header {* Examples of automatically derived induction rules *}
theory Induction_Schema
imports Main
begin
subsection {* Some simple induction principles on nat *}
lemma nat_standard_induct:
"[|P 0; !!n. P n ==> P (Suc n)|] ==> P x"
by induction_schema (pat_completeness, lexicographic_order)
lemma nat_induct2:
"[| P 0; P (Suc 0); !!k. P k ==> P (Suc k) ==> P (Suc (Suc k)) |]
==> P n"
by induction_schema (pat_completeness, lexicographic_order)
lemma minus_one_induct:
"[|!!n::nat. (n ≠ 0 ==> P (n - 1)) ==> P n|] ==> P x"
by induction_schema (pat_completeness, lexicographic_order)
theorem diff_induct:
"(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
(!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
by induction_schema (pat_completeness, lexicographic_order)
lemma list_induct2':
"[| P [] [];
!!x xs. P (x#xs) [];
!!y ys. P [] (y#ys);
!!x xs y ys. P xs ys ==> P (x#xs) (y#ys) |]
==> P xs ys"
by induction_schema (pat_completeness, lexicographic_order)
theorem even_odd_induct:
assumes "R 0"
assumes "Q 0"
assumes "!!n. Q n ==> R (Suc n)"
assumes "!!n. R n ==> Q (Suc n)"
shows "R n" "Q n"
using assms
by induction_schema (pat_completeness+, lexicographic_order)
end