IMP in HOLCF

Tobias Nipkow and Robert Sandner

June 21, 2010

Contents
1 Syntax of Commands

2 Natural Semantics of Commands
2.1 Execution of commands
2.2 Equivalence of statements L L0
2.3 Execution is deterministic

3 Denotational Semantics of Commands in HOLCF
3.1 Definition e
3.2 Equivalence of Denotational Semantics in HOLCF and Evaluation Se-
manticsin HOL

4 Correctness of Hoare by Fixpoint Reasoning

1 Syntax of Commands

theory Com imports Main begin

typedecl loc
— an unspecified (arbitrary) type of locations (adresses/names) for variables

types
val = nat — or anything else, nat used in examples
state = "loc = val"
aexp = '"state = val"
bexp = "state = bool"

— arithmetic and boolean expressions are not modelled explicitly here,
— they are just functions on states

datatype
com = SKIP
| Assign loc aexp ("_ == _ " 60)
| Semi com com ("_; _" [60, 60] 10)
| Cond bexp com com ("IF _ THEN _ ELSE _" 60)

= NN

=}

| While bexp com ("WHILE _ DO _" 60)

notation (latex)
SKIP ("skip") and

Cond ("if _ then _ else _" 60) and
While ("while _ do _" 60)
end

2 Natural Semantics of Commands

theory Natural imports Com begin

2.1 Execution of commands

We write (c,s) —. s’ for Statement c, started in state s, terminates in state s’.
Formally, (c,s) —. s’ is just another form of saying the tuple (c,s,s’) is part of the
relation evalc:

definition

update :: "(’a = °’b) = ’a = ’b = (’a = ’b)" ("_/[_ ::=/_]1" [900,0,0] 900)
where

"update = fun_upd"

notation (xsymbols)
update ("_/[_ — /_1" [900,0,0] 900)

Disable conflicting syntax from HOL Map theory.

no_syntax

"_maplet" :: "[’a, ’a] => maplet" a_ /1->/ _"

"_maplets" :: "[’a, ’a] => maplet" ("_ /01->1/ _"

o :: "maplet => maplets" _"

"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")

"_MapUpd" :: "[’a “=> ’b, maplets] => ’a ~=> ’b" ("_/’(_’)" [900,0]900)
"_Map" :: "maplets => ’a “=> ’b" CXCYIDLY

The big-step execution relation evalc is defined inductively:

inductive

evalc :: "[com,state,state] = bool" ("(_,_)/ —. _" [0,0,60] 60)
where

Skip: "(skip,s) — s"
| Assign: "(x :== a,s) —. s[x+—a s]"
| Semi: "(c0,8) —. 8’7 = (c1,8’’) —. s’ = (c0; cl, s) —. s’"
| IfTrue: "b s = (c0,s) —. s’ = (if b then c0 else c1, s) — 8°"

| IfFalse: "-b s = (c1l,s) —. s’ = (if b then cO else c1, s) —. s’"

| WhileFalse: "-b s = (while b do c,s) —. s"
/ WhileTrue: "b 8 —> <C,s> —e s’ — <Wh||e b dO c, S’)> —c s’
= (while b do ¢, s) — s’"

lemmas evalc.intros [intro] — use those rules in automatic proofs

The induction principle induced by this definition looks like this:

[{(x1,x2) —. x3; A\s. P skip s s; Axas. P (x :==a) s (s[x — asl);
AcO s 57’ c1 s’.
[(cO,8) —¢ 8°?; P cO s s’’; (cl,8’’) —. s’; P cl s’’ s’]
— P (c0; cl1) s s8’;
Ab s cO s’ c1. [b s; (c0,8) —. s’; P cO s s’] = P (if b then cO else c1) s s’;
Ab s ¢l 8’ cO. [bs; (cl,s) —, s’; Pcl s s’] = P (if b then cO else c1) s
s’;
Ab s c. - bs = P (while b do ¢) s s;
Ab s cs’’ s’
[b s; (c,8) —¢ 8°?; Pc s s’’; (while b do ¢,s’’) —, s’;
P (while b do ¢) s’’ s’]
= P (while b do ¢) s s’]
= P x1 x2 x3

(\ and = are Isabelle’s meta symbols for V and —)

The rules of evalc are syntax directed, i.e. for each syntactic category there is always
only one rule applicable. That means we can use the rules in both directions. This
property is called rule inversion.

inductive_cases skipE [elim!]: "(skip,s) —. s’"

inductive_cases semiE [elim!]: "(cO; c1, 8y —. s’"
inductive_cases assignE [elim!]: "(x :== a,s) —. s’"
inductive_cases ifE [elim!]: "(if b then cO else c1, s) —, s’"
inductive_cases whileE [elim]: "{(while b do ¢,s) — s’"

The next proofs are all trivial by rule inversion.

lemma skip:
"(skip,s) —. s’ = (s’ = s)"

(proof)

lemma assign:
"(x :== a,s) —. s’ = (s’ = s[x—a s])"
(proo)

lemma semi:
"(c0; c1, 8) —. s’ = (Is?’. (c0,8) — 8’7 A (c1,87’) —, 8°)"

(proof)

lemma ifTrue:
"b s = (if b then cO0 else c1, s) — 8’ = (c0,8) — 8°"

(proof)

lemma ifFalse:
"-b s = (if b then c0 else c1, s) —. s’ = (cl,8) — s’"

(proof)

lemma whileFalse:
"= b s = (while b do ¢,s) —¢ 5’ = (s’ = s)"

(proof)

lemma whileTrue:
"b 5 =
(while b do ¢, s8) —, s’ =
(3s’’. {c,s) —. s’ A {(while b do ¢, s°’) — 5’)"

(proof)

Again, Isabelle may use these rules in automatic proofs:

lemmas evalc_cases [simp] = skip assign ifTrue ifFalse whileFalse semi whileTrue

2.2 Equivalence of statements

We call two statements ¢ and ¢’ equivalent wrt. the big-step semantics when c started in
s terminates in s’ iff ¢’ started in the same s also terminates in the same s’. Formally:
definition

equiv_c :: "com = com = bool" ("_ ~ _" [56, 56] 55) where
"e ~ ¢’ = (Vs s’ {(c, s) —¢ 8" = {(c?, 8) — 8"

Proof rules telling Isabelle to unfold the definition if there is something to be proved
about equivalent statements:
lemma equivI [intro!]:

"(As s’. {(c, s) —. 8’ = {(c’, 8) —. 8’) = c ~ c’"

(proof)

lemma equivD1:
"e ~ ¢’ = (c, 8) —. 87 = (c’, 8) —, 8"

(proof)

lemma equivD2:
"e ~ ¢’ = (¢’, 8) — 8’ = (¢, 8) — 8"

(proof)

As an example, we show that loop unfolding is an equivalence transformation on pro-
grams:
lemma unfold_while:

"(while b do ¢) ~ (if b then ¢; while b do ¢ else skip)" (is "?w ~ ?7if")

{proof)

Happily, such lengthy proofs are seldom necessary. Isabelle can prove many such facts
automatically.

lemma
"(while b do ¢) ~ (if b then ¢; while b do c¢ else skip)"

{proof)

lemma triv_if:
"(if b then ¢ else ¢c) ~ c¢"

{proof)

lemma commute_if:
"(if b1 then (if b2 then c11 else c12) else c2)

~

(if b2 then (if b1 then c11 else c2) else (if bl then c12 else c2))"

{proof)

lemma while_equiv:

"(c0, 8) —. u = ¢ ~ ¢’ = (cO0 = while b do ¢) = (while b do ¢’, s) —,

u”

{proof)

lemma equiv_while:
"¢ ~ ¢’ => (while b do ¢) ~ (while b do ¢’)"

{proof)

Program equivalence is an equivalence relation.

lemma equiv_refl:
"c ~ C n

{proof)

lemma equiv_sym:
"¢l ~ c2 = c2 ~ cl1"

{proof)

lemma equiv_trans:
"¢l ~ c2 = c2 ~ c3 = cl ~ c3"

{proof)

Program constructions preserve equivalence.

lemma equiv_semi:
"el ~ ¢cl’ = ¢c2 ~ ¢c2° = (c1; c2) ~ (c1’; c2°’)"

{proof)

lemma equiv_if:

"cl ~ ¢cl’ = c2 ~ c2’ = (if b then c1 else c2) ~ (if b then c1’ else c2’)"

{proof)

lemma while_never: "(c, s) —. u = ¢ # while (As. True) do c1"

(proof)

lemma equiv_while_True:

"(while (As. True) do c1) ~ (while (As. True) do c2)"
(proof)

2.3 Execution is deterministic

This proof is automatic.

theorem "(c,s) —, t = (c,s) —, u = u = t"

(proof)
The following proof presents all the details:

theorem com_det:
assumes "(c,s) —. t" and "(c,s) —. u"
shows "u = t"

(proof)

This is the proof as you might present it in a lecture. The remaining cases are simple
enough to be proved automatically:

theorem
assumes "(c,s) —. t" and "(c,s) —. u"
shows "u = t"

(proof)

end

3 Denotational Semantics of Commands in HOLCF
theory Denotational imports HOLCF "../../HOL/IMP/Natural" begin

Disable conflicting syntax from HOL Map theory.

no_syntax

"_maplet" :: "[’a, ’a] => maplet" a_ /1=->/_"

"_maplets" :: "[’a, ’a] => maplet" (_ /01->17 _"

o :: "maplet => maplets" "

"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")

"_MapUpd" :: "[’a "=> ’b, maplets] => ’a ~=> ’b" ("_/’(_’)" [900,0]900)
"_Map" :: "maplets => ’a “=> ’b" CXCYIDLY

3.1 Definition

definition
dlift :: "((’a::type) discr -> ’b::pcpo) => (’a lift -> ’b)" where
"dlift f = (LAM x. case x of UU => UU | Def y => f-(Discr y))"

primrec D :: "com => state discr -> state lift"
where
"D(skip) = (LAM s. Def(undiscr s))"

| "D(X :== a) (LAM s. Def((undiscr s)[X +— a(undiscr s)]))"
| "D(cO ; c1) (d1ift(D c1) oo (D cO))"
| "D(if b then c1 else c2) =
(LAM s. if b (undiscr s) then (D cl1)-s else (D c2)-s)"
| "D(while b do c) =
fix-(LAM w s. if b (undiscr s) then (dlift w)-((D c)-s)
else Def (undiscr s))"

3.2 Equivalence of Denotational Semantics in HOLCF and Evaluation
Semantics in HOL

lemma dlift_Def [simp]: "dlift f-(Def x) = f-(Discr x)"
(proof)

lemma cont_dlift [iff]: "cont (Jf. dlift f)"

(proof)

lemma dlift_is_Def [simp]:
"(dlift f-1 = Def y) = (dx. 1 = Def x A f-(Discr x) = Def y)"

(proof)

lemma eval_implies_D: "(c,s) —. t ==> D c-(Discr s) = (Def t)"

(proof)

lemma D_implies_eval: "!s t. D c-(Discr s) = (Def t) --> (c,s) —. t"

(proof)

theorem D_is_eval: "(D c-(Discr s) = (Def t)) = ({c,s) — t)"

(proof)

end

4 Correctness of Hoare by Fixpoint Reasoning
theory HoareEx imports Denotational begin

An example from the HOLCF paper by Miiller, Nipkow, Oheimb, Slotosch [1]. It demon-
strates fixpoint reasoning by showing the correctness of the Hoare rule for while-loops.

types assn = "state => bool"
definition
hoare_valid :: "[assn, com, assn] => bool" ("|= {(1_)}/ (_L)/ {({1_)}" 50) where

"|= {A} ¢ {B} = (Vs t. A s N D c $(Discr s) = Def t -==> B t)"

lemma WHILE rule_sound:
"= {A} ¢ {A} ==> |= {A} while b do ¢ {As. A s AN = b s}"

(proof)

end

References

[1] O. Miiller, T. Nipkow, D. v. Oheimb, and O. Slotosch. HOLCF = HOL + LCF. J.
Functional Programming, 9:191-223, 1999.

	Syntax of Commands
	Natural Semantics of Commands
	Execution of commands
	Equivalence of statements
	Execution is deterministic

	Denotational Semantics of Commands in HOLCF
	Definition
	Equivalence of Denotational Semantics in HOLCF and Evaluation Semantics in HOL

	Correctness of Hoare by Fixpoint Reasoning

