ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

NAME
argtable2 — an ANSI C library for parsing GNU style command line options

SYNOPSIS
#include <argtable2.h>

structarg_lit
structarg_int
structarg_dbl
structarg_str
structarg_rex
structarg_file
structarg_date
structarg_rem
structarg_end

structarg_xxx* arg_xxx((...)
structarg_xxx* arg_xxx1(...)
structarg_xxx* arg_xxxn(...)

int arg_nullcheck(void **argtable)

int arg_parseint argc, char **argyvoid **argtable)

void arg_print_option (FILE *fp, const char *shortopts, const char *longopts,
const char *datatype, const char *suffix)

void arg_print_syntax(FILE *fp, void **argtable, const char *suffix)

void arg_print_syntaxv(FILE *fp, void **argtable, const char *suffix)

void arg_print_glossary(FILE *fp, void **argtable, const char *format)

void arg_print_glossary_gnuFILE *fp, void **argtable)

void arg_print_errors (FILE *fp, struct arg_end *end, const char *progname)

void arg_freetablg(void **argtable, size_t n)

DESCRIPTION
Argtable is an ANSI C library for parsing GNU style command liggiiseents with a minimum of fuss. It
enables the programmer to define their progsagument syntax directly in the source code as an array of
structs. The command line is then parsed according to that specification and the resulting values stored
directly into user—defined program variables wherg tne accessible to the main program.

This man page is only for reference. Introductory and advanced texts on argtable shusaldhie an this
system in pdf, html, and postscript from undesr/local/share/doc/argtable2/along with &le source
code. Alternatiely refer to the argtable homepage at http://argtable.sourceforge.net.

Constructing an arg_xxx data structure
Eacharg_xxx struct has it own unique set of constructor functions and while these may differ slightly
betweerarg_xxx structs, thg are generally of the form:

structarg_xxx* arg_xxx0 (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_xxx* arg_xxx1 (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_xxx* arg_xxxn (const char *shortopts, const char *longopts, const char *datatype, int mincount,
int maxcount, const char *glossary)

Thearg_xxx0() andarg_xxx1() forms are merely abbreviated formsasf)_xxxn() and are provided as a
corvenience for the most common arrangements of command line options; namely thosevéhat ha
zero—or—one occurrences (mincount=0,maxcount=1) and those tteatrteaexactly one occurrence (min-
count=1,maxcount=1) respecy.

The const char* shortoptparameter defines the optiershort form tag (g: —x, —k3, —D"macro"). It can
be left as NULL if a short option is not required, otherwise use it to specify the desired short option

Argtable2-11 Jaa0o0s8 1

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

character in the string (without the leading "-" and withoytwahitespace). & example, the short option
-v is defined simply as "v". In fact, a command line option mase hreultiple alternate short form tags
defined for it by concatenating the desired characters into the shortopts Buirigstance "abc" defines
an option which will accept grof the three equalent short forms —a, —b, —c interchangeably.

Theconst char* longoptparameter is similar tshortopts except it defines the optiosmlong form tags @
——help, ——depth=3, ——name=myfile.txt)t too can be left as NULL if not required, and it too cameha
multiple equvalent tags defined but these must be separated by confioraexample, if we wish to define
two equivalent long options ——quiet and ——silent then we woulg dbngopts as "quiet,silent". Remember
not to include apwhitespace.

If both shortoptsandlongoptsare gven as NJLL then the resulting option is an untagged argument.

The const char* datatyp@arameter is a descripéi gring you can use to customize the appearance of the
argument data type in error messages and so forth. It doedeuitthé actual data type definition as that is
a fixed property of thearg_xxx struct. Sofor example, defining datatypeof "<bar>" will result in the
option being display something éK'—x <bar>" or "--foo=<bar>" depending upon your option taffs.
given as NULL, the datatypestring will revert to the default value for the particularg_xxx struct. You

can effectiely disable the default by specifyimtatatypeas an empty string.

The int mincountparameter specifies the minimum number of occurrences that the option must appear on
the command line. If the option does not appear at least thgttmees then the parser reports it as a syn-
tax error Themincountdefaults to 0 for tharg_xxx0() functions and 1 foarg_xxx1() functions.

The int maxcounfparameter specifies the maximum number of occurrences that the option may appear on
the command line Any occurrences beyond the maximum are discarded by the parser reported as syntax
errors. Thanaxcountefaults to 1 for both tharg xxx0() andarg_xxx1() functions.

The const char* glossarparameter is another descmjgtigring but this one appears in the glossary table
summarizing the prograsi’ocommand line optionsThe glossary table is generated automatically by the
arg_print_glossary function (see later).df example, a glossary string of "the foobar factor" would appear
in the glossary table along side the option something like:

——foo=<bar> the foobar factor
Specifying a NULL glossary string causes that option to be omitted from the glossary table.
See belw for the exact definitions of the individualg_xxx structs and their constructor functions.

FUNCTION REFERENCE
int arg_nullcheck (void **argtable)
Returns non-zero if thargtable[] array contains gnNULL entries up until the terminatingrg_end*
entry Returns zero otherwise.

int arg_parse (int argc, char **argv, void **argtable)
Pase the command line argumentsamgv[] using the command line syntax specifiecigtable[], return-
ing the number of errors encounterdgtror details are recorded in the argument talzleg_end structure
from where thg can be displayed later with ttegg_print_errors function. Upona auccessful parse, the
arg_xxx structures referenced argtable[] will contain the argument values extracted from the command
line.

void arg_print_option (FILE *fp, const char *shortopts, const char *longopts, const char *datatype, const
char *suffix)
This function prints an optiog’syntax, as in-K|-—-scalar=<int>, where the short options, long options,
and datatype are allgin as arameters of this function. It is primarily used within #rg_xxx structures’
errorfn functions as a way of displaying an opt®®gyntax inside of error messages.wwer, it can also
be used in user code if desiretihe suffixstring is provided as a ceenience for appending newlines and
so forth to the end of the display and can lergas NJLL if not required.

Argtable2-11 Jaa0o0s8 2

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

void arg_print_syntax (FILE *fp, void **argtable, const char *suffix)
Prints the GNU style command line syntax for thegiargument table, as in: [-abcv] [-—scalar=<n>] [-o
myfile] <file> [<file>]
The suffixstring is provided as a ceenience for appending newlines and so forth to the end of the display
and can be gen as NJLL if not required.

void arg_print_syntaxv (FILE *fp, void **argtable, const char *suffix)
Prints the erbose form of the command line syntax for theegiargument table, as in: [-a] [-b] [-C]
[-—scalar=<n>] [-0 myfile] [-Vv|-—verbose] <file> [<file>]
The suffixstring is provided as a ceenience for appending newlines and so forth to the end of the display
and can be gen as NJLL if not required.

void arg_print_glossary (FILE *fp, void **argtable, const char *format)
Prints a glossary table describing each option in thengrgument table. The format string is passed to
printf to control the formatting of each entry in the the gloss#irynust hae exactly two "%s" format
parameters as in "%-25s %s\n", the first is for the opgtigmtax and the second for its glossary strilfg.
an options dossary string is NULL then that option in omitted from the glossary display.

void arg_print_glossary_gnu (FILE *fp, void **argtable)
An alternate form oéirg_print_glossary() that prints the glossary using strict GNU formattingventions
wherein long options are vertically aligned in a second column, and lines are wrapped at 80 characters.

void arg_print_errors (FILE *fp, struct arg_end *end, const char *progname)
Prints the details of all errors stored in #&ddata structure.The prognamestring is prepended to each
error message.

void arg_freetable (void ** argtable, size t n)
Deallocates the memory used by eadlp xxx struct referenced bgrgtable[]. It does this by callingree
for each of then pointers in the argtable array and then nulling them for safety.

LITERAL OPTIONS (struct arg_lit)
Command line examples
X, =Y, =z, ——help, ——verbose

Data Structure
structarg_lit
{
structarg_hdr hdr;
int count;
h
Constructor Functions
structarg_lit* arg_litO (const char *shortopts, const char *longopts, const char *glossary)

structarg_lit* arg_litl (const char *shortopts, const char *longopts, const char *glossary)

structarg_lit* arg_litn (const char *shortopts, const char *longopts, int mincount, int maxcount, const char
*
glossary)

Description
Literal options tak no agument \alues so all that is to be seen in &éng _lit struct is thecountof the num-
ber of times the option was present on the command Wp@n a successful parsmuntis guaranteed to
be within themincountandmaxcountimits set for the option at construction.

INTEGER OPTIONS (struct arg_int)
Command line examples
-x2, -y 7, -z-3, ——size=734, ——count 124

Argtable2-11 Jaa008 3

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

Data Structure
structarg_int

{
structarg_hdr hdr;

int count;
int *jval;
k
Constructor Functions

structarg_int* arg_int0 (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_int* arg_intl (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_int* arg_intn (const char *shortopts, const char *longopts, const char *datatype, int mincount,
int maxcount, const char *glossary

Description
The arg_int struct contains theountof the number of times the option was present on the command line

and a pointeriyal) to an aray containing the integer valuevgi with those particular options. The array
is fixed at construction time to hohdaxcounintegers at most.

Upon a successful parseguntis guaranteed to be within thmincountand maxcountlimits set for the
option at construction with the appropriate values store iivéth@array The parser will not accept anal-
ues beyond that limit.

It is quite acceptable to set default values initaearray prior to calling arg_parse if desired as the parser
does alteival entries for which no command line argument is rexki

DOUBLE OPTIONS (struct arg_dbl)
Command line examples
—x2.234, -y 7e-03, —-z-3.3E+6, ——pi=3.1415, ——tolerance 1.0E-6

Data Structure
structarg_dbl

{
structarg_hdr hdr;

int count;
double *dval;
k

Constructor Functions

structarg_dbl* arg_dblO (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_dbl* arg_dbll (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_dbl* arg_dbln (const char *shortopts, const char *longopts, const char *datatype, int mincount,
int maxcount, const char *glossary

Description
Like arg_int but the arguments values are stored as doubldgah

STRING OPTIONS (struct arg_str)
Command line examples
—Dmacro, -t mytitle, -m "my message string", ——title="hello world"

Argtable2-11 Jaa0o0s8 4

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

Data Structure
structarg_str
{
structarg_hdr hdr;
int count;
const char **sval;
3
Constructor Functions
structarg_str* arg_strO (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_str* arg_strl (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_str* arg_strn (const char *shortopts, const char *longopts, const char *datatype, int mincount,
int maxcount, const char *glossary)

Description
The arg_str struct contains theountof the number of times the option was present on the command line
and a pointerdval) to an aray containing pointers to the parsed striadues. Thearray is fixed at con-
struction time to holdnaxcountstring pointers at most. These pointers in this array reference the actual
command line string uifers stored in @v[], so the string contents should not be should not be altered.
Although it is quite acceptable to set default string pointers iswhkarray prior to calling arg_parse as the
parser does alter them if no matching command line argument igeckcei

REGULAR EXPRESSION OPTIONS (struct arg_rex)
Command line examples
"hello world", —t mytitle, -m "my message string", ——title="hello world"

Data Structure
structarg_rex
{
structarg_hdr hdr;
int count;
const char **sval;
%
Constructor Functions
struct arg_rex* arg_rex0 (const char *shortopts, const char *longopts, const char *pattern, const char
*datatype, int flags, const char *glossary)

structarg_rex* arg_rex1 (const char *shortopts, const char *longopts, const char *pattern, const char
*datatype, int flags, const char *glossary)

structarg_rex* arg_rexn (const char *shortopts, const char *longopts, const char *pattern, const char
*datatype, int mincount, int maxcount, int flags, const char *glossary)

Description
Like arg_str but but the string argument values are only accepted yfifreich a predefined regulaxmes-
sion. Theregular expression is defined by thattern parameter passed to they rex constructar The
regular expression parsing is done usingexe and its behaviour can be controlled via standagexrbit
flags which are passed to argtable viafthgs parameter in tharg_rex conbstructors. Heever the only
two regex flags that are relent to argtable are REG_EXTENDED (use extended regular expressions rather
than basic ones) and REG_ICASE (ignore case). These may be logically ORed if desiredgufimeniar
type is useful for matching command lineywords, particularly if case insens#i grings or pattern
matching is required. Seegex(3)for more details of regular expression matching.

Argtable2-11 Jaa008 5

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

Restrictions
Argtable does not suppoarg_date functionality under Microsoft \Midows platforms as the Microsoft

compilers do include the necesseggexsupport as standard.

FILENAME OPTIONS (struct arg_file)
Command line examples
—o myfile, —lhome/foo/bar—input="/doc/letter.txt, ——name a.out

Data Structure
structarg_file

{
structarg_hdr hdr;

int count;
const char **filename;
const char **basename;
const char **extension;
3
Constructor Functions
structarg_file* arg_fileO (const char *shortopts, const char *longopts, const char *datatype, const char
*glossary)

structarg_file* arg_filel (const char *shortopts, const char *longopts, const char *datatype, const char
*
glossary)

structarg_file* arg_filen (const char *shortopts, const char *longopts, const char *datatype, int mincount,
int maxcount, const char *glossary)

Description
Like arg_str but the argument strings are presumed teelfdename qualities so some additional pasring is
done to separate out the filenambasename and extension (if yhexist). Thethree arrays filename][],
basename([], extension[] each store up to maxcount entries, anthteetry of each of these arrays refer to
different components of the same string buffer.

For instance;-o0 /home/heitmann/mydir/foo.txtwould be parsed as:

filename[i] ="/home/heitmann/mydir/foo.txt"
basenameli] = "foo.txt"
extension[i] = " xt"

If the filename has no leading path then the basename is the same as the filename, and if no extension could
be identified then it is gen as NJLL. Note that filename>aensions are defined as all text from the last "."
in the filename. Thuso foowould be parsed as:

filename[i] ="foo"

basenamel[i] =foo"

extension[i] = NULL
As with aig_str the string pointers ifilename[] basename[] and exension[] actually refer to the original
argv[] command line string buffers so you should not attempt to alter them.

Note also that the parser onlyeetreats the filenames as strings andenettempts to open them as files or
perform ay directory lookups on them.

DATE/TIME OPTIONS (struct arg_date)
Command line examples
12/31/04, —d 1982-11-28, ——time 23:59

Data Structure
structarg_date

{
structarg_hdr hdr;

Argtable2-11 Jag0o0s8 6

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

const char *format;
int count;
struct tm *tmval;
3
Constructor Functions
structarg_date* arg_dateO(const char *shortopts, const char *longopts, const char *format, const char
*datatype, const char *glossary)

structarg_date* arg_datel(const char *shortopts, const char *longopts, const char *format, const char
*datatype, const char *glossary)

structarg_date* arg_daten (const char *shortopts, const char *longopts, const char *format, const char
*datatype, int mincount, int maxcount, const char *glossary)

Description
Accepts a timestamp string from the command line andectnit to struct tmformat using the system
strptime function. The time format is defined by tfeemat string passed to therg_dateconstructorand
is passed directly tstrptime. Seestrptime(3) for more details on the format string.

Restrictions
Argtable does not suppatg_date functionality under Microsoft \Widows as the Microsoft compilers do
include the necessasyrptime support as standard.

REMARK OPTIONS (struct arg_rem)
Data Structure
structarg_rem
{
structarg_hdr hdr;
h
Constructor Function
structarg_rem* arg_rem (const char* datatype, const char* glossary)

Description
The arg_rem struct is a dummy struct in the sense it does not represent a command line option to be
parsed. Insteail provides a means to include additiodatatypeandglossarystrings in the output of the
arg_print_syntax, arg_print_syntaxv, andarg_print_glossary functions As aich,arg_rem structs may
be used in the argument table to insert additional linesxbfin the glossary descriptions or to insert
additional text fields into the syntax description. It has no data members apart from the mamgatuaty
struct.

END-OF-TABLE OPTIONS (struct arg_end)
Data Structure
structarg_end
{
structarg_hdr hdr;
int count;
int *error;
void **parent;
const char **argval,
h
Constructor Function
structarg_end* arg_end(int maxerrors)

Description
The arg_end struct is primarily used to mark the end of gumaent table and doesmépresent ancom-
mand line option. Every argument table mustehan arg_endstructure as its last entry.

Argtable2-11 Jaa0o0s8 7

ARGTABLE2(3) Argtable programmes’manual ARGRBLE2(3)

FILES

Apart from terminating the argument table, #trg_end structure also stores the error codes generated by
thearg_parsefunction as it attempts to parse the command line with thee gigument table.The maxer-

rors parameter passed to they_endconstructor specifies the maximum number of errors that the structure
can store.Any further errors are discarded and replaced with the single error code ARG_ELIMIT which is
later reported to the user by the message "toymaors”. Amaxerrorslimit of 20 is quite reasonable.

Thearg_print_errors function will print the errors stored in ttegg_end struct in the same order asyhe
occurred, so there is no need to understand the internalsafjthend struct.

For those that are curious, the three arrag®r[], parent[], and argval[] are each allocatechaxerrors
entries at construction. As usual, tleuntvariable gives the number of entries actually stored in these
arrays. The samealue applies to all three arrays as the i'th entry of each all refer to different aspects of the
same error condition.

Theerror[i] entry holds the error code returned by lige scanfrnfunction of the particulaarg_xxx that is
reporting the errorThe meaning if the code is usually known only to the issamgxxx struct. The pre-
defined error codes thatg_endhandles from the parser itself are the exceptions.

Theparent][i] entry points to the pareatg_xxx structure that reported the errdrhat samearg_xxx struc-

ture is also responsible for displaying a pertinent error message when called on to do so by the
arg_print_errors function. It calls thehdr.errorfn function of each parerdrg_ xxx struct listed in the
arg_endstructure.

Lastly, the argval[i] entry points to the command line argument at which the error occurred, although this
may be NULL when there is no remt command line value. For instance, if an error reports a missing
option then there will be no matching command line argument value.

/usr/local/include/argtable2.h
lusr/local/lib/libargtable2.a
/usr/local/lib/libargtable2.so
/usr/local/man3/argtable2.3
lusr/local/share/doc/argtable2/
/usr/local/share/doc/argtable2/example/

AUTHOR

Stavart Heitmann <sheitmann@users.sourceforge.net>

Argtable2-11 Jaa008 8

