Theory RComplete

Up to index of Isabelle/HOL

theory RComplete
imports Lubs RealDef

(*  Title:      HOL/RComplete.thy
Author: Jacques D. Fleuriot, University of Edinburgh
Author: Larry Paulson, University of Cambridge
Author: Jeremy Avigad, Carnegie Mellon University
Author: Florian Zuleger, Johannes Hoelzl, and Simon Funke, TU Muenchen
*)


header {* Completeness of the Reals; Floor and Ceiling Functions *}

theory RComplete
imports Lubs RealDef
begin


lemma real_sum_of_halves: "x/2 + x/2 = (x::real)"
by simp

lemma abs_diff_less_iff:
"(¦x - a¦ < (r::'a::linordered_idom)) = (a - r < x ∧ x < a + r)"

by auto

subsection {* Completeness of Positive Reals *}

text {*
Supremum property for the set of positive reals

Let @{text "P"} be a non-empty set of positive reals, with an upper
bound @{text "y"}. Then @{text "P"} has a least upper bound
(written @{text "S"}).

FIXME: Can the premise be weakened to @{text "∀x ∈ P. x≤ y"}?
*}


text {* Only used in HOL/Import/HOL4Compat.thy; delete? *}

lemma posreal_complete:
assumes positive_P: "∀x ∈ P. (0::real) < x"
and not_empty_P: "∃x. x ∈ P"
and upper_bound_Ex: "∃y. ∀x ∈ P. x<y"
shows "∃S. ∀y. (∃x ∈ P. y < x) = (y < S)"

proof -
from upper_bound_Ex have "∃z. ∀x∈P. x ≤ z"
by (auto intro: less_imp_le)
from complete_real [OF not_empty_P this] obtain S
where S1: "!!x. x ∈ P ==> x ≤ S" and S2: "!!z. ∀x∈P. x ≤ z ==> S ≤ z"
by fast
have "∀y. (∃x ∈ P. y < x) = (y < S)"
proof
fix y show "(∃x∈P. y < x) = (y < S)"
apply (cases "∃x∈P. y < x", simp_all)
apply (clarify, drule S1, simp)
apply (simp add: not_less S2)
done
qed
thus ?thesis ..
qed

text {*
\medskip Completeness properties using @{text "isUb"}, @{text "isLub"} etc.
*}


lemma real_isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::real)"
apply (frule isLub_isUb)
apply (frule_tac x = y in isLub_isUb)
apply (blast intro!: order_antisym dest!: isLub_le_isUb)
done


text {*
\medskip reals Completeness (again!)
*}


lemma reals_complete:
assumes notempty_S: "∃X. X ∈ S"
and exists_Ub: "∃Y. isUb (UNIV::real set) S Y"
shows "∃t. isLub (UNIV :: real set) S t"

proof -
from assms have "∃X. X ∈ S" and "∃Y. ∀x∈S. x ≤ Y"
unfolding isUb_def setle_def by simp_all
from complete_real [OF this] show ?thesis
unfolding isLub_def leastP_def setle_def setge_def Ball_def
Collect_def mem_def isUb_def UNIV_def
by simp
qed

text{*A version of the same theorem without all those predicates!*}
lemma reals_complete2:
fixes S :: "(real set)"
assumes "∃y. y∈S" and "∃(x::real). ∀y∈S. y ≤ x"
shows "∃x. (∀y∈S. y ≤ x) &
(∀z. ((∀y∈S. y ≤ z) --> x ≤ z))"

using assms by (rule complete_real)


subsection {* The Archimedean Property of the Reals *}

theorem reals_Archimedean:
assumes x_pos: "0 < x"
shows "∃n. inverse (real (Suc n)) < x"

unfolding real_of_nat_def using x_pos
by (rule ex_inverse_of_nat_Suc_less)

lemma reals_Archimedean2: "∃n. (x::real) < real (n::nat)"
unfolding real_of_nat_def by (rule ex_less_of_nat)

lemma reals_Archimedean3:
assumes x_greater_zero: "0 < x"
shows "∀(y::real). ∃(n::nat). y < real n * x"

unfolding real_of_nat_def using `0 < x`
by (auto intro: ex_less_of_nat_mult)

lemma reals_Archimedean6:
"0 ≤ r ==> ∃(n::nat). real (n - 1) ≤ r & r < real (n)"

unfolding real_of_nat_def
apply (rule exI [where x="nat (floor r + 1)"])
apply (insert floor_correct [of r])
apply (simp add: nat_add_distrib of_nat_nat)
done

lemma reals_Archimedean6a: "0 ≤ r ==> ∃n. real (n) ≤ r & r < real (Suc n)"
by (drule reals_Archimedean6) auto

text {* TODO: delete *}
lemma reals_Archimedean_6b_int:
"0 ≤ r ==> ∃n::int. real n ≤ r & r < real (n+1)"

unfolding real_of_int_def by (rule floor_exists)

text {* TODO: delete *}
lemma reals_Archimedean_6c_int:
"r < 0 ==> ∃n::int. real n ≤ r & r < real (n+1)"

unfolding real_of_int_def by (rule floor_exists)


subsection{*Density of the Rational Reals in the Reals*}

text{* This density proof is due to Stefan Richter and was ported by TN. The
original source is \emph{Real Analysis} by H.L. Royden.
It employs the Archimedean property of the reals. *}


lemma Rats_dense_in_nn_real: fixes x::real
assumes "0≤x" and "x<y" shows "∃r ∈ \<rat>. x<r ∧ r<y"

proof -
from `x<y` have "0 < y-x" by simp
with reals_Archimedean obtain q::nat
where q: "inverse (real q) < y-x" and "0 < real q"
by auto
def p "LEAST n. y ≤ real (Suc n)/real q"
from reals_Archimedean2 obtain n::nat where "y * real q < real n" by auto
with `0 < real q` have ex: "y ≤ real n/real q" (is "?P n")
by (simp add: pos_less_divide_eq[THEN sym])
also from assms have "¬ y ≤ real (0::nat) / real q" by simp
ultimately have main: "(LEAST n. y ≤ real n/real q) = Suc p"
by (unfold p_def) (rule Least_Suc)
also from ex have "?P (LEAST x. ?P x)" by (rule LeastI)
ultimately have suc: "y ≤ real (Suc p) / real q" by simp
def r "real p/real q"
have "x = y-(y-x)" by simp
also from suc q have "… < real (Suc p)/real q - inverse (real q)" by arith
also have "… = real p / real q"
by (simp only: inverse_eq_divide diff_def real_of_nat_Suc
minus_divide_left add_divide_distrib[THEN sym]) simp

finally have "x<r" by (unfold r_def)
have "p<Suc p" .. also note main[THEN sym]
finally have "¬ ?P p" by (rule not_less_Least)
hence "r<y" by (simp add: r_def)
from r_def have "r ∈ \<rat>" by simp
with `x<r` `r<y` show ?thesis by fast
qed

theorem Rats_dense_in_real: fixes x y :: real
assumes "x<y" shows "∃r ∈ \<rat>. x<r ∧ r<y"

proof -
from reals_Archimedean2 obtain n::nat where "-x < real n" by auto
hence "0 ≤ x + real n" by arith
also from `x<y` have "x + real n < y + real n" by arith
ultimately have "∃r ∈ \<rat>. x + real n < r ∧ r < y + real n"
by(rule Rats_dense_in_nn_real)
then obtain r where "r ∈ \<rat>" and r2: "x + real n < r"
and r3: "r < y + real n"

by blast
have "r - real n = r + real (int n)/real (-1::int)" by simp
also from `r∈\<rat>` have "r + real (int n)/real (-1::int) ∈ \<rat>" by simp
also from r2 have "x < r - real n" by arith
moreover from r3 have "r - real n < y" by arith
ultimately show ?thesis by fast
qed


subsection{*Floor and Ceiling Functions from the Reals to the Integers*}

lemma number_of_less_real_of_int_iff [simp]:
"((number_of n) < real (m::int)) = (number_of n < m)"

apply auto
apply (rule real_of_int_less_iff [THEN iffD1])
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
done

lemma number_of_less_real_of_int_iff2 [simp]:
"(real (m::int) < (number_of n)) = (m < number_of n)"

apply auto
apply (rule real_of_int_less_iff [THEN iffD1])
apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
done

lemma number_of_le_real_of_int_iff [simp]:
"((number_of n) ≤ real (m::int)) = (number_of n ≤ m)"

by (simp add: linorder_not_less [symmetric])

lemma number_of_le_real_of_int_iff2 [simp]:
"(real (m::int) ≤ (number_of n)) = (m ≤ number_of n)"

by (simp add: linorder_not_less [symmetric])

lemma floor_real_of_nat [simp]: "floor (real (n::nat)) = int n"
unfolding real_of_nat_def by simp

lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
unfolding real_of_nat_def by (simp add: floor_minus)

lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
unfolding real_of_int_def by simp

lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
unfolding real_of_int_def by (simp add: floor_minus)

lemma real_lb_ub_int: " ∃n::int. real n ≤ r & r < real (n+1)"
unfolding real_of_int_def by (rule floor_exists)

lemma lemma_floor:
assumes a1: "real m ≤ r" and a2: "r < real n + 1"
shows "m ≤ (n::int)"

proof -
have "real m < real n + 1" using a1 a2 by (rule order_le_less_trans)
also have "... = real (n + 1)" by simp
finally have "m < n + 1" by (simp only: real_of_int_less_iff)
thus ?thesis by arith
qed

lemma real_of_int_floor_le [simp]: "real (floor r) ≤ r"
unfolding real_of_int_def by (rule of_int_floor_le)

lemma lemma_floor2: "real n < real (x::int) + 1 ==> n ≤ x"
by (auto intro: lemma_floor)

lemma real_of_int_floor_cancel [simp]:
"(real (floor x) = x) = (∃n::int. x = real n)"

using floor_real_of_int by metis

lemma floor_eq: "[| real n < x; x < real n + 1 |] ==> floor x = n"
unfolding real_of_int_def using floor_unique [of n x] by simp

lemma floor_eq2: "[| real n ≤ x; x < real n + 1 |] ==> floor x = n"
unfolding real_of_int_def by (rule floor_unique)

lemma floor_eq3: "[| real n < x; x < real (Suc n) |] ==> nat(floor x) = n"
apply (rule inj_int [THEN injD])
apply (simp add: real_of_nat_Suc)
apply (simp add: real_of_nat_Suc floor_eq floor_eq [where n = "int n"])
done

lemma floor_eq4: "[| real n ≤ x; x < real (Suc n) |] ==> nat(floor x) = n"
apply (drule order_le_imp_less_or_eq)
apply (auto intro: floor_eq3)
done

lemma real_of_int_floor_ge_diff_one [simp]: "r - 1 ≤ real(floor r)"
unfolding real_of_int_def using floor_correct [of r] by simp

lemma real_of_int_floor_gt_diff_one [simp]: "r - 1 < real(floor r)"
unfolding real_of_int_def using floor_correct [of r] by simp

lemma real_of_int_floor_add_one_ge [simp]: "r ≤ real(floor r) + 1"
unfolding real_of_int_def using floor_correct [of r] by simp

lemma real_of_int_floor_add_one_gt [simp]: "r < real(floor r) + 1"
unfolding real_of_int_def using floor_correct [of r] by simp

lemma le_floor: "real a <= x ==> a <= floor x"
unfolding real_of_int_def by (simp add: le_floor_iff)

lemma real_le_floor: "a <= floor x ==> real a <= x"
unfolding real_of_int_def by (simp add: le_floor_iff)

lemma le_floor_eq: "(a <= floor x) = (real a <= x)"
unfolding real_of_int_def by (rule le_floor_iff)

lemma floor_less_eq: "(floor x < a) = (x < real a)"
unfolding real_of_int_def by (rule floor_less_iff)

lemma less_floor_eq: "(a < floor x) = (real a + 1 <= x)"
unfolding real_of_int_def by (rule less_floor_iff)

lemma floor_le_eq: "(floor x <= a) = (x < real a + 1)"
unfolding real_of_int_def by (rule floor_le_iff)

lemma floor_add [simp]: "floor (x + real a) = floor x + a"
unfolding real_of_int_def by (rule floor_add_of_int)

lemma floor_subtract [simp]: "floor (x - real a) = floor x - a"
unfolding real_of_int_def by (rule floor_diff_of_int)

lemma le_mult_floor:
assumes "0 ≤ (a :: real)" and "0 ≤ b"
shows "floor a * floor b ≤ floor (a * b)"

proof -
have "real (floor a) ≤ a"
and "real (floor b) ≤ b"
by auto
hence "real (floor a * floor b) ≤ a * b"
using assms by (auto intro!: mult_mono)
also have "a * b < real (floor (a * b) + 1)" by auto
finally show ?thesis unfolding real_of_int_less_iff by simp
qed

lemma ceiling_real_of_nat [simp]: "ceiling (real (n::nat)) = int n"
unfolding real_of_nat_def by simp

lemma ceiling_floor [simp]: "ceiling (real (floor r)) = floor r"
unfolding real_of_int_def by simp

lemma floor_ceiling [simp]: "floor (real (ceiling r)) = ceiling r"
unfolding real_of_int_def by simp

lemma real_of_int_ceiling_ge [simp]: "r ≤ real (ceiling r)"
unfolding real_of_int_def by (rule le_of_int_ceiling)

lemma ceiling_real_of_int [simp]: "ceiling (real (n::int)) = n"
unfolding real_of_int_def by simp

lemma real_of_int_ceiling_cancel [simp]:
"(real (ceiling x) = x) = (∃n::int. x = real n)"

using ceiling_real_of_int by metis

lemma ceiling_eq: "[| real n < x; x < real n + 1 |] ==> ceiling x = n + 1"
unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp

lemma ceiling_eq2: "[| real n < x; x ≤ real n + 1 |] ==> ceiling x = n + 1"
unfolding real_of_int_def using ceiling_unique [of "n + 1" x] by simp

lemma ceiling_eq3: "[| real n - 1 < x; x ≤ real n |] ==> ceiling x = n"
unfolding real_of_int_def using ceiling_unique [of n x] by simp

lemma real_of_int_ceiling_diff_one_le [simp]: "real (ceiling r) - 1 ≤ r"
unfolding real_of_int_def using ceiling_correct [of r] by simp

lemma real_of_int_ceiling_le_add_one [simp]: "real (ceiling r) ≤ r + 1"
unfolding real_of_int_def using ceiling_correct [of r] by simp

lemma ceiling_le: "x <= real a ==> ceiling x <= a"
unfolding real_of_int_def by (simp add: ceiling_le_iff)

lemma ceiling_le_real: "ceiling x <= a ==> x <= real a"
unfolding real_of_int_def by (simp add: ceiling_le_iff)

lemma ceiling_le_eq: "(ceiling x <= a) = (x <= real a)"
unfolding real_of_int_def by (rule ceiling_le_iff)

lemma less_ceiling_eq: "(a < ceiling x) = (real a < x)"
unfolding real_of_int_def by (rule less_ceiling_iff)

lemma ceiling_less_eq: "(ceiling x < a) = (x <= real a - 1)"
unfolding real_of_int_def by (rule ceiling_less_iff)

lemma le_ceiling_eq: "(a <= ceiling x) = (real a - 1 < x)"
unfolding real_of_int_def by (rule le_ceiling_iff)

lemma ceiling_add [simp]: "ceiling (x + real a) = ceiling x + a"
unfolding real_of_int_def by (rule ceiling_add_of_int)

lemma ceiling_subtract [simp]: "ceiling (x - real a) = ceiling x - a"
unfolding real_of_int_def by (rule ceiling_diff_of_int)


subsection {* Versions for the natural numbers *}

definition
natfloor :: "real => nat" where
"natfloor x = nat(floor x)"


definition
natceiling :: "real => nat" where
"natceiling x = nat(ceiling x)"


lemma natfloor_zero [simp]: "natfloor 0 = 0"
by (unfold natfloor_def, simp)

lemma natfloor_one [simp]: "natfloor 1 = 1"
by (unfold natfloor_def, simp)

lemma zero_le_natfloor [simp]: "0 <= natfloor x"
by (unfold natfloor_def, simp)

lemma natfloor_number_of_eq [simp]: "natfloor (number_of n) = number_of n"
by (unfold natfloor_def, simp)

lemma natfloor_real_of_nat [simp]: "natfloor(real n) = n"
by (unfold natfloor_def, simp)

lemma real_natfloor_le: "0 <= x ==> real(natfloor x) <= x"
by (unfold natfloor_def, simp)

lemma natfloor_neg: "x <= 0 ==> natfloor x = 0"
apply (unfold natfloor_def)
apply (subgoal_tac "floor x <= floor 0")
apply simp
apply (erule floor_mono)
done

lemma natfloor_mono: "x <= y ==> natfloor x <= natfloor y"
apply (case_tac "0 <= x")
apply (subst natfloor_def)+
apply (subst nat_le_eq_zle)
apply force
apply (erule floor_mono)
apply (subst natfloor_neg)
apply simp
apply simp
done

lemma le_natfloor: "real x <= a ==> x <= natfloor a"
apply (unfold natfloor_def)
apply (subst nat_int [THEN sym])
apply (subst nat_le_eq_zle)
apply simp
apply (rule le_floor)
apply simp
done

lemma less_natfloor:
assumes "0 ≤ x" and "x < real (n :: nat)"
shows "natfloor x < n"

proof (rule ccontr)
assume "¬ ?thesis" hence *: "n ≤ natfloor x" by simp
note assms(2)
also have "real n ≤ real (natfloor x)"
using * unfolding real_of_nat_le_iff .
finally have "x < real (natfloor x)" .
with real_natfloor_le[OF assms(1)]
show False by auto
qed

lemma le_natfloor_eq: "0 <= x ==> (a <= natfloor x) = (real a <= x)"
apply (rule iffI)
apply (rule order_trans)
prefer 2
apply (erule real_natfloor_le)
apply (subst real_of_nat_le_iff)
apply assumption
apply (erule le_natfloor)
done

lemma le_natfloor_eq_number_of [simp]:
"~ neg((number_of n)::int) ==> 0 <= x ==>
(number_of n <= natfloor x) = (number_of n <= x)"

apply (subst le_natfloor_eq, assumption)
apply simp
done

lemma le_natfloor_eq_one [simp]: "(1 <= natfloor x) = (1 <= x)"
apply (case_tac "0 <= x")
apply (subst le_natfloor_eq, assumption, simp)
apply (rule iffI)
apply (subgoal_tac "natfloor x <= natfloor 0")
apply simp
apply (rule natfloor_mono)
apply simp
apply simp
done

lemma natfloor_eq: "real n <= x ==> x < real n + 1 ==> natfloor x = n"
apply (unfold natfloor_def)
apply (subst (2) nat_int [THEN sym])
apply (subst eq_nat_nat_iff)
apply simp
apply simp
apply (rule floor_eq2)
apply auto
done

lemma real_natfloor_add_one_gt: "x < real(natfloor x) + 1"
apply (case_tac "0 <= x")
apply (unfold natfloor_def)
apply simp
apply simp_all
done

lemma real_natfloor_gt_diff_one: "x - 1 < real(natfloor x)"
using real_natfloor_add_one_gt by (simp add: algebra_simps)

lemma ge_natfloor_plus_one_imp_gt: "natfloor z + 1 <= n ==> z < real n"
apply (subgoal_tac "z < real(natfloor z) + 1")
apply arith
apply (rule real_natfloor_add_one_gt)
done

lemma natfloor_add [simp]: "0 <= x ==> natfloor (x + real a) = natfloor x + a"
apply (unfold natfloor_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp add: nat_add_distrib del: real_of_int_of_nat_eq)
apply simp
done

lemma natfloor_add_number_of [simp]:
"~neg ((number_of n)::int) ==> 0 <= x ==>
natfloor (x + number_of n) = natfloor x + number_of n"

apply (subst natfloor_add [THEN sym])
apply simp_all
done

lemma natfloor_add_one: "0 <= x ==> natfloor(x + 1) = natfloor x + 1"
apply (subst natfloor_add [THEN sym])
apply assumption
apply simp
done

lemma natfloor_subtract [simp]: "real a <= x ==>
natfloor(x - real a) = natfloor x - a"

apply (unfold natfloor_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply simp
done

lemma natfloor_div_nat: "1 <= x ==> y > 0 ==>
natfloor (x / real y) = natfloor x div y"

proof -
assume "1 <= (x::real)" and "(y::nat) > 0"
have "natfloor x = (natfloor x) div y * y + (natfloor x) mod y"
by simp
then have a: "real(natfloor x) = real ((natfloor x) div y) * real y +
real((natfloor x) mod y)"

by (simp only: real_of_nat_add [THEN sym] real_of_nat_mult [THEN sym])
have "x = real(natfloor x) + (x - real(natfloor x))"
by simp
then have "x = real ((natfloor x) div y) * real y +
real((natfloor x) mod y) + (x - real(natfloor x))"

by (simp add: a)
then have "x / real y = ... / real y"
by simp
also have "... = real((natfloor x) div y) + real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y"

by (auto simp add: algebra_simps add_divide_distrib
diff_divide_distrib prems)

finally have "natfloor (x / real y) = natfloor(...)" by simp
also have "... = natfloor(real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y + real((natfloor x) div y))"

by (simp add: add_ac)
also have "... = natfloor(real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y) + (natfloor x) div y"

apply (rule natfloor_add)
apply (rule add_nonneg_nonneg)
apply (rule divide_nonneg_pos)
apply simp
apply (simp add: prems)
apply (rule divide_nonneg_pos)
apply (simp add: algebra_simps)
apply (rule real_natfloor_le)
apply (insert prems, auto)
done
also have "natfloor(real((natfloor x) mod y) /
real y + (x - real(natfloor x)) / real y) = 0"

apply (rule natfloor_eq)
apply simp
apply (rule add_nonneg_nonneg)
apply (rule divide_nonneg_pos)
apply force
apply (force simp add: prems)
apply (rule divide_nonneg_pos)
apply (simp add: algebra_simps)
apply (rule real_natfloor_le)
apply (auto simp add: prems)
apply (insert prems, arith)
apply (simp add: add_divide_distrib [THEN sym])
apply (subgoal_tac "real y = real y - 1 + 1")
apply (erule ssubst)
apply (rule add_le_less_mono)
apply (simp add: algebra_simps)
apply (subgoal_tac "1 + real(natfloor x mod y) =
real(natfloor x mod y + 1)"
)

apply (erule ssubst)
apply (subst real_of_nat_le_iff)
apply (subgoal_tac "natfloor x mod y < y")
apply arith
apply (rule mod_less_divisor)
apply auto
using real_natfloor_add_one_gt
apply (simp add: algebra_simps)
done
finally show ?thesis by simp
qed

lemma le_mult_natfloor:
assumes "0 ≤ (a :: real)" and "0 ≤ b"
shows "natfloor a * natfloor b ≤ natfloor (a * b)"

unfolding natfloor_def
apply (subst nat_mult_distrib[symmetric])
using assms apply simp
apply (subst nat_le_eq_zle)
using assms le_mult_floor by (auto intro!: mult_nonneg_nonneg)

lemma natceiling_zero [simp]: "natceiling 0 = 0"
by (unfold natceiling_def, simp)

lemma natceiling_one [simp]: "natceiling 1 = 1"
by (unfold natceiling_def, simp)

lemma zero_le_natceiling [simp]: "0 <= natceiling x"
by (unfold natceiling_def, simp)

lemma natceiling_number_of_eq [simp]: "natceiling (number_of n) = number_of n"
by (unfold natceiling_def, simp)

lemma natceiling_real_of_nat [simp]: "natceiling(real n) = n"
by (unfold natceiling_def, simp)

lemma real_natceiling_ge: "x <= real(natceiling x)"
apply (unfold natceiling_def)
apply (case_tac "x < 0")
apply simp
apply (subst real_nat_eq_real)
apply (subgoal_tac "ceiling 0 <= ceiling x")
apply simp
apply (rule ceiling_mono)
apply simp
apply simp
done

lemma natceiling_neg: "x <= 0 ==> natceiling x = 0"
apply (unfold natceiling_def)
apply simp
done

lemma natceiling_mono: "x <= y ==> natceiling x <= natceiling y"
apply (case_tac "0 <= x")
apply (subst natceiling_def)+
apply (subst nat_le_eq_zle)
apply (rule disjI2)
apply (subgoal_tac "real (0::int) <= real(ceiling y)")
apply simp
apply (rule order_trans)
apply simp
apply (erule order_trans)
apply simp
apply (erule ceiling_mono)
apply (subst natceiling_neg)
apply simp_all
done

lemma natceiling_le: "x <= real a ==> natceiling x <= a"
apply (unfold natceiling_def)
apply (case_tac "x < 0")
apply simp
apply (subst (2) nat_int [THEN sym])
apply (subst nat_le_eq_zle)
apply simp
apply (rule ceiling_le)
apply simp
done

lemma natceiling_le_eq: "0 <= x ==> (natceiling x <= a) = (x <= real a)"
apply (rule iffI)
apply (rule order_trans)
apply (rule real_natceiling_ge)
apply (subst real_of_nat_le_iff)
apply assumption
apply (erule natceiling_le)
done

lemma natceiling_le_eq_number_of [simp]:
"~ neg((number_of n)::int) ==> 0 <= x ==>
(natceiling x <= number_of n) = (x <= number_of n)"

apply (subst natceiling_le_eq, assumption)
apply simp
done

lemma natceiling_le_eq_one: "(natceiling x <= 1) = (x <= 1)"
apply (case_tac "0 <= x")
apply (subst natceiling_le_eq)
apply assumption
apply simp
apply (subst natceiling_neg)
apply simp
apply simp
done

lemma natceiling_eq: "real n < x ==> x <= real n + 1 ==> natceiling x = n + 1"
apply (unfold natceiling_def)
apply (simplesubst nat_int [THEN sym]) back back
apply (subgoal_tac "nat(int n) + 1 = nat(int n + 1)")
apply (erule ssubst)
apply (subst eq_nat_nat_iff)
apply (subgoal_tac "ceiling 0 <= ceiling x")
apply simp
apply (rule ceiling_mono)
apply force
apply force
apply (rule ceiling_eq2)
apply (simp, simp)
apply (subst nat_add_distrib)
apply auto
done

lemma natceiling_add [simp]: "0 <= x ==>
natceiling (x + real a) = natceiling x + a"

apply (unfold natceiling_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply (subst nat_add_distrib)
apply (subgoal_tac "0 = ceiling 0")
apply (erule ssubst)
apply (erule ceiling_mono)
apply simp_all
done

lemma natceiling_add_number_of [simp]:
"~ neg ((number_of n)::int) ==> 0 <= x ==>
natceiling (x + number_of n) = natceiling x + number_of n"

apply (subst natceiling_add [THEN sym])
apply simp_all
done

lemma natceiling_add_one: "0 <= x ==> natceiling(x + 1) = natceiling x + 1"
apply (subst natceiling_add [THEN sym])
apply assumption
apply simp
done

lemma natceiling_subtract [simp]: "real a <= x ==>
natceiling(x - real a) = natceiling x - a"

apply (unfold natceiling_def)
apply (subgoal_tac "real a = real (int a)")
apply (erule ssubst)
apply (simp del: real_of_int_of_nat_eq)
apply simp
done

subsection {* Exponentiation with floor *}

lemma floor_power:
assumes "x = real (floor x)"
shows "floor (x ^ n) = floor x ^ n"

proof -
have *: "x ^ n = real (floor x ^ n)"
using assms by (induct n arbitrary: x) simp_all
show ?thesis unfolding real_of_int_inject[symmetric]
unfolding * floor_real_of_int ..
qed

lemma natfloor_power:
assumes "x = real (natfloor x)"
shows "natfloor (x ^ n) = natfloor x ^ n"

proof -
from assms have "0 ≤ floor x" by auto
note assms[unfolded natfloor_def real_nat_eq_real[OF `0 ≤ floor x`]]
from floor_power[OF this]
show ?thesis unfolding natfloor_def nat_power_eq[OF `0 ≤ floor x`, symmetric]
by simp
qed

end