Theory BitSyntax

Up to index of Isabelle/HOL/HOL-Word

theory BitSyntax
imports BinGeneral

(* 
Author: Brian Huffman, PSU and Gerwin Klein, NICTA

Syntactic class for bitwise operations.
*)



header {* Syntactic classes for bitwise operations *}

theory BitSyntax
imports BinGeneral
begin


class bit =
fixes bitNOT :: "'a => 'a" ("NOT _" [70] 71)
and bitAND :: "'a => 'a => 'a" (infixr "AND" 64)
and bitOR :: "'a => 'a => 'a" (infixr "OR" 59)
and bitXOR :: "'a => 'a => 'a" (infixr "XOR" 59)


text {*
We want the bitwise operations to bind slightly weaker
than @{text "+"} and @{text "-"}, but @{text "~~"} to
bind slightly stronger than @{text "*"}.
*}


text {*
Testing and shifting operations.
*}


class bits = bit +
fixes test_bit :: "'a => nat => bool" (infixl "!!" 100)
and lsb :: "'a => bool"
and set_bit :: "'a => nat => bool => 'a"
and set_bits :: "(nat => bool) => 'a" (binder "BITS " 10)
and shiftl :: "'a => nat => 'a" (infixl "<<" 55)
and shiftr :: "'a => nat => 'a" (infixl ">>" 55)


class bitss = bits +
fixes msb :: "'a => bool"



subsection {* Bitwise operations on @{typ bit} *}

instantiation bit :: bit
begin


primrec bitNOT_bit where
"NOT bit.B0 = bit.B1"
| "NOT bit.B1 = bit.B0"


primrec bitAND_bit where
"bit.B0 AND y = bit.B0"
| "bit.B1 AND y = y"


primrec bitOR_bit where
"bit.B0 OR y = y"
| "bit.B1 OR y = bit.B1"


primrec bitXOR_bit where
"bit.B0 XOR y = y"
| "bit.B1 XOR y = NOT y"


instance ..

end

lemmas bit_simps =
bitNOT_bit.simps bitAND_bit.simps bitOR_bit.simps bitXOR_bit.simps


lemma bit_extra_simps [simp]:
"x AND bit.B0 = bit.B0"
"x AND bit.B1 = x"
"x OR bit.B1 = bit.B1"
"x OR bit.B0 = x"
"x XOR bit.B1 = NOT x"
"x XOR bit.B0 = x"

by (cases x, auto)+

lemma bit_ops_comm:
"(x::bit) AND y = y AND x"
"(x::bit) OR y = y OR x"
"(x::bit) XOR y = y XOR x"

by (cases y, auto)+

lemma bit_ops_same [simp]:
"(x::bit) AND x = x"
"(x::bit) OR x = x"
"(x::bit) XOR x = bit.B0"

by (cases x, auto)+

lemma bit_not_not [simp]: "NOT (NOT (x::bit)) = x"
by (cases x) auto

end