theory Class2
imports Class1
begin
text {* Reduction *}
lemma fin_not_Cut:
assumes a: "fin M x"
shows "¬(∃a M' x N'. M = Cut <a>.M' (x).N')"
using a
by (induct) (auto)
lemma fresh_not_fin:
assumes a: "x\<sharp>M"
shows "¬fin M x"
proof -
have "fin M x ==> x\<sharp>M ==> False" by (induct rule: fin.induct) (auto simp add: abs_fresh fresh_atm)
with a show "¬fin M x" by blast
qed
lemma fresh_not_fic:
assumes a: "a\<sharp>M"
shows "¬fic M a"
proof -
have "fic M a ==> a\<sharp>M ==> False" by (induct rule: fic.induct) (auto simp add: abs_fresh fresh_atm)
with a show "¬fic M a" by blast
qed
lemma c_redu_subst1:
assumes a: "M -->\<^isub>c M'" "c\<sharp>M" "y\<sharp>P"
shows "M{y:=<c>.P} -->\<^isub>c M'{y:=<c>.P}"
using a
proof(nominal_induct avoiding: y c P rule: c_redu.strong_induct)
case (left M a N x)
then show ?case
apply -
apply(simp)
apply(rule conjI)
apply(force)
apply(auto)
apply(subgoal_tac "M{a:=(x).N}{y:=<c>.P} = M{y:=<c>.P}{a:=(x).(N{y:=<c>.P})}")
apply(simp)
apply(rule c_redu.intros)
apply(rule not_fic_subst1)
apply(simp)
apply(simp add: subst_fresh)
apply(simp add: subst_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(rule subst_subst2)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
done
next
case (right N x a M)
then show ?case
apply -
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(subgoal_tac "N{x:=<a>.Ax y a}{y:=<c>.P} = N{y:=<c>.P}{x:=<c>.P}")
apply(simp)
apply(rule c_redu.right)
apply(rule not_fin_subst2)
apply(simp)
apply(rule subst_fresh)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(rule sym)
apply(rule interesting_subst1')
apply(simp add: fresh_atm)
apply(simp)
apply(simp)
apply(rule impI)
apply(subgoal_tac "N{x:=<a>.M}{y:=<c>.P} = N{y:=<c>.P}{x:=<a>.(M{y:=<c>.P})}")
apply(simp)
apply(rule c_redu.right)
apply(rule not_fin_subst2)
apply(simp)
apply(simp add: subst_fresh)
apply(simp add: subst_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(rule subst_subst3)
apply(simp_all add: fresh_atm fresh_prod)
done
qed
lemma c_redu_subst2:
assumes a: "M -->\<^isub>c M'" "c\<sharp>P" "y\<sharp>M"
shows "M{c:=(y).P} -->\<^isub>c M'{c:=(y).P}"
using a
proof(nominal_induct avoiding: y c P rule: c_redu.strong_induct)
case (right N x a M)
then show ?case
apply -
apply(simp)
apply(rule conjI)
apply(force)
apply(auto)
apply(subgoal_tac "N{x:=<a>.M}{c:=(y).P} = N{c:=(y).P}{x:=<a>.(M{c:=(y).P})}")
apply(simp)
apply(rule c_redu.intros)
apply(rule not_fin_subst1)
apply(simp)
apply(simp add: subst_fresh)
apply(simp add: subst_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(rule subst_subst1)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
done
next
case (left M a N x)
then show ?case
apply -
apply(simp)
apply(rule conjI)
apply(rule impI)
apply(subgoal_tac "M{a:=(x).Ax x c}{c:=(y).P} = M{c:=(y).P}{a:=(y).P}")
apply(simp)
apply(rule c_redu.left)
apply(rule not_fic_subst2)
apply(simp)
apply(simp)
apply(rule subst_fresh)
apply(simp add: abs_fresh)
apply(rule sym)
apply(rule interesting_subst2')
apply(simp add: fresh_atm)
apply(simp)
apply(simp)
apply(rule impI)
apply(subgoal_tac "M{a:=(x).N}{c:=(y).P} = M{c:=(y).P}{a:=(x).(N{c:=(y).P})}")
apply(simp)
apply(rule c_redu.left)
apply(rule not_fic_subst2)
apply(simp)
apply(simp add: subst_fresh)
apply(simp add: subst_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(rule subst_subst4)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp add: fresh_prod fresh_atm)
apply(simp)
done
qed
lemma c_redu_subst1':
assumes a: "M -->\<^isub>c M'"
shows "M{y:=<c>.P} -->\<^isub>c M'{y:=<c>.P}"
using a
proof -
obtain y'::"name" where fs1: "y'\<sharp>(M,M',P,P,y)" by (rule exists_fresh(1), rule fin_supp, blast)
obtain c'::"coname" where fs2: "c'\<sharp>(M,M',P,P,c)" by (rule exists_fresh(2), rule fin_supp, blast)
have "M{y:=<c>.P} = ([(y',y)]•M){y':=<c'>.([(c',c)]•P)}" using fs1 fs2
apply -
apply(rule trans)
apply(rule_tac y="y'" in subst_rename(3))
apply(simp)
apply(rule subst_rename(4))
apply(simp)
done
also have "… -->\<^isub>c ([(y',y)]•M'){y':=<c'>.([(c',c)]•P)}" using fs1 fs2
apply -
apply(rule c_redu_subst1)
apply(simp add: c_redu.eqvt a)
apply(simp_all add: fresh_left calc_atm fresh_prod)
done
also have "… = M'{y:=<c>.P}" using fs1 fs2
apply -
apply(rule sym)
apply(rule trans)
apply(rule_tac y="y'" in subst_rename(3))
apply(simp)
apply(rule subst_rename(4))
apply(simp)
done
finally show ?thesis by simp
qed
lemma c_redu_subst2':
assumes a: "M -->\<^isub>c M'"
shows "M{c:=(y).P} -->\<^isub>c M'{c:=(y).P}"
using a
proof -
obtain y'::"name" where fs1: "y'\<sharp>(M,M',P,P,y)" by (rule exists_fresh(1), rule fin_supp, blast)
obtain c'::"coname" where fs2: "c'\<sharp>(M,M',P,P,c)" by (rule exists_fresh(2), rule fin_supp, blast)
have "M{c:=(y).P} = ([(c',c)]•M){c':=(y').([(y',y)]•P)}" using fs1 fs2
apply -
apply(rule trans)
apply(rule_tac c="c'" in subst_rename(1))
apply(simp)
apply(rule subst_rename(2))
apply(simp)
done
also have "… -->\<^isub>c ([(c',c)]•M'){c':=(y').([(y',y)]•P)}" using fs1 fs2
apply -
apply(rule c_redu_subst2)
apply(simp add: c_redu.eqvt a)
apply(simp_all add: fresh_left calc_atm fresh_prod)
done
also have "… = M'{c:=(y).P}" using fs1 fs2
apply -
apply(rule sym)
apply(rule trans)
apply(rule_tac c="c'" in subst_rename(1))
apply(simp)
apply(rule subst_rename(2))
apply(simp)
done
finally show ?thesis by simp
qed
lemma aux1:
assumes a: "M = M'" "M' -->\<^isub>l M''"
shows "M -->\<^isub>l M''"
using a by simp
lemma aux2:
assumes a: "M -->\<^isub>l M'" "M' = M''"
shows "M -->\<^isub>l M''"
using a by simp
lemma aux3:
assumes a: "M = M'" "M' -->\<^isub>a* M''"
shows "M -->\<^isub>a* M''"
using a by simp
lemma aux4:
assumes a: "M = M'"
shows "M -->\<^isub>a* M'"
using a by blast
lemma l_redu_subst1:
assumes a: "M -->\<^isub>l M'"
shows "M{y:=<c>.P} -->\<^isub>a* M'{y:=<c>.P}"
using a
proof(nominal_induct M M' avoiding: y c P rule: l_redu.strong_induct)
case LAxR
then show ?case
apply -
apply(rule aux3)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp)
apply(simp add: fresh_atm)
apply(auto)
apply(rule aux4)
apply(simp add: trm.inject alpha calc_atm fresh_atm)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule l_redu.intros)
apply(simp add: subst_fresh)
apply(simp add: fresh_atm)
apply(rule fic_subst2)
apply(simp_all)
apply(rule aux4)
apply(rule subst_comm')
apply(simp_all)
done
next
case LAxL
then show ?case
apply -
apply(rule aux3)
apply(rule better_Cut_substn)
apply(simp add: abs_fresh)
apply(simp)
apply(simp add: trm.inject fresh_atm)
apply(auto)
apply(rule aux4)
apply(rule sym)
apply(rule fin_substn_nrename)
apply(simp_all)
apply(rule a_starI)
apply(rule al_redu)
apply(rule aux2)
apply(rule l_redu.intros)
apply(simp add: subst_fresh)
apply(simp add: fresh_atm)
apply(rule fin_subst1)
apply(simp_all)
apply(rule subst_comm')
apply(simp_all)
done
next
case (LNot v M N u a b)
then show ?case
proof -
{ assume asm: "N≠Ax y b"
have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} =
(Cut <a>.NotR (u).(M{y:=<c>.P}) a (v).NotL <b>.(N{y:=<c>.P}) v)" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>l (Cut <b>.(N{y:=<c>.P}) (u).(M{y:=<c>.P}))" using prems
by (auto intro: l_redu.intros simp add: subst_fresh)
also have "… = (Cut <b>.N (u).M){y:=<c>.P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally have ?thesis by auto
}
moreover
{ assume asm: "N=Ax y b"
have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} =
(Cut <a>.NotR (u).(M{y:=<c>.P}) a (v).NotL <b>.(N{y:=<c>.P}) v)" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* (Cut <b>.(N{y:=<c>.P}) (u).(M{y:=<c>.P}))" using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <b>.(Cut <c>.P (y).Ax y b) (u).(M{y:=<c>.P}))" using prems
by simp
also have "… -->\<^isub>a* (Cut <b>.(P[c\<turnstile>c>b]) (u).(M{y:=<c>.P}))"
proof (cases "fic P c")
case True
assume "fic P c"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutL_intro)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
done
next
case False
assume "¬fic P c"
then show ?thesis
apply -
apply(rule a_star_CutL)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(simp add: subst_with_ax2)
done
qed
also have "… = (Cut <b>.N (u).M){y:=<c>.P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
done
finally have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){y:=<c>.P} -->\<^isub>a* (Cut <b>.N (u).M){y:=<c>.P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LAnd1 b a1 M1 a2 M2 N z u)
then show ?case
proof -
{ assume asm: "M1≠Ax y a1"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} =
Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL1 (u).(N{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a1>.(M1{y:=<c>.P}) (u).(N{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a1>.M1 (u).N){y:=<c>.P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} -->\<^isub>a* (Cut <a1>.M1 (u).N){y:=<c>.P}"
by simp
}
moreover
{ assume asm: "M1=Ax y a1"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} =
Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL1 (u).(N{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a1>.(M1{y:=<c>.P}) (u).(N{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a1>.(Cut <c>.P (y). Ax y a1) (u).(N{y:=<c>.P})"
using prems by simp
also have "… -->\<^isub>a* Cut <a1>.P[c\<turnstile>c>a1] (u).(N{y:=<c>.P})"
proof (cases "fic P c")
case True
assume "fic P c"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutL_intro)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
done
next
case False
assume "¬fic P c"
then show ?thesis
apply -
apply(rule a_star_CutL)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(simp add: subst_with_ax2)
done
qed
also have "… = (Cut <a1>.M1 (u).N){y:=<c>.P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
done
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){y:=<c>.P} -->\<^isub>a* (Cut <a1>.M1 (u).N){y:=<c>.P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LAnd2 b a1 M1 a2 M2 N z u)
then show ?case
proof -
{ assume asm: "M2≠Ax y a2"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} =
Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL2 (u).(N{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a2>.(M2{y:=<c>.P}) (u).(N{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a2>.M2 (u).N){y:=<c>.P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} -->\<^isub>a* (Cut <a2>.M2 (u).N){y:=<c>.P}"
by simp
}
moreover
{ assume asm: "M2=Ax y a2"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} =
Cut <b>.AndR <a1>.(M1{y:=<c>.P}) <a2>.(M2{y:=<c>.P}) b (z).AndL2 (u).(N{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a2>.(M2{y:=<c>.P}) (u).(N{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a2>.(Cut <c>.P (y). Ax y a2) (u).(N{y:=<c>.P})"
using prems by simp
also have "… -->\<^isub>a* Cut <a2>.P[c\<turnstile>c>a2] (u).(N{y:=<c>.P})"
proof (cases "fic P c")
case True
assume "fic P c"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutL_intro)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
done
next
case False
assume "¬fic P c"
then show ?thesis
apply -
apply(rule a_star_CutL)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(simp add: subst_with_ax2)
done
qed
also have "… = (Cut <a2>.M2 (u).N){y:=<c>.P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
done
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){y:=<c>.P} -->\<^isub>a* (Cut <a2>.M2 (u).N){y:=<c>.P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LOr1 b a M N1 N2 z x1 x2 y c P)
then show ?case
proof -
{ assume asm: "M≠Ax y a"
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} =
Cut <b>.OrR1 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x1).(N1{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a>.M (x1).N1){y:=<c>.P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} -->\<^isub>a* (Cut <a>.M (x1).N1){y:=<c>.P}"
by simp
}
moreover
{ assume asm: "M=Ax y a"
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} =
Cut <b>.OrR1 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x1).(N1{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(Cut <c>.P (y). Ax y a) (x1).(N1{y:=<c>.P})"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.P[c\<turnstile>c>a] (x1).(N1{y:=<c>.P})"
proof (cases "fic P c")
case True
assume "fic P c"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutL_intro)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
done
next
case False
assume "¬fic P c"
then show ?thesis
apply -
apply(rule a_star_CutL)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(simp add: subst_with_ax2)
done
qed
also have "… = (Cut <a>.M (x1).N1){y:=<c>.P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
done
finally
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} -->\<^isub>a* (Cut <a>.M (x1).N1){y:=<c>.P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LOr2 b a M N1 N2 z x1 x2 y c P)
then show ?case
proof -
{ assume asm: "M≠Ax y a"
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} =
Cut <b>.OrR2 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x2).(N2{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a>.M (x2).N2){y:=<c>.P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} -->\<^isub>a* (Cut <a>.M (x2).N2){y:=<c>.P}"
by simp
}
moreover
{ assume asm: "M=Ax y a"
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} =
Cut <b>.OrR2 <a>.(M{y:=<c>.P}) b (z).OrL (x1).(N1{y:=<c>.P}) (x2).(N2{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{y:=<c>.P}) (x2).(N2{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(Cut <c>.P (y). Ax y a) (x2).(N2{y:=<c>.P})"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.P[c\<turnstile>c>a] (x2).(N2{y:=<c>.P})"
proof (cases "fic P c")
case True
assume "fic P c"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutL_intro)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
done
next
case False
assume "¬fic P c"
then show ?thesis
apply -
apply(rule a_star_CutL)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(simp add: subst_with_ax2)
done
qed
also have "… = (Cut <a>.M (x2).N2){y:=<c>.P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
done
finally
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){y:=<c>.P} -->\<^isub>a* (Cut <a>.M (x2).N2){y:=<c>.P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LImp z N u Q x M b a d y c P)
then show ?case
proof -
{ assume asm: "N≠Ax y d"
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} =
Cut <b>.ImpR (x).<a>.(M{y:=<c>.P}) b (z).ImpL <d>.(N{y:=<c>.P}) (u).(Q{y:=<c>.P}) z"
using prems by (simp add: fresh_prod abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{y:=<c>.P}) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} -->\<^isub>a*
(Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}"
by simp
}
moreover
{ assume asm: "N=Ax y d"
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} =
Cut <b>.ImpR (x).<a>.(M{y:=<c>.P}) b (z).ImpL <d>.(N{y:=<c>.P}) (u).(Q{y:=<c>.P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{y:=<c>.P}) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(Cut <d>.(Cut <c>.P (y).Ax y d) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(P[c\<turnstile>c>d]) (x).(M{y:=<c>.P})) (u).(Q{y:=<c>.P})"
proof (cases "fic P c")
case True
assume "fic P c"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutL_intro)
apply(rule a_Cut_l)
apply(simp add: subst_fresh abs_fresh)
apply(simp add: abs_fresh fresh_atm)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
done
next
case False
assume "¬fic P c"
then show ?thesis using prems
apply -
apply(rule a_star_CutL)
apply(rule a_star_CutL)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(simp add: subst_with_ax2)
done
qed
also have "… = (Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(simp add: trm.inject)
apply(simp add: alpha)
apply(rule sym)
apply(rule crename_swap)
apply(simp)
done
finally
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){y:=<c>.P} -->\<^isub>a*
(Cut <a>.(Cut <d>.N (x).M) (u).Q){y:=<c>.P}"
by simp
}
ultimately show ?thesis by blast
qed
qed
lemma l_redu_subst2:
assumes a: "M -->\<^isub>l M'"
shows "M{c:=(y).P} -->\<^isub>a* M'{c:=(y).P}"
using a
proof(nominal_induct M M' avoiding: y c P rule: l_redu.strong_induct)
case LAxR
then show ?case
apply -
apply(rule aux3)
apply(rule better_Cut_substc)
apply(simp add: abs_fresh)
apply(simp add: abs_fresh)
apply(simp add: trm.inject fresh_atm)
apply(auto)
apply(rule aux4)
apply(rule sym)
apply(rule fic_substc_crename)
apply(simp_all)
apply(rule a_starI)
apply(rule al_redu)
apply(rule aux2)
apply(rule l_redu.intros)
apply(simp add: subst_fresh)
apply(simp add: fresh_atm)
apply(rule fic_subst1)
apply(simp_all)
apply(rule subst_comm')
apply(simp_all)
done
next
case LAxL
then show ?case
apply -
apply(rule aux3)
apply(rule better_Cut_substc)
apply(simp)
apply(simp add: abs_fresh)
apply(simp add: fresh_atm)
apply(auto)
apply(rule aux4)
apply(simp add: trm.inject alpha calc_atm fresh_atm)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule l_redu.intros)
apply(simp add: subst_fresh)
apply(simp add: fresh_atm)
apply(rule fin_subst2)
apply(simp_all)
apply(rule aux4)
apply(rule subst_comm')
apply(simp_all)
done
next
case (LNot v M N u a b)
then show ?case
proof -
{ assume asm: "M≠Ax u c"
have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} =
(Cut <a>.NotR (u).(M{c:=(y).P}) a (v).NotL <b>.(N{c:=(y).P}) v)" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>l (Cut <b>.(N{c:=(y).P}) (u).(M{c:=(y).P}))" using prems
by (auto intro: l_redu.intros simp add: subst_fresh)
also have "… = (Cut <b>.N (u).M){c:=(y).P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally have ?thesis by auto
}
moreover
{ assume asm: "M=Ax u c"
have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} =
(Cut <a>.NotR (u).(M{c:=(y).P}) a (v).NotL <b>.(N{c:=(y).P}) v)" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* (Cut <b>.(N{c:=(y).P}) (u).(M{c:=(y).P}))" using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <b>.(N{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P))" using prems
by simp
also have "… -->\<^isub>a* (Cut <b>.(N{c:=(y).P}) (u).(P[y\<turnstile>n>u]))"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutR_intro)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <b>.N (u).M){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
done
finally have "(Cut <a>.NotR (u).M a (v).NotL <b>.N v){c:=(y).P} -->\<^isub>a* (Cut <b>.N (u).M){c:=(y).P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LAnd1 b a1 M1 a2 M2 N z u)
then show ?case
proof -
{ assume asm: "N≠Ax u c"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} =
Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL1 (u).(N{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(N{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a1>.M1 (u).N){c:=(y).P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} -->\<^isub>a* (Cut <a1>.M1 (u).N){c:=(y).P}"
by simp
}
moreover
{ assume asm: "N=Ax u c"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} =
Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL1 (u).(N{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(N{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a1>.(M1{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P)"
using prems by simp
also have "… -->\<^isub>a* Cut <a1>.(M1{c:=(y).P}) (u).(P[y\<turnstile>n>u])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutR_intro)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a1>.M1 (u).N){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
done
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL1 (u).N z){c:=(y).P} -->\<^isub>a* (Cut <a1>.M1 (u).N){c:=(y).P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LAnd2 b a1 M1 a2 M2 N z u)
then show ?case
proof -
{ assume asm: "N≠Ax u c"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} =
Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL2 (u).(N{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(N{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a2>.M2 (u).N){c:=(y).P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} -->\<^isub>a* (Cut <a2>.M2 (u).N){c:=(y).P}"
by simp
}
moreover
{ assume asm: "N=Ax u c"
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} =
Cut <b>.AndR <a1>.(M1{c:=(y).P}) <a2>.(M2{c:=(y).P}) b (z).AndL2 (u).(N{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(N{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a2>.(M2{c:=(y).P}) (u).(Cut <c>.(Ax u c) (y).P)"
using prems by simp
also have "… -->\<^isub>a* Cut <a2>.(M2{c:=(y).P}) (u).(P[y\<turnstile>n>u])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutR_intro)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a2>.M2 (u).N){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
done
finally
have "(Cut <b>.AndR <a1>.M1 <a2>.M2 b (z).AndL2 (u).N z){c:=(y).P} -->\<^isub>a* (Cut <a2>.M2 (u).N){c:=(y).P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LOr1 b a M N1 N2 z x1 x2 y c P)
then show ?case
proof -
{ assume asm: "N1≠Ax x1 c"
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} =
Cut <b>.OrR1 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(N1{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a>.M (x1).N1){c:=(y).P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} -->\<^isub>a* (Cut <a>.M (x1).N1){c:=(y).P}"
by simp
}
moreover
{ assume asm: "N1=Ax x1 c"
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} =
Cut <b>.OrR1 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(N1{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(M{c:=(y).P}) (x1).(Cut <c>.(Ax x1 c) (y).P)"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.(M{c:=(y).P}) (x1).(P[y\<turnstile>n>x1])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutR_intro)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a>.M (x1).N1){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
done
finally
have "(Cut <b>.OrR1 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} -->\<^isub>a* (Cut <a>.M (x1).N1){c:=(y).P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LOr2 b a M N1 N2 z x1 x2 y c P)
then show ?case
proof -
{ assume asm: "N2≠Ax x2 c"
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} =
Cut <b>.OrR2 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(N2{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a>.M (x2).N2){c:=(y).P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} -->\<^isub>a* (Cut <a>.M (x2).N2){c:=(y).P}"
by simp
}
moreover
{ assume asm: "N2=Ax x2 c"
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} =
Cut <b>.OrR2 <a>.(M{c:=(y).P}) b (z).OrL (x1).(N1{c:=(y).P}) (x2).(N2{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(N2{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(M{c:=(y).P}) (x2).(Cut <c>.(Ax x2 c) (y).P)"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.(M{c:=(y).P}) (x2).(P[y\<turnstile>n>x2])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_starI)
apply(rule better_CutR_intro)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a>.M (x2).N2){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(rule sym)
apply(rule nrename_swap)
apply(simp)
done
finally
have "(Cut <b>.OrR2 <a>.M b (z).OrL (x1).N1 (x2).N2 z){c:=(y).P} -->\<^isub>a* (Cut <a>.M (x2).N2){c:=(y).P}"
by simp
}
ultimately show ?thesis by blast
qed
next
case (LImp z N u Q x M b a d y c P)
then show ?case
proof -
{ assume asm: "M≠Ax x c ∧ Q≠Ax u c"
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} =
Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z"
using prems by (simp add: fresh_prod abs_fresh fresh_atm)
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
by (simp add: subst_fresh abs_fresh fresh_atm)
finally
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} -->\<^isub>a*
(Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
by simp
}
moreover
{ assume asm: "M=Ax x c ∧ Q≠Ax u c"
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} =
Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(Cut <c>.Ax x c (y).P)) (u).(Q{c:=(y).P})"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(P[y\<turnstile>n>x])) (u).(Q{c:=(y).P})"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutL)
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutL)
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(simp add: trm.inject)
apply(simp add: alpha)
apply(simp add: nrename_swap)
done
finally
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} -->\<^isub>a*
(Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
by simp
}
moreover
{ assume asm: "M≠Ax x c ∧ Q=Ax u c"
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} =
Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Cut <c>.Ax u c (y).P)"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(P[y\<turnstile>n>u])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutR)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(simp add: nrename_swap)
done
finally
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} -->\<^isub>a*
(Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
by simp
}
moreover
{ assume asm: "M=Ax x c ∧ Q=Ax u c"
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} =
Cut <b>.ImpR (x).<a>.(M{c:=(y).P}) b (z).ImpL <d>.(N{c:=(y).P}) (u).(Q{c:=(y).P}) z"
using prems by (simp add: subst_fresh abs_fresh fresh_atm fresh_prod)
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(M{c:=(y).P})) (u).(Q{c:=(y).P})"
using prems
apply -
apply(rule a_starI)
apply(rule al_redu)
apply(auto intro: l_redu.intros simp add: subst_fresh abs_fresh)
done
also have "… = Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(Cut <c>.Ax x c (y).P)) (u).(Cut <c>.Ax u c (y).P)"
using prems by simp
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(Cut <c>.Ax x c (y).P)) (u).(P[y\<turnstile>n>u])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutR)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… -->\<^isub>a* Cut <a>.(Cut <d>.(N{c:=(y).P}) (x).(P[y\<turnstile>n>x])) (u).(P[y\<turnstile>n>u])"
proof (cases "fin P y")
case True
assume "fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutL)
apply(rule a_star_CutR)
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
done
next
case False
assume "¬fin P y"
then show ?thesis using prems
apply -
apply(rule a_star_CutL)
apply(rule a_star_CutR)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(simp add: subst_with_ax1)
done
qed
also have "… = (Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}" using prems
apply -
apply(auto simp add: subst_fresh abs_fresh)
apply(simp add: trm.inject)
apply(rule conjI)
apply(simp add: alpha fresh_atm trm.inject)
apply(simp add: nrename_swap)
apply(simp add: alpha fresh_atm trm.inject)
apply(simp add: nrename_swap)
done
finally
have "(Cut <b>.ImpR (x).<a>.M b (z).ImpL <d>.N (u).Q z){c:=(y).P} -->\<^isub>a*
(Cut <a>.(Cut <d>.N (x).M) (u).Q){c:=(y).P}"
by simp
}
ultimately show ?thesis by blast
qed
qed
lemma a_redu_subst1:
assumes a: "M -->\<^isub>a M'"
shows "M{y:=<c>.P} -->\<^isub>a* M'{y:=<c>.P}"
using a
proof(nominal_induct avoiding: y c P rule: a_redu.strong_induct)
case al_redu
then show ?case by (simp only: l_redu_subst1)
next
case ac_redu
then show ?case
apply -
apply(rule a_starI)
apply(rule a_redu.ac_redu)
apply(simp only: c_redu_subst1')
done
next
case (a_Cut_l a N x M M' y c P)
then show ?case
apply(simp add: subst_fresh fresh_a_redu)
apply(rule conjI)
apply(rule impI)+
apply(simp)
apply(drule ax_do_not_a_reduce)
apply(simp)
apply(rule impI)
apply(rule conjI)
apply(rule impI)
apply(simp)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="P" in meta_spec)
apply(simp)
apply(rule a_star_trans)
apply(rule a_star_CutL)
apply(assumption)
apply(rule a_star_trans)
apply(rule_tac M'="P[c\<turnstile>c>a]" in a_star_CutL)
apply(case_tac "fic P c")
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxR_intro)
apply(simp)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_left)
apply(simp)
apply(rule subst_with_ax2)
apply(rule aux4)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(simp add: crename_swap)
apply(rule impI)
apply(rule a_star_CutL)
apply(auto)
done
next
case (a_Cut_r a N x M M' y c P)
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_CutR)
apply(auto)[1]
apply(rule a_star_CutR)
apply(auto)[1]
done
next
case a_NotL
then show ?case
apply(auto)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_NotL)
apply(auto)[1]
apply(rule a_star_NotL)
apply(auto)[1]
done
next
case a_NotR
then show ?case
apply(auto)
apply(rule a_star_NotR)
apply(auto)[1]
done
next
case a_AndR_l
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_AndR)
apply(auto)
done
next
case a_AndR_r
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_AndR)
apply(auto)
done
next
case a_AndL1
then show ?case
apply(auto)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_AndL1)
apply(auto)[1]
apply(rule a_star_AndL1)
apply(auto)[1]
done
next
case a_AndL2
then show ?case
apply(auto)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_AndL2)
apply(auto)[1]
apply(rule a_star_AndL2)
apply(auto)[1]
done
next
case a_OrR1
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_OrR1)
apply(auto)
done
next
case a_OrR2
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_OrR2)
apply(auto)
done
next
case a_OrL_l
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_OrL)
apply(auto)
apply(rule a_star_OrL)
apply(auto)
done
next
case a_OrL_r
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_OrL)
apply(auto)
apply(rule a_star_OrL)
apply(auto)
done
next
case a_ImpR
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_ImpR)
apply(auto)
done
next
case a_ImpL_r
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_ImpL)
apply(auto)
apply(rule a_star_ImpL)
apply(auto)
done
next
case a_ImpL_l
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "name")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutR)
apply(rule a_star_ImpL)
apply(auto)
apply(rule a_star_ImpL)
apply(auto)
done
qed
lemma a_redu_subst2:
assumes a: "M -->\<^isub>a M'"
shows "M{c:=(y).P} -->\<^isub>a* M'{c:=(y).P}"
using a
proof(nominal_induct avoiding: y c P rule: a_redu.strong_induct)
case al_redu
then show ?case by (simp only: l_redu_subst2)
next
case ac_redu
then show ?case
apply -
apply(rule a_starI)
apply(rule a_redu.ac_redu)
apply(simp only: c_redu_subst2')
done
next
case (a_Cut_r a N x M M' y c P)
then show ?case
apply(simp add: subst_fresh fresh_a_redu)
apply(rule conjI)
apply(rule impI)+
apply(simp)
apply(drule ax_do_not_a_reduce)
apply(simp)
apply(rule impI)
apply(rule conjI)
apply(rule impI)
apply(simp)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="P" in meta_spec)
apply(simp)
apply(rule a_star_trans)
apply(rule a_star_CutR)
apply(assumption)
apply(rule a_star_trans)
apply(rule_tac N'="P[y\<turnstile>n>x]" in a_star_CutR)
apply(case_tac "fin P y")
apply(rule a_starI)
apply(rule al_redu)
apply(rule better_LAxL_intro)
apply(simp)
apply(rule a_star_trans)
apply(rule a_starI)
apply(rule ac_redu)
apply(rule better_right)
apply(simp)
apply(rule subst_with_ax1)
apply(rule aux4)
apply(simp add: trm.inject)
apply(simp add: alpha fresh_atm)
apply(simp add: nrename_swap)
apply(rule impI)
apply(rule a_star_CutR)
apply(auto)
done
next
case (a_Cut_l a N x M M' y c P)
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_CutL)
apply(auto)[1]
apply(rule a_star_CutL)
apply(auto)[1]
done
next
case a_NotR
then show ?case
apply(auto)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutL)
apply(rule a_star_NotR)
apply(auto)[1]
apply(rule a_star_NotR)
apply(auto)[1]
done
next
case a_NotL
then show ?case
apply(auto)
apply(rule a_star_NotL)
apply(auto)[1]
done
next
case a_AndR_l
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutL)
apply(rule a_star_AndR)
apply(auto)
apply(rule a_star_AndR)
apply(auto)
done
next
case a_AndR_r
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutL)
apply(rule a_star_AndR)
apply(auto)
apply(rule a_star_AndR)
apply(auto)
done
next
case a_AndL1
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_AndL1)
apply(auto)
done
next
case a_AndL2
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_AndL2)
apply(auto)
done
next
case a_OrR1
then show ?case
apply(auto)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutL)
apply(rule a_star_OrR1)
apply(auto)[1]
apply(rule a_star_OrR1)
apply(auto)[1]
done
next
case a_OrR2
then show ?case
apply(auto)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutL)
apply(rule a_star_OrR2)
apply(auto)[1]
apply(rule a_star_OrR2)
apply(auto)[1]
done
next
case a_OrL_l
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_OrL)
apply(auto)
done
next
case a_OrL_r
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_OrL)
apply(auto)
done
next
case a_ImpR
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(generate_fresh "coname")
apply(fresh_fun_simp)
apply(fresh_fun_simp)
apply(simp add: subst_fresh)
apply(rule a_star_CutL)
apply(rule a_star_ImpR)
apply(auto)
apply(rule a_star_ImpR)
apply(auto)
done
next
case a_ImpL_l
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_ImpL)
apply(auto)
done
next
case a_ImpL_r
then show ?case
apply(auto simp add: subst_fresh fresh_a_redu)
apply(rule a_star_ImpL)
apply(auto)
done
qed
lemma a_star_subst1:
assumes a: "M -->\<^isub>a* M'"
shows "M{y:=<c>.P} -->\<^isub>a* M'{y:=<c>.P}"
using a
apply(induct)
apply(blast)
apply(drule_tac y="y" and c="c" and P="P" in a_redu_subst1)
apply(auto)
done
lemma a_star_subst2:
assumes a: "M -->\<^isub>a* M'"
shows "M{c:=(y).P} -->\<^isub>a* M'{c:=(y).P}"
using a
apply(induct)
apply(blast)
apply(drule_tac y="y" and c="c" and P="P" in a_redu_subst2)
apply(auto)
done
text {* Candidates and SN *}
text {* SNa *}
inductive
SNa :: "trm => bool"
where
SNaI: "(!!M'. M -->\<^isub>a M' ==> SNa M') ==> SNa M"
lemma SNa_induct[consumes 1]:
assumes major: "SNa M"
assumes hyp: "!!M'. SNa M' ==> (∀M''. M'-->\<^isub>a M'' --> P M'' ==> P M')"
shows "P M"
apply (rule major[THEN SNa.induct])
apply (rule hyp)
apply (rule SNaI)
apply (blast)+
done
lemma double_SNa_aux:
assumes a_SNa: "SNa a"
and b_SNa: "SNa b"
and hyp: "!!x z.
(!!y. x-->\<^isub>a y ==> SNa y) ==>
(!!y. x-->\<^isub>a y ==> P y z) ==>
(!!u. z-->\<^isub>a u ==> SNa u) ==>
(!!u. z-->\<^isub>a u ==> P x u) ==> P x z"
shows "P a b"
proof -
from a_SNa
have r: "!!b. SNa b ==> P a b"
proof (induct a rule: SNa.induct)
case (SNaI x)
note SNa' = this
have "SNa b" by fact
thus ?case
proof (induct b rule: SNa.induct)
case (SNaI y)
show ?case
apply (rule hyp)
apply (erule SNa')
apply (erule SNa')
apply (rule SNa.SNaI)
apply (erule SNaI)+
done
qed
qed
from b_SNa show ?thesis by (rule r)
qed
lemma double_SNa:
"[|SNa a; SNa b; ∀x z. ((∀y. x-->\<^isub>ay --> P y z) ∧ (∀u. z-->\<^isub>a u --> P x u)) --> P x z|] ==> P a b"
apply(rule_tac double_SNa_aux)
apply(assumption)+
apply(blast)
done
lemma a_preserves_SNa:
assumes a: "SNa M" "M-->\<^isub>a M'"
shows "SNa M'"
using a
by (erule_tac SNa.cases) (simp)
lemma a_star_preserves_SNa:
assumes a: "SNa M" and b: "M-->\<^isub>a* M'"
shows "SNa M'"
using b a
by (induct) (auto simp add: a_preserves_SNa)
lemma Ax_in_SNa:
shows "SNa (Ax x a)"
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
done
lemma NotL_in_SNa:
assumes a: "SNa M"
shows "SNa (NotL <a>.M x)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha)
apply(rotate_tac 1)
apply(drule_tac x="[(a,aa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(subgoal_tac "NotL <a>.([(a,aa)]•M'a) x = NotL <aa>.M'a x")
apply(simp)
apply(simp add: trm.inject alpha fresh_a_redu)
done
lemma NotR_in_SNa:
assumes a: "SNa M"
shows "SNa (NotR (x).M a)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha)
apply(rotate_tac 1)
apply(drule_tac x="[(x,xa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="NotR (x).([(x,xa)]•M'a) a" in subst)
apply(simp add: trm.inject alpha fresh_a_redu)
apply(simp)
done
lemma AndL1_in_SNa:
assumes a: "SNa M"
shows "SNa (AndL1 (x).M y)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha)
apply(rotate_tac 1)
apply(drule_tac x="[(x,xa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="AndL1 x.([(x,xa)]•M'a) y" in subst)
apply(simp add: trm.inject alpha fresh_a_redu)
apply(simp)
done
lemma AndL2_in_SNa:
assumes a: "SNa M"
shows "SNa (AndL2 (x).M y)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha)
apply(rotate_tac 1)
apply(drule_tac x="[(x,xa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="AndL2 x.([(x,xa)]•M'a) y" in subst)
apply(simp add: trm.inject alpha fresh_a_redu)
apply(simp)
done
lemma OrR1_in_SNa:
assumes a: "SNa M"
shows "SNa (OrR1 <a>.M b)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha)
apply(rotate_tac 1)
apply(drule_tac x="[(a,aa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="OrR1 <a>.([(a,aa)]•M'a) b" in subst)
apply(simp add: trm.inject alpha fresh_a_redu)
apply(simp)
done
lemma OrR2_in_SNa:
assumes a: "SNa M"
shows "SNa (OrR2 <a>.M b)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha)
apply(rotate_tac 1)
apply(drule_tac x="[(a,aa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="OrR2 <a>.([(a,aa)]•M'a) b" in subst)
apply(simp add: trm.inject alpha fresh_a_redu)
apply(simp)
done
lemma ImpR_in_SNa:
assumes a: "SNa M"
shows "SNa (ImpR (x).<a>.M b)"
using a
apply(induct)
apply(rule SNaI)
apply(erule a_redu.cases, auto)
apply(erule l_redu.cases, auto)
apply(erule c_redu.cases, auto)
apply(auto simp add: trm.inject alpha abs_fresh abs_perm calc_atm)
apply(rotate_tac 1)
apply(drule_tac x="[(a,aa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="ImpR (x).<a>.([(a,aa)]•M'a) b" in subst)
apply(simp add: trm.inject alpha fresh_a_redu)
apply(simp)
apply(rotate_tac 1)
apply(drule_tac x="[(x,xa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="ImpR (x).<a>.([(x,xa)]•M'a) b" in subst)
apply(simp add: trm.inject alpha fresh_a_redu abs_fresh abs_perm calc_atm)
apply(simp)
apply(rotate_tac 1)
apply(drule_tac x="[(a,aa)]•[(x,xa)]•M'a" in meta_spec)
apply(simp add: a_redu.eqvt)
apply(rule_tac s="ImpR (x).<a>.([(a,aa)]•[(x,xa)]•M'a) b" in subst)
apply(simp add: trm.inject alpha fresh_a_redu abs_fresh abs_perm calc_atm)
apply(simp add: fresh_left calc_atm fresh_a_redu)
apply(simp)
done
lemma AndR_in_SNa:
assumes a: "SNa M" "SNa N"
shows "SNa (AndR <a>.M <b>.N c)"
apply(rule_tac a="M" and b="N" in double_SNa)
apply(rule a)+
apply(auto)
apply(rule SNaI)
apply(drule a_redu_AndR_elim)
apply(auto)
done
lemma OrL_in_SNa:
assumes a: "SNa M" "SNa N"
shows "SNa (OrL (x).M (y).N z)"
apply(rule_tac a="M" and b="N" in double_SNa)
apply(rule a)+
apply(auto)
apply(rule SNaI)
apply(drule a_redu_OrL_elim)
apply(auto)
done
lemma ImpL_in_SNa:
assumes a: "SNa M" "SNa N"
shows "SNa (ImpL <a>.M (y).N z)"
apply(rule_tac a="M" and b="N" in double_SNa)
apply(rule a)+
apply(auto)
apply(rule SNaI)
apply(drule a_redu_ImpL_elim)
apply(auto)
done
lemma SNa_eqvt:
fixes pi1::"name prm"
and pi2::"coname prm"
shows "SNa M ==> SNa (pi1•M)"
and "SNa M ==> SNa (pi2•M)"
apply -
apply(induct rule: SNa.induct)
apply(rule SNaI)
apply(drule_tac pi="(rev pi1)" in a_redu.eqvt(1))
apply(rotate_tac 1)
apply(drule_tac x="(rev pi1)•M'" in meta_spec)
apply(perm_simp)
apply(induct rule: SNa.induct)
apply(rule SNaI)
apply(drule_tac pi="(rev pi2)" in a_redu.eqvt(2))
apply(rotate_tac 1)
apply(drule_tac x="(rev pi2)•M'" in meta_spec)
apply(perm_simp)
done
text {* set operators *}
definition AXIOMSn :: "ty => ntrm set" where
"AXIOMSn B ≡ { (x):(Ax y b) | x y b. True }"
definition AXIOMSc::"ty => ctrm set" where
"AXIOMSc B ≡ { <a>:(Ax y b) | a y b. True }"
definition BINDINGn::"ty => ctrm set => ntrm set" where
"BINDINGn B X ≡ { (x):M | x M. ∀a P. <a>:P∈X --> SNa (M{x:=<a>.P})}"
definition BINDINGc::"ty => ntrm set => ctrm set" where
"BINDINGc B X ≡ { <a>:M | a M. ∀x P. (x):P∈X --> SNa (M{a:=(x).P})}"
lemma BINDINGn_decreasing:
shows "X⊆Y ==> BINDINGn B Y ⊆ BINDINGn B X"
by (simp add: BINDINGn_def) (blast)
lemma BINDINGc_decreasing:
shows "X⊆Y ==> BINDINGc B Y ⊆ BINDINGc B X"
by (simp add: BINDINGc_def) (blast)
nominal_primrec
NOTRIGHT :: "ty => ntrm set => ctrm set"
where
"NOTRIGHT (NOT B) X = { <a>:NotR (x).M a | a x M. fic (NotR (x).M a) a ∧ (x):M ∈ X }"
apply(rule TrueI)+
done
lemma NOTRIGHT_eqvt_name:
fixes pi::"name prm"
shows "(pi•(NOTRIGHT (NOT B) X)) = NOTRIGHT (NOT B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(1))
apply(simp)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•(<a>:NotR (xa).M a)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps)
done
lemma NOTRIGHT_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(NOTRIGHT (NOT B) X)) = NOTRIGHT (NOT B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(2))
apply(simp)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="<((rev pi)•a)>:NotR ((rev pi)•xa).((rev pi)•M) ((rev pi)•a)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps)
done
nominal_primrec
NOTLEFT :: "ty => ctrm set => ntrm set"
where
"NOTLEFT (NOT B) X = { (x):NotL <a>.M x | a x M. fin (NotL <a>.M x) x ∧ <a>:M ∈ X }"
apply(rule TrueI)+
done
lemma NOTLEFT_eqvt_name:
fixes pi::"name prm"
shows "(pi•(NOTLEFT (NOT B) X)) = NOTLEFT (NOT B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(1))
apply(simp)
apply(rule_tac x="<a>:M" in exI)
apply(simp)
apply(rule_tac x="(((rev pi)•xa)):NotL <((rev pi)•a)>.((rev pi)•M) ((rev pi)•xa)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps)
done
lemma NOTLEFT_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(NOTLEFT (NOT B) X)) = NOTLEFT (NOT B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(2))
apply(simp)
apply(rule_tac x="<a>:M" in exI)
apply(simp)
apply(rule_tac x="(((rev pi)•xa)):NotL <((rev pi)•a)>.((rev pi)•M) ((rev pi)•xa)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps)
done
nominal_primrec
ANDRIGHT :: "ty => ctrm set => ctrm set => ctrm set"
where
"ANDRIGHT (B AND C) X Y =
{ <c>:AndR <a>.M <b>.N c | c a b M N. fic (AndR <a>.M <b>.N c) c ∧ <a>:M ∈ X ∧ <b>:N ∈ Y }"
apply(rule TrueI)+
done
lemma ANDRIGHT_eqvt_name:
fixes pi::"name prm"
shows "(pi•(ANDRIGHT (A AND B) X Y)) = ANDRIGHT (A AND B) (pi•X) (pi•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•c" in exI)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(rule_tac x="pi•N" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(1))
apply(simp)
apply(rule conjI)
apply(rule_tac x="<a>:M" in exI)
apply(simp)
apply(rule_tac x="<b>:N" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•(<c>:AndR <a>.M <b>.N c)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•c" in exI)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(rule_tac x="(rev pi)•N" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps)
done
lemma ANDRIGHT_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(ANDRIGHT (A AND B) X Y)) = ANDRIGHT (A AND B) (pi•X) (pi•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•c" in exI)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(rule_tac x="pi•N" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(2))
apply(simp)
apply(rule conjI)
apply(rule_tac x="<a>:M" in exI)
apply(simp)
apply(rule_tac x="<b>:N" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•(<c>:AndR <a>.M <b>.N c)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•c" in exI)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(rule_tac x="(rev pi)•N" in exI)
apply(simp)
apply(drule_tac pi="rev pi" in fic.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp)
done
nominal_primrec
ANDLEFT1 :: "ty => ntrm set => ntrm set"
where
"ANDLEFT1 (B AND C) X = { (y):AndL1 (x).M y | x y M. fin (AndL1 (x).M y) y ∧ (x):M ∈ X }"
apply(rule TrueI)+
done
lemma ANDLEFT1_eqvt_name:
fixes pi::"name prm"
shows "(pi•(ANDLEFT1 (A AND B) X)) = ANDLEFT1 (A AND B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(1))
apply(simp)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((y):AndL1 (xa).M y)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp)
apply(drule_tac pi="rev pi" in fin.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp)
done
lemma ANDLEFT1_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(ANDLEFT1 (A AND B) X)) = ANDLEFT1 (A AND B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(2))
apply(simp)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((y):AndL1 (xa).M y)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps)
done
nominal_primrec
ANDLEFT2 :: "ty => ntrm set => ntrm set"
where
"ANDLEFT2 (B AND C) X = { (y):AndL2 (x).M y | x y M. fin (AndL2 (x).M y) y ∧ (x):M ∈ X }"
apply(rule TrueI)+
done
lemma ANDLEFT2_eqvt_name:
fixes pi::"name prm"
shows "(pi•(ANDLEFT2 (A AND B) X)) = ANDLEFT2 (A AND B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(1))
apply(simp)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((y):AndL2 (xa).M y)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp)
apply(drule_tac pi="rev pi" in fin.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp)
done
lemma ANDLEFT2_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(ANDLEFT2 (A AND B) X)) = ANDLEFT2 (A AND B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(2))
apply(simp)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((y):AndL2 (xa).M y)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps)
done
nominal_primrec
ORLEFT :: "ty => ntrm set => ntrm set => ntrm set"
where
"ORLEFT (B OR C) X Y =
{ (z):OrL (x).M (y).N z | x y z M N. fin (OrL (x).M (y).N z) z ∧ (x):M ∈ X ∧ (y):N ∈ Y }"
apply(rule TrueI)+
done
lemma ORLEFT_eqvt_name:
fixes pi::"name prm"
shows "(pi•(ORLEFT (A OR B) X Y)) = ORLEFT (A OR B) (pi•X) (pi•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•z" in exI)
apply(rule_tac x="pi•M" in exI)
apply(rule_tac x="pi•N" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(1))
apply(simp)
apply(rule conjI)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(y):N" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((z):OrL (xa).M (y).N z)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•z" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(rule_tac x="(rev pi)•N" in exI)
apply(simp)
apply(drule_tac pi="rev pi" in fin.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp)
done
lemma ORLEFT_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(ORLEFT (A OR B) X Y)) = ORLEFT (A OR B) (pi•X) (pi•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•z" in exI)
apply(rule_tac x="pi•M" in exI)
apply(rule_tac x="pi•N" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(2))
apply(simp)
apply(rule conjI)
apply(rule_tac x="(xb):M" in exI)
apply(simp)
apply(rule_tac x="(y):N" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((z):OrL (xa).M (y).N z)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•z" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(rule_tac x="(rev pi)•N" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps)
done
nominal_primrec
ORRIGHT1 :: "ty => ctrm set => ctrm set"
where
"ORRIGHT1 (B OR C) X = { <b>:OrR1 <a>.M b | a b M. fic (OrR1 <a>.M b) b ∧ <a>:M ∈ X }"
apply(rule TrueI)+
done
lemma ORRIGHT1_eqvt_name:
fixes pi::"name prm"
shows "(pi•(ORRIGHT1 (A OR B) X)) = ORRIGHT1 (A OR B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(1))
apply(simp)
apply(rule_tac x="<a>:M" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•(<b>:OrR1 <a>.M b)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps)
done
lemma ORRIGHT1_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(ORRIGHT1 (A OR B) X)) = ORRIGHT1 (A OR B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(2))
apply(simp)
apply(rule_tac x="<a>:M" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•(<b>:OrR1 <a>.M b)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp)
apply(drule_tac pi="rev pi" in fic.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp)
done
nominal_primrec
ORRIGHT2 :: "ty => ctrm set => ctrm set"
where
"ORRIGHT2 (B OR C) X = { <b>:OrR2 <a>.M b | a b M. fic (OrR2 <a>.M b) b ∧ <a>:M ∈ X }"
apply(rule TrueI)+
done
lemma ORRIGHT2_eqvt_name:
fixes pi::"name prm"
shows "(pi•(ORRIGHT2 (A OR B) X)) = ORRIGHT2 (A OR B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(1))
apply(simp)
apply(rule_tac x="<a>:M" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•(<b>:OrR2 <a>.M b)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps)
done
lemma ORRIGHT2_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(ORRIGHT2 (A OR B) X)) = ORRIGHT2 (A OR B) (pi•X)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(2))
apply(simp)
apply(rule_tac x="<a>:M" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•(<b>:OrR2 <a>.M b)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp)
apply(drule_tac pi="rev pi" in fic.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp)
done
nominal_primrec
IMPRIGHT :: "ty => ntrm set => ctrm set => ntrm set => ctrm set => ctrm set"
where
"IMPRIGHT (B IMP C) X Y Z U=
{ <b>:ImpR (x).<a>.M b | x a b M. fic (ImpR (x).<a>.M b) b
∧ (∀z P. x\<sharp>(z,P) ∧ (z):P ∈ Z --> (x):(M{a:=(z).P}) ∈ X)
∧ (∀c Q. a\<sharp>(c,Q) ∧ <c>:Q ∈ U --> <a>:(M{x:=<c>.Q}) ∈ Y)}"
apply(rule TrueI)+
done
lemma IMPRIGHT_eqvt_name:
fixes pi::"name prm"
shows "(pi•(IMPRIGHT (A IMP B) X Y Z U)) = IMPRIGHT (A IMP B) (pi•X) (pi•Y) (pi•Z) (pi•U)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(1))
apply(simp)
apply(rule conjI)
apply(auto)[1]
apply(rule_tac x="(xb):(M{a:=((rev pi)•z).((rev pi)•P)})" in exI)
apply(perm_simp add: csubst_eqvt)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp)
apply(simp add: fresh_right)
apply(auto)[1]
apply(rule_tac x="<a>:(M{xb:=<((rev pi)•c)>.((rev pi)•Q)})" in exI)
apply(perm_simp add: nsubst_eqvt)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps fresh_left)
apply(rule_tac x="(rev pi)•(<b>:ImpR xa.<a>.M b)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(1))
apply(simp add: swap_simps)
apply(rule conjI)
apply(auto)[1]
apply(drule_tac x="pi•z" in spec)
apply(drule_tac x="pi•P" in spec)
apply(drule mp)
apply(simp add: fresh_right)
apply(rule_tac x="(z):P" in exI)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: csubst_eqvt fresh_right)
apply(auto)[1]
apply(drule_tac x="pi•c" in spec)
apply(drule_tac x="pi•Q" in spec)
apply(drule mp)
apply(simp add: swap_simps fresh_left)
apply(rule_tac x="<c>:Q" in exI)
apply(simp add: swap_simps)
apply(auto)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: nsubst_eqvt)
done
lemma IMPRIGHT_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(IMPRIGHT (A IMP B) X Y Z U)) = IMPRIGHT (A IMP B) (pi•X) (pi•Y) (pi•Z) (pi•U)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•b" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fic.eqvt(2))
apply(simp)
apply(rule conjI)
apply(auto)[1]
apply(rule_tac x="(xb):(M{a:=((rev pi)•z).((rev pi)•P)})" in exI)
apply(perm_simp add: csubst_eqvt)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps fresh_left)
apply(auto)[1]
apply(rule_tac x="<a>:(M{xb:=<((rev pi)•c)>.((rev pi)•Q)})" in exI)
apply(perm_simp add: nsubst_eqvt)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: fresh_right)
apply(rule_tac x="(rev pi)•(<b>:ImpR xa.<a>.M b)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•b" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fic.eqvt(2))
apply(simp add: swap_simps)
apply(rule conjI)
apply(auto)[1]
apply(drule_tac x="pi•z" in spec)
apply(drule_tac x="pi•P" in spec)
apply(simp add: swap_simps fresh_left)
apply(drule mp)
apply(rule_tac x="(z):P" in exI)
apply(simp add: swap_simps)
apply(auto)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: csubst_eqvt fresh_right)
apply(auto)[1]
apply(drule_tac x="pi•c" in spec)
apply(drule_tac x="pi•Q" in spec)
apply(simp add: fresh_right)
apply(drule mp)
apply(rule_tac x="<c>:Q" in exI)
apply(simp)
apply(auto)[1]
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: nsubst_eqvt fresh_right)
done
nominal_primrec
IMPLEFT :: "ty => ctrm set => ntrm set => ntrm set"
where
"IMPLEFT (B IMP C) X Y =
{ (y):ImpL <a>.M (x).N y | x a y M N. fin (ImpL <a>.M (x).N y) y ∧ <a>:M ∈ X ∧ (x):N ∈ Y }"
apply(rule TrueI)+
done
lemma IMPLEFT_eqvt_name:
fixes pi::"name prm"
shows "(pi•(IMPLEFT (A IMP B) X Y)) = IMPLEFT (A IMP B) (pi•X) (pi•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•M" in exI)
apply(rule_tac x="pi•N" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(1))
apply(simp)
apply(rule conjI)
apply(rule_tac x="<a>:M" in exI)
apply(simp)
apply(rule_tac x="(xb):N" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((y):ImpL <a>.M (xa).N y)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(rule_tac x="(rev pi)•N" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(1))
apply(simp)
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: swap_simps)
done
lemma IMPLEFT_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(IMPLEFT (A IMP B) X Y)) = IMPLEFT (A IMP B) (pi•X) (pi•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•M" in exI)
apply(rule_tac x="pi•N" in exI)
apply(simp)
apply(rule conjI)
apply(drule_tac pi="pi" in fin.eqvt(2))
apply(simp)
apply(rule conjI)
apply(rule_tac x="<a>:M" in exI)
apply(simp)
apply(rule_tac x="(xb):N" in exI)
apply(simp)
apply(rule_tac x="(rev pi)•((y):ImpL <a>.M (xa).N y)" in exI)
apply(perm_simp)
apply(rule_tac x="(rev pi)•xa" in exI)
apply(rule_tac x="(rev pi)•a" in exI)
apply(rule_tac x="(rev pi)•y" in exI)
apply(rule_tac x="(rev pi)•M" in exI)
apply(rule_tac x="(rev pi)•N" in exI)
apply(simp add: swap_simps)
apply(drule_tac pi="rev pi" in fin.eqvt(2))
apply(simp)
apply(drule sym)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: swap_simps)
done
lemma sum_cases:
shows "(∃y. x=Inl y) ∨ (∃y. x=Inr y)"
apply(rule_tac s="x" in sumE)
apply(auto)
done
function
NEGc::"ty => ntrm set => ctrm set"
and
NEGn::"ty => ctrm set => ntrm set"
where
"NEGc (PR A) X = AXIOMSc (PR A) ∪ BINDINGc (PR A) X"
| "NEGc (NOT C) X = AXIOMSc (NOT C) ∪ BINDINGc (NOT C) X
∪ NOTRIGHT (NOT C) (lfp (NEGn C o NEGc C))"
| "NEGc (C AND D) X = AXIOMSc (C AND D) ∪ BINDINGc (C AND D) X
∪ ANDRIGHT (C AND D) (NEGc C (lfp (NEGn C o NEGc C))) (NEGc D (lfp (NEGn D o NEGc D)))"
| "NEGc (C OR D) X = AXIOMSc (C OR D) ∪ BINDINGc (C OR D) X
∪ ORRIGHT1 (C OR D) (NEGc C (lfp (NEGn C o NEGc C)))
∪ ORRIGHT2 (C OR D) (NEGc D (lfp (NEGn D o NEGc D)))"
| "NEGc (C IMP D) X = AXIOMSc (C IMP D) ∪ BINDINGc (C IMP D) X
∪ IMPRIGHT (C IMP D) (lfp (NEGn C o NEGc C)) (NEGc D (lfp (NEGn D o NEGc D)))
(lfp (NEGn D o NEGc D)) (NEGc C (lfp (NEGn C o NEGc C)))"
| "NEGn (PR A) X = AXIOMSn (PR A) ∪ BINDINGn (PR A) X"
| "NEGn (NOT C) X = AXIOMSn (NOT C) ∪ BINDINGn (NOT C) X
∪ NOTLEFT (NOT C) (NEGc C (lfp (NEGn C o NEGc C)))"
| "NEGn (C AND D) X = AXIOMSn (C AND D) ∪ BINDINGn (C AND D) X
∪ ANDLEFT1 (C AND D) (lfp (NEGn C o NEGc C))
∪ ANDLEFT2 (C AND D) (lfp (NEGn D o NEGc D))"
| "NEGn (C OR D) X = AXIOMSn (C OR D) ∪ BINDINGn (C OR D) X
∪ ORLEFT (C OR D) (lfp (NEGn C o NEGc C)) (lfp (NEGn D o NEGc D))"
| "NEGn (C IMP D) X = AXIOMSn (C IMP D) ∪ BINDINGn (C IMP D) X
∪ IMPLEFT (C IMP D) (NEGc C (lfp (NEGn C o NEGc C))) (lfp (NEGn D o NEGc D))"
using ty_cases sum_cases
apply(auto simp add: ty.inject)
apply(drule_tac x="x" in meta_spec)
apply(auto simp add: ty.inject)
apply(rotate_tac 10)
apply(drule_tac x="a" in meta_spec)
apply(auto simp add: ty.inject)
apply(blast)
apply(blast)
apply(blast)
apply(rotate_tac 10)
apply(drule_tac x="a" in meta_spec)
apply(auto simp add: ty.inject)
apply(blast)
apply(blast)
apply(blast)
done
termination
apply(relation "measure (sum_case (sizeofst) (sizeofst))")
apply(simp_all)
done
text {* Candidates *}
lemma test1:
shows "x∈(X∪Y) = (x∈X ∨ x∈Y)"
by blast
lemma test2:
shows "x∈(X∩Y) = (x∈X ∧ x∈Y)"
by blast
lemma big_inter_eqvt:
fixes pi1::"name prm"
and X::"('a::pt_name) set set"
and pi2::"coname prm"
and Y::"('b::pt_coname) set set"
shows "(pi1•(\<Inter> X)) = \<Inter> (pi1•X)"
and "(pi2•(\<Inter> Y)) = \<Inter> (pi2•Y)"
apply(auto simp add: perm_set_eq)
apply(rule_tac x="(rev pi1)•x" in exI)
apply(perm_simp)
apply(rule ballI)
apply(drule_tac x="pi1•xa" in spec)
apply(auto)
apply(drule_tac x="xa" in spec)
apply(auto)[1]
apply(rule_tac x="(rev pi1)•xb" in exI)
apply(perm_simp)
apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: pt_set_bij[OF pt_name_inst, OF at_name_inst])
apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
apply(rule_tac x="(rev pi2)•x" in exI)
apply(perm_simp)
apply(rule ballI)
apply(drule_tac x="pi2•xa" in spec)
apply(auto)
apply(drule_tac x="xa" in spec)
apply(auto)[1]
apply(rule_tac x="(rev pi2)•xb" in exI)
apply(perm_simp)
apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: pt_set_bij[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
done
lemma lfp_eqvt:
fixes pi1::"name prm"
and f::"'a set => ('a::pt_name) set"
and pi2::"coname prm"
and g::"'b set => ('b::pt_coname) set"
shows "pi1•(lfp f) = lfp (pi1•f)"
and "pi2•(lfp g) = lfp (pi2•g)"
apply(simp add: lfp_def)
apply(simp add: big_inter_eqvt)
apply(simp add: pt_Collect_eqvt[OF pt_name_inst, OF at_name_inst])
apply(subgoal_tac "{u. (pi1•f) u ⊆ u} = {u. ((rev pi1)•((pi1•f) u)) ⊆ ((rev pi1)•u)}")
apply(perm_simp)
apply(rule Collect_cong)
apply(rule iffI)
apply(rule subseteq_eqvt(1)[THEN iffD1])
apply(simp add: perm_bool)
apply(drule subseteq_eqvt(1)[THEN iffD2])
apply(simp add: perm_bool)
apply(simp add: lfp_def)
apply(simp add: big_inter_eqvt)
apply(simp add: pt_Collect_eqvt[OF pt_coname_inst, OF at_coname_inst])
apply(subgoal_tac "{u. (pi2•g) u ⊆ u} = {u. ((rev pi2)•((pi2•g) u)) ⊆ ((rev pi2)•u)}")
apply(perm_simp)
apply(rule Collect_cong)
apply(rule iffI)
apply(rule subseteq_eqvt(2)[THEN iffD1])
apply(simp add: perm_bool)
apply(drule subseteq_eqvt(2)[THEN iffD2])
apply(simp add: perm_bool)
done
abbreviation
CANDn::"ty => ntrm set" ("\<parallel>'(_')\<parallel>" [60] 60)
where
"\<parallel>(B)\<parallel> ≡ lfp (NEGn B o NEGc B)"
abbreviation
CANDc::"ty => ctrm set" ("\<parallel><_>\<parallel>" [60] 60)
where
"\<parallel><B>\<parallel> ≡ NEGc B (\<parallel>(B)\<parallel>)"
lemma NEGn_decreasing:
shows "X⊆Y ==> NEGn B Y ⊆ NEGn B X"
by (nominal_induct B rule: ty.strong_induct)
(auto dest: BINDINGn_decreasing)
lemma NEGc_decreasing:
shows "X⊆Y ==> NEGc B Y ⊆ NEGc B X"
by (nominal_induct B rule: ty.strong_induct)
(auto dest: BINDINGc_decreasing)
lemma mono_NEGn_NEGc:
shows "mono (NEGn B o NEGc B)"
and "mono (NEGc B o NEGn B)"
proof -
have "∀X Y. X⊆Y --> NEGn B (NEGc B X) ⊆ NEGn B (NEGc B Y)"
proof (intro strip)
fix X::"ntrm set" and Y::"ntrm set"
assume "X⊆Y"
then have "NEGc B Y ⊆ NEGc B X" by (simp add: NEGc_decreasing)
then show "NEGn B (NEGc B X) ⊆ NEGn B (NEGc B Y)" by (simp add: NEGn_decreasing)
qed
then show "mono (NEGn B o NEGc B)" by (simp add: mono_def)
next
have "∀X Y. X⊆Y --> NEGc B (NEGn B X) ⊆ NEGc B (NEGn B Y)"
proof (intro strip)
fix X::"ctrm set" and Y::"ctrm set"
assume "X⊆Y"
then have "NEGn B Y ⊆ NEGn B X" by (simp add: NEGn_decreasing)
then show "NEGc B (NEGn B X) ⊆ NEGc B (NEGn B Y)" by (simp add: NEGc_decreasing)
qed
then show "mono (NEGc B o NEGn B)" by (simp add: mono_def)
qed
lemma NEG_simp:
shows "\<parallel><B>\<parallel> = NEGc B (\<parallel>(B)\<parallel>)"
and "\<parallel>(B)\<parallel> = NEGn B (\<parallel><B>\<parallel>)"
proof -
show "\<parallel><B>\<parallel> = NEGc B (\<parallel>(B)\<parallel>)" by simp
next
have "\<parallel>(B)\<parallel> ≡ lfp (NEGn B o NEGc B)" by simp
then have "\<parallel>(B)\<parallel> = (NEGn B o NEGc B) (\<parallel>(B)\<parallel>)" using mono_NEGn_NEGc def_lfp_unfold by blast
then show "\<parallel>(B)\<parallel> = NEGn B (\<parallel><B>\<parallel>)" by simp
qed
lemma NEG_elim:
shows "M ∈ \<parallel><B>\<parallel> ==> M ∈ NEGc B (\<parallel>(B)\<parallel>)"
and "N ∈ \<parallel>(B)\<parallel> ==> N ∈ NEGn B (\<parallel><B>\<parallel>)"
using NEG_simp by (blast)+
lemma NEG_intro:
shows "M ∈ NEGc B (\<parallel>(B)\<parallel>) ==> M ∈ \<parallel><B>\<parallel>"
and "N ∈ NEGn B (\<parallel><B>\<parallel>) ==> N ∈ \<parallel>(B)\<parallel>"
using NEG_simp by (blast)+
lemma NEGc_simps:
shows "NEGc (PR A) (\<parallel>(PR A)\<parallel>) = AXIOMSc (PR A) ∪ BINDINGc (PR A) (\<parallel>(PR A)\<parallel>)"
and "NEGc (NOT C) (\<parallel>(NOT C)\<parallel>) = AXIOMSc (NOT C) ∪ BINDINGc (NOT C) (\<parallel>(NOT C)\<parallel>)
∪ (NOTRIGHT (NOT C) (\<parallel>(C)\<parallel>))"
and "NEGc (C AND D) (\<parallel>(C AND D)\<parallel>) = AXIOMSc (C AND D) ∪ BINDINGc (C AND D) (\<parallel>(C AND D)\<parallel>)
∪ (ANDRIGHT (C AND D) (\<parallel><C>\<parallel>) (\<parallel><D>\<parallel>))"
and "NEGc (C OR D) (\<parallel>(C OR D)\<parallel>) = AXIOMSc (C OR D) ∪ BINDINGc (C OR D) (\<parallel>(C OR D)\<parallel>)
∪ (ORRIGHT1 (C OR D) (\<parallel><C>\<parallel>)) ∪ (ORRIGHT2 (C OR D) (\<parallel><D>\<parallel>))"
and "NEGc (C IMP D) (\<parallel>(C IMP D)\<parallel>) = AXIOMSc (C IMP D) ∪ BINDINGc (C IMP D) (\<parallel>(C IMP D)\<parallel>)
∪ (IMPRIGHT (C IMP D) (\<parallel>(C)\<parallel>) (\<parallel><D>\<parallel>) (\<parallel>(D)\<parallel>) (\<parallel><C>\<parallel>))"
by (simp_all only: NEGc.simps)
lemma AXIOMS_in_CANDs:
shows "AXIOMSn B ⊆ (\<parallel>(B)\<parallel>)"
and "AXIOMSc B ⊆ (\<parallel><B>\<parallel>)"
proof -
have "AXIOMSn B ⊆ NEGn B (\<parallel><B>\<parallel>)"
by (nominal_induct B rule: ty.strong_induct) (auto)
then show "AXIOMSn B ⊆ \<parallel>(B)\<parallel>" using NEG_simp by blast
next
have "AXIOMSc B ⊆ NEGc B (\<parallel>(B)\<parallel>)"
by (nominal_induct B rule: ty.strong_induct) (auto)
then show "AXIOMSc B ⊆ \<parallel><B>\<parallel>" using NEG_simp by blast
qed
lemma Ax_in_CANDs:
shows "(y):Ax x a ∈ \<parallel>(B)\<parallel>"
and "<b>:Ax x a ∈ \<parallel><B>\<parallel>"
proof -
have "(y):Ax x a ∈ AXIOMSn B" by (auto simp add: AXIOMSn_def)
also have "AXIOMSn B ⊆ \<parallel>(B)\<parallel>" by (rule AXIOMS_in_CANDs)
finally show "(y):Ax x a ∈ \<parallel>(B)\<parallel>" by simp
next
have "<b>:Ax x a ∈ AXIOMSc B" by (auto simp add: AXIOMSc_def)
also have "AXIOMSc B ⊆ \<parallel><B>\<parallel>" by (rule AXIOMS_in_CANDs)
finally show "<b>:Ax x a ∈ \<parallel><B>\<parallel>" by simp
qed
lemma AXIOMS_eqvt_aux_name:
fixes pi::"name prm"
shows "M ∈ AXIOMSn B ==> (pi•M) ∈ AXIOMSn B"
and "N ∈ AXIOMSc B ==> (pi•N) ∈ AXIOMSc B"
apply(auto simp add: AXIOMSn_def AXIOMSc_def)
apply(rule_tac x="pi•x" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•b" in exI)
apply(simp)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•b" in exI)
apply(simp)
done
lemma AXIOMS_eqvt_aux_coname:
fixes pi::"coname prm"
shows "M ∈ AXIOMSn B ==> (pi•M) ∈ AXIOMSn B"
and "N ∈ AXIOMSc B ==> (pi•N) ∈ AXIOMSc B"
apply(auto simp add: AXIOMSn_def AXIOMSc_def)
apply(rule_tac x="pi•x" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•b" in exI)
apply(simp)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•y" in exI)
apply(rule_tac x="pi•b" in exI)
apply(simp)
done
lemma AXIOMS_eqvt_name:
fixes pi::"name prm"
shows "(pi•AXIOMSn B) = AXIOMSn B"
and "(pi•AXIOMSc B) = AXIOMSc B"
apply(auto)
apply(simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst])
apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_name(1))
apply(perm_simp)
apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_name(1))
apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp add: pt_set_bij1a[OF pt_name_inst, OF at_name_inst])
apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_name(2))
apply(perm_simp)
apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_name(2))
apply(simp add: pt_set_bij1[OF pt_name_inst, OF at_name_inst])
done
lemma AXIOMS_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•AXIOMSn B) = AXIOMSn B"
and "(pi•AXIOMSc B) = AXIOMSc B"
apply(auto)
apply(simp add: pt_set_bij1a[OF pt_coname_inst, OF at_coname_inst])
apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_coname(1))
apply(perm_simp)
apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_coname(1))
apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: pt_set_bij1a[OF pt_coname_inst, OF at_coname_inst])
apply(drule_tac pi="pi" in AXIOMS_eqvt_aux_coname(2))
apply(perm_simp)
apply(drule_tac pi="rev pi" in AXIOMS_eqvt_aux_coname(2))
apply(simp add: pt_set_bij1[OF pt_coname_inst, OF at_coname_inst])
done
lemma BINDING_eqvt_name:
fixes pi::"name prm"
shows "(pi•(BINDINGn B X)) = BINDINGn B (pi•X)"
and "(pi•(BINDINGc B Y)) = BINDINGc B (pi•Y)"
apply(auto simp add: BINDINGn_def BINDINGc_def perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(auto)[1]
apply(drule_tac x="(rev pi)•a" in spec)
apply(drule_tac x="(rev pi)•P" in spec)
apply(drule mp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp)
apply(drule_tac ?pi1.0="pi" in SNa_eqvt(1))
apply(perm_simp add: nsubst_eqvt)
apply(rule_tac x="(rev pi•xa):(rev pi•M)" in exI)
apply(perm_simp)
apply(rule_tac x="rev pi•xa" in exI)
apply(rule_tac x="rev pi•M" in exI)
apply(simp)
apply(auto)[1]
apply(drule_tac x="pi•a" in spec)
apply(drule_tac x="pi•P" in spec)
apply(drule mp)
apply(force)
apply(drule_tac ?pi1.0="rev pi" in SNa_eqvt(1))
apply(perm_simp add: nsubst_eqvt)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(auto)[1]
apply(drule_tac x="(rev pi)•x" in spec)
apply(drule_tac x="(rev pi)•P" in spec)
apply(drule mp)
apply(drule sym)
apply(drule pt_bij1[OF pt_name_inst, OF at_name_inst])
apply(simp)
apply(drule_tac ?pi1.0="pi" in SNa_eqvt(1))
apply(perm_simp add: csubst_eqvt)
apply(rule_tac x="<(rev pi•a)>:(rev pi•M)" in exI)
apply(perm_simp)
apply(rule_tac x="rev pi•a" in exI)
apply(rule_tac x="rev pi•M" in exI)
apply(simp add: swap_simps)
apply(auto)[1]
apply(drule_tac x="pi•x" in spec)
apply(drule_tac x="pi•P" in spec)
apply(drule mp)
apply(force)
apply(drule_tac ?pi1.0="rev pi" in SNa_eqvt(1))
apply(perm_simp add: csubst_eqvt)
done
lemma BINDING_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(BINDINGn B X)) = BINDINGn B (pi•X)"
and "(pi•(BINDINGc B Y)) = BINDINGc B (pi•Y)"
apply(auto simp add: BINDINGn_def BINDINGc_def perm_set_eq)
apply(rule_tac x="pi•xb" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(auto)[1]
apply(drule_tac x="(rev pi)•a" in spec)
apply(drule_tac x="(rev pi)•P" in spec)
apply(drule mp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp)
apply(drule_tac ?pi2.0="pi" in SNa_eqvt(2))
apply(perm_simp add: nsubst_eqvt)
apply(rule_tac x="(rev pi•xa):(rev pi•M)" in exI)
apply(perm_simp)
apply(rule_tac x="rev pi•xa" in exI)
apply(rule_tac x="rev pi•M" in exI)
apply(simp add: swap_simps)
apply(auto)[1]
apply(drule_tac x="pi•a" in spec)
apply(drule_tac x="pi•P" in spec)
apply(drule mp)
apply(force)
apply(drule_tac ?pi2.0="rev pi" in SNa_eqvt(2))
apply(perm_simp add: nsubst_eqvt)
apply(rule_tac x="pi•a" in exI)
apply(rule_tac x="pi•M" in exI)
apply(simp)
apply(auto)[1]
apply(drule_tac x="(rev pi)•x" in spec)
apply(drule_tac x="(rev pi)•P" in spec)
apply(drule mp)
apply(drule sym)
apply(drule pt_bij1[OF pt_coname_inst, OF at_coname_inst])
apply(simp)
apply(drule_tac ?pi2.0="pi" in SNa_eqvt(2))
apply(perm_simp add: csubst_eqvt)
apply(rule_tac x="<(rev pi•a)>:(rev pi•M)" in exI)
apply(perm_simp)
apply(rule_tac x="rev pi•a" in exI)
apply(rule_tac x="rev pi•M" in exI)
apply(simp)
apply(auto)[1]
apply(drule_tac x="pi•x" in spec)
apply(drule_tac x="pi•P" in spec)
apply(drule mp)
apply(force)
apply(drule_tac ?pi2.0="rev pi" in SNa_eqvt(2))
apply(perm_simp add: csubst_eqvt)
done
lemma CAND_eqvt_name:
fixes pi::"name prm"
shows "(pi•(\<parallel>(B)\<parallel>)) = (\<parallel>(B)\<parallel>)"
and "(pi•(\<parallel><B>\<parallel>)) = (\<parallel><B>\<parallel>)"
proof (nominal_induct B rule: ty.strong_induct)
case (PR X)
{ case 1 show ?case
apply -
apply(simp add: lfp_eqvt)
apply(simp add: perm_fun_def [where 'a="ntrm => bool"])
apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
apply(perm_simp)
done
next
case 2 show ?case
apply -
apply(simp only: NEGc_simps)
apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
apply(simp add: lfp_eqvt)
apply(simp add: comp_def)
apply(simp add: perm_fun_def [where 'a="ntrm => bool"])
apply(simp add: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name)
apply(perm_simp)
done
}
next
case (NOT B)
have ih1: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih2: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(NOT B)\<parallel>) = (\<parallel>(NOT B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name NOTLEFT_eqvt_name)
apply(perm_simp add: ih1 ih2)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name NOTRIGHT_eqvt_name ih1 ih2 g)
}
next
case (AND A B)
have ih1: "pi•(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
have ih2: "pi•(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
have ih3: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih4: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(A AND B)\<parallel>) = (\<parallel>(A AND B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ANDRIGHT_eqvt_name
ANDLEFT2_eqvt_name ANDLEFT1_eqvt_name)
apply(perm_simp add: ih1 ih2 ih3 ih4)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name
ANDRIGHT_eqvt_name ANDLEFT1_eqvt_name ANDLEFT2_eqvt_name ih1 ih2 ih3 ih4 g)
}
next
case (OR A B)
have ih1: "pi•(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
have ih2: "pi•(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
have ih3: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih4: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(A OR B)\<parallel>) = (\<parallel>(A OR B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name ORRIGHT1_eqvt_name
ORRIGHT2_eqvt_name ORLEFT_eqvt_name)
apply(perm_simp add: ih1 ih2 ih3 ih4)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name
ORRIGHT1_eqvt_name ORRIGHT2_eqvt_name ORLEFT_eqvt_name ih1 ih2 ih3 ih4 g)
}
next
case (IMP A B)
have ih1: "pi•(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
have ih2: "pi•(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
have ih3: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih4: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(A IMP B)\<parallel>) = (\<parallel>(A IMP B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name IMPRIGHT_eqvt_name IMPLEFT_eqvt_name)
apply(perm_simp add: ih1 ih2 ih3 ih4)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_name BINDING_eqvt_name
IMPRIGHT_eqvt_name IMPLEFT_eqvt_name ih1 ih2 ih3 ih4 g)
}
qed
lemma CAND_eqvt_coname:
fixes pi::"coname prm"
shows "(pi•(\<parallel>(B)\<parallel>)) = (\<parallel>(B)\<parallel>)"
and "(pi•(\<parallel><B>\<parallel>)) = (\<parallel><B>\<parallel>)"
proof (nominal_induct B rule: ty.strong_induct)
case (PR X)
{ case 1 show ?case
apply -
apply(simp add: lfp_eqvt)
apply(simp add: perm_fun_def [where 'a="ntrm => bool"])
apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
apply(perm_simp)
done
next
case 2 show ?case
apply -
apply(simp only: NEGc_simps)
apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
apply(simp add: lfp_eqvt)
apply(simp add: comp_def)
apply(simp add: perm_fun_def [where 'a="ntrm => bool"])
apply(simp add: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname)
apply(perm_simp)
done
}
next
case (NOT B)
have ih1: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih2: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(NOT B)\<parallel>) = (\<parallel>(NOT B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname
NOTRIGHT_eqvt_coname NOTLEFT_eqvt_coname)
apply(perm_simp add: ih1 ih2)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname
NOTRIGHT_eqvt_coname ih1 ih2 g)
}
next
case (AND A B)
have ih1: "pi•(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
have ih2: "pi•(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
have ih3: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih4: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(A AND B)\<parallel>) = (\<parallel>(A AND B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ANDRIGHT_eqvt_coname
ANDLEFT2_eqvt_coname ANDLEFT1_eqvt_coname)
apply(perm_simp add: ih1 ih2 ih3 ih4)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname
ANDRIGHT_eqvt_coname ANDLEFT1_eqvt_coname ANDLEFT2_eqvt_coname ih1 ih2 ih3 ih4 g)
}
next
case (OR A B)
have ih1: "pi•(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
have ih2: "pi•(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
have ih3: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih4: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(A OR B)\<parallel>) = (\<parallel>(A OR B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname ORRIGHT1_eqvt_coname
ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname)
apply(perm_simp add: ih1 ih2 ih3 ih4)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname
ORRIGHT1_eqvt_coname ORRIGHT2_eqvt_coname ORLEFT_eqvt_coname ih1 ih2 ih3 ih4 g)
}
next
case (IMP A B)
have ih1: "pi•(\<parallel>(A)\<parallel>) = (\<parallel>(A)\<parallel>)" by fact
have ih2: "pi•(\<parallel><A>\<parallel>) = (\<parallel><A>\<parallel>)" by fact
have ih3: "pi•(\<parallel>(B)\<parallel>) = (\<parallel>(B)\<parallel>)" by fact
have ih4: "pi•(\<parallel><B>\<parallel>) = (\<parallel><B>\<parallel>)" by fact
have g: "pi•(\<parallel>(A IMP B)\<parallel>) = (\<parallel>(A IMP B)\<parallel>)"
apply -
apply(simp only: lfp_eqvt)
apply(simp only: comp_def)
apply(simp only: perm_fun_def [where 'a="ntrm => bool"])
apply(simp only: NEGc.simps NEGn.simps)
apply(simp only: union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname IMPRIGHT_eqvt_coname
IMPLEFT_eqvt_coname)
apply(perm_simp add: ih1 ih2 ih3 ih4)
done
{ case 1 show ?case by (rule g)
next
case 2 show ?case
by (simp only: NEGc_simps union_eqvt AXIOMS_eqvt_coname BINDING_eqvt_coname
IMPRIGHT_eqvt_coname IMPLEFT_eqvt_coname ih1 ih2 ih3 ih4 g)
}
qed
text {* Elimination rules for the set-operators *}
lemma BINDINGc_elim:
assumes a: "<a>:M ∈ BINDINGc B (\<parallel>(B)\<parallel>)"
shows "∀x P. ((x):P)∈(\<parallel>(B)\<parallel>) --> SNa (M{a:=(x).P})"
using a
apply(auto simp add: BINDINGc_def)
apply(auto simp add: ctrm.inject alpha)
apply(drule_tac x="[(a,aa)]•x" in spec)
apply(drule_tac x="[(a,aa)]•P" in spec)
apply(drule mp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname)
apply(drule_tac ?pi2.0="[(a,aa)]" in SNa_eqvt(2))
apply(perm_simp add: csubst_eqvt)
done
lemma BINDINGn_elim:
assumes a: "(x):M ∈ BINDINGn B (\<parallel><B>\<parallel>)"
shows "∀c P. (<c>:P)∈(\<parallel><B>\<parallel>) --> SNa (M{x:=<c>.P})"
using a
apply(auto simp add: BINDINGn_def)
apply(auto simp add: ntrm.inject alpha)
apply(drule_tac x="[(x,xa)]•c" in spec)
apply(drule_tac x="[(x,xa)]•P" in spec)
apply(drule mp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name)
apply(drule_tac ?pi1.0="[(x,xa)]" in SNa_eqvt(1))
apply(perm_simp add: nsubst_eqvt)
done
lemma NOTRIGHT_elim:
assumes a: "<a>:M ∈ NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)"
obtains x' M' where "M = NotR (x').M' a" and "fic (NotR (x').M' a) a" and "(x'):M' ∈ (\<parallel>(B)\<parallel>)"
using a
apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(a,aa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
done
lemma NOTLEFT_elim:
assumes a: "(x):M ∈ NOTLEFT (NOT B) (\<parallel><B>\<parallel>)"
obtains a' M' where "M = NotL <a'>.M' x" and "fin (NotL <a'>.M' x) x" and "<a'>:M' ∈ (\<parallel><B>\<parallel>)"
using a
apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(x,xa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
done
lemma ANDRIGHT_elim:
assumes a: "<a>:M ∈ ANDRIGHT (B AND C) (\<parallel><B>\<parallel>) (\<parallel><C>\<parallel>)"
obtains d' M' e' N' where "M = AndR <d'>.M' <e'>.N' a" and "fic (AndR <d'>.M' <e'>.N' a) a"
and "<d'>:M' ∈ (\<parallel><B>\<parallel>)" and "<e'>:N' ∈ (\<parallel><C>\<parallel>)"
using a
apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm fresh_atm)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(a,c)]•M" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(a,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(case_tac "a=b")
apply(simp)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(b,c)]•M" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(b,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "c=b")
apply(simp)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,b)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(a,c)]•M" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(aa,c)]•M" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(aa,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,c)]" and x="<aa>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "c=aa")
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,aa)]•M" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,aa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,c)]•M" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(a,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" and x="<a>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(case_tac "a=aa")
apply(simp)
apply(case_tac "aa=b")
apply(simp)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(b,c)]•M" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(b,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "c=b")
apply(simp)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(aa,b)]•M" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(aa,b)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(aa,c)]•M" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(aa,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "c=aa")
apply(simp)
apply(case_tac "a=b")
apply(simp)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(b,aa)]•M" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(b,aa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(b,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(b,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(b,aa)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "aa=b")
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,b)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,aa)]•M" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,aa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "a=b")
apply(simp)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(b,c)]•M" in meta_spec)
apply(drule_tac x="c" in meta_spec)
apply(drule_tac x="[(b,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(b,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "c=b")
apply(simp)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,b)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,c)]•M" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,c)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule meta_mp)
apply(drule_tac pi="[(a,c)]" and x="<b>:N" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
done
lemma ANDLEFT1_elim:
assumes a: "(x):M ∈ ANDLEFT1 (B AND C) (\<parallel>(B)\<parallel>)"
obtains x' M' where "M = AndL1 (x').M' x" and "fin (AndL1 (x').M' x) x" and "(x'):M' ∈ (\<parallel>(B)\<parallel>)"
using a
apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(xa,y)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "y=xa")
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,xa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
done
lemma ANDLEFT2_elim:
assumes a: "(x):M ∈ ANDLEFT2 (B AND C) (\<parallel>(C)\<parallel>)"
obtains x' M' where "M = AndL2 (x').M' x" and "fin (AndL2 (x').M' x) x" and "(x'):M' ∈ (\<parallel>(C)\<parallel>)"
using a
apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(xa,y)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "y=xa")
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,xa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
done
lemma ORRIGHT1_elim:
assumes a: "<a>:M ∈ ORRIGHT1 (B OR C) (\<parallel><B>\<parallel>)"
obtains a' M' where "M = OrR1 <a'>.M' a" and "fic (OrR1 <a'>.M' a) a" and "<a'>:M' ∈ (\<parallel><B>\<parallel>)"
using a
apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(aa,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "b=aa")
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,aa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
done
lemma ORRIGHT2_elim:
assumes a: "<a>:M ∈ ORRIGHT2 (B OR C) (\<parallel><C>\<parallel>)"
obtains a' M' where "M = OrR2 <a'>.M' a" and "fic (OrR2 <a'>.M' a) a" and "<a'>:M' ∈ (\<parallel><C>\<parallel>)"
using a
apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(aa,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(case_tac "b=aa")
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,aa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
apply(simp)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(simp)
done
lemma ORLEFT_elim:
assumes a: "(x):M ∈ ORLEFT (B OR C) (\<parallel>(B)\<parallel>) (\<parallel>(C)\<parallel>)"
obtains y' M' z' N' where "M = OrL (y').M' (z').N' x" and "fin (OrL (y').M' (z').N' x) x"
and "(y'):M' ∈ (\<parallel>(B)\<parallel>)" and "(z'):N' ∈ (\<parallel>(C)\<parallel>)"
using a
apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm fresh_atm)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(x,z)]•M" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(x,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(case_tac "x=y")
apply(simp)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(y,z)]•M" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(y,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "z=y")
apply(simp)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(x,z)]•M" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(xa,z)]•M" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(xa,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,z)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "z=xa")
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,xa)]•M" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,xa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,z)]•M" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(x,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(case_tac "x=xa")
apply(simp)
apply(case_tac "xa=y")
apply(simp)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(y,z)]•M" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(y,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "z=y")
apply(simp)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(xa,y)]•M" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(xa,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(xa,z)]•M" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(xa,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "z=xa")
apply(simp)
apply(case_tac "x=y")
apply(simp)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(y,xa)]•M" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(y,xa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(y,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(y,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(y,xa)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "xa=y")
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,xa)]•M" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,xa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "x=y")
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(y,z)]•M" in meta_spec)
apply(drule_tac x="z" in meta_spec)
apply(drule_tac x="[(y,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(y,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "z=y")
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,z)]•M" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,z)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,z)]" and x="(y):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
done
lemma IMPRIGHT_elim:
assumes a: "<a>:M ∈ IMPRIGHT (B IMP C) (\<parallel>(B)\<parallel>) (\<parallel><C>\<parallel>) (\<parallel>(C)\<parallel>) (\<parallel><B>\<parallel>)"
obtains x' a' M' where "M = ImpR (x').<a'>.M' a" and "fic (ImpR (x').<a'>.M' a) a"
and "∀z P. x'\<sharp>(z,P) ∧ (z):P ∈ \<parallel>(C)\<parallel> --> (x'):(M'{a':=(z).P}) ∈ \<parallel>(B)\<parallel>"
and "∀c Q. a'\<sharp>(c,Q) ∧ <c>:Q ∈ \<parallel><B>\<parallel> --> <a'>:(M'{x':=<c>.Q}) ∈ \<parallel><C>\<parallel>"
using a
apply(auto simp add: ctrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(simp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule_tac x="z" in spec)
apply(drule_tac x="[(a,b)]•P" in spec)
apply(simp add: fresh_prod fresh_left calc_atm)
apply(drule_tac pi="[(a,b)]" and x="(x):M{a:=(z).([(a,b)]•P)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname)
apply(rotate_tac 2)
apply(drule_tac x="[(a,b)]•c" in spec)
apply(drule_tac x="[(a,b)]•Q" in spec)
apply(simp add: fresh_prod fresh_left)
apply(drule mp)
apply(simp add: calc_atm)
apply(drule_tac pi="[(a,b)]" and x="<a>:M{x:=<([(a,b)]•c)>.([(a,b)]•Q)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname)
apply(simp add: calc_atm)
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="b" in meta_spec)
apply(drule_tac x="[(aa,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(aa,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule_tac x="z" in spec)
apply(drule_tac x="[(a,b)]•P" in spec)
apply(simp add: fresh_prod fresh_left calc_atm)
apply(drule_tac pi="[(a,b)]" and x="(x):M{a:=(z).([(a,b)]•P)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname)
apply(drule_tac x="[(a,b)]•c" in spec)
apply(drule_tac x="[(a,b)]•Q" in spec)
apply(simp)
apply(simp add: fresh_prod fresh_left)
apply(drule mp)
apply(simp add: calc_atm)
apply(drule_tac pi="[(a,b)]" and x="<a>:M{x:=<([(a,b)]•c)>.([(a,b)]•Q)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname)
apply(simp add: calc_atm)
apply(simp)
apply(case_tac "b=aa")
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(a,aa)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule_tac x="z" in spec)
apply(drule_tac x="[(a,aa)]•P" in spec)
apply(simp add: fresh_prod fresh_left calc_atm)
apply(drule_tac pi="[(a,aa)]" and x="(x):M{aa:=(z).([(a,aa)]•P)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname)
apply(drule_tac x="[(a,aa)]•c" in spec)
apply(drule_tac x="[(a,aa)]•Q" in spec)
apply(simp)
apply(simp add: fresh_prod fresh_left)
apply(drule mp)
apply(simp add: calc_atm)
apply(drule_tac pi="[(a,aa)]" and x="<aa>:M{x:=<([(a,aa)]•c)>.([(a,aa)]•Q)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname)
apply(simp add: calc_atm)
apply(simp)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="aa" in meta_spec)
apply(drule_tac x="[(a,b)]•M" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: calc_atm CAND_eqvt_coname)
apply(drule_tac x="z" in spec)
apply(drule_tac x="[(a,b)]•P" in spec)
apply(simp add: fresh_prod fresh_left calc_atm)
apply(drule_tac pi="[(a,b)]" and x="(x):M{aa:=(z).([(a,b)]•P)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: calc_atm csubst_eqvt CAND_eqvt_coname)
apply(drule meta_mp)
apply(auto)[1]
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname)
apply(drule_tac x="[(a,b)]•c" in spec)
apply(drule_tac x="[(a,b)]•Q" in spec)
apply(simp add: fresh_prod fresh_left)
apply(drule mp)
apply(simp add: calc_atm)
apply(drule_tac pi="[(a,b)]" and x="<aa>:M{x:=<([(a,b)]•c)>.([(a,b)]•Q)}"
in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: nsubst_eqvt CAND_eqvt_coname)
apply(simp add: calc_atm)
done
lemma IMPLEFT_elim:
assumes a: "(x):M ∈ IMPLEFT (B IMP C) (\<parallel><B>\<parallel>) (\<parallel>(C)\<parallel>)"
obtains x' a' M' N' where "M = ImpL <a'>.M' (x').N' x" and "fin (ImpL <a'>.M' (x').N' x) x"
and "<a'>:M' ∈ \<parallel><B>\<parallel>" and "(x'):N' ∈ \<parallel>(C)\<parallel>"
using a
apply(auto simp add: ntrm.inject alpha abs_fresh calc_atm)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(x,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" and x="(x):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(xa,y)]•M" in meta_spec)
apply(drule_tac x="y" in meta_spec)
apply(drule_tac x="[(xa,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(xa,y)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(case_tac "y=xa")
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(x,xa)]•M" in meta_spec)
apply(drule_tac x="x" in meta_spec)
apply(drule_tac x="[(x,xa)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" and x="<a>:M" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,xa)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
apply(simp)
apply(drule_tac x="a" in meta_spec)
apply(drule_tac x="[(x,y)]•M" in meta_spec)
apply(drule_tac x="xa" in meta_spec)
apply(drule_tac x="[(x,y)]•N" in meta_spec)
apply(simp)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(drule meta_mp)
apply(drule_tac pi="[(x,y)]" and x="(xa):N" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: calc_atm CAND_eqvt_name)
apply(simp)
done
lemma CANDs_alpha:
shows "<a>:M ∈ (\<parallel><B>\<parallel>) ==> [a].M = [b].N ==> <b>:N ∈ (\<parallel><B>\<parallel>)"
and "(x):M ∈ (\<parallel>(B)\<parallel>) ==> [x].M = [y].N ==> (y):N ∈ (\<parallel>(B)\<parallel>)"
apply(auto simp add: alpha)
apply(drule_tac pi="[(a,b)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(perm_simp add: CAND_eqvt_coname calc_atm)
apply(drule_tac pi="[(x,y)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name calc_atm)
done
lemma CAND_NotR_elim:
assumes a: "<a>:NotR (x).M a ∈ (\<parallel><B>\<parallel>)" "<a>:NotR (x).M a ∉ BINDINGc B (\<parallel>(B)\<parallel>)"
shows "∃B'. B = NOT B' ∧ (x):M ∈ (\<parallel>(B')\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
done
lemma CAND_NotL_elim_aux:
assumes a: "(x):NotL <a>.M x ∈ NEGn B (\<parallel><B>\<parallel>)" "(x):NotL <a>.M x ∉ BINDINGn B (\<parallel><B>\<parallel>)"
shows "∃B'. B = NOT B' ∧ <a>:M ∈ (\<parallel><B'>\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
done
lemmas CAND_NotL_elim = CAND_NotL_elim_aux[OF NEG_elim(2)]
lemma CAND_AndR_elim:
assumes a: "<a>:AndR <b>.M <c>.N a ∈ (\<parallel><B>\<parallel>)" "<a>:AndR <b>.M <c>.N a ∉ BINDINGc B (\<parallel>(B)\<parallel>)"
shows "∃B1 B2. B = B1 AND B2 ∧ <b>:M ∈ (\<parallel><B1>\<parallel>) ∧ <c>:N ∈ (\<parallel><B2>\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(a,ca)]" and x="<a>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(a,ca)]" and x="<a>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(a,ca)]" and x="<a>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "a=ba")
apply(simp)
apply(drule_tac pi="[(ba,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "ca=ba")
apply(simp)
apply(drule_tac pi="[(a,ba)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(a,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac pi="[(aa,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "ca=aa")
apply(simp)
apply(drule_tac pi="[(a,aa)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(a,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(a,ca)]" and x="<a>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac pi="[(aa,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "ca=aa")
apply(simp)
apply(drule_tac pi="[(a,aa)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(a,ca)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "a=ba")
apply(simp)
apply(drule_tac pi="[(ba,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "ca=ba")
apply(simp)
apply(drule_tac pi="[(a,ba)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(a,ca)]" and x="<ba>:Na" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_coname calc_atm)
apply(auto intro: CANDs_alpha)[1]
done
lemma CAND_OrR1_elim:
assumes a: "<a>:OrR1 <b>.M a ∈ (\<parallel><B>\<parallel>)" "<a>:OrR1 <b>.M a ∉ BINDINGc B (\<parallel>(B)\<parallel>)"
shows "∃B1 B2. B = B1 OR B2 ∧ <b>:M ∈ (\<parallel><B1>\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac pi="[(aa,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
apply(case_tac "ba=aa")
apply(simp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
done
lemma CAND_OrR2_elim:
assumes a: "<a>:OrR2 <b>.M a ∈ (\<parallel><B>\<parallel>)" "<a>:OrR2 <b>.M a ∉ BINDINGc B (\<parallel>(B)\<parallel>)"
shows "∃B1 B2. B = B1 OR B2 ∧ <b>:M ∈ (\<parallel><B2>\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
apply(case_tac "a=aa")
apply(simp)
apply(drule_tac pi="[(aa,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
apply(case_tac "ba=aa")
apply(simp)
apply(drule_tac pi="[(a,aa)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
apply(drule_tac pi="[(a,ba)]" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(auto simp add: CAND_eqvt_coname calc_atm intro: CANDs_alpha)
done
lemma CAND_OrL_elim_aux:
assumes a: "(x):(OrL (y).M (z).N x) ∈ NEGn B (\<parallel><B>\<parallel>)" "(x):(OrL (y).M (z).N x) ∉ BINDINGn B (\<parallel><B>\<parallel>)"
shows "∃B1 B2. B = B1 OR B2 ∧ (y):M ∈ (\<parallel>(B1)\<parallel>) ∧ (z):N ∈ (\<parallel>(B2)\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(x,za)]" and x="(x):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(x,za)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(x,za)]" and x="(x):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "x=ya")
apply(simp)
apply(drule_tac pi="[(ya,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "za=ya")
apply(simp)
apply(drule_tac pi="[(x,ya)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(x,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac pi="[(xa,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "za=xa")
apply(simp)
apply(drule_tac pi="[(x,xa)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(x,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(x,za)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac pi="[(xa,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "za=xa")
apply(simp)
apply(drule_tac pi="[(x,xa)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(x,za)]" and x="(xa):Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "x=ya")
apply(simp)
apply(drule_tac pi="[(ya,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "za=ya")
apply(simp)
apply(drule_tac pi="[(x,ya)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(x,za)]" and x="(ya):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
done
lemmas CAND_OrL_elim = CAND_OrL_elim_aux[OF NEG_elim(2)]
lemma CAND_AndL1_elim_aux:
assumes a: "(x):(AndL1 (y).M x) ∈ NEGn B (\<parallel><B>\<parallel>)" "(x):(AndL1 (y).M x) ∉ BINDINGn B (\<parallel><B>\<parallel>)"
shows "∃B1 B2. B = B1 AND B2 ∧ (y):M ∈ (\<parallel>(B1)\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac pi="[(xa,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
apply(case_tac "ya=xa")
apply(simp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
done
lemmas CAND_AndL1_elim = CAND_AndL1_elim_aux[OF NEG_elim(2)]
lemma CAND_AndL2_elim_aux:
assumes a: "(x):(AndL2 (y).M x) ∈ NEGn B (\<parallel><B>\<parallel>)" "(x):(AndL2 (y).M x) ∉ BINDINGn B (\<parallel><B>\<parallel>)"
shows "∃B1 B2. B = B1 AND B2 ∧ (y):M ∈ (\<parallel>(B2)\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac pi="[(xa,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
apply(case_tac "ya=xa")
apply(simp)
apply(drule_tac pi="[(x,xa)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
apply(drule_tac pi="[(x,ya)]" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(auto simp add: CAND_eqvt_name calc_atm intro: CANDs_alpha)
done
lemmas CAND_AndL2_elim = CAND_AndL2_elim_aux[OF NEG_elim(2)]
lemma CAND_ImpL_elim_aux:
assumes a: "(x):(ImpL <a>.M (z).N x) ∈ NEGn B (\<parallel><B>\<parallel>)" "(x):(ImpL <a>.M (z).N x) ∉ BINDINGn B (\<parallel><B>\<parallel>)"
shows "∃B1 B2. B = B1 IMP B2 ∧ <a>:M ∈ (\<parallel><B1>\<parallel>) ∧ (z):N ∈ (\<parallel>(B2)\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSn_def ntrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm)
apply(drule_tac pi="[(x,y)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(x,y)]" and x="(x):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(drule_tac pi="[(x,y)]" and x="<aa>:Ma" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(case_tac "x=xa")
apply(simp)
apply(drule_tac pi="[(xa,y)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(case_tac "y=xa")
apply(simp)
apply(drule_tac pi="[(x,xa)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
apply(simp)
apply(drule_tac pi="[(x,y)]" and x="(xa):Nb" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name calc_atm)
apply(auto intro: CANDs_alpha)[1]
done
lemmas CAND_ImpL_elim = CAND_ImpL_elim_aux[OF NEG_elim(2)]
lemma CAND_ImpR_elim:
assumes a: "<a>:ImpR (x).<b>.M a ∈ (\<parallel><B>\<parallel>)" "<a>:ImpR (x).<b>.M a ∉ BINDINGc B (\<parallel>(B)\<parallel>)"
shows "∃B1 B2. B = B1 IMP B2 ∧
(∀z P. x\<sharp>(z,P) ∧ (z):P ∈ \<parallel>(B2)\<parallel> --> (x):(M{b:=(z).P}) ∈ \<parallel>(B1)\<parallel>) ∧
(∀c Q. b\<sharp>(c,Q) ∧ <c>:Q ∈ \<parallel><B1>\<parallel> --> <b>:(M{x:=<c>.Q}) ∈ \<parallel><B2>\<parallel>)"
using a
apply(nominal_induct B rule: ty.strong_induct)
apply(simp_all add: ty.inject AXIOMSc_def ctrm.inject alpha)
apply(auto intro: CANDs_alpha simp add: trm.inject calc_atm abs_fresh fresh_atm fresh_prod fresh_bij)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="ca" and z="c" in alpha_name_coname)
apply(simp)
apply(simp)
apply(simp)
apply(drule_tac x="[(xa,c)]•[(aa,ca)]•[(b,ca)]•[(x,c)]•z" in spec)
apply(drule_tac x="[(xa,c)]•[(aa,ca)]•[(b,ca)]•[(x,c)]•P" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
apply(simp)
apply(simp)
apply(simp)
apply(drule_tac x="[(xa,ca)]•[(aa,cb)]•[(b,cb)]•[(x,ca)]•c" in spec)
apply(drule_tac x="[(xa,ca)]•[(aa,cb)]•[(b,cb)]•[(x,ca)]•Q" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="ca" and z="c" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(a,ba)]•[(xa,c)]•[(ba,ca)]•[(b,ca)]•[(x,c)]•z" in spec)
apply(drule_tac x="[(a,ba)]•[(xa,c)]•[(ba,ca)]•[(b,ca)]•[(x,c)]•P" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(a,ba)]•[(xa,ca)]•[(ba,cb)]•[(b,cb)]•[(x,ca)]•c" in spec)
apply(drule_tac x="[(a,ba)]•[(xa,ca)]•[(ba,cb)]•[(b,cb)]•[(x,ca)]•Q" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(case_tac "a=aa")
apply(simp)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="ca" and z="c" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(aa,ba)]•[(xa,c)]•[(ba,ca)]•[(b,ca)]•[(x,c)]•z" in spec)
apply(drule_tac x="[(aa,ba)]•[(xa,c)]•[(ba,ca)]•[(b,ca)]•[(x,c)]•P" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(ba,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(simp)
apply(case_tac "ba=aa")
apply(simp)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="ca" and z="c" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(a,aa)]•[(xa,c)]•[(a,ca)]•[(b,ca)]•[(x,c)]•z" in spec)
apply(drule_tac x="[(a,aa)]•[(xa,c)]•[(a,ca)]•[(b,ca)]•[(x,c)]•P" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,aa)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,aa)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(a,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(simp)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="ca" and z="c" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(a,ba)]•[(xa,c)]•[(aa,ca)]•[(b,ca)]•[(x,c)]•z" in spec)
apply(drule_tac x="[(a,ba)]•[(xa,c)]•[(aa,ca)]•[(b,ca)]•[(x,c)]•P" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty2)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(aa,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,ca)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,c)]" and X="\<parallel>(ty1)\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(case_tac "a=aa")
apply(simp)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(aa,ba)]•[(xa,ca)]•[(ba,cb)]•[(b,cb)]•[(x,ca)]•c" in spec)
apply(drule_tac x="[(aa,ba)]•[(xa,ca)]•[(ba,cb)]•[(b,cb)]•[(x,ca)]•Q" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(ba,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(simp)
apply(case_tac "ba=aa")
apply(simp)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(a,aa)]•[(xa,ca)]•[(a,cb)]•[(b,cb)]•[(x,ca)]•c" in spec)
apply(drule_tac x="[(a,aa)]•[(xa,ca)]•[(a,cb)]•[(b,cb)]•[(x,ca)]•Q" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,aa)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,aa)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(a,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(simp)
apply(generate_fresh "name")
apply(generate_fresh "coname")
apply(drule_tac a="cb" and z="ca" in alpha_name_coname)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(simp add: fresh_left calc_atm fresh_prod fresh_atm)
apply(auto)[1]
apply(simp)
apply(drule_tac x="[(a,ba)]•[(xa,ca)]•[(aa,cb)]•[(b,cb)]•[(x,ca)]•c" in spec)
apply(drule_tac x="[(a,ba)]•[(xa,ca)]•[(aa,cb)]•[(b,cb)]•[(x,ca)]•Q" in spec)
apply(drule mp)
apply(rule conjI)
apply(auto simp add: calc_atm fresh_prod fresh_atm)[1]
apply(rule conjI)
apply(auto simp add: fresh_left calc_atm fresh_prod fresh_atm)[1]
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty1>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(a,ba)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(xa,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(aa,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
apply(drule_tac pi="[(b,cb)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_coname_inst, OF at_coname_inst])
apply(simp add: CAND_eqvt_name CAND_eqvt_coname)
apply(drule_tac pi="[(x,ca)]" and X="\<parallel><ty2>\<parallel>" in pt_set_bij2[OF pt_name_inst, OF at_name_inst])
apply(perm_simp add: CAND_eqvt_name CAND_eqvt_coname csubst_eqvt nsubst_eqvt)
done
text {* Main lemma 1 *}
lemma AXIOMS_imply_SNa:
shows "<a>:M ∈ AXIOMSc B ==> SNa M"
and "(x):M ∈ AXIOMSn B ==> SNa M"
apply -
apply(auto simp add: AXIOMSn_def AXIOMSc_def ntrm.inject ctrm.inject alpha)
apply(rule Ax_in_SNa)+
done
lemma BINDING_imply_SNa:
shows "<a>:M ∈ BINDINGc B (\<parallel>(B)\<parallel>) ==> SNa M"
and "(x):M ∈ BINDINGn B (\<parallel><B>\<parallel>) ==> SNa M"
apply -
apply(auto simp add: BINDINGn_def BINDINGc_def ntrm.inject ctrm.inject alpha)
apply(drule_tac x="x" in spec)
apply(drule_tac x="Ax x a" in spec)
apply(drule mp)
apply(rule Ax_in_CANDs)
apply(drule a_star_preserves_SNa)
apply(rule subst_with_ax2)
apply(simp add: crename_id)
apply(drule_tac x="x" in spec)
apply(drule_tac x="Ax x aa" in spec)
apply(drule mp)
apply(rule Ax_in_CANDs)
apply(drule a_star_preserves_SNa)
apply(rule subst_with_ax2)
apply(simp add: crename_id SNa_eqvt)
apply(drule_tac x="a" in spec)
apply(drule_tac x="Ax x a" in spec)
apply(drule mp)
apply(rule Ax_in_CANDs)
apply(drule a_star_preserves_SNa)
apply(rule subst_with_ax1)
apply(simp add: nrename_id)
apply(drule_tac x="a" in spec)
apply(drule_tac x="Ax xa a" in spec)
apply(drule mp)
apply(rule Ax_in_CANDs)
apply(drule a_star_preserves_SNa)
apply(rule subst_with_ax1)
apply(simp add: nrename_id SNa_eqvt)
done
lemma CANDs_imply_SNa:
shows "<a>:M ∈ \<parallel><B>\<parallel> ==> SNa M"
and "(x):M ∈ \<parallel>(B)\<parallel> ==> SNa M"
proof(induct B arbitrary: a x M rule: ty.induct)
case (PR X)
{ case 1
have "<a>:M ∈ \<parallel><PR X>\<parallel>" by fact
then have "<a>:M ∈ NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (PR X) ∪ BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (PR X)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "<a>:M ∈ BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)"
then have "SNa M" by (simp add: BINDING_imply_SNa)
}
ultimately show "SNa M" by blast
next
case 2
have "(x):M ∈ (\<parallel>(PR X)\<parallel>)" by fact
then have "(x):M ∈ NEGn (PR X) (\<parallel><PR X>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (PR X) ∪ BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by simp
moreover
{ assume "(x):M ∈ AXIOMSn (PR X)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "(x):M ∈ BINDINGn (PR X) (\<parallel><PR X>\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
ultimately show "SNa M" by blast
}
next
case (NOT B)
have ih1: "!!a M. <a>:M ∈ \<parallel><B>\<parallel> ==> SNa M" by fact
have ih2: "!!x M. (x):M ∈ \<parallel>(B)\<parallel> ==> SNa M" by fact
{ case 1
have "<a>:M ∈ (\<parallel><NOT B>\<parallel>)" by fact
then have "<a>:M ∈ NEGc (NOT B) (\<parallel>(NOT B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (NOT B) ∪ BINDINGc (NOT B) (\<parallel>(NOT B)\<parallel>) ∪ NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (NOT B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "<a>:M ∈ BINDINGc (NOT B) (\<parallel>(NOT B)\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "<a>:M ∈ NOTRIGHT (NOT B) (\<parallel>(B)\<parallel>)"
then obtain x' M' where eq: "M = NotR (x').M' a" and "(x'):M' ∈ (\<parallel>(B)\<parallel>)"
using NOTRIGHT_elim by blast
then have "SNa M'" using ih2 by blast
then have "SNa M" using eq by (simp add: NotR_in_SNa)
}
ultimately show "SNa M" by blast
next
case 2
have "(x):M ∈ (\<parallel>(NOT B)\<parallel>)" by fact
then have "(x):M ∈ NEGn (NOT B) (\<parallel><NOT B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (NOT B) ∪ BINDINGn (NOT B) (\<parallel><NOT B>\<parallel>) ∪ NOTLEFT (NOT B) (\<parallel><B>\<parallel>)"
by (simp only: NEGn.simps)
moreover
{ assume "(x):M ∈ AXIOMSn (NOT B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "(x):M ∈ BINDINGn (NOT B) (\<parallel><NOT B>\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "(x):M ∈ NOTLEFT (NOT B) (\<parallel><B>\<parallel>)"
then obtain a' M' where eq: "M = NotL <a'>.M' x" and "<a'>:M' ∈ (\<parallel><B>\<parallel>)"
using NOTLEFT_elim by blast
then have "SNa M'" using ih1 by blast
then have "SNa M" using eq by (simp add: NotL_in_SNa)
}
ultimately show "SNa M" by blast
}
next
case (AND A B)
have ih1: "!!a M. <a>:M ∈ \<parallel><A>\<parallel> ==> SNa M" by fact
have ih2: "!!x M. (x):M ∈ \<parallel>(A)\<parallel> ==> SNa M" by fact
have ih3: "!!a M. <a>:M ∈ \<parallel><B>\<parallel> ==> SNa M" by fact
have ih4: "!!x M. (x):M ∈ \<parallel>(B)\<parallel> ==> SNa M" by fact
{ case 1
have "<a>:M ∈ (\<parallel><A AND B>\<parallel>)" by fact
then have "<a>:M ∈ NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (A AND B) ∪ BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)
∪ ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (A AND B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "<a>:M ∈ BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "<a>:M ∈ ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)"
then obtain a' M' b' N' where eq: "M = AndR <a'>.M' <b'>.N' a"
and "<a'>:M' ∈ (\<parallel><A>\<parallel>)" and "<b'>:N' ∈ (\<parallel><B>\<parallel>)"
by (erule_tac ANDRIGHT_elim, blast)
then have "SNa M'" and "SNa N'" using ih1 ih3 by blast+
then have "SNa M" using eq by (simp add: AndR_in_SNa)
}
ultimately show "SNa M" by blast
next
case 2
have "(x):M ∈ (\<parallel>(A AND B)\<parallel>)" by fact
then have "(x):M ∈ NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (A AND B) ∪ BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)
∪ ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) ∪ ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)"
by (simp only: NEGn.simps)
moreover
{ assume "(x):M ∈ AXIOMSn (A AND B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "(x):M ∈ BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "(x):M ∈ ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)"
then obtain x' M' where eq: "M = AndL1 (x').M' x" and "(x'):M' ∈ (\<parallel>(A)\<parallel>)"
using ANDLEFT1_elim by blast
then have "SNa M'" using ih2 by blast
then have "SNa M" using eq by (simp add: AndL1_in_SNa)
}
moreover
{ assume "(x):M ∈ ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)"
then obtain x' M' where eq: "M = AndL2 (x').M' x" and "(x'):M' ∈ (\<parallel>(B)\<parallel>)"
using ANDLEFT2_elim by blast
then have "SNa M'" using ih4 by blast
then have "SNa M" using eq by (simp add: AndL2_in_SNa)
}
ultimately show "SNa M" by blast
}
next
case (OR A B)
have ih1: "!!a M. <a>:M ∈ \<parallel><A>\<parallel> ==> SNa M" by fact
have ih2: "!!x M. (x):M ∈ \<parallel>(A)\<parallel> ==> SNa M" by fact
have ih3: "!!a M. <a>:M ∈ \<parallel><B>\<parallel> ==> SNa M" by fact
have ih4: "!!x M. (x):M ∈ \<parallel>(B)\<parallel> ==> SNa M" by fact
{ case 1
have "<a>:M ∈ (\<parallel><A OR B>\<parallel>)" by fact
then have "<a>:M ∈ NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (A OR B) ∪ BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)
∪ ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) ∪ ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (A OR B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "<a>:M ∈ BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "<a>:M ∈ ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)"
then obtain a' M' where eq: "M = OrR1 <a'>.M' a"
and "<a'>:M' ∈ (\<parallel><A>\<parallel>)"
by (erule_tac ORRIGHT1_elim, blast)
then have "SNa M'" using ih1 by blast
then have "SNa M" using eq by (simp add: OrR1_in_SNa)
}
moreover
{ assume "<a>:M ∈ ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)"
then obtain a' M' where eq: "M = OrR2 <a'>.M' a" and "<a'>:M' ∈ (\<parallel><B>\<parallel>)"
using ORRIGHT2_elim by blast
then have "SNa M'" using ih3 by blast
then have "SNa M" using eq by (simp add: OrR2_in_SNa)
}
ultimately show "SNa M" by blast
next
case 2
have "(x):M ∈ (\<parallel>(A OR B)\<parallel>)" by fact
then have "(x):M ∈ NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (A OR B) ∪ BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)
∪ ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)"
by (simp only: NEGn.simps)
moreover
{ assume "(x):M ∈ AXIOMSn (A OR B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "(x):M ∈ BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "(x):M ∈ ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)"
then obtain x' M' y' N' where eq: "M = OrL (x').M' (y').N' x"
and "(x'):M' ∈ (\<parallel>(A)\<parallel>)" and "(y'):N' ∈ (\<parallel>(B)\<parallel>)"
by (erule_tac ORLEFT_elim, blast)
then have "SNa M'" and "SNa N'" using ih2 ih4 by blast+
then have "SNa M" using eq by (simp add: OrL_in_SNa)
}
ultimately show "SNa M" by blast
}
next
case (IMP A B)
have ih1: "!!a M. <a>:M ∈ \<parallel><A>\<parallel> ==> SNa M" by fact
have ih2: "!!x M. (x):M ∈ \<parallel>(A)\<parallel> ==> SNa M" by fact
have ih3: "!!a M. <a>:M ∈ \<parallel><B>\<parallel> ==> SNa M" by fact
have ih4: "!!x M. (x):M ∈ \<parallel>(B)\<parallel> ==> SNa M" by fact
{ case 1
have "<a>:M ∈ (\<parallel><A IMP B>\<parallel>)" by fact
then have "<a>:M ∈ NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (A IMP B) ∪ BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)
∪ IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (A IMP B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "<a>:M ∈ BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "<a>:M ∈ IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)"
then obtain x' a' M' where eq: "M = ImpR (x').<a'>.M' a"
and imp: "∀z P. x'\<sharp>(z,P) ∧ (z):P ∈ \<parallel>(B)\<parallel> --> (x'):(M'{a':=(z).P}) ∈ \<parallel>(A)\<parallel>"
by (erule_tac IMPRIGHT_elim, blast)
obtain z::"name" where fs: "z\<sharp>x'" by (rule_tac exists_fresh, rule fin_supp, blast)
have "(z):Ax z a'∈ \<parallel>(B)\<parallel>" by (simp add: Ax_in_CANDs)
with imp fs have "(x'):(M'{a':=(z).Ax z a'}) ∈ \<parallel>(A)\<parallel>" by (simp add: fresh_prod fresh_atm)
then have "SNa (M'{a':=(z).Ax z a'})" using ih2 by blast
moreover
have "M'{a':=(z).Ax z a'} -->\<^isub>a* M'[a'\<turnstile>c>a']" by (simp add: subst_with_ax2)
ultimately have "SNa (M'[a'\<turnstile>c>a'])" by (simp add: a_star_preserves_SNa)
then have "SNa M'" by (simp add: crename_id)
then have "SNa M" using eq by (simp add: ImpR_in_SNa)
}
ultimately show "SNa M" by blast
next
case 2
have "(x):M ∈ (\<parallel>(A IMP B)\<parallel>)" by fact
then have "(x):M ∈ NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (A IMP B) ∪ BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)
∪ IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)"
by (simp only: NEGn.simps)
moreover
{ assume "(x):M ∈ AXIOMSn (A IMP B)"
then have "SNa M" by (simp add: AXIOMS_imply_SNa)
}
moreover
{ assume "(x):M ∈ BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)"
then have "SNa M" by (simp only: BINDING_imply_SNa)
}
moreover
{ assume "(x):M ∈ IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)"
then obtain a' M' y' N' where eq: "M = ImpL <a'>.M' (y').N' x"
and "<a'>:M' ∈ (\<parallel><A>\<parallel>)" and "(y'):N' ∈ (\<parallel>(B)\<parallel>)"
by (erule_tac IMPLEFT_elim, blast)
then have "SNa M'" and "SNa N'" using ih1 ih4 by blast+
then have "SNa M" using eq by (simp add: ImpL_in_SNa)
}
ultimately show "SNa M" by blast
}
qed
text {* Main lemma 2 *}
lemma AXIOMS_preserved:
shows "<a>:M ∈ AXIOMSc B ==> M -->\<^isub>a* M' ==> <a>:M' ∈ AXIOMSc B"
and "(x):M ∈ AXIOMSn B ==> M -->\<^isub>a* M' ==> (x):M' ∈ AXIOMSn B"
apply(simp_all add: AXIOMSc_def AXIOMSn_def)
apply(auto simp add: ntrm.inject ctrm.inject alpha)
apply(drule ax_do_not_a_star_reduce)
apply(auto)
apply(drule ax_do_not_a_star_reduce)
apply(auto)
apply(drule ax_do_not_a_star_reduce)
apply(auto)
apply(drule ax_do_not_a_star_reduce)
apply(auto)
done
lemma BINDING_preserved:
shows "<a>:M ∈ BINDINGc B (\<parallel>(B)\<parallel>) ==> M -->\<^isub>a* M' ==> <a>:M' ∈ BINDINGc B (\<parallel>(B)\<parallel>)"
and "(x):M ∈ BINDINGn B (\<parallel><B>\<parallel>) ==> M -->\<^isub>a* M' ==> (x):M' ∈ BINDINGn B (\<parallel><B>\<parallel>)"
proof -
assume red: "M -->\<^isub>a* M'"
assume asm: "<a>:M ∈ BINDINGc B (\<parallel>(B)\<parallel>)"
{
fix x::"name" and P::"trm"
from asm have "((x):P) ∈ (\<parallel>(B)\<parallel>) ==> SNa (M{a:=(x).P})" by (simp add: BINDINGc_elim)
moreover
have "M{a:=(x).P} -->\<^isub>a* M'{a:=(x).P}" using red by (simp add: a_star_subst2)
ultimately
have "((x):P) ∈ (\<parallel>(B)\<parallel>) ==> SNa (M'{a:=(x).P})" by (simp add: a_star_preserves_SNa)
}
then show "<a>:M' ∈ BINDINGc B (\<parallel>(B)\<parallel>)" by (auto simp add: BINDINGc_def)
next
assume red: "M -->\<^isub>a* M'"
assume asm: "(x):M ∈ BINDINGn B (\<parallel><B>\<parallel>)"
{
fix c::"coname" and P::"trm"
from asm have "(<c>:P) ∈ (\<parallel><B>\<parallel>) ==> SNa (M{x:=<c>.P})" by (simp add: BINDINGn_elim)
moreover
have "M{x:=<c>.P} -->\<^isub>a* M'{x:=<c>.P}" using red by (simp add: a_star_subst1)
ultimately
have "(<c>:P) ∈ (\<parallel><B>\<parallel>) ==> SNa (M'{x:=<c>.P})" by (simp add: a_star_preserves_SNa)
}
then show "(x):M' ∈ BINDINGn B (\<parallel><B>\<parallel>)" by (auto simp add: BINDINGn_def)
qed
lemma CANDs_preserved:
shows "<a>:M ∈ \<parallel><B>\<parallel> ==> M -->\<^isub>a* M' ==> <a>:M' ∈ \<parallel><B>\<parallel>"
and "(x):M ∈ \<parallel>(B)\<parallel> ==> M -->\<^isub>a* M' ==> (x):M' ∈ \<parallel>(B)\<parallel>"
proof(nominal_induct B arbitrary: a x M M' rule: ty.strong_induct)
case (PR X)
{ case 1
have asm: "M -->\<^isub>a* M'" by fact
have "<a>:M ∈ \<parallel><PR X>\<parallel>" by fact
then have "<a>:M ∈ NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (PR X) ∪ BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (PR X)"
then have "<a>:M' ∈ AXIOMSc (PR X)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "<a>:M ∈ BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)"
then have "<a>:M' ∈ BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" using asm by (simp add: BINDING_preserved)
}
ultimately have "<a>:M' ∈ AXIOMSc (PR X) ∪ BINDINGc (PR X) (\<parallel>(PR X)\<parallel>)" by blast
then have "<a>:M' ∈ NEGc (PR X) (\<parallel>(PR X)\<parallel>)" by simp
then show "<a>:M' ∈ (\<parallel><PR X>\<parallel>)" using NEG_simp by blast
next
case 2
have asm: "M -->\<^isub>a* M'" by fact
have "(x):M ∈ \<parallel>(PR X)\<parallel>" by fact
then have "(x):M ∈ NEGn (PR X) (\<parallel><PR X>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (PR X) ∪ BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by simp
moreover
{ assume "(x):M ∈ AXIOMSn (PR X)"
then have "(x):M' ∈ AXIOMSn (PR X)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "(x):M ∈ BINDINGn (PR X) (\<parallel><PR X>\<parallel>)"
then have "(x):M' ∈ BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" using asm by (simp only: BINDING_preserved)
}
ultimately have "(x):M' ∈ AXIOMSn (PR X) ∪ BINDINGn (PR X) (\<parallel><PR X>\<parallel>)" by blast
then have "(x):M' ∈ NEGn (PR X) (\<parallel><PR X>\<parallel>)" by simp
then show "(x):M' ∈ (\<parallel>(PR X)\<parallel>)" using NEG_simp by blast
}
next
case (IMP A B)
have ih1: "!!a M M'. [|<a>:M ∈ \<parallel><A>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><A>\<parallel>" by fact
have ih2: "!!x M M'. [|(x):M ∈ \<parallel>(A)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(A)\<parallel>" by fact
have ih3: "!!a M M'. [|<a>:M ∈ \<parallel><B>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><B>\<parallel>" by fact
have ih4: "!!x M M'. [|(x):M ∈ \<parallel>(B)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(B)\<parallel>" by fact
{ case 1
have asm: "M -->\<^isub>a* M'" by fact
have "<a>:M ∈ \<parallel><A IMP B>\<parallel>" by fact
then have "<a>:M ∈ NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (A IMP B) ∪ BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)
∪ IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (A IMP B)"
then have "<a>:M' ∈ AXIOMSc (A IMP B)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "<a>:M ∈ BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)"
then have "<a>:M' ∈ BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "<a>:M ∈ IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)"
then obtain x' a' N' where eq: "M = ImpR (x').<a'>.N' a" and fic: "fic (ImpR (x').<a'>.N' a) a"
and imp1: "∀z P. x'\<sharp>(z,P) ∧ (z):P ∈ \<parallel>(B)\<parallel> --> (x'):(N'{a':=(z).P}) ∈ \<parallel>(A)\<parallel>"
and imp2: "∀c Q. a'\<sharp>(c,Q) ∧ <c>:Q ∈ \<parallel><A>\<parallel> --> <a'>:(N'{x':=<c>.Q}) ∈ \<parallel><B>\<parallel>"
using IMPRIGHT_elim by blast
from eq asm obtain N'' where eq': "M' = ImpR (x').<a'>.N'' a" and red: "N' -->\<^isub>a* N''"
using a_star_redu_ImpR_elim by (blast)
from imp1 have "∀z P. x'\<sharp>(z,P) ∧ (z):P ∈ \<parallel>(B)\<parallel> --> (x'):(N''{a':=(z).P}) ∈ \<parallel>(A)\<parallel>" using red ih2
apply(auto)
apply(drule_tac x="z" in spec)
apply(drule_tac x="P" in spec)
apply(simp)
apply(drule_tac a_star_subst2)
apply(blast)
done
moreover
from imp2 have "∀c Q. a'\<sharp>(c,Q) ∧ <c>:Q ∈ \<parallel><A>\<parallel> --> <a'>:(N''{x':=<c>.Q}) ∈ \<parallel><B>\<parallel>" using red ih3
apply(auto)
apply(drule_tac x="c" in spec)
apply(drule_tac x="Q" in spec)
apply(simp)
apply(drule_tac a_star_subst1)
apply(blast)
done
moreover
from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
ultimately have "<a>:M' ∈ IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" using eq' by auto
}
ultimately have "<a>:M' ∈ AXIOMSc (A IMP B) ∪ BINDINGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)
∪ IMPRIGHT (A IMP B) (\<parallel>(A)\<parallel>) (\<parallel><B>\<parallel>) (\<parallel>(B)\<parallel>) (\<parallel><A>\<parallel>)" by blast
then have "<a>:M' ∈ NEGc (A IMP B) (\<parallel>(A IMP B)\<parallel>)" by simp
then show "<a>:M' ∈ (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast
next
case 2
have asm: "M -->\<^isub>a* M'" by fact
have "(x):M ∈ \<parallel>(A IMP B)\<parallel>" by fact
then have "(x):M ∈ NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (A IMP B) ∪ BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)
∪ IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by simp
moreover
{ assume "(x):M ∈ AXIOMSn (A IMP B)"
then have "(x):M' ∈ AXIOMSn (A IMP B)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "(x):M ∈ BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)"
then have "(x):M' ∈ BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "(x):M ∈ IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)"
then obtain a' T' y' N' where eq: "M = ImpL <a'>.T' (y').N' x"
and fin: "fin (ImpL <a'>.T' (y').N' x) x"
and imp1: "<a'>:T' ∈ \<parallel><A>\<parallel>" and imp2: "(y'):N' ∈ \<parallel>(B)\<parallel>"
by (erule_tac IMPLEFT_elim, blast)
from eq asm obtain T'' N'' where eq': "M' = ImpL <a'>.T'' (y').N'' x"
and red1: "T' -->\<^isub>a* T''" and red2: "N' -->\<^isub>a* N''"
using a_star_redu_ImpL_elim by blast
from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
moreover
from imp1 red1 have "<a'>:T'' ∈ \<parallel><A>\<parallel>" using ih1 by simp
moreover
from imp2 red2 have "(y'):N'' ∈ \<parallel>(B)\<parallel>" using ih4 by simp
ultimately have "(x):M' ∈ IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast)
}
ultimately have "(x):M' ∈ AXIOMSn (A IMP B) ∪ BINDINGn (A IMP B) (\<parallel><A IMP B>\<parallel>)
∪ IMPLEFT (A IMP B) (\<parallel><A>\<parallel>) (\<parallel>(B)\<parallel>)" by blast
then have "(x):M' ∈ NEGn (A IMP B) (\<parallel><A IMP B>\<parallel>)" by simp
then show "(x):M' ∈ (\<parallel>(A IMP B)\<parallel>)" using NEG_simp by blast
}
next
case (AND A B)
have ih1: "!!a M M'. [|<a>:M ∈ \<parallel><A>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><A>\<parallel>" by fact
have ih2: "!!x M M'. [|(x):M ∈ \<parallel>(A)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(A)\<parallel>" by fact
have ih3: "!!a M M'. [|<a>:M ∈ \<parallel><B>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><B>\<parallel>" by fact
have ih4: "!!x M M'. [|(x):M ∈ \<parallel>(B)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(B)\<parallel>" by fact
{ case 1
have asm: "M -->\<^isub>a* M'" by fact
have "<a>:M ∈ \<parallel><A AND B>\<parallel>" by fact
then have "<a>:M ∈ NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (A AND B) ∪ BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)
∪ ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (A AND B)"
then have "<a>:M' ∈ AXIOMSc (A AND B)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "<a>:M ∈ BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)"
then have "<a>:M' ∈ BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "<a>:M ∈ ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)"
then obtain a' T' b' N' where eq: "M = AndR <a'>.T' <b'>.N' a"
and fic: "fic (AndR <a'>.T' <b'>.N' a) a"
and imp1: "<a'>:T' ∈ \<parallel><A>\<parallel>" and imp2: "<b'>:N' ∈ \<parallel><B>\<parallel>"
using ANDRIGHT_elim by blast
from eq asm obtain T'' N'' where eq': "M' = AndR <a'>.T'' <b'>.N'' a"
and red1: "T' -->\<^isub>a* T''" and red2: "N' -->\<^isub>a* N''"
using a_star_redu_AndR_elim by blast
from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
moreover
from imp1 red1 have "<a'>:T'' ∈ \<parallel><A>\<parallel>" using ih1 by simp
moreover
from imp2 red2 have "<b'>:N'' ∈ \<parallel><B>\<parallel>" using ih3 by simp
ultimately have "<a>:M' ∈ ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" using eq' by (simp, blast)
}
ultimately have "<a>:M' ∈ AXIOMSc (A AND B) ∪ BINDINGc (A AND B) (\<parallel>(A AND B)\<parallel>)
∪ ANDRIGHT (A AND B) (\<parallel><A>\<parallel>) (\<parallel><B>\<parallel>)" by blast
then have "<a>:M' ∈ NEGc (A AND B) (\<parallel>(A AND B)\<parallel>)" by simp
then show "<a>:M' ∈ (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast
next
case 2
have asm: "M -->\<^isub>a* M'" by fact
have "(x):M ∈ \<parallel>(A AND B)\<parallel>" by fact
then have "(x):M ∈ NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (A AND B) ∪ BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)
∪ ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) ∪ ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by simp
moreover
{ assume "(x):M ∈ AXIOMSn (A AND B)"
then have "(x):M' ∈ AXIOMSn (A AND B)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "(x):M ∈ BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)"
then have "(x):M' ∈ BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "(x):M ∈ ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)"
then obtain y' N' where eq: "M = AndL1 (y').N' x"
and fin: "fin (AndL1 (y').N' x) x" and imp: "(y'):N' ∈ \<parallel>(A)\<parallel>"
by (erule_tac ANDLEFT1_elim, blast)
from eq asm obtain N'' where eq': "M' = AndL1 (y').N'' x" and red1: "N' -->\<^isub>a* N''"
using a_star_redu_AndL1_elim by blast
from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
moreover
from imp red1 have "(y'):N'' ∈ \<parallel>(A)\<parallel>" using ih2 by simp
ultimately have "(x):M' ∈ ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>)" using eq' by (simp, blast)
}
moreover
{ assume "(x):M ∈ ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)"
then obtain y' N' where eq: "M = AndL2 (y').N' x"
and fin: "fin (AndL2 (y').N' x) x" and imp: "(y'):N' ∈ \<parallel>(B)\<parallel>"
by (erule_tac ANDLEFT2_elim, blast)
from eq asm obtain N'' where eq': "M' = AndL2 (y').N'' x" and red1: "N' -->\<^isub>a* N''"
using a_star_redu_AndL2_elim by blast
from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
moreover
from imp red1 have "(y'):N'' ∈ \<parallel>(B)\<parallel>" using ih4 by simp
ultimately have "(x):M' ∈ ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast)
}
ultimately have "(x):M' ∈ AXIOMSn (A AND B) ∪ BINDINGn (A AND B) (\<parallel><A AND B>\<parallel>)
∪ ANDLEFT1 (A AND B) (\<parallel>(A)\<parallel>) ∪ ANDLEFT2 (A AND B) (\<parallel>(B)\<parallel>)" by blast
then have "(x):M' ∈ NEGn (A AND B) (\<parallel><A AND B>\<parallel>)" by simp
then show "(x):M' ∈ (\<parallel>(A AND B)\<parallel>)" using NEG_simp by blast
}
next
case (OR A B)
have ih1: "!!a M M'. [|<a>:M ∈ \<parallel><A>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><A>\<parallel>" by fact
have ih2: "!!x M M'. [|(x):M ∈ \<parallel>(A)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(A)\<parallel>" by fact
have ih3: "!!a M M'. [|<a>:M ∈ \<parallel><B>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><B>\<parallel>" by fact
have ih4: "!!x M M'. [|(x):M ∈ \<parallel>(B)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(B)\<parallel>" by fact
{ case 1
have asm: "M -->\<^isub>a* M'" by fact
have "<a>:M ∈ \<parallel><A OR B>\<parallel>" by fact
then have "<a>:M ∈ NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (A OR B) ∪ BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)
∪ ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) ∪ ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (A OR B)"
then have "<a>:M' ∈ AXIOMSc (A OR B)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "<a>:M ∈ BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)"
then have "<a>:M' ∈ BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "<a>:M ∈ ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)"
then obtain a' N' where eq: "M = OrR1 <a'>.N' a"
and fic: "fic (OrR1 <a'>.N' a) a" and imp1: "<a'>:N' ∈ \<parallel><A>\<parallel>"
using ORRIGHT1_elim by blast
from eq asm obtain N'' where eq': "M' = OrR1 <a'>.N'' a" and red1: "N' -->\<^isub>a* N''"
using a_star_redu_OrR1_elim by blast
from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
moreover
from imp1 red1 have "<a'>:N'' ∈ \<parallel><A>\<parallel>" using ih1 by simp
ultimately have "<a>:M' ∈ ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>)" using eq' by (simp, blast)
}
moreover
{ assume "<a>:M ∈ ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)"
then obtain a' N' where eq: "M = OrR2 <a'>.N' a"
and fic: "fic (OrR2 <a'>.N' a) a" and imp1: "<a'>:N' ∈ \<parallel><B>\<parallel>"
using ORRIGHT2_elim by blast
from eq asm obtain N'' where eq': "M' = OrR2 <a'>.N'' a" and red1: "N' -->\<^isub>a* N''"
using a_star_redu_OrR2_elim by blast
from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
moreover
from imp1 red1 have "<a'>:N'' ∈ \<parallel><B>\<parallel>" using ih3 by simp
ultimately have "<a>:M' ∈ ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" using eq' by (simp, blast)
}
ultimately have "<a>:M' ∈ AXIOMSc (A OR B) ∪ BINDINGc (A OR B) (\<parallel>(A OR B)\<parallel>)
∪ ORRIGHT1 (A OR B) (\<parallel><A>\<parallel>) ∪ ORRIGHT2 (A OR B) (\<parallel><B>\<parallel>)" by blast
then have "<a>:M' ∈ NEGc (A OR B) (\<parallel>(A OR B)\<parallel>)" by simp
then show "<a>:M' ∈ (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast
next
case 2
have asm: "M -->\<^isub>a* M'" by fact
have "(x):M ∈ \<parallel>(A OR B)\<parallel>" by fact
then have "(x):M ∈ NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (A OR B) ∪ BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)
∪ ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by simp
moreover
{ assume "(x):M ∈ AXIOMSn (A OR B)"
then have "(x):M' ∈ AXIOMSn (A OR B)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "(x):M ∈ BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)"
then have "(x):M' ∈ BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "(x):M ∈ ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)"
then obtain y' T' z' N' where eq: "M = OrL (y').T' (z').N' x"
and fin: "fin (OrL (y').T' (z').N' x) x"
and imp1: "(y'):T' ∈ \<parallel>(A)\<parallel>" and imp2: "(z'):N' ∈ \<parallel>(B)\<parallel>"
by (erule_tac ORLEFT_elim, blast)
from eq asm obtain T'' N'' where eq': "M' = OrL (y').T'' (z').N'' x"
and red1: "T' -->\<^isub>a* T''" and red2: "N' -->\<^isub>a* N''"
using a_star_redu_OrL_elim by blast
from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
moreover
from imp1 red1 have "(y'):T'' ∈ \<parallel>(A)\<parallel>" using ih2 by simp
moreover
from imp2 red2 have "(z'):N'' ∈ \<parallel>(B)\<parallel>" using ih4 by simp
ultimately have "(x):M' ∈ ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" using eq' by (simp, blast)
}
ultimately have "(x):M' ∈ AXIOMSn (A OR B) ∪ BINDINGn (A OR B) (\<parallel><A OR B>\<parallel>)
∪ ORLEFT (A OR B) (\<parallel>(A)\<parallel>) (\<parallel>(B)\<parallel>)" by blast
then have "(x):M' ∈ NEGn (A OR B) (\<parallel><A OR B>\<parallel>)" by simp
then show "(x):M' ∈ (\<parallel>(A OR B)\<parallel>)" using NEG_simp by blast
}
next
case (NOT A)
have ih1: "!!a M M'. [|<a>:M ∈ \<parallel><A>\<parallel>; M -->\<^isub>a* M'|] ==> <a>:M' ∈ \<parallel><A>\<parallel>" by fact
have ih2: "!!x M M'. [|(x):M ∈ \<parallel>(A)\<parallel>; M -->\<^isub>a* M'|] ==> (x):M' ∈ \<parallel>(A)\<parallel>" by fact
{ case 1
have asm: "M -->\<^isub>a* M'" by fact
have "<a>:M ∈ \<parallel><NOT A>\<parallel>" by fact
then have "<a>:M ∈ NEGc (NOT A) (\<parallel>(NOT A)\<parallel>)" by simp
then have "<a>:M ∈ AXIOMSc (NOT A) ∪ BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)
∪ NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" by simp
moreover
{ assume "<a>:M ∈ AXIOMSc (NOT A)"
then have "<a>:M' ∈ AXIOMSc (NOT A)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "<a>:M ∈ BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)"
then have "<a>:M' ∈ BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "<a>:M ∈ NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)"
then obtain y' N' where eq: "M = NotR (y').N' a"
and fic: "fic (NotR (y').N' a) a" and imp: "(y'):N' ∈ \<parallel>(A)\<parallel>"
using NOTRIGHT_elim by blast
from eq asm obtain N'' where eq': "M' = NotR (y').N'' a" and red: "N' -->\<^isub>a* N''"
using a_star_redu_NotR_elim by blast
from fic have "fic M' a" using eq asm by (simp add: fic_a_star_reduce)
moreover
from imp red have "(y'):N'' ∈ \<parallel>(A)\<parallel>" using ih2 by simp
ultimately have "<a>:M' ∈ NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" using eq' by (simp, blast)
}
ultimately have "<a>:M' ∈ AXIOMSc (NOT A) ∪ BINDINGc (NOT A) (\<parallel>(NOT A)\<parallel>)
∪ NOTRIGHT (NOT A) (\<parallel>(A)\<parallel>)" by blast
then have "<a>:M' ∈ NEGc (NOT A) (\<parallel>(NOT A)\<parallel>)" by simp
then show "<a>:M' ∈ (\<parallel><NOT A>\<parallel>)" using NEG_simp by blast
next
case 2
have asm: "M -->\<^isub>a* M'" by fact
have "(x):M ∈ \<parallel>(NOT A)\<parallel>" by fact
then have "(x):M ∈ NEGn (NOT A) (\<parallel><NOT A>\<parallel>)" using NEG_simp by blast
then have "(x):M ∈ AXIOMSn (NOT A) ∪ BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)
∪ NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" by simp
moreover
{ assume "(x):M ∈ AXIOMSn (NOT A)"
then have "(x):M' ∈ AXIOMSn (NOT A)" using asm by (simp only: AXIOMS_preserved)
}
moreover
{ assume "(x):M ∈ BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)"
then have "(x):M' ∈ BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)" using asm by (simp only: BINDING_preserved)
}
moreover
{ assume "(x):M ∈ NOTLEFT (NOT A) (\<parallel><A>\<parallel>)"
then obtain a' N' where eq: "M = NotL <a'>.N' x"
and fin: "fin (NotL <a'>.N' x) x" and imp: "<a'>:N' ∈ \<parallel><A>\<parallel>"
by (erule_tac NOTLEFT_elim, blast)
from eq asm obtain N'' where eq': "M' = NotL <a'>.N'' x" and red1: "N' -->\<^isub>a* N''"
using a_star_redu_NotL_elim by blast
from fin have "fin M' x" using eq asm by (simp add: fin_a_star_reduce)
moreover
from imp red1 have "<a'>:N'' ∈ \<parallel><A>\<parallel>" using ih1 by simp
ultimately have "(x):M' ∈ NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" using eq' by (simp, blast)
}
ultimately have "(x):M' ∈ AXIOMSn (NOT A) ∪ BINDINGn (NOT A) (\<parallel><NOT A>\<parallel>)
∪ NOTLEFT (NOT A) (\<parallel><A>\<parallel>)" by blast
then have "(x):M' ∈ NEGn (NOT A) (\<parallel><NOT A>\<parallel>)" by simp
then show "(x):M' ∈ (\<parallel>(NOT A)\<parallel>)" using NEG_simp by blast
}
qed
lemma CANDs_preserved_single:
shows "<a>:M ∈ \<parallel><B>\<parallel> ==> M -->\<^isub>a M' ==> <a>:M' ∈ \<parallel><B>\<parallel>"
and "(x):M ∈ \<parallel>(B)\<parallel> ==> M -->\<^isub>a M' ==> (x):M' ∈ \<parallel>(B)\<parallel>"
by (auto simp add: a_starI CANDs_preserved)
lemma fic_CANDS:
assumes a: "¬fic M a"
and b: "<a>:M ∈ \<parallel><B>\<parallel>"
shows "<a>:M ∈ AXIOMSc B ∨ <a>:M ∈ BINDINGc B (\<parallel>(B)\<parallel>)"
using a b
apply(nominal_induct B rule: ty.strong_induct)
apply(simp)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ctrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(auto simp add: calc_atm)[1]
apply(drule_tac pi="[(a,aa)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ctrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(a,c)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ctrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ctrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(a,b)]" in fic.eqvt(2))
apply(simp add: calc_atm)
done
lemma fin_CANDS_aux:
assumes a: "¬fin M x"
and b: "(x):M ∈ (NEGn B (\<parallel><B>\<parallel>))"
shows "(x):M ∈ AXIOMSn B ∨ (x):M ∈ BINDINGn B (\<parallel><B>\<parallel>)"
using a b
apply(nominal_induct B rule: ty.strong_induct)
apply(simp)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ntrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(auto simp add: calc_atm)[1]
apply(drule_tac pi="[(x,xa)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ntrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ntrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(x,z)]" in fin.eqvt(1))
apply(simp add: calc_atm)
apply(simp)
apply(erule disjE)
apply(simp)
apply(erule disjE)
apply(simp)
apply(auto simp add: ntrm.inject)[1]
apply(simp add: alpha)
apply(erule disjE)
apply(simp)
apply(erule conjE)+
apply(simp)
apply(drule_tac pi="[(x,y)]" in fin.eqvt(1))
apply(simp add: calc_atm)
done
lemma fin_CANDS:
assumes a: "¬fin M x"
and b: "(x):M ∈ (\<parallel>(B)\<parallel>)"
shows "(x):M ∈ AXIOMSn B ∨ (x):M ∈ BINDINGn B (\<parallel><B>\<parallel>)"
apply(rule fin_CANDS_aux)
apply(rule a)
apply(rule NEG_elim)
apply(rule b)
done
lemma BINDING_implies_CAND:
shows "<c>:M ∈ BINDINGc B (\<parallel>(B)\<parallel>) ==> <c>:M ∈ (\<parallel><B>\<parallel>)"
and "(x):N ∈ BINDINGn B (\<parallel><B>\<parallel>) ==> (x):N ∈ (\<parallel>(B)\<parallel>)"
apply -
apply(nominal_induct B rule: ty.strong_induct)
apply(auto)
apply(rule NEG_intro)
apply(nominal_induct B rule: ty.strong_induct)
apply(auto)
done
end