
Distel: Distributed Emacs Lisp (for Erlang)

Luke Gorrie∗

November 10, 2002

Abstract

Distel is an Emacs-based user-interface toolkit
for Erlang. We introduce “Emacs nodes” us-
ing the Erlang inter-node distribution protocol,
and make communication natural by extending
Emacs Lisp with Erlang’s concurrent program-
ming model. The extensions are intended for
creating Emacs front-ends to Erlang programs,
in combination with Emacs’s traditional user in-
terface facilities.

We present an introduction and tutorial on
Distel programming, and show how to write
a complete Erlang process manager in Emacs
Lisp. We then present a suite of Emacs
extensions for Erlang development called the
erlang-extended-mode, and describe the imple-
mentation of the Distel runtime system.

1 Introduction

Distel (rhymes with “crystal”) is intended for
controlling Erlang [1] [2] programs with Emacs.
The idea is to take the most essential features of
Erlang and integrate them into Emacs Lisp [3], so
that the two can communicate in a natural way.
The features we selected are processes, pattern
matching, and distribution, and they are repro-
duced faithfully at a high level, though many de-
tails differ. In general, higher priority is given to
neat integration with Emacs Lisp than to exact
reproduction of Erlang semantics.

The core of Distel is essentially an Erlang dis-
tribution library, much like the erl interface
for C in OTP [2], extended with ideas from the
Etos [4] Erlang-to-Scheme compiler. Whereas
Etos implements a complete Erlang compiler and
runtime system in Scheme, Distel is a hybrid sys-
tem, and implements “just enough” of Erlang to

∗luke@bluetail.com

support concurrent programming in Emacs Lisp.
In particular, Distel is implemented only with
normal Lisp functions and macros, and has no
special interpreter loop or compiler.

This paper is organised as follows. Sections
2-4 describe the Emacs Lisp programming ex-
tensions, and Section 5 uses them to present
a small but complete process-manager applica-
tion, as a tutorial for Distel application devel-
opment. Section 6 describes the implementa-
tion of Distel itself. Section 7 describes the
erlang-extended-mode and the development
tools it includes. Sections 8-10 discuss the past,
present, and future of Distel, Section 11 describes
related work, and Section 12 concludes.

2 Processes

Emacs Lisp processes are the fundamental fea-
ture of Distel, and are provided with a set of
Lisp functions and macros that correspond to
Erlang’s Built-In Functions (BIFs) and language
constructs. In fact, the programming interface
for Emacs processes is similar enough to Erlang
that the best introduction is to see how a simple
Erlang process can be rewritten in Emacs Lisp.
A message-counting Erlang process is shown in
Figure 1, and an Emacs Lisp version in Figure 2.
The similarities of the programs should help to
shed light on how the Emacs Lisp process works
– we’ll fill in the details as we go along.

We can test the Emacs message counter by
spawning one and sending it some messages:

(erl-spawn
(spawn-counter)
(erl-send ’counter ’one)
(erl-send ’counter ’two)
(erl-send ’counter ’three))

1

spawn_counter() ->
spawn(fun() ->

register(counter, self()),
counter_loop(1)

end).

counter_loop(Count) ->
receive

Msg ->
io:format("Got msg #~p: ~p~n",

[Count, Msg])
end,
counter_loop(Count + 1).

Figure 1: Message counter process in Erlang

Which will produce the following reports in the
“*Messages*” buffer:

Got msg #1: one
Got msg #2: two
Got msg #3: three

(erl-spawn ...) creates a new process. It is
a macro, and the enclosed code is executed in
the new process. The process has its own buffer,
which can be used in any way – contain text,
use modes, or visit files. The buffer isn’t dis-
played automatically, but can be made visible
with Emacs functions like display-buffer. Be-
cause each process has its own buffer, buffer-local
variables are effectively process-local – they can
be used to store process state, much like the Er-
lang process dictionary.
(erl-send who message) sends a message to

a process. The who argument accepts the same
types as Erlang’s ! operator: a PID (local or
remote), a registered name denoted by a symbol,
or a remote registered name denoted by a [name
node] vector. (Here, as elsewhere in Distel, vec-
tors are used where Erlang uses tuples.)
(erl-register name) assigns the current

process a registered name, like the register/2
BIF in Erlang.
(erl-receive saved-vars clauses after...) re-

ceives a message by pattern matching (it is more
complicated than Erlang’s receive, due to im-
plementation trade-offs discussed in Section 6.)

(defun spawn-counter ()
(erl-spawn
(erl-register ’counter)
(&counter-loop 1)))

(defun &counter-loop (count)
(erl-receive (count)

((msg (message "Got msg #%S: %S"
count msg)))

(&counter-loop (+ count 1))))

Figure 2: Message counter process in Emacs Lisp

Saved-vars names the local variables that will be
used once a message is received (other local vari-
ables become unbound.) Clauses specifies which
messages can be received and how they are han-
dled. The syntax for each clause is (pattern
body...), where pattern is an Erlang-style pat-
tern (described in Section 4), and body is one or
more Lisp expressions to run when the pattern is
matched. There are also zero or more after ex-
pressions, which run after a message is handled,
regardless of which clause matches.

Most importantly, erl-receive never returns.
Instead it bundles up the execution state and
throw’s it directly back up to a scheduler loop,
bypassing any code on the stack. This is
the biggest difference from Erlang programming
style: in Erlang a receive means “handle a mes-
sage and then return,” but erl-receive means
“this process state is complete – here is the next
one.” This is an important point for program-
ming with Distel, and leads to writing Emacs
processes in continuation-passing style [5] [6],
where “what to do afterwards” is given explicitly
to erl-receive instead of relying on the stack.

Because erl-receive doesn’t return, and nor
do functions that call it, they should only be
tail-called – called as the last thing a function
does. This rule is made explicit in Distel pro-
grams by the convention of naming each function
that leads to erl-receive with an “&” prefix, so

2

that we know to only call it in tail position. The
& naming is applied to all functions that call ei-
ther erl-receive or another &-function, except
when the calls are wrapped in an erl-spawn, be-
cause erl-spawn catches the throw and returns
normally.

Returning to Figure 2, we can see that
&counter-loop is specially named because it di-
rectly calls erl-receive, while spawn-counter
is not because although it calls an &-function, it
does so inside an erl-spawn.

3 Distribution

Emacs processes can communicate directly with
actual Erlang processes in other nodes, via the
Erlang distribution protocol [7]. Like in Erlang,
most BIFs accept either local or remote PIDs,
for example erl-send, erl-link, erl-exit, and
so on. The Erlang method of sending messages
to remote registered processes also works, so to
achieve:

{foo, bar@cockatoo} ! Message.

We write the equivalent:

(erl-send [foo bar@cockatoo] message)

This simple mechanism suffices to bootstrap
full communication, because normal Erlang
nodes automatically run a set of useful regis-
tered servers. The RPC server, registered with
the name rex, is the most handy – it receives re-
quests to apply a function with some arguments,
and sends back the results. This server is used
throughout Distel programs to make RPCs to Er-
lang nodes.

Of course, when a message is sent from Emacs
to Erlang (or vice-versa), it is necessary to trans-
late the data in the message between languages.
In other words, we need a mapping between Er-
lang types and Emacs Lisp types. For Distel we
have chosen a mapping that is convenient to use,
though not complete or symmetric.

Some types map perfectly: lists, atoms with
symbols, tuples with vectors. Integers are
mapped directly, but the mapping is partial
because Emacs Lisp integers are only 27 bits

(Emacs has no bignums.) PIDs, Ports, and Ref-
erences are mapped onto vector-based structures,
and tagged with a special uninterned symbol1 to
distinguish them from the vectors used for tuples.

Mapping strings from Erlang to Emacs Lisp is
troublesome. The Erlang binary term encoding
includes a string type, but it is used loosely – you
never know whether an Erlang string will be en-
coded as a string or as a list of integers. To side-
step the problem, Erlang binaries are mapped
onto Emacs strings, and we always use binaries to
reliably send text to Emacs. Emacs Lisp strings
are mapped onto Erlang strings.

Other types, such as floats and functions, are
not yet mapped, and attempting to send them
triggers an error.

4 Pattern Matching

Distel has three pattern matching macros, one
being erl-receive, which has already been in-
troduced. Each macro uses the same pattern syn-
tax, described below.
(mlet pattern object body...) matches object

with pattern, and on success executes the body
forms with all pattern variables bound. If the
match fails, an error is signalled. mlet is similar
to Erlang’s = operator.
(mcase object clauses) matches an object with

a series of clauses, where the syntax of each clause
is (pattern body...). The first clause whose pat-
tern successfully matches is selected, and its body
forms are then executed with all pattern vari-
ables bound. If no clause matches, an error is
signalled. mcase is of course based on Erlang’s
case expressions.

4.1 The Pattern Syntax

The pattern syntax is very similar to Erlang,
though it lacks guards in the current implementa-
tion. The syntax is specified below, and followed
by some examples.

Trivial: t, nil, [], 42, ...

Constants, matched literally.

1An uninterned symbol in Emacs Lisp is like a ref in
Erlang, but it looks like a symbol.

3

Sequence: (pat1 ...), [pat1 ...]

Sequence patterns match the “shape” of the
sequence, as well as each individual sub-
pattern. The pattern can be either a list
or a vector, and will only match a sequence
of the same type.

Pattern variable: var, my-variable, ...

Symbols denote variables that the pattern
should bind. The first time a particular
variable is used it binds to the correspond-
ing value, and then further occurrences must
match this bound value.

Following a successful pattern match, a Lisp
variable is bound for each pattern variable.

Constant: ’symbol, ’(x y z)

Quoted constants are matched literally by
value.

Bound variable: ,var

The pattern ,var matches the value of the
pre-bound Lisp variable var. This is like
using an already bound variable in a pattern
in Erlang.

Wild card: (underscore)

Matches anything, with no binding.

For example, the Erlang code:

case Result of
{ok, Value} -> Value;
{error, Reason} -> exit(Reason)

end

could be written in Lisp as:

(mcase result
([’ok value] value)
([’error reason] (erl-exit reason)))

and similarly,

{ok, Value} = Result,
Value

could be written as:

(mlet [’ok value] result
value)

5 A Process Manager

This section describes the design and implemen-
tation of a small but complete process-manager
application. The program does two things: it
presents a list of the processes running on an Er-
lang node, and it provides some commands to
operate on them. The process list is shown in
an Emacs buffer, with a one-line summary for
each process. The summary line shows the PID,
registered name (if any), number of reductions,
and number of unreceived messages, as shown in
Figure 3.

The first step in designing the application is to
divide up the work between Emacs and Erlang,
and decide how they will interact. The goals are
to do the work on the side that makes it the easi-
est, and to keep the program simple by minimis-
ing the interactions.

The task for the Erlang side of the process
manager is to create formatted summaries of all
the processes in the system, ready for Emacs to
display. The Emacs side then must fetch a pro-
cess list, display it in a buffer, and provide some
commands for operating on the processes. The
interactions are driven from Emacs, using RPCs
to the rex server (mentioned in Section 3.)

5.1 The Erlang Side

The Erlang side is implemented by the procman
module of Figure 4, which exports the function
process list/0. This function returns the PID
and a one-line summary of each process in the
node, plus an extra line containing column head-
ings to match the summary lines. Note that all
the text is returned as binaries, to avoid the prob-
lem with strings discussed in Section 3.

Pid Name Reds Msgs
<0.0.0> init 3836 0
<0.2.0> erl_prim_loader 45203 0
<0.4.0> error_logger 245 0
<0.5.0> application_contr 2414 0
<0.7.0> <none> 59 0

Figure 3: Process Manager “screenshot”

4

-module(procman).

-export([process_list/0]).

%% Returns: {ok, Header, [ProcessInfo]}
%% ProcessInfo = {Pid, Summary}
%% Header = Summary = binary()
%%
%% Returns a one-line summary of each
%% running process along with its pid,
%% plus a heading that matches the
%% summary format.
process_list() ->

{ok,
fmt_row("Pid", "Name", "Reds", "Msgs"),
[{P, info(P)} || P <- processes()]}.

info(Pid) ->
PidName = pid_to_list(Pid),
Reg = item(Pid, registered_name),
Reds = item(Pid, reductions),
Msgs = item(Pid, message_queue_len),
fmt_row(PidName, Reg, Reds, Msgs).

item(Pid, Item) ->
case process_info(Pid, Item) of

{Item, Value} -> to_string(Value);
[] -> "<none>"

end.

fmt_row(A,B,C,D) ->
list_to_binary(
io_lib:format("~-8s ~-17s ~-10s ~s~n",

[A,B,C,D])).

to_string(X) ->
io_lib:format("~p", [X]).

Figure 4: Erlang side of process manager

(defun pman (node)
"Show a list of all processes on NODE."
(interactive (list (erl-read-nodename)))
(erl-spawn

(display-buffer (current-buffer))
(erl-send-rpc
node ’procman ’process_list ’())
(erl-receive ()

(([’rex [’ok header plist]]
(pman-insert header plist)
(erl-idle))

([’rex [’badrpc reason]]
(message "RPC failed: %S"

reason))))))

(defun pman-insert (header plist)
"Insert all process information.
PLIST is a list of [PID Summary]."
(insert header)
(dolist (pinfo plist)
(mlet [pid text] pinfo
(insert
(propertize text

’pid pid)))))

Figure 5: Emacs pman process

5.2 The Emacs Lisp Side

The job for the Emacs program is to call
process list/0 on some Erlang node and
present the result. It must also record an as-
sociation between summary text in a buffer and
the PID of the process it represents, so that later
we can write commands to operate on the pro-
cess represented by a particular line of text. The
code for the Emacs process is given in Figure 5.

The command pman creates an Emacs process
and uses it to display the process list. The com-
mand takes one parameter, the Erlang node to
summarise. The interactive declaration says
that when the command is called interactively
(by a key binding or M-x), erl-read-nodename
is called to choose the node. This function is
predefined, and will either prompt the user for a
node or reuse the most recently chosen one from
a cache.

5

The body of the function is wrapped in an
erl-spawn, so it runs in a new process. Be-
cause an Emacs process has its own buffer, we
use display-buffer to show it on the screen di-
rectly.

Next, the process sends an RPC to the Er-
lang node to call procman:process list(). The
predefined erl-send-rpc function is similar to
rpc:call/4 in Erlang, its parameters are node,
module, function, and arguments. The RPC
server sends back the result in a {rex, Result}
message, so we have an erl-receive with two
patterns: one to receive the summary informa-
tion on success, and one to handle any error on
the Erlang side (for example, the procman mod-
ule not being available.) If the summary arrives
successfully, it is inserted into the buffer, and
then the process calls erl-idle to enter an idle
loop. The idle loop is like a receive with no pat-
terns, meaning “schedule out indefinitely.” If we
had just returned without entering a receive, the
process would terminate with reason normal and
the user-interface buffer would be killed.

The pman-insert function takes the data we
got from Erlang and puts it into the buffer for dis-
play. The header line is inserted at the top, then
each summary is destructured with the mlet pat-
tern matching macro and inserted. To preserve
the association between the summary text and
the process it represents, we use an Emacs fea-
ture called “text properties,” which allows text in
strings and buffers to be tagged with arbitrary
key/value properties. The call to propertize
tags the summary line with a pid property, so
that later we can use get-text-property to look
up the PID belonging to a piece of text in the
buffer.

The process summary part is now complete,
and running “M-x pman” will display a summary
buffer as we showed in Figure 3.

What remains is to define a way to do things
with the processes. Figure 6 shows a com-
mand to kill the process on the current line. It
finds out which process we want to kill by call-
ing get-pid-at-point, which looks up our pid
property at the current location in the buffer
(i.e. where the cursor is). Then it sends the
process an exit signal with reason kill via the
built-in erl-exit function, which is equivalent
to erlang:exit/2.

(defun pman-kill ()
"Kill the process under the cursor."
(interactive)
;; send an EXIT signal to the process
(erl-exit ’kill (get-pid-at-point)))

(defun get-pid-at-point ()
"PID of the process at the point."
(or (get-text-property (point) ’pid)

(error "No process at point")))

Figure 6: Emacs kill process command

A command for displaying a process backtrace
is shown in Figure 7. This is more involved than
killing a process, because we must send a request
for the backtrace and then receive and display the
reply asynchronously. We achieve this by spawn-
ing a new process to request the backtrace, and
then display the result in its own buffer when the
reply arrives.

Before spawning the new process, we look up
the PID that we want a backtrace for. We do this
first because the code inside the erl-spawn will
run in the new process’ buffer, and the lookup
has to be done in the buffer that has the pro-
cess list. Next the new process is spawned, and
uses pop-to-buffer to make its own buffer visi-
ble somewhere on the screen.

The process then makes an RPC to
erlang:process info(Pid, backtrace). The
return type is {backtrace, BacktraceBinary},
which is very convenient for our purposes, since
the binary will be received as a string. When
the result arrives, we simply insert the backtrace
text into the buffer, and enter an idle loop.

5.3 Summary

This procman application, though simple, is com-
plete and useful. The approach to design used
here is a good one: minimise the interactions,
and do things where they are easiest. It is of-
ten best for Erlang to spoon feed Emacs, just as
the procman:process list/0 function returns a
structure that is trivial for Emacs to display.

6

(defun pman-backtrace ()
"Show backtrace of process at cursor.
The backtrace pops up in a buffer."
(interactive)
(let ((pid (get-pid-at-point)))
(erl-spawn
(pop-to-buffer (current-buffer))
(send-backtrace-rpc pid)
(erl-receive ()

(([’rex [’backtrace text]]
(insert text)
(erl-idle))
([’rex [’badrpc reason]]
(message "RPC failed: %S"

reason)))))))

(defun send-backtrace-rpc (pid)
"Send an RPC for the backtrace of PID."
(erl-send-rpc (erl-pid-node pid)

’erlang
’process_info
(list pid ’backtrace)))

Figure 7: Emacs “backtrace” command

6 Runtime System

The Distel runtime system creates and schedules
processes, delivers their messages, cleans up after
their errors, and communicates with other nodes
on the network. This section sketches the gory
details of the implementation, and is not required
reading for the rest of the paper.

6.1 Processes and Scheduling

An Emacs Lisp process is represented as an
Emacs buffer, with all of its identity and
state stored in buffer-local variables. The ac-
tual variables we use are erl-self (the PID),
erl-mailbox, erl-links, and so on. There
are also some cute mappings of process me-
chanics onto Emacs buffers, for example the
kill-buffer-hook is used to propagate exit sig-
nals, and registered names are implemented with
buffer names of “*reg name*”. Note that be-
cause all process state is stored in buffer-local

variables, context-switching just means changing
buffers.

While a process is scheduled out, its state
also includes a continuation function that can
be called to resume execution from where it left
off. We only ever schedule a process out when
it blocks to wait for a message, so the continu-
ations are created by erl-receive. The extra
arguments that erl-receive requires reflect the
difficulty of capturing the control state in Emacs
Lisp, which lacks lexical closures and first-class
continuations.

Each time a new process is spawned, or a
message arrives from the network, the sched-
uler loops by invoking processes one at a time
until they have all terminated or blocked in a
receive. The scheduler invokes a process by
switching to its buffer and then calling the con-
tinuation function, which does what it does
and then either throws back a new continua-
tion via erl-receive, raises an error, or sim-
ply returns. If it returns a new continuation
then the process is scheduled out until a new
message arrives, otherwise it is terminated by
setting an erl-exit-reason variable and then
killing its buffer (which propagates an exit signal
via kill-buffer-hook.) This simple scheduler
is based on a technique called Trampolined Style
[8].

While a process is scheduled in and running,
it can call BIFs to send messages and to do
other process-related things. The semantics of
BIFs are based on the Erlang 4.7 specification
[9], and their implementation is very simple, av-
eraging about 5 lines of code each. For exam-
ple, when (erl-send P M) is called, it either
passes the request to the distribution module (if
P is remote), or just switches into P ’s buffer,
adds M to the end of erl-mailbox, and marks
the process as schedulable. Similarly, if process
P calls (erl-link Q), then Q is added to the
erl-links list of P , and either the same is done
with Q or the request is handed off to distribu-
tion, depending on whether Q is local.

6.2 Network Distribution

Distribution over the network is built from three
modules: a library for binary encoding, a frame-
work for writing network-attached state ma-

7

chines, and the state machine for the Erlang dis-
tribution protocol [7]. The binary coding library
is a straightforward implementation of the Er-
lang external term format [10] using the map-
ping from Section 3. The networking framework
supports writing simple state machines and at-
taching them to TCP sockets, with the crucial
property of being purely event-driven and using
non-blocking I/O. It is necessary that all I/O
be done asynchronously, to avoid freezing Emacs
while a background task waits on I/O – an of-
ten lamented property of many other Emacs net-
working programs.

The Distributed Erlang state machine first au-
thenticates itself and negotiates features, and
then serves requests bidirectionally. The imple-
mentation is straightforward because the distri-
bution protocol is very high level – each message
maps neatly onto a BIF. The messages imple-
mented in Distel are:

• SEND(PID, MSG)

• LINK(FROM, TO)

• UNLINK(FROM, TO)

• EXIT(FROM, TO, REASON)

• REG SEND(FROM, NAME, MSG)
Send a message addressed by registered
name. The PID of the sender is included
so that an EXIT signal can be sent back if
no such name is registered.

When a request arrives from another node, the
arguments are decoded and the corresponding
BIF is called. Similarly, when an Emacs BIF
is called with a remote process, the request is
encoded and forwarded to the node where the
process is running – perhaps first being queued
while a TCP connection is established.

Optional extensions, such as process monitor-
ing, have not yet been implemented.

7 Applications

The Distel software distribution includes a vari-
ety of applications and tools for Erlang develop-
ment. These tools are unified with a minor mode

called the erlang-extended-mode, which com-
plements the standard erlang-mode. The ma-
jor features are described below, along with their
commands and key bindings.

7.1 Dynamic “TAGS”

Distel includes a small source code cross-
referencer for Erlang. The basic feature is to
jump from a function call in a program to the
definition of that function – for instance from the
text lists:sort(L) to the definition of sort/1
in lists.erl. The feature is similar to etags
[3], but uses an Erlang node to dynamically find
the right source files, instead of a statically gen-
erated database. The advantage is that running
an Erlang node is a lot easier than maintaining
a TAGS file, so the feature can be used all the
time.

erl-find-source-under-point (M-.)

Jump to a function definition. The defini-
tion will be chosen from the text at the point
– either a function call, or declaration in an
export list.

erl-find-source-unwind (M-*)

Jump back from a function definition. This
is a multi-level way to backtrack after fol-
lowing a chain of function definitions.

7.2 Debugger

An Erlang debugger interface, called edb, is
also included with Distel. This uses the same
interpreter-based back-end as the OTP debugger
application, but replaces the Tk-based front-
end with an Emacs interface. Erlang mode
buffers can use edb commands to toggle debug-
interpretation of a file, toggle a breakpoint on a
line, and to pop up a “monitor buffer” to view
and control debugged processes.

The monitor buffer shows all processes running
debugged code, and lets you “attach” to any pro-
cess that is stopped in a breakpoint. Attaching to
a process pops up a buffer containing the source
code of the process’s current module, with a vi-
sual marker pointing to the current line. From
this buffer the process can be single-stepped, its
local variables can be inspected, and so on.

8

edb-toggle-interpret (C-c C-d i)

Toggle debug-interpretation of the current
file.

edb-toggle-breakpoint (C-c C-d b)

Toggle a breakpoint on the current line.

edb-monitor (C-c C-d m)

Popup the debugger monitor buffer.

7.3 Process Manager

Distel includes a process manager based on the
OTP pman application. This program is like the
procman example of Section 5, but more polished:
it uses a major mode for key bindings, and sup-
ports tracing process events via the trace BIF.

erl-process-list (C-c C-d l)

Pop up a process manager buffer.

7.4 Profiler

A front-end to the OTP fprof profiler is in-
cluded. The fprof command prompts for an Er-
lang expression to profile, executes it with profil-
ing on an Erlang node, and presents the results
in an Emacs buffer. The result summary shows
the time spent in each Erlang function, and can
“zoom in” on each function to show its callers
and callees.

fprof (C-c C-d p)

Profile an Erlang expression from the
minibuffer.

7.5 Dilber: The disk log Viewer

Dilber is a viewer for Erlang disk log files, in
the spirit of Unix tail. It is also the first “third
party” Distel application – written by Vladimir
Sekissov, and in on-going use as a system admin-
istration tool.

Dilber will be included in a future release of
Distel.

7.6 Interactive Sessions

An Interactive Session buffer is to Erlang as the
scratch buffer is to Emacs Lisp – a scratchpad
where code snippets can be hacked and executed.
The advantages over the Erlang shell are that ses-
sion buffers are random-access, and that local Er-
lang functions can be defined individually in the
buffer. This is especially useful for playing with
code snippets for the erlang-questions mailing
list – you can try Erlang functions without cre-
ating and compiling a real source file.

Interactive session buffers were conceived and
implemented by David Wallin, and are included
in the Distel distribution.

erl-ie-show-session (C-c C-d s)

Pop up a session buffer, creating it if neces-
sary.

erl-ie-copy-buffer-to-session (C-c C-d c)

Create a session buffer, and copy the con-
tents of the current buffer into it.

erl-ie-copy-region-to-session (C-c C-d r)

Create a session buffer, and copy the con-
tents of the region into it.

7.7 Miscellany

erl-eval-expression (C-c C-d :)

Evaluate an Erlang expression from the
minibuffer.

erl-reload-module (C-d C-d L)

Reload an Erlang module, given by name in
the minibuffer.

8 History

Distel represents the evolution of several at-
tempts at using Emacs as a user interface for
Erlang. The first was “erlext.el”, which be-
gan as an implementation of the Erlang external
term format and was later extended with TCP
socket communication. The drawback of this ap-
proach is that it needs a special TCP server to
run in the Erlang node, which turned out to be
too much of an obstacle for spontaneous use.

9

This was followed by Ermacs,2 a concurrent
Emacs clone written completely in Erlang. Er-
macs is fairly complete – it has major modes for
Erlang and Scheme programming, a built-in Er-
lang shell, and support for efficiently editing large
files. However, once the core editor was complete,
it was obvious that GNU Emacs has an incredi-
bly large set of wonderful features, and that ex-
tending Ermacs to include “enough” of them was
completely out of the question.

The lessons learned from Ermacs lead to Dis-
tel, which continues where erlext left off. Ver-
sion 1.0 replaced erlext’s custom socket proto-
col with the Erlang distribution protocol, added
very basic Emacs Lisp processes, and included
a small process manager application. Version 2.0
greatly improved the programming interface with
erl-receive and pattern matching, which made
it possible for later versions to include the sub-
stantial collection of Erlang development tools
available today.

9 Implementation Status

Distel is a stable piece of software, compati-
ble with all recent versions of GNU Emacs and
XEmacs, and suitable as an Erlang development
tool without additional programming. The im-
plementation is free software, with development
hosted on SourceForge3, and source code and
documentation available on the Distel homepage:

http://distel.sourceforge.net/

At the time of writing, the implementation is
3,714 lines of Emacs Lisp and 994 lines of Erlang.
It breaks down as follows:

• 608 lines of Emacs Lisp for the scheduler,
BIFs, and process representation.

• 1,231 lines of Emacs Lisp for the distribution
protocol (264 for networking, 395 for encod-
ing and decoding, 99 for the port mapper
(epmd) client, and 473 for the distribution
protocol.)

2http://www.bluetail.com/˜luke/ermacs/
3http://www.sourceforge.net/

• 1,489 lines of Emacs Lisp for the
erlang-extended-mode (544 for the
debugger, 200 for interactive sessions, and
no clear division for the remainder.) All
of the Erlang code is used for supporting
the erlang-extended-mode, Distel’s core
doesn’t require any.

The rest is made up of random examples and
test suites.

10 Future Directions

Distel development is focused on the
erlang-extended-mode and related tools,
with language and runtime system extensions
being made as they are needed. The plan is to
continue adding new applications and extending
Distel’s capabilities as an integrated Erlang
development environment. It would also be
desirable to merge the useful features of Distel
that don’t require the runtime system into the
standard (and wonderful) erlang-mode.

Using Distel for general Emacs-to-Emacs con-
current and distributed programming is another
exciting possibility. Today this would require
only an implementation of the port mapper
(epmd) and for Emacs to listen for incoming con-
nections,4 though it may be preferable to use a
completely different communications layer.

11 Related Work

The three main types of related work are Er-
lang distribution libraries for other languages,
the Etos compiler, and other Emacs-based in-
tegrated development environments (IDEs).

Just like Distel has “Emacs nodes,” the OTP
applications erl interface and Jive have C and
Java nodes respectively. David Schere’s “Erlang-
Python”5 implements Python nodes, using a
binding to erl interface. Others implementa-
tions may well also exist.
Etos [4] is an Erlang to Scheme compiler,

which is related to Distel in that they both imple-
4At the time of writing, this seems to only be possible

with the CVS version of GNU Emacs, or with an external
helper program to bind the listen socket.

5http://starship.python.net/crew/gandalf/PyErlang/

10

ment high-level Erlang runtime systems in Lisp
dialects. Etos was a good source of inspiration,
and anyone who studies Distel owes it to them
self to see how much more neatly things can be
done with first-class continuations.

Two popular and mature Emacs-based IDEs
are the Java Development Environment for
Emacs (JDEE)6, and ILISP [11] for Lisp. We
hope that Distel will fill a similar niche for Er-
lang programmers.

Anders Lindgren’s “Erl’em” program is said to
have been similar in scope and purpose to Distel,
but appears to have been swept away in the winds
of time.7 Anders is the main author of the Emacs
erlang-mode.

12 Conclusion

We have extended Emacs Lisp for concurrent and
distributed programming, and applied the ex-
tension to developing Erlang development tools.
This has been a practical endeavour, and the re-
sulting tools are immediately available to all Er-
lang programmers who use Emacs, as is a familiar
programming interface for writing more tools.

We have also further demonstrated the power
and flexibility of Emacs. Several Distel applica-
tions are highly concurrent, particularly the edb
debugger which monitors and controls multiple
processes as they run, without interfering with
the user’s editing. The ease with which these ap-
plications are written suggests that Emacs Lisp
is very easily extended into a powerful concur-
rent and distributed programming system – in
this case using Erlang’s model, but it is easy to
envision others.

Is there anything Emacs can’t do?

13 Acknowledgements

I would like to thank Vladimir Sekissov, David
Wallin, and Mats Cronqvist for their Distel hack-
ing; Darius Bacon and Martin Björklund for their
help with Distel’s design and invaluable reviews
of drafts of this paper (usual disclaimer applies);

6http://jdee.sunsite.dk
7If you have a copy of this that you are allowed to

distribute, please get in touch with me.

and all the colleagues and erlang-questions
readers who have installed Distel and helped to
iron out the (many) teething problems.

References

[1] Joe Armstrong, Robert Virding, Claes Wik-
ström, and Mike Williams. Concurrent Pro-
gramming in Erlang. Prentice-Hall, second
edition, 1996.

[2] The open source erlang website.
http://www.erlang.org/.

[3] Bill Lewis, Dan LaLiberte, and Richard
Stallman. The GNU Emacs Lisp Reference
Manual. Free Software Foundation.

[4] Marc Feeley. Etos: an erlang to scheme com-
piler. August 1997.

[5] Daniel P. Friedman, Mitchell Wand, and
Christopher T. Haynes. Essentials of Pro-
gramming Languages. MIT Press, Cam-
bridge, MA, 1992.

[6] Gerald Jay Sussman and Guy Lewis Steele
Jr. Scheme: An interpreter for extended
lambda calculus. AI Memo 349, MIT AI
Lab, December 1975.

[7] Erlang distribution protocol. Described
in a text file included with the Er-
lang/OTP source distribution, under
lib/kernel/internal doc/.

[8] Steven E. Ganz, Daniel P. Friedman, and
Mitchell Wand. Trampolined style. In In-
ternational Conference on Functional Pro-
gramming, pages 18–27, 1999.

[9] Jonas Barklund and Robert Virding. Erlang
4.7.3 reference manual. Draft (0.7), Febru-
ary 1999.

[10] The erlang extended term format. De-
scribed in a text file included with the
Erlang/OTP source distribution, under
erts/emulator/internal doc/.

[11] Todd Kaufmann, Chris McConnell, Ivan
Vazquez, Marco Antoniotti, Rick Campbell,
and Paolo Amoroso. Ilisp user manual.

11

