Theory RBT

Up to index of Isabelle/HOL/Library

theory RBT
imports RBT_Impl Mapping

(* Author: Florian Haftmann, TU Muenchen *)

header {* Abstract type of Red-Black Trees *}

(*<*)
theory RBT
imports Main RBT_Impl Mapping
begin


subsection {* Type definition *}

typedef (open) ('a, 'b) rbt = "{t :: ('a::linorder, 'b) RBT_Impl.rbt. is_rbt t}"
morphisms impl_of RBT

proof -
have "RBT_Impl.Empty ∈ ?rbt" by simp
then show ?thesis ..
qed

lemma is_rbt_impl_of [simp, intro]:
"is_rbt (impl_of t)"

using impl_of [of t] by simp

lemma rbt_eq:
"t1 = t2 <-> impl_of t1 = impl_of t2"

by (simp add: impl_of_inject)

lemma [code abstype]:
"RBT (impl_of t) = t"

by (simp add: impl_of_inverse)


subsection {* Primitive operations *}

definition lookup :: "('a::linorder, 'b) rbt => 'a \<rightharpoonup> 'b" where
[code]: "lookup t = RBT_Impl.lookup (impl_of t)"


definition empty :: "('a::linorder, 'b) rbt" where
"empty = RBT RBT_Impl.Empty"


lemma impl_of_empty [code abstract]:
"impl_of empty = RBT_Impl.Empty"

by (simp add: empty_def RBT_inverse)

definition insert :: "'a::linorder => 'b => ('a, 'b) rbt => ('a, 'b) rbt" where
"insert k v t = RBT (RBT_Impl.insert k v (impl_of t))"


lemma impl_of_insert [code abstract]:
"impl_of (insert k v t) = RBT_Impl.insert k v (impl_of t)"

by (simp add: insert_def RBT_inverse)

definition delete :: "'a::linorder => ('a, 'b) rbt => ('a, 'b) rbt" where
"delete k t = RBT (RBT_Impl.delete k (impl_of t))"


lemma impl_of_delete [code abstract]:
"impl_of (delete k t) = RBT_Impl.delete k (impl_of t)"

by (simp add: delete_def RBT_inverse)

definition entries :: "('a::linorder, 'b) rbt => ('a × 'b) list" where
[code]: "entries t = RBT_Impl.entries (impl_of t)"


definition keys :: "('a::linorder, 'b) rbt => 'a list" where
[code]: "keys t = RBT_Impl.keys (impl_of t)"


definition bulkload :: "('a::linorder × 'b) list => ('a, 'b) rbt" where
"bulkload xs = RBT (RBT_Impl.bulkload xs)"


lemma impl_of_bulkload [code abstract]:
"impl_of (bulkload xs) = RBT_Impl.bulkload xs"

by (simp add: bulkload_def RBT_inverse)

definition map_entry :: "'a => ('b => 'b) => ('a::linorder, 'b) rbt => ('a, 'b) rbt" where
"map_entry k f t = RBT (RBT_Impl.map_entry k f (impl_of t))"


lemma impl_of_map_entry [code abstract]:
"impl_of (map_entry k f t) = RBT_Impl.map_entry k f (impl_of t)"

by (simp add: map_entry_def RBT_inverse)

definition map :: "('a => 'b => 'b) => ('a::linorder, 'b) rbt => ('a, 'b) rbt" where
"map f t = RBT (RBT_Impl.map f (impl_of t))"


lemma impl_of_map [code abstract]:
"impl_of (map f t) = RBT_Impl.map f (impl_of t)"

by (simp add: map_def RBT_inverse)

definition fold :: "('a => 'b => 'c => 'c) => ('a::linorder, 'b) rbt => 'c => 'c" where
[code]: "fold f t = RBT_Impl.fold f (impl_of t)"



subsection {* Derived operations *}

definition is_empty :: "('a::linorder, 'b) rbt => bool" where
[code]: "is_empty t = (case impl_of t of RBT_Impl.Empty => True | _ => False)"



subsection {* Abstract lookup properties *}

lemma lookup_RBT:
"is_rbt t ==> lookup (RBT t) = RBT_Impl.lookup t"

by (simp add: lookup_def RBT_inverse)

lemma lookup_impl_of:
"RBT_Impl.lookup (impl_of t) = lookup t"

by (simp add: lookup_def)

lemma entries_impl_of:
"RBT_Impl.entries (impl_of t) = entries t"

by (simp add: entries_def)

lemma keys_impl_of:
"RBT_Impl.keys (impl_of t) = keys t"

by (simp add: keys_def)

lemma lookup_empty [simp]:
"lookup empty = Map.empty"

by (simp add: empty_def lookup_RBT expand_fun_eq)

lemma lookup_insert [simp]:
"lookup (insert k v t) = (lookup t)(k \<mapsto> v)"

by (simp add: insert_def lookup_RBT lookup_insert lookup_impl_of)

lemma lookup_delete [simp]:
"lookup (delete k t) = (lookup t)(k := None)"

by (simp add: delete_def lookup_RBT RBT_Impl.lookup_delete lookup_impl_of restrict_complement_singleton_eq)

lemma map_of_entries [simp]:
"map_of (entries t) = lookup t"

by (simp add: entries_def map_of_entries lookup_impl_of)

lemma entries_lookup:
"entries t1 = entries t2 <-> lookup t1 = lookup t2"

by (simp add: entries_def lookup_def entries_lookup)

lemma lookup_bulkload [simp]:
"lookup (bulkload xs) = map_of xs"

by (simp add: bulkload_def lookup_RBT RBT_Impl.lookup_bulkload)

lemma lookup_map_entry [simp]:
"lookup (map_entry k f t) = (lookup t)(k := Option.map f (lookup t k))"

by (simp add: map_entry_def lookup_RBT RBT_Impl.lookup_map_entry lookup_impl_of)

lemma lookup_map [simp]:
"lookup (map f t) k = Option.map (f k) (lookup t k)"

by (simp add: map_def lookup_RBT lookup_map lookup_impl_of)

lemma fold_fold:
"fold f t = (λs. foldl (λs (k, v). f k v s) s (entries t))"

by (simp add: fold_def expand_fun_eq RBT_Impl.fold_def entries_impl_of)

lemma is_empty_empty [simp]:
"is_empty t <-> t = empty"

by (simp add: rbt_eq is_empty_def impl_of_empty split: rbt.split)

lemma RBT_lookup_empty [simp]: (*FIXME*)
"RBT_Impl.lookup t = Map.empty <-> t = RBT_Impl.Empty"

by (cases t) (auto simp add: expand_fun_eq)

lemma lookup_empty_empty [simp]:
"lookup t = Map.empty <-> t = empty"

by (cases t) (simp add: empty_def lookup_def RBT_inject RBT_inverse)

lemma sorted_keys [iff]:
"sorted (keys t)"

by (simp add: keys_def RBT_Impl.keys_def sorted_entries)

lemma distinct_keys [iff]:
"distinct (keys t)"

by (simp add: keys_def RBT_Impl.keys_def distinct_entries)


subsection {* Implementation of mappings *}

definition Mapping :: "('a::linorder, 'b) rbt => ('a, 'b) mapping" where
"Mapping t = Mapping.Mapping (lookup t)"


code_datatype Mapping

lemma lookup_Mapping [simp, code]:
"Mapping.lookup (Mapping t) = lookup t"

by (simp add: Mapping_def)

lemma empty_Mapping [code]:
"Mapping.empty = Mapping empty"

by (rule mapping_eqI) simp

lemma is_empty_Mapping [code]:
"Mapping.is_empty (Mapping t) <-> is_empty t"

by (simp add: rbt_eq Mapping.is_empty_empty Mapping_def)

lemma insert_Mapping [code]:
"Mapping.update k v (Mapping t) = Mapping (insert k v t)"

by (rule mapping_eqI) simp

lemma delete_Mapping [code]:
"Mapping.delete k (Mapping t) = Mapping (delete k t)"

by (rule mapping_eqI) simp

lemma map_entry_Mapping [code]:
"Mapping.map_entry k f (Mapping t) = Mapping (map_entry k f t)"

by (rule mapping_eqI) simp

lemma keys_Mapping [code]:
"Mapping.keys (Mapping t) = set (keys t)"

by (simp add: keys_def Mapping_def Mapping.keys_def lookup_def lookup_keys)

lemma ordered_keys_Mapping [code]:
"Mapping.ordered_keys (Mapping t) = keys t"

by (rule sorted_distinct_set_unique) (simp_all add: ordered_keys_def keys_Mapping)

lemma Mapping_size_card_keys: (*FIXME*)
"Mapping.size m = card (Mapping.keys m)"

by (simp add: Mapping.size_def Mapping.keys_def)

lemma size_Mapping [code]:
"Mapping.size (Mapping t) = length (keys t)"

by (simp add: Mapping_size_card_keys keys_Mapping distinct_card)

lemma tabulate_Mapping [code]:
"Mapping.tabulate ks f = Mapping (bulkload (List.map (λk. (k, f k)) ks))"

by (rule mapping_eqI) (simp add: map_of_map_restrict)

lemma bulkload_Mapping [code]:
"Mapping.bulkload vs = Mapping (bulkload (List.map (λn. (n, vs ! n)) [0..<length vs]))"

by (rule mapping_eqI) (simp add: map_of_map_restrict expand_fun_eq)

lemma [code, code del]:
"HOL.eq (x :: (_, _) mapping) y <-> x = y"
by (fact eq_equals) (*FIXME*)

lemma eq_Mapping [code]:
"HOL.eq (Mapping t1) (Mapping t2) <-> entries t1 = entries t2"

by (simp add: eq Mapping_def entries_lookup)

hide_const (open) impl_of lookup empty insert delete
entries keys bulkload map_entry map fold

(*>*)

text {*
This theory defines abstract red-black trees as an efficient
representation of finite maps, backed by the implementation
in @{theory RBT_Impl}.
*}


subsection {* Data type and invariant *}

text {*
The type @{typ "('k, 'v) RBT_Impl.rbt"} denotes red-black trees with
keys of type @{typ "'k"} and values of type @{typ "'v"}. To function
properly, the key type musorted belong to the @{text "linorder"}
class.

A value @{term t} of this type is a valid red-black tree if it
satisfies the invariant @{text "is_rbt t"}. The abstract type @{typ
"('k, 'v) rbt"} always obeys this invariant, and for this reason you
should only use this in our application. Going back to @{typ "('k,
'v) RBT_Impl.rbt"} may be necessary in proofs if not yet proven
properties about the operations must be established.

The interpretation function @{const "RBT.lookup"} returns the partial
map represented by a red-black tree:
@{term_type[display] "RBT.lookup"}

This function should be used for reasoning about the semantics of the RBT
operations. Furthermore, it implements the lookup functionality for
the data structure: It is executable and the lookup is performed in
$O(\log n)$.
*}


subsection {* Operations *}

text {*
Currently, the following operations are supported:

@{term_type [display] "RBT.empty"}
Returns the empty tree. $O(1)$

@{term_type [display] "RBT.insert"}
Updates the map at a given position. $O(\log n)$

@{term_type [display] "RBT.delete"}
Deletes a map entry at a given position. $O(\log n)$

@{term_type [display] "RBT.entries"}
Return a corresponding key-value list for a tree.

@{term_type [display] "RBT.bulkload"}
Builds a tree from a key-value list.

@{term_type [display] "RBT.map_entry"}
Maps a single entry in a tree.

@{term_type [display] "RBT.map"}
Maps all values in a tree. $O(n)$

@{term_type [display] "RBT.fold"}
Folds over all entries in a tree. $O(n)$
*}



subsection {* Invariant preservation *}

text {*
\noindent
@{thm Empty_is_rbt}\hfill(@{text "Empty_is_rbt"})

\noindent
@{thm insert_is_rbt}\hfill(@{text "insert_is_rbt"})

\noindent
@{thm delete_is_rbt}\hfill(@{text "delete_is_rbt"})

\noindent
@{thm bulkload_is_rbt}\hfill(@{text "bulkload_is_rbt"})

\noindent
@{thm map_entry_is_rbt}\hfill(@{text "map_entry_is_rbt"})

\noindent
@{thm map_is_rbt}\hfill(@{text "map_is_rbt"})

\noindent
@{thm union_is_rbt}\hfill(@{text "union_is_rbt"})
*}



subsection {* Map Semantics *}

text {*
\noindent
\underline{@{text "lookup_empty"}}
@{thm [display] lookup_empty}
\vspace{1ex}

\noindent
\underline{@{text "lookup_insert"}}
@{thm [display] lookup_insert}
\vspace{1ex}

\noindent
\underline{@{text "lookup_delete"}}
@{thm [display] lookup_delete}
\vspace{1ex}

\noindent
\underline{@{text "lookup_bulkload"}}
@{thm [display] lookup_bulkload}
\vspace{1ex}

\noindent
\underline{@{text "lookup_map"}}
@{thm [display] lookup_map}
\vspace{1ex}
*}


end