Theory Abschannel

Up to index of Isabelle/HOLCF/IOA/ABP

theory Abschannel
imports IOA Action Lemmas

(*  Title:      HOLCF/IOA/ABP/Abschannel.thy
Author: Olaf Müller
*)


header {* The transmission channel *}

theory Abschannel
imports IOA Action Lemmas
begin


datatype 'a abs_action = S 'a | R 'a


(**********************************************************
G e n e r i c C h a n n e l
*********************************************************)


definition
ch_asig :: "'a abs_action signature" where
"ch_asig = (UN b. {S(b)}, UN b. {R(b)}, {})"


definition
ch_trans :: "('a abs_action, 'a list)transition set" where
"ch_trans =
{tr. let s = fst(tr);
t = snd(snd(tr))
in
case fst(snd(tr))
of S(b) => ((t = s) | (t = s @ [b])) |
R(b) => s ~= [] &
b = hd(s) &
((t = s) | (t = tl(s)))}"


definition
ch_ioa :: "('a abs_action, 'a list)ioa" where
"ch_ioa = (ch_asig, {[]}, ch_trans,{},{})"



(**********************************************************
C o n c r e t e C h a n n e l s b y R e n a m i n g
*********************************************************)


definition
rsch_actions :: "'m action => bool abs_action option" where
"rsch_actions (akt) =
(case akt of
Next => None |
S_msg(m) => None |
R_msg(m) => None |
S_pkt(packet) => None |
R_pkt(packet) => None |
S_ack(b) => Some(S(b)) |
R_ack(b) => Some(R(b)))"


definition
srch_actions :: "'m action =>(bool * 'm) abs_action option" where
"srch_actions akt =
(case akt of
Next => None |
S_msg(m) => None |
R_msg(m) => None |
S_pkt(p) => Some(S(p)) |
R_pkt(p) => Some(R(p)) |
S_ack(b) => None |
R_ack(b) => None)"


definition
srch_ioa :: "('m action, 'm packet list)ioa" where
"srch_ioa = rename ch_ioa srch_actions"

definition
rsch_ioa :: "('m action, bool list)ioa" where
"rsch_ioa = rename ch_ioa rsch_actions"


definition
srch_asig :: "'m action signature" where
"srch_asig = asig_of(srch_ioa)"


definition
rsch_asig :: "'m action signature" where
"rsch_asig = asig_of(rsch_ioa)"


definition
srch_trans :: "('m action, 'm packet list)transition set" where
"srch_trans = trans_of(srch_ioa)"

definition
rsch_trans :: "('m action, bool list)transition set" where
"rsch_trans = trans_of(rsch_ioa)"


end