
State Spaces: The Locale Way

Norbert Schirmer

June 21, 2010

Contents

1 Introduction 1

2 Distinctness of Names in a Binary Tree 2
2.1 The Binary Tree . 2
2.2 Distinctness of Nodes . 2
2.3 Containment of Trees . 3

3 State Space Representation as Function 6

4 Setup for State Space Locales 8

5 Syntax for State Space Lookup and Update 8

6 Examples 9

1 Introduction

These theories introduce a new command called statespace. It’s usage
is similar to records. However, the command does not introduce a new
type but an abstract specification based on the locale infrastructure. This
leads to extra flexibility in composing state space components, in particular
multiple inheritance and renaming of components.
The state space infrastructure basically manages the following things:

• distinctness of field names

• projections / injections from / to an abstract value type

• syntax translations for lookup and update, hiding the projections and
injections

• simplification procedure for lookups / updates, similar to records

1

Overview In Section 2 we define distinctness of the nodes in a binary tree
and provide the basic prover tools to support efficient distinctness reasoning
for field names managed by state spaces. The state is represented as a
function from (abstract) names to (abstract) values as introduced in Section
3. The basic setup for state spaces is in Section 4. Some syntax for lookup
and updates is added in Section 5. Finally Section 6 explains the usage of
state spaces by examples.

2 Distinctness of Names in a Binary Tree

theory DistinctTreeProver
imports Main
uses (distinct-tree-prover .ML)
begin

A state space manages a set of (abstract) names and assumes that the names
are distinct. The names are stored as parameters of a locale and distinctness
as an assumption. The most common request is to proof distinctness of
two given names. We maintain the names in a balanced binary tree and
formulate a predicate that all nodes in the tree have distinct names. This
setup leads to logarithmic certificates.

2.1 The Binary Tree

datatype ′a tree = Node ′a tree ′a bool ′a tree | Tip

The boolean flag in the node marks the content of the node as deleted,
without having to build a new tree. We prefer the boolean flag to an option
type, so that the ML-layer can still use the node content to facilitate binary
search in the tree. The ML code keeps the nodes sorted using the term
order. We do not have to push ordering to the HOL level.

2.2 Distinctness of Nodes

consts set-of :: ′a tree ⇒ ′a set
primrec
set-of Tip = {}
set-of (Node l x d r) = (if d then {} else {x}) ∪ set-of l ∪ set-of r

consts all-distinct :: ′a tree ⇒ bool
primrec
all-distinct Tip = True
all-distinct (Node l x d r) = ((d ∨ (x /∈ set-of l ∧ x /∈ set-of r)) ∧

set-of l ∩ set-of r = {} ∧
all-distinct l ∧ all-distinct r)

2

Given a binary tree t for which all-distinct holds, given two different nodes
contained in the tree, we want to write a ML function that generates a
logarithmic certificate that the content of the nodes is distinct. We use the
following lemmas to achieve this.

lemma all-distinct-left :
all-distinct (Node l x b r) =⇒ all-distinct l
〈proof 〉

lemma all-distinct-right : all-distinct (Node l x b r) =⇒ all-distinct r
〈proof 〉

lemma distinct-left : [[all-distinct (Node l x False r); y ∈ set-of l]] =⇒ x 6=y
〈proof 〉

lemma distinct-right : [[all-distinct (Node l x False r); y ∈ set-of r]] =⇒ x 6=y
〈proof 〉

lemma distinct-left-right : [[all-distinct (Node l z b r); x ∈ set-of l ; y ∈ set-of r]]
=⇒ x 6=y
〈proof 〉

lemma in-set-root : x ∈ set-of (Node l x False r)
〈proof 〉

lemma in-set-left : y ∈ set-of l =⇒ y ∈ set-of (Node l x False r)
〈proof 〉

lemma in-set-right : y ∈ set-of r =⇒ y ∈ set-of (Node l x False r)
〈proof 〉

lemma swap-neq : x 6= y =⇒ y 6= x
〈proof 〉

lemma neq-to-eq-False: x 6=y =⇒ (x=y)≡False
〈proof 〉

2.3 Containment of Trees

When deriving a state space from other ones, we create a new name tree
which contains all the names of the parent state spaces and assumme the
predicate all-distinct. We then prove that the new locale interprets all parent
locales. Hence we have to show that the new distinctness assumption on
all names implies the distinctness assumptions of the parent locales. This
proof is implemented in ML. We do this efficiently by defining a kind of
containment check of trees by ’subtraction’. We subtract the parent tree
from the new tree. If this succeeds we know that all-distinct of the new
tree implies all-distinct of the parent tree. The resulting certificate is of the

3

order n ∗ log m where n is the size of the (smaller) parent tree and m the
size of the (bigger) new tree.

consts delete :: ′a ⇒ ′a tree ⇒ ′a tree option
primrec
delete x Tip = None
delete x (Node l y d r) = (case delete x l of

Some l ′⇒
(case delete x r of

Some r ′⇒ Some (Node l ′ y (d ∨ (x=y)) r ′)
| None ⇒ Some (Node l ′ y (d ∨ (x=y)) r))

| None ⇒
(case (delete x r) of

Some r ′⇒ Some (Node l y (d ∨ (x=y)) r ′)
| None ⇒ if x=y ∧ ¬d then Some (Node l y True r)

else None))

lemma delete-Some-set-of :
∧

t ′. delete x t = Some t ′ =⇒ set-of t ′ ⊆ set-of t
〈proof 〉

lemma delete-Some-all-distinct :∧
t ′. [[delete x t = Some t ′; all-distinct t]] =⇒ all-distinct t ′

〈proof 〉

lemma delete-None-set-of-conv : delete x t = None = (x /∈ set-of t)
〈proof 〉

lemma delete-Some-x-set-of :∧
t ′. delete x t = Some t ′ =⇒ x ∈ set-of t ∧ x /∈ set-of t ′

〈proof 〉

consts subtract :: ′a tree ⇒ ′a tree ⇒ ′a tree option
primrec
subtract Tip t = Some t
subtract (Node l x b r) t =

(case delete x t of
Some t ′⇒ (case subtract l t ′ of

Some t ′′⇒ subtract r t ′′

| None ⇒ None)
| None ⇒ None)

lemma subtract-Some-set-of-res:∧
t2 t . subtract t1 t2 = Some t =⇒ set-of t ⊆ set-of t2

〈proof 〉

lemma subtract-Some-set-of :∧
t2 t . subtract t1 t2 = Some t =⇒ set-of t1 ⊆ set-of t2

〈proof 〉

4

lemma subtract-Some-all-distinct-res:∧
t2 t . [[subtract t1 t2 = Some t ; all-distinct t2]] =⇒ all-distinct t

〈proof 〉

lemma subtract-Some-dist-res:∧
t2 t . subtract t1 t2 = Some t =⇒ set-of t1 ∩ set-of t = {}

〈proof 〉

lemma subtract-Some-all-distinct :∧
t2 t . [[subtract t1 t2 = Some t ; all-distinct t2]] =⇒ all-distinct t1

〈proof 〉

lemma delete-left :
assumes dist : all-distinct (Node l y d r)
assumes del-l : delete x l = Some l ′

shows delete x (Node l y d r) = Some (Node l ′ y d r)
〈proof 〉

lemma delete-right :
assumes dist : all-distinct (Node l y d r)
assumes del-r : delete x r = Some r ′

shows delete x (Node l y d r) = Some (Node l y d r ′)
〈proof 〉

lemma delete-root :
assumes dist : all-distinct (Node l x False r)
shows delete x (Node l x False r) = Some (Node l x True r)
〈proof 〉

lemma subtract-Node:
assumes del : delete x t = Some t ′

assumes sub-l : subtract l t ′ = Some t ′′

assumes sub-r : subtract r t ′′ = Some t ′′′

shows subtract (Node l x False r) t = Some t ′′′

〈proof 〉

lemma subtract-Tip: subtract Tip t = Some t
〈proof 〉

Now we have all the theorems in place that are needed for the certificate
generating ML functions.

〈ML〉

5

end

3 State Space Representation as Function

theory StateFun imports DistinctTreeProver
begin

The state space is represented as a function from names to values. We
neither fix the type of names nor the type of values. We define lookup and
update functions and provide simprocs that simplify expressions containing
these, similar to HOL-records.
The lookup and update function get constructor/destructor functions as
parameters. These are used to embed various HOL-types into the abstract
value type. Conceptually the abstract value type is a sum of all types that
we attempt to store in the state space.
The update is actually generalized to a map function. The map supplies
better compositionality, especially if you think of nested state spaces.

definition K-statefun :: ′a ⇒ ′b ⇒ ′a where K-statefun c x ≡ c

lemma K-statefun-apply [simp]: K-statefun c x = c
〈proof 〉

lemma K-statefun-comp [simp]: (K-statefun c ◦ f) = K-statefun c
〈proof 〉

lemma K-statefun-cong [cong]: K-statefun c x = K-statefun c x
〈proof 〉

definition lookup:: (′v ⇒ ′a) ⇒ ′n ⇒ (′n ⇒ ′v) ⇒ ′a
where lookup destr n s = destr (s n)

definition update::
(′v ⇒ ′a1) ⇒ (′a2 ⇒ ′v) ⇒ ′n ⇒ (′a1 ⇒ ′a2) ⇒ (′n ⇒ ′v) ⇒ (′n ⇒ ′v)
where update destr constr n f s = s(n := constr (f (destr (s n))))

lemma lookup-update-same:
(
∧

v . destr (constr v) = v) =⇒ lookup destr n (update destr constr n f s) =
f (destr (s n))

〈proof 〉

lemma lookup-update-id-same:
lookup destr n (update destr ′ id n (K-statefun (lookup id n s ′)) s) =

lookup destr n s ′

〈proof 〉

lemma lookup-update-other :

6

n 6=m =⇒ lookup destr n (update destr ′ constr m f s) = lookup destr n s
〈proof 〉

lemma id-id-cancel : id (id x) = x
〈proof 〉

lemma destr-contstr-comp-id :
(
∧

v . destr (constr v) = v) =⇒ destr ◦ constr = id
〈proof 〉

lemma block-conj-cong : (P ∧ Q) = (P ∧ Q)
〈proof 〉

lemma conj1-False: (P≡False) =⇒ (P ∧ Q) ≡ False
〈proof 〉

lemma conj2-False: [[Q≡False]] =⇒ (P ∧ Q) ≡ False
〈proof 〉

lemma conj-True: [[P≡True; Q≡True]] =⇒ (P ∧ Q) ≡ True
〈proof 〉

lemma conj-cong : [[P≡P ′; Q≡Q ′]] =⇒ (P ∧ Q) ≡ (P ′ ∧ Q ′)
〈proof 〉

lemma update-apply : (update destr constr n f s x) =
(if x=n then constr (f (destr (s n))) else s x)

〈proof 〉

lemma ex-id : ∃ x . id x = y
〈proof 〉

lemma swap-ex-eq :
∃ s. f s = x ≡ True =⇒
∃ s. x = f s ≡ True
〈proof 〉

lemmas meta-ext = eq-reflection [OF ext]

lemma update d c n (K-statespace (lookup d n s)) s = s
〈proof 〉

end

7

4 Setup for State Space Locales

theory StateSpaceLocale imports StateFun
uses state-space.ML state-fun.ML
begin

〈ML〉

For every type that is to be stored in a state space, an instance of this locale
is imported in order convert the abstract and concrete values.

locale project-inject =
fixes project :: ′value ⇒ ′a
and inject :: ′a ⇒ ′value
assumes project-inject-cancel [statefun-simp]: project (inject x) = x

lemma (in project-inject)
ex-project [statefun-simp]: ∃ v . project v = x
〈proof 〉

lemma (in project-inject)
project-inject-comp-id [statefun-simp]: project ◦ inject = id
〈proof 〉

lemma (in project-inject)
project-inject-comp-cancel [statefun-simp]: f ◦ project ◦ inject = f
〈proof 〉

end

5 Syntax for State Space Lookup and Update

theory StateSpaceSyntax
imports StateSpaceLocale

begin

The state space syntax is kept in an extra theory so that you can choose if
you want to use it or not.

syntax
-statespace-lookup :: (′a ⇒ ′b) ⇒ ′a ⇒ ′c (-·- [60 , 60] 60)
-statespace-update :: (′a ⇒ ′b) ⇒ ′a ⇒ ′c ⇒ (′a ⇒ ′b)
-statespace-updates :: (′a ⇒ ′b) ⇒ updbinds ⇒ (′a ⇒ ′b) (-<-> [900 , 0] 900)

translations
-statespace-updates f (-updbinds b bs) ==

-statespace-updates (-statespace-updates f b) bs

8

s<x :=y> == -statespace-update s x y

〈ML〉

end

6 Examples

theory StateSpaceEx
imports StateSpaceLocale StateSpaceSyntax

begin

Did you ever dream about records with multiple inheritance. Then you
should definitely have a look at statespaces. They may be what you are
dreaming of. Or at least almost...

Isabelle allows to add new top-level commands to the system. Building on
the locale infrastructure, we provide a command statespace like this:

statespace vars =
n::nat
b::bool

print-locale vars-namespace
print-locale vars-valuetypes
print-locale vars

This resembles a record definition, but introduces sophisticated locale in-
frastructure instead of HOL type schemes. The resulting context postulates
two distinct names n and b and projection / injection functions that convert
from abstract values to nat and bool. The logical content of the locale is:

locale vars ′ =
fixes n:: ′name and b:: ′name
assumes distinct [n, b]

fixes project-nat :: ′value ⇒ nat and inject-nat ::nat ⇒ ′value
assumes

∧
n. project-nat (inject-nat n) = n

fixes project-bool :: ′value ⇒ bool and inject-bool ::bool ⇒ ′value
assumes

∧
b. project-bool (inject-bool b) = b

The HOL predicate distinct describes distinctness of all names in the con-
text. Locale vars ′ defines the raw logical content that is defined in the state
space locale. We also maintain non-logical context information to support
the user:

9

• Syntax for state lookup and updates that automatically inserts the
corresponding projection and injection functions.

• Setup for the proof tools that exploit the distinctness information and
the cancellation of projections and injections in deductions and sim-
plifications.

This extra-logical information is added to the locale in form of declarations,
which associate the name of a variable to the corresponding projection and
injection functions to handle the syntax transformations, and a link from the
variable name to the corresponding distinctness theorem. As state spaces
are merged or extended there are multiple distinctness theorems in the con-
text. Our declarations take care that the link always points to the strongest
distinctness assumption. With these declarations in place, a lookup can be
written as s·n, which is translated to project-nat (s n), and an update as s〈n
:= 2 〉, which is translated to s(n := inject-nat 2). We can now establish
the following lemma:

lemma (in vars) foo: s<n := 2>·b = s·b 〈proof 〉

Here the simplifier was able to refer to distinctness of b and n to solve the
equation. The resulting lemma is also recorded in locale vars for later use
and is automatically propagated to all its interpretations. Here is another
example:

statespace ′a varsX = vars [n=N , b=B] + vars + x :: ′a

The state space varsX imports two copies of the state space vars, where one
has the variables renamed to upper-case letters, and adds another variable x
of type ′a. This type is fixed inside the state space but may get instantiated
later on, analogous to type parameters of an ML-functor. The distinctness
assumption is now distinct [N , B , n, b, x], from this we can derive both
distinct [N , B] and distinct [n, b], the distinction assumptions for the two
versions of locale vars above. Moreover we have all necessary projection
and injection assumptions available. These assumptions together allow us
to establish state space varsX as an interpretation of both instances of locale
vars. Hence we inherit both variants of theorem foo: s〈N := 2 〉·B = s·B as
well as s〈n := 2 〉·b = s·b. These are immediate consequences of the locale
interpretation action.
The declarations for syntax and the distinctness theorems also observe the
morphisms generated by the locale package due to the renaming n = N :

lemma (in varsX) foo: s〈N := 2 〉·x = s·x 〈proof 〉

To assure scalability towards many distinct names, the distinctness predicate
is refined to operate on balanced trees. Thus we get logarithmic certificates
for the distinctness of two names by the distinctness of the paths in the

10

tree. Asked for the distinctness of two names, our tool produces the paths
of the variables in the tree (this is implemented in SML, outside the logic)
and returns a certificate corresponding to the different paths. Merging state
spaces requires to prove that the combined distinctness assumption implies
the distinctness assumptions of the components. Such a proof is of the order
m · log n, where n and m are the number of nodes in the larger and smaller
tree, respectively.

We continue with more examples.

statespace ′a foo =
f ::nat⇒nat
a::int
b::nat
c:: ′a

lemma (in foo) foo1 :
shows s〈a := i〉·a = i
〈proof 〉

lemma (in foo) foo2 :
shows (s〈a:=i〉)·a = i
〈proof 〉

lemma (in foo) foo3 :
shows (s〈a:=i〉)·b = s·b
〈proof 〉

lemma (in foo) foo4 :
shows (s〈a:=i ,b:=j ,c:=k ,a:=x 〉) = (s〈b:=j ,c:=k ,a:=x 〉)
〈proof 〉

statespace bar =
b::bool
c::string

lemma (in bar) bar1 :
shows (s〈b:=True〉)·c = s·c
〈proof 〉

You can define a derived state space by inheriting existing state spaces,
renaming of components if you like, and by declaring new components.

statespace (′a, ′b) loo = ′a foo + bar [b=B ,c=C] +
X :: ′b

lemma (in loo) loo1 :
shows s〈a:=i〉·B = s·B

11

〈proof 〉
thm foo1 〈proof 〉
thm bar1 〈proof 〉

statespace ′a dup = ′a foo [f =F , a=A] + ′a foo +
x ::int

lemma (in dup)
shows s<a := i>·x = s·x
〈proof 〉

lemma (in dup)
shows s<A := i>·a = s·a
〈proof 〉

lemma (in dup)
shows s<A := i>·x = s·x
〈proof 〉

Hmm, I hoped this would work now...

There are known problems with syntax-declarations. They currently only
work, when the context is already built. Hopefully this will be implemented
correctly in future Isabelle versions.

It would be nice to have nested state spaces. This is logically no problem.
From the locale-implementation side this may be something like an ’includes’
into a locale. When there is a more elaborate locale infrastructure in place
this may be an easy exercise.

end

12

	Introduction
	Distinctness of Names in a Binary Tree
	The Binary Tree
	Distinctness of Nodes
	Containment of Trees

	State Space Representation as Function
	Setup for State Space Locales
	Syntax for State Space Lookup and Update
	Examples

