Theory Hoare_Op

Up to index of Isabelle/HOL/IMP

theory Hoare_Op
imports Hoare

(*  Title:      HOL/IMP/Hoare_Op.thy
ID: $Id$
Author: Tobias Nipkow
*)


header "Soundness and Completeness wrt Operational Semantics"

theory Hoare_Op imports Hoare begin

definition
hoare_valid :: "[assn,com,assn] => bool" ("|= {(1_)}/ (_)/ {(1_)}" 50) where
"|= {P}c{Q} = (!s t. ⟨c,s⟩ -->c t --> P s --> Q t)"


lemma hoare_sound: "|- {P}c{Q} ==> |= {P}c{Q}"
proof(induct rule: hoare.induct)
case (While P b c)
{ fix s t
assume "⟨WHILE b DO c,s⟩ -->c t"
hence "P s --> P t ∧ ¬ b t"
proof(induct "WHILE b DO c" s t)
case WhileFalse thus ?case by blast
next
case WhileTrue thus ?case
using While(2) unfolding hoare_valid_def by blast
qed

}
thus ?case unfolding hoare_valid_def by blast
qed (auto simp: hoare_valid_def)

definition
wp :: "com => assn => assn" where
"wp c Q = (%s. !t. ⟨c,s⟩ -->c t --> Q t)"


lemma wp_SKIP: "wp \<SKIP> Q = Q"
by (simp add: wp_def)

lemma wp_Ass: "wp (x:==a) Q = (%s. Q(s[x\<mapsto>a s]))"
by (simp add: wp_def)

lemma wp_Semi: "wp (c;d) Q = wp c (wp d Q)"
by (rule ext) (auto simp: wp_def)

lemma wp_If:
"wp (\<IF> b \<THEN> c \<ELSE> d) Q = (%s. (b s --> wp c Q s) & (~b s --> wp d Q s))"

by (rule ext) (auto simp: wp_def)

lemma wp_While_If:
"wp (\<WHILE> b \<DO> c) Q s =
wp (IF b THEN c;\<WHILE> b \<DO> c ELSE SKIP) Q s"

unfolding wp_def by (metis equivD1 equivD2 unfold_while)

lemma wp_While_True: "b s ==>
wp (\<WHILE> b \<DO> c) Q s = wp (c;\<WHILE> b \<DO> c) Q s"

by(simp add: wp_While_If wp_If wp_SKIP)

lemma wp_While_False: "~b s ==> wp (\<WHILE> b \<DO> c) Q s = Q s"
by(simp add: wp_While_If wp_If wp_SKIP)

lemmas [simp] = wp_SKIP wp_Ass wp_Semi wp_If wp_While_True wp_While_False

lemma wp_is_pre: "|- {wp c Q} c {Q}"
proof(induct c arbitrary: Q)
case SKIP show ?case by auto
next
case Assign show ?case by auto
next
case Semi thus ?case by(auto intro: semi)
next
case (Cond b c1 c2)
let ?If = "IF b THEN c1 ELSE c2"
show ?case
proof(rule If)
show "|- {λs. wp ?If Q s ∧ b s} c1 {Q}"
proof(rule strengthen_pre[OF _ Cond(1)])
show "∀s. wp ?If Q s ∧ b s --> wp c1 Q s" by auto
qed
show "|- {λs. wp ?If Q s ∧ ¬ b s} c2 {Q}"
proof(rule strengthen_pre[OF _ Cond(2)])
show "∀s. wp ?If Q s ∧ ¬ b s --> wp c2 Q s" by auto
qed
qed
next
case (While b c)
let ?w = "WHILE b DO c"
have "|- {wp ?w Q} ?w {λs. wp ?w Q s ∧ ¬ b s}"
proof(rule hoare.While)
show "|- {λs. wp ?w Q s ∧ b s} c {wp ?w Q}"
proof(rule strengthen_pre[OF _ While(1)])
show "∀s. wp ?w Q s ∧ b s --> wp c (wp ?w Q) s" by auto
qed
qed
thus ?case
proof(rule weaken_post)
show "∀s. wp ?w Q s ∧ ¬ b s --> Q s" by auto
qed
qed

lemma hoare_relative_complete: assumes "|= {P}c{Q}" shows "|- {P}c{Q}"
proof(rule strengthen_pre)
show "∀s. P s --> wp c Q s" using assms
by (auto simp: hoare_valid_def wp_def)
show "|- {wp c Q} c {Q}" by(rule wp_is_pre)
qed

end