Theory Lemmas

Up to index of Isabelle/HOLCF/IOA/ABP

theory Lemmas
imports Main

(*  Title:      HOLCF/IOA/ABP/Lemmas.thy
Author: Olaf Müller
*)


theory Lemmas
imports Main
begin


subsection {* Logic *}

lemma and_de_morgan_and_absorbe: "(~(A&B)) = ((~A)&B| ~B)"
by blast

lemma bool_if_impl_or: "(if C then A else B) --> (A|B)"
by auto

lemma exis_elim: "(? x. x=P & Q(x)) = Q(P)"
by blast


subsection {* Sets *}

lemma set_lemmas:
"f(x) : (UN x. {f(x)})"
"f x y : (UN x y. {f x y})"
"!!a. (!x. a ~= f(x)) ==> a ~: (UN x. {f(x)})"
"!!a. (!x y. a ~= f x y) ==> a ~: (UN x y. {f x y})"

by auto

text {* 2 Lemmas to add to @{text "set_lemmas"}, used also for action handling,
namely for Intersections and the empty list (compatibility of IOA!). *}

lemma singleton_set: "(UN b.{x. x=f(b)})= (UN b.{f(b)})"
by blast

lemma de_morgan: "((A|B)=False) = ((~A)&(~B))"
by blast


subsection {* Lists *}

lemma cons_not_nil: "l ~= [] --> (? x xs. l = (x#xs))"
by (induct l) simp_all

end