
HDF4.2r1 SZIP Release Notes

SZIP compression was first available in HDF4.2r0. HDF4.2r1 has substantial bug fixes and
changes in the use of SZIP. This document summarizes the important changes in HDF4.2r1
support for SZIP compression.

SZIP compression was nearly completely broken in HDF4.2r0.1 Users should upgrade to
HDF4.2r1 as soon as possible. Any data compressed with SZIP using HDF4.2r0 may or may not
be accessible.

Szip has been extensively tested with HDF4.2r1, but has not been user-tested. Users are
encouraged to use Szip and report any problems to NCSA as soon as possible.

1. Capability

SZIP compression can be used to as an option to compress data in an SDS under certain
circumstances. SZIP compression is not available for GR images or any other type of object in
HDF4.

SZIP compression is optional. The HDF4 library can be built without SZIP, with SZIP decoder
only (read only), or with SZIP encoder and decoder.

SZIP can be used for data of any SDS data type, and for fixed-dimension arrays of any size or
dimensions. However, a dataset with an unlimited dimension cannot be compressed with SZIP or
any other compression method.

SZIP can be used for regular and chunked datasets, with the following limitation. When a
regular (non-chunked) SDS is compressed, it can be written once and then read; but cannot be
updated. A chunked dataset can be updated. (This restriction is similar to the behavior of Deflate
(GZIP) compression.)

The SZIP compression algorithm requires several parameters. When used with HDF4 only two
parameters need to be set by the calling program:
• Entropy or Nearest Neighbor coding
• Pixels per block

All other parameters are set by the HDF4 library, as explained below.

2. Usage

SZIP is used the same as other compression methods in HDF4.

1 It is important to note that the problems were in the integration of SZIP support in the HDF4
library. The SZIP library did not have significant problems, and the HDF5 integration of SZIP
does not have problems.

 - 1 -

2.1. Applying SZIP compression

SZIP compression is applied to an SDS by calling SDsetcompress or SDsetchunk functions
with the appropriate settings. The compression type is set to COMP_CODE_SZIP and set the two
SZIP parameters, pixels_per_block, and the encoding option in the comp_info structure.

Figure 1 shows the SZIP parameters of the comp_info union. Table 1 defines the parameters.

typedef union tag_comp_info
 {
 struct
 {
 int32 options_mask; /* IN */
 int32 pixels_per_block; /* IN */
 int32 pixels_per_scanline; /* OUT: computed */
 int32 bits_per_pixel; /* OUT: size of NT */
 int32 pixels; /* OUT: size of dataset or chunk */
 }
 szip; /* for szip encoding */

 } comp_info;

Figure 1. The comp_info for SZIP.

Table 1. SZIP parameters (* = automatically set by the HDF library during SDsetcompress call.)

Parameter IN/OUT Definition
pixels_per_block IN Number of data elements in SZIP block (2-32)
options_mask IN Szip encoding scheme and other options.
bits_per_pixel OUT* Number of bits in the HDF data type, e.g., DFNT_FLOAT will

be 32 bits per pixel
pixels OUT* Number of elements in the SDS, dim[0] * dim[1] * …
pixels_per_scanline OUT* Set according to heuristic.

Figure 2 shows a sketch of the code to enable SZIP compression for an SDS. In the example, the
SZIP parameters are set to use Entropy Coding and 2 pixels per block. The SDsetcompress call
checks that SZIP is available, and makes sure that the parameters are correct. Other parameters
to SZIP are set automatically by the HDF library.

Similar calls are made to set SZIP compression and chunking for a chunked dataset.

 - 2 -

#include “hdf.h”
#include “szlib.h”

comp_info c_info;

 /* open file, create SDS, etc. */

 /* Initialize SZIP Compression:
 in this case, select entropy coding */
 c_info.szip.pixels_per_block = 2;
 c_info.szip.options_mask |= SZ_EC_OPTION_MASK;

 /* enable compression */
 status = SDsetcompress (sds_id, COMP_CODE_SZIP, &c_info);

Figure 2. Sketch of code to enable SZIP compression for an SDS dataset.

2.2. Writing and Reading Data

A compressed dataset is written with SDwritedata (or SDwritechunk), and read with
SDreaddata (or SDreadchunk). These calls are the same for compressed or uncompressed data.

The compression parameters can be discovered with Sdgetcompress (or SDgetchunk), which
returns the comp_type, COMP_CODE_SZIP, and the comp_info union (Figure 3). The compression
information includes the parameters automatically set by the library. Table 1 above describes the
fields in the comp_info returned by SDgetcompress.

 /* Sdstart, Sdselect, etc. */

 status = SDgetcompress (sds_id, &c_type, &c_info);

 if (c_type == COMP_CODE_SZIP) {
 printf("SZIP coder params:\n");
 printf(" pixels_per_block = %d\n", c_info.szip.pixels_per_block);
 if (c_info.szip.options_mask & SZ_NN_OPTION_MASK) {
 printf("NN option\n");
 } else if (c_info.szip.options_mask & SZ_EC_OPTION_MASK) {
 printf("EC option\n");
 }
 printf(" pixels_per_scanline = %d\n", c_info.szip.pixels_per_scanline
);
 printf(" bits_per_pixel = %d\n", c_info.szip.bits_per_pixel);
 printf(" pixels = %d\n",c_info.szip.pixels);
 }

Figure 3. Reading SZIP compression Information.

 - 3 -

2.3. Configurations of SZIP

As discussed above, the SZIP library can be configured with encoding disabled or enabled. A
program can discover if the SZIP encoder is enabled by calling the HDF4 function
HCget_config_info. This function returns an integer, with bits set to indicate if the decoder and
encoder are present. (If SZIP is not available at all, both the decoder and encoder will be reported
to be disabled.) This function works for any compression method, although SZIP is the only
compression method to date that has an optional encoder. Figure 4 shows a sketch of how this
function can be used.

uint32 comp_config;

 status = HCget_config_info(COMP_CODE_SZIP , &comp_config);
 if ((comp_config & COMP_DECODER_ENABLED|COMP_ENCODER_ENABLED) == 0)
 {
 /* coder not present?? */
 printf("SZIP not configured\n");
 exit(1);
 }
 if ((comp_config & COMP_DECODER_ENABLED) == 0) {
 /* decoder not present?? */
 printf("SZIP encoding not allowed\n");
 exit(1);
 }

 /* SZIP is present and encoder works */

Figure 4. Sketch of code to detect the presence of SZIP, and the SZIP encoder.

The HDF4 library checks for the presence of SZIP and the availability of SZIP encoding, and
returns failure if the operation cannot be performed. There are three possibilities: no SZIP library
at all, SZIP decoder only, and SZIP encoder and decoder. Table 2 summarizes the behavior of
the HDF functions in these cases.

It is not possible to create a new dataset with SZIP compression (SDsetcompress) unless SZIP
encoding is available. When SZIP is not available, or encoding is disabled, SDsetcompress will
fail, and the dataset will not be compressed with SZIP.

Even when a program is compiled without SZIP or with decode only, it still may open files that
contain SDS datasets compressed with SZIP. When the SZIP encoder is disabled, data can be
read and decompressed.2 Also, the SZIP parameters used to compress the dataset can be read
from the file.

A dataset cannot be written (updated) unless SZIP encoding is enabled. If a program opens a
dataset that was compressed with SZIP, and then tries to write data into it, the write will fail and
no data will be written if encoding is disabled.

2 The file must be opened read only, i.e., SDstart(FILE, DFACC_RDONLY). If the file is opened
with DFACC_RDWR the SDreaddata will fail.

 - 4 -

While compression is only available through the SD interface, the data in the datasets may also
be read and updated through the old DFSD interface. It is not certain that the DFSD interface
will always work correctly with SZIP, so users are advised not to use the DFSD interface.

Table 2. Behavior of HDF functions, depending on SZIP configuration.

SD function SZIP available (compress and
decompress)

SZIP encoder not
available
(decompress only)

No SZIP
available

SDsetcompress Checks the input parameters,
and sets:
• bits per pixel to the size of

the HDF data type
• pixels to the number of

data elements, i.e., the
dimensions of the SDS

• pixels_per_block to an
appropriate value.

Succeed.

Fail Fail

SDreaddata,
SDreadchunk

Succeed Succeed (if
DFACC_RDONLY)

Fail

SDgetcompress,
SDgetchunk

Succeed Succeed Succeed

SDwritedata If not chunked, partial write
fails.
Otherwise, succeed.

Fail (This can occur if a
program opens a file
created by another
program.)

Fail

SDwritechunk Succeed. Fail Fail
Other functions Succeed Succeed Succeed

3. Compatibility Issues

There have been several important fixes and improvements, so users should upgrade to SZIP 2.0
and HDF4.2r1 as soon as possible.

3.1. File Format Changes between HDF4.2r0 and HDF4.2r1

The format changes are documented in the File Format Specification.

Briefly, in the compressed data element, the compressed data is prefixed by two fields:

1) 1 byte, 0 == compressed, 1== not compressed.
2) 4 bytes, size of the compressed data

In some unfavorable cases, the compressed data may be larger than the original data. When this
happens, the original data is written and the first byte is set to ‘1’. The next 4 bytes indicate the
number of bytes of good data, which may be smaller than the allocated space. When data is
updated, the compressed data may be smaller than the previous compressed data.

 - 5 -

 - 6 -

In addition, one byte of the SZIP extended tag options_mask is reserved for HDF. One bit of
this byte is set to indicate that the new format (HDF4.2r1) is used in the data.

These changes are transparent to user programs.

3.2. Changes to Program Source and Linking

HDF4.2r1 requires SZIP2.0 and will not link correctly with earlier versions of SZIP.

In HDF4.2r1 the comp_info structure for SZIP parameters was modified. Some source code may
need to be modified to remove references to the field c_info.szip.compression_mode.
In HDF4.2r1 SZIP parameters had to be coded into the application. Source code that sets SZIP
compression should be changed to include “szlib.h”, and use the SZIP parameters defined in that
file (e.g., see Figure 2, above).

In 4.2r0 all the SZIP parameters needed to be set before calling SDsetcompress. This is not
necessary in HDF4.2r1, so program source should be changed to set only the pixels_per_block
and options_mask, as in Figure 2.

3.3. Data compatibility

There were serious bugs and limitations in HDF4.2r0. In many cases, data could not be
successfully written with SZIP, or could not be read after writing with SZIP. Any data that was
written using SZIP in HDF4.2r0 should be examined very carefully to make sure it is valid.

HDF4.2r1 fixed many of the bugs from HDF4.2.0, and corrected many limitations. These fixes
required changes to the file format, which are incompatible with HDF4.2r0.

Programs compiled with HDF4.2r0 cannot decompress SDS datasets compressed with SZIP
created by HDF4.2r1. Programs compiled with HDF4.2r1 should be able to decompress data
compressed with SZIP by HDF4.2r0. However, given the severe problems in the earlier code,
data written with HDF4.2r0 might or might not be readable. Table 3 summarizes the
compatibility of data between the old and new library.

Table 3. Compatibility of Data between HDF4.1r0 and HDF4.2r1

 Written with HDF4.2r0 (old) Written with HDF4.2r1
(new)

Read with HDF4.2r0 (old) ? (bugs) No
Read with HDF4.2r1 (new) Yes

(if no bug when written)
Yes

Update with HDF4.2r1
(new) (chunked data)

Yes
(if no bug when written, writes

in new format)

Yes

	1. Capability
	2. Usage
	
	2.1. Applying SZIP compression
	2.2. Writing and Reading Data
	2.3. Configurations of SZIP

	3. Compatibility Issues
	3.1. File Format Changes between HDF4.2r0 and HDF4.2r1
	3.2. Changes to Program Source and Linking
	3.3. Data compatibility

