Theory PriorityAux

Up to index of Isabelle/HOL/UNITY

theory PriorityAux
imports UNITY_Main

(*  Title:      HOL/UNITY/PriorityAux
ID: $Id$
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2001 University of Cambridge

Auxiliary definitions needed in Priority.thy
*)


theory PriorityAux
imports "../UNITY_Main"
begin


typedecl vertex

definition symcl :: "(vertex*vertex)set=>(vertex*vertex)set" where
"symcl r == r ∪ (r^-1)"
--{* symmetric closure: removes the orientation of a relation*}


definition neighbors :: "[vertex, (vertex*vertex)set]=>vertex set" where
"neighbors i r == ((r ∪ r^-1)``{i}) - {i}"
--{* Neighbors of a vertex i *}


definition R :: "[vertex, (vertex*vertex)set]=>vertex set" where
"R i r == r``{i}"


definition A :: "[vertex, (vertex*vertex)set]=>vertex set" where
"A i r == (r^-1)``{i}"


definition reach :: "[vertex, (vertex*vertex)set]=> vertex set" where
"reach i r == (r^+)``{i}"
--{* reachable and above vertices: the original notation was R* and A* *}


definition above :: "[vertex, (vertex*vertex)set]=> vertex set" where
"above i r == ((r^-1)^+)``{i}"


definition reverse :: "[vertex, (vertex*vertex) set]=>(vertex*vertex)set" where
"reverse i r == (r - {(x,y). x=i | y=i} ∩ r) ∪ ({(x,y). x=i|y=i} ∩ r)^-1"


definition derive1 :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
--{* The original definition *}
"derive1 i r q == symcl r = symcl q &
(∀k k'. k≠i & k'≠i -->((k,k'):r) = ((k,k'):q)) &
A i r = {} & R i q = {}"


definition derive :: "[vertex, (vertex*vertex)set, (vertex*vertex)set]=>bool" where
--{* Our alternative definition *}
"derive i r q == A i r = {} & (q = reverse i r)"


axioms
finite_vertex_univ: "finite (UNIV :: vertex set)"
--{* we assume that the universe of vertices is finite *}


declare derive_def [simp] derive1_def [simp] symcl_def [simp]
A_def [simp] R_def [simp]
above_def [simp] reach_def [simp]
reverse_def [simp] neighbors_def [simp]


text{*All vertex sets are finite*}
declare finite_subset [OF subset_UNIV finite_vertex_univ, iff]

text{* and relatons over vertex are finite too *}

lemmas finite_UNIV_Prod =
finite_Prod_UNIV [OF finite_vertex_univ finite_vertex_univ]


declare finite_subset [OF subset_UNIV finite_UNIV_Prod, iff]


(* The equalities (above i r = {}) = (A i r = {})
and (reach i r = {}) = (R i r) rely on the following theorem *)


lemma image0_trancl_iff_image0_r: "((r^+)``{i} = {}) = (r``{i} = {})"
apply auto
apply (erule trancl_induct, auto)
done

(* Another form usefull in some situation *)
lemma image0_r_iff_image0_trancl: "(r``{i}={}) = (ALL x. ((i,x):r^+) = False)"
apply auto
apply (drule image0_trancl_iff_image0_r [THEN ssubst], auto)
done


(* In finite universe acyclic coincides with wf *)
lemma acyclic_eq_wf: "!!r::(vertex*vertex)set. acyclic r = wf r"
by (auto simp add: wf_iff_acyclic_if_finite)

(* derive and derive1 are equivalent *)
lemma derive_derive1_eq: "derive i r q = derive1 i r q"
by auto

(* Lemma 1 *)
lemma lemma1_a:
"[| x ∈ reach i q; derive1 k r q |] ==> x≠k --> x ∈ reach i r"

apply (unfold reach_def)
apply (erule ImageE)
apply (erule trancl_induct)
apply (case_tac "i=k", simp_all)
apply (blast intro: r_into_trancl, blast, clarify)
apply (drule_tac x = y in spec)
apply (drule_tac x = z in spec)
apply (blast dest: r_into_trancl intro: trancl_trans)
done

lemma reach_lemma: "derive k r q ==> reach i q ⊆ (reach i r ∪ {k})"
apply clarify
apply (drule lemma1_a)
apply (auto simp add: derive_derive1_eq
simp del: reach_def derive_def derive1_def)

done

(* An other possible formulation of the above theorem based on
the equivalence x ∈ reach y r = y ∈ above x r *)

lemma reach_above_lemma:
"(∀i. reach i q ⊆ (reach i r ∪ {k})) =
(∀x. x≠k --> (∀i. i ∉ above x r --> i ∉ above x q))"

by (auto simp add: trancl_converse)

(* Lemma 2 *)
lemma maximal_converse_image0:
"(z, i):r^+ ==> (∀y. (y, z):r --> (y,i) ∉ r^+) = ((r^-1)``{z}={})"

apply auto
apply (frule_tac r = r in trancl_into_trancl2, auto)
done

lemma above_lemma_a:
"acyclic r ==> A i r≠{}-->(∃j ∈ above i r. A j r = {})"

apply (simp add: acyclic_eq_wf wf_eq_minimal)
apply (drule_tac x = " ((r^-1) ^+) ``{i}" in spec)
apply auto
apply (simp add: maximal_converse_image0 trancl_converse)
done

lemma above_lemma_b:
"acyclic r ==> above i r≠{}-->(∃j ∈ above i r. above j r = {})";

apply (drule above_lemma_a)
apply (auto simp add: image0_trancl_iff_image0_r)
done

end