Theory RefCorrectness

Up to index of Isabelle/HOLCF/IOA

theory RefCorrectness
imports RefMappings

(*  Title:      HOLCF/IOA/meta_theory/RefCorrectness.thy
Author: Olaf Müller
*)


header {* Correctness of Refinement Mappings in HOLCF/IOA *}

theory RefCorrectness
imports RefMappings
begin


definition
corresp_exC :: "('a,'s2)ioa => ('s1 => 's2) => ('a,'s1)pairs
-> ('s1 => ('a,'s2)pairs)"
where
"corresp_exC A f = (fix$(LAM h ex. (%s. case ex of
nil => nil
| x##xs => (flift1 (%pr. (@cex. move A cex (f s) (fst pr) (f (snd pr)))
@@ ((h$xs) (snd pr)))
$x) )))"

definition
corresp_ex :: "('a,'s2)ioa => ('s1 => 's2) =>
('a,'s1)execution => ('a,'s2)execution"
where
"corresp_ex A f ex = (f (fst ex),(corresp_exC A f$(snd ex)) (fst ex))"


definition
is_fair_ref_map :: "('s1 => 's2) => ('a,'s1)ioa => ('a,'s2)ioa => bool" where
"is_fair_ref_map f C A =
(is_ref_map f C A &
(! ex : executions(C). fair_ex C ex --> fair_ex A (corresp_ex A f ex)))"


(* Axioms for fair trace inclusion proof support, not for the correctness proof
of refinement mappings!
Note: Everything is superseded by LiveIOA.thy! *)


axiomatization where
corresp_laststate:
"Finite ex ==> laststate (corresp_ex A f (s,ex)) = f (laststate (s,ex))"


axiomatization where
corresp_Finite:
"Finite (snd (corresp_ex A f (s,ex))) = Finite ex"


axiomatization where
FromAtoC:
"fin_often (%x. P (snd x)) (snd (corresp_ex A f (s,ex))) ==> fin_often (%y. P (f (snd y))) ex"


axiomatization where
FromCtoA:
"inf_often (%y. P (fst y)) ex ==> inf_often (%x. P (fst x)) (snd (corresp_ex A f (s,ex)))"



(* Proof by case on inf W in ex: If so, ok. If not, only fin W in ex, ie there is
an index i from which on no W in ex. But W inf enabled, ie at least once after i
W is enabled. As W does not occur after i and W is enabling_persistent, W keeps
enabled until infinity, ie. indefinitely *)

axiomatization where
persistent:
"[|inf_often (%x. Enabled A W (snd x)) ex; en_persistent A W|]
==> inf_often (%x. fst x :W) ex | fin_often (%x. ~Enabled A W (snd x)) ex"


axiomatization where
infpostcond:
"[| is_exec_frag A (s,ex); inf_often (%x. fst x:W) ex|]
==> inf_often (% x. set_was_enabled A W (snd x)) ex"



subsection "corresp_ex"

lemma corresp_exC_unfold: "corresp_exC A f = (LAM ex. (%s. case ex of
nil => nil
| x##xs => (flift1 (%pr. (@cex. move A cex (f s) (fst pr) (f (snd pr)))
@@ ((corresp_exC A f $xs) (snd pr)))
$x) ))"

apply (rule trans)
apply (rule fix_eq2)
apply (simp only: corresp_exC_def)
apply (rule beta_cfun)
apply (simp add: flift1_def)
done

lemma corresp_exC_UU: "(corresp_exC A f$UU) s=UU"
apply (subst corresp_exC_unfold)
apply simp
done

lemma corresp_exC_nil: "(corresp_exC A f$nil) s = nil"
apply (subst corresp_exC_unfold)
apply simp
done

lemma corresp_exC_cons: "(corresp_exC A f$(at>>xs)) s =
(@cex. move A cex (f s) (fst at) (f (snd at)))
@@ ((corresp_exC A f$xs) (snd at))"

apply (rule trans)
apply (subst corresp_exC_unfold)
apply (simp add: Consq_def flift1_def)
apply simp
done


declare corresp_exC_UU [simp] corresp_exC_nil [simp] corresp_exC_cons [simp]



subsection "properties of move"

lemma move_is_move:
"[|is_ref_map f C A; reachable C s; (s,a,t):trans_of C|] ==>
move A (@x. move A x (f s) a (f t)) (f s) a (f t)"

apply (unfold is_ref_map_def)
apply (subgoal_tac "? ex. move A ex (f s) a (f t) ")
prefer 2
apply simp
apply (erule exE)
apply (rule someI)
apply assumption
done

lemma move_subprop1:
"[|is_ref_map f C A; reachable C s; (s,a,t):trans_of C|] ==>
is_exec_frag A (f s,@x. move A x (f s) a (f t))"

apply (cut_tac move_is_move)
defer
apply assumption+
apply (simp add: move_def)
done

lemma move_subprop2:
"[|is_ref_map f C A; reachable C s; (s,a,t):trans_of C|] ==>
Finite ((@x. move A x (f s) a (f t)))"

apply (cut_tac move_is_move)
defer
apply assumption+
apply (simp add: move_def)
done

lemma move_subprop3:
"[|is_ref_map f C A; reachable C s; (s,a,t):trans_of C|] ==>
laststate (f s,@x. move A x (f s) a (f t)) = (f t)"

apply (cut_tac move_is_move)
defer
apply assumption+
apply (simp add: move_def)
done

lemma move_subprop4:
"[|is_ref_map f C A; reachable C s; (s,a,t):trans_of C|] ==>
mk_trace A$((@x. move A x (f s) a (f t))) =
(if a:ext A then a>>nil else nil)"

apply (cut_tac move_is_move)
defer
apply assumption+
apply (simp add: move_def)
done


(* ------------------------------------------------------------------ *)
(* The following lemmata contribute to *)
(* TRACE INCLUSION Part 1: Traces coincide *)
(* ------------------------------------------------------------------ *)

section "Lemmata for <=="

(* --------------------------------------------------- *)
(* Lemma 1.1: Distribution of mk_trace and @@ *)
(* --------------------------------------------------- *)

lemma mk_traceConc: "mk_trace C$(ex1 @@ ex2)= (mk_trace C$ex1) @@ (mk_trace C$ex2)"
apply (simp add: mk_trace_def filter_act_def MapConc)
done



(* ------------------------------------------------------
Lemma 1 :Traces coincide
------------------------------------------------------- *)

declare split_if [split del]

lemma lemma_1:
"[|is_ref_map f C A; ext C = ext A|] ==>
!s. reachable C s & is_exec_frag C (s,xs) -->
mk_trace C$xs = mk_trace A$(snd (corresp_ex A f (s,xs)))"

apply (unfold corresp_ex_def)
apply (tactic {* pair_induct_tac @{context} "xs" [@{thm is_exec_frag_def}] 1 *})
(* cons case *)
apply (auto simp add: mk_traceConc)
apply (frule reachable.reachable_n)
apply assumption
apply (erule_tac x = "y" in allE)
apply (simp add: move_subprop4 split add: split_if)
done

declare split_if [split]

(* ------------------------------------------------------------------ *)
(* The following lemmata contribute to *)
(* TRACE INCLUSION Part 2: corresp_ex is execution *)
(* ------------------------------------------------------------------ *)

section "Lemmata for ==>"

(* -------------------------------------------------- *)
(* Lemma 2.1 *)
(* -------------------------------------------------- *)

lemma lemma_2_1 [rule_format (no_asm)]:
"Finite xs -->
(!s .is_exec_frag A (s,xs) & is_exec_frag A (t,ys) &
t = laststate (s,xs)
--> is_exec_frag A (s,xs @@ ys))"


apply (rule impI)
apply (tactic {* Seq_Finite_induct_tac @{context} 1 *})
(* main case *)
apply (auto simp add: split_paired_all)
done


(* ----------------------------------------------------------- *)
(* Lemma 2 : corresp_ex is execution *)
(* ----------------------------------------------------------- *)



lemma lemma_2:
"[| is_ref_map f C A |] ==>
!s. reachable C s & is_exec_frag C (s,xs)
--> is_exec_frag A (corresp_ex A f (s,xs))"


apply (unfold corresp_ex_def)

apply simp
apply (tactic {* pair_induct_tac @{context} "xs" [@{thm is_exec_frag_def}] 1 *})
(* main case *)
apply auto
apply (rule_tac t = "f y" in lemma_2_1)

(* Finite *)
apply (erule move_subprop2)
apply assumption+
apply (rule conjI)

(* is_exec_frag *)
apply (erule move_subprop1)
apply assumption+
apply (rule conjI)

(* Induction hypothesis *)
(* reachable_n looping, therefore apply it manually *)
apply (erule_tac x = "y" in allE)
apply simp
apply (frule reachable.reachable_n)
apply assumption
apply simp
(* laststate *)
apply (erule move_subprop3 [symmetric])
apply assumption+
done


subsection "Main Theorem: TRACE - INCLUSION"

lemma trace_inclusion:
"[| ext C = ext A; is_ref_map f C A |]
==> traces C <= traces A"


apply (unfold traces_def)

apply (simp (no_asm) add: has_trace_def2)
apply auto

(* give execution of abstract automata *)
apply (rule_tac x = "corresp_ex A f ex" in bexI)

(* Traces coincide, Lemma 1 *)
apply (tactic {* pair_tac @{context} "ex" 1 *})
apply (erule lemma_1 [THEN spec, THEN mp])
apply assumption+
apply (simp add: executions_def reachable.reachable_0)

(* corresp_ex is execution, Lemma 2 *)
apply (tactic {* pair_tac @{context} "ex" 1 *})
apply (simp add: executions_def)
(* start state *)
apply (rule conjI)
apply (simp add: is_ref_map_def corresp_ex_def)
(* is-execution-fragment *)
apply (erule lemma_2 [THEN spec, THEN mp])
apply (simp add: reachable.reachable_0)
done


subsection "Corollary: FAIR TRACE - INCLUSION"

lemma fininf: "(~inf_often P s) = fin_often P s"
apply (unfold fin_often_def)
apply auto
done


lemma WF_alt: "is_wfair A W (s,ex) =
(fin_often (%x. ~Enabled A W (snd x)) ex --> inf_often (%x. fst x :W) ex)"

apply (simp add: is_wfair_def fin_often_def)
apply auto
done

lemma WF_persistent: "[|is_wfair A W (s,ex); inf_often (%x. Enabled A W (snd x)) ex;
en_persistent A W|]
==> inf_often (%x. fst x :W) ex"

apply (drule persistent)
apply assumption
apply (simp add: WF_alt)
apply auto
done


lemma fair_trace_inclusion: "!! C A.
[| is_ref_map f C A; ext C = ext A;
!! ex. [| ex:executions C; fair_ex C ex|] ==> fair_ex A (corresp_ex A f ex) |]
==> fairtraces C <= fairtraces A"

apply (simp (no_asm) add: fairtraces_def fairexecutions_def)
apply auto
apply (rule_tac x = "corresp_ex A f ex" in exI)
apply auto

(* Traces coincide, Lemma 1 *)
apply (tactic {* pair_tac @{context} "ex" 1 *})
apply (erule lemma_1 [THEN spec, THEN mp])
apply assumption+
apply (simp add: executions_def reachable.reachable_0)

(* corresp_ex is execution, Lemma 2 *)
apply (tactic {* pair_tac @{context} "ex" 1 *})
apply (simp add: executions_def)
(* start state *)
apply (rule conjI)
apply (simp add: is_ref_map_def corresp_ex_def)
(* is-execution-fragment *)
apply (erule lemma_2 [THEN spec, THEN mp])
apply (simp add: reachable.reachable_0)

done

lemma fair_trace_inclusion2: "!! C A.
[| inp(C) = inp(A); out(C)=out(A);
is_fair_ref_map f C A |]
==> fair_implements C A"

apply (simp add: is_fair_ref_map_def fair_implements_def fairtraces_def fairexecutions_def)
apply auto
apply (rule_tac x = "corresp_ex A f ex" in exI)
apply auto

(* Traces coincide, Lemma 1 *)
apply (tactic {* pair_tac @{context} "ex" 1 *})
apply (erule lemma_1 [THEN spec, THEN mp])
apply (simp (no_asm) add: externals_def)
apply (auto)[1]
apply (simp add: executions_def reachable.reachable_0)

(* corresp_ex is execution, Lemma 2 *)
apply (tactic {* pair_tac @{context} "ex" 1 *})
apply (simp add: executions_def)
(* start state *)
apply (rule conjI)
apply (simp add: is_ref_map_def corresp_ex_def)
(* is-execution-fragment *)
apply (erule lemma_2 [THEN spec, THEN mp])
apply (simp add: reachable.reachable_0)

done

end