metadata.content.Band.getMaxValue() returns Double not Number.
metadata.content.Band.getMinValue() returns Double not Number.
metadata.content.Band.getPeakResponse() returns Double not Number.
metadata.content.Band.getScaleFactor() returns Double not Number.
metadata.content.Band.getOffset() returns Double not Number.
metadata.content.FeatureCatalogueDescription.isCompliant() returns Boolean not boolean.
metadata.content.ImageDescription.getIlluminationElevationAngle() returns Double not Number.
metadata.content.ImageDescription.getIlluminationAzimuthAngle() returns Double not Number.
metadata.content.ImageDescription.getCloudCoverPercentage() returns Double not Number.
metadata.content.ImageDescription.isRadiometricCalibrationDataAvailable() returns Boolean not boolean.
metadata.content.ImageDescription.isCameraCalibrationInformationAvailable() returns Boolean not boolean.
metadata.content.ImageDescription.isFilmDistortionInformationAvailable() returns Boolean not boolean.
metadata.content.ImageDescription.isLensDistortionInformationAvailable() returns Boolean not boolean.
metadata.distribution.DigitalTransferOptions.getTransferSize() returns Double not Number.
metadata.distribution.Medium.getDensities() returns Collection<Double> not Collection<Number>.
metadata.extent.GeographicExtent.getInclusion() returns Boolean not boolean.
metadata.extent.VerticalExtent.getMinimumValue() returns Double not double.
metadata.extent.VerticalExtent.getMaximumValue() returns Double not double.
metadata.identification.Resolution.getDistance() returns Double not double.
metadata.quality.QuantitativeResult.getValues() returns Collection<? extends Record> not double[]
metadata.spatial.Dimension.getDimensionSize() returns Integer not int.
metadata.spatial.Dimension.getResolution() returns Double not double.
metadata.spatial.GeometricObjects.getGeometricObjectCount() returns Integer not int.
metadata.spatial.GridSpatialRepresentation.getNumberOfDimensions() returns Integer not int.

4.2.5 Consequences of the change

This is an incompatible change. However Java 5 users will just need to recompile their code,
since autoboxing should handle wrappers transparently. The only exception is
QuantitativeResult.getValues(), which will requires users to update their code.

Note that known users of GeoAPI metadata interfaces already updated their code on the basis of a
GeoAPI milestone.

4.2.6 Consequences if not approved

GeoAPI metadata interfaces will remain fragile to eventual changes in ISO 19115 obligations.
Metadata interfaces will not face the reality of invalid metadata, and implementors will start using

Page 9

magic numbers as placeholders for missing values. Users who already updated their code will
need to revert their changes.

Page 10

5. Geometry (Spatial Schema)

NOTE: Because the first proposed change affects the names of all the objects in
the package and the second proposed change alters the name of a package used
in several places, this document adopts a naming scheme as if both of these
proposals had been accepted.

5.1 Drop the spatialschema part in package name

The package name org.opengis.spatialschema.geometry would
be shortened to org.opengis.geometry
JIRA task: http://jira.codehaus.org/browse/GEO- 110

A proposal has been made to drop the spatialschema portion of the package name. It is felt
that the spatialschema name unnecessarily lengthens the name of the package while providing
no tangible benefits.

5.1.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: section 6.5.2.

5.1.2 Purposes of the proposed change

The original idea for the naming was to group the geometry and the topological parts of ISO
19107 in the same hierarchical group. In the eventuality where GeoAPI would handle other
spatial schemata, the spatialschema name would enable GeoAPI to group all these alternatives
into one hierarchy.

However, the name is exceedingly long and no shorter, suitable alternative has been proposed.
This name is felt to be redundant with the “geometry” and “topology” subpackages, which are
considered sufficiently self-explaining. Also, new spatial schema other than ISO 19107 are not
expected to emerge in GeoAPI. Finally, a parent spatialschema package brings no benefit
from the Java language point of view since Java packages are not hierarchical. It may bring a
benefit from the documentation point of view, but the javadoc tool can performs the same
grouping without the need for a common parent package.

The change would benefit both implementors and users of the GeoAPI interfaces by shortening
the names of several of the core objects without information lost. It would also bring more
consistency to GeoAPI since no other package has a “fooschema” parent.

Only one implementation depending on the old (GeoAPI 2.0) naming scheme is known. This
implementation was created by Polexis and donated to the Geotools community, which already
applied the proposed name change. An other implementation was recently created by a Ph.D
student in Germany, who supported the name change and applied it as well. A third geometry

Page 11

http://jira.codehaus.org/browse/GEO-23
http://jira.codehaus.org/browse/GEO-23

framework to take into consideration is the Geoxygene project, but this project doesn't seem
active anymore and didn't reach the state where they would be implementing GeoAPI interfaces.

The proposers feel that it is still possible to apply this name change, because known
implementors are just starting their work on the geometry package. This is different than other
packages like referencing, which has had a stable implementation for two years. However if this
name change is not applied now, next year would probably be too late.

5.1.3 Reasons for change

The changes would make more compact and more readable code. It would eliminate the
redundancy provided by the “spatialschema.geometry” name juxtaposition and be more
consistent with the naming in other parts of GeoAPI project.

5.1.4 Specific suggested changes

The names of all the language elements in the org.opengis.spatialschema.geometry
namespace would be changed to the org.opengis.geometry namespace.

As a consequence:

● The package declaration in all of the files in the package would have to be changed.

● The import statements for all of files relying on interfaces in this package would have to
be renamed.

● The {@link} and {@see} Javadoc tags would have to be altered.

5.1.5 Consequences of the change

Both implementors and users would have to refactor a large portion of their code, although the
refactoring is simple and can be performed quickly by a sed command or a Ant script. Known
implementors and users impacted by this change include: GeoTools, GeoServer, uDig and
undisclosed users who gave their opinion on the mailing list. All the above-cited implementors
and users applied the change in their development branches.

5.1.6 Consequences if not approved

The old naming scheme would be retained. Above-cited implementors and users would have to
revert the changes in their development branch.

5.2 Rename geometry.geometry package

Change the package name which previously was spatialschema.geometry.geometry to
geometry.coordinate.
JIRA task: http://jira.codehaus.org/browse/GEO-110

Page 12

http://jira.codehaus.org/browse/GEO-110

The proposal suggests changing the name of the geometry.geometry sub-package to
geometry.coordinate for eliminating the redundancy and for consistency with the
“coordinate geometry package” name of section 6.4 in ISO 19107.

5.2.1 Affected section(s), table(s), and figure(s)

This change has no effect on any specification documents.

5.2.2 Purposes of the proposed change

The “geometry.coordinate” name echoes the notion of geometric constructions based on
coordinates. It reflects the “coordinate geometry package” (6.4) section of ISO 19107.

5.2.3 Reasons for change

The “geometry.geometry” nomenclature was felt to be redundant and confusing for users

5.2.4 Specific suggested changes

● Change the “geometry.geometry” package name to “geometry.coordinate”.

● Update all javadoc tags and import statements in the source code.

This change can be done automatically together with the removal of the “spatialschema”
name with the same Ant script.

5.2.5 Consequences of the change

The changes clarify a possibly confusing “geometry.geometry” nomenclature. Impact on
implementors and users is the same as for 5.1.5.

5.2.6 Consequences if not approved

The older, possibly confusing, nomenclature will remain. Impact on implementors and users is
the same as for 5.1.6.

5.3 Create geometry.PositionFactory

Concise description of the proposed change
JIRA task: http://jira.codehaus.org/browse/GEO-37

GeoAPI 2.0 creates DirectPosition objects using GeometryFactory but
DirectPositions are not geometry objects.

For 2.1, a new factory, PositionFactory, is proposed and the two methods which return
DirectPositions in geometry.coordinate.GeometryFactory have been deprecated.

Page 13

http://jira.codehaus.org/browse/GEO-37

5.3.1 Affected section(s), table(s), and figure(s)

These changes have no effect on the specification documents.

5.3.2 Purposes of the proposed change

The changes should provide a more straightforward mapping between class hierarchy and the
factory to use.

5.3.3 Reasons for change

This is a user request. GeometryFactory was felt to be the wrong place to hold creation
methods for DirectPositions.

5.3.4 Specific suggested changes

Add PositionFactory interface in the same package than the one that defines
DirectPosition. This interface contains the DirectPosition constructors previously
defined in GeometryFactory.

Deprecate DirectPosition constructors in geometry.coordinate.GeometryFactory.

5.3.5 Consequences of the change

Users will need to update their code. However they can wait as long as the deprecated methods
are not removed.

5.3.6 Consequences if not approved

Users would still feel that DirectPositions are created in the wrong factory.

5.4 Add geometry.BoundingBox

Add a BoundingBox interface as a specialization of Envelope in the 2D case.
JIRA task: http://jira.codehaus.org/browse/GEO-113

Add a BoundingBox interface as a sub-interface of Envelope specialized in the 2D case. This is
a convenience interface bringing no new functionalities. This is a request from GeoAPI users
wanting a simple equivalence for the BBOX WKT construct. This is also useful for alignment with
Filter and WFS specifications.

5.4.1 Affected section(s), table(s), and figure(s)

none.

Page 14

http://jira.codehaus.org/browse/GEO-113

5.4.2 Purposes of the proposed change

Provide a simple front end to Envelope in the 2D case, similar to BBOX.

5.4.3 Reasons for change

This is a user request.

5.4.4 Specific suggested changes

We suggest to add an interface as the one in the diagram below, as an Envelope sub-interface.
Note that every methods in the proposed BoundingBox match exactly the equivalent method in
java.awt.geom.Rectangle2D, so an other way to see BoundingBox is as a junction point
between OGC Envelope and J2SE Rectangle2D.

5.4.5 Consequences of the change

This is a compatible change.

5.4.6 Consequences if not approved

GeoAPI users will continue to use Envelope, which is slightly less convenient in the 2D case.
They are likely to write their own BoundingBox interface.

5.5 Add geometry.Precision and geometry.PrecisionType

Geometry implementors requested a way to specify the underlying precision of a
geometry.
JIRA task: http://jira.codehaus.org/browse/GEO-106

Implementation of topological operations need to know the precision of coordinate points stored
in a geometry. GeoAPI exposes every coordinate as a IEEE 754 double precision floating point
number. If a geometry use single precision floating point numbers, a widening conversion is
performed (note: this is the same approach used by Java2D). However, some topological

Page 15

http://jira.codehaus.org/browse/GEO-106

operations may produce erroneous results if they performed their calculation in double precision
while the precision in the underlying geometry was simple precision.

5.5.1 Affected section(s), table(s), and figure(s)

None.

5.5.2 Purposes of the proposed change

Allows a more reliable implementation of topological operations.

5.5.3 Reasons for change

This is a requirement from geometry implementors. This suggestion is based on the experience of
JTS (Java Topology Suite) implementors.

5.5.4 Specific suggested changes

Add the following code list and interface (note that PrecisionType extends CodeList and
consequently implements Comparable):

5.5.5 Consequences of the change

This is a compatible change.

5.5.6 Consequences if not approved

Geometry implementors may miss an important piece of information for implementing
topological operations.

Page 16

5.6 Add Geometry.getPrecision()

Add the method getPrecision() to the interface geometry.Geometry
JIRA task: http://jira.codehaus.org/browse/GEO-107

Geometries need a precision model to guide the accuracy of topology operations. In order to
easily and publicly get that model, a getPrecison() method is needed.

5.6.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: section 6.4, Figure 13

5.6.2 Purposes of the proposed change

The purpose of this change is to provide a method for developers to get the precision model used
for a geometry's topology operations.

5.6.3 Reasons for change

The is currently no way for developers to publicly get the precision model for a Geometry.

5.6.4 Specific suggested changes

The proposed changes for Geometry are:

● make method getPrecision()

5.6.5 Consequences of the change

This change will not break any existing code as it is only adding functionality.

5.6.6 Consequences if not approved

If not approved, developers will have no public method for fetching the precision model of a
Geometry.

5.7 Create geometry.aggregate.AggregateFactory

Add a factory for the aggregate interfaces.
JIRA task: http://jira.codehaus.org/browse/GEO-114

GeoAPI 2.0 defines some aggregate interfaces from ISO 19107, but did not provide any
constructors for them. The AggregateFactory interface would provide these constructors.

Page 17

http://jira.codehaus.org/browse/GEO-114
http://jira.codehaus.org/browse/GEO-107

5.7.1 Affected section(s), table(s), and figure(s)

None.

5.7.2 Purposes of the proposed change

Provides constructors for the aggregate interfaces.

5.7.3 Reasons for change

There is no constructor for aggregate interfaces in GeoAPI 2.0.

5.7.4 Specific suggested changes

Add AggregateFactory interface in the same package as the one that defines Aggregate.
This interface contains methods that create and return Aggregates such as MultiPrimitive,
MultiPoint, MultiCurve, and MultiSurface.

All aggregates created through this interface will use the getCoordinateReferenceSystem
factory's coordinate reference system.

5.7.5 Consequences of the change

This is a compatible change.

5.7.6 Consequences if not approved

Users will have no way to create aggregate objects without relying to implementation-specific
code.

5.8 Create geometry.complex.ComplexFactory

Add a factory for the complex interfaces.
JIRA task: http://jira.codehaus.org/browse/GEO-115

GeoAPI 2.0 defines some complex interfaces from ISO 19107, but did not provide any
constructors for them. The ComplexFactory interface would provide these constructors.

5.8.1 Affected section(s), table(s), and figure(s)

None.

5.8.2 Purposes of the proposed change

Provides constructors for the complex interfaces.

Page 18

http://jira.codehaus.org/browse/GEO-115

5.8.3 Reasons for change

There is no constructor for complex interfaces in GeoAPI 2.0.

5.8.4 Specific suggested changes

Add ComplexFactory interface in the same package as the one that defines Complex. This
interface contains methods that create and return Complexes such as CompositeCurve,
CompositePoint, and CompositeSurface.

All complexes created through this interface will use the getCoordinateReferenceSystem()
factory's coordinate reference system.

5.8.5 Consequences of the change

This is a compatible change.

5.8.6 Consequences if not approved

Users will have no way to create complex objects without relying to implementation-specific
code.

5.9 Add Envelope.getCoordinateReferenceSystem()

Add a getCoordinateReferenceSystem() convenience method in Envelope

JIRA task: http://jira.codehaus.org/browse/GEO-116

Experience in the Geotools project suggests that fetching an Envelope CRS is a common
operation. This information is currently available indirectly through the direct position returned
by getLowerCorner() or getUpperCorner(). There is no unique or privileged path.
Paranoiac users check both the lower and upper corners CRS for making sure that they agree. On
some implementations, indirect paths may have the cost of a temporary DirectPosition object
creation. We suggest to add a getCoordinateReferenceSystem() convenience method in
Envelope for providing a direct way to fetch this frequently used information.

5.9.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: figure 19.

5.9.2 Purposes of the proposed change

Mostly convenience. The proposed change add no new functionality.

Page 19

http://jira.codehaus.org/browse/GEO-116

5.9.3 Reasons for change

Experience in the Geotools project suggests that working with envelopes frequently involve
fetching the envelope CRS.

5.9.4 Specific suggested changes

We propose to add the getCoordinateReferenceSystem() method in the Envelope
interface.

5.9.5 Consequences of the change

GeoAPI implementors would be required to add the above-cited method in their implementations
(even if they choose to return a null value). No action needed for GeoAPI users.

5.9.6 Consequences if not approved

No blocker consequences since the proposed addition is only a convenience method. Paranoid
users will continue to check both the lower and upper corner CRS.

5.10 Modify geometry.coordinate.PointArray

The PointArray interface should be made to extend List<Position> and the access
rules to several methods should be changed.
JIRA task: http://jira.codehaus.org/browse/GEO-108

Some users want that the interface geometry.coordinate.PointArray extends List<Position>
directly rather than providing a method to return a List<Position> often backed by itself. The
methods get(int,DirectPosition) and set(int,DirectPosition) would be renamed
getDirect(…) and setDirect(…) respectively in order to avoid confusion with the get and
set(int,Position) method inherited from List<Position>.

5.10.1 Affected section(s), table(s), and figure(s)

The changes will have no effect on the specification documents.

5.10.2 Purposes of the proposed change

The purpose of the change is to allow PointArray to implement the Java Collection interfaces
in a more direct way.

5.10.3 Reasons for change

Ease of use for developers familiar with the Java collections API. This is a user request.

Page 20

http://jira.codehaus.org/browse/GEO-108

5.10.4 Specific suggested changes

The changes proposed in PointArray are:

● Make PointArray a List<Position>

● rename method get(…) to getDirectPosition(…). Deprecate the old method.
● rename method set(…) to setDirectPosition(…). Deprecate the old method.

● deprecate method length()
● deprecate method positions()

● un-deprecate method getDimension()

● declare method setDirect() to throw UnsupportedOperationException

5.10.5 Consequences of the change

This is a compatible change.

5.10.6 Consequences if not approved

If not approved, client code will continue to use Java collection in a more indirect way through
the PointArray.positions method.

5.11 Modify return type of Aggregate.getElements()

Modify the return type of geometry.aggregate.Aggregate.getElements()
JIRA task: http://jira.codehaus.org/browse/GEO-117

The method getElements() in geometry.aggregate.Aggregate should return Set<?
extends Geometry> rather than Set<Geometry>.

5.11.1 Affected section(s), table(s), and figure(s)

None.

5.11.2 Purposes of the proposed change

Java 5 allows method return types to be collections of any type that is extended by the same
interface. The purpose of this change is to allow aggregates to expose in their API the restrictions
that a particular aggregate may impose on Geometry types.

5.11.3 Reasons for change

The reason for this change is to allow developers to create their own implementations of objects
that extend Geometry and expose them in their Aggregates API. This change also allows

Page 21

http://jira.codehaus.org/browse/GEO-117

developers to properly type narrow. Developers will be able to properly specify the type of
geometry when sub typing.

5.11.4 Specific suggested changes

The changes proposed in Aggregate are:

● change return type of method getElements() from Set<Geometry> to Set<?
extends Geometry>

5.11.5 Consequences of the change

This change will not affect Java 4 users. Java 5 users may need to update their code.

5.11.6 Consequences if not approved

If this change is not approved, developers will not be able to narrow the geometry type allowed
for a particular Aggregates.

5.12 Modify return type of Complex.getElements()

 Modify the return type of the method geometry.complex.Complex.getElements()
JIRA task: http://jira.codehaus.org/browse/GEO-118

The method getElements() in geometry.aggregate.Aggregate should return
Collection<? extends Primitive> rather than Set<Primitive>.

5.12.1 Affected section(s), table(s), and figure(s)

None.

5.12.2 Purposes of the proposed change

Java 5 allows method return types to be collections of any type that is extended by the same
interface. The purpose of this change is to allow aggregates to expose in their API the restrictions
that a particular complex may impose on Primitive types.

5.12.3 Reasons for change

The reason for this change is to allow developers to create their own implementations of objects
and expose them in their Complexes API. This change also allows developers to properly type
narrow. Developers will be able to properly specify the type of primitive when sub typing.

5.12.4 Specific suggested changes

The changes proposed in Complex are:

Page 22

http://jira.codehaus.org/browse/GEO-118

● change return type of method getElements() from Set<Primitive> to
Collection<? extends Primitive>

5.12.5 Consequences of the change

This change will force older code to be updated to accept the new return type of a Collection
instead of a Set.

5.12.6 Consequences if not approved

If this change is not approved, developers will not be able to narrow the primitive type allowed
for a particular Complexes.

5.13 Define equals(Object) and hashCode() in DirectPosition

Define equals(Object) and hashCode() methods in DirectPosition.
JIRA task: http://jira.codehaus.org/browse/GEO-119

Document how the equals(Object) method in DirectPosition should perform the test for
equality, in order to allow comparisons of direct positions from different implementations.
Document how the hashCode() method should compute its value for consistency with the
equals definition.

The equals(Object) and hashCode() methods are inherited for all Java objects, including
interfaces. Consequently the addition of those methods in the DirectPosition interface make
no difference on an API point of view. The only purpose is to document how those methods
should perform their tests. If such documentation is not provided, implementors are free to
implement those methods as they wish. This works well as long as users compare only
DirectPosition instances backed by the same implementation, but leads to problems when
comparing instances from different implementations: incomparable objects at best, violation of
Object.equals contract (symmetry, transitivity...) at worst.

The Java Collection framework face the same issue and address it through detailed specifications
of equals(Object) and hashCode() in Collection, Set and List interfaces. We propose a
similar approach for DirectPosition.

5.13.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: section 6.4.1.1, Figure 14

5.13.2 Purposes of the proposed change

Allow DirectPosition comparison to work properly across different implementations.

5.13.3 Reasons for change

In GeoAPI 2.0, developers can not assume that two DirectPositions are comparable if they
are not backed by the same implementation. Experience suggests that users need to handle
various implementations of DirectPosition in the same application.

Page 23

http://jira.codehaus.org/browse/GEO-119

5.13.4 Specific suggested changes

Document equals(Object) as below:

Compares this direct position with the specified object for equality. Two direct positions
are considered equal if the following conditions are meet:

● object is non-null and is an instance of DirectPosition

● Both direct positions have the same number of dimension

● Both direct positions have the same or equal coordinate reference system

● For all dimension i, the ordinate value of both direct positions at that dimension
are equals in the sense of java.lang.Double.equals(Object). In other
words, java.util.Arrays.equals(getCoordinates(), object.getCoordinates())
returns true.

Document hashCode() as below:

Returns a hash code value for this direct position. This method should returns the same
value as: java.util.Arrays.hashCode(getCoordinates()) +
getCoordinateReferenceSystem().hashCode() where the right hand side of the
addition is omitted if the coordinate reference system is null.

5.13.5 Consequences of the change

This is a compatible change since it doesn't bring any API change. Implementors will need to
review their equals(Object) and hashCode() implementations.

5.13.6 Consequences if not approved

If not approved, DirectPosition are not likely to be comparable between different
implementations. Users that need to compare different implementations of DirectPosition
while need to write their own code.

5.14 Deprecate DirectPosition.clone()

The clone() method in geometry.DirectPosition should be deprecated.
JIRA task: http://jira.codehaus.org/browse/GEO-109

The clone() method should be removed and the Cloneable status of the interface should be
left to implementors. Users should use PositionFactory instead.

5.14.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: section 6.4.1.1, Figure 14

Page 24

http://jira.codehaus.org/browse/GEO-109

5.14.2 Purposes of the proposed change

Implementations of DirectPosition should not be forced to allow cloning. The Cloneable
status of a DirectPosition should be left to implementors.

5.14.3 Reasons for change

This is a user request. Some DirectPosition implementations are not amenable to a cloneable
status. For example DirectPositions obtained from an ArrayList are often thin wrapper
backed by the array list. Cloning such DirectPosition will not create a copy as most users
would expect, since the clone would still be backed by the same array list. It would be possible to
define the clone() method in such a way that it returns a different implementation not backed
by the array list, but some users found such approach counter-intuitive.

So the proposal is to let the cloneable status to implementor choice. The functionality would be
replaced by the use of PositionFactory, a more versatile alternative allowing transformation
into alternate representations.

5.14.4 Specific suggested changes

The suggested changes to DirectPosition are:

● deprecate the method clone()

5.14.5 Consequences of the change

Old code that uses the clone() method will still work, but the developers will become aware of its
deprecated status so they can remove the dependency and implement it how they see fit.

5.14.6 Consequences if not approved

Some DirectPosition implementations will implement the clone() method in a way that
some users find counter-intuitive.

5.15 Modify return types of SurfaceBoundary.getInteriors()

The return type of the method getInteriors() in the interface
geometry.primitive.SurfaceBoundary should be List<Ring> rather than Ring[]
JIRA task: http://jira.codehaus.org/browse/GEO-65

The method getInteriors() should return a paramatrized List of Ring objects rather than an
array of Ring objects.

5.15.1 Affected section(s), table(s), and figure(s)

None.

Page 25

http://jira.codehaus.org/browse/GEO-65

5.15.2 Purposes of the proposed change

The purpose of this change is to conform with the rest of the GeoAPI which returns collections,
this method should also return a type of collection.

5.15.3 Reasons for change

This is a user request in order to conform with the rest of the GeoAPI methods.

5.15.4 Specific suggested changes

The proposed changes for SurfaceBoundary are:

● update the getInteriors() return type

5.15.5 Consequences of the change

This change will break old code until they update the return type to expect a list instead of an
array.

5.15.6 Consequences if not approved

No code will be broken. SurfaceBoundary.getInteriors() will still slightly inconsistent
compared to the rest of GeoAPI.

Page 26

6. Referencing

6.1 Modify ProjectedCRS factory

Provides a better way to instantiate ProjectedCRS using factories
JIRA task: http://jira.codehaus.org/browse/GEO-61

The current factory methods for creating ProjectedCRS and DerivedCRS instances are uneasy
and not in phase with the ISO 19111 spirit. They were an unsuccessful attempt to avoid a
“chicken and egg problem”: SC_DerivedCRS need a CC_Conversion, and it would have been
nice for user convenience (although not required by ISO 19111, as discussed in C.4.2.
“Coordinate conversions”) that the CC_Conversion.targetCRS association point toward the
SC_DerivedCRS instance.

We propose to replace (deprecate now, remove later) the current createProjectedCRS(…) and
createDerivedCRS(…) methods by 3 new ones modeling ISO 19111 in a more straightforward
way:

• One method for creating a defining conversion.
• One method for creating a projected CRS from a defining conversion
• One method for creating a derived CRS from a defining conversion.

6.1.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: figure 23, 24.

6.1.2 Purposes of the proposed change

• To make the factory API (for creating instances of various ISO 19111 objects) more
straightforward to users familiar with ISO 19111.

• More freedom for both users and implementers, since the creation steps (defining
conversion first, projected CRS next) would be more explicit.

6.1.3 Reasons for change

The current factory API is reasonably straightforward for all ISO 19111 objects except
DerivedCRS and ProjectedCRS (because of their dependence toward a Conversion object).
Numerous emails on the Geotools mailing list show that users have a hard time creating
ProjectedCRS instances.

This proposal is the result of suggestions sent by Geotools users, and has been tested in the
Geotools implementation.

Page 27

http://jira.codehaus.org/browse/GEO-61

6.1.4 Specific suggested changes

Deprecate all current createDerivedCRS(…) and createProjectedCRS(…) methods in
CRSFactory. Add the following method in CoordinateOperationFactory:

• createDefiningConversion(Map properties,
 OperationMethod method,
 ParameterValueGroup parameterValues);

Add the following methods in CRSFactory:

• createProjectedCRS(Map properties,
 GeographicCRS baseCRS,
 Conversion conversionFromBase,
 CartesianCS cs);

• createDerivedCRS (Map properties,
 CoordinateReferenceSystem baseCRS,
 Conversion conversionFromBase,
 CoordinateSystem cs);

6.1.5 Consequences of the change

Deprecation of 2 existing methods in CRSFactory and addition of 3 new methods. Users who
were using the deprecated methods will need to switch to the new ones. However (based on
feedback on mailing lists), we expect that some users already avoided direct usage of the 2
existing methods anyway.

6.1.6 Consequences if not approved

Some users will continue to avoid direct use of CRSFactory.createProjectedCRS(…)
method, and will continue to use implementation-specific workarounds.

6.2 Add convenience methods to MathTransformFactory

MathTransformFactory.createBaseToDerived(...)
MathTransformFactory provides a createParameterizedTransform(...) method for
the creation of an arbitrary transform, including projections. Users are responsible for handling
units conversions and axis order. In the projection case, the handling of (latitude, longitude) axis
order caused a considerable amount of confusion. See:

http://docs.codehaus.org/display/GEOTOOLS/The+axis+order+issue

Experience in the GeoTools community suggests that improper axis order in user's CRS still a
frequent error. We propose the addition of a convenience method handling performing the
createParameterizedTransform work with the addition of unit conversions and axis order
handling. In addition of the parameters to be given to the parameterized transform, this
convenience method expect a baseCRS and a derivedCS that can be used for the creation of
affine transforms to be concatenated with the parameterized transform.

Page 28

http://docs.codehaus.org/display/GEOTOOLS/The+axis+order+issue

6.2.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: section 6.4.2.7.

6.2.2 Purposes of the proposed change

Help users to avoid the most frequent error seen on mailing lists.

6.2.3 Reasons for change

The axis order issue has been a source of considerable confusion, and a large fraction of users
don't handle axis order correctly. This convenience method may help to reduce the occurrence of
wrong axis order in projections.

6.2.4 Specific suggested changes

Add a method with the following signature:

createBaseToDerived(CoordinateReferenceSystem baseCRS,
 ParameterValueGroup parameters,
 CoordinateSystem derivedCS);

Also add the following method, applicable to both createParameterizedTransform and
createBaseToDerived. It make creation of ProjectedCRS and DerivedCRS easier:

OperationMethod getLastMethodUsed();

6.2.5 Consequences of the change

GeoAPI implementors would be required to add the above-cited method in their implementations.

6.2.6 Consequences if not approved

Axis order is likely to stay a main source of errors.

Page 29

7. GO

7.1 Refactor GO enumerations

Bring GO package enumerations into conformance with the rest of the GeoAPI
CodeList classes by (1) making the enumeration classes final, (2) parametrizing the
enumerations when they are used in the style classes, and (3) altering a few methods as
appropriate for the enumeration system.
JIRA task: none

The GeoAPI enumeration system follows a consistent pattern but the GO package in GeoAPI 2.0
did not conform to this system. We propose to alter the GO package to conform to this system.

7.1.1 Affected section(s), table(s), and figure(s)

This change does not affect any specification documents.

7.1.2 Purposes of the proposed change

Implementors and users will benefit from a more consistent system for the use of enumerations in
the GeoAPI interface library.

7.1.3 Reasons for change

The GO package was confusingly different from the rest of the GeoAPI library.

7.1.4 Specific suggested changes

We propose to modify the enumerations in the go.spatial packages:
 go.spatial.GlobalPathType
 go.spatial.UnprojectedPathType
 go.spatial.VectorPathType
to be final.

We propose to modify the constructors of the classes in the go.spatial package:
 go.spatial.GlobalPathType
 go.spatial.UnprojectedPathType
 go.spatial.VectorPathType
and in the go.display.style package
 go.display.style.DashArray
 go.display.style.LinePattern
to match the enumeration system.

Page 30

We propose to modify the classes in the go.display.style package which use
util.SimpleEnumerationType to parameterize the type of the enumeration.

We propose to add the methods values() and family() to several classes in order to conform
with the GeoAPI enumeration system. We wish to add:
 go.spatial.GlobalPathType.values()
 go.spatial.GlobalPathType.family()
 go.spatial.PathType.values()
 go.spatial.PathType.family()
 go.spatial.UnprojectedPathType.values()
 go.spatial.UnprojectedPathType.family()
 go.spatial.VectorPathType.values()
 go.spatial.VectorPathType.family()

We propose to deprecate, then drop in the subsequent revision of GeoAPI, the method
go.display.style.YAnchor.getNumberOfStyles() since it duplicates the information
available from the already existing values().length.

7.1.5 Consequences of the change

This is a compatible change. The changes will make the go package conform better to the
GeoAPI CodeList enumeration system.

7.1.6 Consequences if not approved

The GO package would retain distinct semantics in the use of enumerations when compared to
the rest of GeoAPI.

Page 31

8. Filter

8.1 Extend the FilterFactory interface

Create the FilterFactory2 interface which extends the FilterFactory interface to
support SFSQL type queries and to create an easier BoundingBox system than that
adopted by the specification.
JIRA task: http://jira.codehaus.org/browse/GEO-121

We propose a new interface, the FilterFactory2 interface to extend the Filter system beyond
the support for the Common Catalog Query Language (CQL) required by the specification to also
support queries in the Simple Features for SQL (SFSQL) format. As proposed,
FilterFactory2 also provides smoother support for BoundingBoxes than that proposed by
the Filter Encoding specification.

The new FilterFactory2 interface also restores the symmetrical treatment of operations which
was present in GeoAPI 2.0. The format of operations in the 1.1 specification implies the
operation follows the form

PropertyName OPERATION Expression

but this does not always work out for users . Sometimes, what users want is something like

BUFFER(propertyName) OPERATION Expression

which was possible in GeoAPI 2.0 and is restored by FilterFactory2. The new interface
would restore these spatial operators.

8.1.1 Affected section(s), table(s), and figure(s)

These changes do not effect any specification document but, instead, extend the Filter
specification adding support for similar constructs in different formats.

8.1.2 Purposes of the proposed change

The changes provide greater flexibility to users of the GeoAPI interfaces by extending the Filter
system to cover the older but popular SFSQL language. This means users can mix SFSQL and
CQL statements.

8.1.3 Reasons for change

SFSQL is still widely used.

Page 32

http://jira.codehaus.org/browse/GEO-121

8.1.4 Specific suggested changes

Provide FilterFactory2 interface with the methods illustrated below:

Page 33

8.1.5 Consequences of the change

This is a compatible change.

8.1.6 Consequences if not approved

Some applications may ignore the interfaces provided, and continue to work with custom
extensions.

8.2 BoundedSpatialOperator

Create the BoundedSpatialOperator marker interface to allow for simpler
implementation code.
JIRA task: http://jira.codehaus.org/browse/GEO-122

We propose creating the BoundedSpatialOperator interface with no methods simply to mark
those operations which are a subset of the Bounds operator. This change greatly simplifies
implementation code from as series of if/then/else constructs to a single instance of check.

8.2.1 Affected section(s), table(s), and figure(s)

This change does not affect any specification documents.

8.2.2 Purposes of the proposed change

The change greatly simplifies implementations of spatial operators in which the Bounding Box is
involved.

8.2.3 Reasons for change

The change is proposed to simplify implementation code.

8.2.4 Specific suggested changes

Create the interface BoundedSpatialOperator.java.

Make the following interfaces extend this marker interface:

● filter.spatial.Contains
● filter.spatial.Crosses
● filter.spatial.Equals
● filter.spatial.Intersects
● filter.spatial.Overlaps
● filter.spatial.Touches
● filter.spatial.Within

Page 34

http://jira.codehaus.org/browse/GEO-122

8.2.5 Consequences of the change

The changes have no effect on user code and require only trivial changes to implementation code.
However the changes permit a great simplification of implementation code if the implementors
decide to leverage the marker interface.

8.2.6 Consequences if not approved

Implementors and client code would continue to perform a series of if than else checks, with the
possibility of error.

The GeoTools implementation of the GeoAPI interfaces revert to a utility method to perform this
common check.

8.3 Function.getParameters()

Change the return type of filter.expression.Function.getParameters() from
an array to a parametrized list to conform with the use of collections and generics
elsewhere in the API
JIRA task: http://jira.codehaus.org/browse/GEO-123

The return type of the filter.expression.Function.getParameters() was changed
from an array of Expression to a List parameterized by Expression: List<Expression>.

8.3.1 Affected section(s), table(s), and figure(s)

In [OGC 03-064r10]: Figures 36.

8.3.2 Purposes of the proposed change

This change makes the representation of collection in the Function interface consistent with other
GeoAPI interfaces.

8.3.3 Reasons for change

Handling collections in a manner consistent with the rest of GeoAPI makes the Function interface
easier to learn and implement.

8.3.4 Specific suggested changes

● Change the return type of getParameters() from Expression[] to
List<Expression>.

Page 35

http://jira.codehaus.org/browse/GEO-123

8.3.5 Consequences of the change

This is an incompatible change to the API, client code would need to be modified to use a
collection of expressions.

8.3.6 Consequences if not approved

The representation of collections would vary across GeoAPI interfaces.

Page 36

9. All packages

9.1 Replace the dependency to JSR-108 to a dependency to JSR-275

GeoAPI 2.0 relies on JSR-108 for units management. But this JSR has been withdrawn
by the Java Community Process (JCP) before completion and is now replaced by
JSR-275, with identical goals.

GeoAPI do not defines and interface for units of measurement. Instead we relies on the package
under development in the Java Community Process (JCP). We propose to replace the dependency
to javax.units.Unit from JSR-108 by a dependency to javax.measure.units.Unit from
JSR-275. Note that JSR-275 may be included in Java 7 (not yet confirmed).

This change is targeted for GeoAPI 3.0 at best, or at a slightly later release depending when the
community will feel ready to abandon Java 1.4 support, since JSR-275 is a Java 5 library.

9.1.1 Affected section(s), table(s), and figure(s)

None.

9.1.2 Purposes of the proposed change

Update GeoAPI dependencies to the current units of measurement framework.

9.1.3 Reasons for change

JSR-108 has been withdrawn by the Java Community Process (JCP) and replaced by JSR-275.

9.1.4 Specific suggested changes

Replace dependencies to javax.units.Unit from JSR-108 by dependencies to
javax.measure.units.Unit from JSR-275.

9.1.5 Consequences of the change

This is an incompatible change. Client code will need to update their import statements. The way
to performs units conversions in JSR-275 is also slightly different than it was in JSR-108.

9.1.6 Consequences if not approved

GeoAPI would continue to depends on an deprecated API.

Page 37

	1. Background
	1.1 Scope of this document

	2. Contributors
	3. References
	4. Metadata
	4.1 Return Collection <? extends Object>
	4.1.1Affected section(s), table(s), and figure(s)
	4.1.2Purposes of the proposed change
	4.1.3Reasons for change
	4.1.4Specific suggested changes
	4.1.5Consequences of the change
	4.1.6Consequences if not approved

	4.2 Return Objects not primitives
	4.2.1Affected section(s), table(s), and figure(s)
	4.2.2Purposes of the proposed change
	4.2.3Reasons for change
	4.2.4Specific suggested changes
	4.2.5Consequences of the change
	4.2.6Consequences if not approved

	5. Geometry (Spatial Schema)
	5.1 Drop the spatialschema part in package name
	5.1.1Affected section(s), table(s), and figure(s)
	5.1.2Purposes of the proposed change
	5.1.3Reasons for change
	5.1.4Specific suggested changes
	5.1.5Consequences of the change
	5.1.6Consequences if not approved

	5.2 Rename geometry.geometry package
	5.2.1Affected section(s), table(s), and figure(s)
	5.2.2Purposes of the proposed change
	5.2.3Reasons for change
	5.2.4Specific suggested changes
	5.2.5Consequences of the change
	5.2.6Consequences if not approved

	5.3 Create geometry.PositionFactory
	5.3.1Affected section(s), table(s), and figure(s)
	5.3.2Purposes of the proposed change
	5.3.3Reasons for change
	5.3.4Specific suggested changes
	5.3.5Consequences of the change
	5.3.6Consequences if not approved

	5.4 Add geometry.BoundingBox
	5.4.1Affected section(s), table(s), and figure(s)
	5.4.2Purposes of the proposed change
	5.4.3Reasons for change
	5.4.4Specific suggested changes
	5.4.5Consequences of the change
	5.4.6Consequences if not approved

	5.5 Add geometry.Precision and geometry.PrecisionType
	5.5.1Affected section(s), table(s), and figure(s)
	5.5.2Purposes of the proposed change
	5.5.3Reasons for change
	5.5.4Specific suggested changes
	5.5.5Consequences of the change
	5.5.6Consequences if not approved

	5.6 Add Geometry.getPrecision()
	5.6.1Affected section(s), table(s), and figure(s)
	5.6.2Purposes of the proposed change
	5.6.3Reasons for change
	5.6.4Specific suggested changes
	5.6.5Consequences of the change
	5.6.6Consequences if not approved

	5.7 Create geometry.aggregate.AggregateFactory
	5.7.1Affected section(s), table(s), and figure(s)
	5.7.2Purposes of the proposed change
	5.7.3Reasons for change
	5.7.4Specific suggested changes
	5.7.5Consequences of the change
	5.7.6Consequences if not approved

	5.8 Create geometry.complex.ComplexFactory
	5.8.1Affected section(s), table(s), and figure(s)
	5.8.2Purposes of the proposed change
	5.8.3Reasons for change
	5.8.4Specific suggested changes
	5.8.5Consequences of the change
	5.8.6Consequences if not approved

	5.9 Add Envelope.getCoordinateReferenceSystem()
	5.9.1Affected section(s), table(s), and figure(s)
	5.9.2Purposes of the proposed change
	5.9.3Reasons for change
	5.9.4Specific suggested changes
	5.9.5Consequences of the change
	5.9.6Consequences if not approved

	5.10 Modify geometry.coordinate.PointArray
	5.10.1Affected section(s), table(s), and figure(s)
	5.10.2Purposes of the proposed change
	5.10.3Reasons for change
	5.10.4Specific suggested changes
	5.10.5Consequences of the change
	5.10.6Consequences if not approved

	5.11 Modify return type of Aggregate.getElements()
	5.11.1Affected section(s), table(s), and figure(s)
	5.11.2Purposes of the proposed change
	5.11.3Reasons for change
	5.11.4Specific suggested changes
	5.11.5Consequences of the change
	5.11.6Consequences if not approved

	5.12 Modify return type of Complex.getElements()
	5.12.1Affected section(s), table(s), and figure(s)
	5.12.2Purposes of the proposed change
	5.12.3Reasons for change
	5.12.4Specific suggested changes
	5.12.5Consequences of the change
	5.12.6Consequences if not approved

	5.13 Define equals(Object) and hashCode() in DirectPosition
	5.13.1Affected section(s), table(s), and figure(s)
	5.13.2Purposes of the proposed change
	5.13.3Reasons for change
	5.13.4Specific suggested changes
	5.13.5Consequences of the change
	5.13.6Consequences if not approved

	5.14 Deprecate DirectPosition.clone()
	5.14.1Affected section(s), table(s), and figure(s)
	5.14.2Purposes of the proposed change
	5.14.3Reasons for change
	5.14.4Specific suggested changes
	5.14.5Consequences of the change
	5.14.6Consequences if not approved

	5.15 Modify return types of SurfaceBoundary.getInteriors()
	5.15.1Affected section(s), table(s), and figure(s)
	5.15.2Purposes of the proposed change
	5.15.3Reasons for change
	5.15.4Specific suggested changes
	5.15.5Consequences of the change
	5.15.6Consequences if not approved

	6. Referencing
	6.1 Modify ProjectedCRS factory
	6.1.1Affected section(s), table(s), and figure(s)
	6.1.2Purposes of the proposed change
	6.1.3Reasons for change
	6.1.4Specific suggested changes
	6.1.5Consequences of the change
	6.1.6Consequences if not approved

	6.2 Add convenience methods to MathTransformFactory
	6.2.1Affected section(s), table(s), and figure(s)
	6.2.2Purposes of the proposed change
	6.2.3Reasons for change
	6.2.4Specific suggested changes
	6.2.5Consequences of the change
	6.2.6Consequences if not approved

	7. GO
	7.1 Refactor GO enumerations
	7.1.1Affected section(s), table(s), and figure(s)
	7.1.2Purposes of the proposed change
	7.1.3Reasons for change
	7.1.4Specific suggested changes
	7.1.5Consequences of the change
	7.1.6Consequences if not approved

	8. Filter
	8.1 Extend the FilterFactory interface
	8.1.1Affected section(s), table(s), and figure(s)
	8.1.2Purposes of the proposed change
	8.1.3Reasons for change
	8.1.4Specific suggested changes
	8.1.5Consequences of the change
	8.1.6Consequences if not approved

	8.2 BoundedSpatialOperator
	8.2.1Affected section(s), table(s), and figure(s)
	8.2.2Purposes of the proposed change
	8.2.3Reasons for change
	8.2.4Specific suggested changes
	8.2.5Consequences of the change
	8.2.6Consequences if not approved

	8.3 Function.getParameters()
	8.3.1Affected section(s), table(s), and figure(s)
	8.3.2Purposes of the proposed change
	8.3.3Reasons for change
	8.3.4Specific suggested changes
	8.3.5Consequences of the change
	8.3.6Consequences if not approved

	9. All packages
	9.1 Replace the dependency to JSR-108 to a dependency to JSR-275
	9.1.1Affected section(s), table(s), and figure(s)
	9.1.2Purposes of the proposed change
	9.1.3Reasons for change
	9.1.4Specific suggested changes
	9.1.5Consequences of the change
	9.1.6Consequences if not approved

