Theory Height

Up to index of Isabelle/HOL/HOL-Nominal/Examples

theory Height
imports Nominal

theory Height
imports "../Nominal"
begin


text {*
A small problem suggested by D. Wang. It shows how
the height of a lambda-terms behaves under substitution.
*}


atom_decl name

nominal_datatype lam =
Var "name"
| App "lam" "lam"
| Lam "«name»lam" ("Lam [_]._" [100,100] 100)


text {* Definition of the height-function on lambda-terms. *}

nominal_primrec
height :: "lam => int"
where
"height (Var x) = 1"
| "height (App t1 t2) = (max (height t1) (height t2)) + 1"
| "height (Lam [a].t) = (height t) + 1"

apply(finite_guess add: perm_int_def)+
apply(rule TrueI)+
apply(simp add: fresh_int)
apply(fresh_guess add: perm_int_def)+
done

text {* Definition of capture-avoiding substitution. *}

nominal_primrec
subst :: "lam => name => lam => lam" ("_[_::=_]" [100,100,100] 100)
where
"(Var x)[y::=t'] = (if x=y then t' else (Var x))"
| "(App t1 t2)[y::=t'] = App (t1[y::=t']) (t2[y::=t'])"
| "[|x\<sharp>y; x\<sharp>t'|] ==> (Lam [x].t)[y::=t'] = Lam [x].(t[y::=t'])"

apply(finite_guess)+
apply(rule TrueI)+
apply(simp add: abs_fresh)
apply(fresh_guess)+
done

text{* The next lemma is needed in the Var-case of the theorem below. *}

lemma height_ge_one:
shows "1 ≤ (height e)"

by (nominal_induct e rule: lam.strong_induct) (simp_all)

text {*
Unlike the proplem suggested by Wang, however, the
theorem is here formulated entirely by using functions.
*}


theorem height_subst:
shows "height (e[x::=e']) ≤ ((height e) - 1) + (height e')"

proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
case (Var y)
have "1 ≤ height e'" by (rule height_ge_one)
then show "height (Var y[x::=e']) ≤ height (Var y) - 1 + height e'" by simp
next
case (Lam y e1)
hence ih: "height (e1[x::=e']) ≤ ((height e1) - 1) + (height e')" by simp
moreover
have vc: "y\<sharp>x" "y\<sharp>e'" by fact+ (* usual variable convention *)
ultimately show "height ((Lam [y].e1)[x::=e']) ≤ height (Lam [y].e1) - 1 + height e'" by simp
next
case (App e1 e2)
hence ih1: "height (e1[x::=e']) ≤ ((height e1) - 1) + (height e')"
and ih2: "height (e2[x::=e']) ≤ ((height e2) - 1) + (height e')"
by simp_all
then show "height ((App e1 e2)[x::=e']) ≤ height (App e1 e2) - 1 + height e'" by simp
qed

end