Theory Union

Up to index of Isabelle/HOL/UNITY

theory Union
imports SubstAx FP

(*  Title:      HOL/UNITY/Union.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1998 University of Cambridge

Partly from Misra's Chapter 5: Asynchronous Compositions of Programs.
*)


header{*Unions of Programs*}

theory Union imports SubstAx FP begin

(*FIXME: conjoin Init F ∩ Init G ≠ {} *)
definition
ok :: "['a program, 'a program] => bool" (infixl "ok" 65)
where "F ok G == Acts F ⊆ AllowedActs G &
Acts G ⊆ AllowedActs F"


(*FIXME: conjoin (\<Inter>i ∈ I. Init (F i)) ≠ {} *)
definition
OK :: "['a set, 'a => 'b program] => bool"
where "OK I F = (∀i ∈ I. ∀j ∈ I-{i}. Acts (F i) ⊆ AllowedActs (F j))"


definition
JOIN :: "['a set, 'a => 'b program] => 'b program"
where "JOIN I F = mk_program (\<Inter>i ∈ I. Init (F i), \<Union>i ∈ I. Acts (F i),
\<Inter>i ∈ I. AllowedActs (F i))"


definition
Join :: "['a program, 'a program] => 'a program" (infixl "Join" 65)
where "F Join G = mk_program (Init F ∩ Init G, Acts F ∪ Acts G,
AllowedActs F ∩ AllowedActs G)"


definition
SKIP :: "'a program"
where "SKIP = mk_program (UNIV, {}, UNIV)"


(*Characterizes safety properties. Used with specifying Allowed*)
definition
safety_prop :: "'a program set => bool"
where "safety_prop X <-> SKIP: X & (∀G. Acts G ⊆ UNION X Acts --> G ∈ X)"


notation (xsymbols)
SKIP ("⊥") and
Join (infixl "\<squnion>" 65)


syntax
"_JOIN1" :: "[pttrns, 'b set] => 'b set" ("(3JN _./ _)" 10)
"_JOIN" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3JN _:_./ _)" 10)

syntax (xsymbols)
"_JOIN1" :: "[pttrns, 'b set] => 'b set" ("(3\<Squnion> _./ _)" 10)
"_JOIN" :: "[pttrn, 'a set, 'b set] => 'b set" ("(3\<Squnion> _∈_./ _)" 10)


translations
"JN x: A. B" == "CONST JOIN A (%x. B)"
"JN x y. B" == "JN x. JN y. B"
"JN x. B" == "CONST JOIN (CONST UNIV) (%x. B)"



subsection{*SKIP*}

lemma Init_SKIP [simp]: "Init SKIP = UNIV"
by (simp add: SKIP_def)

lemma Acts_SKIP [simp]: "Acts SKIP = {Id}"
by (simp add: SKIP_def)

lemma AllowedActs_SKIP [simp]: "AllowedActs SKIP = UNIV"
by (auto simp add: SKIP_def)

lemma reachable_SKIP [simp]: "reachable SKIP = UNIV"
by (force elim: reachable.induct intro: reachable.intros)

subsection{*SKIP and safety properties*}

lemma SKIP_in_constrains_iff [iff]: "(SKIP ∈ A co B) = (A ⊆ B)"
by (unfold constrains_def, auto)

lemma SKIP_in_Constrains_iff [iff]: "(SKIP ∈ A Co B) = (A ⊆ B)"
by (unfold Constrains_def, auto)

lemma SKIP_in_stable [iff]: "SKIP ∈ stable A"
by (unfold stable_def, auto)

declare SKIP_in_stable [THEN stable_imp_Stable, iff]


subsection{*Join*}

lemma Init_Join [simp]: "Init (F\<squnion>G) = Init F ∩ Init G"
by (simp add: Join_def)

lemma Acts_Join [simp]: "Acts (F\<squnion>G) = Acts F ∪ Acts G"
by (auto simp add: Join_def)

lemma AllowedActs_Join [simp]:
"AllowedActs (F\<squnion>G) = AllowedActs F ∩ AllowedActs G"

by (auto simp add: Join_def)


subsection{*JN*}

lemma JN_empty [simp]: "(\<Squnion>i∈{}. F i) = SKIP"
by (unfold JOIN_def SKIP_def, auto)

lemma JN_insert [simp]: "(\<Squnion>i ∈ insert a I. F i) = (F a)\<squnion>(\<Squnion>i ∈ I. F i)"
apply (rule program_equalityI)
apply (auto simp add: JOIN_def Join_def)
done

lemma Init_JN [simp]: "Init (\<Squnion>i ∈ I. F i) = (\<Inter>i ∈ I. Init (F i))"
by (simp add: JOIN_def)

lemma Acts_JN [simp]: "Acts (\<Squnion>i ∈ I. F i) = insert Id (\<Union>i ∈ I. Acts (F i))"
by (auto simp add: JOIN_def)

lemma AllowedActs_JN [simp]:
"AllowedActs (\<Squnion>i ∈ I. F i) = (\<Inter>i ∈ I. AllowedActs (F i))"

by (auto simp add: JOIN_def)


lemma JN_cong [cong]:
"[| I=J; !!i. i ∈ J ==> F i = G i |] ==> (\<Squnion>i ∈ I. F i) = (\<Squnion>i ∈ J. G i)"

by (simp add: JOIN_def)


subsection{*Algebraic laws*}

lemma Join_commute: "F\<squnion>G = G\<squnion>F"
by (simp add: Join_def Un_commute Int_commute)

lemma Join_assoc: "(F\<squnion>G)\<squnion>H = F\<squnion>(G\<squnion>H)"
by (simp add: Un_ac Join_def Int_assoc insert_absorb)

lemma Join_left_commute: "A\<squnion>(B\<squnion>C) = B\<squnion>(A\<squnion>C)"
by (simp add: Un_ac Int_ac Join_def insert_absorb)

lemma Join_SKIP_left [simp]: "SKIP\<squnion>F = F"
apply (unfold Join_def SKIP_def)
apply (rule program_equalityI)
apply (simp_all (no_asm) add: insert_absorb)
done

lemma Join_SKIP_right [simp]: "F\<squnion>SKIP = F"
apply (unfold Join_def SKIP_def)
apply (rule program_equalityI)
apply (simp_all (no_asm) add: insert_absorb)
done

lemma Join_absorb [simp]: "F\<squnion>F = F"
apply (unfold Join_def)
apply (rule program_equalityI, auto)
done

lemma Join_left_absorb: "F\<squnion>(F\<squnion>G) = F\<squnion>G"
apply (unfold Join_def)
apply (rule program_equalityI, auto)
done

(*Join is an AC-operator*)
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute


subsection{*Laws Governing @{text "\<Squnion>"}*}

(*Also follows by JN_insert and insert_absorb, but the proof is longer*)
lemma JN_absorb: "k ∈ I ==> F k\<squnion>(\<Squnion>i ∈ I. F i) = (\<Squnion>i ∈ I. F i)"
by (auto intro!: program_equalityI)

lemma JN_Un: "(\<Squnion>i ∈ I ∪ J. F i) = ((\<Squnion>i ∈ I. F i)\<squnion>(\<Squnion>i ∈ J. F i))"
by (auto intro!: program_equalityI)

lemma JN_constant: "(\<Squnion>i ∈ I. c) = (if I={} then SKIP else c)"
by (rule program_equalityI, auto)

lemma JN_Join_distrib:
"(\<Squnion>i ∈ I. F i\<squnion>G i) = (\<Squnion>i ∈ I. F i) \<squnion> (\<Squnion>i ∈ I. G i)"

by (auto intro!: program_equalityI)

lemma JN_Join_miniscope:
"i ∈ I ==> (\<Squnion>i ∈ I. F i\<squnion>G) = ((\<Squnion>i ∈ I. F i)\<squnion>G)"

by (auto simp add: JN_Join_distrib JN_constant)

(*Used to prove guarantees_JN_I*)
lemma JN_Join_diff: "i ∈ I ==> F i\<squnion>JOIN (I - {i}) F = JOIN I F"
apply (unfold JOIN_def Join_def)
apply (rule program_equalityI, auto)
done


subsection{*Safety: co, stable, FP*}

(*Fails if I={} because it collapses to SKIP ∈ A co B, i.e. to A ⊆ B. So an
alternative precondition is A ⊆ B, but most proofs using this rule require
I to be nonempty for other reasons anyway.*)

lemma JN_constrains:
"i ∈ I ==> (\<Squnion>i ∈ I. F i) ∈ A co B = (∀i ∈ I. F i ∈ A co B)"

by (simp add: constrains_def JOIN_def, blast)

lemma Join_constrains [simp]:
"(F\<squnion>G ∈ A co B) = (F ∈ A co B & G ∈ A co B)"

by (auto simp add: constrains_def Join_def)

lemma Join_unless [simp]:
"(F\<squnion>G ∈ A unless B) = (F ∈ A unless B & G ∈ A unless B)"

by (simp add: Join_constrains unless_def)

(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.
reachable (F\<squnion>G) could be much bigger than reachable F, reachable G
*)



lemma Join_constrains_weaken:
"[| F ∈ A co A'; G ∈ B co B' |]
==> F\<squnion>G ∈ (A ∩ B) co (A' ∪ B')"

by (simp, blast intro: constrains_weaken)

(*If I={}, it degenerates to SKIP ∈ UNIV co {}, which is false.*)
lemma JN_constrains_weaken:
"[| ∀i ∈ I. F i ∈ A i co A' i; i ∈ I |]
==> (\<Squnion>i ∈ I. F i) ∈ (\<Inter>i ∈ I. A i) co (\<Union>i ∈ I. A' i)"

apply (simp (no_asm_simp) add: JN_constrains)
apply (blast intro: constrains_weaken)
done

lemma JN_stable: "(\<Squnion>i ∈ I. F i) ∈ stable A = (∀i ∈ I. F i ∈ stable A)"
by (simp add: stable_def constrains_def JOIN_def)

lemma invariant_JN_I:
"[| !!i. i ∈ I ==> F i ∈ invariant A; i ∈ I |]
==> (\<Squnion>i ∈ I. F i) ∈ invariant A"

by (simp add: invariant_def JN_stable, blast)

lemma Join_stable [simp]:
"(F\<squnion>G ∈ stable A) =
(F ∈ stable A & G ∈ stable A)"

by (simp add: stable_def)

lemma Join_increasing [simp]:
"(F\<squnion>G ∈ increasing f) =
(F ∈ increasing f & G ∈ increasing f)"

by (simp add: increasing_def Join_stable, blast)

lemma invariant_JoinI:
"[| F ∈ invariant A; G ∈ invariant A |]
==> F\<squnion>G ∈ invariant A"

by (simp add: invariant_def, blast)

lemma FP_JN: "FP (\<Squnion>i ∈ I. F i) = (\<Inter>i ∈ I. FP (F i))"
by (simp add: FP_def JN_stable INTER_def)


subsection{*Progress: transient, ensures*}

lemma JN_transient:
"i ∈ I ==>
(\<Squnion>i ∈ I. F i) ∈ transient A = (∃i ∈ I. F i ∈ transient A)"

by (auto simp add: transient_def JOIN_def)

lemma Join_transient [simp]:
"F\<squnion>G ∈ transient A =
(F ∈ transient A | G ∈ transient A)"

by (auto simp add: bex_Un transient_def Join_def)

lemma Join_transient_I1: "F ∈ transient A ==> F\<squnion>G ∈ transient A"
by (simp add: Join_transient)

lemma Join_transient_I2: "G ∈ transient A ==> F\<squnion>G ∈ transient A"
by (simp add: Join_transient)

(*If I={} it degenerates to (SKIP ∈ A ensures B) = False, i.e. to ~(A ⊆ B) *)
lemma JN_ensures:
"i ∈ I ==>
(\<Squnion>i ∈ I. F i) ∈ A ensures B =
((∀i ∈ I. F i ∈ (A-B) co (A ∪ B)) & (∃i ∈ I. F i ∈ A ensures B))"

by (auto simp add: ensures_def JN_constrains JN_transient)

lemma Join_ensures:
"F\<squnion>G ∈ A ensures B =
(F ∈ (A-B) co (A ∪ B) & G ∈ (A-B) co (A ∪ B) &
(F ∈ transient (A-B) | G ∈ transient (A-B)))"

by (auto simp add: ensures_def Join_transient)

lemma stable_Join_constrains:
"[| F ∈ stable A; G ∈ A co A' |]
==> F\<squnion>G ∈ A co A'"

apply (unfold stable_def constrains_def Join_def)
apply (simp add: ball_Un, blast)
done

(*Premise for G cannot use Always because F ∈ Stable A is weaker than
G ∈ stable A *)

lemma stable_Join_Always1:
"[| F ∈ stable A; G ∈ invariant A |] ==> F\<squnion>G ∈ Always A"

apply (simp (no_asm_use) add: Always_def invariant_def Stable_eq_stable)
apply (force intro: stable_Int)
done

(*As above, but exchanging the roles of F and G*)
lemma stable_Join_Always2:
"[| F ∈ invariant A; G ∈ stable A |] ==> F\<squnion>G ∈ Always A"

apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done

lemma stable_Join_ensures1:
"[| F ∈ stable A; G ∈ A ensures B |] ==> F\<squnion>G ∈ A ensures B"

apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)
done

(*As above, but exchanging the roles of F and G*)
lemma stable_Join_ensures2:
"[| F ∈ A ensures B; G ∈ stable A |] ==> F\<squnion>G ∈ A ensures B"

apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done


subsection{*the ok and OK relations*}

lemma ok_SKIP1 [iff]: "SKIP ok F"
by (simp add: ok_def)

lemma ok_SKIP2 [iff]: "F ok SKIP"
by (simp add: ok_def)

lemma ok_Join_commute:
"(F ok G & (F\<squnion>G) ok H) = (G ok H & F ok (G\<squnion>H))"

by (auto simp add: ok_def)

lemma ok_commute: "(F ok G) = (G ok F)"
by (auto simp add: ok_def)

lemmas ok_sym = ok_commute [THEN iffD1, standard]

lemma ok_iff_OK:
"OK {(0::int,F),(1,G),(2,H)} snd = (F ok G & (F\<squnion>G) ok H)"

apply (simp add: Ball_def conj_disj_distribR ok_def Join_def OK_def insert_absorb
all_conj_distrib)

apply blast
done

lemma ok_Join_iff1 [iff]: "F ok (G\<squnion>H) = (F ok G & F ok H)"
by (auto simp add: ok_def)

lemma ok_Join_iff2 [iff]: "(G\<squnion>H) ok F = (G ok F & H ok F)"
by (auto simp add: ok_def)

(*useful? Not with the previous two around*)
lemma ok_Join_commute_I: "[| F ok G; (F\<squnion>G) ok H |] ==> F ok (G\<squnion>H)"
by (auto simp add: ok_def)

lemma ok_JN_iff1 [iff]: "F ok (JOIN I G) = (∀i ∈ I. F ok G i)"
by (auto simp add: ok_def)

lemma ok_JN_iff2 [iff]: "(JOIN I G) ok F = (∀i ∈ I. G i ok F)"
by (auto simp add: ok_def)

lemma OK_iff_ok: "OK I F = (∀i ∈ I. ∀j ∈ I-{i}. (F i) ok (F j))"
by (auto simp add: ok_def OK_def)

lemma OK_imp_ok: "[| OK I F; i ∈ I; j ∈ I; i ≠ j|] ==> (F i) ok (F j)"
by (auto simp add: OK_iff_ok)


subsection{*Allowed*}

lemma Allowed_SKIP [simp]: "Allowed SKIP = UNIV"
by (auto simp add: Allowed_def)

lemma Allowed_Join [simp]: "Allowed (F\<squnion>G) = Allowed F ∩ Allowed G"
by (auto simp add: Allowed_def)

lemma Allowed_JN [simp]: "Allowed (JOIN I F) = (\<Inter>i ∈ I. Allowed (F i))"
by (auto simp add: Allowed_def)

lemma ok_iff_Allowed: "F ok G = (F ∈ Allowed G & G ∈ Allowed F)"
by (simp add: ok_def Allowed_def)

lemma OK_iff_Allowed: "OK I F = (∀i ∈ I. ∀j ∈ I-{i}. F i ∈ Allowed(F j))"
by (auto simp add: OK_iff_ok ok_iff_Allowed)

subsection{*@{term safety_prop}, for reasoning about
given instances of "ok"*}


lemma safety_prop_Acts_iff:
"safety_prop X ==> (Acts G ⊆ insert Id (UNION X Acts)) = (G ∈ X)"

by (auto simp add: safety_prop_def)

lemma safety_prop_AllowedActs_iff_Allowed:
"safety_prop X ==> (UNION X Acts ⊆ AllowedActs F) = (X ⊆ Allowed F)"

by (auto simp add: Allowed_def safety_prop_Acts_iff [symmetric])

lemma Allowed_eq:
"safety_prop X ==> Allowed (mk_program (init, acts, UNION X Acts)) = X"

by (simp add: Allowed_def safety_prop_Acts_iff)

(*For safety_prop to hold, the property must be satisfiable!*)
lemma safety_prop_constrains [iff]: "safety_prop (A co B) = (A ⊆ B)"
by (simp add: safety_prop_def constrains_def, blast)

lemma safety_prop_stable [iff]: "safety_prop (stable A)"
by (simp add: stable_def)

lemma safety_prop_Int [simp]:
"[| safety_prop X; safety_prop Y |] ==> safety_prop (X ∩ Y)"

by (simp add: safety_prop_def, blast)

lemma safety_prop_INTER1 [simp]:
"(!!i. safety_prop (X i)) ==> safety_prop (\<Inter>i. X i)"

by (auto simp add: safety_prop_def, blast)

lemma safety_prop_INTER [simp]:
"(!!i. i ∈ I ==> safety_prop (X i)) ==> safety_prop (\<Inter>i ∈ I. X i)"

by (auto simp add: safety_prop_def, blast)

lemma def_prg_Allowed:
"[| F == mk_program (init, acts, UNION X Acts) ; safety_prop X |]
==> Allowed F = X"

by (simp add: Allowed_eq)

lemma Allowed_totalize [simp]: "Allowed (totalize F) = Allowed F"
by (simp add: Allowed_def)

lemma def_total_prg_Allowed:
"[| F = mk_total_program (init, acts, UNION X Acts) ; safety_prop X |]
==> Allowed F = X"

by (simp add: mk_total_program_def def_prg_Allowed)

lemma def_UNION_ok_iff:
"[| F = mk_program(init,acts,UNION X Acts); safety_prop X |]
==> F ok G = (G ∈ X & acts ⊆ AllowedActs G)"

by (auto simp add: ok_def safety_prop_Acts_iff)

text{*The union of two total programs is total.*}
lemma totalize_Join: "totalize F\<squnion>totalize G = totalize (F\<squnion>G)"
by (simp add: program_equalityI totalize_def Join_def image_Un)

lemma all_total_Join: "[|all_total F; all_total G|] ==> all_total (F\<squnion>G)"
by (simp add: all_total_def, blast)

lemma totalize_JN: "(\<Squnion>i ∈ I. totalize (F i)) = totalize(\<Squnion>i ∈ I. F i)"
by (simp add: program_equalityI totalize_def JOIN_def image_UN)

lemma all_total_JN: "(!!i. i∈I ==> all_total (F i)) ==> all_total(\<Squnion>i∈I. F i)"
by (simp add: all_total_iff_totalize totalize_JN [symmetric])

end