Theory Substitution

Up to index of Isabelle/ZF/Resid

theory Substitution
imports Redex

(*  Title:      ZF/Resid/Substitution.thy
Author: Ole Rasmussen, University of Cambridge
*)


theory Substitution imports Redex begin

(** The clumsy _aux functions are required because other arguments vary
in the recursive calls ***)


consts
lift_aux :: "i=>i"

primrec
"lift_aux(Var(i)) = (λk ∈ nat. if i<k then Var(i) else Var(succ(i)))"

"lift_aux(Fun(t)) = (λk ∈ nat. Fun(lift_aux(t) ` succ(k)))"

"lift_aux(App(b,f,a)) = (λk ∈ nat. App(b, lift_aux(f)`k, lift_aux(a)`k))"


definition
lift_rec :: "[i,i]=> i" where
"lift_rec(r,k) == lift_aux(r)`k"


abbreviation
lift :: "i=>i" where
"lift(r) == lift_rec(r,0)"



consts
subst_aux :: "i=>i"

primrec
"subst_aux(Var(i)) =
(λr ∈ redexes. λk ∈ nat. if k<i then Var(i #- 1)
else if k=i then r else Var(i))"

"subst_aux(Fun(t)) =
(λr ∈ redexes. λk ∈ nat. Fun(subst_aux(t) ` lift(r) ` succ(k)))"


"subst_aux(App(b,f,a)) =
(λr ∈ redexes. λk ∈ nat. App(b, subst_aux(f)`r`k, subst_aux(a)`r`k))"


definition
subst_rec :: "[i,i,i]=> i" (**NOTE THE ARGUMENT ORDER BELOW**) where
"subst_rec(u,r,k) == subst_aux(r)`u`k"


abbreviation
subst :: "[i,i]=>i" (infixl "'/" 70) where
"u/v == subst_rec(u,v,0)"




(* ------------------------------------------------------------------------- *)
(* Arithmetic extensions *)
(* ------------------------------------------------------------------------- *)

lemma gt_not_eq: "p < n ==> n≠p"
by blast

lemma succ_pred [rule_format, simp]: "j ∈ nat ==> i < j --> succ(j #- 1) = j"
by (induct_tac "j", auto)

lemma lt_pred: "[|succ(x)<n; n ∈ nat|] ==> x < n #- 1 "
apply (rule succ_leE)
apply (simp add: succ_pred)
done

lemma gt_pred: "[|n < succ(x); p<n; n ∈ nat|] ==> n #- 1 < x "
apply (rule succ_leE)
apply (simp add: succ_pred)
done


declare not_lt_iff_le [simp] if_P [simp] if_not_P [simp]


(* ------------------------------------------------------------------------- *)
(* lift_rec equality rules *)
(* ------------------------------------------------------------------------- *)
lemma lift_rec_Var:
"n ∈ nat ==> lift_rec(Var(i),n) = (if i<n then Var(i) else Var(succ(i)))"

by (simp add: lift_rec_def)

lemma lift_rec_le [simp]:
"[|i ∈ nat; k≤i|] ==> lift_rec(Var(i),k) = Var(succ(i))"

by (simp add: lift_rec_def le_in_nat)

lemma lift_rec_gt [simp]: "[| k ∈ nat; i<k |] ==> lift_rec(Var(i),k) = Var(i)"
by (simp add: lift_rec_def)

lemma lift_rec_Fun [simp]:
"k ∈ nat ==> lift_rec(Fun(t),k) = Fun(lift_rec(t,succ(k)))"

by (simp add: lift_rec_def)

lemma lift_rec_App [simp]:
"k ∈ nat ==> lift_rec(App(b,f,a),k) = App(b,lift_rec(f,k),lift_rec(a,k))"

by (simp add: lift_rec_def)


(* ------------------------------------------------------------------------- *)
(* substitution quality rules *)
(* ------------------------------------------------------------------------- *)

lemma subst_Var:
"[|k ∈ nat; u ∈ redexes|]
==> subst_rec(u,Var(i),k) =
(if k<i then Var(i #- 1) else if k=i then u else Var(i))"

by (simp add: subst_rec_def gt_not_eq leI)


lemma subst_eq [simp]:
"[|n ∈ nat; u ∈ redexes|] ==> subst_rec(u,Var(n),n) = u"

by (simp add: subst_rec_def)

lemma subst_gt [simp]:
"[|u ∈ redexes; p ∈ nat; p<n|] ==> subst_rec(u,Var(n),p) = Var(n #- 1)"

by (simp add: subst_rec_def)

lemma subst_lt [simp]:
"[|u ∈ redexes; p ∈ nat; n<p|] ==> subst_rec(u,Var(n),p) = Var(n)"

by (simp add: subst_rec_def gt_not_eq leI lt_nat_in_nat)

lemma subst_Fun [simp]:
"[|p ∈ nat; u ∈ redexes|]
==> subst_rec(u,Fun(t),p) = Fun(subst_rec(lift(u),t,succ(p))) "

by (simp add: subst_rec_def)

lemma subst_App [simp]:
"[|p ∈ nat; u ∈ redexes|]
==> subst_rec(u,App(b,f,a),p) = App(b,subst_rec(u,f,p),subst_rec(u,a,p))"

by (simp add: subst_rec_def)


lemma lift_rec_type [rule_format, simp]:
"u ∈ redexes ==> ∀k ∈ nat. lift_rec(u,k) ∈ redexes"

apply (erule redexes.induct)
apply (simp_all add: lift_rec_Var lift_rec_Fun lift_rec_App)
done

lemma subst_type [rule_format, simp]:
"v ∈ redexes ==> ∀n ∈ nat. ∀u ∈ redexes. subst_rec(u,v,n) ∈ redexes"

apply (erule redexes.induct)
apply (simp_all add: subst_Var lift_rec_type)
done


(* ------------------------------------------------------------------------- *)
(* lift and substitution proofs *)
(* ------------------------------------------------------------------------- *)

(*The i∈nat is redundant*)
lemma lift_lift_rec [rule_format]:
"u ∈ redexes
==> ∀n ∈ nat. ∀i ∈ nat. i≤n -->
(lift_rec(lift_rec(u,i),succ(n)) = lift_rec(lift_rec(u,n),i))"

apply (erule redexes.induct, auto)
apply (case_tac "n < i")
apply (frule lt_trans2, assumption)
apply (simp_all add: lift_rec_Var leI)
done

lemma lift_lift:
"[|u ∈ redexes; n ∈ nat|]
==> lift_rec(lift(u),succ(n)) = lift(lift_rec(u,n))"

by (simp add: lift_lift_rec)

lemma lt_not_m1_lt: "[|m < n; n ∈ nat; m ∈ nat|]==> ~ n #- 1 < m"
by (erule natE, auto)

lemma lift_rec_subst_rec [rule_format]:
"v ∈ redexes ==>
∀n ∈ nat. ∀m ∈ nat. ∀u ∈ redexes. n≤m-->
lift_rec(subst_rec(u,v,n),m) =
subst_rec(lift_rec(u,m),lift_rec(v,succ(m)),n)"

apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift)
apply safe
apply (rename_tac n n' m u)
apply (case_tac "n < n'")
apply (frule_tac j = n' in lt_trans2, assumption)
apply (simp add: leI, simp)
apply (erule_tac j=n in leE)
apply (auto simp add: lift_rec_Var subst_Var leI lt_not_m1_lt)
done


lemma lift_subst:
"[|v ∈ redexes; u ∈ redexes; n ∈ nat|]
==> lift_rec(u/v,n) = lift_rec(u,n)/lift_rec(v,succ(n))"

by (simp add: lift_rec_subst_rec)


lemma lift_rec_subst_rec_lt [rule_format]:
"v ∈ redexes ==>
∀n ∈ nat. ∀m ∈ nat. ∀u ∈ redexes. m≤n-->
lift_rec(subst_rec(u,v,n),m) =
subst_rec(lift_rec(u,m),lift_rec(v,m),succ(n))"

apply (erule redexes.induct, simp_all (no_asm_simp) add: lift_lift)
apply safe
apply (rename_tac n n' m u)
apply (case_tac "n < n'")
apply (case_tac "n < m")
apply (simp_all add: leI)
apply (erule_tac i=n' in leE)
apply (frule lt_trans1, assumption)
apply (simp_all add: succ_pred leI gt_pred)
done


lemma subst_rec_lift_rec [rule_format]:
"u ∈ redexes ==>
∀n ∈ nat. ∀v ∈ redexes. subst_rec(v,lift_rec(u,n),n) = u"

apply (erule redexes.induct, auto)
apply (case_tac "n < na", auto)
done

lemma subst_rec_subst_rec [rule_format]:
"v ∈ redexes ==>
∀m ∈ nat. ∀n ∈ nat. ∀u ∈ redexes. ∀w ∈ redexes. m≤n -->
subst_rec(subst_rec(w,u,n),subst_rec(lift_rec(w,m),v,succ(n)),m) =
subst_rec(w,subst_rec(u,v,m),n)"

apply (erule redexes.induct)
apply (simp_all add: lift_lift [symmetric] lift_rec_subst_rec_lt, safe)
apply (rename_tac n' u w)
apply (case_tac "n ≤ succ(n') ")
apply (erule_tac i = n in leE)
apply (simp_all add: succ_pred subst_rec_lift_rec leI)
apply (case_tac "n < m")
apply (frule lt_trans2, assumption, simp add: gt_pred)
apply simp
apply (erule_tac j = n in leE, simp add: gt_pred)
apply (simp add: subst_rec_lift_rec)
(*final case*)
apply (frule nat_into_Ord [THEN le_refl, THEN lt_trans], assumption)
apply (erule leE)
apply (frule succ_leI [THEN lt_trans], assumption)
apply (frule_tac i = m in nat_into_Ord [THEN le_refl, THEN lt_trans],
assumption)

apply (simp_all add: succ_pred lt_pred)
done


lemma substitution:
"[|v ∈ redexes; u ∈ redexes; w ∈ redexes; n ∈ nat|]
==> subst_rec(w,u,n)/subst_rec(lift(w),v,succ(n)) = subst_rec(w,u/v,n)"

by (simp add: subst_rec_subst_rec)


(* ------------------------------------------------------------------------- *)
(* Preservation lemmas *)
(* Substitution preserves comp and regular *)
(* ------------------------------------------------------------------------- *)


lemma lift_rec_preserve_comp [rule_format, simp]:
"u ~ v ==> ∀m ∈ nat. lift_rec(u,m) ~ lift_rec(v,m)"

by (erule Scomp.induct, simp_all add: comp_refl)

lemma subst_rec_preserve_comp [rule_format, simp]:
"u2 ~ v2 ==> ∀m ∈ nat. ∀u1 ∈ redexes. ∀v1 ∈ redexes.
u1 ~ v1--> subst_rec(u1,u2,m) ~ subst_rec(v1,v2,m)"

by (erule Scomp.induct,
simp_all add: subst_Var lift_rec_preserve_comp comp_refl)


lemma lift_rec_preserve_reg [simp]:
"regular(u) ==> ∀m ∈ nat. regular(lift_rec(u,m))"

by (erule Sreg.induct, simp_all add: lift_rec_Var)

lemma subst_rec_preserve_reg [simp]:
"regular(v) ==>
∀m ∈ nat. ∀u ∈ redexes. regular(u)-->regular(subst_rec(u,v,m))"

by (erule Sreg.induct, simp_all add: subst_Var lift_rec_preserve_reg)

end