IMP — A WHILE-language and its Semantics

Gerwin Klein, Heiko Loetzbeyer, Tobias Nipkow, Robert Sandner
June 21, 2010

Abstract

The denotational, operational, and axiomatic semantics, a verification condition gener-
ator, and all the necessary soundness, completeness and equivalence proofs. Essentially
a formalization of the first 100 pages of [3].

An eminently readable description of this theory is found in [2]. See also HOLCF /IMP
for a denotational semantics.

Contents

1 Expressions 3
1.1 Arithmetic expressions . . . . . . . . . . ... 3
1.2 Evaluation of arithmetic expressions . . . . . . . .. ... .. ... .. .... 3
1.3 Boolean expressions . . . . . . . . .. oo e 4
1.4 Evaluation of boolean expressions . . . . . . . . . . . .. ... ... ... 4
1.5 Denotational semantics of arithmetic and boolean expressions . . . . . . . .. 4

2 Syntax of Commands 6

3 Natural Semantics of Commands 6
3.1 Execution of commands . . . . . ... .. L L o 6
3.2 Equivalence of statements . . . . . . . ... .. ... ... 8
3.3 Execution is deterministic . . . . . .. ... oo 11

4 Transition Semantics of Commands 13
4.1 The transition relation . . . . . . . .. ..o L0 13
4.2 Examples . . . . ... 15
4.3 Basic properties . . . . . . ..o 15
4.4 Equivalence to natural semantics (after Nielson and Nielson) . . .. ... .. 16
4.5 Winskel’s Proof . . . . . . . . ... 20
4.6 A proof without n . . . . . . ... 23

5 Inductive Definition of Hoare Logic 25



8

9

Soundness and Completeness wrt Operational Semantics
Verification Conditions
Denotational Semantics of Commands

Soundness and Completeness wrt Denotational Semantics

10 Examples

10.1 An example due to Tony Hoare . . . . . . . .. ... ... ... ... .
10.2 Factorial . . . . . . . . . e

11 A Simple Compiler

11.1 An abstract, simplistic machine . . . . . . . .. ... ..o
11.2 The compiler . . . . . . . . . . e e
11.3 Context lifting lemmas . . . . . . .. . . ... L oo
11.4 Compiler correctness . . . . . . . . . . ..
11.5 Instructions . . . . . . . . .. L L
11.6 MO with PC . . . . . . o
11.7 MO with lists . . . . . . 0 o
11.8 The compiler . . . . . . . . . .
11.9 Compiler correctness . . . . . . . . . .. L

26

28

30

32

34
35
35



Pure

Fou |

& ] [ oo ]

Natural

Transition ‘ ‘ Hoare ‘ ‘Denotation‘ ‘ Examples ‘ ‘ Compilero‘ ‘ Machines ‘ ‘ Live
‘ Hoare_Op ‘ ‘Hoare_Den‘ Compiler

v ]

1 Expressions

theory Expr imports Main begin

Arithmetic expressions and Boolean expressions. Not used in the rest of the language, but

included for completeness.

1.1 Arithmetic expressions

typedecl loc

types
state = "loc => nat"

datatype
aexp = N nat
| X loc
| Opl "nat => nat" aexp

| Op2 "nat => nat => nat" aexp aex
P P P

1.2 Evaluation of arithmetic expressions

inductive



evala :: "[aexp*state,nat] => bool" (infixl "-a->" 50)

where
N: "(N(n),s) -a-> n"
| X: "(X(x),s) —a=> s(x)"

| Op1: "(e,s) -a-> n ==> (Opl f e,s) -a-> f(n)"
| Op2: "[| (e0,s) -a-> n0; (el,s) -a->n1 |]
==> (0p2 f e0 el,s) -a-> f n0 ni1"

lemmas [intro] = N X Opl Op2

1.3 Boolean expressions

datatype
bexp = true
| false
| ROp "nat => nat => bool" aexp aexp
| noti bexp
| andi bexp bexp (infix] "andi" 60)
| ori bexp bexp (infix]l "ori" 60)

1.4 Evaluation of boolean expressions

inductive
evalb :: "[bexp*state,bool] => bool" (infixl "-b->" 50)
— avoid clash with ML constructors true, false
where
tru: "(true,s) -b-> True"
| fls: "(false,s) —-b-> False"
| ROp: "l (a0,s) -a-> n0; (al,s) -a-> n1 |]
==> (ROp f a0 al,s) -b-> f nO n1"
| noti: "(b,s) -b-> w ==> (noti(b),s) -b-> ("w)"

| andi: "[| (b0,s) -b-> w0; (bl,s) -b-> w1 |[]
==> (b0 andi bl,s) -b-> (w0 & wi)"

| ori: "[l (b0O,s) -b-> w0; (bl,s) -b-> w1 |]
==> (b0 ori bil,s) -b-> (w0 | wi)"

lemmas [intro] = tru fls ROp noti andi ori

1.5 Denotational semantics of arithmetic and boolean expressions

primrec A :: "aexp => state => nat"
where

"A(N(m)) = (%s. n)"
[ "AX(x)) = (hs. s(x))"

| "A(Op1 f a) = (%s. f(A a s))"
| "A(Op2 £ a0 al) = (Js. £ (A a0 s) (A al s))"

primrec B :: "bexp => state => bool"
where
"B(true) = (}s. True)"



"B(false) = (}s. False)"

"B(ROp f a0 al) = ()s. £ (A a0 s) (A a1 s))"
"B(noti(b)) = (Js. “(B b s))"

"B(bO andi b1l) = (}s. (B b0 s) & (B b1l s))"
"B(b0 ori bl) = (%s. (B b0 s) | (B bl s))"

—_——— — —

lemma [simp]: "(N(n),s) -a-> n’ = (n = n’)"
by (rule,cases set: evala) auto

lemma [simp]: "(X(x),sigma) -a-> i = (i = sigma x)"
by (rule,cases set: evala) auto

lemma  [simp]:
"(Opl f e,sigma) -a-> i = (dn. i = f n N (e,sigma) -a-> n)"
by (rule,cases set: evala) auto

lemma [simp]:
"(Op2 f al a2,sigma) -a-> i =
(3n0 n1. i = f n0 n1 A (al, sigma) -a-> n0 A (a2, sigma) -a-> ni1)"
by (rule,cases set: evala) auto

lemma [simp]: "((true,sigma) -b-> w) = (w=True)"
by (rule,cases set: evalb) auto

lemma [simp]:
"((false,sigma) -b-> w) = (w=False)"
by (rule,cases set: evalb) auto

lemma [simp]:
"((ROp f a0 al,sigma) -b-> w) =
(? m. (a0,sigma) -a->m & (? n. (al,sigma) -a->n & w = f m n))"
by (rule,cases set: evalb) blast+

lemma [simp]:
"((noti(b),sigma) -b-> w) = (? x. (b,sigma) -b-> x & w = ("x))"
by (rule,cases set: evalb) blast+

lemma [simp]:
"((b0O andi bl,sigma) -b-> w) =

(? x. (bO,sigma) -b-> x & (7 y. (bl,sigma) -b->y & w = (x&y)))"
by (rule,cases set: evalb) blast+
lemma [simp]:
"((bO ori bl,sigma) -b-> w) =
(? x. (bO,sigma) -b-> x & (? y. (bl,sigma) -b->y & w = (x[y)))"

by (rule,cases set: evalb) blast+

lemma aexp_iff: "((a,s) -a->n) = (A as =n)"
by (induct a arbitrary: n) auto



lemma bexp_iff:
"((b,s) -b->w) = (Bbs =w"
by (induct b arbitrary: w) (auto simp add: aexp_iff)

end

2 Syntax of Commands

theory Com imports Main begin

typedecl Ioc
— an unspecified (arbitrary) type of locations (adresses/names) for variables

types
val = nat — or anything else, nat used in examples
state = "loc = val"
aexp = "state = val"
bexp = "state = bool"

— arithmetic and boolean expressions are not modelled explicitly here,
— they are just functions on states

datatype
com = SKIP
| Assign loc aexp ("_ :==_ " 60)
| Semi com com ("_; _" [60, 60] 10)
| Cond bexp com com ("IF _ THEN _ ELSE _" 60)
| While bexp com ("WHILE _ DO _" 60)

notation (latex)
SKIP ("skip") and

Cond ("if _ then _ else _" 60) and
While ("while _ do _" 60)
end

3 Natural Semantics of Commands

theory Natural imports Com begin

3.1 Execution of commands
We write (c,s) —. s’ for Statement c, started in state s, terminates in state s’. Formally,
(c,8) —. s’ is just another form of saying the tuple (c,s,s’) is part of the relation evalc:

definition
update :: "(’a = ’b) = ’a = ’b = (’a = ’b)" ("_/[_ ::= /_]1" [900,0,0] 900) where



"update = fun_upd"

notation (xsymbols)
update ("_/[_ — /_]1" [900,0,0] 900)

Disable conflicting syntax from HOL Map theory.

no_syntax

"_maplet" :: "[’a, ’a] => maplet" _ /1->/ _")

"_maplets" :: "[’a, ’a] => maplet" _ /01->1/ _")

o :: "maplet => maplets" _"

"_Maplets" :: "[maplet, maplets] => maplets" ("_,/ _")

"_MapUpd" :: "[’a "=> ’b, maplets] => ’a ~=> ’b" ("_/’(_’)" [900,0]900)
"_Map" :: "maplets => ’a “=> ’b" (rar.nm

The big-step execution relation evalc is defined inductively:

inductive
evalc :: "[com,state,state] = bool" ("(_,_)/ — _" [0,0,60] 60)
where
Skip: "(skip,s) —c s"
| Assign: "(x :== a,s) —. s[x+a s]"
| Semi: "(c0,8) —. 8°’ = (c1,8’’) —. 8’ = (c0; cl1, s) — s°"

| IfTrue: "b s = (c0,s) —. s’ = (if b then c0 else c1, s) — s°"
| IfFalse: "-b s = (cl,s) —. s’ == (if b then c0 else c1, s) —. s’"

| WhileFalse: "-b s = (while b do c,s) — s"
| WhileTrue: "b s = (c,s) —c s’’ = (while b do ¢, s’’) — s’
= (while b do ¢, s) — s’"

lemmas evalc.intros [intro] — use those rules in automatic proofs

The induction principle induced by this definition looks like this:

[{(x1,x2) —. x3; N\s. P skip s s; Axas. P (x :==a) s (s[x — a sl);
/\cO s s’? cl1 s’.
[{(c0,8) —¢ s°?; P cO s s’’; (cl,8’’) —c s’; P cl s’’ s’]
— P (c0; c1) s s’;
/\b s cO s’ cl. [bs; (c0,8) — 8’; P cO s s’] = P (if b then cO else c1) s s’;
/\b s c1 s’ cO. [ bs; (cl,s) — s’; Pcl s s’] = P (if b then c0 else c1) s s’;
Ab s c. -~ bs = P (while b do ¢) s s;
/\b s cs’ s’
[b s; (c,s) —¢ 8’?; Pc s s’’; (while b do ¢,s’’) — s’;
P (while b do ¢) s’ s5’]
= P (while b do ¢) s s’]
—> P x1 x2 x3

(A and = are Isabelle’s meta symbols for V and —)



The rules of evalc are syntax directed, i.e. for each syntactic category there is always only
one rule applicable. That means we can use the rules in both directions. This property is
called rule inversion.

inductive_cases skipE [elim!]:  "(skip,s) — s’"
inductive_cases semiE [elim!]:  "(c0; c1, s) —c s’"
inductive_cases assignE [elim!]: "(x :== a,s) —. s’"
inductive_cases ifE [elim!]: "(if b then cO else c1, s) —. s’"
inductive_cases whileE [elim]: "(while b do ¢c,s) —. s’"

The next proofs are all trivial by rule inversion.

lemma skip:
"(skip,8) —c 8’ = (8’ = 8)"
by auto

lemma assign:
"(x :==a,s) —c s’ = (s’ = s[xra s])"
by auto

lemma semi:
"(c0; c1, 8) —c s’ = (Is?’. (c0,8) —c s’’ A {(c1,8°’) — 8°)"
by auto

lemma ifTrue:
"b s = (if b then cO else c1, s) —¢ s’ = (c0,5) — s°"
by auto

lemma ifFalse:
"-b s = (if b then c0 else c1, s) —. s’ = {(c1,8) — s’"
by auto

lemma whileFalse:
"5 b s = (while b do c,s) —¢ s’ = (s’ = )"
by auto

lemma whileTrue:
"b s =
(while b do ¢, s) —¢ s’ =
(3Is°’. (c,s8) —c s’? A (while b do ¢, s’’) — s’)"
by auto
Again, Isabelle may use these rules in automatic proofs:

lemmas evalc_cases [simp] = skip assign ifTrue ifFalse whileFalse semi whileTrue

3.2 Equivalence of statements

We call two statements ¢ and c’ equivalent wrt. the big-step semantics when c started in s
terminates in s’ iff ¢’ started in the same s also terminates in the same s’. Formally:

definition



equiv_c :: "com = com = bool" ("_ ~ _" [66, 56] 55) where
"e ~ ¢’ = (Vs s’. {(c, s) —. 8’ = (c’, 8) — 8’)"

Proof rules telling Isabelle to unfold the definition if there is something to be proved about
equivalent statements:

lemma equivI [intro!]:
"(N\s s’. (c, s) —c 8’ = (c’, 8) —c 8’) = c ~ c’"
by (unfold equiv_c_def) blast

lemma equivD1:
"¢ ~ ¢’ = (¢, 8) — 8’ = (c’, 8) — 8"
by (unfold equiv_c_def) blast

lemma equivD2:
"e ~ ¢’ = (c’, s) —¢ 8’ = (c, 8) — 8"
by (unfold equiv_c_def) blast

As an example, we show that loop unfolding is an equivalence transformation on programs:

lemma unfold_while:
"(while b do ¢) ~ (if b then c; while b do c else skip)" (is "?w ~ ?7if")
proof -
— to show the equivalence, we look at the derivation tree for
— each side and from that construct a derivation tree for the other side
{ fix s s’ assume w: "(?w, s) — 8°"
— as a first thing we note that, if b is False in state s,
— then both statements do nothing:
hence "-b s = s = s’" by blast
hence "-b s = (?if, s) —. s’" by blast
moreover
— on the other hand, if b is True in state s,
— then only the WhileTrue rule can have been used to derive (?w, s) —¢ s’
{ assume b: "b s"
with w obtain s’’ where
"(c, s) — ¢ s’’" and "(?w, s’’) —, s’" by (cases set: evalc) auto
— now we can build a derivation tree for the if
— first, the body of the True-branch:
hence "(c; 7w, s) —¢ s’" by (rule Semi)
— then the whole if
with b have "(?if, s) —. s’" by (rule IfTrue)
}
ultimately
— both cases together give us what we want:
have "(?if, s) —. s’" by blast

}

moreover
— now the other direction:
{ fix s s’ assume "if": "(?if, s) —. 8"

— again, if b is False in state s, then the False-branch
— of the if is executed, and both statements do nothing:



hence "-b s = s = s’" by blast
hence "-b s = (?w, s) —. s’" by blast
moreover
— on the other hand, if b is True in state s,
— then this time only the IfTrue rule can have be used
{ assume b: "b s"
with "if" have "(c; 7w, s) —. s’" by (cases set: evalc) auto
— and for this, only the Semi-rule is applicable:
then obtain s’’ where
"(c, s) — 8°’" and "(?w, s’’) —. s’" by (cases set: evalc) auto
— with this information, we can build a derivation tree for the while
with b
have "(?w, s) —. s’" by (rule WhileTrue)
}
ultimately
— both cases together again give us what we want:
have "(?w, s) —. s’" by blast
}
ultimately
show ?thesis by blast
qed

Happily, such lengthy proofs are seldom necessary. Isabelle can prove many such facts auto-
matically.

lemma
"(while b do ¢) ~ (if b then c; while b do c else skip)"
by blast

lemma triv_if:
"(if b then c else ¢) ~ c"
by blast

lemma commute_if:
"(if b1 then (if b2 then c11 else c12) else c2)

(if b2 then (if bl then c11 else c2) else (if bl then c12 else c2))"
by blast

lemma while_equiv:
"(c0, s) —c u => ¢ ~ ¢’ => (c0 = while b do ¢) = (while b do ¢’, s) — u"
by (induct rule: evalc.induct) (auto simp add: equiv_c_def)

lemma equiv_while:
"¢ ~ ¢’ = (while b do ¢) ~ (while b do ¢’)"
by (simp add: equiv_c_def) (metis equiv_c_def while_equiv)

Program equivalence is an equivalence relation.

lemma equiv_refl:
”C ~ C n

10



by blast

lemma equiv_sym:
"¢l ~ c2 = ¢c2 ~ cl1"
by (auto simp add: equiv_c_def)

lemma equiv_trans:
"¢l ~ c2 = c2 ~ c3 = c1 ~ c3"
by (auto simp add: equiv_c_def)

Program constructions preserve equivalence.

lemma equiv_semi:
"el ~ ¢cl1’ =— ¢c2 ~ ¢c2’ —> (c1; ¢c2) ~ (c1’; c2’)"
by (force simp add: equiv_c_def)

lemma equiv_if:
"cl ~ c1’ = c2 ~ c2’ = (if b then c1 else c2) ~ (if b then c1’ else c2’)"
by (force simp add: equiv_c_def)

lemma while_never: "(c, s) —. u = ¢ # while (As. True) do c1"
apply (induct rule: evalc.induct)

apply auto

done

lemma equiv_while_True:
"(while (As. True) do c1) ~ (while (As. True) do c2)"
by (blast dest: while_never)

3.3 Execution is deterministic

This proof is automatic.

theorem "(c,s) —. t = (¢,8) —c u = u = t"
by (induct arbitrary: u rule: evalc.induct) blast+

The following proof presents all the details:

theorem com_det:
assumes "(c,s) —. t" and "(c,s) —. u"
shows "u = t"
using prems
proof (induct arbitrary: u set: evalc)
fix s u assume "(skip,s) — u"
thus "u = s" by blast

next
fix a s x u assume "(x :== a,s) — u"
thus "u = s[x — a s]" by blast

next

fix cO cl s s1s2u
assume IHO: "Au. (c0,s) —c u = u = s2"

11



assume IH1: "Au. (c1,s2) —c u = u = s1"

assume "(c0;cl, s) —. u"
then obtain s’ where
c0: "(c0,s) —. s’" and
cl: "(c1,8’) —c u"
by auto

from cO0 IHO have "s’=s2" by blast
with c1 IH1 show "u=s1" by blast
next
fix b cOcl s slu
assume IH: "Au. (c0,s) —. u = u = s1"

assume "b s" and "(if b then cO else c1,s) —. u"
hence "(c0, s) —. u" by blast
with IH show "u = s1" by blast
next
fix b cOcl s slu
assume IH: "Au. (c1,s) —c u = u = s1"

assume "—b s" and "(if b then cO else c1,s) —. u"
hence "(c1, s) —. u" by blast
with IH show "u = s1" by blast
next
fix bcsu
assume "-b s" and "(while b do c¢,s) —. u"
thus "u = s" by blast

next
fix b cs sl s2u
assume "IH.": "Au. (c,s) —c u = u = s2"
assume "IH,": ”/\u. (while b do ¢,s2) —¢; u = u = s1"

assume "b s" and "(while b do c,s) —. u"
then obtain s’ where
c: "(c,8) —. s’" and
w: "(while b do c,s’) —. u"
by auto

from ¢ "IH." have "s’ = s2" by blast
with w "IH," show "u = s1" by blast
qed

This is the proof as you might present it in a lecture. The remaining cases are simple enough
to be proved automatically:

theorem
assumes "(c,s) —. t" and "(c,s) —. u"
shows "u = t"
using prems

12



proof (induct arbitrary: u)
— the simple skip case for demonstration:
fix s u assume "(skip,s) — u"
thus "u = s" by blast
next
— and the only really interesting case, while:
fix b c s sl s2u
assume "IH.": "Au. (c,s) —c u = u = s2"
assume "IH,": "/\u. (while b do ¢,s2) —; u = u = s1"

assume "b s" and "(while b do ¢,s) —. u"
then obtain s’ where
c: "(c,s) —. s’" and
w: "(while b do ¢c,s’) —. u"
by auto

from ¢ "IH." have "s’ = s2" by blast
with w "IH," show "u = s1" by blast
ged blast+ — prove the rest automatically

end

4 Transition Semantics of Commands

theory Transition imports Natural begin

4.1 The transition relation

We formalize the transition semantics as in [1]. This makes some of the rules a bit more
intuitive, but also requires some more (internal) formal overhead.

Since configurations that have terminated are written without a statement, the transition
relation is not ((com X state) X com X state) set but instead: ((com option X state)
X com option X state) set

Some syntactic sugar that we will use to hide the option part in configurations:

abbreviation
angle :: "[com, state] = com option X state" ("<_,_>") where
"<c,s> == (Some c, s)"
abbreviation
angle2 :: "state = com option X state" ("<_>") where
"<g> == (None, s)"

notation (xsymbols)
angle ("(_,_)") and
angle2 ("{(_)")

notation (HTML output)
angle ("(_,_)") and

13



angle2 ("(_)")
Now, finally, we are set to write down the rules for our small step semantics:

inductive_set

evalcl :: "((com option X state) X (com option X state)) set"
and evalcl’ :: "[(com optionXstate), (com optionxstate)] = bool"
(" —1 _" [60,60] 61)

where
"cs —1 cs’ == (cs,cs’) € evalcl"

| Skip: "(skip, s) —1 (s)"

| Assign: "(x :== a, s) —1 (slx — a s])"

| Semi1:  "(cO,s) —1 (s’) = (c0;cl,s) —1 (c1,s8°)"

| Semi2:  "(c0,s) —1 (c0?,s8’) = (c0;cl,s) —>1 (c0’;c1,s’)"

—_

IfTrue: "b s = (if b then c1 else c2,s) — (c1,s)"
IfFalse: "-b s = (if b then c1 else c2,s) —1 (c2,s)"

—_

| While:  "(while b do c,s) —1 (if b then c¢; while b do c else skip,s)"

lemmas [intro] = evalcl.intros — again, use these rules in automatic proofs

More syntactic sugar for the transition relation, and its iteration.

abbreviation
evalcn :: "[(com optionXxstate),nat, (com optionxstate)] = bool"
("_ -_—1 _" [60,60,60] 60) where
"cs -n—1 cs’ == (cs,cs’) € evalcl™"n"
abbreviation
evalc’ :: "[(com optionXxstate), (com optionxstate)] = bool"
("_ —1* _" [60,60] 60) where
"cs —1" cs’ == (cs,cs’) € evalcl *"

As for the big step semantics you can read these rules in a syntax directed way:
lemma SKIP_1: "(skip, s) —1 y = (y = (s))"

by (induct y, rule, cases set: evalcl, auto)

lemma Assign_1: "(x :==a, s) —1 y = (y = (slx — a s]))"
by (induct y, rule, cases set: evalcl, auto)

lemma Cond_1:
"(if b then c1 else c2, s) —1 y = ((bs — y = (c1, s)) N (-bs — y = (c2, s)))"
by (induct y, rule, cases set: evalcl, auto)

lemma While_1:
"(while b do ¢, s) —1 y = (y = (if b then ¢; while b do c else skip, s))"

by (induct y, rule, cases set: evalcl, auto)

lemmas [simp] = SKIP_1 Assign_1 Cond_1 While_1

14



4.2 Examples

lemma
"s x = 0 = (while As. s x # 1 do (x:== As. s x+1), s) —1" (s[x — 1])"
(is "_ = (7w, _) —1" _")
proof -
let ?7¢ = "x:== As. s x+1"
let 7if = ”|f As. s x # 1 then ?c; 7w else skip”

assume [simp]: "s x = 0"

have "(?w, s) —1 (?if, s)" ..

also have "(?7if, s) —1 (?c; 7w, s)" by simp

also have "(?c; ?w, s) —1 (7w, s[x — 1])" by (rule Semil) simp

also have "(?w, s[x — 1]) — (?if, s[x — 1])" ..

also have "(?7if, s[x ~— 1]) —1 (skip, s[x +— 1])" by (simp add: update_def)
also have "(skip, s[x — 1]) —1 (s[x — 1])" ..

finally show ?thesis ..

qed
lemma
"s x = 2 = (while As. s x # 1 do (x:== As. s x+1), s) —1" s’"
(is ". = (?w, _) —1" s’")
proof -
let 7c = "x:== As. s x+1"
let 7if = "if As. s x # 1 then 7c; 7w else skip"

assume [simp]: "s x = 2"

note update_def [simp]

have "(?w, s) —1 (?if, s)" ..

also have "(?if, s) —1 (?c; 7w, s)" by simp

also have "(?c; 7w, s) —1 (7w, sl[x +— 3])" by (rule Semil) simp

also have "(?w, s[x — 3]) —1 (?if, s[x — 3])" ..

also have "(?if, s[x — 3]) —1 (?c; 7w, s[x — 3])" by simp

also have "(?c; 7w, s[x +— 3]) —1 (7w, sl[x — 4]1)" by (rule Semil) simp
also have "(?w, s[x — 4]) —1 (?if, sl[x — 4])" ..

also have '<?1f, slx — 4]) —1 (?c; 7w, s[x — 4])" by simp

also have "(?c; 7w, s[x — 4]) —1 (7w, slx — 5])" by (rule Semil) simp
oops

4.3 Basic properties

There are no stuck programs:

lemma no_stuck: "Iy. (c,s) —1 y"
proof (induct c)
— case Semi:
fix c1 c2 assume "Jy. (cl,s) —1 y"
then obtain y where "(c1,s) —1 y"
then obtain c1’ s’ where "(c1,s) —1 (s’) V (cl,s) —1 (c1’,8°)"
by (cases y, cases "fst y") auto
thus "3Is’. (c1;c2,8) —1 s’" by auto
next
— case If:

15



fix b c1 c2 assume "Jy. (c1,s) —1 y" and "Jy. (c2,s) —1 y"
thus "Jy. (if b then c1 else c2, s) —1 y" by (cases "b s") auto
ged auto — the rest is trivial

If a configuration does not contain a statement, the program has terminated and there is no
next configuration:

lemma stuck [elim!]: "(s) —1 y = P"
by (induct y, auto elim: evalcl.cases)

lemma evalc_None_retrancl [simp, dest!]: "(s) —1" s’ = s’ = (s)"
by (induct set: rtrancl) auto

lemma evalcl_None_0 [simp]: "(s) -n—1 y = (m =0 Ay = (s))"
by (cases n) auto

lemma SKIP_n: "(skip, s) -n—; (s’) = s’ = s A n=1"
by (cases n) auto

4.4 Equivalence to natural semantics (after Nielson and Nielson)

We first need two lemmas about semicolon statements: decomposition and composition.

lemma semiD:
"(c1; ¢2, s) -n— (8’’) =
3i j s’. (c1, s) -i—1 (s’) A (c2, s’) —j—1 (8’’) A n = i+j"
proof (induct n arbitrary: cl c2 s s’’)
case 0
then show ?case by simp
next
case (Suc n)
from ‘(c1; c2, s) -Suc n—1 (8’7)°
obtain co s’’’ where
1: "(c1; ¢2, s) — (co, s°’’)" and
n: "(co, s’’’) -n—1 (s’’)"
by auto

from 1

show "3i j s’. (c1, s) -i—1 (s’) A {c2, s’) -j—1 (8’’) A Suc n = i+j"
(is "31i j s’. ?2Q i j s’")

proof (cases set: evalcl)
case Semil
from ‘co = Some c2‘ and ‘(c1, s) —1 (s’’7)
have "7?Q 1 n s’’’" by simp
thus ?thesis by blast

‘and 1 n

next
case (Semi2 c1’)
note c1 = l(Cl, s> —1 <C1’, s);;>{

with ‘co = Some (c1’; c2)¢ and n
have "(c1’; c2, s’?’) -n—1 (s’’)" by simp
with Suc.hyps obtain i j s0O where

16



c1’: "(c1’,s8’?’) -i—1 (s0)" and
c2: "(c2,s0) -j—1 (s’’)" and
i: "'n = i+j"

by fast

from c1 c1’
have "(c1,s) -(i+1) —1 (s0)" by (auto intro: rel_pow_Suc_I2)
with ¢2 i
have "7Q (i+1) j s0" by simp
thus 7thesis by blast
qed
qed

lemma semiI:
"(c0,8) -n—1 (8??) = (c1,8’’) —1" (8’) = (c0; c1, s) —1" (8”)"
proof (induct n arbitrary: c0 s s’’)
case 0
from ‘{(c0,s) -(0::nat)—1 (s’’)°
have False by simp
thus ?case ..
next
case (Suc n)
note c0 = ‘(c0,s) -Suc n—1 (s’’)°¢
note c1 = “(c1,s’’) —1* (s7)°¢
note IH = ‘A\cO s s577.
(c0,8) -n—1 (8°’) = (c1,8’’) —1" (8’) = (c0; cl,s) —" (s’)°
from cO obtain y where
1: "(c0,s) —1 y" and n: "y -n—1 (s’’)" by blast
from 1 obtain c0’ s0’ where
"y = (s0’) V y = (c0’, sO’)"
by (cases y, cases "fst y") auto
moreover
{ assume y: "y = (s0’)"
with n have "s’’ = s0’" by simp
with y 1 have "(c0; c1,s) —1 (c1, s’’)" by blast
with c1 have "(c0; c1,s) —" (s’)" by (blast intro: rtrancl_trans)
}
moreover
{ assume y: "y = (c0’, s0’)"
with n have "(c0’, s0’) -n—1 (s’’)" by blast
with IH c1 have "(c0’; c1,s0’) —1* (s’)" by blast
moreover
from y 1 have "(c0; c1,s) —1 {(c0’; c1,s0’)" by blast
hence "(c0; c1,s) —1" (c0’; c1,s0’)" by blast
ultimately
have "(c0; c1,s) —1" (s’)" by (blast intro: rtrancl_trans)
}
ultimately
show "(c0; c1,s) —1™ (s’)" by blast

17



qed

The easy direction of the equivalence proof:

lemma evalc_imp_evalcl:
assumes "(c,s) — . s’"
shows "(c, s) —1" (s’)"
using prems
proof induct
fix s show "(skip,s) —1" (s)" by auto
next
fix x a s show "(x :== a ,s) —1" (s[x+—a s])" by auto
next
fix cO c1 s s’ 8’
assume "(c0,s) —1" (s’’)"
then obtain n where "(c0,s) -n—1 (s’’)" by (blast dest: rtrancl_imp_rel_pow)
moreover
assume "(c1,s’’) —* (s’)"

ultimately
show "(c0; c1,s) —1" (s’)" by (rule semil)
next

fix s::state and b c0 cl s’

assume "b s"

hence "(if b then cO else c1,s) —1 (c0,s)" by simp

also assume "(c0,s) —1* (s’)"

finally show "(if b then c0 else c1,s) —1" (s’)" .
next

fix s::state and b cO cl s’

assume "—b s"

hence "(if b then cO else c1,s) —1 (c1,s)" by simp

also assume "(cl,s) —1* (s’)"

finally show "(if b then c0 else c1,s) —1" (s’)" .
next

fix b ¢ and s::state

assume b: "—b s"

let ?if = "if b then c; while b do c else skip"

have "(while b do c,s) —1 (?if, s)" by blast

also have "(?7if,s) —1 (skip, s)" by (simp add: b)

also have "(skip, s) —1 (s)" by blast

finally show "(while b do c,s) —1™ (s)" ..

next
fix bcs s’ s’
let 27w = "while b do c¢"
let 7if = "if b then c¢; 7w else skip"

assume w: "(?w,s’’) —1" (s’)"

assume c: "{c,s) —1" (s’’)"

assume b: "b s"

have "(?w,s) —1 (?if, s)" by blast

also have "(?if, s) —1 (c; 7w, s)" by (simp add: b)

also

from c obtain n where "(c,s) -n—1 (s’’)" by (blast dest: rtrancl_imp_rel_pow)

18



with w have "(c; ?w,s) —1" (s’)" by - (rule semil)
finally show "(while b do c,s) —1™ (s’)" ..
qed

Finally, the equivalence theorem:

theorem evalc_equiv_evalcl:
"c, 8) —c 87 = (c,8) —1* (s7)"
proof
assume "(c,s) —. s’"
then show "(c, s) —1" (s’)" by (rule evalc_imp_evalcl)
next
assume "(c, s) —1" (s’)"
then obtain n where "(c, s) -n—1 (s’)" by (blast dest: rtrancl_imp_rel_pow)
moreover
have "(c, s) -n—1 (s’) = (c,s) —c s’"
proof (induct arbitrary: c¢ s s’ rule: less_induct)
fix n
assume IH: "Am ¢ s s’. m <n = (c,s) -m—1 (s’) = (c,s) — s’"
fix ¢ s s’
assume c: "(c, s) -n—1 (s’)"
then obtain m where n: "n = Suc m" by (cases n) auto
with ¢ obtain y where
c’: "(c, s) —1 y" and m: "y -m— (s’)" by blast
show "(c,s) —¢ s’"
proof (cases c)
case SKIP
with ¢ n show ?thesis by auto
next
case Assign
with ¢ n show ?thesis by auto
next
fix c1 c2 assume semi: "c = (c1; c2)"
with ¢ obtain i j s’’ where
cl: "(c1, s) -i—1 (s’’)" and
c2: "(c2, s8’?’) -j—1 (s’)" and
ij: "m o= i+j"
by (blast dest: semiD)
from c1 c2 obtain
"0 < i" and "0 < j" by (cases i, auto, cases j, auto)
with ij obtain
i: "i < n" and j: "j < n" by simp
from IH i c1
have "(c1,s) —. s’’" .
moreover
from IH j c2
have "(c2,s’’) —. s’" .
moreover
note semi
ultimately
show "(c,s) —. s’" by blast

19



next
fix b c1 c2 assume If: "c = if b then c1 else c2"
{ assume True: "b s = True"
with If ¢ n
have "(c1,s) -m—1 (s’)" by auto
with n IH
have "{c1,s) —. s’" by blast
with If True
have "(c,s) —. s’" by blast
}

moreover

{ assume False: "b s = False"
with If ¢ n
have "(c2,s) -m—1 (s’)" by auto
with n IH

have "{(c2,s) —. s’" by blast
with If False
have "(c,s) —. s’" by blast

}

ultimately

show "(c,s) —. s’" by (cases "b s") auto
next

fix b ¢’ assume w: "c = while b do ¢’"

with ¢ n

have "(if b then c’; while b do c’ else skip,s) -m—1 (s’)"

(is "(?if,_) -m—1 _") by auto
with n IH
have "(if b then c’; while b do c’ else skip,s) —. s’" by blast
moreover note unfold_while [of b c’]
— while b do ¢’ ~ if b then ¢’; while b do c’ else skip
ultimately
have "(while b do c¢’,s) —. s’" by (blast dest: equivD2)
with w show "(c,s) — s’" by simp

qged
qed
ultimately
show "(c,s) —. s’" by blast

qed

4.5 Winskel’s Proof

declare rel_pow_O_E [elim!]

Winskel’s small step rules are a bit different [3]; we introduce their equivalents as derived
rules:

lemma whileFalsel [intro]:

"= b s = (while b do c,s) —1" (s)" (is " = (7w, s) —1" (s)")
proof -

assume "—b s

have "(?w, s) —1 (if b then c;?w else skip, s)" ..

20



also from ‘-b s‘ have "(if b then c;?w else skip, s) —1 (skip, s)" .
also have "(skip, s) —1 (s)" ..
finally show "(?w, s) —1* (s)" ..

qed

lemma whileTruel [intro]:
"b s = (while b do c,s) —1" (c;while b do ¢, s)"
(is " = (7w, s) —1" (c;?w,s)")

proof -
assume "b s"

have "(?w, s) —1 (if b then c;?w else skip, s)" ..
also from ‘b s‘ have "(if b then c;?w else skip, s) —1 (c;?w, s)" ..
finally show "(7w, s) —1™ (c;?w,s)" ..

qed

inductive_cases evalcl_SEs:
"(skip,s) —1 (co, s’)"

X:==a,s> —1 (co, s’)"

"(if b then c1 else c2, s) —1 (co, s?)"
"(while b do ¢, 8) —1 (co, s’)"

(

"(c1;c2, s) —1 (co, s’)"
(
(

inductive_cases evalcl_E: "(while b do ¢, s) —1 (co, s’)"

declare evalcl_SEs [elim!]

lemma evalc_impl_evalcl: "(c,s) —. s1 = (c,s) —1" (s1)"

apply (induct set:

— SKIP
apply blast

— ASSIGN
apply fast

— SEMI

evalc)

apply (fast dest: rtrancl_imp_UN_rel_pow intro: semil)

—IF

apply (fast intro:
apply (fast intro:

— WHILE
apply blast

apply (blast dest:

done

lemma Ilemma2:

converse_rtrancl_into_rtrancl)
converse_rtrancl_into_rtrancl)

rtrancl_imp_UN_rel_pow intro: converse_rtrancl_into_rtrancl semil)

21



"(c;d,s) -n—1 (u) = It m. (c,s) —1" (t) A (d,t) -m—1 (u) A m
apply (induct n arbitrary: c d s u)
—casen =0
apply fastsimp
— induction step
apply (fast intro!: le_SucI le_refl dest!: rel_pow_Suc_D2

elim!: rel_pow_imp_rtrancl converse_rtrancl_into_rtrancl)

done

lemma evalcl_impl_evalc:
"(c,s) —1" (t) = (c,s) —c t"
apply (induct c¢ arbitrary: s t)
apply (safe dest!: rtrancl_imp_UN_rel_pow)

— SKIP
apply (simp add: SKIP_n)

— ASSIGN
apply (fastsimp elim: rel_pow_E2)

— SEMI
apply (fast dest!: rel_pow_imp_rtrancl lemma2)

—IF

apply (erule rel_pow_E2)

apply simp

apply (fast dest!: rel_pow_imp_rtrancl)

— WHILE, induction on the length of the computation
apply (rename_tac b ¢ s t n)

apply (erule_tac P = "?X -n—; ?Y" in rev_mp)
apply (rule_tac x = "s" in spec)

apply (induct_tac n rule: nat_less_induct)
apply (intro strip)

apply (erule rel_pow_E2)

apply simp

apply (simp only: split_paired_all)

apply (erule evalcl_E)

apply simp

apply (case_tac "b x")
— WhileTrue

apply (erule rel_pow_E2)
apply simp

apply (clarify dest!: lemma2)

apply atomize

apply (erule allE, erule allE, erule impE, assumption)
apply (erule_tac x=mb in allE, erule impE, fastsimp)
apply blast

— WhileFalse

22

<

n"



apply (erule rel_pow_E2)

apply simp
apply (simp add: SKIP_n)
done

proof of the equivalence of evalc and evalcl

lemma evalcl_eq_evalc: "({c, s) —1* (t)) = ({c,s) —c t)"
by (fast elim!: evalcl_impl_evalc evalc_impl_evalcl)

4.6 A proof without n

The inductions are a bit awkward to write in this section, because None as result statement
in the small step semantics doesn’t have a direct counterpart in the big step semantics.

Winskel’s small step rule set (using the skip statement to indicate termination) is better suited
for this proof.

lemma my_lemmal:
assumes "(c1,s1) —1" (s2)"
and "(c2,s2) —1" cs3"
shows "(c1;c2,s1) —1" cs3"
proof -
— The induction rule needs P to be a function of Some c1
from prems
have "((\c. if ¢ = None then c2 else the c; c2) (Some c1),s1) —1* cs3"
apply (induct rule: converse_rtrancl_induct2)
apply simp
apply (rename_tac c s’)
apply simp
apply (rule conjI)
apply fast
apply clarify
apply (case_tac c)
apply (auto intro: converse_rtrancl_into_rtrancl)
done
then show ?thesis by simp
qed

lemma evalc_impl_evalcl’: "(c,s) —. s1 = (c,s5) —1" (s1)"
apply (induct set: evalc)

— SKIP
apply fast

— ASSIGN
apply fast

— SEMI
apply (fast intro: my_lemmal)

23



—IF
apply (fast intro: converse_rtrancl_into_rtrancl)
apply (fast intro: converse_rtrancl_into_rtrancl)

— WHILE
apply fast
apply (fast intro: converse_rtrancl_into_rtrancl my_lemmal)

done

The opposite direction is based on a Coq proof done by Ranan Fraer and Yves Bertot. The
following sketch is from an email by Ranan Fraer.

First we’ve broke it into 2 lemmas:

Lemma 1
((c,s) ——> (SKIP,t)) => (<c,s> -c—> t)

This is a quick one, dealing with the cases skip, assignment
and while_false.

Lemma 2

((c,s) —*x=> (c?,8’)) /\ <c’,8’> -¢c’—> ¢t
=>

<c,s> -c—> t

This is proved by rule induction on the -*-> relation
and the induction step makes use of a third lemma:

Lemma 3

((c,8) ——> (c?,87)) /\ <c’,8’> -¢c’—> t
=>

<c,s> -c—> t

This captures the essence of the proof, as it shows that <c’,s’>
behaves as the continuation of <c,s> with respect to the natural
semantics.

The proof of Lemma 3 goes by rule induction on the --> relation,
dealing with the cases sequencel, sequence2, if_true, if_false and
while_true. In particular in the case (sequencel) we make use again
of Lemma 1.

inductive_cases evalcl_term_cases: "(c,s) —1 (s’)"
lemma FB_lemma3:

"(c,s) —1 (c’,8’) = c # None —
(if c’=None then skip else the c¢’,s’) —. t = (the c,s) — t"

24



by (induct arbitrary: t set: evalcl)
(auto elim!: evalcl_term_cases equivD2 [OF unfold_while])

lemma FB_lemma2:
"(c,s) —1" (¢’,s’) = ¢ # None —
(if ¢’ = None then skip else the c’,s’) —. t = (the c,s) — t"
apply (induct rule: converse_rtrancl_induct2, force)
apply (fastsimp elim!: evalcl_term_cases intro: FB_lemma3)
done

lemma evalcl_impl_evalc’: "{(c,s) —1" (t) = (c,s) —c t"
by (fastsimp dest: FB_lemma2)

end

5 Inductive Definition of Hoare Logic

theory Hoare imports Natural begin

types assn = "state => bool"
inductive

hoare :: "assn => com => assn => bool" ("[- ({(1_)}/ (_L)/ {({1_)})" 50)
where

skip: "[- {P}skip{P}"
| ass: "|- {)s. P(s[x+—a s])} x:==a {P}"
| semi: "[| |- {P}c{Q}; |- {Q}d{R} |1 ==> |- {P} c;d {R}"
| If: "[| |- {)s. P s & b s}c{Q}; |- {/is. P s & "b s}d{Q} |] ==>
|- {P} if b then c else d {Q}"
| While: "|- {)s. P s & b s} ¢ {P} ==>
|- {P} while b do ¢ {/is. P s & "b s}"
| conseq: "[| !s. P’ s -=> P s; |- {P}c{Q}; !s. Q@ s -->Q’ s [] ==>
[- {P°}c{Q’}"

lemma strengthen_pre: "[| !s. P’ s ==> P s; [- {P}c{Q} 1] ==> |- {P’}c{Q@}"
by (blast intro: conseq)

lemma weaken_post: "[| |- {P}c{Q}; !s. @ s -——> @’ s [|] ==> |- {P}c{Q’}"
by (blast intro: conseq)

lemma While’:
assumes "[- {J/js. Ps & b s} ¢ {P}" and "ALL s. Ps & - bs —  s"

shows "[- {P} while b do ¢ {Q}"
by (rule weaken_post[OF While[OF assms(1)] assms(2)])

lemmas [simp] = skip ass semi If

25



lemmas [intro!] = hoare.skip hoare.ass hoare.semi hoare.If

end

6 Soundness and Completeness wrt Operational Seman-
tics
theory Hoare_Op imports Hoare begin

definition
hoare_valid :: "[assn,com,assn] => bool" ("|= {(1_)}/ (_)/ {({1_)}" 50) where
"|= {P}c{Q} = (Is t. {(c,8) —c t ——>P s —=> Q t)"

lemma hoare_sound: "[- {P}c{Q} ==> |= {P}c{Q}"
proof(induct rule: hoare.induct)
case (While P b c)
{ fix st
assume "(WHILE b DO c,s) —c t"
hence "P s — Pt A - b t"
proof(induct "WHILE b DO c" s t)
case WhileFalse thus ?case by blast
next
case WhileTrue thus 7case
using While(2) unfolding hoare_valid_def by blast
qed

}

thus ?case unfolding hoare_valid_def by blast
qed (auto simp: hoare_valid_def)

definition
wp :: "com => assn => assn" where
"wp ¢ @ = (4s. !t. {(c,s) —c t —=> Q t)"

lemma wp_SKIP: "wp skip § = Q"
by (simp add: wp_def)

lemma wp_4ss: "wp (x:==a) Q = (}s. Q(s[xr—a s]))"
by (simp add: wp_def)

lemma wp_Semi: "wp (c;d) @ = wp ¢ (wp d Q)"
by (rule ext) (auto simp: wp_def)

lemma wp_If:

"wp (if b then c else d) @ = (4s. (bs -——>wpc@s) & (bs-—->wpdCs))"
by (rule ext) (auto simp: wp_def)

26



lemma wp_While_If:
"wp (while b do ¢c) @ s =
wp (IF b THEN c;while b do ¢ ELSE SKIP) Q s"
unfolding wp_def by (metis equivDl1 equivD2 unfold_while)

lemma wp_While_True: "b s ==>
wp (while b do ¢) @ s = wp (c;while b do ¢c) Q s"
by (simp add: wp_While_If wp_If wp_SKIP)

lemma wp_While_False: ""b s ==> wp (while b do ¢) § s = q s"
by (simp add: wp_While_If wp_If wp_SKIP)

lemmas [simp] = wp_SKIP wp_Ass wp_Semi wp_If wp_While_True wp_While_False

lemma wp_is_pre: "|- {wp ¢ Q} ¢ {Q}"
proof (induct ¢ arbitrary: @)
case SKIP show 7case by auto
next
case Assign show 7case by auto
next
case Semi thus ?7case by (auto intro: semi)
next
case (Cond b c1 c2)
let ?If = "IF b THEN c1 ELSE c2"
show 7case
proof(rule If)
show "|/- {As. wp ?If @ s AN b s} c1 {Q}"
proof(rule strengthen_pre[0OF _ Cond(1)])
show "Vs. wp ?If Q s AN b s — wp c1 @ s" by auto
qed
show "|- {As. wp ?If @ s A = b s} c2 {Q}"
proof (rule strengthen_pre[0OF _ Cond(2)])
show "Vs. wp ?ZIf § s N = b s — wp c2  s" by auto
qged
qed
next
case (While b c)
let ?w = "WHILE b DO c"
have "|- {wp 7w Q} 7w {As. wp ?w @ s A — b s}"
proof(rule hoare.While)
show "|- {As. wp ?w @ s A b s} ¢ {wp 7w Q}"
proof(rule strengthen_pre[0OF _ While(1)])
show "Vs. wp ?w @ s A b s — wp ¢ (wp 7w Q) s" by auto
qed
qed
thus 7case
proof(rule weaken_post)
show "Vs. wp 7w @ s A = b s —  s" by auto
ged
qed

27



lemma hoare_relative_complete: assumes "|= {P}c{Q}" shows "|- {P}c{Q}"
proof(rule strengthen_pre)
show "Vs. Ps — wp ¢ Q s" using assms
by (auto simp: hoare_valid_def wp_def)
show "[/- {wp ¢ @} ¢ {@}" by (rule wp_is_pre)
qed

end

7 Verification Conditions

theory VC imports Hoare_Op begin

datatype acom = Askip
| Aass  loc aexp
| Asemi acom acom
| Aif bexp acom acom
| Awhile bexp assn acom

primrec awp :: "acom => assn => assn"

where

"awp Askip Q = Q"

"awp (Aass x a) @ = (As. Q(s[xr—a s]))"

"awp (Asemi c d) @ = awp ¢ (awp d Q)"

"awp (Aif b cd) Q = (As. (b s—=>awp c § s) & (b s-->awp d Q s))"
"awp (Awhile b I c¢) @ = I"

—_——— —

primrec vc :: "acom => assn => assn"

where

"ve Askip Q@ = (As. True)"

"vc (dass x a) Q = (As. True)"

"ve (Asemi ¢ d) @ = (As. vce ¢ (awp d Q) s & ve d Q s)"

"ve (Aif b cd) Q= (As. vc c @ s &ved@s)"

"ve (Awhile b I ¢c) Q = (As. (I s & "bs -——>Q s) &
(Is&bs-—>awpcls)&vccls)

—_—— — —

primrec astrip :: "acom => com"

where

"astrip Askip = SKIP"

"astrip (Aass x a) = (x:==a)"

"astrip (Asemi ¢ d) = (astrip c;astrip d)"

"astrip (Aif b ¢ d) (if b then astrip c else astrip d)"
"astrip (Awhile b I c¢) = (while b do astrip c)"

—_—— — —

primrec vcawp :: "acom => assn => assn X assn"
where

28



"vcawp Askip Q = (As. True, Q)"
| "vcawp (Aass x a) @ = (As. True, As. Q(s[x+—a s]))"
| "vcawp (Asemi ¢ d) @ = (let (vcd,wpd) = vcawp d Q;
(veec,wpc) = vcawp c¢ wpd
in (As. vcc s & ved s, wpc))"
| "vcawp (Aif b ¢ d) @ = (let (ved,wpd) = vcawp d Q;
(veec,wpc) = vcawp ¢ Q
in (As. vcc s & ved s,
As.(b s —==> wpc s) & ("b s —=> wpd s)))"
| "vcawp (Awhile b I c¢) @ = (let (vcc,wpc) = vcawp ¢ I
in (As. (I s & b s -—> Q s) &
(I s&bs -—>wpc s) & vec s, I))"

declare hoare.conseq [intro]

lemma vc_sound: "(ALL s. vc ¢ Q s) = |- {awp c @} astrip c {Q}"
proof(induct c¢ arbitrary: Q)
case (Awhile b I c)
show 7case
proof(simp, rule While’)
from ‘Vs. vc (Awhile b I c) @ s°
have vc: "ALL s. vc ¢ I s" and IQ: "ALL s. I s AN - bs — @ s" and
awp: "ALL s. I s & b s -——> awp ¢ I s" by simp_all
from vc have "[- {awp ¢ I} astrip c¢ {I}" using Awhile.hyps by blast
with awp show "[- {As. I s A b s} astrip ¢ {I}"
by (rule strengthen_pre)
show "Vs. I s AN = bs — @ s" by(rule IQ)
ged
qged auto

lemma awp_mono:

"(ls. Ps -=> (@ s) ==> awp ¢ P s ==> awp ¢ Q s"
proof (induct c arbitrary: P Q s)

case Asemi thus 7case by simp metis
qed simp_all

lemma vc_mono:

"(ls. Ps ——> ( s) ==>vc ¢ Ps ==>vc c  s"
proof(induct ¢ arbitrary: P Q)

case Asemi thus ?case by simp (metis awp_mono)
qged simp_all

lemma vc_complete: assumes der: "[- {P}c{Q}"
shows "(Jdac. astrip ac = c & (Vs. vc ac Q s) & (Vs. P s -=> awp ac Q s))"
(is "? ac. ?Eq P ¢ Q ac")

using der

29



proof induct
case skip
show ?case (is "7 ac. ?C ac")
proof show "?C Askip" by simp qed
next
case (ass P x a)
show ?case (is "7 ac. ?C ac")
proof show "?C(dass x a)" by simp qed
next
case (semi P c1 @ c2 R)
from semi.hyps obtain acl where ihl: "7Eq P c1 Q acl" by fast
from semi.hyps obtain ac2 where ih2: "7Eq @ c2 R ac2" by fast
show ?case (is "? ac. ?C ac")
proof
show "?C(Asemi acl ac2)"
using ih1 ih2 by simp (fast elim!: awp_mono vc_mono)
qed
next
case (If P b cl1 Q c2)
from If.hyps obtain acl where ihl: "7Eq (/s. P s & b s) c1 @ acl" by fast
from If.hyps obtain ac2 where ih2: "?Eq (Js. P s & "b s) c2 @ ac2" by fast
show ?case (is "? ac. 7C ac")
proof
show "?C(Aif b acl ac2)"
using ih1 ih2 by simp
qed
next
case (While P b c)
from While.hyps obtain ac where ih: "?Eq (Jjs. P s & b s) c P ac" by fast
show ?case (is "7 ac. ?C ac")
proof show "?C(Awhile b P ac)" using ih by simp qed
next
case conseq thus 7case by (fast elim!: awp_mono vc_mono)
qed

lemma vcawp_vc_awp: "vcawp ¢ § = (vc ¢ @, awp ¢ Q)"
by (induct c¢ arbitrary: Q) (simp_all add: Let_def)

end

8 Denotational Semantics of Commands

theory Denotation imports Natural begin

types com_den = "(statexstate)set"
definition
Gamma :: "[bexp,com_den] => (com_den => com_den)" where

30



"Gamma b cd = (Aphi. {(s,t). (s,t) € (cd O phi) A b s} U

{(s,t). s=t A —b s}H)"

primrec C :: "com => com_den"
where
C_skip: "C skip = Id"

| C_assign: "C (x :==a) = {(s,t). t = s[x—a(s)]}"

| C_comp: "C (c0;cl1) C(c0) 0 C(c1)"
| C_if: "C (if b then c1 else c2) = {(s,t).

(s,t) € Ccl1 N b s} U

{(s,t).

| C_while: "C(while b do ¢) = 1fp (Gamma b (C c))"

lemma Gamma_mono: "mono (Gamma b c)"
by (unfold Gamma_def mono_def) fast

(s,t) € C c2 N —b s}"

lemma C_While_If: "C(while b do ¢) = C(if b then c;while b do c else skip)"

apply simp

apply (subst 1fp_unfold [OF Gamma_mono]) — lhs only

apply (simp add: Gamma_def)
done

lemma comi: "(c,s) —. t = (s,t) € C(c)"

apply (induct set: evalc)
apply auto

apply (unfold Gamma_def)

apply (subst 1fp_unfold[OF Gamma_mono, simplified Gamma_def])

apply fast

apply (subst 1fp_unfold[OF Gamma_mono, simplified Gamma_def])

apply auto
done

lemma com2: "(s,t) € C(c) = (c,s) —¢ t"
apply (induct c¢ arbitrary: s t)

apply auto

apply blast

apply (erule 1fp_induct2 [OF _ Gamma_mono])
apply (unfold Gamma_def)

apply auto

done

31



lemma denotational_is_natural: "(s,t) € C(c) = ({c,s) —c t)"
by (fast elim: com2 dest: coml)

end

9 Soundness and Completeness wrt Denotational Se-
mantics

theory Hoare_Den imports Hoare Denotation begin

definition
hoare_valid :: "[assn,com,assn] => bool" ("|= {(1_)}/ (_)/ {({1_)}" 50) where
"= {P}c{Q} = (!s t. (s,t) : C(c) -——=>P s -——> Q t)"

lemma hoare_sound: "[- {P}c{Q} ==> |= {P}c{Q}"
proof(induct rule: hoare.induct)
case (While P b c)
{ fix st
let ?G = "Gamma b (C c)"
assume "(s,t) € 1lfp 7G"
hence "P s — Pt A - b t"
proof(rule 1fp_induct2)
show "mono ?G" by (rule Gamma_mono)
next
fix s t assume "(s,t) € 7G (1fp 7G N {(s,t). Ps — Pt A = b thH"
thus "P s — P t A = b t" using While.hyps
by (auto simp: hoare_valid_def Gamma_def)
qed
}
thus ?case by (simp add:hoare_valid_def)
qed (auto simp: hoare_valid_def)

definition
wp :: "com => assn => assn" where
"wp ¢ @ = (4s. !'t. (s,t) : C(c) -—> Q t)"

lemma wp_SKIP: "wp skip @ = Q"
by (simp add: wp_def)

lemma wp_4ss: "wp (x:==a) Q = (}s. Q(s[xr—a s]))"
by (simp add: wp_def)

32



lemma wp_Semi: "wp (c;d) Q@ =wp ¢ (wp d Q)"
by (rule ext) (auto simp: wp_def)

lemma wp_If:
"wp (if b then c else d) @ = (4s. (bs -—->wpc@s) & (bs -->wpd@qs))"
by (rule ext) (auto simp: wp_def)

lemma wp_While_If:

"wp (while b do ¢c) @ s =

wp (IF b THEN c;while b do ¢ ELSE SKIP) Q s"
by (simp only: wp_def C_While_If)

lemma wp_While_if:
"wp (while b do ¢) @ s = (if b s then wp (c;while b do ¢c) Q s else @ s)"
by (simp add:wp_While_If wp_If wp_SKIP)

lemma wp_While_True: "b s ==>
wp (while b do ¢) @ s = wp (c;while b do ¢c) Q s"
by (simp add: wp_While_if)

lemma wp_While_False: ""b s ==> wp (while b do ¢) @ s = @ s"
by (simp add: wp_While_if)

lemmas [simp] = wp_SKIP wp_Ass wp_Semi wp_If wp_While_True wp_While_False

lemma wp_While: "wp (while b do ¢c) @ s =
(s : gfp(%S.{s. if b s then wp ¢ (J)s. s:S) s else Q s}))"
apply (simp (no_asm))
apply (rule iffI)
apply (rule weak_coinduct)
apply (erule CollectI)
apply safe
apply simp
apply simp
apply (simp add: wp_def Gamma_def)
apply (intro strip)
apply (rule mp)
prefer 2 apply (assumption)
apply (erule 1fp_induct2)
apply (fast intro!: monoI)
apply (subst gfp_unfold)
apply (fast intro!: monoI)
apply fast
done

declare C_while [simp del]

lemma wp_is_pre: "|- {wp ¢ @} ¢ {Q}"

33



proof(induct c¢ arbitrary: Q)
case SKIP show 7case by auto

next

case Assign show 7case by auto
next

case Semi thus 7case by auto
next

case (Cond b c1 c2)
let ?If = "IF b THEN c1 ELSE c2"
show ?case
proof(rule If)
show "|/- {As. wp ?If @ s AN b s} c1 {Q}"
proof(rule strengthen_pre[0OF _ Cond(1)])
show "Vs. wp ?If Q s N b s — wp c1 @ s" by auto
qed
show "|- {As. wp ?If @ s A — b s} c2 {Q}"
proof(rule strengthen_pre[0OF _ Cond(2)])
show "Vs. wp ?ZIf Q s N - bs — wp c2 Q s" by auto
qed
qed
next
case (While b ¢)
let ?w = "WHILE b DO c"
show ?case
proof(rule While’)
show "|- {As. wp ?7w @ s A b s} ¢ {wp 7w Q}"
proof(rule strengthen_pre[OF _ While(1)])
show "Vs. wp ?w @ s A b s — wp ¢ (wp 7w Q) s" by auto
qed
show "Vs. wp 7w @ s A = b s —  s" by auto
ged
qed

lemma hoare_relative_complete: assumes "[= {P}c{Q}" shows "|- {P}c{Q}"
proof(rule conseq)
show "Vs. P s — wp c ( s" using assms
by (auto simp: hoare_valid_def wp_def)
show "|/- {wp ¢ @} ¢ {Q}" by (rule wp_is_pre)
show "Vs. @ s — Q s" by auto
qed

end

10 Examples
theory Examples imports Natural begin

definition

34



factorial :: "loc => loc => com" where

"factorial a b = (b :== (}s. 1);
while (%s. s a "= 0) do
(b :== (}js. s b*s a); a :== (}s. sa-1)))"

declare update_def [simp]

10.1 An example due to Tony Hoare

lemma lemmal:
assumes 1: "Ix. Px — @ x"
and 2: "(w,s) —c t"
shows "w = While P ¢ = (While @ c,t) —. u = (While Q ¢,s) —. u"
using 2 apply induct
using 1 apply auto
done

lemma lemma2 [rule_format (no_asm)]:
"[] 1x. Px — Q x; (w,s) —c u [] ==>
!c. w = While Q ¢ — (While P c; While @ c¢,s) —. u"
apply (erule evalc.induct)
apply (simp_all (no_asm_simp))
apply blast
apply (case_tac "P s")

apply auto
done
lemma Hoare_example: "!x. P x — Q x ==>

((While P c; While Q ¢, s) —. t) = ((While Q c, s) —¢ t)"
by (blast intro: lemmal lemma2 dest: semi [THEN iffD1])

10.2 Factorial

lemma factorial_3: "a"=b ==>
(factorial a b, Mem(a:=3)) —. Mem(b:=6, a:=0)"
by (simp add: factorial_def)

the same in single step mode:

lemmas [simp del] = evalc_cases
lemma "a“=b = (factorial a b, Mem(a:=3)) —. Mem(b:=6, a:=0)"
apply (unfold factorial_def)
apply (frule not_sym)

apply (rule evalc.intros)

apply (rule evalc.intros)
apply simp

apply (rule evalc.intros)

apply simp

apply (rule evalc.intros)
apply (rule evalc.intros)

apply simp

35



apply (rule evalc.intros)
apply simp

apply (rule evalc.intros)
apply simp

apply (rule evalc.intros)
apply (rule evalc.intros)

apply simp
apply (rule evalc.intros)
apply simp

apply (rule evalc.intros)
apply simp

apply (rule evalc.intros)
apply (rule evalc.intros)

apply simp

apply (rule evalc.intros)
apply simp

apply (rule evalc.intros)
apply simp

done

end

11 A Simple Compiler

theory Compiler0 imports Natural begin

11.1 An abstract, simplistic machine

There are only three instructions:

datatype instr = ASIN loc aexp | JMPF bexp nat | JMPB nat

We describe execution of programs in the machine by an operational (small step) semantics:

inductive_set

stepal :: "instr list = ((statexnat) X (statexnat))set"

and stepal’ :: "[instr list,state,nat,state,nat] = bool"

("_ + 3(,.)/ -1— {_,_))" [50,0,0,0,0] 50)

for P :: "instr list"
where

"P + (s,m) -1— (t,n) == ((s,m),t,n) : stepal P"
| ASIN[simp]:

"[ n<size P; P!n = ASIN x a | = P + (s,n) -1— (s[x— a s],Suc n)"
| JMPFT[simp,intro]:

"[ n<size P; Pln = JMPF b i; b s | = P F (s,n) -1— (s,Suc n)"
| JMPFF[simp,intro]:

"[ n<size P; P!ln = JMPF b i; “b s; m=n+i | = P F (s,n) -1— (s,m)"
| JMPB[simp] :

"[ n<size P; P!ln = JUPB i; i <= n; j =n-i | = P F (s,n) -1— (s,j)"

36



abbreviation
stepa :: "[instr list,state,nat,state,nat] = bool"
("_+/ @3(_,_)/ —*— (_,_))" [50,0,0,0,0] 50) where
"P + (s,m) -*— (t,n) == ((s,m),t,n) : ((stepal P) *)"

abbreviation
stepan :: "[instr list,state,nat,nat,state,nat] = bool"
("_ 7/ (3{(_,_)/ -()— (_,_))" [50,0,0,0,0,0] 50) where
"P + (s,m) -(i)— (t,n) == ((s,m),t,n) : (stepal P ~~ i)"

11.2 The compiler

consts compile :: "com = instr list"

primrec

"compile skip = []"

"compile (x:==a) = [ASIN x a]"

"compile (c1;c2) = compile c1 @ compile c2"

"compile (if b then c1 else c2) =

[JMPF b (length(compile c1) + 2)] @ compile cl @

[JMPF (/x. False) (length(compile c2)+1)] @ compile c2"

"compile (while b do ¢) = [JMPF b (length(compile c) + 2)] @ compile c @
[JMPB (length(compile c)+1)]"

declare nth_append[simp]

11.3 Context lifting lemmas

Some lemmas for lifting an execution into a prefix and suffix of instructions; only needed for
the first proof.

lemma app_right_1:
assumes "isl b (s1,i1) -1— (s2,i2)"
shows "is1 @ is2 F (s1,i1) -1— (s2,i2)"
using assms
by induct auto

lemma app_left_1:
assumes "is2 - (s1,i1) -1— (s2,i2)"
shows "isl @ is2 b (sl1,size isl+il) -1— (s2,size is1+i2)"
using assms
by induct auto

declare rtrancl_induct2 [induct set: rtrancl]

lemma app_right:
assumes "isl F (s1,il) -*— (s2,i2)"
shows "is1 @ is2 b (s1,i1) -*— (s2,i2)"
using assms

proof induct

37



show "is1 @ is2 F (s1,il) -*— (s1,i1)" by simp
next
fix s1’ i1’ s2 i2
assume "isl @ is2 b (s1,i1) -*— (s1’,i1°)"
and "is1 b (s17,i1’) -1— (s2,i2)"
thus "is1 @ is2 F (s1,i1) -*— (s2,i2)"
by (blast intro: app_right_1 rtrancl_trans)
qed

lemma app_left:
assumes "is2 F (s1,il) -*— (s2,i2)"
shows "isl @ is2 b (sl1,size isl+il) -*— (s2,size is1+i2)"
using assms
proof induct
show "isl @ is2 + (s1,length isl + il) -*— (sl1,length isl + i1)" by simp
next
fix s1’ i1’ s2 i2
assume "isl @ is2 b (s1,length isl + il) -*— (s1’,length isl + i1’)"
and "is2 F (s1’,i1’) -1— (s2,i2)"
thus "is1 @ is2 + (s1,length isl + il1) -*— (s2,length isl + i2)"
by (blast intro: app_left_1 rtrancl_trans)
qed

lemma app_left2:
"[ is2 b (s1,i1) -*— (82,i2); j1 = size isl+il; j2 = size isi+i2 | =
is1 @ is2 b (s1,j1) -*— (s2,j2)"
by (simp add: app_left)

lemma appl_left:

assumes "is b (s1,i1) -*— (s2,i2)"

shows "instr # is b (s1,Suc i1) -*— (s2,Suc i2)"
proof -

from app_left [OF assms, of "[instr]"]

show ?7thesis by simp
qed

11.4 Compiler correctness

declare rtrancl_into_rtrancl[trans]
converse_rtrancl_into_rtrancl[trans]
rtrancl_trans[trans]

The first proof; The statement is very intuitive, but application of induction hypothesis
requires the above lifting lemmas

theorem
assumes "(c,s) — t"
shows "compile ¢ F (s,0) -*— (t,length(compile c))" (is "?P ¢ s t")
using assms
proof induct
show "As. 7P skip s s" by simp

38



next
show "Aa s x. ?P (x :== a) s (s[x— a s])" by force
next
fix c0 c1 s0 s1 s2
assume "?P cO s0 s1"
hence "compile c0 @ compile c1 + (s0,0) -*— (s1,length(compile c0))"
by (rule app_right)
moreover assume "7P c1 sl s2"
hence "compile c0 @ compile c1 + (s1,length(compile c0)) -*—
(s2,length(compile cO)+length(compile c1))"
proof -
show "Ais1 is2 s1 s2 i2.
is2 F (s1,0) —-*— (s2,i2) =
isl @ is2 F (sl,size isl) —-*— (s2,size is1+i2)"
using app_left[of _ 0] by simp
qed
ultimately have "compile cO @ compile c1 + (s0,0) -*—
(s2,length(compile c0)+length(compile c1))"
by (rule rtrancl_trans)
thus "?P (c0; c1) s0 s2" by simp
next
fix b c0 c1 s0 si
let ?comp = "compile(if b then cO else c1)"
assume "b s0" and IH: "7P cO sO s1"
hence "?comp + (s0,0) -1— (s0,1)" by auto
also from IH
have "?comp + (s0,1) -*— (s1,length(compile c0)+1)"
by (auto intro:appl_left app_right)
also have "?comp + (s1,length(compile c0)+1) -1— (s1,length ?comp)"
by (auto)
finally show "7P (if b then cO else c1) s0O s1" .
next
fix b cO0 c1 s0 s1
let ?comp = "compile(if b then cO else c1)"
assume "—b s0" and IH: "?P c1 sO s1"
hence "?comp + (s0,0) -1— (s0,length(compile c0) + 2)" by auto
also from IH
have "?comp + (s0,length(compile c0)+2) -*— (s1,length ?comp)"
by (force intro!: app_left2 appl_left)
finally show "7?P (if b then cO else c1) s0 s1" .
next
fix b ¢ and s::state
assume "—b s"
thus "?P (while b do ¢c) s s" by force

next
fix b ¢ and s0::state and s1 s2
let ?comp = "compile(while b do c)"

assume "b s0" and
IHc: "?P ¢ s0 s1" and IHw: "?P (while b do ¢c) s1 s2"
hence "?comp + (s0,0) -1— (s0,1)" by auto

39



also from IHc
have "?comp b (s0,1) -*— (s1,length(compile c)+1)"
by (auto intro: appl_left app_right)
also have "?comp + (s1,length(compile c)+1) -1— (s1,0)" by simp
also note IHw
finally show "?P (while b do c) sO s2".
qed

Second proof; statement is generalized to cater for prefixes and suffixes; needs none of the
lifting lemmas, but instantiations of pre/suffix.

Missing: the other direction! I did much of it, and although the main lemma is very similar to
the one in the new development, the lemmas surrounding it seemed much more complicated.
In the end I gave up.

end

theory Machines
imports Natural
begin

lemma converse_in_rel_pow_eq:
"((x,z) €R """ n) = (@=0 ANz=xV (dmy. n =Sucm A (x,y) € RA (y,2) €R "~ m)"
apply (rule iffI)
apply (blast elim:rel_pow_E2)
apply (auto simp: rel_pow_commute[symmetric])
done

11.5 Instructions

There are only three instructions:

datatype instr = SET loc aexp | JMPF bexp nat | JMPB nat

types instrs = "instr list"

11.6 MO with PC

inductive_set

exec01 :: "instr list = ((natxstate) X (natXxstate))set"

and exec01’ :: "[instrs, nat,state, nat,state] = bool"

("(_/ F (1 ,/_))/ -1— (1{_,/_)))" [50,0,0,0,0] 50)

for P :: "instr list"
where

"o b (i,s) -1— (j,t) == ((i,s),j,t) : (execO1l p)"
| SET: "[ n<size P; PIn = SETx a | = P F (n,s) -1— (Suc n,s[x— a s])"
| JMPFT: "[ n<size P; P!n = JMPF b i; bs ]| = P+ (n,s) -1— (Suc n,s)"
| JMPFF: "[ n<size P; P!ln = JMPF b i; —b s; m=n+i+1; m < size P |

= P I (n,s) -1— (m,s)"

| JMPB: "[ n<size P; P!ln = JMPB i; i < n; j=n-i | = P F (n,s) -1— (j,s)"

40



abbreviation
execOs :: "[instrs, nat,state, nat,state] = bool"
("(_/ b {_,/_))/ —*— (1{_,/_)))" [50,0,0,0,0] 50) where
"p F (i,s) —*— (j,t) == ((i,s8),j,t) : (execO1 p) *"

abbreviation
execOn :: "[instrs, nat,state, nat, nat,state] = bool"
("(_/ b Q{_,/_)/ ——— {_,/_)))" [50,0,0,0,0] 50) where
"o + (i,s) -n— (j,t) == ((i,8),j,t) : (execO01 p)~"n"

11.7 MO with lists

We describe execution of programs in the machine by an operational (small step) semantics:

types config = "instrs X instrs X state"

inductive_set

stepal :: "(config X config)set"
and stepal’ :: "[instrs,instrs,state, instrs,instrs,state] = bool"
("1, /_,/_))/ -1— (1{_,/_,/_)))" 50)
where

"(p,q,s) -1— (p’,q’,t) == ((p,q,s),p’,q’,t) : stepal”
| "(SET x a#p,q,s) -1— (p,SET x a#q,s[x— a s])"
| "o s = (JMPF b i#p,q,s) -1— (p,JMPF b i#q,s)"
| "[ -~ bs; i < sizep |
— (JMPF b i #p, q, s) -1— (drop i p, rev(take i p) @ JUPF b i # g, s)"
| "i < size q
— (JMPB i # p, q, s) -1— (rev(take i q) @ JMPB i # p, drop i q, s)"

abbreviation
stepa :: "[instrs,instrs,state, instrs,instrs,state] = bool"
("((1{_,/_,/_))/ —*x— (1{_,/_,/_)))" 50) where
"(p,q,s) —*— (p’,q’,t) == ((p,q,s),p’,q’,t) : (stepal™*)"

abbreviation
stepan :: "[instrs,instrs,state, nat, instrs,instrs,state] = bool"
("1 ,/_,/_))/ ——— (1{_,/_,/_)))" 50) where
"(p,q,8) -i— (p’,q’,t) == ((p,q,s),p’,q’,t) : (stepal~"i)"

inductive_cases execE: "((i#is,p,s), (is’,p’,s’)) : stepal"

lemma exec_simp[simp]:
"({i#p,q,s) -1— (p’,q’,t)) = (case i of
SET x a = t = s[x— as] ANp’=p A q’ = i#q |
JMPF b n = t=s A (if b s then p’ = p A q’ = i#q
else n < size p A p’ =dropnp A q’ = rev(take np) @ i # q) |
JYPB n = n < size g A t=s A p’ = rev(taken q) @ i # p A q’ = drop n q)"
apply (rule iffI)
defer

41



apply (clarsimp simp add: stepal.intros split: instr.split_asm split_if_asm)
apply (erule execE)

apply (simp_all)

done

lemma execn_simp[simp]:
”(<i#p’QJs> n— (p”,q”,u
(n=0 A p’’ = i#p N q’’ =
((dm p’ @’ t. n = Suc m A
(i#p,q,s) -1— (p’,q’,t) A (p’,q’,t) -m— (p’’,q’’,u))))"
by (subst converse_in_rel_pow_eq, simp)

) =
gANu=sYV

lemma exec_star_simp[simp]: "({i#p,q,s) -*— (p’’,q’’,u)) =
(p’’ = i#p & q’’=q & u=s |
(3p’ q’ t. (i#p,q,s) -1— (p’,q’,t) A (p’,q’,t) —*— (p’’,q ", u)))"
apply (simp add: rtrancl_is_UN_rel_pow del:exec_simp)
apply (blast)
done

declare nth_append[simp]

lemma rev_revD: "rev xs = rev ys =—> xs = ys"
by simp

lemma [simp]: "(rev xs @ rev ys = rev zs) = (ys @ xs = zs)"
apply (rule iffI)

apply (rule rev_revD, simp)

apply fastsimp

done

lemma directioni:
"{q,p,s) -1— (q’,p’,t) =
revp’ @q’ =revp @q A revp @q F (size p,s) -1— (size p’,t)"
apply (induct set: stepal)
apply (simp add:exec01.SET)
apply (fastsimp intro:exec01.JMPFT)
apply simp
apply (rule exec01.JMPFF)
apply simp
apply fastsimp
apply simp
apply simp
apply simp
apply (fastsimp simp add:exec01.JMPB)
done

lemma direction2:

42



"rpq F (sp,s) -1— (sp’,t) =
rpq = revp @ q & sp = size p & sp’ = size p’ —
rev p’ @q’ =revp @q — (q,p,s) -1— (q’,p’,t)"
apply (induct arbitrary: p q p’ q’ set: exec01)
apply (clarsimp simp add: neq_Nil_conv append_eq_conv_conj)
apply (drule sym)
apply simp
apply (rule rev_revD)
apply simp
apply (clarsimp simp add: neq_Nil_conv append_eq_conv_conj)
apply (drule sym)
apply simp
apply (rule rev_revD)
apply simp
apply (simp (no_asm_use) add: neq_Nil_conv append_eq_conv_conj, clarify)+
apply (drule sym)
apply simp
apply (rule rev_revD)
apply simp
apply (clarsimp simp add: neq_Nil_conv append_eq_conv_conj)
apply (drule sym)
apply (simp add:rev_take)
apply (rule rev_revD)
apply (simp add:rev_drop)
done

theorem M_eqiv:

"({q,p,s) ~1— (q’,p’,t)) =

(rev p’ ©q’ =revp @q AN revp @q + (size p,s) -1— (size p’,t))"
by (blast dest: directionl direction2)

end

theory Compiler imports Machines begin

11.8 The compiler

primrec compile :: "com = instr list"
where
"compile skip = []"
| "compile (x:==a) = [SET x al"
| "compile (c1;c2) = compile c1 @ compile c2"
| "compile (if b then c1 else c2) =
[JMPF b (length(compile c1) + 1)] @ compile cl @
[JMPF (Ax. False) (length(compile c2))] @ compile c2"
| "compile (while b do ¢) = [JMPF b (length(compile c) + 1)] @ compile c @
[JMPB (length(compile c)+1)]1"

43



11.9 Compiler correctness

theorem assumes A4: "(c,s) —. t"
shows "Ap q. (compile ¢ @ p,q,s) -*— (p,rev(compile c)@q,t)"
(is "A\pgq. ?Pcstpq"
proof -
from A show "Ap q. ?thesis p q"
proof induct
case Skip thus ?case by simp
next
case Assign thus 7case by force
next
case Semi thus ?case by simp (blast intro:rtrancl_trans)
next
fix b cO0 c1 s0 s1 p q
assume IH: "Ap q. ?P cO s0 s1 p q"
assume "b s0"
thus "?P (if b then cO else c1) s0O s1 p q"
by (simp add: IH[THEN rtrancl_trans])
next
case IfFalse thus ?case by (simp)
next
case WhileFalse thus ?case by simp
next
fix b ¢ and s0::state and s1 s2 p gq
assume b: "b s0" and
IHc: "A\p q. 7P ¢ s0 s1 p q" and
IHw: "Ap q. ?P (while b do ¢) s1 s2 p q"
show "?P (while b do ¢) s0O s2 p q"
using b IHc[THEN rtrancl_trans] IHw by (simp)
qged
qed

The other direction!

inductive_cases [elim!]: "(([],p,s),(is’,p’,s’)) : stepal”

lemma [simp]: "({[],q,s) -n— (p’,q’,t)) = (u=0 AN p’ =[] Nq’ =g ANt =3s8)"
apply (rule iffI)

apply (erule rel_pow_E2, simp, fast)

apply simp

done

lemma [simp]: "({[],q,s) -*— (p’,q’,t)) = (p’ =[] N g’ =q ANt =3s8)"
by (simp add: rtrancl_is_UN_rel_pow)

definition
forws :: "instr = nat set" where
"forws instr = (case instr of
SET x a = {0} |
JYPF b n = {0,n} |

44



JYPB n = {P)"

definition
backws :: "instr = nat set" where
"backws instr = (case instr of
SET x a = {} |
JYPF b n = {} |
JYPB n = {n})"

primrec closed :: "nat = nat = instr list = bool"
where
"closed m n [] = True"
| "closed m n (instr#is) = ((Vj € forws instr. j < size is+n) A
(Vj € backws instr. j < m) A closed (Suc m) n is)"

lemma [simp]:
”/\m n. closed m n (C1@C2) =

(closed m (n+size C2) C1 A closed (m+size C1) n C2)"
by (induct C1) (simp, simp add:add_ac)

theorem [simp]: "Am n. closed m n (compile c)"
by (induct c) (simp_all add:backws_def forws_def)

lemma drop_lem: "n < size(p1@p2)

— (p1’ @ p2 = drop n pl @ drop (n - size pl) p2) =
(n < size pl & p1’ = drop n p1)"

apply (rule iffI)

defer apply simp

apply (subgoal_tac "n < size p1")

apply simp

apply (rule ccontr)

apply (drule_tac f = length in arg_cong)

apply simp

done

lemma reduce_execl:
"(i # p1 @ p2,q1 @ g2,s) -1— (pl1’ @ p2,q1’ @ g2,s’) —>
(i # p1,q1,s) -1— (p1’,q1°,s’)"
by (clarsimp simp add: drop_lem split:instr.split_asm split_if_asm)

lemma closed_execl:
"[ closed 0 0 (rev g1 @ instr # pl);
(instr # p1 @ p2, q1 @ g2,r) -1— (p’,q’,r’) | =
dp1’ q1’. p’ = p1°@2 A q’ = q1’@q2 N rev q1’ @ pl’ = rev q1 @ instr # p1"
apply (clarsimp simp add:forws_def backws_def
split:instr.split_asm split_if_asm)
done

theorem closed_execn_decomp: "/\Cl C2r.

45



[ closed 0 0 (rev C1 @ C2);
(c2 @ p1 @ p2, C1 @ g,r) -n— (p2,rev pl @ rev C2 @ C1 @ q,t) |
= ds n1 n2. (C2,C1,r) -n1— ([],rev C2 @ C1,s) A
(p1@p2,rev C2 @ C1 @ q,s) -n2— (p2, rev pl @ rev C2 @ C1 @ q,t) A
n = nl+n2"
(is ”/\Cl C2r. [?CL C1 C2; PHC1 C2 r n] = 7P C1 C2 r n")
proof (induct n)
fix C1 C2 r
assume "?H C1 C2 r 0"
thus "?P C1 C2 r 0" by simp
next
fix C1 C2rn
assume IH: ”/\Cl C2r. ?CLC1 C2 = ?HC1 C2rn = 7P C1 C2rn"
assume CL: "?CL C1 C2" and H: "?H C1 C2 r (Suc n)"
show "?P C1 C2 r (Suc n)"
proof (cases C2)
assume "C2 = []" with H show ?thesis by simp
next
fix instr t1C2
assume C2: "C2 = instr # t1C2"
from H C2 obtain p’ q’ r’
where 1: "(instr # t1C2 @ p1 @ p2, C1 @ q,r) -1— (p’,q’,r’)"
and n: "(p’,q’,r’) -n— (p2,rev pl @ rev C2 @ C1 @ g,t)"
by (fastsimp simp add:rel_pow_commute)
from CL closed_execl[OF _ 1] C2
obtain €2’ C1’ where pq’: "p’ = €2’ @ pl @ p2 A g’ = Cl’ @ q"
and same: "rev C1’ @ C2’ = rev C1 @ C2"
by fastsimp
have rev_same: "rev C2’ @ C1’ = rev C2 @ C1"

proof -
have "rev C2’ @ C1’ = rev(rev C1’ @ C2’)" by simp
also have "... = rev(rev C1 @ C2)" by (simp only:same)
also have "... = rev C2 @ C1" by simp
finally show ?thesis .

qed

hence rev_same’: "/\p. rev €2’ @ C1” @ p = rev C2 @ C1 @ p" by simp
from n have n’: "(C2’ @ p1 @ p2,C1’ @ q,r’) -n—
(p2,rev p1 @ rev C2° @ C1’ @ g,t)"
by (simp add:pq’ rev_same’)
from IH[OF _ n’] CL
obtain s n1 n2 where n1: "{C2’,C1’,r’) -n1— ([],rev C2 @ C1,s)" and
"(p1 @ p2,rev C2 @ C1 @ q,s) -n2— (p2,rev pl @ rev C2 @ C1 @ g,t) A
n = nl + n2"
by (fastsimp simp add: same rev_same rev_same’)
moreover
from 1 n1 pq’ €2 have "(C2,C1,r) -Suc n1— ([],rev C2 @ C1,s)"
by (simp del:relpow.simps exec_simp) (fast dest:reduce_execl)
ultimately show ?thesis by (fastsimp simp del:relpow.simps)
ged
qed

46



lemma execn_decomp:
"(compile ¢ @ pl @ p2,q,r) -n— (p2,rev pl @ rev(compile c) @ q,t)
= Js n1 n2. (compile c,[],r) -n1— ([],rev(compile c),s) A
(p1@p2,rev(compile c) @ q,s) -n2— (p2, rev pl @ rev(compile c) @ g,t) A
n = nl+n2"
using closed_execn_decomp[of "[]",simplified] by simp

lemma exec_star_decomp:
"(compile ¢ @ pl @ p2,q,r) -*— (p2,rev pl @ rev(compile c) @ q,t)
= Js. (compile ¢, [],r) -*— ([],rev(compile c),s) A
(p1@p2,rev(compile c) @ g,s) —*— (p2, rev pl @ rev(compile c) @ gq,t)"
by (simp add:rtrancl_is_UN_rel_pow) (fast dest: execn_decomp)

Warning: (compile ¢ @ p,q,s) -*— (p,rev (compile c) @ q,t) = {(c,s) —. t isnot true!

theorem "/As t.
(compile c,[],s) -*— ([],rev(compile c),t) = (c,s) — t"
proof (induct c)
fix st
assume "(compile SKIP,[],s) -*— ([],rev(compile SKIP),t)"
thus "(SKIP,s) —. t" by simp

next
fix stvrf
assume "(compile(v :== f),[],s) -*— ([],rev(compile(v :== f)),t)"
thus "(v :== f,s) —. t" by simp

next

fix s1 s3 c1 c2

let ?C1 = "compile c1" let ?C2 = "compile c2"

assume IH1: "As t. (?C1,[],s) -*— ([],rev ?C1,t) = (c1,8) — t"
and IH2: "A\s t. (?C2,[],s) —*— ([],rev 7C2,t) = (c2,s) —. t"

assume "(compile(cl;c2),[],s1) -*— ([],rev(compile(c1;c2)),s3)"

then obtain s2 where exec1: "(?C1,[],s1) -*— ([],rev ?C1,s2)" and

exec2: "(7C2,rev 7C1,s2) -*— ([],rev(compile(cl;c2)),s3)"

by (fastsimp dest:exec_star_decomp[of _ _ "[]" "[]",simplified])

from exec2 have exec2’: "(7C2,[],s2) -*— ([],rev 7C2,s3)"
using exec_star_decomp[of _ "[]" "[]"] by fastsimp

have "(c1,s1) —. s2" using IH! execl by simp

moreover have "(c2,s2) —. s3" using IH2 exec2’ by fastsimp

ultimately show "(c1;c2,s1) —. s3" ..

next

fix st bcl c2

let ?if = "IF b THEN c1 ELSE c2" let ?C = "compile ?7if"

let ?C1 = "compile c1" let ?C2 = "compile c2"

assume IH1: "As t. (?C1,[],s) -*— ([],rev ?C1,t) = (cl,s) —. t"
and IH2: "A\s t. (?C2,[],s) —*— ([],rev 7C2,t) = (c2,s) — t"
and H: "(?C,[],s) -*— ([],rev ?C,t)"

show "(?if,s) —, t"

proof cases
assume b: "b s"
with H have "(?7C1,[],s) -*— ([],rev 7C1,t)"

47



by (fastsimp dest:exec_star_decomp
[of _ "[JMPF (Ax. False) (size 7C2)]@7C2" "[]",simplified])
hence "(c1,s) —. t" by(rule IH1)
with b show ?thesis .
next
assume b: "= b s"
with H have "(7C2,[],s) -*— ([],rev 7C2,t)"
using exec_star_decomp[of _ "[]" "[]"] by simp
hence "(c2,s) —. t" by(rule IH2)
with b show ?thesis ..
qed
next
fix bcst
let ?w = "WHILE b DO c" let ?W = "compile 7w" let ?C = "compile c"
let 7j1 = "JMPF b (size 7?C + 1)" let 7j2 = "JMPB (size 7C + 1)"
assume IHc: "As t. (?C,[],s) -*— ([],rev 7C,t) = (c,s) — t"
and H: "(?W,[],s) —*— ([],rev 7W,t)"
from H obtain k where ob:"(?W, [],s) ~k— ([],rev 7W,t)"
by (simp add:rtrancl_is_UN_rel_pow) blast
{ fix n have "As. (?W,[],s) -n— ([],rev ?W,t) = (7w,s) —. t"
proof (induct n rule: less_induct)
fix n
assume IHm: ”/\m s. [m <n; (?W,[1,s) -m— ([I,rev ?W,t) | = (?w,s) — t"
fix s
assume H: "(?W,[],s) -n— ([],rev ?W,t)"
show "(?w,s) —c t"
proof cases
assume b: "b s"
then obtain m where m: "n = Suc m"
and "(7C @ [?j2],[7j1],s) -m— ([],rev ?W,t)"
using H by fastsimp
then obtain r nl1 n2 where ni1: "(?C,[],s) -n1— ([],rev 7C,r)"
and n2: "([?j2],rev ?C @ [?j1],r) -n2— ([],rev 7W,t)"
and ni2: "m = ni+n2"
using execn_decomp[of _ "[7j2]"]
by (simp del: execn_simp) fast
have n2n: "n2 - 1 < n" using m n12 by arith
note b
moreover
{ from n1 have "(?C,[],s) —*— ([],rev ?C,r)"
by (simp add:rtrancl_is_UN_rel_pow) fast
hence "(c,s) —. r" by(rule IHc)
}
moreover
{ have "n2 - 1 < n" using m n12 by arith
moreover from n2 have "(?W,[],r) -n2- 1— ([],rev ?W,t)" by fastsimp
ultimately have "(?w,r) —. t" by (rule IHm)
}
ultimately show ?7thesis ..
next

48



assume b: "— b s"
hence "t = s" using H by simp
with b show ?thesis by simp
qed
qed
}
with ob show "(?w,s) —. t" by fast
qed

end

theory Live imports Natural
begin

Which variables/locations does an expression depend on? Any set of variables that completely
determine the value of the expression, in the worst case all locations:

consts Dep :: "((loc = ’a) = ’b) = loc set"

specification (Dep)

dep_on: "(Vx€Dep e. s x =t x) = e s =e t"

by (rule_tac x="/x. UNIV" in exI) (simp add: expand_fun_eq[symmetric])

The following definition of Dep looks very tempting Dep e = {fa. ds t. (Vx. x # a — s
x =t x) AN es # e t} but does not work in case e depends on an infinite set of variables.
For example, if e s tests if s is 0 at infinitely many locations. Then Dep e incorrectly yields
the empty set!

If we had a concrete representation of expressions, we would simply write a recursive free-
variables function.

primrec L :: "com = loc set = loc set" where
"[, SKIP A = A" |
"L (x :==e) A = A-{x} U Dep e" |

"L (c1; ¢c2) A = (L c1 oL c2) A" |
"I (IF b THEN c1 ELSE c2) A = Dep b UL c1 A UL c2A" |
"L (WHILE b DO ¢) A =Depb UA UL c A"

primrec "kill" :: "com = loc set" where
"kill SKIP = {}" |
"kill (x :==e) = {x}" |

"kill (c1; ¢2) = kill c1 U kill c2" |
"kill (IF b THEN c1 ELSE c2) = Dep b U kill c1 N kill c2" |
"kill (WHILE b DO c) = {}"

primrec gen :: "com = loc set" where
"gen SKIP = {}" |
"gen (x :== e) = Dep e" |

"gen (cl; c2) = gen cl1 U (gen c2-kill c1)" |
"gen (IF b THEN c1 ELSE c2) = Dep b U gen c1 U gen c2" |
"gen (WHILE b DO c¢) = Dep b U gen c"

49



lemma L_gen_kill: "L ¢ A = gen ¢ U (A - kill c)"
by (induct ¢ arbitrary:A) auto

lemma L_idemp: "L ¢ (L ¢ A) C L c A"
by (fastsimp simp add:L_gen_kill)

theorem L_sound: "V x € L c A. s x =t x = (c,s) — s’ = (c,t) — t’ =
Vxcld. s’ x = t’ x"
proof (induct c arbitrary: A s t s’ t’)
case SKIP then show ?case by auto
next
case (Adssign x e) then show ?case
by (auto simp:update_def ball_Un dest!: dep_on)
next
case (Semi c1 c2)
from Semi(4) obtain s’’ where si: "(c1,s) —. s’’" and s2: "(c2,s’’) —. s°"
by auto
from Semi(5) obtain t’’ where t1: "(c1,t) —. t’’" and t2: "(c2,t’’) —. t’"
by auto
show ?case using Semi(1) [OF _ s1 t1] Semi(2) [OF _ s2 t2] Semi(3) by fastsimp
next
case (Cond b c1 c2)
show 7case
proof cases
assume "b s"
hence s: "(cl1,s) —. s’" using Cond(4) by simp
have "b t" using ‘b s Cond(3) by (simp add: ball_Un) (blast dest: dep_on)
hence t: "(c1,t) —. t’" using Cond(5) by auto

show ?thesis using Cond(1) [OF _ s t] Cond(3) by fastsimp
next

assume "— b s"
hence s: "(c2,s) —. s’" using Cond(4) by auto
have "— b t" using ‘- b s Cond(3) by (simp add: ball_Un) (blast dest: dep_on)
hence t: "(c2,t) —. t’" using Cond(5) by auto
show ?thesis using Cond(2) [OF _ s t] Cond(3) by fastsimp

ged

next
case (While b c) note IH = this
{ fix cw

have "(cw,s) —. s’ = cw

(While b ¢) = (cw,t) — t’ =
Vx€e€LcwA sx=tx — Vx€d. s’ x=1t’ x"
proof (induct arbitrary: t A pred:evalc)
case WhileFalse
have "— b t" using WhileFalse by (simp add: ball_Un) (blast dest:dep_on)
then have "t’ = t" using WhileFalse by auto
then show 7case using WhileFalse by auto
next
case (WhileTrue _ s _ s’’ s’)
have "(c,s) —¢ s’’" using WhileTrue(2,6) by simp

50



have "b t" using WhileTrue by (simp add: ball_Un) (blast dest:dep_on)
then obtain t’’ where "(c,t) —. t’’" and "(While b c,t’’) —. t’"
using WhileTrue(6,7) by auto
have "Vx€Dep b U A UL c A. s’ x = t’’ x"
using IH(1) [OF _ “(c,s) — s’’° “{c,t) —¢ t’’‘] WhileTrue(6,8)
by (auto simp:L_gen_kill)
then have "Vx€L (While b c) A. s’’ x = t’’ x" by auto
then show ?case using WhileTrue(5,6) ‘(While b c,t’’) — t’‘ by metis
qed auto }
— a terser version
{ let ?7w = "While b c"
have "(?w,s) —. s’ = (7w,t) —. t’ =
Vx€eL?™wA. sx=tx — Vx€d. s’ x=1t’> x"
proof (induct ?w s s’ arbitrary: t A pred:evalc)
case WhileFalse
have "— b t" using WhileFalse by (simp add: ball_Un) (blast dest:dep_on)
then have "t’ = t" using WhileFalse by auto
then show 7case using WhileFalse by simp
next
case (WhileTrue s s’’ s’)
have "b t" using WhileTrue by (simp add: ball_Un) (blast dest:dep_on)
then obtain t’’ where "(c,t) —. t’’" and "(While b c,t’’) —. t’"
using WhileTrue(6,7) by auto
have "VxcDep b U A UL c A. s’ x = t’’ x"
using IH(1) [OF _ ‘(c,s) —¢ 8°7° “(c,t) —¢ t’’‘] WhileTrue(7)
by (auto simp:L_gen_kill)
then have "VxeL (While b ¢c) A. s’’ x = t’’ x" by auto
then show ?case using WhileTrue(5) ‘(While b c¢,t’’) —. t’‘ by metis

ged }
from this[OF IH(3) IH(4,2)] show 7case by metis
qed
primrec bury :: "com = loc set = com" where
"bury SKIP _ = SKIP" |
"bury (x :== e) A = (if x:A then x:== e else SKIP)" |

"bury (c1; c2) A = (bury c1 (L c2 A); bury c2 A" |
"bury (IF b THEN c1 ELSE c2) A = (IF b THEN bury c1 A ELSE bury c2 A)" |
"bury (WHILE b DO c¢) A = (WHILE b DO bury ¢ (Dep b U A UL c A))"

theorem bury_sound:
"V x € LcA sx=tzx = (c,s) —. 8’ = (bury ¢ A,t) —. t’ =
Vx€EA. s’ x = t’ x"
proof (induct ¢ arbitrary: A s t s’ t’)
case SKIP then show ?case by auto
next
case (Assign x e) then show ?case

by (auto simp:update_def ball_Un split:split_if_asm dest!: dep_on)
next

case (Semi c1 c2)

o1



from Semi(4) obtain s’’ where s1: "(cl,s) — s’’" and s2: "(c2,s’’) —. 8"
by auto
from Semi(5) obtain t’’ where t1: "(bury c1 (L c2 A),t) —. t’’" and t2: "(bury c2
A, t77) — t"
by auto
show ?case using Semi(1) [OF _ s1 t1] Semi(2) [OF _ s2 t2] Semi(3) by fastsimp
next
case (Cond b c1 c2)
show 7case
proof cases
assume "b s"
hence s: "(c1,s) —. s’" using Cond(4) by simp
have "b t" using ‘b s Cond(3) by (simp add: ball_Un)(blast dest: dep_on)
hence t: "(bury c1 A,t) —. t’" using Cond(5) by auto
show ?thesis using Cond(1) [OF _ s t] Cond(3) by fastsimp
next
assume "— b s"
hence s: "(c2,s) —. s’" using Cond(4) by auto
have "— b t" using ‘= b s‘ Cond(3) by (simp add: ball_Un) (blast dest: dep_on)
hence t: "(bury c2 A,t) —. t’" using Cond(5) by auto
show ?thesis using Cond(2) [OF _ s t] Cond(3) by fastsimp
ged
next
case (While b c) note IH = this
{ fix cw
have "(cw,s) —. s’ = cw = (While b ¢c) = (bury cw A,t) — t’ =
Vx€e€LcwA sx=tx — Vx€d. s’ x =t’ x"
proof (induct arbitrary: t A pred:evalc)
case WhileFalse
have "— b t" using WhileFalse by (simp add: ball_Un) (blast dest:dep_on)
then have "t’ = t" using WhileFalse by auto
then show 7case using WhileFalse by auto
next
case (WhileTrue _ s _ s’’ s’)
have "(c,s) —. s’’" using WhileTrue(2,6) by simp
have "b t" using WhileTrue by (simp add: ball_Un) (blast dest:dep_on)
then obtain t’’ where tt’’: "(bury ¢ (Dep b U A U L ¢ A),t) — t’’"
and "(bury (While b c) A,t’’) —. t’"
using WhileTrue(6,7) by auto
have "Vx€Dep b U A UL c A. s’ x = t’’ x"
using IH(1) [OF _ ‘(c,s) —¢ s’’¢ tt’’] WhileTrue(6,8)
by (auto simp:L_gen_kill)
moreover then have "Vx€L (While b ¢) A. s’’ x = t’’ x" by auto
ultimately show ?case
using WhileTrue(5,6) ‘(bury (While b c) A,t’’) —. t’‘ by metis
qed auto }
{ let 7w = "While b c"
have "(?w,s) —. s’ = (bury 7w 4,t) —. t’ =
VxeLlL??WwA sx=tx = Vxc€A. s’ x =t’ x"
proof (induct ?w s s’ arbitrary: t A pred:evalc)

92



case WhileFalse
have "— b t" using WhileFalse by (simp add: ball_Un) (blast dest:dep_on)
then have "t’ = t" using WhileFalse by auto
then show ?7case using WhileFalse by simp
next
case (WhileTrue s s’’ s’)
have "b t" using WhileTrue by (simp add: ball_Un) (blast dest:dep_on)
then obtain t’’ where tt’’: "(bury ¢ (Dep b U A U L ¢ A),t) — t’’"
and "(bury (While b c) A,t’’) —. t’"
using WhileTrue(6,7) by auto
have "Vx€Dep b U A UL c A. s’ x = t’’ x"
using IH(1) [OF _ ‘(c,s) —¢ s’’¢ tt’’] WhileTrue(7)
by (auto simp:L_gen_kill)
then have "VxcL (While b ¢) A. s’’ x = t’’ x" by auto
then show ?case
using WhileTrue(5) ‘(bury (While b c) A,t’’) —. t’‘ by metis
qed }
from this[OF IH(3) IH(4,2)] show 7case by metis
qed

end

References

[1] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications. Wiley, 1992.

[2] Tobias Nipkow. Winskel is (almost) right: Towards a mechanized semantics textbook. In
V. Chandru and V. Vinay, editors, Foundations of Software Technology and Theoretical
Computer Science, volume 1180 of Lect. Notes in Comp. Sci., pages 180-192. Springer-
Verlag, 1996.

[3] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

93



	Expressions
	Arithmetic expressions
	Evaluation of arithmetic expressions
	Boolean expressions
	Evaluation of boolean expressions
	Denotational semantics of arithmetic and boolean expressions

	Syntax of Commands
	Natural Semantics of Commands
	Execution of commands
	Equivalence of statements
	Execution is deterministic

	Transition Semantics of Commands
	The transition relation
	Examples
	Basic properties
	Equivalence to natural semantics (after Nielson and Nielson)
	Winskel's Proof
	A proof without n

	Inductive Definition of Hoare Logic
	Soundness and Completeness wrt Operational Semantics
	Verification Conditions
	Denotational Semantics of Commands
	Soundness and Completeness wrt Denotational Semantics
	Examples
	An example due to Tony Hoare
	Factorial

	A Simple Compiler
	An abstract, simplistic machine
	The compiler
	Context lifting lemmas
	Compiler correctness
	Instructions
	M0 with PC
	M0 with lists
	The compiler
	Compiler correctness


