Groovy Documentation

zGroovy Introduction
QGetting Started Guide

e'-User Guide

QAdvanced Usage
Guide

QCookbook Examples
zTesting Guide
e'-DeveIoper Guide
e'—ModuIes

e'—FAQ

Introduction to Groovy

Groovy Introduction

Groovy...

is an agile and dynamic language for the Java Virtual Machine
builds upon the strengths of Java but has additional power
features inspired by languages like Python, Ruby and Smalltalk
makes modern programming features available to Java
developers with almost-zero learning curve

supports Domain-Specific Languages and other compact

syntax so your code becomes easy to read and maintain

makes writing shell and build scripts easy with its powerful
processing primitives, OO abilities and an Ant DSL

increases developer productivity by reducing scaffolding

code when developing web, GUI, database or console applications
simplifies testing by supporting unit testing and mocking out-of-the-box
seamlessly integrates with all existing Java objects and libraries

compiles straight to Java bytecode so you can use it anywhere you can use Java

b

Samples
A simple hello world script:
def name="World'; println "Hello $nane!"

A more sophisticated version using Object Orientation:

class Geet {

def name
G eet (who) { nane = who[O0].toUpperCase() +
who[1..-1] }
def salute() { println "Hello $nane!" }
}
g = new Geet('world') // create object
g.sal ute() /1 Qutput "Hello World!"

Leveraging existing Java libraries:
i mport static org.apache. cormons. | ang. WordUtils. *
class Greeter extends Geet {

G eeter(who) { nane = capitalize(who) }
}

new Greeter('world').salute()

On the command line:

groovy -e "println "Hello ' + args[0]" Wrld

History

New features and improvements in Groovy 1.7:

Anonymous Inner Classes and Nested Static Classes
Annotation enhancements

Grape enhancements

Power Asserts

AST enhancements: AST Viewer and AST Builder
Ability to customize the Groovy Truth
Dependency upgrades

Rewrite of GroovyScriptEngine

GroovyConsole enhancements

SQL batch updates and transactions

More details: Groovy 1.7 release notes

New features and improvements in Groovy 1.6:

Great runtime performance improvements

Multiple assignments- optional return in if/else and try/catch blocks

AST transformations and all the provided transformation annotations like @Singleton, @Lazy, @Immutable, @Delegate and friends
The Grape module and dependency system and its @Grab transformation

Various Swing builder improvements, thanks to the Swing / Griffon (http://griffon.codehaus.org) team

As well as several Swing console improvements

The integration of JMX builder

JSR-223 scripting engine built-in

Various metaprogramming improvements, like the EMC DSL, per-instance metaclasses even for POJOs, and runtime mixins

More details: Infoq

New features and improvements in Groovy 1.5:

Integrates Java 5 features: annotations, generics, static imports and enums

New meta-programming capabilities

A few syntax enhancements have also found their way into it to help ease the development of Domain-Specific Languages
Groovy's Swing builder support, to help you build Swing Uls, has almost completely been rewritten and spiced up with several useful
additions

A great attention to performance improvements made this new version much

A joint Java / Groovy compiler to let you mix and match Groovy and Java classes in the same compilation step

A GroovyDoc equivalent to JavaDoc lets you document your Groovy classes

A rewritten interactive shell is now really interactive and provides useful command completions for making you more productive
The Groovy Swing console has also been improved

More details: Infoq

Groovy 1.7 release notes

Coverage of these notes
The below release notes currently cover the new features of Groovy 1.7, our latest major release.

IDE Support

Before diving directly into the new features in Groovy 1.7, please let me mention the great progress made in terms of IDE support for Groovy (and
also for Griffon, Gradle, Gant or Grails). All the major IDEs (Eclipse, IntelliJ IDEA, NetBeans) provide an excellent level of support for the
language. Initially, the Eclipse support was the one lacking the most, but thanks to the hard work of the SpringSource Eclipse team, we now have
a great environment for developing mixed Java / Groovy applications with features like cross-language refactoring, Groovy-specific code
completion, and more.

@ New and Improved Eclipse plugin
For more information on the Eclipse support, please have a look at the Groovy Eclipse plugin home page, as well as the notes
for the M1 release and M2 release.

New features

Anonymous Inner Classes and Nested Classes

Although oftentimes closures and maps coercion suffice, there are still areas where the lack of Anonymous Inner Classes (AIC) and Nested
Classes (NC) can be problematic. That's why we decided to eventually implement AIC and NC in Groovy 1.7.

“1. Be Careful
I The implementation of AIC and NC follows the Java lead, but you should not take out the Java Language Spec and keep

shaking the head about things that are different. The implementation done looks much like what we do for groovy.lang.Closure,
with some benefits and some differences. Accessing private fields and methods for example can become a problem, but on the

other hand local variables don't have to be final.

Nested Static Classes

Here's an example of Nested Static Classes:

class A {
static class B {}

}

new A.B()

The usage of static nested classes is the best supported one. If you absolutely need an inner class, you should make it a static one.

Anonymous Inner Classes

Some other examples, this time for Anonymous Inner Classes:

boolean called = false

Timer timer = new Timer ()
timer.schedule (new TimerTask () {
void run() {
called = true

}
}, 0)
sleep 100

assert called

iﬁ. More information
If you want to learn a bit more about the cases which are currently supported in 1.7, you can have a look at one of our unit tests

covering this new feature.

Accessing the Outer Context from a Nested Class

If you are in a nested class Y and the surrounding class is X, then you can access the variable v of X in Java by X.this.v. Groovy does not support
this syntax.

Creating Instances of Non-Static Inner Classes

In Java you can do this:

public class Y {
public class X {}
public X foo() {
return new X () ;
}
public static X createX(Y y) {
return y.new X();

}

It should be noted that the nested class X needs a reference to the outer class instance of Y. For this Java will create a constructor that takes Y
as first parameter in X. This constructor is synthetic, so it won't appear in any code completion.
In case of new X(), like you have it in method foo(), then compiler will then create new X(this) instead. In case of createX the compiler will create

new X(y). Groovy does not support this.

Instead Groovy supports giving the instance in like the compiler would do it. That means the code above has to be rewritten as

public class Y {
public class X {}
public X foo() {
return new X (this);
}
public static X createX(Y y) {
return new X(y);

}

i Caution

=2
Caution though, Groovy supports calling methods with one parameter without giving an argument. The parameter will then have
the value null. Basically the same rules apply to calling a constructor. There is a danger that you will write new X() instead of
new X(this) for example. Since this might also be the regular way we have not yet found a good way to prevent this problem.

Annotations

Groovy's support of annotations is identical to Java 5 annotations, but we felt that in some cases it would be interesting to be able to add
annotations in other places than the usual places (types, fields, methods, parameters, etc.). For instance, in Java, it is impossible to add
annotations on imports or packages. Groovy does go beyond and adds support for annotation on imports, packages and variable declarations.
We'll take a look at the usage of those extended annotations on Grape.

Grape

The Grape dependency system lets you request dependencies in your scripts, without having to deal with downloading, packaging, or specifying
the classpath yourself. To use Grape, we had to use the @Grab annotation to "grab" a dependency from a repository (Maven's central repository,
for example). The problem was that annotation had to be attached to some allowed elements, ie. the places where annotations can be put in
Java. Now, we can put annotations on imports:

@Grab (group="'net.sf.json-1ib', module='json-1lib', version='2.3"', classifier='jdkl5"')
import net.sf.json.groovy.*

assert new JsonSlurper () .parseText (
new JsonGroovyBuilder () .json {
book (title: "Groovy in Action", author:"Dierk Koénig et al")
}.toString ()
) .book.title == 'Groovy in Action'

Another example with @Grab on variable declarations:

@Grab ('net.sf.json-1lib:json-1ib:2.3:jdk1l5")
def builder = new net.sf.json.groovy.JsonGroovyBuilder ()

def books = builder.books {
book (title: "Groovy in Action", author: "Dierk Koenig")

}

assert books.toString() == '''{"books":{"book":{"title":"Groovy in Action", "author":"Dierk Koenig"

e

i} Remark
Please note on this one an improvement in the @Grab annotation: we provide a shorter version taking just a String as value
parameter representing the dependency, in addition to the more verbose example in the previous example. You simply append
the group, module, version and classifier together, joined by colons.

A Grape resolver was added, so you can specify a remote location where grapes are downloaded from:

@GrabResolver (name='restlet.org', root='http://maven.restlet.org')
@Grab (group='org.restlet', module='org.restlet',6 version='1.1.6")
import org.restlet.Restlet

//

Power Asserts

Groovy's "assert" keyword has sometimes been criticized as it's, in a way, limited, as it just checks that the expression it's being passed is true or
false. Unlike with testing frameworks such as JUnit/TestNG and the various additional assertion utilities, where you get nicer and more descriptive
messages, Groovy's assert would just tell you the expression was false, and would give the value of variables used in the expression, but nothing
more. With Power Asserts, initially developed in the Spock Framework, the output of the assert is now much nicer and provides a visual
representation of the value of each sub-expressions of the expression being asserted. For example:

assert new File('foo.bar') == new File ('example.txt')

Will yield:

Caught: Assertion failed:

assert new File('foo.bar')

foo.bar

== new File ('example.txt')
.

| example.txt

false

AST

With Groovy 1.6, we introduced AST Transformations, for letting developers do compile-time metaprogramming, by modifying the Abstract Syntax
Tree before it is transformed into bytecode. In Groovy 1.6, several such transformations were added, especially "local" transformations triggered
by annotations (such as @Delegate, @Singleton, @Bindable and friends). However powerful this feature is, writing AST transformation has
always been a bit tedious. Groovy 1.7 features two new features which should help simplify the work of AST transformation writers: an AST
viewer and an AST builder.

AST Viewer

The following screenshot shows a new window that can be launched from the Groovy Swing Console. You can visualize the AST of a script you're
working on in the console: for instance, writing the code you'd like to create in your AST transformation. The AST viewer greatly help with figuring
out how Groovy builds its AST when compiling your Groovy code.

_io) x|
e s foahsn - Fofizch
-’ . -
LT E Paarzsr czand =] e bl T
T 3 - = R [RN Ry NN T LRTRRTLL /N NEITRTRTLONE LAY N TIR
! F-_5| F 135 Smal= ant - Hat--TnsIF =[S oraeahs s B -t
| _'_| el o=l s e adde ol - E chazs Irz C2IERAE 0 W [X5
X vos Naerazly sy ez ulil oz “recz hawtiarshz ks ol
' 1= Bl Lokl pnery'sSramy EELYETE YT] 1l ril
! FEArsn vt kb= aeer? rlrrg e rul
. 1%k zowd o by 2 Smar TToyed k=
' SN A= TH T | Il s, “dk= ==
! =] a==l=5- - hkherys o e e RT3 o il ril =T
i I A RRer - haty =yl laz7Tan vt ra=r ni it
: : C L aksthodlal hstrezal 1321 "= Irher TR bit
h H T T T YT T) ITl_l:ﬂ.l'u'.:' 2= il
1 1 =s okt - cbe el e hatry =g
| | U rqurseikr o) STy = ISR L B e
| | BRI T TRE SRS AT P aupeCopn ez k=
. IS TR WIS S TR i = U mlh “ab=
' D S | e il el ol R il ARl) IR il iy
! ! T L A=thoal habrosevesi th sF=[res - k=
' ' . liez [ER I L v U P (o o w
1 1 A ekt s Tt g ; NET TRICIT R |J-:L_ I
! ! SRR YO T
! ! l—w Fopalrr--r cavacses
: ' ZrpaTlasirzn .
1 LI ':z—m'.:u‘l:ﬂ: it - B oossion T
4 F

AST Builder

Visualizing the AST is one thing, but we also need a mechanism to create and modify ASTs more easily. The introduction of the AST builder
simplifies the authoring of AST transformations, by giving you three different approaches for working on the AST:

® building from string
® building from code
® building from specification

Before the AST builder, one had to create and instantiate manually all the various AST nodes. Let's see how those three forms help with this, for
instance for creating a node representing a constant string.

Building from string

List<ASTNode> nodes = new AstBuilder() .buildFromString(''' "Hello" ''")

Building from code

List<ASTNode> nodes = new AstBuilder().buildFromCode { "Hello" }

Building from specification

List<ASTNode> nodes = new AstBuilder().buildFromSpec {
block {
returnStatement {
constant "Hello"

}

For more information
Please have a look at the documentation on the AST Builder. You'll discover the advantages and inconveniences of the various
forms, and why all three are needed depending on what you want to achieve with the AST.

Other minor enhancements

Ability to customize the Groovy Truth

In Groovy, booleans aren't the sole things which can be evaluated to true or false, but for instance, null, empty strings or collections are evaluated
to false or true if of length > 0 or non-empty. This notion of "truth" was coined "Groovy Truth" in the Groovy in Action book. With Groovy Truth,
instead of doing frequent null checks, you could simply write:

def string = "more than one character"
if (string) { println "the String is neither null nor empty" }

Up until Groovy 1.7, only a small set of classes had a certain meaning with regards to how they were coerced to a boolean value, but now it is
possible to provide a method for coercion to boolean in your own classes. For example, the following Predicate class offers the ability to coerce
Predicate instances to true or false, thanks to the implementation of the boolean asBoolean() method:

class Predicate {
boolean value
boolean asBoolean() { value }

}

assert new Predicate(value: true)
assert !new Predicate(value: false)

Is is also possible to use categories or ExpandoMetaClass to inject an asBoolean() method, or to override an existing one (even one on the small
set of classes with special Groovy truth behavior).

Dependency upgrades

Some of the dependencies of Groovy have been upgraded to newer versions.

For instance, Groovy now uses the latest ASM version, which is "invokedynamic"-ready. So as we progress towards the inclusion of JSR-292 /
invokedynamic, we'll be ready and be using the latest version of ASM. We also use the latest version of lvy which is used by the Grape
dependency module.

Rewrite of the GroovyScriptEngine

The GroovyScriptEngine (which is also used by Groovlets) has been rewritten to solve various dependency issues it was suffering from, and the
outcome of this is that it should also now be much faster overall.

The new logic uses additional phase operations to track dependencies. As a result the error-prone class loader technique to track them is gone
now. These operations ensure that every script file will be tracked, its dependencies recorded during compilation and all transitive dependencies
will be calculated. And only scripts will be recorded as dependency, no classes. The new GroovyScriptEngine also uses only one compilation
"process" for script compilation which solves the problem of circular or mutual dependencies, that caused stack overflows in the past. As a result
the new engine can reliably handle dependencies and should be much faster.

Groovy console preferences

A small annoyance, especially for developers using big LCD screens: the Groovy Console didn't remember preferences of position of the
separator between the coding area and output view, or the font size being used. This is now fixed, as the console remembers such settings. You
won't need anymore to adjust the console to your liking each time you run it, it should now have some more brain cells to remember your
preferences.

New output window for the Groovy console

There is a new visualization option for the results of the execution of your scripts in your Groovy Console. Instead of displaying the results in the
bottom output pane, it's now possible to use an external window for viewing those results. Run your script with CTRL-R or CMD-R, you will see
something like the following screenshot. You can then dismiss the window by hitting Escape, CTRL-W (CMD-W on Macs) or Enter.

i

IETETE][3]e [4[D[D]: [%] [<]w][E]
class Drug {

String name

String toString() { name }

}

class DrugQuantity {
int number
String toString() {
number == 1 ? "1 pill" : "$number pills"

(0= 1= o BN B SRR) B =S PR I S

def take(Map m, DrugQuantity dg) {
println "Take $dg of $m.of in $m.in.number $
}

def chlorogquinine = new Drug(name: "Chloroguinin

take 2.pills, of: chloroquinine, in: 6.hours

Execution complete. Result was null.

You will also notice the addition of line numbers in the gutter of the editor area.
SQL batch updates and transactions

Batch updates

The Groovy Sql class now features batch updates, thanks to its new withBatch() method, taking a closure and a statement instance:

sql.withBatch { stmt ->
["Paul", "Jochen", "Guillaume"] { name ->
stmt.addBatch "insert into PERSON (name) values ($name)"

}

Transactions

Similarly, there's a withTransaction() method added to Sql, which works also with datasets:

def persons = sqgl.dataSet ("person")
sql.withTransaction {
persons.add name: "Paul"
persons.add name: "Jochen"
persons.add name: "Guillaume"

Getting Started Guide

Getting Started Guide

® Beginners Tutorial
® Tutorial 1 - Getting started
® Tutorial 2 - Code as data, or closures
® Tutorial 3 - Classes and Objects
® Tutorial 4 - Regular expressions basics
® Tutorial 5 - Capturing regex groups
® Tutorial 6 - Groovy SQL
® Differences to Other Languages
® Differences from Java
® Differences from Python
® Differences from Ruby
® Download
® Feature Overview
® Groovlets
® Groovy Beans
® GroovyMarkup
® Groovy Templates
® For those new to both Java and Groovy
* JN0025-Starting
JNO0515-Integers
JN0525-Decimals
JN0535-Floats
JNO0545-Dates
JN1015-Collections
JN1025-Arrays
JN1035-Maps
JN1515-Characters
JN1525-Strings
JN1535-Patterns
JN2015-Files
JN2025-Streams
JN2515-Closures
JN2525-Classes
JN2535-Control
JN3015-Types
JN3025-Inheritance
JN3035-Exceptions
JN3515-Interception
JN3525-MetaClasses
® JN3535-Reflection
® Groovy for the Office
® Groovy Quick Start Project
® Quick Start
® Installing Groovy
¢ Installing Groovy and Grails on the Eee PC
® Running

Beginners Tutorial

Welcome on board the Groovy flight. Before proceeding through the content of this tutorial, please make sure to fasten your seat belt, before we
take off to higher levels of grooviness...

This page is intended to get you started with Groovy, following a trail of a few tutorial labs on various topics mainly oriented towards typical use of
scripting languages for data crunching or text manipulation.

Graham Miller, a Groovy aficionado, has been teaching a class of business on data crunching. And he was kind enough to contribute back to the
Groovy project this great set of educational material to help you learn Groovy, using some nice examples to massage, summarize and analyze
data - a task for which Groovy is a quite good fit.

The topics covered are about Groovy basics, text parsing, regular expressions, and SQL:

Getting started
Code as data
Classes and Objects
Regular Expressions
Capturing groups

® Groovy SQL

If you are a Java developer

® you might want to check on the Differences from Java
® also there are a few Things to remember

Tutorial 1 - Getting started

Getting Started

Setting up your Java environment

Groovy requires Java, so you need to have a version available (1.4 or greater is required). Here are the steps if you don't already have Java
installed:

® Get the latest Java distribution from the http://java.sun.com website.
® Run the installer.
® Set the JAVA_HOME environment variables. On Windows, follow these steps:
® Open the System control panel
® Click the Advanced tab
® Click the Environment Variables button
® Add a new System variable with the name JAVA_HOME and the value of the directory Java was installed in (mine is C:\Program
Files\Java\jdk1.5.0_04)
® Optionally add %JAVA_HOME%\bin to your system path
(Note: as an alternative to setting a system environment variable, you can create yourself a ".bat' or .cmd' file which sets the
variable. You then need to run that batch file in any console window in which you wish to run Java and double clicking on ".bat' or
'.cmd' files containing Java invocation instructions won't work. If you are unsure about what this means, follow the earlier
instructions.)

Setting up your Groovy environment

Download the Groovy installer or binaries from the downloads page and follow the installation instructions. (There is currently an issue where you
cannot have spaces in the path where Groovy is installed under windows. So, instead of accepting the default installation path of "c:\Program
Files\Groovy" you will want to change the path to something like "c:\Groovy")

OR

® Get a copy of the Groovy distribution from the website, and copy it to some place on your hard drive.
® Unzip the groovy archive to some logical place on your hard drive, | have mine in C:\dev\groovy-1.0-jsr-06
® Set the GROOVY_HOME environment variables. On Windows, follow these steps:
® Add a new System variable with the name GROOVY_HOME and the value of the directory groovy was installed in (mine is
C:\dev\groovy-1.0-jsr-06)
® Start a command prompt, and type "set" and hit return to see that your environment variables were set correctly.
® Optionally add %GROOVY_HOME%\bin to your system path
® Try opening groovyConsole.bat by double clicking on the icon in the bin directory of the Groovy distribution. If it doesn't work, open a
command prompt, and change to the bin directory and run it from there to see what the error message is.

Setting up optional jar files

You may wish to obtain optional jar files, either corresponding to Groovy modules (see module documentation for details) or corresponding to
other Java classes you wish to make use of from Groovy. Some possibilities are listed below:

Name From Description
jtds-version.jar http://jtds.sourceforge.net = Database driver for SQL Server and/or Sybase

hsqldb-version.jar | http://www.hsqldb.org/ Database driver for HSQLDB, a 100% Java database

The recommended way for making Groovy be aware of your additional jar files is to place them in a predefined location. Your Groovy install
should include a file called groovy-starter.conf. Within that file, make sure a line such as

load ${user.home}/.groovy/lib/*

is not commented out. The user . home system property is set by your operating system. (Mine is C: \Document and Settings\paul. Now
simply place your jar files into the .groovy/1ib directory.

(Note: as an alternative, you can set up a CLASSPATH variable and make sure it mentions all of your additional jar files, otherwise Groovy works
fine with an empty or no CLASSPATH variable.)

Hello, World

In the top part of the window of the groovyConsole, type the following

println "Hello, World!"

And then type <CTRL-R>.
Notice that the text gets printed out in the OS console window (the black one behind the groovyConsole window) and the bottom part of the
groovyConsole says:

groovy> println "Hello, World!"
null

The line starting with "groovy>" is just the text of what the console processed. The "null" is what the expression "evaluated to". Turns out the
expression to print out a message doesn't have any "value" so the groovyConsole printed "null".
Next try something with an actual value. Replace the text in the console with:

123+45%67

or your favorite arithmetic expression, and then type <CTRL-R> (I'm going to stop telling you to hit <CTRL-R>, | think you get the idea). Now the
"value" printed at the bottom of the groovyConsole has more meaning.

Variables

You can assign values to variables for later use. Try the following:

x =1
println x

x = new java.util.Date (
println x

X = -3.1499392
println x

x = false
println x

x = "Hin
println x

Lists and Maps

The Groovy language has built-in support for two important data types, lists and maps (Lists can be operated as arrays in Java language). Lists
are used to store ordered collections of data. For example an integer list of your favorite integers might look like this:

myList = [1776, -1, 33, 99, 0, 928734928763]

You can access a given item in the list with square bracket notation (indexes start at 0):

println myList[0]

Should result in this output:

1776

You can get the length of the list with the "size" method:

println myList.size()

Should print out:

But generally you shouldn't need the length, because unlike Java, the preferred method to loop over all the elements in an list is to use the "each”
method, which is described below in the "Code as Data" section.

Another native data structure is called a map. A map is used to store "associative arrays" or "dictionaries". That is unordered collections of
heterogeneous, named data. For example, let's say we wanted to store names with 1Q scores we might have:

scores = ["Brett":100, "Pete":"Did not finish", "Andrew":86.87934]

Note that each of the values stored in the map is of a different type. Brett's is an integer, Pete's is a string, and Andrew's is a floating point
number. We can access the values in a map in two main ways:

println scores["Pete"]
println scores.Pete

Should produce the output:

Did not finish
Did not finish

To add data to a map, the syntax is similar to adding values to an list. For example, if Pete re-took the 1Q test and got a 3, we might:

scores ["Pete"] = 3

Then later when we get the value back out, it will be 3.

println scores["Pete"]

should print out 3.
Also as an aside, you can create an empty map or an empty list with the following:

emptyMap = [:]
emptyList = []

To make sure the lists are empty, you can run the following lines:

println emptyMap.size ()
println emptyList.size()

Should print a size of 0 for the List and the Map.

Conditional Execution

One of the most important features of any programming language is the ability to execute different code under different conditions. The simplest

way to do this is to use the "if" construct. For example:

amPM = Calendar.getInstance () .get (Calendar.AM PM)
if (amPM == Calendar.AM)

{

println ("Good morning")

} else {

println("Good evening")

}

Don't worry too much about the first line, it's just some code to determine whether it is currently before noon or after. The rest of the code

executes as follows: first it evaluates the expression in the parentheses, then depending on whether the result is "'true™ or "'false™ it executes the

first or the second code block. See the section below on boolean expressions.
Note that the "else" block is not required, but the "then" block is:

amPM = Calendar.getInstance () .get (Calendar.AM PM)
if (amPM == Calendar.AM)

{

println("Have another cup of coffee.")

}

Boolean Expressions

There is a special data type in most programming languages that is used to represent truth values, "true™ and "false™. The simplest boolean

expression are simply those words. Boolean values can be stored in variables, just like any other data type:

myBooleanVariable = true

A more complex boolean expression uses one of the boolean operators:

Most of those are probably pretty intuitive. The equality operator is "'==""to distinguish from the assignment operator "'="". The opposite of equality
is the "'!="" operator, that is "not equal”
So some examples:

titanicBoxOffice = 1234600000
titanicDirector = "James Cameron"

trueLiesBoxOffice = 219000000
trueLiesDirector = "James Cameron"

returnOf TheKingBoxOffice = 752200000
returnOfTheKingDirector = "Peter Jackson'

theTwoTowersBoxOffice = 581200000
theTwoTowersDirector = "PeterJackson"

titanicBoxOffice > returnOfTheKingBoxOffice // evaluates to true
titanicBoxOffice >= returnOfTheKingBoxOffice // evaluates to true

titanicBoxOffice >= titanicBoxOffice // evaulates to true

titanicBoxOffice > titanicBoxOffice // evaulates to false

titanicBoxOffice + trueLiesBoxOffice < returnOfTheKingBoxOffice + theTwoTowersBoxOffice // evaluates
to false

titanicDirector > returnOfTheKingDirector // evaluates to false, because "J" is before "P"
titanicDirector < returnOfTheKingDirector // evaluates to true

titanicDirector >= "James Cameron" // evaluates to true

titanicDirector == "James Cameron" // evaluates to true

Boolean expressions are especially useful when used in conjunction with the ™if" construct. For example:

if (titanicBoxOffice + trueLiesBoxOffice > returnOfTheKingBoxOffice + theTwoTowersBoxOffice)

{

println(titanicDirector + " is a better director than " + returnOfTheKingDirector)

}

An especially useful test is to test whether a variable or expression is null (has no value). For example let's say we want to see whether a given
key is in a map:

suvMap = ["Acura MDX":"\$36,700", "Ford Explorer":"\$26,845"]
if (suvMap ["Hummer H3"] != null)

{

println("A Hummer H3 will set you back "+suvMap ["Hummer H3"]) ;

}

Generally null is used to indicate the lack of a value in some location.

Debugging and Troubleshooting Tips

® Print out the class of a variable that you're interested in with myVar.getClass(). Then look up the documentation for that class.

® |f you're having trouble with a complex expression, pare it down to a simpler expression and evaluate that. Then build up to your more
complex expression.

® Try restarting the groovyConsole (this will clear out all the variables so you can start over.

® ook for the topic you're interested in in the Groovy User Guide

If you are a Java developer

® you might want to check on the Differences from Java
® also there a few Things to remember

Tutorial 2 - Code as data, or closures

Closures

One of the things that makes Groovy different than most compiled languages is that you can create functions that are first class objects. That is
you can define a chunk of code and then pass it around as if it were a string or an integer. Check out the following code:

square = { it * it }

The curly braces around the expression "it * it" tells the Groovy compiler to treat this expression as code. In the software world, this is called a
"closure". In this case, the designator "it" refers to whatever value is given to the function. Then this compiled function is assigned to the variable
"square" much like those above. So now we can do something like this:

square (9)

and get the value 81.

This is not very interesting until we find that we can pass this function "square" around as a value. There are some built in functions that take a
function like this as an argument. One example is the "collect" method on arrays. Try this:

[1, 2, 3, 4].collect(square)

This expression says, create an array with the values 1,2,3 and 4, then call the "collect' method, passing in the closure we defined above. The
collect method runs through each item in the array, calls the closure on the item, then puts the result in a new array, resulting in:

For more methods you can call with closures as arguments, see the Groovy GDK documentation.

By default closures take 1 parameter called "it", you can also create closures with named parameters. For example the method Map.each() can
take a closure with two variables, to which it binds the key and associated value:

printMapClosure = { key, value -> println key + "=" + value }

["yue" : "wu", "lane" : "burks", "sudha" : "saseethiaseeleethialeselan"].each(printMapClosure)
Produces:

yue=wu

lane=burks

sudha=saseethiaseeleethialeselan

More Closure Examples

Here are a few more closure examples. This first one shows a couple of things. First, the closure is interacting with a variable outside itself. That
is, the closure's purpose is to put together the parts of a stock order held in the array orderParts, by adding (appending) it to the variable fullString.
The variable fullString is not in the closure. The second thing that is different about this example is that the closure is "anonymous", meaning that
it is not given a name, and is defined in the place where the each method is called.

fullString = ""
orderParts = ["BUY", 200, "Hot Dogs", "1"]
orderParts.each {

fullString += it + " "

}

println fullString

You can probably guess what this prints out.

The next example is another anonymous closure, this time, summing up the values stored in a map.

myMap = ["asdf": 1 , "gwer" : 2, "sdfg" : 10]

result = 0
myMap . keySet () .each({ result+= myMap[it] })
println result

Dealing with Files

Reading data from files is relatively simple. First create a text file, and call it myfile.txt. It doesn't matter what's in it, just type some random text
into it and save it on your C: drive in the \temp directory. Then type the following code in the groovyConsole:

myFileDirectory = "C:\\temp\\"
myFileName = "myfile.txt"
myFile = new File (myFileDirectory + myFileName)

printFileLine = { println "File line: " + it }

myFile.eachLine (printFileLine)

This should print out every line in the file prefixed with "File line: ". The first two lines of the code simply declare variables to specify where the file
is located. The variable names don't have any special significance, and as you can see, all we do is combine them when we use them. Note that
because the backslash character has special meaning in groovy, you have to use two of them to tell it that you "really™ mean a backslash.

The next line that starts "myFile =" creates a new File object. An object is simply a collection of related methods and data. For example, a file
object might have data describing its location, in this case "C:\temp\myfile.txt", and maybe a method to delete the file if it exists. In this case the
only method we are going to use is the eachLine method, which we call in the last line of code. The line before that is a simple closure definition,
that you have seen several times by this point.

Dealing with strings

Strings in Groovy have all the same functionality of Java strings. That is, a Groovy string is just a Java string with a few extra things added to it.
Because of that, we can refer to the Java documentation for the String class to find out some of the interesting things we can do with it. For
example, look in the section entitled ""Method Summary™ at the description for the "split" method. This method does something very useful,
which is to split a string based on a regular expression. We will talk more about regular expressions later, but for now the only thing you have to
know is that the simplest regular expression is a single character. So let's say that we want to split up the components of the date "2005-07-04",
so that we can add one to the year to get the date of next fourth of July. We might:

stringDate = "2005-07-04"

dateArray = stringDate.split("-") // split() uses regEx's, so you need to escape chars such as a "."
-> ”\\A”

year = dateArray[0].toInteger()

year = year + 1

newDate = year + "-" + dateArray[l] + "-" + dateArray[2]

This code brings together a bunch of things we have talked about before. There are two new things, first is the use of the split method on a String.
Second is the call of tolnteger() on a String. This call to tolnteger simply tells Groovy that you want to treat that data as a number rather than a
String. See what happens if you run the same code without ".toInteger()" at the end of the third line.

Another thing you might notice is that tolnteger is not listed in the Java documentation for string. That is because it is one of the extra features that
Groovy has added to Strings. You can also take a look at the documentation for the Groovy extensions to Java objects.

Tutorial 3 - Classes and Objects

Classes and Objects

® Obijects are collections of related code and data
® Everything in Java and Groovy can be considered an object

® Aclass is a higher level description of an object.
® For example a 10-Q is a specification developed by the SEC and can be thought of as a "Class". A quarterly report issued by
IBM for Q2 2005 can be thought of as an object of the class 10-Q.

® Documentation for java classes can be found here
® Documentation for Groovy extensions to Java classes can be found here

Tutorial 4 - Regular expressions basics

Regular Expressions

Regular expressions are the Swiss Army knife of text processing. They provide the programmer the ability to match and extract patterns from
strings. The simplest example of a regular expression is a string of letters and numbers. And the simplest expression involving a regular
expression uses the ==~ operator. So for example to match Dan Quayle's spelling of 'potato”:

"potatoe" ==~ /potatoe/

If you put that in the groovyConsole and run it, it will evaluate to true. There are a couple of things to notice. First is the ==
~ operator, which is similar to the == operator, but matches patterns instead of computing exact equality. Second is that the regular expression is
enclosed in /'s. This tells groovy (and also anyone else reading your code) that this is a regular expression and not just a string.

But let's say that we also wanted to match the correct spelling, we could add a '?" after the 'e’ to say that the e is optional. The following will still
evaluate to true.

"potatoe" ==~ /potatoe?/

And the correct spelling will also match:

"potato" ==~ /potatoe?/

But anything else will not match:

"motato" ==~ /potatoe?/

So this is how you define a simple boolean expression involving a regular expression. But let's get a little bit more tricky. Let's define a method
that tests a regular expression. So for example, let's write some code to match Pete Wisniewski's last name:

def checkSpelling(spellingAttempt, spellingRegularExpression)
{
if (spellingAttempt ==~ spellingRegularExpression)
{
println("Congratulations, you spelled it correctly.")
} else {
println("Sorry, try again."

theRegularExpression = /Wisniewski/
checkSpelling ("Wisniewski", theRegularExpression)
checkSpelling ("Wisnewski", theRegularExpression)

There are a couple of new things we have done here. First is that we have defined a function (actually a method, but I'll use the two words
interchangably). A function is a collection of code similar to a closure. Functions always have names, whereas closures can be "anonymous".
Once we define this function we can use it over and over later.

In this function the if statement in bold tests to see if the parameter spellingAttempt matches the regular expression given to the function by using
the ==~ operator.

Now let's get a little bit more tricky. Let's say we also want to match the string if the name does not have the 'w' in the middle, we might:

theRegularExpression = /Wisniew?ski/

checkSpelling ("Wisniewski", theRegularExpression)
checkSpelling ("Wisnieski", theRegularExpression)
checkSpelling ("Wisniewewski", theRegularExpression)

The single ? that was added to the spellingRegularExpression says that the item directly before it (the character 'w') is optional. Try running this
code with different spellings in the variable spellingAttempt to prove to yourself that the only two spellings accepted are now "Wisniewski" and
"Wisnieski". (Note that you'll have to leave the definition of checkSpelling at the top of your groovyConsole)

The *?* is one of the characters that have special meaning in the world of regular expressions. You should probably assume that any punctuation
has special meaning.

Now let's also make it accept the spelling if "ie" in the middle is transposed. Consider the following:

theRegularExpression = /Wisn(ie|ei)w?ski/
checkSpelling ("Wisniewski", theRegularExpression)
checkSpelling ("Wisnieski", theRegularExpression)
checkSpelling ("Wisniewewski", theRegularExpression)

Once again, play around with the spelling. There should be only four spellings that work, "Wisniewski", "Wisneiwski", "Wisnieski" and "Wisneiski".
The bar character '|' says that either the thing to the left or the thing to the right is acceptable, in this case "ie" or "ei". The parentheses are simply
there to mark the beginning and end of the interesting section.

One last interesting feature is the ability to specify a group of characters all of which are ok. This is done using square brackets *[]*. Try the
following regular expressions with various misspellings of Pete's last name:

theRegularExpression = /Wis[abcdlniewski/ // requires one of 'a', 'b', 'c¢' or 'd’

theRegularExpression = /Wis[abcd] ?niewski/ // will allow one of 'a', 'b', 'c¢' or 'd', but not required
(like above)

theRegularExpression = /Wis[a-zA-Z]lniewski/ // requires one of any upper\- or lower-case letter
theRegularExpression = /Wis[%abcdlniewski/ // requires one of any character that is '''not''' 'a',

'b', 'c¢' or 'd'

The last one warrants some explanation. If the first character in the square brackets is a *** then it means anything but the characters specified in
the brackets.

The operators
So now that you have a sense for how regular expressions work, here are the operators that you will find helpful, and what they do:

Regular Expression Operators

a? matches 0 or 1 occurrence of *a* ‘a' or empty string
a* matches 0 or more occurrences of *a* empty string or 'a’, 'aa’, 'aaa’, etc
a+ matches 1 or more occurrences of *a* ‘a’, 'aa’, 'aaa’, etc
alb match *a* or *b* ‘a' or 'b’
match any single character a','q, I, ", ', ete
[woeirjsd] match any of the named characters 'w', o', ‘e, i ', s, !
[1-9] match any of the characters in the range 1','2",'3", '4",'5", '6', '7", '8','9"
[*13579] match any characters not named even digits, or any other character
(ie) group an expression (for use with other operators) ‘ie'
Aa match an *a* at the beginning of a line ‘a’
a$ match an *a* at the end of a line ‘a’

There are a couple of other things you should know. If you want to use one of the operators above to mean the actual character, like you want to
match a question mark, you need to put a '\' in front of it. For example:

// evaluates to true, and will for anything ending in a question mark (that doesn't have a question
mark in it)

"How tall is Angelina Jolie?" ==~ /["\?]+\?/

This is your first really ugly regular expression. (The frequent use of these in PERL is one of the reasons it is considered a "write only" language).
By the way, google knows how tall she is. The only way to understand expressions like this is to pick it apart:

/ [*?] + ? 1

begin expression any character other than '?' more than one of those a question mark end expression

So the use of the \ in front of the ? makes it refer to an actual question mark.
Tutorial 5 - Capturing regex groups
Capture groups

One of the most useful features of Groovy is the ability to use regular expressions to "capture" data out of a regular expression. Let's say for
example we wanted to extract the location data of Liverpool, England from the following data:

locationData = "Liverpool, England: 53° 25?2 0?2 N 3° 0? 02"

We could use the split() function of string and then go through and strip out the comma between Liverpool and England, and all the special
location characters. Or we could do it all in one step with a regular expression. The syntax for doing this is a little bit strange. First, we have to
define a regular expression, putting anything we are interested in in parentheses.

myRegularExpression = /([a-2z2A-Z]1+), ([la-zA-Z]1+): ([0-9]1+). ([0-91+). ([0-91+). ([A-Z]) ([0-9]1+).

([0-91+). ([0-91+)./

Next, we have to define a "matcher" which is done using the =~ operator:

matcher = (locationData =~ myRegularExpression)

The variable matcher contains a java.util.regex.Matcher as enhanced by groovy. You can access your data just as you would in Java from a
Matcher object. A groovier way to get your data is to use the matcher as if it were an array--a two dimensional array, to be exact. A two

dimensional array is simply an array of arrays. In this case the first "dimension" of the array corresponds to each match of the regular expression
to the string. With this example, the regular expression only matches once, so there is only one element in the first dimension of the
two-dimensional array. So consider the following code:

matcher [0]

That expression should evaluate to:

["Liverpool, England: 53° 25? 0? N 3° 0? 02", "Liverpool", "England", "53", "25", "o", "N", "3",6 "Q",
ngn]

And then we use the second dimension of the array to access the capture groups that we're interested in:

if (matcher.matches()) {
println (matcher.getCount () + " occurrence of the regular expression was found in the string.");
println(matcher[0] [1] + " is in the " + matcher[0] [6] + " hemisphere. (According to: " +

matcher[0] [0] + ") ")

}

Notice that the extra benefit that we get from using regular expressions is that we can see if the data is well-formed. That is if locationData
contained the string "Could not find location data for Lima, Peru", the if statement would not execute.

Non-matching Groups

Sometimes it is desirable to group an expression without marking it as a capture group. You can do this by enclosing the expression in
parentheses with ?: as the first two characters. For example if we wanted to reformat the names of some people, ignoring middle names if any,
we might:

names = [
"Graham James Edward Miller",
"Andrew Gregory Macintyre"

printClosure = {

matcher = (it =~ /(.*?)(?: .+)+ (.*)/); // notice the non-matching group in the middle
if (matcher.matches())
println(matcher[0] [2]+", "+matcher[0] [1]);

}

names .each (printClosure) ;

Should output:

Miller, Graham
Macintyre, Andrew

That way, we always know that the last name is the second matcher group.

Replacement

One of the simpler but more useful things you can do with regular expressions is to replace the matching part of a string. You do that using the
replaceFirst() and replaceAll() functions on java.util.regex.Matcher (this is the type of object you get when you do something like myMatcher = ("a"
+=/bl);).

So let's say we want to replace all occurrences of Harry Potter's name so that we can resell J.K. Rowlings books as Tanya Grotter novels (yes,
someone tried this, Google it if you don't believe me).

excerpt = "At school, Harry had no one. Everybody knew that Dudley's gang hated that odd Harry Potter
"+

"in his baggy old clothes and broken glasses, and nobody liked to disagree with Dudley's
gang.";
matcher = (excerpt =~ /Harry Potter/) ;
excerpt = matcher.replaceAll ("Tanya Grotter");

matcher = (excerpt =~ /Harry/);
excerpt = matcher.replaceAll ("Tanya") ;
println("Publish it! "+excerpt) ;

In this case, we do it in two steps, one for Harry Potter's full name, one for just his first name.

Reluctant Operators

The operators ?, +, and * are by default "greedy". That is, they attempt to match as much of the input as possible. Sometimes this is not what we
want. Consider the following list of fifth century popes:

popesArray = [
"Pope Anastasius I 399-401",
"Pope Innocent I 401-417",
"Pope Zosimus 417-418",
"Pope Boniface I 418-422",
"Pope Celestine I 422-432",
"Pope Sixtus III 432-440",
"Pope Leo I the Great 440-461",
"Pope Hilarius 461-468",
"Pope Simplicius 468-483",
"Pope Felix III 483-492",
"Pope Gelasius I 492-496",
"Pope Anastasius II 496-498",
"Pope Symmachus 498-514"

A first attempt at a regular expression to parse out the name (without the sequence number or modifier) and years of each pope might be as
follows:

/Pope (.*)(?: .*)? ([0-9]1+)-([0-9]1+)/

Which splits up as:

/ Pope ' (.%) (?:.%)? ([0-9]+) - ([0-9]+) /
begin Pope ' capture some non-capture group: space and some capture a - capture a end
expression characters characters number number expression

We hope that then the first capture group would just be the name of the pope in each example, but as it turns out, it captures too much of the
input. For example the first pope breaks up as follows:

/ Pope | (.*) (?:.%)? | ([0-9]+) - ([0-9]+) /

begin expression = Pope Anastasius | 399 - 401 end expression

Clearly the first capture group is capturing too much of the input. We only want it to capture Anastasius, and the modifiers should be captured by
the second capture group. Another way to put this is that the first capture group should capture as little of the input as possible to still allow a
match. In this case it would be everything until the next space. Java regular expressions allow us to do this using "reluctant" versions of the *, +
and ? operators. In order to make one of these operators reluctant, simply add a ? after it (to make *?, +? and ??). So our new regular expression
would be:

/Pope (.*?)(?: .*)? ([0-9]+)-([0-9]1+)/

So now let's look at our new regular expression with the most difficult of the inputs, the one before Pope Hilarius (a real jokester), breaks up as
follows:

/ Pope | (.*?) (?:.%)? ([0-9]+) - ([0-9]+) [/

begin expression Pope Leo ' |the Great 440 - 461 end expression

Which is what we want.

So to test this out, we would use the code:

popesArray = [
"Pope Anastasius I 399-401"
"Pope Innocent I 401-417",
"Pope Zosimus 417-418",
"Pope Boniface I 418-422",
"Pope Celestine I 422-432",
"Pope Sixtus III 432-440",
"Pope Leo I the Great 440-461",
"Pope Hilarius 461-468",
"Pope Simplicius 468-483",
"Pope Felix III 483-492",
"Pope Gelasius I 492-496",
"Pope Anastasius II 496-498",
"Pope Symmachus 498-514"

myClosure = {

myMatcher = (it =~ /Pope (.*?) (?: .*)? ([0-9]+)-([0-9]1+)/);

if (myMatcher.matches())

println(myMatcher[0] [1]+": "+myMatcher[0] [2]+" to "+myMatcher[0] [3]);
}

popesArray.each (myClosure) ;

Try this code with the original regular expression as well to see the broken output.

Tutorial 6 - Groovy SQL

Groovy SQL

This section some content from this GroovySQL article, by Andrew Glover. If some of the references to JDBC don't make sense, don't worry.
There is one new language construct that is used below, which is the inclusion of variables in string definitions. For example try the following:

piEstimate = 3;
println("Pi is about ${piEstimate}");
println("Pi is closer to ${22/7}");

As you can see, in a string literal, Groovy interprets anything inside ${} as a groovy expression.

This feature is used extensively below.

Performing a simple query

Your first Groovy SQL code consists of three lines.

import groovy.sgl.Sgl

sqgl = Sgl.newInstance ("jdbc:jtds:sqglserver://serverName/dbName-CLASS;domain=domainName", "username"
"password", "net.sourceforge.jtds.jdbc.Driver")
sql.eachRow("select * from tableName", { println it.id + " -- ${it.firstName} --"});

The first line is a Java import. It simply tells Groovy the full name of the Sql object. The second line creates a new connection to the SQL
database, and stores the connection in the variable sq|.

This code is written for a jTDS connection to a MS SQL Server database. You will need to adjust all the parameters to newlnstance to connect to
your database, especially username and password.

Finally the third line calls the eachRow method of sql, passing in two arguments, the first being the query string, the second being a closure to
print out some values.

Notice that in the closure the fields of "it" are accessed in two different ways. The first is as a simple field reference, accessing the id field of it.
The second is the included Groovy expression mentioned above.

So the output from a row might look like:

001 -- Lane --

Retrieving a single value from DB

If all you need is a value of one or a few columns of a single row in the DB, you could do this

row = sqgl.firstRow("select columnA, columnB from tableName")
println "Row: columnA = ${row.columnaA} and columnB = ${row.columnB}"

Doing more complex queries

The previous examples are fairly simple, but GroovySql is just as solid when it comes to more complex data manipulation queries such as insert,
update, and delete queries. For these, you wouldn't necessarily want to use closures, so Groovy's Sql object provides the execute and
executeUpdate methods instead. These methods are reminiscent of the normal JDBC statement class, which has an execute and an
executeUpdate method as well.

Here you see a simple insert that uses variable substitution again with the ${} syntax. This code simply inserts a new row into the people table.

firstName = "yue"
lastName = "O'shea"
sqgl.execute ("insert into people (firstName, lastName) values (${firstName}, ${lastName})")

Because the sql statement is expressed in a GString, the values firstName and lastName are provided as parameters and so the quote mark in
lastName will not be seen as part of the statement.

Another way to do the same thing is to use prepared statements as follows:

firstName = "yue"

lastName = "wu"

sgl.execute("insert into people (firstName, lastName) "+
" values (?,?)", [firstName, lastName])

The data that you want to insert is replaced with "?" in the insert statement, and then the values are passed in as an array of data items. Updates
are much the same in that they utilize the executeUpdate method. Notice, too, that in Listing 8 the executeUpdate method takes a list of values
that will be matched to the corresponding ? elements in the query.

comment = "Lazy bum"
sgl.executeUpdate ("update people set comment = ? where i1id=002", [comment]

Deletes are essentially the same as inserts, except, of course, that the query's syntax is different.

sqgl.execute ("delete from word where word id = 2" , [5])

Other Tips

If you are content with using your resulting database columns in your business logic, it's nice and easy to just return a collection of
GroovyRowResult objects which you can use directly:

def getPersons () {
def persons = []
sql.eachRow ("Select * from Person")
persons << it.toRowResult ()

}

return persons

If you prefer to use a defined type instead of a GroovyRowResult, as long as your type has all the fields returned from your query you can just do:

Person p = new Person(it.toRowResult())

Differences to Other Languages

® Differences from Java
® Differences from Python
® Differences from Ruby

Differences from Java

Groovy tries to be as natural as possible for Java developers. We've tried to follow the principle of least surprise when designing Groovy,
particularly for developers learning Groovy who've come from a Java background.

Here we list all the major differences between Java and Groovy.

Default imports

All these packages and classes are imported by default, i.e. you do not have to use an explicit import statement to use them:

java.io.*

java.lang.*
java.math.BigDecimal
java.math.Biginteger
java.net.*

java.util.*
groovy.lang.*
groovy.util.*

Common gotchas

Here we list the common things you might trip over if you're a Java developer starting to use Groovy.

® ==means equals on all types. In Java there's a wierd part of the syntax where == means equality for primitive types and == means
identity for objects. Since we're using autoboxing this would be very confusing for Java developers (since x == 5 would be mostly false if

x was 5 :L'I . So for simplicity == means equals() in Groovy. If you really need the identity, you can use the method "is" like foo.is(bar).
This does not work on null, but you can still use == here: foo==null.

® inis a keyword. So don't use it as a variable name.

® When declaring array you can't write

int[] a = {1,2,3};

you need to write

int[] a = [1,2,3]

® If you were used to write a for loop which looked like

for (int i=0; i < len; i++) {...}

in groovy you can use that too, but you can use only one count variable. Alternatives to this are

for (i in 0..len-1) {...}
or

for (i in 0..<len) {...}
or

len.times {...}

Things to be aware of

Semicolons are optional. Use them if you like (though you must use them to put several statements on one line).
The return keyword is optional.

You can use the this keyword inside static methods (which refers to this class).

Methods and classes are public by default.

can also see protected members.
Inner classes are not supported at the moment. In most cases you can use closures instead.

unchecked exceptions.
® You will not get compile errors like you would in Java for using undefined members or passing arguments of the wrong type. See
Runtime vs Compile time, Static vs Dynamic.

Uncommon Gotchas

Protected in Groovy has the same meaning as protected in Java, i.e. you can have friends in the same package and derived classes

The throws clause in a method signature is not checked by the Groovy compiler, because there is no difference between checked and

Java programmers are used to semicolons terminating statements and not having closures. Also there are instance initializers in class definitions.

So you might see something like:

class Trial {
private final Thing thing = new Thing () ;
{ thing.doSomething () ; }

}

Many Groovy programmers eschew the use of semicolons as distracting and redundant (though others use them all the time - it's a matter of
coding style). A situation that leads to difficulties is writing the above in Groovy as:

class Trial {
private final thing = new Thing ()
{ thing.doSomething () }

}

This will throw a MissingMethodException!

The issue here is that in this situation the newline is not a statement terminator so the following block is treated as a closure, passed as an

argument to the Thing constructor. Bizarre to many, but true. If you want to use instance initializers in this sort of way, it is effectively mandatory

to have a semicolon:

class Trial {
private final thing = new Thing () ;
{ thing.doSomething () }

}

This way the block following the initialized definition is clearly an instance initializer.

Another document lists some pitfalls you should be aware of and give some advice on best practices to avoid those pitfalls.

New features added to Groovy not available in Java

® closures

® native syntax for lists and maps

® GroovyMarkup and GPath support

® native support for regular expressions

® polymorphic iteration and powerful switch statement

® dynamic and static typing is supported - so you can omit the type declarations on methods, fields and variables
® you can embed expressions inside strings

® |ots of new helper methods added to the JDK

® simpler syntax for writing beans for both properties and adding event listeners

L]

safe navigation using the ?. operator, e.g. "variable?.field" and "variable?.method()" - no more nested ifs to check for null clogging up
your code

Differences from Python

General

Python Groovy
repr (x) x.inspect (), x.dump ()
x.y 1if x x?.y
else None

"$ (foo)s" % "${foo}"
locals()

Lists

Python Groovy

not x Ix
X.empty

len (x) x.size()

for item, idx in enumerate (x): x.eachWithIndex { item, idx -> ... }

Maps
Python Groovy
{} [:] // an empty map
Depends : d.keySet ()
d if used like: for k
in d:

list(d) if list needed
dliter] .keys () explicitly

d. [iter]values () d.values ()

[k+1 for k in d] d.collect { k, v -> k+1 }

d = dict(zip(k, Vv)) k =1..3
v ='a..'c
d = [:]; k.eachWithIndex { it, i -> d[it] = vI[i] }
println d // [1:"a", 2:"b", 3:"c"]

Ranges/Slices

Python Groovy
range (3) 0..<3
range (1, 3+1) 1..3

not represented as a data type but you can use

range (0, 10, 2)

0.step(10, 2) {...}

"abcdef" [3:] "abcdef" [3..-1]

Object access

Python Groovy
m = 'strip'; getattr(' ! ', m) () m = 'trim'; ' ! '."S$m" ()
args = ('a', 2); 'abcabc'.find(*args) args = ['a', 2]; 'abcabc'.indexOf (*args

Differences from Ruby

The core abstract programming model of Ruby and Groovy are very similar: everything is an object, there is a MOP in control of all activity, and
closures are the core structuring tool after classes. Ruby uses the Ruby library, Groovy uses the Java library with some additions of its own. This
is the biggest difference but it is a huge difference. Syntactically, things like:

File.open('blah') { | file | puts(file.read) }
becomes:
println (new File ('blah').text)

which doesn't show that the Groovy closures syntax is:

{ file -> doSomething (file) }

which is slightly different from Ruby, but does show that sometimes Groovy has a different approach to certain things compared to Ruby. So in
moving from Ruby to Groovy, there are gotchas.

Download

Stable Releases

Groovy 1.6

Groovy 1.6.x is the main and stable branch of the Groovy dynamic language.

Groovy 1.6.7

Groovy 1.6.7 is the latest stable and recommended release of Groovy.
You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)
Download documentation: JavaDoc and zipped online documentation

Groovy 1.6.6
You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

Groovy 1.6.5

You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release

Download Windows-Installer: Binary Release (Module Versions)

Download unofficial Fedora/RHEL/CentOS package: Binary Release | Source Release
Download documentation: JavaDoc and zipped online documentation

Groovy 1.7

Groovy 1.7 is the current in-development branch.
The latest version of that branch is Groovy 1.7-RC-2.

Groovy 1.7-RC-2
You can have a look at the JIRA release notes.
Download zip: Binary Release | Source Release

Download documentation: JavaDoc and zipped online documentation

Groovy 1.7-RC-1
You can have a look at the JIRA release notes.
Download zip: Binary Release | Source Release

Download documentation: JavaDoc and zipped online documentation

Groovy 1.7-beta-2
You can have a look at the JIRA release notes.

Download zip: Binary Release | Source Release
Download Windows-Installer: Binary Release (Module Versions)

Download documentation: JavaDoc and zipped online documentation

Old Releases

Groovy 1.5.8

Groovy 1.5.8 is the latest official stable release of the 1.5.x maintenance branch (Release Notes). There should not be any further versions of
Groovy 1.5.x.

Download zip: Binary Release | Source Release
Download Windows-Installer: Binary Release
Download unofficial Fedora/RHEL/CentOS package: Binary Release | Source Release

Download documentation: JavaDoc and zipped online documentation

Legacy Groovy 1.0

If you still need to use the old Groovy 1.0, here are the links you may be interested in:
Download zip: Binary Release | Source Release

Download unofficial Ubuntu/Debian package: Binary Release

Download Windows-Installer: Binary Release

Download tar/gz: Binary Release | Source Release

Download Javadoc: Javadoc zip

Once you've downloaded the distribution, please read the installation instructions.

Other versions can be found in the distributions archive.

Maven Repositories

If you wish to embed Groovy in your application, you may just prefer to point to your favourite maven repositories or the codehaus maven
repository. You should consult the individual pom files for the exact details but here is a summary of the main supported artifactlds and grouplds:

Groovy 1.6.X/ 1.7-beta-x

Available in the Maven 2 repositories.

<groupld>org.codehaus.groovy</groupld> = Treats Antlr, ASM, etc. as standard dependencies. Only useful if you happen to also use the same
versions of these jars yourself as it will save you having two copies of these jars. Optional

<artifactld>groovy</artifactld> dependencies are marked as optional. You may need to include some of the optional

<version>x.y.z</version> dependencies to use some features of Groovy, e.g. AntBuilder, GroovyMBeans, etc.

<groupld>org.codehaus.groovy</groupld> ' Includes jarjar versions of Antlr, ASM, Commons-CLI and Retrotranslator runtime. Allows you or
your other dependencies (e.g. hibernate) to use other versions of these jars. Optional

<artifactld>groovy-all</artifactld> dependencies are marked as optional. You may need to include some of the optional

<version>x.y.z</version> dependencies to use some features of Groovy, e.g. AntBuilder, GroovyMBeans, etc.

Groovy 1.5.X (including 1.1.x milestone releases)

Available in the Maven 2 repositories.

<groupld>org.codehaus.groovy</groupld> ' Treats Antlr and ASM as standard dependencies. Only useful if you happen to also use the same
versions of these jars yourself as it will save you having two copies of these jars. Optional

<artifactld>groovy</artifactld> dependencies are marked as optional. You may need to include some of the optional

<version>x.y.z</version> dependencies to use some features of Groovy, e.g. AntBuilder, GroovyMBeans, etc.

<groupld>org.codehaus.groovy</groupld> ' Includes jarjar versions of Antlr, ASM and Commons-CLI. Allows you or your other dependencies

(e.g. hibernate) to use other versions of these jars. Optional dependencies are marked as optional.
<artifactld>groovy-all</artifactld> You may need to include some of the optional dependencies to use some features of Groovy, e.g.
<version>x.y.z</version> AntBuilder, GroovyMBeans, etc.

<groupld>org.codehaus.groovy</groupld> ' Includes jarjar versions of Antlr and ASM. Does not include Commons-CLI or any optional
dependencies. Not suitable by itself if you want to use any tools which do command-line

<artifactld>groovy-all-minimal</artifactld> = processing, e.g. groovyc, GroovyShell, ...
<version>x.y.z</version>

Previous stable release: Groovy 1.0

Available in the Maven 1 and Maven 2 repositories.

<groupld>groovy</groupld> Treats Antlr and ASM as standard dependencies. Only useful if you happen to also use the same
<artifactld>groovy</artifactld> versions of these jars yourself as it will save you having two copies of these jars. Dependencies
<version>1.0</version> mandated for all optional parts of Groovy, e.g. AntBuilder, GroovyMBeans, etc.
<groupld>groovy</groupld> Includes jarjar versions of Antlr and ASM. Allows you or your other dependencies (e.g. hibernate) to
<artifactld>groovy-all</artifactld> use other versions of these jars. Dependencies mandated for all optional parts of Groovy, e.g.
<version>1.0</version> AntBuilder, GroovyMBeans, etc.

<groupld>groovy</groupld> Includes jarjar versions of Antlr and ASM. Does not include any optional dependencies.

<artifactld>groovy-all-minimal</artifactid>

<version>1.0</version>
For historical purposes, the releases candidates for 1.0 are also available by using the appropriate version instead of 1.0 in the above version tag.

Snapshot Releases

In addition to the stable and milestone releases you can find intermediate SNAPSHOT releases at the codehaus snapshot maven repository.

Other ways to get Groovy

If you're on MacOS and have MacPorts installed, you can run "sudo port install groovy" to install the latest Groovy release.
If you're on Windows, you can also use the NSIS Windows installer.
You may download other distributions of Groovy from this site.

If you prefer to live on the bleeding edge, you can also grab the source code from SVN.

If you are an IDE user, you can just grab the latest IDE plugin and follow the plugin installation instructions.

Feature Overview

® Groovlets

® Groovy Beans

® GroovyMarkup

® Groovy Templates

Groovlets

You can write normal Java servlets in Groovy (i.e. Groovlets).
There is also a GroovyServlet

This feature will automatically compile your .groovy source files, turn them into bytecode, load the Class and cache it until you change the source
file.

Here's a simple example to show you the kind of thing you can do from a Groovlet.
Notice the use of implicit variables to access the session, output & request. Also notice that this is more like a script as it doesn't have a class
wrapper.

if (!session)
session = request.getSession(true);

}

if (!session.counter

{

)
session.counter = 1

println "mn
<html>
<head>
<title>Groovy Servlet</title>
</head>
<body>
Hello, ${request.remoteHost}: ${session.counter}! ${new Date()}
</body>
</html>

session.counter = session.counter + 1

Or, do the same thing using MarkupBuilder:

if (!session)
session = request.getSession (true)

}

if (!session.counter)
session.counter = 1
}
html.html { // html is implicitly bound to new MarkupBuilder (out)
head {

title("Groovy Servlet™")
}
body {
p("Hello, ${request.remoteHost}: ${session.counter}! ${new Date()}")
}
}

session.counter = session.counter + 1

Implicit variables

The following variables are ready for use in Groovlets:

variable name bound to note

request ServletRequest -

response ServletResponse -

context ServletContext unlike Struts
application ServletContext unlike Struts
session getSession(false) can be nulll see 'tr A
params a Map object
headers a Map object
out response.getWriter() see BI B
sout response.getOutputStream() see B2 B
html new MarkupBuilder(out) see B2 B

-0 A The session variable is only set, if there was already a session object. See the 'if (session == null)' checks in the examples above.

%L B These variables cannot be re-assigned inside a Groovlet. They are bound on first access, allowing to e.g. calling methods on the 'response’
object before using 'out'.

Setting up groovylets

Put the following in your web.xml:

<servlet>

<servlet-name>Groovy</servlet-name>
<servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Groovy</servlet-name>
<url-pattern>*.groovy</url-pattern>
</servlet-mapping>

Then all the groovy jar files into WEB-INF/lib. You should only need to put the groovy.jar, the antir.jar and the asm.jar. Or copy the
groovy-all-xyz.jar into WEB-INF/lib - this almost all jar contains the antlr and asm jars.

Now put the .groovy files in, say, the root directory (i.e. where you would put your html files). The groovy servlet takes care of compiling the
.groovy files.

So for example using tomcat you could edit tomcat/conf/server.xml like so:

<Context path="/groovy" docBase='"c:/groovy-servlet"/>

Then access it with http://localhost:8080/groovy/hello.groovy

Groovy Beans

GroovyBeans are JavaBeans but using a much simpler syntax.
Here's an example:

class Customer {
// properties
Integer id
String name
Date dob

// sample code
static void main(args) {
def customer = new Customer(id:1, name:"Gromit", dob:new Date())
println("Hello ${customer.name}")

Hello Gromit

Notice how the properties look just like public fields. You can also set named properties in a bean constructor in Groovy. In Groovy, fields and
properties have been merged so that they act and look the same. So, the Groovy code above is equivalent to the following Java code:

import java.util.Date;

public class Customer {
// properties

private Integer id;
private String name;
private Date dob;

public Integer getId() {
return this.id;

public String getName () {
return this.name;

public Date getDob() {
return this.dob;

public void setId(Integer id)
this.id = id;

public void setName (String name) {
this.name = name;

public void setDob (Date dob) {
this.dob = dob;

// sample code
public static void main(String[] args) {
Customer customer = new Customer();
customer.setId(1);
customer.setName ("Gromit") ;
customer.setDob (new Date()) ;

println("Hello " + customer.getName()) ;

Property and field rules

When Groovy is compiled to bytecode, the following rules are used.

If the name is declared with an access modifier (public, private or protected) then a field is generated.

A name declared with no access modifier generates a private field with public getter and setter (i.e. a property).

If a property is declared final the private field is created final and no setter is generated.

You can declare a property and also declare your own getter or setter.

You can declare a property and a field of the same name, the property will use that field then.

If you want a private or protected property you have to provide your own getter and setter which must be declared private or protected.

If you access a property from within the class the property is defined in at compile time with implicit or explicit this (for example this.foo, or
simply foo), Groovy will access the field directly instead of going though the getter and setter.

® |f you access a property that does not exist using the explicit or implicit foo, then Groovy will access the property through the meta class,
which may fail at runtime.

So, for example, you could create a read only property or a public read-only property with a protected setter like this:

class Foo {
// read only property
final String name = "John"

// read only property with public getter and protected setter
Integer amount
protected void setAmount (Integer amount) { this.amount = amount }

// dynamically typed property
def cheese

}

Note that properties need some kind of identifier: e.g. a variable type ("String") or untyped using the "def" keyword.

Why a field with public access modifier do not have getter and setter generated? If we'd generate getter / setter all the time, it means Groovy
would not let you not define getters / setters, which can be problematic when you really don't want to geters / setters to be exposed.

Closures and listeners

Though Groovy doesn't support anonymous inner classes, it is possible to define action listeners inline through the means of closures. So instead
of writing in Java:

Processor deviceProc = ...
deviceProc.addControllerListener (new ControllerListener() {
public void controllerUpdate (ControllerEvent ce) {

}

You can do that in Groovy with a closure:

// BAdd a closure for a particular method on the listener interface
deviceProc.controllerUpdate = { ce -> println "I was just called with event $ce" }

Notice how the closure is for a method on the listener interface (controllerUpdate), and not for the interface itself(ControllerListener). This
technique means that Groovy's listener closures are used like a ListenerAdapter where only one method of interest is overridden. Beware:
mistakenly misspelling the method name to override or using the interface name instead can be tricky to catch, because Groovy's parser may see
this as a property assignment rather than a closure for an event listener.

This mechanism is heavily used in the Swing builder to define event listeners for various components and listeners. The JavaBeans introspector
is used to make event listener methods available as properties which can be set with a closure.

The Java Beans introspector (java.beans.Introspector) which will look for a BeanlInfo for your bean or create one using its own naming
conventions. (See the Java Beans spec for details of the naming conventions it uses if you don't provide your own Beanlinfo class). We're not
performing any naming conventions ourselves - the standard Java Bean introspector does that for us.

Basically the BeanlInfo is retrieved for a bean and its EventSetDescriptors are exposed as properties (assuming there is no clash with regular

beans). It's actually the EventSetDescriptor.getListenerMethods() which is exposed as a writable property which can be assigned to a closure.

GroovyMarkup

Note: the following examples are snippets, not ready-to-run examples.

Groovy has native support for various markup languages from XML, HTML, SAX, W3C DOM, Ant tasks, Swing user interfaces and so forth.
This is all accomplished via the following syntax...

}

def someBuilder = new NodeBuilder ()

someBuilder.people (kind: 'folks', groovy:true) {

person (x:123, name:'James', cheese:'edam') {
project (name: 'groovy')
project (name: 'geronimo')

}

person (x:234, name:'bob', cheese:'cheddar') {
project (name: 'groovy')
project (name: 'drools')

}

Whichever kind of builder object is used, the syntax is the same. What the above means is that the someBuilder object has a method called
'people’ invoked with 2 parameters...

a Map of arguments ['kind":'folks', 'groovy':true]
a Closure object which when invoked will call 2 methods on the builder called 'person’, each taking 2 parameters, a map of values and a

closure...

So we can easily represent any arbitrary nested markup with ease using a simple concise syntax. No pointy brackets! l';?:}

What's more is this is native Groovy syntax; so you can mix and match this markup syntax with any other Groovy features (iteration, branching,
method calls, variables, expressions etc). e.g.

// lets create a form with a label & text field for each property of a bean
def swing = new SwingBuilder ()

def widget = swing.frame (title:'My Frame',
defaultCloseOperation:javax.swing.WindowConstants.EXIT ON_CLOSE) {

}

widget.show ()

panel () {
for (entry in someBean) {
label (text:entry.key)
textField(text:entry.value)

}

button (text:'OK', actionPerformed:{ println("I've been clicked with event ${it}") })

}

Trees, DOMs, beans and event processing

The really neat thing about GroovyMarkup is that its just a syntax which maps down to method calls. So it can easily support the building of any
arbitrary object structure - so it can build any DOMish model, a bean structure, JMX MBeans, PicoComponents, Swing front ends, Ant tasks etc.
What's more since its just normal method invocations it can naturally map to SAX event processing too.

Out of the box Groovy comes with a few different markup builders you can use :

NodeBuilder - creates a tree of Node instances which can be easily navigated in Groovy using an XPath-like syntax
DOMBuilder - creates a W3C DOM document from the markup its given

SAXBuilder - fires SAX events into a given SAX ContentHandler

MarkupBuilder - outputs XML / HTML markup to some PrintWriter for things like implementing servlets or code generation
AntBuilder - fires off Ant tasks using familiar markup for processing build tasks

SwingBuilder - creates rich Swing user interfaces using a simple markup

Examples

Here's a simple example which shows how you could iterate through some SQL result set and output a dynamic XML document containing the
results in a custom format using GroovyMarkup

// lets output some XML builder (could be SAX / DOM / TrAX / text)
def xml = new NodeBuilder ()
xml.customers () {

loc = 'London'

sql.eachRow ("select * from customer where location = ${loc}) {

// lets process each row by emitting some markup
xml.customer (id:it.id, type:'Customer', foo:someVariable)) {
role(it.person_role)
name (it.customer_name)
location(id:it.location_id, name:it.location_name)
}
}
}

The interesting thing about the above is that the XML technology used at the other end could be push-event based (SAX) or pull-event based
(StAX) or a DOM-ish API (W3C, dom4j, JDOM, EXML, XOM) or some JAXB-ish thing (XMLBeans, Castor) or just beans or just good old text files.
e.g. a pull parser could literally pull the data out of the database - or the data could be pushed into data some structure or piped straight to a file
using 10 or async NIO.
The use of GroovyMarkup means developers can hide the XML plumbing and focus on tackling the real problems we're trying to solve.
To see more examples of using GroovyMarkup try looking at our unit test cases

® XML unit tests

® Ant unit tests

® Swing demos

There is more detail on markup here Make a builder.

Groovy Templates

Introduction

Groovy supports multiple ways to generate text dynamically including GStrings, printf if you are using Java 5, and MarkupBuilder just to name
a few. In addition to these, there is a dedicated template framework which is well-suited to applications where the text to be generated follows the
form of a static template.

Template framework

The template framework in Groovy consists of a TemplateEngine abstract base class that engines must implement and a Template interface
that the resulting templates they generate must implement.

Included with Groovy are several template engines:
® simpleTemplateEngine - for basic templates

® GStringTemplateEngine - stores the template as writable closures (useful for streaming scenarios)
® XmlTemplateEngine - works well when the template and output are valid XML

SimpleTemplateEngine

Shown here is the SimpleTemplateEngine that allows you to use JSP-like scriptlets (see example below), script, and EL expressions in your
template in order to generate parameterized text. Here is an example of using the system:

import groovy.text.SimpleTemplateEngine

def text = 'Dear "$firstname $lastname",\nSo nice to meet you in <% print city %>.\nSee you in
${month}, \n${signed}"'

def binding = ["firstname":"Sam", "lastname":"Pullara", "city":"San Francisco", "month":"December"
"signed":"Groovy-Dev"]

def engine = new SimpleTemplateEngine ()
template = engine.createTemplate (text) .make (binding)

def result = 'Dear "Sam Pullara",\nSo nice to meet you in San Francisco.\nSee you in
December, \nGroovy-Dev'

assert result == template.toString()

While it is generally not deemed good practice to mix processing logic in your template (or view), sometimes very simple logic can be useful. E.g.
in the example above, we could change this:

S$firstname

to this (assuming we have set up a static import for capitalize):

${capitalize (firstname) }

or this:

<% print city %>

to this:

<% print city == "New York" ? "The Big Apple" : city %>

Advanced Usage Note

If you happen to be embedding your template directly in your script (as we did above) you have to be careful about backslash escaping. Because
the template string itself will be parsed by Groovy before it is passed to the the templating framework, you have to escape any backslashes inside
GString expressions or scriptlet 'code' that are entered as part of a Groovy program. E.g. if we wanted quotes around The Big Apple above, we
would use:

<% print city == "New York" ? "\\"The Big Apple\\"" : city %>

Similarly, if we wanted a newline, we would use:

\\n

in any GString expression or scriptlet 'code' that appears inside a Groovy script. A normal "\n" is fine within the static template text itself or if the
entire template itself is in an external template file. Similarly, to represent an actual backslash in your text you would need

in an external file or

\\

in any GString expression or scriptlet 'code’. (Note: the necessity to have this extra slash may go away in a future version of Groovy if we can find

an easy way to support such a change.)

GStringTemplateEngine

As an example of using the GStringTemplateEngine, here is the example above done again (with a few changes to show some other
options). First we will store the template in a file this time:

test.template

Dear "$firstname S$lastname",

So nice to meet you in <% out << (city == "New York" ? "\"The Big Apple\"" : city) %>.
See you in ${month},

${signed}

Note that we used out instead of print to support the streaming nature of GStringTemplateEngine. Because we have the template in a
separate file, there is no need to escape the backslashes. Here is how we call it:

def £ = new File('test.template')

engine = new GStringTemplateEngine ()

template = engine.createTemplate (f) .make (binding)
println template.toString()

and here is the output:

Dear "Sam Pullara",

So nice to meet you in "The Big Apple".
See you in December,

Groovy-Dev

You can also plug in other templating solutions, e.g. GFreeMarker, Velocity, StringTemplate, Canvas and others.

If you wish to combine templating with Ant processing, consider Gpp.

Using TemplateServiet to serve single JSP-like HTML files

“L, Mind the gap! Ehm, meaning the difference between Groovlets and Templates.

The TemplateServlet just works the opposite as the Groovlets(GroovyServlet) does. Here, your source is HTML (or any other, fancy template
files) and the template framework will generate a Groovy script on-the-fly. This script could be saved to a .groovy file and served by the
GroovyServlet (and the GroovyScriptEngine), but after generation, the template is evaluated and responded to the client.

Here is a simple example helloworld.html file which is not validating and does not have a head element. But it demonstrates, how to let Groovy
compile and serve your HTML files to web clients. The tag syntax close to JSP and should be easy to read:

<html>
<body>
<% 3.times { %>
Hello World!
<%} %>

<% if (session != null) { %>
My session id is ${session.id}
<% } else println "No session created." %>
</body>
</html>

The first Groovy block - a for loop - spans the HelloWorld! text. Guess what happens? And the second Groovy statement prints the serviet's
session id - if there is a session avaiable. The variable session is one of some default bound keys. More details reveals the documentation of
ServletBinding.

Here is some sample code using http://jetty.mortbay.orgs servlet container. With jetty6.0, copy jetty-6.1.3.jar and jetty-util-6.1.3.jar into
$HOME/.groovy/lib, create a tiny web server with the following. To test it, add your above helloworld.html file into your current directory and
browse http://localhost:1234/helloworld.html

import org.mortbay.jetty.*
import org.mortbay.jetty.servlet.*
import groovy.servlet.*

def server = new Server(1234)

def root = new Context (server,"/",Context.SESSIONS)

root .setResourceBase (".")

root.addServlet (new ServletHolder (new TemplateServlet()), "*.html"
server.start ()

Here is a similiar web.xml example.

<web-app>

<servlet>
<servlet-name>Groovlet</servlet-name>
<servlet-class>groovy.servlet.GroovyServlet</servlet-class>
</servlet>
<servlet>
<servlet-name>Template</servlet-name>
<servlet-class>groovy.servlet.TemplateServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Groovlet</servlet-name>
<url-pattern>*.groovy</url-patterns

</servlet-mapping>

<servlet-mapping>
<servlet-name>Template</servlet-name>
<url-pattern>*.html</url-patterns

</servlet-mapping>

<servlet-mapping>
<servlet-name>Template</servlet-name>
<url-patterns>*.gsp</url-patterns

</servlet-mapping>

</web-app>

Further reading

Article on templating with Groovy templates
Article on templating with Groovlets and TemplateServlets
Blog about combining Groovy and FreeMarker

For those new to both Java and Groovy

Java developers benefit from using Groovy, but so can you who don't already know Java. If you want to access the power of the Java Virtual
Machine and Development Kit libraries when programming, but don't want to learn the Java Language, you can use Groovy instead. Or maybe
you do want to learn Java, but do so the easy way: you can learn Groovy first. You'll be productive sooner, and can go on to learn more about
Java at your own pace.

Much of the documentation on this website at Codehaus is for those who already know Java. These pages are for you who don't, so you can
learn enough of the Groovy basics to easily use the other documentation on this website. They introduce Groovy's core classes and syntax
together. All code examples have been tested using Groovy 1.0 or later inside a script. It's aimed at you who have already programmed before,
just not in Java, maybe in PHP, Perl, or Visual Basic. Do note that although this documentation is correct and detailed, it's still a little raw because
it's still being written.

Getting Started - enough background to dive into the tutorials that follow

1. Numeric Processing
Integer Math - choose from many types of integers

Decimal Math - for high-precision decimal math
Floating Point Math - for high-speed decimal math
Dates and Times - enabling complex date manipulations

2. Collections
Lists and Sets - group various items into a collection

Arrays - fixed-size arrays for faster collections
Maps - assign collected values to keys

3. Text Processing
Characters - access the full power of Unicode

Strings - easily handle strings of characters
String Pattern Matching - find patterns within strings

4. Input and Output
Files - manipulate the file system easily

Streams, Readers, and Writers - access data as a flow of information

5. Control Structures
Blocks, Closures, and Functions - compose programs from many building blocks

Expandos, Classes, and Categories - encapsulate program complexity
Program Control - various ways to structure program logic

6. Data Typing
Static Typing and Interfaces - put compile-time restrictions in programs

Inheritance - use classes and methods for many purposes
Exceptions - handle exception and error conditions simply

7. Meta-Programming
Interceptors - intercept method calls

MetaClasses - add and modify behavior of objects

Class Reflection - examine and manipulate objects dynamically

To continue learning Groovy, you can now go on to:
Java, the engine behind Groovy's power and performance
Swing, the graphical interface for Java, made easy with Groovy's own SwingBuilder
Eclipse, the free IDE with a Groovy plugin to make managing your code easy
useful Groovy modules, such as Gant, which extend the Groovy system
Grails, bringing the power of Groovy to website development and deployment

JN0025-Starting

The Groovy Programming Language runs on top of the Java Runtime Environment, which itself runs on almost any computer system, such as
Windows, Linux, and Macintosh. If you don't have Groovy installed, see these pages:

Installing Groovy

Running Groovy
If you don't have the Java Runtime Environment:

Installing Java

These tutorials for those new to both Java and Groovy are in a sequence that builds on knowledge already presented. This tutorial therefore starts

with the basics. Throughout, we use code examples rather than lengthy explanations to present the features of Groovy, so you might miss things
if you just skim. We don't (yet) explain what you would use the features for, but rely on your previous programming background for this.

The code snippets in these tutorials use comments to explain things:

//comment like this to end of line, ignoring */ and /* and ' and "
/*or comment like this, ignoring // and ' and " until: */

/*or comment over

many lines, /*with no nesting*/

Groovy code can contain strings:

'A string can be within single quotes on one line...'

''"1'. ..or within triple single quotes

over many lines, ignoring // and */ and /* comment delimiters,...'"'
"...or within double quotes..."

nnn . .or within triple double quotes

over many lines."""

Each line here does the same:

println 'hello, world' //the function 'println' prints a string then newline
print 'hello, world\n' //'print' doesn't print newline, but we can embed
//newlines ('\n' on Unix/Linux, '\r\n' on Windows)
println 'hello' + ', ' + 'world' // + joins strings together
print 'hello, '; println 'world'
//use semi-colons to join two statements on one line
println('hello, world')
//can put command parameter in parens, sometimes we might have to
def a= 'world'; println 'hello, ' + a
//'def' to define a variable and give it a value
print 'hello, world'; println()
//empty parens must be used for no-arg functions; here, prints a blank line
def b= 'hello', c= 'world'; println "$b, ${c}"
//$ in print string captures variable's value

We can also assign integers and decimals to variables:

def g = 7, groovy = 10.2
//we can separate more than one defined variable by a comma
print g + ', ' + groovy + '\n' //prints: 7, 10.2
assert g + ', ' + groovy == '7, 10.2' //we can use assert statement and ==
//operator to understand examples

We can use operators like + - * / and parentheses () with numbers, following usual math grouping rules:

assert 4 * (2 + 3) - 6 == 14 //integers only
assert 2.5 + 7 == 9.5
assert 7 / 4 == 1.75 //decimal number or division converts expression to decimal

We can use the operators == > < >= <= |= with numbers, the values true and false, the operators ! (not), && (and), and || (or), all with
parentheses, to produce boolean expressions:

assert 2 > 3 == false

assert 7 <= 9

assert 7 l!= 2

assert true

assert ! false

assert 2 > 3 || 7 <=9

assert (2 >3 || 4 <5) & 6 !=7

Variables are versatile:

def a
assert a == null
//variables defined but not given a value have special value null
def b =1
assert b == 1
b =2
assert b == 2 //variables can be re-assigned to
b = 'cat'
assert b == 'cat' //they can be re-assigned different types/classes of data
b = null
assert b == null //they can be unassigned

All names in Groovy, including variable names, can contain any alphabetic character or the underscore, and contain any digit not in first position:

def abc= 4
def a23c= 4
def ab c= 4
def _abc= 4

def ABC= 4

assert abc == ABC //although their values are the same...

assert ! abc.is(ABC) //...the variables 'abc' and 'ABC' are different,
//the names being case-sensitive

/*these each produce compile errors when uncommented. ..

def abc //already defined

def a%c= 4 //not a valid name because it contains a symbol other than _
def 2bc= 4 //may not contain a digit in first position

*/

All data in Groovy is built from "classes" and instances of them. Class names by convention begin with an uppercase character:

assert Byte.MAX VALUE == 127
//a class can have attached variables, called 'fields'
assert Byte.parseByte('34') == 34

//a class can have attached functions, called 'methods'
def b= new Byte('34')

//we can create an 'instance' of a class using the 'new' keyword
assert b.intValue() == 34

//each instance can also have attached fields and methods

We can inspect the class of any entity, such as numbers and strings, using the class field:

assert 4.class == Integer //the common types have both a short name...

assert 4.class == java.lang.Integer //...and a long name
assert 4.5.class == BigDecimal

assert 'hello, world'.class == String

def a= 7

assert a.class == Integer

There are many predefined classes in Groovy, but only the most common ones are always visible to Groovy code. Most need to be qualified with
a "package" name, eg, 'java.text.DecimalFormat', or the package must be imported beforehand:

import java.text.*
assert new DecimalFormat('#,#00.0#').format(5.6789) == '05.68"'

assert new java.text.DecimalFormat ('#,#00.0#').format(5.6789) == '05.68"'

If a line can be interpreted as a valid statement, it will be:

def i=
1 //because 'def i=' isn't a valid statement,
//the '1' is appended to the previous line

//a compile error when uncommented: 'def j' is valid, so is interpreted as
//a statement. Then the invalid '= 1' causes the error...

/*

def j

=1

*/

def k \
= 1 //a backslash ensures a line is never interpreted as a standalone statement

Sometimes code in a script doesn't compile: we comment it out in our examples. Other code compiles but generates a "checked exception" which
we can catch and handle:

try(
'moo' .toLong () //this will generate an exception
assert false
//this code should never be reached, so will always fail if executed
}catch(e) { assert e instanceof NumberFormatException }
//we can check the exception type using 'instanceof'

We can use square brackets [] to represent both ordered lists and key mappings:

def list= [1, 2, 3]

list= [] //empty list

list= [1, 'b', false, 4.5 1 //mixed types of values OK

assert list[0] == 1 && list[1l] == 'b' && ! list[2] && list[3] == 4.5
//we can refer to items individually by index

def map= [l:'a', 2:'b', 3:'c'] //map indicated with colon

map= [:] //empty map

map= ['a': 1, 'b': 'c', 'groovy': 78.9, 12: true] //mixed types of values

assert map['a']l == 1 && map['b'] == 'c' && map['groovy'] == 78.9 && map[1l2]
//we can refer to values individually by key

'each' tells the code following it to execute for each item in a list or map:
//for every item in list, assign to 'it' and execute the following code...
[2, -17, +987, 0].each{
println it
}
//we can specify a different name for the argument other than the default...
[2, -17, +987, 0]l.each{ n ->
println n
}
//we can specify two or more arguments, as with this map...
[1: 3, 2: 6, 3: 9, 4: 12].each{ k, v->
assert k * 3 == v

We can specify a list as a 'range’, ie, by only the first and last items:

(3..7).each{ println it } //prints numbers 3, 4, 5, 6, and 7
(3..<7).each{ println it } //prints numbers 3, 4, 5, and 6 //excludes 7

We can convert data of one type to another using the 'as' keyword:

assert ('a' as Integer) == 97
//Unicode (and ASCII) representation of character 'a'

Sometimes, we need to use a more efficient type of list known as an array, where the type of each element must be the same. Arrays can't be
represented directly in the syntax, but we can convert a list to one easily:

def x= ['a', 'b', 'c'] as Integer[] //convert each item in list to an Integer
assert x[0] == 97 && x[1] == 98 && x[2] == 99 //access each element individually

We can choose between two execution options using the if-else-statement:

def a= 2
if(a< 5){
println "a, being Sa, is less than 5."
telse{
assert false //this line should never execute

}

We can execute some code a certain number of times:

def i=0
10.times{ println i++ } //increment i by 1 after printing it

//another less declarative style of looping...
while(i > 0){
println i-- //decrement i by after printing it

}

We can enclose code in parentheses and execute it later. The enclosed code is called a "closable block" or "closure":

def c= { def a= 5, b= 9; a * b }
assert c() == 45

[{ def a= 'ab'; a + 'bec' },
{ rabbc' },
] .each{ assert it() == 'abbc' }

We can spawn new threads from our main thread:

def i=0, j=0
def f= new File ('TheOutput.txt') //create or overwrite this file
Thread.start{

while (true) {

i++
if (1%1000 == 0) f<< 'S' //spawned thread
}
}
while (true) {
J++
if(j%1000 == 0) f<< 'M' //main thread

}

After, say, 5 seconds, abort the program then look at the file. On many computers, it'll show a roughly equal distribution of 'S' and 'M', but there'll
be some irregularities showing that thread scheduling isn't perfectly timed.

The tutorials following are grouped into functional areas, beginning with numeric processing, and build up to the advanced features of Groovy.

JNO0515-Integers

Groovy numbers are either decimals or integers. The 3 main types of integers are Integer, Long, and Biginteger. Biglnteger has no size limit,
while Integer and Long do. We can enquire their minimum and maximum values:

assert Integer.MAX VALUE == 2147483647 //at 2 billion, big enough for most uses
assert Integer .MIN VALUE == -2147483648

assert Long.MAX VALUE == 9223372036854775807

assert Long.MIN VALUE == -9223372036854775808

Integers will normally be the smallest type into which the value will fit (using 2's-complement representation):

assert 110.class == Integer
assert 3000000000.class == Long //value too large for an Integer
assert 10000000000000000000.class == BigInteger //value too large for a Long

We can represent integers in base-10, hexadecimal, or octal notation:

//base-10 integers, positive or negative...
[2, -17, +987].each{ assert it }

//hex using leading 0x (lowercase or uppercase for a,b,c,d,e,f,x)...
[0xACe, 0X01lff].each{ assert it }

//octal using leading O...
[077, 01].each{ assert it }

We can negate hexadecimals and octals to represent negative numbers.

assert Ox7FFFFFFF.class == Integer

assert (-0x7FFFFFFF).class == Integer //we must negate using the minus sign
assert 0x80000000.class == Long

assert (-0x80000000).class == Integer

assert (-0x80000001).class == Long

We can force an integer (including hexadecimals and octals) to have a specific type by giving a suffix (I for Integer, L for Long, G for BigInteger),
either uppercase or lowercase:

assert 42i.class == Integer //lowercase i more readable
assert 123L.class == Long //uppercase L more readable
assert 456g.class == BigInteger

assert OxFFi.class == Integer

Fixed-Size Integers

The fixed-size integers, Integer and Long, each have size limits but are more efficient in calculations.

There are also the less common Byte and Short types of integer, which act like the Integer type in math operations.

assert Short.MAX VALUE == 32767

assert Short.MIN_VALUE == -32768
assert Byte.MAX VALUE == 127

assert Byte.MIN VALUE == -128

def a= new Byte('34'), b= new Byte('2"'")
assert (a+b).class == Integer

We can enquire the bit-size of each type of fixed-size integer:

assert Integer.SIZE == 32
assert Long.SIZE == 64
assert Short.SIZE == 16
assert Byte.SIZE == 8

The class Integer can often be written int. The classes Long, Short, and Byte can each also often be written uncapitalized, ie, long, short, and
byte. We can enquire these alternative (aka "primitive type") names:

assert Integer.TYPE == int
assert Long.TYPE == long
assert Short.TYPE short
assert Byte.TYPE == byte

The fixed-size integer classes can be converted to one another:

assert 45L as Integer == 45i

assert 45L as int == 45i //example of using 'int' for Integer
assert 45L.toInteger() == 45i //alternative syntax

assert 23L.intValue() == 23i //another alternative syntax
assert 451 as Long == 45L

assert 451 as long == 45L

assert 23i.toLong() == 23L

assert 45i.longValue() == 45L

//if converted number too large for target, only lowest order bits returned...
assert 2561 as Byte 0
assert 200i as byte == -56 //...and this may result in a negative number

We can create new fixed-sized integers from strings:

assert '42'.tolInteger () == 42i
assert '56'.tolLong() == 56L
try{ 'moo'.toLong(); assert false }

catch(e){ assert e instanceof NumberFormatException }

assert new Integer('45') == 45i
assert new Byte('45') == 45 as byte
try{ new Integer('oink'); assert false }

catch(e){ assert e instanceof NumberFormatException }

To convert from a fixed-size integer to a string in various bases:

//second character is the base/radix...
assert Integer.toString(29, 16) == '1d'

//Long version behaves just like Integer version...
assert Long.toString(29L, 16) == '1d'

//if number is negative, so is first character of returned string...
assert Integer.toString(-29, 16) == '-1d'

//only time result begins with zero is if it is zero...
assert Integer.toString(0) == '0'

assert Integer.toString(29, 16).toUpperCase() == '1D'

//second argument defaults to 10...
assert Integer.toString(29) == '29'

//Short version only accepts one parameter, only allowing base 10...
assert Short.toString(29 as short) == '29'

If the base/radix isn't between Character.MIN_RADIX and Character. MAX_RADIX, base 10 is used instead:

assert Integer.toString(999, Character.MIN RADIX - 1) ==
Integer.toString(999, 10)

assert Integer.toString(999, Character.MAX RADIX + 1) ==
Integer.toString(999, 10)

assert Character.MAX RADIX == 36
//the symbols letters 0123456789abcdefghijklmnopgrstuvwxyz are used

The common bases have similar methods which always return an unsigned integer:

assert Integer.toHexString(29) == '1ld' //return unsigned base-16 integer
assert Integer.toHexString(0) == '0'

assert Integer.toHexString(-17) == 'ffffffef’

assert Long.toHexString(-17L) == 'ffffffffffffffef"

//same as toString(,16) when number positive...
assert Integer.toHexString(29) == Integer.toString(29,16)

//...but different when number negative

assert Integer.toHexString(-17) != Integer.toString(-17,16
assert Integer.toOctalString(29) == '35'

assert Integer.toOctalString(0) == '0°'

assert Integer.toOctalString(-17) == '37777777757"'

assert Integer.toBinaryString(29) == '11101'

We can convert a string representation to an integer, using a specified base/radix:

assert Integer.parselnt("0", 10) == 0

assert Integer.parselnt("473", 10) == 473

assert Long.parselLong("473", 10) == 473L //Long type has similarly-acting method
assert Integer.parselnt("473") == 473 //base 10 is the default base/radix

assert Integer.parseInt("-0", 10) == 0

assert Integer.parselnt("-FF", 16) == -255

assert Integer.parselnt("2147483647", 10) == 2147483647

(
(=
assert Integer.parseInt("1100110", 2) == 102
(
assert Integer.parselnt("-2147483648", 10) == -2147483648

assert Integer.parselnt("Kona", 27) == 411787
assert Long.parselong("Hazelnut", 36) == 1356099454469L
assert Short.parseShort ("-FF", 16) == -255

A NumberFormatException may be thrown:

[{ Integer.parselnt("2147483648", 10) }, //number too large

{ Integer.parseInt("99", 8) }, //digit 9 not octal

{ Integer.parseInt("Kona", 10) }, //digits not decimal

{ Integer.parseInt("1111", Character.MIN RADIX - 1) }, //radix too small
{ Integer.parseInt("1111", Character.MAX RADIX + 1) }, //radix too large
{ Integer.parseInt('@#$%') }, //invalid number

{ Integer.parseInt('') }, //invalid number

].each{ c->

try{ c(); assert false }

catch(e) {assert e instanceof NumberFormatException}

An alternative method name is:

assert Integer.valueOf('l2af', 16) == Oxl1l2af
//same as: Integer.parselnt('l2af', 16)

assert Long.valueOf ('123') == 123
//same as: Long.parseInt('123')

assert Short.valueOf (027 as short) == 027

We can convert a string to a fixed-size integer, similar to parselnt() etc, but with the radix instead indicated inside the string:

assert Integer.decode('0xff') == OxFF

assert Integer.decode('#FF') == OxFF

assert Long.decode('#FF') == OXFFL //long, short, and byte also can be decoded
assert Short.decode('#FF') == OxFF as short

assert Byte.decode('#F') == O0xF as byte

assert Integer.decode('-077') == -077

assert Integer.decode('2345') == 2345

try{ Integer.decode('7 @8'); assert false }

catch(e){ assert e instanceof NumberFormatException }

We can return an integer representing the sign:

assert Integer.signum(45i) == 1
assert Integer.signum(0i) == 0
assert Integer.signum(-431i) == -1
assert Long.signum(-43L) == -1

We can compare fixed-size integers with each other:

assert 45i.compareTo(47L) < 0O
assert (45 as byte).compareTo

(43 as short) > 0
assert 45.compareTo(45) == 0

Calculations with Fixed-Size Integers

We can perform addition, subtraction, multiplication, exponents, modulos, and negations on Integers and Longs, using both an operator syntax
and a method syntax:

assert 34 + 33 == 67 && 34.plus(33 67
assert 34L - 21L == 13L && 34L.minus(2 == 13L
assert 3 * 31 == 93 && 3.multiply(== 93

2 && 23.mod(3)
&& 3.power(2

assert 23 %
assert 3**2 =

Not all calculations have a special operator symbol:

assert 22.intdiv(5) == 4
assert (-22).intdiv(5) == -4
assert (-34).abs() == 34
assert (-34L).abs() == 34L

We can increment and decrement variables, using operators, either before and after evaluation:

def a= 7
assert a++ == 7 && a == 8 && a-- == 8 &&
++a == 8 && a == 8 && --a == 7 &&

~N 9

a
a

def b = 7, ¢ = 7 //These operators use methods next () and previous ()

assert (++b) == (c = c.next())

assert b == ¢

assert (--b) == (¢ = c.previous())

assert b == ¢

assert (b++) == { def z = ¢c; ¢ = c.next(); z }()
assert b == ¢

def b= Integer.MAX VALUE
assert ++b == Integer.MIN VALUE && --b == Integer.MAX VALUE

Rules of parentheses and precedence apply to these operators. The operators have the same precedence irrespective of what type of values they
operate on.

assert 3*(4+5) != 3*4+5 //parenthesized expressions always have highest precedence
assert -3**2 == -(3%**2) //power has next highest precedence

assert (2¥3**2 == 2% (3%¥*2)) && (2%¥3**2 1= (2*%3)**2)

assert -3+42 != -(3+2) //unary operators have next highest precedence

assert -~234 == - (~234) //unary operators group right-to-left

//multiplication and modulo have next highest precedence
assert 3*%*4%5 == (3%4)%5 //multiplication and modulo have equal precedence
assert 3%4*5 == (3%4)*5

//addition and subtraction have equal precedence, lower than mult/etc
assert 4+5-6 ==
assert 5+3%4 == 5+ (3%4)

Integers often convert their types during math operations. For + - *, a Long with an Integer converts the Integer to a Long:

assert (23i+45L).class == Long

Because the fixed-sized integers have fixed width, they might overflow their boundaries during math operations, so we need to be aware of the
range of values we'll use a fixed-size integer for:

//each 256 is an int, so final product also an int, and calc overflowed...
assert 256*256*256*256 ==

//we can fix this problem by using a long at the beginning of the calculation...
assert 256L*256*256%*256 == 4294967296L

We can compare fixed-size integers using < <= > >= operators, of lower precedence than addition/etc:

assert 14 > 7 && 14 .compareTo(7) > 0
assert 14 >= 8 && 14 .compareTo(8) >= 0
assert -4 < 3 && (-4) .compareTo(3) < 0
assert -14 <= -9 && (-14) .compareTo(-9) <= 0

The operators == != <=> are of lower precedence than the other comparison operators:

def a =4, b =4, c=5
assert a b && a.equals(b)
assert a != ¢ && ! a.equals(c)

(>

(>

(>

assert (4 <=> 7) == -1 && 4.compareTo(7) == -1
assert (4 <=> 4) == 0 && 4.compareTo(4) == 0
assert (4 <=> 2) == 1 && 4.compareTo(2) == 1

Bit-Manipulation on Fixed-Sized Integers

We can examine and manipulate the individual bits on the fixed-sized integers.

To return an int or long with a single 1-bit in the position of the highest-order 1-bit in the argument:

assert Integer.highestOneBit(45)
assert Integer.highestOneBit(27)
assert Integer.highestOneBit(0) == 0

assert Integer.highestOneBit(-1) == -128%256*256%256

assert Long.highestOneBit(-1L) == -128%256%256%*256 * 256*256%*256%256

assert Integer.lowestOneBit(45i) == 1 //match lowest order 1l-bit in argument
assert Integer.lowestOneBit(461) == 2
assert Integer.lowestOneBit(48i) == 16

To return the number of zero bits preceding the highest-order 1-bit:

[0:32, 1:31, 2:30, 4:29].each{ k, v->

assert Integer.numberOfLeadingZeros(k) == v
//returns the number of zero-bits preceding the highest-order 1-bit
assert Long.numberOfLeadingZeros(k as long) == v + 32

}

[0:32, 45:0, 46:1, 48:4].each{ k, v->
assert Integer.numberOfTrailingZeros(k) == v
//returns the number of 0-bits following the lowest-order 1-bit

}

//returns the number of 1l-bits in the binary representation...
assert Integer.bitCount(7) == 3

assert Integer.bitCount(-1) == 32

We can perform a bitwise complement of the bits in a fixed-size integer using the ~ operator:

def x= 0x333333331
assert ~x == -x - 1
//how bitwise complement and negation are related under 2's-complement

We can shift the bits of a fixed-size integer to the left or right. This is of lower precedence than addition/etc, but higher than the comparison
operators.

//shift 4 bits to the left...
assert 0xB4F<<4 == 0xB4F0 && OxB4F.leftsShift(4) == 0xB4F0

//shift 4 bits to the right, dropping off digits...
assert 0xD23C>>4 == 0xD23 && 0xD23C.rightsShift(4) == 0xD23

//sign-extension performed when right-shifting...
assert -O0xFFF>>4 == -0x100 && (-O0XFFF) .rightShift(4) == -0x100

//...unless triple >>> used
assert -O0xFFF>>>4 == OXFFFFF00 && (-0xXFFF).rightShiftUnsigned(4) == OxFFFFF00
[0xABC, -0x98765].each{

it << 8 == it >> -8

Wi

[0)

can rotate the bits in an integer or long:

assert Integer.rotateLeft(0x456789AB, 4) == 0x56789AB4
//we use multiples of 4 only to show what's happening easier

assert Integer.rotateLeft(0x456789AB, 12) ==
Integer.rotateRight (0x456789AB, Integer.SIZE - 12)
//rotating left and right are inverse operations

assert Integer.rotateLeft(0x456789AB, 32) == 0x456789AB //no change here

assert Long.rotateRight (0x0123456789ABCDEF, 40) == 0x6789ABCDEF012345

We can perform bitwise 'and', 'or', and 'xor' operations on fixed-size integers. This is of lower precedence than the comparison operators.

assert (0x33 & 0x11l) == 0x11 && 0x33.and(0x11l) == 0x11
assert (0x33 | 0x11l) == 0x33 && 0x33.0r(0x11l) == 0x33
assert (0x33 * 0x11) == 0x22 && 0x33.xor (0x1l) == 0x22

We can reverse the bits or bytes of the binary representation of an int or long:

assert Integer.toString(123456, 2) == '11110001001000000"'

assert Integer.toString(Integer.reverse(123456), 2) ==
'10010001111000000000000000"' //reverse bits

assert Integer.reverseBytes(0x157ACE42) == 0x42CE7Al5 //also works for bytes

Boolean, Conditional, and Assignment Operators with Fixed-Sized Integers

The boolean, conditional, and assignment operators are of even lower precedence than the bitwise operators.

When using an integer with boolean operators !, &&, and ||, 0 evaluates to false, while every other integer evaluates to true:

assert ! 0; assert 1; assert 2; assert -1; assert -2

assert (! 1 & 0) != (! (1 && 0))
// the unary ! has the same, high, precedence as the other unary operators
assert (1 || 0 & 0) != ((1 || 0) & 0) // && has higher precedence than |

The boolean operators && and || only have their operands evaluated until the final result is known. This affects operands with side effects, such as
increment or decrement operators:

def x =0

0 && X++

assert x ==

//x%x++ wasn't performed because falsity of (0 && x++) was known when 0 evaluated

1 || x++
assert x == 0
//%x++ wasn't performed because truth of (1 || x++) was known when 1 evaluated

We can use the conditional operator ?:, of lower precedence than the boolean operators, to choose between two values:

def x= 1? 7: -5
assert x == 7

We can put the assignment operator = within expressions, but must surround it with parentheses because its precedence is lower than the

conditional:

def x, vy = (x=3) && 1

assert (x == 3) && y
def 1 =2, j = (i=3) * i

//in the multiplication, lefthand (i=3) evaluated before righthand i
assert j == 9

Of equal precedence as the plain assignment operator = are the quick assignment *= += -= %= **= <<= >>= >>>= &= = |= operators:

def a = 7
a += 2 //short for a = a + 2
assert a ==
a += (a = 3) //expands to a = a + (a = 3) before any part is evaluated
assert a == 12
Bigintegers

The Biginteger has arbitrary precision, growing as large as necessary to accommodate the results of an operation.

We can explicitly convert fixed-sized integers to a BigInteger, and vice versa:

assert 451 as BigInteger == 45g
assert 45L.toBigInteger() == 45g

assert 45g as Integer == 45i
assert 45g.intValue() == 45i //alternate syntax
assert 45g as Long == 45L
assert 45g.longValue() == 45L
assert 256g as Byte == 0
//if converted number too large for target, only lowest order bits returned
assert 200g as byte == -56 //...and this may result in a negative number

A method and some fields that give a little more efficiency:

assert BigInteger.valueOf(45L) == 45g
//works for longs only (not for ints, shorts, or bytes

assert BigInteger.ZERO == 0g
assert BigInteger.ONE == 1lg
assert BigInteger.TEN == 10g

We can construct a Biglnteger using an array of bytes:

assert new BigInteger([1,2,3] as byte[]) == 1g*256%*256 + 2*256 + 3
//big-endian 2's complement representation

try{new BigInteger([] as byte[]l); assert 0}

catch(e) {assert e instanceof NumberFormatException} //empty array not allowed

assert new BigInteger(-1, [1,2] as bytel[]) == -258g
//we pass in sign as a separate argument

assert new BigInteger(1, [1,2] as bytel[]l) == 258g

assert new BigInteger(0, [0,0] as bytel[]l) == 0g

assert new BigInteger(1, [] as byte[l) == 0 //empty array allowable
try{ new BigInteger(2, [1,2,3] as bytel]); assert 0 }

catch(e){ assert e instanceof NumberFormatException}
//sign value must be -1, 0, or 1

We can convert a BigInteger back to an array of bytes:

def ba= (1g*256%*256 + 2*256 + 3) .toByteArray ()
//big-endian 2's complement representation
assert ba.size() == 3 && bal 0] == 1 && bal[1] == 2 && bal 2] == 3

def bb= 255g.toByteArray ()
assert bb.size() == 2 && bb[0] == 0 && bb[1] == -1
//always includes at least one sign bit

def bec= (-(2g*256 + 3)).toByteArray ()
assert bc.size() == 2 && bc[0] == -3 && bc[1] == -3

We can pass in a string in a certain base/radix:

assert '27'.toBigInteger() == 27g

assert new BigInteger("27", 10) == 27g

assert new BigInteger("27") == 27g //default radix is 10
assert new BigInteger("110", 2) == 6g

assert new BigInteger("-1F", 16) == -31g

[{ new BigInteger(" 27", 10) }, //no whitespace allowed in string
{ new BigInteger("z", Character.MAX RADIX + 1) }, //radix out of range
{ new BigInteger("0", Character.MIN RADIX - 1) }, //radix out of range
] .each{
try{ it(); assert 0 }catch(e){ assert e instanceof NumberFormatException }

We can convert the Biglnteger back to a string:

assert 6g.toString(2) == '110'
assert (-31g).toString(16) == '-1f'

assert 27g.toString() == '27' //default radix is 10
assert 27g.toString(Character.MAX RADIX + 1) == '27'

//radix is 10 if radix argument invalid

We can construct a randomly-generated BigInteger:

assert new BigInteger(20, new Random()).toString(2).size() == 20
//20 is max bit length, must be >= 0
assert new BigInteger(20, new Random()) >= 0

Arithmetic with Bigintegers

We can perform the usual arithmetic operations + - * using either methods or operations:

assert 34g.plus(33g) == 34g + 33g

assert 34g.add(33g) == 34g + 33g //alternative name for plus
assert 34g.minus(21g) == 34g - 21g

assert 34g.subtract(21g) == 34g - 21g //alternative name for minus
assert 3g.multiply(31g) == 3g * 31g

assert 7g.negate() == -7g //unary operation/method

assert (-7g).negate() == 79

For + - *, a BigInteger causes any fixed-width integers in the calculation to be converted to a Biginteger:

assert (45L + 123g).class == BigInteger
assert (23 - 123g).class == BigInteger
assert (3g * 31).class == BiglInteger
assert (3 * 31g).class == BiglInteger
assert 3g.multiply(31).class == BigInteger
assert 3.multiply(31g) .class == BigInteger

We can introduce a Biginteger into an expression with Integers or Longs if overflow may occur. But make sure the Biginteger is introduced before
an intermediate value that may overflow, for example, the first-used value in a calculation:

assert 256L*256*256%256 * 256%*256*256*256 ==
//the first 256 is a Long, so each intermediate and final product also Long,
//and calc overflowed

assert 256g*256*256*256 * 256*256*256*256 == 18446744073709551616
//no overflow here because BigInteger introduced in first value

We can also increment and decrement Biglntegers:

def a= 7g
assert a++ == 79 && a == 89 && a-- == 89 && a == 79 &&
++a == 89 && a == 89 && --a == 79 && a == 7g

We can find out the quotient and remainder:

assert 7g.divide(4g) == 1lg
assert 7g.remainder(4g) == 3g
def a= 7g.divideAndRemainder(4g)
assert al[0] == 1lg //quotient, same result as divide()
assert al[l] == 3g //remainder, same result as remainder ()
assert 7g.divide(-4g) == -1lg
assert 7g.remainder(-4g) == 3g
assert (-7g).divide(4g) == -1g
assert (-7g).remainder(4g) == -3g
//division of a negative yields a negative (or zero) remainder
assert (-7g).divide(-4g) == 1g
assert (-7g).remainder(-4g) == -3g

Other methods for arithmetic:

assert 22g.intdiv(5g) == 4g
assert (-22g).intdiv(5g) == -4g

assert 7g.abs() == 7g //absolute value
assert (-7g).abs() == 7g

assert 28g.gcd(35g) == 79
//greatest common divisor of absolute value of each number

assert (-28g).gcd(35g) == 79

assert 28g.gcd(-35g) == 79

assert (-28g).gcd(-35g) == 79

assert 0g.gcd(9g) == 9g

assert 0g.gcd(0g) == 0g

assert 4g**3 == 64g //raising to the power
assert (4g**3) .class == Integer

//raising to the power converts a BigInteger to an integer

assert 4g.power (3) == 64g //using method
assert 4g.pow(3) == 64g
//pow () is different to, and sometimes slower than, power ()
assert (-4g) .power (3) == -64g
assert 4g.power(0) == 1g //exponent must be integer >=0
assert 79 % 49 == 3g && 7g.mod(4g) == 3g
//modulo arithmetic, using operator or method
assert 89 % 4g == 0g
assert -7g % 4g == 1g

//result of mod is between 0 and (modulus - 1) inclusive
try{ 79 % -4g; assert 0 }catch(e){ assert e instanceof ArithmeticException }
//mod value must be positive

assert 4g.modPow(3g, 99) == 1
//calculates as ((4**3) mod 9), result always zero or positive
assert 4g.modPow(-2g, 99) == 4

//negative exponents allowed, but mod value must be positive

assert 4g.modInverse(3g) == 1 //calculates as ((4**-1) mod 3)
//mod must be positive, and value must have a multiplicative inverse mod m
// (ie, be relatively prime to m)

assert 7g.max(5g) == 79 //maximum and minimum
assert 4g.min(5g) == 4g
def a=5g, b=5g, c=a.min(b)
assert [a,bl.any{ c.is(it) }
//either a or b may be returned if they're both equal

assert (-45g <=> -43g) && ((-45g).compareTo(-43g) == -1)
//comparing two BigIntegers

assert 14g >= 8g && 1l4g.compareTo(8g) >= 0

assert 45g.signum() == 1 //return sign as -1,0, or 1

assert 0g.signum() == 0

assert (-43g).signum() == -1

We can construct a randomly generated positive Biglnteger with a specified bit length (at least 2 bits), that is probably prime to a specific certainty.
The probability the Biginteger is prime is >(1 - (1/2)**certainty). If the certainty <=0, true always returned. The execution time is proportional to the
value of this parameter. We must pass in a new Random object:

100.times{
def primes= [17g, 19g, 23g, 29g, 319]
//bitlength is 5, so primes from 16 to 31 incl
assert new BigInteger(5, 50, new Random()) in primes
//5 is bit-length, 50 is certainty (must be integer)

def pp= BigInteger.probablePrime(20, new Random())
//if we don't want to specify certainty
//20 is bit-length; there's <1.0e-30 chance the number isn't prime

def pn= pp.nextProbablePrime ()
//this is probably next prime, but definitely no primes skipped over
((pp+1) ..<pn) .each{
assert ! it.isProbablePrime (50)
//we can test for primality to specific certainty (here, 50).
//True if probably prime, false if definitely composite

}
assert 10g.nextProbablePrime() == 11
assert 0g.nextProbablePrime() == 2

Bit-Manipulation on Bigintegers

All operations behave as if Bigintegers were represented in two's-complement notation.

Bit operations operate on a single bit of the two's-complement representation of their operand/s. The infinite word size ensures that there are
infinitely many virtual sign bits preceding each Biglnteger. None of the single-bit operations can produce a BigInteger with a different sign from the
BigInteger being operated on, as they affect only a single bit.

assert 0x33g.testBit (1)
//true if bit is 1, indexing beginning at 0 from righthand side
assert | 0x33g.testBit(2)
(2..100) .each{
assert (-0x3g) .testBit(it)
//negative BigIntegers have virtual infinite sign-extension

Unlike with fixed-width integers, Biglntegers don't have a method to show the hex, octal, or binary representation of a negative number. We can
use this code instead to look at the first 16 lowest-order virtual bits:

def binRepr={n->
(15..0) .inject (' ') {flo,it->
flo<< (n.testBit(it)? 1: 0)
}
}
assert 0x33g.toString(2) == '110011"'
assert binRepr (0x33g) as String == '0000000000110011"'
assert (-0x33g).toString(2) == '-110011' //not what we want to see
assert binRepr (-0x33g) as String == '1111111111001101"'
//notice the negative sign bit extended virtually

More bit-manip methods:

assert 0x33g.setBit(6) == 0x73g //0x33g is binary 110011
assert 0x33g.clearBit (4) == 0x23g
assert 0x33g.flipBit(1l) == 0x31lg
assert 0x33g.flipBit(2) == 0x37g

assert 0xlg.getLowestSetBit () == 0
//index of the rightmost one bit in this BigInteger
assert 0x2g.getLowestSetBit () == 1
assert 0x8g.getLowestSetBit () == 3
assert 0x33g.bitLength() == 6
//number of bits in minimal representation of number
assert (-0x33g).bitLength() == 6 //exclude sign bit
assert 0x33g.bitCount () == 4 //number of bits that differ from sign bit
assert (-0x33g).bitCount() == 3

Setting, clearing, or flipping bit in virtual sign makes that bit part of the number:

assert (-0x33g).clearBit(9) == -0x233g

We can perform bit-shifting on BigIntegers. The shortcut operators >> and << can't be used, only the method names can be (they're also spelt
differently to the fixed-size integer versions of the names, eg, "shiftLeft" instead of "leftShift"). There's no shift-right-unsigned method because this
doesn't make sense for Biglntegers with virtual infinite-length sign bits.

assert O0xB4Fg.shiftLeft(4) == 0xB4F0g //shift 4 bits to the left
assert 0xD23Cg.shiftRight(4) == 0xD23g

//shift 4 bits to the right, dropping off digits
assert (-0xFFFg).shiftRight(4) == -0x100g

//sign-extension performed when right-shifting
[0XABCg, -0x98765g] .each{
it.shiftLeft(8) == it.shiftRight(-8)

}

We can perform 'not', 'and', 'or', and 'xor' bitwise operations on BigIntegers:

assert 123g.not() == -124g //in 2's-complement, negate and add 1
assert -0xFFg.not() == 0x100g

assert ((0x33g & 0Ox1llg) == 0x1llg) && 0x33g.and(0xllg) == 0xllg
assert ((0x33g | 0x1lg) == 0x33g) && 0x33g.or(0xllg) == 0x33g
assert ((0x33g ~ 0x1lg) == 0x22g) && 0x33g.xor (0x1llg) == 0x22g
assert 0x33g.andNot (0x1lg) == 0x22g && (0x33g & (~ 0x1llg)) == 0x22g

//convenience operation

For negative numbers:

//and returns a negative if both operands are negative...
assert (-1g & -1g) == -1g

//or returns a negative number if either operand is negative...
assert (lg | -1g) == -1g

//xor returns a negative number if exactly one operand is negative...
assert (1g ~ -1g) == -2g
assert (-1g -2g) == 1lg

N

When the two operands are of different lengths, the sign on the shorter of the two operands is virtually extended prior to the operation:

assert llg.and(-2g) == 10g //01011 and 11110 is 01010, ie, 10g

JN0525-Decimals

We can only use base-10 notation to represent decimal numbers, not hexadecimal or octal. Decimals are written with a decimal part and/or an
exponent part, each with an optional + -. The leading zero is required.

[1.23e-23, 4.56, -1.7El, 98.7e2, -0.27e-54].each{ assert it } //decimals
assert (-1.23).class == BigDecimal
assert (-1.23g).class == BigDecimal

//BigInteger 'g' suffix after a decimal-formatted number means BigDecimal

Such BigDecimals are arbitrary-precision signed decimal numbers. They consist of an unscaled infinitely-extendable value and a 32-bit Integer
scale. The value of the number represented by it is (unscaledValue x 10**(-scale)). This means a zero or positive scale is the number of digits to
the right of the decimal point; a negative scale is the unscaled value multiplied by ten to the power of the negation of the scale. For example, a
scale of -3 means the unscaled value is multiplied by 1000.

We can construct a BigDecimal with a specified scale:

assert new BigDecimal(0, 1) == 0.0

assert new BigDecimal(123, 0) == 123

assert new BigDecimal(123) == 123 //default scale is 0
assert new BigDecimal(-123, 0) == -123

assert new BigDecimal(123, -1) == 1.23e3

assert new BigDecimal(12, -3) == 12000.0

assert new BigDecimal(120, 1) == 12.0

assert new BigDecimal(123, 5) == 0.00123

assert new BigDecimal(-123, 14) == -1.23e-12

assert (2 as BigDecimal) .unscaledValue() == 2

assert (2 as BigDecimal) .scale() == 0

assert (2 as BigDecimal) .scale == 0 //parens optional
assert 2.0.unscaledvalue() == 20

assert 2.0.scale == 1

All methods and constructors for this class throw NullPointerException when passed a null object reference for any input parameter.

We can enquire the scale of a BigDecimal:

assert (1234.567) .unscaledvValue() == 12345679
//returns the unscaled portion of a BigInteger

assert (1234.567).scale() == 3 //returns the scale

The precision of a BigDecimal is the number of digits in the unscaled value. The precision of a zero value is 1.

assert 7.7.precision/()
assert (-7.7).precision
assert 1.000.precision(

We can construct a BigDecimal from a string. The value of the resulting scale must lie between Integer.MIN_VALUE and Integer. MAX_VALUE,
inclusive.

assert '23.45'.toBigDecimal () == 23.45

assert new BigDecimal('23.45') == 23.45

assert new BigDecimal('-32.8e2') == -32.8e2

assert new BigDecimal('+.9E-7') == 0.9e-7

assert new BigDecimal('+7.E+8') == 7e8

assert new BigDecimal('0.0') == 0.0

try{ new BigDecimal(' 23.45'); assert 0 }

catch(e){ assert e instanceof NumberFormatException } //whitespace in string

If we have the String in a char array and are concerned with efficiency, we can supply that array directly to the BigDecimal:

def cal= ['1', '2', '.', '5'] as char/[]

assert new BigDecimal(cal) == 12.5

def ca2= ['a', 'b', '9', '3', '.', '4', '5' x', y', 'z'] as char(]
assert new BigDecimal(ca2, 2, 5) == 93.45

//use 5 chars from the array beginning from index 2

There are some different ways of displaying a BigDecimal:

assert 1.2345e7.toString() == '1.2345E+7'
//one digit before decimal point, if exponent used

assert 1.2345e7.toPlainString() == '12345000' //no exponent portion
assert 1.2345e7.toEngineeringString() == '12.345E+6' //exponent divisible by 3

From Java 5.0, every distinguishable BigDecimal value has a unique string representation as a result of using toString(). If that string
representation is converted back to a BigDecimal, then the original value (unscaled-scale pair) will be recovered. This means it can be used as a
string representation for exchanging decimal data, or as a key in a HashMap.

[1.2345e7, 98.76e-3, 0.007, 0.000e4].each{
assert new BigDecimal (it.toString()) == it

}

Conversions

We can construct a BigDecimal from integers:

assert new BigDecimal(45i) .scale ==
assert new BigDecimal(45L) .scale == 0

If we want to buffer frequently-used BigDecimal values for efficiency, we can use the valueOf() method:

def a= BigDecimal.valueOf(12L, -3)
assert a == 12000.0g && a.scale == -3

def b= BigDecimal.valueOf (12L)
assert b == 12.0 && b.scale == 0 //default scale is 0

assert BigDecimal.ZERO == 0.0 //These commonly-used values are pre-supplied
assert BigDecimal.ONE == 1.0
assert BigDecimal.TEN == 10.0

The BigDecimal can be converted between the Biglnteger, Integer, Long, Short, and Byte classes. Numbers converted to fixed-size integers may
be truncated, or have the opposite sign.

assert 123g as BigDecimal == 123.0

assert 451 as BigDecimal == 45.0

assert 73L as BigDecimal == 73.0

assert 73L.toBigDecimal() == 73.0 //alternative syntax

assert 123.456 as BiglInteger == 123g //lost information about the precision
assert 123.456.toBigInteger () == 123g //alternative syntax

assert 73.0 as Long == 73g

assert 73.0 as long == 73g

assert 73.0.toLong() == 73g

assert 73.0.longValue() == 73g //another alternative syntax

assert 45.6789.intValue() == 45g //truncated

assert 259.0.bytevValue() == 3 //truncated, only lowest 8 integral bits returned
assert 200.789.bytevalue() == -56

//truncated, only lowest 8 integral bits returned, with opposite sign

By appending 'Exact' to the asLong()-style method names, we can ensure an ArithmeticException is thrown if any information would be lost in the
conversion:

assert 123.0.toBigIntegerExact () == 123g //lost information about the precision
try{ 123.456.toBigIntegerExact (); assert false }
catch(e){ assert e instanceof ArithmeticException }

assert 73.0.longValueExact() == 73g

{ 73.21.longValueExact ('
{ 45.6789.intvalueExact () },
{ 73.21.shortvalueExact () }

{
{

}

.

)

(

(
259.0.bytevalueExact () },
200.789.byteValueExact () },
] .each{

try{ it(); assert false }catch(e){ assert e instanceof ArithmeticException }

BigDecimal Arithmetic

We can use the same methods and operators on BigDecimal we use with Biglnteger:

assert 3.4.plus(3.3) == 3.4 + 3.3

assert 3.4.add(3.3) == 3.4 + 3.3 //alternative name for plus

assert 3.4.minus(2.1) 3.4 - 2.1

assert 3.4.subtract(2. == 3.4 - 2.1 //alternative name for minus

assert 3.0.multiply(3 3.0 * 3.1

assert 3.0.multiply(3g) == 3.0 * 3g

assert 7.7.negate() == -7.7 //unary operation/method

assert (-7.7).negate() == -(-7.7)

assert (-7.7).plus() == +(-7.7) //this method provided for symmetry with negate

try{ 3.4.multiply(null); assert 0 }
catch(e){ assert e instanceof NullPointerException }
//all BigDecimal methods throw NullPointerException if passed a null

The scale resulting from add or subtract is the maximum scale of each operand; that resulting from multiply is the sum of the scales of the
operands:

def a 3.414, b
assert a.scale()
assert

assert

3.3

== 3 && b.scale() 1
(a+b) .scale() == 3 //max of 3 and 1
(a*b) .scale() == 4 //sum of 3 and 1

For + - and *, a BigDecimal with any integer type converts it to a BigDecimal:

assert (123.45g * 789) .class == BigDecimal
assert (123.45g * 789L) .class == BigDecimal
assert (123.45g * (89 as byte)) .class == BigDecimal

We can use a MathContext to change the precision of operations involving BigDecimals:

def mc= new java.math.MathContext(3)
//precision of 3 in all constructors and methods where used

assert new BigDecimal(123456, 0, mc) == 123000g
assert new BigDecimal(-12345, 14, mc) == -1.23e-10
assert new BigDecimal('23.4567', mc) == 23.5
assert new BigDecimal (
[r2v, '3', '.v, '4', 's5', '6', '7'] as char[], mc) == 23.5
assert new BigDecimal (
[r2r, '3', +.v, rar, 5 1gr, v7'] as char[], 1, 5, mc) == 3.46
assert new BigDecimal(12341, mc) 1230
assert new BigDecimal(1234L, mc) == 1230
assert 3.45678.add(3.3, mc) == 6.76
assert 0.0.add(3.333333, mc) == 3.33
assert 3.4567.subtract(2.1, mc) == 1.36
assert 0.0.subtract(2.12345, mc) -2.12
assert 3.0.multiply(3.1234, mc) == 9.37
assert (-7.77777) .negate(mc) == 7.78
assert (-7.77777) .plus(mc) == -7.78
//effect identical to that of round(MathContext) method

Division

We can create BigDecimals by dividing integers, both fixed-size and BigInteger, for which the result is a decimal number:

assert 7g / 49 == 1.75
assert (-7g) / 4g == -1.75
assert (1 / 2).class == BigDecimal
assert (1L / 2L).class == BigDecimal
assert (1g / 2g).class == BigDecimal
assert (1.5 * 2g).class == BigDecimal
//an expression with a BigDecimal never converts to an integer
assert 1.0.div(2).class == BigDecimal
//we can use a method instead of the operator
try{ 17g / 0; assert 0 }catch(e){ assert e instanceof ArithmeticException }
//division by 0 not allowed

Sometimes, the division can return a recurring number. This leads to a loss of exactness:

assert 1/3 == 0.3333333333
//BigDecimals with recurring decimals round their result to 10 places...

assert ((1/3) * 3) !=1

//...which leads to inaccuracy in calculations
assert (1/3).precision() == 10
assert 100000/3 == 33333.3333333333

//accuracy before the decimal point is always retained

When the scales of both operands in division are quite different, we can lose precision, sometimes even completely:

assert (1.0 / 7.0) == 0.1428571429

//instead of "0.142857 with last 6 digits recurring"
assert (le-5 / 7.0) == 0.0000014286 //precision is 10
assert (le-9 / 7.0) == 0.0000000001
assert (le-11 / 7.0) == 0.0

//difference in scale of operands can cause full loss of precision

The ulp() of a BigDecimal returns the "Units of the Last Place", the difference between the value and next larger having the same number of
digits:

assert 123.456.ulp() == 0.001 //always 1, but with same scale
assert 123.456.ulp() == (-123.456) .ulp()
assert 0.00.ulp() == 0.01

Another way of dividing numbers is to use the divide() method, different to the div() method and / operator. The result must be exact when using
divide(), or an ArithmeticException is thrown.

assert 1.0.divide(4.0) == 0.25

try{ 1.0.divide(7.0); assert 0 }
catch(e){ assert e instanceof ArithmeticException }
//result must be exact when using divide ()

assert 1.234.divide(4.0) == 0.3085

assert 1.05.divide(1.25)

assert 1.234.scale() == 3 && 4.0.scale() == 1 && 0.3085.scale() == 4
//scale of result unpredictable

assert 1.05.scale() == 2 && 1.25.scale() == 2 && 0.84.scale() == 2

We can change the precision of divide() by using a MathContext:

assert (1.0).divide(7.0, new java.math.MathContext (12)) == 0.142857142857
//precision is 12

assert (1.0).divide(7.0, new java.math.MathContext (10)) == 0.1428571429
assert (1.0).divide(7.0, new java.math.MathContext(5)) == 0.14286
try{ 1.0.divide(7.0, new java.math.MathContext (0)); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//precision of 0 same as if no MathContext was supplied

MathContext Rounding Modes

As well as specifying required precision for operations in a MathContext, we can also specify the rounding behavior for operations discarding
excess precision. Each rounding mode indicates how the least significant returned digit of a rounded result is to be calculated.

If fewer digits are returned than the digits needed to represent the exact numerical result, the discarded digits are called "the discarded fraction",
regardless their contribution to the value of the number returned. When rounding increases the magnitude of the returned result, it is possible for a
new digit position to be created by a carry propagating to a leading 9-digit. For example, the value 999.9 rounding up with three digits precision
would become 1000.

We can see the behaviour of rounding operations for all rounding modes:

import java.math.MathContext
import java.math.RoundingMode

//so we don't have to qualify these with java.math when we refer to them
import static java.math.RoundingMode. *

//so we don't have to qualify UP, DOWN, etc with java.math.RoundingMode

def values= [+5.5, +2.5, +1.6, +1.1, +1.0, -1.0, -1.1, -1.6, -2.5, -5.5]
def results= [

(Up) : [6, 3, 2, 2, 1, -1, -2, -2, -3, -6 1,

(DOWN) : [5, 2, 1, 1, 1, -1, -1, -1, -2, -5 1,

(CEILING) : [6, 3, 2, 2, 1, -1, -1, -1, -2, -5 1,

(FLOOR) : [5, 2, 1, 1, 1, -1, -2, -2, -3, -6 1,

(HALF _UP) : [6, 3, 2, 1, 1, -1, -1, -2, -3, -6 1,

(HALF_DOWN) : [5, 2, 2, 1, 1, -1, -1, -2, -2, -5 1,

(HALF_EVEN) : [6, 2, 2, 1, 1, -1, -1, -2, -2, -6 1,

results.keySet () .each{ roundMode->
def mc= new MathContext (1, roundMode)
results[roundMode].eachWithIndex{ it, i-»>

assert new BigDecimal(values[i], mc) == it
}
}
def mcu= new MathContext (1, UNNECESSARY)
assert new BigDecimal(1.0, mcu) == 1
assert new BigDecimal(-1.0, mcu) == -1
[+5.5, +2.5, +1.6, +1.1, -1.1, -1.6, -2.5, -5.5].each{
try{ new BigDecimal(it, mcu); assert 0 }

catch(e){ assert e instanceof ArithmeticException }

}

We can thus see:

UP rounds away from zero, always incrementing the digit prior to a non-zero discarded fraction.

DOWN rounds towards zero, always truncating.

CEILING rounds towards positive infinity (positive results behave as for UP; negative results, as for DOWN).

FLOOR rounds towards negative infinity (positive results behave as for DOWN; negative results, as for UP).

HALF_UP rounds towards nearest neighbor; if both neighbors are equidistant, rounds as for UP. (The rounding mode commonly taught in US
schools.)

HALF_DOWN rounds towards nearest neighbor; if both neighbors are equidistant, rounds as for DOWN.

HALF_EVEN rounds towards the nearest neighbor; if both neighbors are equidistant, rounds towards the even neighbor. (Known as "banker's
rounding.")

UNNECESSARY asserts that the operation has an exact result; if there's an inexact result, throws an ArithmeticException.

There are some default rounding modes supplied for use:

import java.math.*
//imports all such classes, including both MathContext and RoundingMode

MathContext . UNLIMITED

//for unlimited precision arithmetic (precision=0 roundingMode=HALF_UP)
MathContext .DECIMAL32

//for "IEEE 754R" Decimal32 format (precision=7 roundingMode=HALF EVEN)
MathContext .DECIMAL64

//Decimalé4 format (precision=16 roundingMode=HALF_EVEN)
MathContext .DECIMAL128

//Decimall28 format (precision=34 roundingMode=HALF EVEN)

assert MathContext .DECIMAL32.precision == 7

assert MathContext .DECIMAL32.roundingMode == RoundingMode.HALF_ EVEN
//precision and roundingMode are properties

assert new BigDecimal(123456789, 0, MathContext.DECIMAL32) == 1234568009

Other constructors for MathContext are:

import java.math.*
def mcl= new MathContext (3)

//by default, uses RoundingMode.HALF_UP rounding mode
assert mcl.roundingMode == RoundingMode.HALF UP

def mc2= new MathContext (3, RoundingMode.HALF UP)
assert mc2.toString() == 'precision=3 roundingMode=HALF_UP'
def mc3= new MathContext (mc2.toString())

//we can initialize a MathContext from another's string
assert mc3.precision == 3
assert mc3.roundingMode == RoundingMode.HALF UP

The rounding mode setting of a MathContext object with a precision setting of 0 is not used and thus irrelevant.

Cloning BigDecimals but with different scale

We can create a new BigDecimal with the same overall value as but a different scale to an existing one:

import java.math.*

def num= 2.2500

assert num.scale == 4 && num.unscaledValue() == 22500
def num2= num.setScale(5)
assert num2 == 2.25000 && num2.scale == 5 && num2.unscaledValue() == 225000

//usual use of changing scale is to increase the scale
def num3= num.setScale(3)

assert num3 == 2.25000 && num3.scale == 3 && num3.unscaledvValue() == 2250
assert num.setScale(2) == 2.25

//only BigDecimal returned from method call has changed scale...
assert num.scale == 4 //...while original BigDecimal still has old scale...
num.scale= 3 //...so there's no point using the allowable property syntax
assert num.scale == 4
try(

num.setScale(l) //we can't change the value when we reduce the scale...
assert false
}catch(e){ assert e instanceof ArithmeticException }

assert 1.125.setScale (2, RoundingMode.HALF_UP) == 1.13
//...unless we use a rounding mode
assert 1.125.setScale(2, BigDecimal.ROUND HALF_UP) == 1.13 //pre-Java-5 syntax

These 8 BigDecimal static fields are older pre-Java-5.0 equivalents for the values in the RoundingMode enum:
BigDecimal.ROUND_UP

BigDecimal. ROUND_DOWN

BigDecimal. ROUND_CEILING

BigDecimal. ROUND_FLOOR

BigDecimal. ROUND_HALF_UP

BigDecimal. ROUND_HALF_DOWN

BigDecimal. ROUND_HALF_EVEN

BigDecimal. ROUND_UNNECESSARY

There's two methods that let us convert such older names to the newer RoundingMode constants (enums):

import java.math.RoundingMode
assert RoundingMode.valueOf ('HALF_UP') == RoundingMode.HALF UP

assert RoundingMode.valueOf (BigDecimal.ROUND_ HALF DOWN) ==
RoundingMode . HALF_DOWN

Further operations

For the other arithmetic operations, we also usually have the choice of supplying a MathContext or not.

There's two main ways to raise a number to a power. Using ** and power() returns a fixed-size floating-point number, which we'll look at in the
next topic on Groovy Floating-Point Math.

assert (4.5**3).class == Double
assert 4.5.power(3).class == Double //using equivalent method instead

We can raise a BigDecimal to the power using the pow() method instead, which always returns an exact BigDecimal. However, this method will be
very slow for high exponents. The result can sometimes differ from the rounded result by more than one ulp (unit in the last place).

assert 4.5.pow(3) == 91.125 //pow() is different to power ()

assert (-4.5).pow(3) == -91.125

assert 4.5.pow (0) .0

assert 0.0.pow (0) .0

try{ 4.5.pow(-1); assert 0 }catch(e){ assert e instanceof ArithmeticException }
//exponent must be integer >=0

try{ 1.1.pow(1000000000); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//exponent too high for Java 5

1
i
(S

//println(1.1.pow(999999999))
//warning: this runs for a VERY LONG time when uncommented

When we supply a MathContext, the "ANSI X3.274-1996" algorithm is used:

import java.math.MathContext

assert 4.5.pow(3, new MathContext (4)) == 91.13 //can supply a MathContext

assert 4.5.pow(-1, new MathContext (10))
//negative exponents allowed when MathContext supplied

try{ 4.5.pow(-1, new MathContext (0)); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//ArithmeticException thrown if mc.precision == 0 and n < 0

try{ 4.5.pow(123, new MathContext (2)); assert 0 }

catch(e){ assert e instanceof ArithmeticException }
//ArithmeticException thrown if mc.precision > 0 and

//n has more than mc.precision decimal digits

Instead of giving a precision via the MathContext, we can give the desired scale directly:

import java.math.RoundingMode

assert 25.497.divide(123.4567, 5, RoundingMode.UP) == 0.20653
//specify desired scale of 4, and rounding mode UP

assert 25.497.divide(123.4567, 5, BigDecimal.ROUND_UP) == 0.20653
//cater for pre-Java-5.0 syntax

assert 25.497.divide(123.4567, RoundingMode.UP) == 0.207
//if no scale given, use same one as dividend (here, 25.497)

assert 25.497.divide(123.4567, BigDecimal.ROUND UP) == 0.207

We can divide to an integral quotient, and/or find the remainder. (The preferred scale of the integral quotient is the dividend's less the divisor's.)

import java.math.*
mc= new MathContext (9, RoundingMode.HALF_UP)
assert 25.5.divide(2.4, mc) == 10.625

assert 25.5.divideToIntegralvValue(2.4) == 10 //rounding mode always DOWN...
assert 25.5.remainder(2.4) == 1.5
assert 25.5.divideToIntegralvValue(2.4, mc) == 10

//...even when a MathContext says otherwise
assert 25.5.remainder(2.4, mc) == 1.5
assert (-25.5).divideToIntegralvValue(2.4, mc) == -10
assert (-25.5) .remainder(2.4, mc) == -1.5

try{ 25.5.divideToIntegralvValue(0); assert 0 }
catch(e){ assert e instanceof ArithmeticException }

try{ 25.5.remainder(0); assert 0 }
catch(e){ assert e instanceof ArithmeticException }

assert 25.525.remainder(2.345, new MathContext (1)) == 2.075
//MathContext's precision only affects quotient calculation;
//remainder always exact so may have more decimal digits

[[25.5, 2.4], [-27.1, 3.3]]l.each{ x, y->
assert x.remainder(y) ==
x.subtract (x.divideToIntegralvalue(y).multiply(y))

try(
2552.0.divideToIntegralvalue(2.4, new MathContext (2))
assert 0
}catch(e) { assert e instanceof ArithmeticException }
//if result needs more decimal digits than supplied MathContext's precision

try(
2552.0.remainder (2.4, new MathContext (2))
assert 0
}catch(e){ assert e instanceof ArithmeticException }
//throw if implicit divideToIntegralValue () result needs more decimal digits
//than supplied MathContext's precision

def gr= 25.5.divideAndRemainder(2.4)
assert gr[0] == 10 && gr[l] == 1.5
//same results as divideTolIntegralValue() and remainder (), but more efficient

We can find the absolute value of a BigDecimal:

import java.math.*
assert 7.89.abs()

assert (-7.89).a
assert (-7.89).a

== 7.89 //same scale if no MathContext
() == 7.89
(

bs
bs (new MathContext (2)) == 7.9

The round() operation only has a version with a MathContext parameter. Its action is identical to that of the plus(MathContext) method.

assert 7.89.round(new MathContext (2)) =
assert 7.89.round(new MathContext (0)) ==

7.9
7.89 //no rounding if precision is 0

Operations without a MathContext

Not all BigDecimal operations have a MathContext.

Auto-incrementing and -decrementing work on BigDecimals:

def a= 12.315

a++
assert a == 13.315
--a

assert a == 12.315

The signum method:

assert 2.34.signum() ==
assert (-2.34) .signum() == -1
assert 0.0.signum() == 0

As with integers, we can compare BigDecimals:

assert (2.50 <=> 2.5) == 0 && 2.50.compareTo(2.5) == 0

assert (-3.45 <=> 1.23) == -1 && (-3.45) .compareTo(1.23) == -1
assert (1.23 <=> -0.12) == 1 && 1.23.compareTo(-0.12) == 1
assert (1.23 > -0.12) && 1.23.compareTo(-0.12) > 0

The equals() method and == operator are different for BigDecimals. (So we must be careful if we use BigDecimal objects as elements in a
SortedSet or keys in a SortedMap, since BigDecimal's natural ordering is inconsistent with equals().)

assert ! (2.00.equals(2.0))

//considers whether both unscaledvValue and scale are equal
assert 2.00 == 2.0 //only considers the sequence of the two numbers on a line
assert 0.0 == -0.0 && 0.0.equals(-0.0)

We can find the minimum and maximum of two BigDecimals:

assert (-2.0).min(7.3) == -2.0
assert 3.5.max(4.2) == 4.2

We can move the decimal point to the left or right:

import java.math.*

def num= 123.456

assert num.scale ==

def mpl= num.movePointLeft(2)

assert mpl.scale == 5 //scale should be max(number.scale + movement, 0)
assert mpl == 1.23456
def mpr= num.movePointRight (4)
assert mpr.scale == 0 //scale should be max(number.scale - movement, 0)
assert mpr == 1234560
assert(3.456.movePointLeft (2) == 0.03456)
[-2, -1, 0, 1, 2].each{
assert 123.456 .movePointLeft(it) == 123.456.movePointRight(-it)
}

try{ //throw ArithmeticException if scale will overflow on moving decimal point
new BigDecimal (123456, 128*256%256*256 - 1).movePointLeft(1)

assert 0
}catch(e) { assert e instanceof ArithmeticException }

Another method for moving the decimal point, but by consistent change to the scale:

import java.math.*

def num= 123.456

assert num.scale ==

def mpl= num.scaleByPowerOfTen(16)
assert mpl == 1.23456el8

assert mpl.scale == -13 //num.scale - 16

We can strip trailing zeros:

assert 45.607000.stripTrailingZeros() == 45.607
assert 600.0.stripTrailingZeros() == 6e2
assert new BigDecimal(6000, 1).stripTrailingZeros() == new BigDecimal(6, -2

JNO0535-Floats

As well as BigDecimal, decimals can have type Float or Double. Unlike BigDecimal which has no size limit, Float and Double are fixed-size, and
thus more efficient in calculations. BigDecimal stores its value as base-10 digits, while Float and Double store their values as binary digits. So
although using them is more efficient in calculations, the result of calculations will not be as exact as in base-10, eg, 3.1f + 0.4f computes to
3.499999910593033, instead of 3.5.

We can force a decimal to have a specific type other than BigDecimal by giving a suffix (F for Float, D for Double):

assert 1.200065d.class == Double
assert 1.234f.class == Float
assert (-1.23E23D) .class == Double
assert (1.167g) .class == BigDecimal
//although g suffix here is optional, it makes examples more readable

We can enquire the minimum and maximum values for Floats and Doubles:

assert Float.MIN_VALUE == 1.4E-45f

assert Float.MAX VALUE == 3.4028235E38f

assert Double.MIN VALUE == 4.9E-324d

assert Double.MAX VALUE == 1.7976931348623157E308d

We can represent infinities by using some predefined constants (prefixed by either Float or Double):

assert (1f / 0f) == Double.POSITIVE INFINITY
assert (-1f / 0f) == Double.NEGATIVE INFINITY
assert Double.POSITIVE_INFINITY == Float.POSITIVE_INFINITY

assert 0.0f != -(0.0f)

//positive and negative zeroes not equal, when negative is written -(0.0f)
assert 0.0f == -0.0f

//but when negative is written -0.0f, it's evaluated as positive

If a nonzero Double literal is too large or too small, it's represented by Double.POSITIVE_INFINITY or Double. NEGATIVE_INFINITY or 0.0:

assert Double.MAX VALUE * Double.MAX VALUE == Double.POSITIVE_INFINITY
assert Double.MIN VALUE * Double.MIN VALUE == 0.0d
assert -Double.MAX VALUE * Double.MAX VALUE == Double.NEGATIVE_INFINITY

assert -Double.MAX VALUE * -Double.MAX VALUE == Double.POSITIVE_INFINITY

Classes Float and Double can both be written uncapitalized, ie, float and double.

assert Float.TYPE == float
assert Double.TYPE double

There's a special variable called Double.NaN (and Float.NaN), meaning "Not a Number", which is sometimes returned from math calculations.

Once introduced into a math calculation, the result will (usually) be NaN.

Conversions

The Float and Double classes, along with BigDecimal, BigInteger, Integer, Long, Short, and Byte, can all be converted to one another.

Converting numbers to integers may involve rounding or truncation:

assert 45.76f as int == 45i //truncated

assert 45.76d as int == 45i

assert 45.76f.toInteger() == 45i //method name

assert 45.76f.toLong() == 45L

assert 200.8f as byte == -56 as byte //sign reversed after truncation
assert 45.76f.toBigInteger() == 45

Converting from integers to float or double (may involve rounding):

assert 789g as Float == 789f

assert 45i.toFloat () == 45f //method name

assert 789g.toFloat() == 789f

assert 789g.floatValue() == 789f //alternative method name
assert 45i as double == 45d

assert 6789g.toDouble () 6789d //method name

6789g.doublevalue ()

//precision lost on conversion

== Float.POSITIVE_INFINITY

1.2345679e29f

assert == 6789d //alternative method name
assert new BigInteger('l' + '0'*40).floatValue()

//one with 40 zeroes after it
assert new BigInteger('1234567890' * 3) .floatValue() ==

Converting from BigDecimal to float or double (may involve rounding):

assert 89.980 as float == 89.98f

assert 1.432157168 as float == 1.4321572f //rounded

assert 78.9g.toFloat() == 78.9f

assert 456.789g.floatValue() == 456.789f

assert 6.789g.toDouble() == 6.789d

assert 2345.6789g.doubleValue() == 2345.6789d

assert new BigDecimal('-' + '1l' *45).floatValue() == Float

assert new BigDecimal('O.' + '0'*45 + '1') .floatValue() ==

assert new BigDecimal('0.' + '1234567890' *3) .floatValue()
//precision

.NEGATIVE_ INFINITY
0.0f

0.12345679f
lost on conversion

We can convert a double to a float. but there's no Double() constructor accepting a float as an argument.

assert 23.45e37d as float == 23.45e37f
assert new Float(23.45e37d) == 23.45e37f
assert new Float(23.45e67d) == Float.POSITIVE INFINITY

assert 123.45el2f as double //conversion inexact

We can create a Float or Double from a string representation of the number, either base-10 or hex:

['77', '1.23e-23', '4.56', '-1.7E1l', '98.7e2', '-0.27e-30"'].each{
assert it.toFloat ()
assert new Float (it)
assert it.toDouble ()
assert new Double(it)

}

assert new Float(' 1.23e-23 ') //leading and trailing whitespace removed
try{ new Float(null); assert 0 }
catch(e){ assert e instanceof NullPointerException }
['NaN', '-NaN', 'Infinity', '-Infinity', '+Infinity’].each{

assert new Float (it)
}
assert new Float(' -0Xabc.defP7')

//we can have hexadecimal mantissa, with P indicating exponent

assert new Float(' OxABC.DEFpl7 ')

//part after P must be base-10, not more hex
assert new Float('0X.defP-3f \n')

//any whitespace OK (spaces, tabs, newlines, carriage returns, etc)
try{ new Float(' @0X6azQ/3d'); assert 0 }
catch(e){ assert e instanceof NumberFormatException }

//because the string doesn't contain a parsable number in the form of a Float
assert Float.valueOf ('OxABpl7')

//alternate means of contructing float from string representation
assert Float.parseFloat('OxABpl7')

//another alternate means of contructing float from string
assert new Double('0x12bc.89aP7d ')

The string is first converted to a double, then if need be converted to a float.

Converting from double to BigDecimal is only exact when the double has an exact binary representation, eg, 0.5, 0.25. If a float is supplied, it's
converted to a double first, then given to the BigDecimal constructor. The scale of the returned BigDecimal is the smallest value such that
(10**scale * val) is an integer.

assert new BigDecimal(0.25d) == 0.25
//exact conversion because 0.25 has an exact binary representation

assert new BigDecimal (0.1d) ==
0.1000000000000000055511151231257827021181583404541015625

(0.1d) .toBigDecimal () == new BigDecimal (0.1d) //alternative method name

assert new BigDecimal (0.1f) == 0.100000001490116119384765625
//inexact conversion as 0.1 has a recurring decimal part in binary

assert (0.1f as BigDecimal) == 0.100000001490116119384765625

assert new BigDecimal (0.1d, new java.math.MathContext (25)) ==
0.1000000000000000055511151 //rounds to 25 places as specified

A more exact way to convert a double to a BigDecimal:

assert BigDecimal.valueOf(0.25d) == 0.25

assert BigDecimal.valueOf(0.1d) == 0.1
//always exact, because converts double to a string first
assert new BigDecimal(Double.toString(0.1d)) == 0.1
//explicitly convert double to string, then to BigDecimal
assert BigDecimal.valueOf(-23.456e-17d) == -2.3456E-16
assert BigDecimal.valueOf (-23.456e-17f) == -2.3455999317674643E-16

//result inexact because float converted to double first

try{ BigDecimal.valueOf (Double.POSITIVE INFINITY); assert 0 }
catch(e){ assert e instanceof NumberFormatException }

try{ BigDecimal.valueOf(Double.NaN); assert 0 }
catch(e){ assert e instanceof NumberFormatException }
//however, infinities and NaN won't convert that way

We can convert a float or double to a unique string representation in base-10. There must be at least one digit to represent the fractional part, and
beyond that as many, but only as many, more digits as are needed to uniquely distinguish the argument value from adjacent values of type float.
(The returned string must be for the float value nearest to the exact mathematical value supplied; if two float representations are equally close to
that value, then the string must be for one of them and the least significant bit of the mantissa must be 0.)

assert Float.toString(3.0e6f) == '3000000.0' //no leading zeros

assert Float.toString(3.0e0f) == '3.0' //at least one digit after the point
assert Float.toString(3.0e-3f) == '0.0030"'

assert Float.toString(3.0e7f) == '3.0E7'

//exponent used if it would be > 6 or < -3
assert Float.toString(3.0e-4f) == '3.0E-4' //mantissa >= 1 and < 10

We can also convert a float or double to a hexadecimal string representation:

[0.0f: '0x0.0p0",

(-0.0f): '0x0.0p0', //no negative sign in hex string rep'n of -0.0f
1.0f: '0x1.0p0', //most returned strings begin with '0x1.' or '-0x1.
2.0f: '0x1.0pl',

3.0f: 'Ox1.8pl"',
5.0f: '0x1.4p2',

(-1.0f): '-0x1.0p0"',

0.5f: '0x1.0p-1"',
0.25f: '0x1.0p-2',

(Float .MAX_VALUE): 'Oxl.fffffepl27',
(Float .MIN_VALUE) : '0x0.000002p-126",
//low values beginning with '0x0.' are called 'subnormal'
(Float .NEGATIVE_INFINITY) : '-Infinity',
(Float.NaN) : 'NaN',

].each{ k, v->
assert Float.toHexString (k) == v

}

We can format integers and decimals using String.format():

//Integers ('d')

assert String.format('$d', 45) == '45'
assert String.format('%5d,%1$50"', 46L) == ' 46, 56"

//octal format; each minimum 5 chars wide; use an argument twice
assert String.format('$%-4d,%<-5x', 47g) == '47 ,2f '

//hex format without leading 'Ox'; left-justified with '-';
//shortcut ('<') for using argument again
assert String.format('%2d,%<1X', 123) == '123,7B'
//hex in uppercase with capital 'X'
assert String.format('%04d', 34) == '0034' //zero-pad
assert String.format('$%,5d', 12345) == '12,345' //use grouping-separators

assert String.format('%+3d,%2$ 3d', 123L, 456g) == '+123, 456"

//always use plus sign; always use a leading space
assert String.format('$%(3d', -789 as short) == '(789)' //parens for negative
assert String.format('$(30,%2$(3x,%3$(3X', 123g, 456g, -789g) == '173,1c8, (315)"

//neg octal/hex only for BigInteger

//Floating-Point ('f', 'a', 'e', 'g")

assert String.format('e = %f', Math.E) == 'e = 2.718282"
//default 'f' format is 7.6

assert String.format('e=%+6.4f', Math.E) == 'e=+2.7183"
//precision is digits after decimal point

assert String.format('$ %(,6.2f', -6217.58) == 'S (6,217.58)"'
//' (' flag gives parens, ',' uses separators

assert String.format('%a, $%$A', 2.7182818f, Math.PI) ==
'0x1.5bf0a8pl, 0X1.921FB54442D18P1' //'a' for hex
assert String.format('%+010.4a', 23.25d) == '+0x001.7400p4"'
//'+' flag always includes sign; '0' flag zero-fills
assert String.format('$e, %10.4e', Math.E, 12345.6789) ==
'2.718282e+00, 1.2346e+04' //'e' for scientific format
assert String.format('$(10.5E', -0.0000271) == '(2.71000E-05)"
assert String.format('$g, %10.4G', Math.E, 12345.6789) == '2.71828, 1.235E+04'
//'f' or 'e', depending on input

Floating-Point Arithmetic

We can perform the same basic operations that integers and BigDecimal can:

assert 3.4f.plus(3.3f) == 3.4f + 3.3f

assert 3.4f .minus(2.1f) == 3.4f - 2.1f

assert 3.0f.multiply(3.1f) == 3.0f * 3.1f

assert 3.0f.multiply(3f) == 3.0f * 3f

assert 3.0.multiply(3f) == 3.0 * 3f

assert 7.7f.negate() == -7.7f //unary operation/method
assert (-7.7f) .negate() == -(-7.7f)

assert +(7.7f) == 7.7f

try{ 3.4f.multiply(null); assert false }
catch(e){ assert e instanceof NullPointerException }
//methods throw NullPointerException if passed a null

For + - and *, anything with a Double or Float converts both arguments to a Double:

assert (23.4f + 7.998d).class == Double
assert (23.4f - 123.45g) .class Double
assert (7.998d * 123.45g) .class == Double
assert (23.4f - 1=789).class == Double

We can divide using floats and doubles:

assert
assert

assert

2.4f.div(1.6f) == (
(2.5£ / 1i).class ==

//produces double result

(2.5£ / 1.25).class

2.4f / 1.6f)

Double

if either operand is float or double
Double

We can perform mod on floats and doubles:

def a= 34.56f % 5

assert a == 34.56f.mod(5) && a < 5.0f && a >= 0.0f

def b= 34.56f % 5.1f

assert b == 34.56f.mod(5.1f) && b < 5.0f && b >= 0.0f

def c= -34.56f % 5.1f

assert ¢ == (-34.56f) .mod(5.1f) && ¢ <= 0.0f && ¢ > -5.0f

IEEEremainder resembles mod in some ways:

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero=0.0d

assert Math.IEEEremainder(33d, 10d) == 3d
//give remainder after rounding to nearest value
assert Math.IEEEremainder(37d, 104) == -3d
assert Math.IEEEremainder(-33d, 10d) -3d
assert Math.IEEEremainder(-37d, 10d) == 3d
assert Math.IEEEremainder(35d, 10d) == -5d
//when two values equally near, use even number
assert Math.IEEEremainder(45d, 10d) == 5d
assert Math.IEEEremainder(Zero, 10d) Zero
assert Math.IEEEremainder(-Zero, 10d) -Zero
assert Math.IEEEremainder(Infinity, 10d) == NaN
assert Math.IEEEremainder(35d, Zero) == NaN
assert Math.IEEEremainder(35d, Infinity) == 35d
We can perform other methods:
assert (-23.4f).abs() == 23.4f
assert (-23.414d) .abs() == 23.4144d
assert 14.49f.round() == 141
assert 14.5f.round() == 15i
assert (-14.5f).round() == -141i
assert 14.555d.round() == 15L
We can raise a float or double to a power:
assert 4.5f**3 == 91.125d //double returned

assert 4.5f.power(3) == 4.5f**3 //using equivalent method instead
assert 1.1.power(1000000000) == Double.POSITIVE_INFINITY

We can test whether a float or double is a number and whether it's an infinite number:

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero=0.0d
assert NaN.isNaN()

assert Double.isNaN(NaN)

assert Infinity.isInfinite()

assert (-Infinity).isInfinite()

assert Double.isInfinite(Infinity)

assert Double.isInfinite(-Infinity)

assert Float.isInfinite(Float.NEGATIVE_INFINITY)

We can test whether two floats or doubles have equal values using operators or methods:

assert 345f.equals(3.45e2f) && 345f == 3.45e2f

//equals () and == behave the same in all cases
assert ! 34.5f.equals(13.4f) && 34.5f != 13.4f //equivalent
assert Float.NaN.equals(Float.NaN) && Float.NaN == Float.NaN
assert 0.0f == -0.0f && 0.0f.equals(-0.0f)

//-0.0f is evaluated as positive zero
assert 0.0f != -(0.0f) && ! 0.0f.equals(-(0.0f))

//negative zero must be written -(0.0f)
assert 345d.equals(3.45e2d) && 345d == 3.45e2d

assert Float.POSITIVE INFINITY.equals(Float.POSITIVE_INFINITY) &&

Float .POSITIVE_INFINITY == Float.POSITIVE_INFINITY
assert ! Float.POSITIVE_ INFINITY.equals(Float.NEGATIVE_INFINITY) &&
! (Float.POSITIVE_INFINITY == Float .NEGATIVE INFINITY)

We can compare floats and doubles using the <=> operator, the compareTo() method, and the compare() static method:

assert (2.50f <=> 2.5f) == 0 && 2.50f.compareTo(2.5f) ==

assert (-3.45f <=> 1.23f) == -1 && (-3.45f) .compareTo(1.23f) == -1
assert (1.23d <=> -0.12d) == 1 && 1.23d.compareTo(-0.12d) == 1
assert (-1.23d < -0.12d) && (-1.23d).compareTo(-0.12d) < 0

assert (Float.NaN > Float.POSITIVE INFINITY) &&
Float.NaN.compareTo (Float.POSITIVE_INFINITY) > 0

assert (0.0f <=> -0.0f) == 0

assert (Float.NaN <=> Float.NaN) == 0 && Float.NaN.compareTo (Float.NaN) == 0
assert Float.compare(3.4f, 7.9f) == -1

assert Double.compare(3.4d, -7.9d) == 1

Auto-incrementing and -decrementing work on floats and doubles:

def a= 12.315d

a++
assert a == 13.315d
--a
assert a == 12.315d

Non-zero floats and doubles evaluate as true in boolean contexts:

assert (1.23d? true: false)
assert ! (0.0f? true: false)

Bitwise Operations

We can convert a float to the equivalent int bits, or a double to equivalent float bits. For a float, bit 31(mask 0x80000000) is the sign, bits 30-23
(mask 0x7f800000) are the exponent, and bits 22-0 (mask 0x007fffff) are the mantissa. For a double, bit 63 is the sign, bits 62-52 are the
exponent, and bits 51-0 are the mantissa.

assert Float.floatToIntBits(0.0f) == 0

assert Float.floatToIntBits(15.15f) == 0x41726666

assert Float.floatToIntBits(Float.NaN) == 0x7£c00000

assert Float.floatToIntBits(Float.POSITIVE_INFINITY) == 0x7£800000

assert Float.floatToIntBits(Float.NEGATIVE_INFINITY) == (0xff800000 as int)
assert Double.doubleToLongBits(15.15d) == 0x402e4ccccccccced

The methods floatToRawIntBits() and doubleToRawLongBits() act similarly, except that they preserve Not-a-Number (NaN) values. So If the
argument is NaN, the result is the integer or long representing the actual NaN value produced from the last calculation, not the canonical
Float.NaN value to which all the bit patterns encoding a NaN can be collapsed (ie, 0x7f800001 through Ox7fffffff and 0xff800001 through Oxffffffff).

The intBitsToFloat() and longBitsToDouble() methods act oppositely. In all cases, giving the integer resulting from calling Float.floatTolntBits() or
Float.floatToRawIntBits() to the intBitsToFloat(int) method will produce the original floating-point value, except for a few NaN values. Similarly with
doubles. These methods are the only operations that can distinguish between two NaN values of the same type with different bit patterns.

assert Float.intBitsToFloat (0x7fc00000) == Float.NaN

assert Float.intBitsToFloat (0x7£800000) == Float.POSITIVE_INFINITY

assert Float.intBitsToFloat (0xff800000 as int) == Float.NEGATIVE INFINITY
assert Float.intBitsToFloat(0) == 0.0f

assert Float.intBitsToFloat (0x41726666) == 15.15f

assert Double.longBitsToDouble(0x402e4ccccccccced) == 15.15d

assert Float.intBitsToFloat (Float.floatToIntBits(15.15f)) == 15.15f

As well as infinities and NaN, both Float and Double have other constants:

assert Float.MAX VALUE == Float.intBitsToFloat (0x7f7fffff)
assert Float .MIN_NORMAL == Float.intBitsToFloat (0x00800000)
//the smallest positive nonzero normal value
assert Float.MIN_VALUE == Float.intBitsToFloat (0x1)
//the smallest positive nonzero value, including subnormal values
assert Float.MAX EXPONENT == Math.getExponent (Float.MAX VALUE)
assert Float .MIN_EXPONENT == Math.getExponent (Float.MIN_NORMAL)
assert Float .MIN_EXPONENT == Math.getExponent (Float.MIN_VALUE) + 1
//for subnormal values

Floating-Point Calculations

There are two constants of type Double, Math.PI and Math.E, that can't be represented exactly, not even as a recurring decimal.

The trigonometric functions behave as expected with the argument in radians, but 0.0 isn't represented exactly. For example, sine:

assert Math.sin(0.0) == 0.0

assert Math.sin(0.5 * Math.PI) == 1.0

assert Math.sin(Math.PI) < le-15 //almost 0.0, but not quite
assert Math.sin(1.5 * Math.PI) == -1.0

assert Math.sin(2 * Math.PI) > -le-15 //almost 0.0
assert Math.sin(-0.5 * Math.PI) == -1.0

assert Math.sin(-Math.PI) > -le-15 //almost 0.0

assert Math.sin(-1.5 * Math.PI) == 1.0

assert Math.sin(-2 * Math.PI) < le-15 //almost 0.0
assert Math.sin(Double.POSITIVE_INFINITY) == Double.NaN
assert Math.sin(Double.NEGATIVE_INFINITY) == Double.NaN

Other trig functions are:

assert Math.cos(Double.POSITIVE_INFINITY) == Double.NaN
assert Math.tan(Double.NEGATIVE_INFINITY) == Double.NaN
assert Math.asin(0.0) == 0.0

assert Math.asin(1.0) == 0.5 * Math.PI

assert Math.asin(1.001) == Double.NaN

assert Math.acos(-1.0) == Math.PI

assert Math.acos(-1.001) == Double.NaN

assert Math.atan(0.0) == 0.0

Some logarithmic functions:

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN, Zero= 0.0d

assert Math.exp(Infinity)

[(Infinity): Infinity,
10000: 4,
10: 1,
1: 0,
0.1: -1,
0.00001: -5,
0.0: -Infinity,
(-0.001) : NaN,
].each{ k, v -> assert Math.logl0(k) == v } //returns base-10 logarithm
[(Infinity): Infinity,
(Math.E): 1,
1: 0,
0.0: -Infinity,
(-0.001) : NaN,
].each{ k, v -> assert Math.log(k) == v } //returns natural logarithm

== Infinity //returns Math.E raised to a power

assert Math.exp(-Infinity) 0.0

Math.ulp(d) returns the size of the units of the last place for doubles (the difference between the value and the next larger in magnitude).

assert Math.ulp(123.456d) == Math.ulp(-123.456d)
assert Math.ulp(0.123456789d) != Math.ulp(0.123456789f)

//if Float, a different scale is used
assert Math.ulp(Double.POSITIVE INFINITY) == Double.POSITIVE INFINITY
assert Math.ulp(Double.NEGATIVE INFINITY) == Double.POSITIVE INFINITY
assert Math.ulp(0.0d) == Double.MIN_VALUE
assert Math.ulp(Double.MIN_VALUE) == Double.MIN_ VALUE

assert Double.MAX VALUE > Math.ulp(Double.MAX VALUE)

Accuracy of the Math methods is measured in terms of such ulps for the worst-case scenario.lf a method always has an error less than 0.5 ulps,
the method always returns the floating-point number nearest the exact result, and so is always correctly rounded. However, doing this and
maintaining floating-point calculation speed together is impractical. Instead, for the Math class, a larger error bound of 1 or 2 ulps is allowed for
certain methods. But most methods with more than 0.5 ulp errors are still required to be semi-monotonic, ie, whenever the mathematical function
is non-decreasing, so is the floating-point approximation, and vice versa. Not all approximations that have 1 ulp accuracy meet the monotonicity
requirements. sin, cos, tan, asin, acos, atan, exp, log, and log10 give results within 1 ulp of the exact result that are semi-monotonic.

Further Calculations

We can find the polar coordinate of two (x,y) coordinates. The result is within 2 ulps of the exact result, and is semi-monotonic.

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN, Zero= 0.0d

[[1d, 1d]: 0.25d * Math.PI,
[1d, -1d]1: 0.75d * Math.PI,
[-1d, 1d]: -0.25d * Math.PI,
[-1d4, -1d]: -0.75d * Math.PI,
[0od, 1d]: o4,
[-(0d), 1d 1: -(0d),
[od, -14] Math.PI,
[-(0d), -1d 1: -Math.PI, // -(0d) gives huge difference in result to 0d

[1d, 0d]: 0.5d4 * Math.PI,
[14, -(0d) 1: 0.5d * Math.PI,
[-1d, 0d 1: -0.5d4 * Math.PI,
[-1d, -(0d) 1: -0.5d * Math.PI,

[Double.NaN, 1d]: Double.NaN, //NaN returned if either argument is NaN

[1d, Infinity

[1d, -Infinity
[-1d, Infinity
[-1d, -Infinity
[Infinity, 14 0.5d * Math.PI,

[Infinity, -14 0.5d * Math.PI,

1: od,
1
1
1
1
1
[-Infinity, 1d 1: -0.5d * Math.PI,
1
1
1
1
1

Math.PI,
-(0d),
-Math.PI,

[-Infinity, -14 -0.5d * Math.PI,

[Infinity, Infinity 0.25d * Math.PI,

[Infinity, -Infinity 0.75d4 * Math.PI,

[-Infinity, Infinity -0.25d * Math.PI,

[-Infinity, -Infinity -0.75d * Math.PI,

].each{k,v->

if (Math.atan2(k[0], k([1]) != v)
println "(${k[0]}, ${k[1]}): ${Math.atan2(k[0],k[1])}; Sv"

We can perform the hyperbolic trigonometric functions:

assertClose= {itl,it2,ulp->
assert itl > it2 - ulp*Math.ulp(it2) && itl < it2 + ulp*Math.ulp(it2)

}
def Infinity=Double.POSITIVE_INFINITY, Zero=0d, NaN=Double.NaN, E=Math.E
assertClose Math.sinh(2d), 0.5d* (Ex*2d - E**-2d), 2.5d

//sinh() result will be with 2.5 ulp of exact value
assert Math.sinh(Infinity) == Infinity
assert Math.sinh(-Infinity) == -Infinity
assert Math.sinh(Zero) == Zero
(

assert Math.sinh(-Zero) == -Zero

assertClose Math.cosh(2d), 0.5d* (Ex*2d + E**-2d), 2.5d
assert Math.cosh(Infinity) == Infinity

assert Math.cosh(-Infinity) == Infinity

assert Math.cosh(Zero) == 1d

assert Math.cosh(-Zero) == 1d

assertClose Math.tanh(2d), Math.sinh(2d)/Math.cosh(2d), 2.5d
assert Math.tanh(Infinity) == 1d

assert Math.tanh(-Infinity) == -1d

assert Math.tanh(Zero) == Zero

assert Math.tanh(-Zero) == -Zero

//once the exact result of tanh is within 1/2 of an ulp of
//the limit value of +/- 1, a correctly signed +/- 1.0 will be returned

We can convert between degrees and radians. The conversion is generally inexact.

assert Math.toDegrees(Math.PI)
assert Math.toRadians(90.0)

== 180.0
0.5 * Math.PI

We can calculate (E**x)-1 (1 + x) in one call. For values of x near 0, Math.expm1(x) + 1d is much closer than Math.exp(x) to the true result of
e**x. The result will be semi-monotonic, and within 1 ulp of the exact result. Once the exact result of e**x - 1 is within 1/2 ulp of the limit value -1,
-1d will be returned.

assertClose= {itl,it2,ulp->
assert itl > it2 - ulp*Math.ulp(it2) && itl < it2 + ulp*Math.ulp(it2)

}

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero= 0d, E= Math.E

assertClose Math.expml(123.4d), E**123.4d - 1, 31
assertClose Math.expml(23.4d), E**23.4d - 1, 10
assertClose Math.expml(3.4d), E**3.4d - 1, 3
assert Math.expml(Infinity) == Infinity

assert Math.expml(-Infinity) == -1d

assert Math.expml(Zero) == Zero

assert Math.expml(-Zero) == -Zero

We can also calculate In(1 + x) in one call. For small values of x, Math.log1p(x) is much closer than Math.log(1d + x) to the true result of In(1 +
x). The result will be semi-monotonic, and within 1 ulp of the exact result.

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero= 0d
assert Math.loglp(123.4d) == Math.log(1ld + 123.4d)

assert Math.loglp(23.4d) == Math.log(ld + 23.4d)

assert Math.loglp(3.4d) == Math.log(ld + 3.4d)

assert Math.loglp(-1.1d) == NaN

assert Math.loglp(Infinity) == Infinity

assert Math.loglp(-1d) == -Infinity

assert Math.loglp(Zero) == Zero

assert Math.loglp(-Zero) == -Zero

Scale binary scalb(x,y) calculates (x * y**2) using a single operation, giving a more accurate result. If the exponent of the result would be larger
than Float/Double. MAX_EXPONENT, an infinity is returned. If the result is subnormal, precision may be lost. When the result is non-NaN, the
result has the same sign as x.

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN, Zero= 0.0d

assert Math.scalb(5, 3) == 5 * 2%%3

assert Math.scalb(NaN, 3) == NaN

assert Math.scalb(Infinity, 3) == Infinity //same sign
assert Math.scalb(Zero, 3) == Zero //same sign

We have square root and cube root methods. For cbrt, the computed result must be within 1 ulp of the exact result.

def ten= Math.sqgrt(10) * Math.sqrt(10)
def error= le-14
assert ten > 10 - error && ten < 10 + error

assert Math.sqgrt(-0.001) == Double.NaN
assert Math.sqgrt(0) == 0
assert Math.sqgrt (Double.POSITIVE_INFINITY) == Double.POSITIVE_INFINITY

def ten= Math.cbrt(10) * Math.cbrt(10) * Math.cbrt(10)
def error= le-14
assert ten > 10 - error && ten < 10 + error

assert Math.cbrt(-123.456) == -Math.cbrt(123.456)

assert Math.cbrt(0) ==

assert Math.cbrt (Double.POSITIVE_INFINITY) == Double.POSITIVE_INFINITY
assert Math.cbrt (Double.NEGATIVE_INFINITY) == Double.NEGATIVE_INFINITY

We can find the ceiling and floor of doubles:

assert Math.ceil(6.77) == 7 && Math.floor(6.77) == 6

assert Math.ceil(-34.43) == -34 && Math.floor(-34.43) == -35

assert Math.ceil(0.73) == 1.0 && Math.flooxr(0.73) == 0.0

assert Math.ceil(-0.73) == -0.0d && Math.floor(-0.73) == -1.0
//sign required for -0.0d

assert Math.ceil(13.0) == 13.0 && Math.floor(13.0) == 13.0

assert Math.ceil(0.0) == 0.0 && Math.flooxr(0.0) == 0.0

assert Math.ceil(23.45) == -Math.floor(-23.45)
//Math.ceil (x) always equals -Math.floor (-x)

We can round doubles to the nearest long (or floats to the nearest integer). The calculation is Math.floor(a + 0.5d) as Long, or Math.floor(a + 0.5f)
as Integer

[7.45: 7,
7.5: 8,

(-3.95): -4,

(-3.5 -3,

)
(Double.NaN) : 0,

(Double .NEGATIVE_ INFINITY): Long.MIN_VALUE,

(Long.MIN_VALUE as Double): Long.MIN_VALUE,

(Double.POSITIVE INFINITY): Long.MAX VALUE,

(Long.MAX VALUE as Double): Long.MAX VALUE,

].each{ k, v -> assert Math.round(k) == v }

Unlike the numerical comparison operators, max() and min() considers negative zero to be strictly smaller than positive zero. If one argument is
positive zero and the other negative zero, the result is positive zero.

assert Math.max(7i, 91) == 91 //returns the same class as its arguments
assert Math.min(23L, 19L) == 19L
assert Math.min(1.7f, 0.3f) == 0.3f

-6.7d

(
(
(

assert Math.min(-6.7d, 1.3d) =
(71, 9L) == 7L
(
(

assert Math.min = //converts result to most precise type of argument
assert Math.min(1L, 3.3f) == 1f
assert Math.min(-6.7f, 1.3d) == -6.699999809265137d

Some other methods:

[7.49d: 7.04,

7.5d: 8.0d,
8.5d: 8d,
(-7.5d): -8d,
7d: 74,
od: od,
(Double.POSITIVE_INFINITY): Double.POSITIVE_INFINITY,
].each{ k, v-> assert Math.rint(k) == v }

//round to nearest integer (or even integer)

assert Math.abs(-231) == 231

assert Math.abs(234L) == 234L

assert Math.abs(0i) == 0i

assert Math.abs(Integer.MIN VALUE) == Integer.MIN_VALUE
//WARNING: this result not intuitive

assert Math.abs(Long.MIN_VALUE) == Long.MIN_VALUE

assert Math.abs(-23.45f) == 23.45f

assert Math.abs(-123.4d) == 123.4d

assert Math.abs(-0.0f) == 0.0f

(
(

assert Math.abs(0.0f) == 0.0f
(

assert Math.abs(FlOat.NEGATIVE_INFINITY) == Float.POSITIVE_INFINITY

-23.45f, 781.23f, Float.NEGATIVE_INFINITY].each{
assert Math.abs(it) ==
Float.intBitsToFloat (Ox7fffffff & Float.floatToIntBits (it))
assert Math.abs(it) ==
Float.intBitsToFloat ((Float.floatToIntBits (it)<<1)>>>1)
} //there's related assertions for doubles

The pow() method returns the value of the first argument raised to the power of the second argument. If both arguments are integers, then the
result is exactly equal to the mathematical result of raising the first argument to the power of the second argument if that result can in fact be
represented exactly as a double value. Otherwise, special rules exist for processing zeros and infinities:

def Infinity= Double.POSITIVE_INFINITY, NaN= Double.NaN
[

[34, od]1: 14,

[34, -(0od) 1: 1d,

[34, 1d 1: 34,

[3d, Infinity]: Infinity,

[-3d, Infinity]: Infinity,

[0.3d, -Infinity]: Infinity,

[-0.3d, -Infinity]: Infinity,

[3d, -Infinity]1: 0d,

[-3d, -Infinity]: 04,

[0.3d, Infinity]: 04,

[-0.3d, Infinity]: 04,

[1d, Infinity]: Double.NaN,

[0od, 1d]1: od,

[Infinity, -1d]: 0d,

[0d, -1d 1: Infinity,

[Infinity, 14]: Infinity,

[

-(0d), 2d]1: 0d, //exponent >0 but not finite odd integer

[-Infinity, -2d]: 0d, //exponent <0 but not finite odd integer

[-(0od), 3@ 1: -(0d), //exponent is positive finite odd integer

[-Infinity, -3d]: -(0d), //exponent is negative finite odd integer

[-(0d), -2d]: Infinity, //exponent <0 but not finite odd integer

[-Infinity, 2d]: Infinity, //exponent >0 but not finite odd integer

[-(0od), -3d]1: -Infinity, //exponent is negative finite odd integer

[-Infinity, 3d]: -Infinity, //exponent is positive finite odd integer
[

-3d, 4i 1: {-> def a= Math.abs(-3d); a*a*a*a }(),

//exponent is finite even integer
{-> def a= Math.abs(-3d); -a*a*a*a*a }(),

//exponent is finite odd integer
-3d, 2.5]: NaN, //exponent is finite and not an integer
NaN, 0d]: 1d //exception to the NaN ripple rule
].each{k, v->
assert Math.pow(k[0],

[-3d, 51 1:

k[1]) == v

More methods:

assert Math.random() >= 0d //this method uses new Random() when first called
assert Math.random() < 1d

assert Math.signum(17.75d) == 1d

assert Math.signum(17.75f) == 1f

assert Math.signum(-19.5d) == -1d

assert Math.signum(04) == 0d

assert Math.signum(-(0d)) == -(0d)

We can use copySign() to return a first argument with the sign of the second argument.

assert Math.copySign(34.4f,

-2.1f) == -34.4f

assert Math.copySign(-1234.4d,

2.23d

)

1234.4d

We can compute the hypotenuse with risk of intermediate overflow (or underflow). The computed result is within 1 ulp of the exact result. If one

parameter is held constant, the results will be semi-monotonic in the other parameter.

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN

assert Math.hypot(9d, 16d) == Math.sqgrt(9d**2 + 16d**2)
assert Math.hypot(Infinity, 234d) == Infinity

assert Math.hypot(NaN, 234d) == NaN

assert Math.hypot(Infinity, NaN) == Infinity

We can get the exponent from the binary representation of a double or float:

def Infinity:Double.POSITIVE_INFINITY, Zero=0d, NaN=Double.NaN, E=Math.E
assert Math.getExponent (2.345e31d) <= Double.MAX EXPONENT
assert Math.getExponent (2.345e31d) >= Double.MIN_EXPONENT
assert Math.getExponent (NaN) == Double.MAX EXPONENT + 1
(

assert Math.getExponent (Infinity) == Double.MAX EXPONENT + 1
assert Math.getExponent (Zero) == Double.MIN_ EXPONENT - 1

//this is also the value of subnormal exponents

assert Math.getExponent (12.3e4f) <= Float.MAX EXPONENT &&
Math.getExponent (12.3e4f) >= Float.MIN_EXPONENT

We can return the floating point number adjacent to the first arg in the direction of the second arg:

def Infinity=Double.POSITIVE_INFINITY, NaN=Double.NaN, Zero= 0d

assert Math.nextAfter(12.34d, 999d) == 12.34d + Math.ulp(12.34d)
assert Math.nextAfter(12.34d, -999d) == 12.34d - Math.ulp(12.34d)
assert Math.nextAfter(12.34f, 999f) == 12.34f + Math.ulp(12.34f)
assert Math.nextAfter(12.34d, 12.34d) == 12.34d

//if numbers equal, return second one
assert Math.nextAfter(Zero, -Zero) == -Zero

//numbers are 'equal', and second one returned
assert Math.nextAfter(Double.MIN_VALUE, -12d) == Zero
assert Math.nextAfter(-Double.MIN_ VALUE, 12d) == -Zero
assert Math.nextAfter(Double.MAX VALUE, Infinity) == Infinity
assert Math.nextAfter(-Double.MAX VALUE, -Infinity) == -Infinity
assert Math.nextAfter(Infinity, 12d) == Double.MAX VALUE
assert Math.nextAfter(-Infinity, 12d) == -Double.MAX VALUE
assert Math.nextAfter(Zero, Infinity) == Double.MIN VALUE
assert Math.nextAfter(Infinity, Infinity) == Infinity
assert Math.nextUp(12.34d) == Math.nextAfter(12.34d, Infinity)

//shortcut method for both doubles and floats

The result is NaN if the argument is NaN for ulp, sin, cos, tan, asin, acos, atan, exp, log, log10, sqrt, cbrt, IEEEremainder, ceil, floor, rint, atan2,

abs, max, min, signum, sinh, cosh, tanh, expm1, log1p, nextAfter, and nextUp.
But not so with pow, round, hypot, copySign, getExponent, and scalb.

There's another math library called StrictMath that's a mirror of Math, with exactly the same methods. However, some methods (eg, sin, cos, tan,
asin, acos, atan, exp, log, log10, cbrt, atan2, pow, sinh, cosh, tanh, hypot, expm1, and log1p) follow stricter IEEE rules about what values must be
returned. For example, whereas the Math.copySign method usually treats some NaN arguments as positive and others as negative to allow

greater performance, the StrictMath.copySign method requires all NaN sign arguments to be treated as positive values.

JN0545-Dates

We use class Date for simple date processing:

def today= new Date() //represents the date and time when it is created
println today

//we can add to and subtract from a date...
def tomorrow= today + 1,
dayAfter= today + 2,
yesterday= today - 1,
dayBefore= today - 2
println "\n$dayBefore\n$yesterday\nstoday\n$tomorrow\n$dayAfter\n"
assert today + 7 == today.plus(7) && today - 15 == today.minus (15)
//equivalent methods

//we can increment and decrement a date...
def d= today.clone ()

d++; assert d == tomorrow
d= d.next(); assert d == dayAfter //equivalent method
d--; assert == tomorrow
d= d.previous(); assert d == today //equivalent method

//we can compare dates...

assert tomorrow.after (today)

assert yesterday.before (today)

assert tomorrow.compareTo(today) > 0
assert tomorrow.compareTo (dayAfter) < 0
assert dayBefore.compareTo(dayBefore) == 0

def n= today.time //we can convert a Date to a Long

println n

today.time = 0 //long 0 is beginning of 1 Jan 1970 GMT

println today

def sometimeAgo= new Date(0) //we can construct a date with a Long argument
assert sometimeAgo == today

Other date and time processing can be done using the GregorianCalendar class:

System.setProperty ('user.timezone', 'GMT') //we'll look at timezones later

def c= new GregorianCalendar ()
println c.time //'time' property gives a Date class
c= Calendar.instance

assert c.class == GregorianCalendar //another way to create a GregorianCalendar
println c.time
assert c.timeInMillis == c.time.time

//we can get the time in milliseconds after 1 Jan 1970 at 0:00:00am GMT

println System.currentTimeMillis () //another way to get the current time
println System.nanoTime (
//time in nano-seconds: good for measuring elapsed computation times

c= new GregorianCalendar (2009, Calendar.JULY, 22) //creates 22 July 2009
c= new GregorianCalendar (2009, Calendar.JULY, 22, 2, 35)

//creates 22 July 2009 at 2:35am GMT
c= new GregorianCalendar (2009, Calendar.JULY, 22, 2, 35, 21)

//creates 22 July 2009 at 2:35:2lam GMT

c.clear() //if we clear the fields, we get...

assert c.get(Calendar.ERA) == GregorianCalendar.AD &&

c.get (Calendar.YEAR) == 1970 &&

c.get (Calendar .MONTH) == 0 &&

//dates range from 0 to 11, so this is January

c.get (Calendar.WEEK OF MONTH) == 1 && //should be: 0
c.get (Calendar.DAY OF MONTH) == 1 &&

c.get (Calendar.DATE) == 1 && //same as DAY OF MONTH
c.get (Calendar.DAY OF_WEEK) == 5 &&

c.get (Calendar .DAY OF_WEEK IN_MONTH) == 1 &&

c.get (Calendar.AM _PM) == Calendar.AM &&

c.get (Calendar .HOUR) == 0 &&

c.get (Calendar .HOUR_OF DAY) == 0 &&

c.get (Calendar .MINUTE) == 0 &&

c.get (Calendar.SECOND) == 0 &&

c.get (Calendar .MILLISECOND) == 0 &&

c.get (Calendar .WEEK_OF YEAR) == 1 &&

c.get (Calendar .DAY OF_YEAR) == 1

def d= new GregorianCalendar ()
d.timeInMillis= 0
//we can set the 'time', here 1 Jan 1970 at 00:00:00.000 GMT (Gregorian)
d.time= new Date (0) //alternative syntax
assert d == ¢

GregorianCalendar supports both the Julian and Gregorian calendar systems, supporting one discontinuity, which by default is when the
Gregorian calendar was first instituted in some countries, ie, 4 October 1582 (Julian) followed by 15 October, 1582 (Gregorian). The only
difference between the calendars is the leap year rule: the Julian specifies leap years every four years, whereas the Gregorian omits century
years which are not divisible by 400. Because dates are computed by extrapolating the current rules indefinitely far backward and forward in time,
this calendar generates consistent results for all years, although dates obtained are historically accurate only from March 1, 4 AD onward, when
modern Julian calendar rules were adopted. Although New Year's Day was March 25 prior to the institution of the Gregorian calendar, to avoid
confusion, this calendar always uses January 1.

From Groovy 1.5.7 / 1.6.x, you may use Date.format() directly. Refer to GROOVY-3066 for details.

Alternatively, Dates and times can be formatted easily with String.format(). The first character is 't' or 'T' for each item:

def cl= new GregorianCalendar (1995, Calendar.SEPTEMBER, 5, 19, 35, 30, 750)

//dates. ..
assert String.format ('$tY/%<tm/%<td', cl) == '1995/09/05"'
assert String.format ('$tA %$<te %<tB %<ty', cl) == 'Tuesday 5 September 95'

assert String.format ('century:%tC, month:%<tb, day:%<te', cl) ==
'century:19, month:Sep, day:5'

assert String.format ('month:%th, day of year:%<tj, day of week:%<ta', cl) ==
'month:Sep, day of year:248, day of week:Tue' //'h' same as 'b'

//times. ..

assert String.format ('$tH:%<tM:%<tS.%<tL', cl) == '19:35:30.750"'

assert String.format ('$tI%<tp, %$<tl%<tp, nanoseconds:%<tN', cl) ==
'07pm, 7pm, nanoseconds:750000000"'

assert String.format('$ts', cl) == '810300930'
//seconds since start of 1-Jan-1970 GMT
assert String.format('$tQ', cl) == '810300930750"

//milliseconds since start of 1-Jan-1970 GMT
assert String.format('$tk',
new GregorianCalendar (1995, Calendar.SEPTEMBER, 5, 6, 35)) == '6'

//shortcut formats...

assert String.format('$tF', cl) == '1995-09-05' //date as '%tm/%td/%ty’'
assert String.format('%tD', cl) == '09/05/95' //date as '%tY-%tm-%td'
'19:35:30' //time as '$tH:%tM:%tS'

assert String.format R', cl '19:35' //time as '$tH:%tM

(st

(st
assert String.format ('$tT', cl

(st

(st

assert String.format('$tr', cl) == '07:35:30 PM' //time as '%tI:%tM:%tS $Tp'
//additionally. ..
assert String.format('$tF', new Date(0)) == '1970-01-01"'

//we can supply a Date instead of a Calendar
assert String.format('$tF', OL) == '1970-01-01' //we can also supply a long
assert String.format('...%15tF...', OL) == '... 1970-01-01...' //width 15
assert String.format('...%-15tF...', OL) == '...1970-01-01 .

// '-' flag to left-justify

After setting fields, we must call any get(), add(), or roll() method, or access the 'timelnMillis' or 'time' properties, to cause other relevant fields to
update themselves:

System.setProperty ('user.timezone', 'GMT')

def c= new GregorianCalendar ()

c.set (Calendar.ERA, GregorianCalendar.AD)

c.set (Calendar.YEAR, 1949)

c.set (Calendar.MONTH, Calendar.OCTOBER)

c.set (Calendar.DATE, 31)

assert String.format ('$tF %$<ta', c¢) == '1949-10-31 Mon'

//properties for calculating WEEK OF_YEAR and WEEK_OF_MONTH fields...
c.firstDayOfWeek = Calendar.SUNDAY //Sunday in most countries, Monday in others
c.minimalDaysInFirstWeek = 1

assert c.get(Calendar.ERA) == GregorianCalendar.AD &&
c.get (Calendar.YEAR) == 1949 &&
c.get (Calendar .MONTH) == 9 && //dates range from 0 to 11, so October
c.get (Calendar.MONTH) == Calendar.OCTOBER && //alternatively
c.get (Calendar.DAY OF_MONTH) == 31 &&
c.get (Calendar .WEEK_OF YEAR) == 45 && //range from 1 to 53
c.get (Calendar.WEEK _OF MONTH) == 6 && //range from 1 to 6
c.get (Calendar.DAY OF_YEAR) == 304 &&
c.get (Calendar .DAY OF_WEEK) == 2 && //Monday

c.get (Calendar.DAY OF_WEEK IN_MONTH) == 5

//changing the month uses the same year and day of month...

c.set (Calendar.MONTH, Calendar.AUGUST)
c.time //cause other fields to update themselves
assert String.format ('$tF %$<ta', c) == '1949-08-31 Wed'

c.set (Calendar.MONTH, Calendar.APRIL)

//...but may cause adjustment to roll into following month
c.time
assert String.format('$tF %$<ta', c¢) == '1949-05-01 Sun'

c.set (Calendar.DATE, 31)
c.set (Calendar.MONTH, Calendar.FEBRUARY)
c.set (Calendar.MONTH, Calendar.SEPTEMBER)

//rolling into following month only occurs when other fields update themselves,
//call this method to trigger it...
c.time

assert String.format ('$tF %$<ta', c¢) == '1949-10-01 Sat'
//...so0 Feb-28 DIDN'T roll into Mar-03

//changing the day of month uses the same month and year...
c.set (Calendar.DATE, 1); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-01 Sat'

//changing the day of year adjusts the month, day, and other date fields...
c.set (Calendar.DAY OF_YEAR, c.get(Calendar.DAY OF YEAR) + 2); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-03 Mon'

//changing the week of year keeps the same day of week, but adjusts
//the other date fields...

c.set (Calendar.WEEK OF YEAR, c.get (Calendar.WEEK OF_YEAR) + 3); c.time
assert String.format('$tF %$<ta', c¢) == '1949-10-24 Mon'

//changing the week of month keeps both the same month and day of week...
c.set (Calendar.WEEK OF MONTH, c.get (Calendar.WEEK OF MONTH) - 2); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-10 Mon'

//changing the day of week in month also keeps both the
//same month and day of week...

c.set (Calendar.DAY OF WEEK IN_MONTH, c.get(Calendar.DAY OF WEEK IN_MONTH) - 1)
c.time
assert String.format('$tF %$<ta', c¢) == '1949-10-03 Mon'

//changing the day of week keeps the same week in year...
c.set (Calendar.DAY OF WEEK, Calendar.SATURDAY); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-08 Sat'

c.set (Calendar.DAY OF WEEK, Calendar.SUNDAY); c.time
assert String.format ('$tF %$<ta', c¢) == '1949-10-02 Sun'

We can also set the time in this way:

System.setProperty ('user.timezone', 'GMT')
def c= new GregorianCalendar(1949, Calendar.OCTOBER, 2)

c.set (Calendar.AM PM, Calendar.AM)

c.set (Calendar.HOUR, 6) //set the AM_PM and HOUR fields...
c.set (Calendar.MINUTE, 30)

c.set (Calendar.SECOND, 15); c.time

assert String.format ('$tF %$<tT', c) == '1949-10-02 06:30:15"

assert c.get(Calendar.HOUR OF_DAY) ==
//...and the HOUR_OF DAY field is updated...

c.set (Calendar .HOUR_OF DAY, 19); c.time
assert String.format ('$tF %$<tT', c) == '1949-10-02 19:30:15"
assert c.get(Calendar.HOUR) == 7 && c.get(Calendar.AM PM) == Calendar.PM
//...and vice versa
c.set (Calendar.AM PM, Calendar.AM); c.time
assert String.format ('$tF %<tT', c) == '1949-10-02 07:30:15' &&
c.get(Calendar.AM PM) == Calendar.AM
c.set (Calendar.HOUR, 18); c.time
//if we set the HOUR with a 24-hr value, it self-adjusts
assert c.get(Calendar.HOUR) == 6 && c.get(Calendar.AM PM) == Calendar.PM

//there's no 24:00, only 00:00 which is 'am', on the following day...
c= new GregorianCalendar (1950, Calendar.JANUARY, 26, 23, 59)

assert String.format ('$tF %<tT %$<tp', c) == '1950-01-26 23:59:00 pm'
c.add(Calendar.MINUTE, 1)
assert String.format ('$tF %<tT %$<tp', c) == '1950-01-27 00:00:00 am'

//12:00 noon is 'pm'...
c= new GregorianCalendar (1950, Calendar.JANUARY, 27, 12, 00)
assert String.format ('$tF %<tT %$<tp', c) == '1950-01-27 12:00:00 pm'

More field manipulations:

System.setProperty ('user.timezone', 'GMT')

//we can set common fields using terser syntax...
def c= new GregorianCalendar ()
c.set(1947, Calendar.AUGUST, 11); c.time

assert String.format('$tF %$<ta', c¢) == '1947-08-11 Mon'
c.set(1947, Calendar.AUGUST, 12, 6, 30); c.time
assert String.format ('$tF %$<ta', c) == '1947-08-12 Tue'
c.set (1947, Calendar.AUGUST, 15, 6, 30, 45); c.time
assert String.format('$tF %$<ta', c¢) == '1947-08-15 Fri'

//we can clear individual fields, and check if they're set...
assert c.isSet(Calendar.YEAR) && c.isSet(Calendar.MONTH)
c.clear(Calendar.YEAR)

assert ! c.isSet(Calendar.YEAR) && c.isSet(Calendar.MONTH)

//we can check different maximums and minimums of a field...

c.set(1947, Calendar.APRIL, 11); c.time

assert c.getMinimum(Calendar.DATE) == 1 &&
c.getMaximum(Calendar.DATE) == 31

assert c.getActualMinimum(Calendar.DATE) == 1 &&
c.getActualMaximum(Calendar.DATE) == 3

assert c.getGreatestMinimum(Calendar.DATE) == 1 &&
c.getLeastMaximum(Calendar.DATE) == 28

//the first week in a year may be numbered as part of the previous year,
//and in a month as 0...

c.firstDayOfWeek = Calendar.SUNDAY

c.minimalDaysInFirstWeek = 1

c.set (1954, Calendar.JANUARY, 1); c.time

assert String.format ('$tF %$<ta', c¢) == '1954-01-01 Fri'

assert c.get(Calendar.WEEK OF_YEAR) == 1

assert c.get(Calendar.WEEK OF_MONTH) == 1

assert c.firstDayOfWeek == Calendar.SUNDAY &&
c.minimalDaysInFirstWeek == 1

c.firstDayOfWeek = Calendar.MONDAY
c.minimalDaysInFirstWeek = 4 //trigger different week numbering

assert c.get(Calendar.WEEK OF YEAR) == 53

assert c.get(Calendar.WEEK_OF MONTH) == 0

c.set (1956, Calendar.DECEMBER, 31); c.time

assert String.format ('$tF %$<ta', c¢) == '1956-12-31 Mon'
assert c.get(Calendar.WEEK OF_YEAR) == 1

//last week of year may be numbered as first of next

We can compare dates:

cl= new GregorianCalendar (2008, Calendar.AUGUST, 8)
c2= new GregorianCalendar (2009, Calendar.JULY, 22)
assert cl.before(c2) && c2.after(cl)
assert cl.compareTo(c2) < 0 &&

c2.compareTo(cl) > 0 &&

cl.compareTo(cl) == 0

As well as using set(), calendar fields can be changed using add() and roll(), both of which force all fields to update themselves:

Wi

[0)

def c= new GregorianCalendar (1999, Calendar.AUGUST, 31)

assert String.format ('$tF %$<ta', c¢) == '1999-08-31 Tue'
c.add (Calendar.MONTH, 13)
assert String.format('$tF %$<ta', c¢) == '2000-09-30 Sat'

//we DON'T roll to Oct-01

c= new GregorianCalendar (1999, Calendar.AUGUST, 31)
c.roll(Calendar.MONTH, 13) //rolls a field without changing larger fields

assert String.format ('$tF %$<ta', c¢) == '1999-09-30 Thu'
c.roll (Calendar .MONTH, true) //rolls +1

assert String.format ('$tF %$<ta', c¢) == '1999-10-30 Sat'
c.roll (Calendar .MONTH, false) //rolls -1

assert String.format('$tF %$<ta', c¢) == '1999-09-30 Thu'

can turn off the lenient mode for field updates to force us to give calendars precisely correct values:

System.setProperty ('user.timezone', 'GMT')

def c= new GregorianCalendar (2002, Calendar.JUNE, 30)
assert c.lenient

c.set (Calendar.DATE, 31); c.time

assert String.format('$tF %$<ta', c¢) == '2002-07-01 Mon'

c= new GregorianCalendar (2002, Calendar.JUNE, 30)

c.lenient= false

c.set (Calendar.DATE, 31)

try{ c.time; assert 0 }catch(e){ assert e in IllegalArgumentException }

Durations

We can use durations:

import groovy.time.*

class Extras({
static toString(BaseDuration it) {
def list= []

if (it.years != 0) list<< "$it.years yrs"

if (it.months != 0) list<< "$it.months mths"

if (it.days != 0) list<< "sit.days days"

if (it.hours != 0) list<< "$it.hours hrs"

if (it.minutes != 0) list<< "$it.minutes mins"

if (it.seconds != 0 || it.millis != 0) list<< "$it.seconds.$it.millis secs"
list.join(', ")

//enable utility methods for duration classes using 'category' syntax,
//introduced in a later tutorial...
use (Extras) {
[{new TimeDuration(12, 30, 0, 0)}: '12 hrs, 30 mins',
{new TimeDuration(4, 12, 30, 0, 0)}:'4 days, 12 hrs, 30 mins',
{new Duration(4, 12, 30, 0, 500)}: '4 days, 12 hrs, 30 mins, 0.500 secs',
{new DatumDependentDuration(7, 6, 0, 12, 30, 0, 0)}:
'7 yrs, 6 mths, 12 hrs, 30 mins',
] .each{
assert it.key().toString() == it.value
}
}

def convertToMilliseconds= { yr, mth, day, hr, min, sec, mil->
mil + 1000g*(sec + 60g*(min + 60g*(hr + 24g*(
day + 30g*(mth + 12g*yr)
))))

assert new TimeDuration(12, 30, 0, 0).toMilliseconds() ==
convertToMilliseconds(0, 0, 0, 12, 30, 0, 0)
//ignores 61l-second leap minutes

assert new Duration(114, 12, 30, 0, 0).toMilliseconds() ==
convertToMilliseconds(0, 0, 114, 12, 30, 0, 0)
//ignores 25-hour daylight-saving days

assert new DatumDependentDuration(5, 1, 14, 12, 30, 0, 0).toMilliseconds() !=
convertToMilliseconds(5, 1, 14, 12, 30, 0, 0)
//considers 31-day months and leap-years

These durations can be created more easily within the TimeCategory:

import groovy.time.*

//reuse Extras category from a previous example...
use([Extras, org.codehaus.groovy.runtime.TimeCategory]) {
assert 10.years.class == DatumDependentDuration

assert 10.years.toString() ==

new DatumDependentDuration(10, 0, 0, 0, 0, 0, 0).toString()
assert 4.months.toString() ==

new DatumDependentDuration(0, 4, 0, 0, 0, 0, 0).toString()

assert 7.weeks.toString() == new Duration(49, 0, 0, 0, 0).toString()
assert 5.days.toString() == new Duration(5, 0, 0, 0, 0).toString()
assert 12.hours.toString() == new TimeDuration(12, 0, 0, 0).toString()
assert 15.minutes.toString() == new TimeDuration(0, 15, 0, 0).toString()
assert 13.seconds.toString() == new TimeDuration(0, 0, 13, 0).toString()

assert 750.milliseconds.toString() ==
new TimeDuration(0, 0, 0, 750).toString()

assert 1l.day.toString() == new Duration(1, 0, 0, 0, 0).toString()
//we can use the singular name for any of these...
assert 25.minute.toString() == new TimeDuration(0, 25, 0, 0).toString()

//...even when not grammatical in English

We can add and subtract durations of different types together:

import groovy.time.*

//reuse Extras category from a previous example...
use([Extras, org.codehaus.groovy.runtime.TimeCategory]) {

assert (10.years + 4.months).class == DatumDependentDuration
assert (10.years + 4.months).toString() ==
new DatumDependentDuration(10, 4, 0, 0, 0, 0, 0).toString()

assert (10.years.plus(4.months)).toString() ==
(10.years + 4.months).toString() //alternative method name
assert (4.months + 10.years).toString() == (10.years + 4.months).toString()

//all duration operations are commutative

assert (10.years + 4.weeks) .class == DatumDependentDuration
assert (5.days + 7.weeks).class == Duration

assert (5.days + 17.hours).class == TimeDuration

assert (10.minutes + 5.seconds).class == TimeDuration

//adding a DatumDependentDuration and a TimeDuration gives a
//specially-defined TimeDatumDependentDuration. ..
assert (10.years + 12.hours).toString() ==
new TimeDatumDependentDuration(10, 0, 0, 12, 0, 0, 0).toString()
assert (10.years + 12.hours).class == TimeDatumDependentDuration

assert (10.years + new TimeDatumDependentDuration(0, 0, 0, 12, 0, 0, 0)

) .class == TimeDatumDependentDuration

assert (10.days + new TimeDatumDependentDuration(0, 0, 0, 12, 0, 0, 0)
) .class == TimeDatumDependentDuration

assert (10.minutes + new TimeDatumDependentDuration(O, 0, 0, 12, 0, 0, 0)
) .class == TimeDatumDependentDuration

assert (new TimeDatumDependentDuration(0, 0, 0, 12, 0, 0, O
new TimeDatumDependentDuration(0, 0, 0, 0, 10, 0, 0)
) .class == TimeDatumDependentDuration

//subtracting durations...
assert (10.years - 4.months).class == DatumDependentDuration
assert (10.years - 4.months).toString() ==
new DatumDependentDuration(10, -4, 0, O,
assert (10.years.minus (4.months)).toString() ==
(10.years - 4.months).toString() //alternative method name

0, 0).toString()

assert (10.years - 12.hours).class == DatumDependentDuration
assert (5.days - 7.weeks).class == Duration

assert (5.days - 17.hours).class == TimeDuration

assert (10.minutes - 5.seconds).class == TimeDuration

assert (10.years - 4.weeks) .class == DatumDependentDuration

We can add a Date to a duration to give another Date. A TimeDuration takes leap minutes into account, a Duration also takes daylight saving into
account, and a DatumDependentDuration considers 31-day months and leap-years:

import groovy.time.*

//reuse Extras category from a previous example...
use([Extras, org.codehaus.groovy.runtime.TimeCategory]) {

def today= new Date(),
tomorrow= today + 1,
dayAfter= today + 2,
nextWeek= today + 7 //days-only Date arithmetic

assert (today + 7.days).toString() == nextWeek.toString()
//use Date and duration together

assert (today.plus(7.days)).toString() == (today + 7.days) .toString()
//alternative method name

assert (7.days + today).toString() == nextWeek.toString()
//commutative

assert (nextWeek - 6.days).toString() == tomorrow.toString()

assert (nextWeek.minus(6.days)).toString() == tomorrow.toString()

//alternative method name

assert (nextWeek - dayAfter).toString() == 5.days.toString()

//subtract two dates to get a duration

//some handy operations...
[2.days.ago, 3.days.from.now, 3.days.from.today].each{
assert it.class == java.sql.Date
}
}

Time Zones

We can retrieve lists of all time zones on a system:

//we can get all available time zone ID's, and get the time zone for an ID...
TimeZone.availableIDs.toList () .groupBy{ TimeZone.getTimeZone (it).rawOffset }.
entrySet () .sort{it.key}.reverse() .each{
println String.format('$6.2f hrs: %2d',
it.key / (60%60%1000), it.value.size())
it.value.each{
def tz= TimeZone.getTimeZone (it)
println "${' '*8}Stz.displayName ($tz.ID): " +
"${tz.DSTSavings / (60%60%*1000)}, ${tz.useDaylightTime()}"

//we can get all the available time zone ID's for a specific offset...

TimeZone.getAvailableIDs(12 * (60%60*1000)).toList () .each{
def tz= TimeZone.getTimeZone (it)
println "Stz.displayName ($tz.ID): " +

"${tz.DSTSavings / (60%60*1000)}, ${tz.useDaylightTime()}"

We can access various time zones individually:

def tz= TimeZone.'default' //look at the default time zone
println "S$tz.displayName (Stz.ID): offset $tz.rawOffset, " +
"dstSaving $tz.DSTSavings, useDST ${tz.useDaylightTime() }"

TimeZone.'default'= TimeZone.getTimeZone ('GMT') //set the default time zone

//get a specific time zone from the system...
tz = TimeZone.getTimeZone ('America/Los_Angeles')

assert tz.displayName == 'Pacific Standard Time' &&
tz.rawOffset == -8 * (60*%60*1000) &&
tz.useDaylightTime() &&
tz.DSTSavings == 1 * (60*60*1000)

//we can fetch a custom time zone, without any daylight saving, by
//supplying a string...
['GMT-8': 'GMT-08:00"',
'GMT+11': 'GMT+11:00', //hours must be less than 24
'GMT+0300': 'GMT+03:00',
'GMT-3:15': 'GMT-03:15"',
'moo': 'GMT', //syntax errors give GMT
] .each{ assert TimeZone.getTimeZone(it.key).ID == it.value }

We can create a time zone with custom daylight-saving time rules:

//in the constructor, we can encode the rules for starting or ending
//Daylight Saving time...
def stz= new SimpleTimeZone (-8* (60*60%*1000), //base GMT offset: -8:00
"America/Death Valley",
Calendar.MARCH, 1, 0, //DST starts on 1 March exactly

2*(60*60*1000), SimpleTimeZone.STANDARD_ TIME,

//...at 2:00am in standard time (wall time)
Calendar.OCTOBER, 1, -Calendar.SUNDAY,

//ends first Sun on/after 1 Oct (first Sun in Oct)...
2*(60*60*1000), SimpleTimeZone.WALL TIME,

//...at 2:00am in daylight time (wall time)
1* (60*60*1000)) // save 1 hour

//leave out last parameter which defaults to 'save 1 hour', ie, 1*(60*60%*1000)
stz= new SimpleTimeZone (15* (60*60*1000), //base GMT offset: +15:00
"Pacific/Happy Isle"
Calendar.AUGUST, -21, -Calendar.FRIDAY,
//starts on last Friday on or before 21 August...

2% (60%*60*1000) , //...at 2:00am in standard time (wall time, the default)
Calendar .APRIL, 1, -Calendar.SUNDAY,

//ends first Sun on/after 1 Apr (first Sun in Apr)...
2% (60*%60*1000)) //...at 2:00am in daylight time (wall time, the default)

//two extra optional parameters (if present, both must be)...
stz= new SimpleTimeZone(1*(60*60*1000), //base GMT offset: +1:00
"Europe/Alps",
Calendar.JUNE, 8, -Calendar.MONDAY,
//starts first Mon on/after 8 Jun (second Mon in Jun)...
1* (60*60*1000), SimpleTimeZone.UTC_TIME, //...at 1:00am in UTC time
Calendar .OCTOBER, -1, Calendar.SUNDAY,
//ends on the last Sunday in October. ..
1* (60*60*1000), SimpleTimeZone.UTC_TIME, //...at 1:00am in UTC time
1* (60*60*1000)) // save 1 hour

//we can instead encode the rules in the same way using methods...
stz= new SimpleTimeZone (-8*(60*60*1000), //base GMT offset: -8:00
"America/Death Valley") //no daylight-saving schedule in constructor
stz.setStartRule (Calendar.APRIL, 1, -Calendar.SUNDAY, 2 * 60*60*1000)

//first Sun in Apr
stz.setEndRule (Calendar.OCTOBER, -1, Calendar.SUNDAY, 2 * 60*60*1000)

//last Sun in Oct

assert stz.dSTSavings == 60*60*1000 //the default
stz.dSTSavings= 2 * 60*60*1000
assert stz.dSTSavings == 2 * 60*60*1000
assert stz.getDSTSavings () == 2 * 60%60%*1000
//unusually-cased property name 'dSTSavings' has equivalent method names
//'getDSTSavings () ' and 'setDSTSavings()'

stz.setStartRule(Calendar.MAY, 1, 2 * 60*60%*1000)
//shortcut method for fixed date in month

stz.setStartRule (Calendar.MAY, 10, Calendar.SUNDAY, 2 * 60*60*1000, true)
//shortcut for first Sunday on or after 10 May; true means 'after'

stz.setEndRule (Calendar.OCTOBER, 20, Calendar.SATURDAY, 2 * 60*60*1000, false)
//shortcut for first Saturday on or before 20 October; false means 'before'

(Coordinated universal time, UTC, being based on an atomic clock, enables an extra second, a "leap second", to be added as the last second of
the day on December 31 or June 30.)

We can use time zones in many various ways:

System.setProperty ('user.timezone', 'GMT') //we can set the default time zone

def tz= new SimpleTimeZone (-8* (60*60*1000), 'Somewhere',
Calendar.MARCH, 1, 0, 2*(60*60%*1000),
Calendar.OCTOBER, 31, 0, 2*(60*60%*1000))

def cal= new GregorianCalendar(tz)

//create a calendar with today's date in a specified time zone
cal= Calendar.getInstance(tz) //another way

cal= new GregorianCalendar (2009, Calendar.JULY, 22)
//we can create a calendar with the default time zone...
cal.timeZone= tz //...then set the time zone

assert cal.timeZone == tz

assert cal.get (Calendar.ZONE_OFFSET) == -8%* (60*60%*1000)
assert cal.get (Calendar.DST_OFFSET) == (60*60*1000)
assert Calendar.FIELD_COUNT == 17

//the number of fields such as DAY OF_YEAR and ZONE OFFSET in Calendar

//we can test whether two time zones have the same rules...
assert tz.hasSameRules (
new SimpleTimeZone(-8%(60*60*1000), 'Somewhere Else',
Calendar .MARCH, 1, 0, 2*(60*60%*1000),
Calendar.OCTOBER, 31, 0, 2*(60*60%1000)
))
assert ! tz.hasSameRules (
new SimpleTimeZone(-8%(60*60*1000), 'Somewhere Else',
Calendar .APRIL, 1, 0, 2*(60*60*1000),
Calendar .OCTOBER, 31, 0, 2*(60*60%1000)

//some methods available within TimeCategory...
use (org.codehaus.groovy.runtime.TimeCategory) {

cal= new GregorianCalendar(tz)

def today= cal.time

println today.timeZone

println today.daylightSavingsOffset //returns a duration
def nextWeek= today + 7

println((nextWeek - today) .daylightSavingsOffset)

//a duration also has a daylight savings time offset

println(nextWeek.getRelativeDaylightSavingsOffset (today))

}

//we can test if a certain date is in daylight saving time for a time zone...
assert tz.inDaylightTime (new GregorianCalendar (1990, Calendar.MAY, 5).time)
assert ! tz.inDaylightTime (

new GregorianCalendar (1990, Calendar.NOVEMBER, 5).time)

//we can set the first year daylight savings time operates...
tz.startYear= 1973
assert ! tz.inDaylightTime(new GregorianCalendar (1971, Calendar.MAY, 5).time

//some extra format codes for dates...
println String.format ('$tz', cal)

//to see a string representing the time zone, eg, GMT-07:00
println String.format('$tz', cal) //numeric offset from GMT, eg, -0800
assert String.format('$tc', cal) ==

String.format ('$ta %$<tb %<td %<tT %<tZ %<tY', cal)

//we can view the Gregorian changeover date...

assert String.format('$ta %<td %$<tb %<tY', cal.gregorianChange)
'Fri 15 Oct 1582' //default for GMT time zone

cal= new GregorianCalendar ()

cal.set (1582, Calendar.OCTOBER, 15)

cal.time

assert String.format('$ta %<td %$<tb %<tY', cal.time - 1) ==
'Thu 04 Oct 1582' //the day before the big change

//check for leap years (this instance method acts like a static method) ...
[1999, 1998, 1997, 1900, 1800, 1700].each{ assert ! cal.isLeapYear(it) }

[2000, 1996, 1992, 1600, 1500, 1400].each{ assert cal.isLeapYear (it) }
//1500 and before use Julian calendar rules

JN1015-Collections

Lists

A list is an ordered collection of objects:

def list = [5, 6, 7, 8]

assert list.size == 4

assert list.size() == 4

assert list.class == ArrayList //the specific kind of list being used
assert list[2] == 7 //indexing starts at 0

assert list.getAt(2) == 7 //equivalent method to []

assert list.get(2) == 7 //alternative method

list[2] = 9
assert list == [5, 6, 9, 8,] //trailing comma OK

list.putAt(2, 10) //equivalent method to [] when value being changed

assert list == [5, 6, 10, 8]

assert list.set(2, 11) == 10 //alternative method that returns old value
assert list == [5, 6, 11, 8]

assert ['a', 1, 'a', 'a', 2.5, 2.5f, 2.5d, 'hello', 7g, null, 9 as byte]

//objects can be of different types; duplicates allowed

assert [1,2,3,4,5][-1] == 5 //use negative indices to count from the end
assert [1,2,3,4,5][-2] == 4

try{ [1,2,3,4,5].get(-2 assert 0 } //...but not get()
catch(e){ assert e instanceof ArrayIndexOutOfBoundsException }

assert [1,2,3,4,5].getAt(-2) == 4 //getAt() available with negative index...
)i

Lists can be evaluated as a boolean value:

assert ! [] //an empty list evaluates as false
assert [1] && ['a'l && [0] && [0.0] && [false] && [nulll
//all other lists, irrespective of contents, evaluate as true

We can use [] to assign a new empty list and << to append items to it:

def list = []; assert list.size() == 0

list << 5; assert list.size() ==

list << 7 << 'i' << 11; assert list == [5, 7, 'i', 11]

list << ['m', 'o']; assert list == [5, 7, 'i', 11, ['m', 'o']]

assert ([1,2] << 3 << [4,5] << 6) == [1,2,3, [4, 5], 6]
//first item in chain of << is target list

assert ([1,2,3] << 4) == ([1,2,3].leftShift (4)

//using this method is equivalent to using <<

We can add to a list in many ways:

assert [1,2] + 3 + [4,5] + 6 == [1, 2, 3, 4, 5, 6]

assert [1,2].plus(3).plus([4,5]).plus(6) == [1, 2, 3, 4, 5, 6]
//equivalent method for +
def a= [1,2,3]; a += 4; a += [5,6]; assert a == [1,2,3,4,5,6]
assert [1, *[222, 333], 456] == [1, 222, 333, 456]
assert [*[1,2,3] 1 == [1,2,3]
assert [1, [2,3,[4,5]1,61, 7, [8,9]]1.flatten() == [1, 2, 3, 4, 5, 6, 7, 8, 9]

def list= [1,2]
list.add(3) //alternative method name
list.addAall([5,4]) //alternative method name

assert list == [1,2,3,5,4]

list= [1,2]

list.add(1,3) //add 3 just before index 1

assert list == [1,3,2]

list.addAll(2, [5,4]) //add [5,4] just before index 2

assert list == [1,3,5,4,2]

list = ['a', 'b', 'z', 'e', 'u', 'v', 'g'l

list[8] = 'x'

assert list == ['a', 'b', 'z', 'e', 'u', 'v', 'g', null, 'x']

//nulls inserted if required

We can use the each and eachWithindex methods to execute code on each item in a list:

[1, 2, 3].each{ println "Item: $it" }
['a', 'b', 'c'].eachWithIndex{ it, i -> println "$i: $it" }

We can construct a list using another's elements as a template:

def listl= ['a','b','c']
def list2 = new ArrayList(listl)
//construct a new list, seeded with the same items as in listl

assert list2 == listl // == checks that each corresponding element is the same
def 1list3 = listl.clone()
assert list3 == listl

We can perform a closure on each item of a list and return the result:

assert [1, 2, 3].collect{ it * 2 } == [2, 4, 6]
//simple call gives single result
assert [1, 2, 3]*.multiply(2) == [1, 2, 3].collect{ it.multiply(2) }

//shortcut syntax instead of collect

def list= []

assert [1, 2, 3].collect(list){ it * 2 } == [2, 4, 6]
//this style of call gives two identical results
assert list == [2, 4, 6]

Other methods on a list return a value:

assert [1, 2, 3].find{ it > 1 } == 2
assert [1, 2, 3].findAll{ it > 1 } == [2, 3]
assert ['a','b','c','d','e'].findIndexOf{ it in ['c','e','g'] } == 2

//find first item that satisfies closure
assert [1, 2, 3].every{ it < 5 }

assert ! [1, 2, 3].every{ it < 3 }
assert [1, 2, 3].any{ it > 2 }
assert ! [1, 2, 3].any{ it > 3 }

// sum anything with a plus() method
assert [1,2,3,4,5,6].sum() == 21
assert ['a','b','c','d', 'e'].sum{
it=='a'?l: it=='"b'?2: it=='c'?3: it=='d'?4: it=='e'?5: 0

} == 15
assert ['a','b','c','d','e'].sum{ (char)it - (char)'a' } == 10
assert ['a','b','c','d','e'].sum() == 'abcde’
assert [['a','b'], ['c','d']].sum() == ['a','b','c','d"]
// an initial value can be provided
assert [].sum(1000) == 1000
assert [1, 2, 3].sum(1000) == 1006
assert [1, 2, 3].join('-') == '1-2-3!'
assert [1, 2, 3].inject('counting: '){ str, item -> str + item } ==
'counting: 123
assert [1, 2, 3].inject(0){ count, item -> count + item } == 6

We can find the maximum and minimum in a collection:

def list= [9, 4, 2, 10, 5]
assert list.max() == 10
assert list.min() ==

assert Collections.max(list) == 10
assert Collections.min(list) == 2
assert ['x', 'y', 'a', 'z']l.min() == 'a’'

//we can also compare single characters

def list2= ['abc', 'z', 'xyzuvw', 'Hello', '321']
assert list2.max{ it.size() } == 'xyzuvw'

//we can use a closure to spec the sorting behaviour
assert list2.min{ it.size() } == 'z’

We can use a "Comparator" to define the comparing behaviour:

def mc= [compare:{a,b-> a.equals(b)? 0: a<b? -1: 1}] as Comparator
//this syntax to be explained in a later tutorial
def list= [7,4,9,-6,-1,11,2,3,-9,5,-13]

assert list.max(mc) 11
assert list.min(mc) == -13
assert Collections.max(list, mc) == 11
assert Collections.min(list, mc) == -13

def mc2= [
compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
//we should always ensure a.equals(b) returns 0, whatever else we do,
//to avoid inconsistent behaviour in many contexts

assert list.max(mc2) == -13
assert list.min(mc2) == -1
assert list.max{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 } == -
assert list.min{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 } == -

We can remove elements from a list by referring to the element/s to be removed:

assert ['a','b','c','b','b'] - 'c' == ['a','b','b','b']
//remove 'c', and return resulting list
assert ['a','b','c','b','b'] - 'b' == ['a','c']
//remove all 'b', and return resulting list
assert ['a','b','c','b','b'] - ['b','c'] == ['a']
//remove all 'b' and 'c', and return resulting list
assert ['a','b','c','b','b'] .minus('b') == ['a','c']
//equivalent method name for -
assert ['a','b','c','b','b'] .minus(['b','c']) == ['a'l]
def list= [1,2,3,4,3,2,1]
list -= 3
assert list == [1,2,4,2,1] //use -= to remove 3, permanently
assert (list -= [2,4]) == [1,1] //remove 2's and 4's, permanently

We can remove an element by referring to its index:

def list= [1,2,3,4,5,6,2,2,1]
assert list.remove(2) == 3 //remove the third element, and return it
assert list == [1,2,4,5,6,2,2,1]

We can remove the first occurrence of an element from a list:

def list= ['a','b','c','b','b']

assert list.remove('c') //remove 'c', and return true because element removed
assert list.remove('b')

b', and return true because element removed

(
\

//remove first 'b',
'z') //return false because no elements removed
\

assert ! list.remove

assert list == ['a','b', 'b']
We can clear a list of all elements:

def list= ['a',2,'c',4]

list.clear()

assert list == []

We can pop the last item from a list, and use the list as a simple stack:

def stack= [1,2,4,6]
stack << 7

assert stack == [1,2,4,6,7]
assert stack.pop() ==
assert stack == [1,2,4,6]

Other useful operators and methods:

assert 'a' in ['a','b','c']
assert ['a','b','c'].contains('a')
assert [1,3,4].containsAll([1,4])

assert [].isEmpty ()
assert [1,2,3,3,3,3,4,5] .count(3) == 4

assert [1,2,4,6,8,10,12] .intersect([1,3,6,9,12]) == [1,6,12]
assert [1,2,3].disjoint([4,6,9])

assert ! [1,2,3].disjoint([2,4,6])
assert Collections.disjoint([1,2,3], [4,6,9]) //alternative method name

There's various ways of sorting:

assert [6,3,9,2,7,1,5].sort() == [1,2,3,5,6,7,9]
def list= ['abc', 'z', 'xyzuvw', 'Hello', '321']
assert list.sort{ it.size() } == ['z', 'abc', '321', 'Hello', 'xyzuvw']

def list2= [7,4,-6,-1,11,2,3,-9,5,-13]
assert list2.sort{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 } ==
[-1, 2, 3, 4, 5, -6, 7, -9, 11, -13]
def mc= [
compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
assert list2.sort(mc) == [-1, 2, 3, 4, 5, -6, 7, -9, 11, -13]

def list3= [6,-3,9,2,-7,1,5]
Collections.sort (list3)

assert list3 == [-7,-3,1,2,5,6,9]
Collections.sort (list3, mc)
assert list3 == [1,2,-3,5,6,-7,9]

We can repeat a list or element:

assert [1,2,3] * 3 == [1,2,3,1,2,3,1,2,3]
assert [1,2,3].multiply(2) == [1,2,3,1,2,3]
assert Collections.nCopies(3, 'b') == ['b', 'b', 'b']
//nCopies works differently
assert Collections.nCopies(2, [1,2]) == [[1,2], [1,2] 1 //not [1,2,1,2]

We can find the first or last index of items in a list:

assert ['a','b','c','d','c','d'].indexOf ('c') == 2 //index returned
assert ['a','b','c','d','c','d'].index0f ('z') == -1

//index -1 means value not in list
assert ['a','b','c','d','c','d'] .lastIndexOf('c') == 4

Some very common methods are:

def list= [], list2= []

[1,2,3,4,5] .each{ list << it*2 }

assert list == [2,4,6,8,10]

[1,2,3,4,5] .eachWithIndex{item, index-> list2 << item * index }
//closure supplied must have 2 params

assert list2 == [0,2,6,12,20]

A list may contain itself, but equals() may not always be consistent. Consider this:

def list, list2, list3
list= [1, 2, list, 4]
list2= [1, 2, list2, 4]
assert list.equals(list2)
list3= [1, 2, list, 4]
assert ! list.equals(list3)

Ranges and List-Slicing

Ranges are consecutive lists of sequential values like Integers, and can be used just like a List:

assert 5..8 == [5,6,7,8] //includes both values
assert 5..<8 == [5, 6, 7] //excludes specified top value

They can also be used with single-character strings:

assert ('a'..'d') == ['a','b','c','d"]

Ranges are handy with the each method:

def n=0
(1..10) .each{ n += it }
assert n == 55

We can define lists using a range or ranges within a list. This is called slicing:

assert [*3..

51 == [3,4,5]
assert [1, *3.

.5, 7, *9..<12] == [1,3,4,5,7,9,10,11]

Lists can be used as subscripts to other lists:

assert ('a'..'g')[3..5] == ['d','e','f']
assert ('a'..'g').getAt(3..5) == ['d','e','f'] //equivalent method name
assert ('a'..'g")[1, 3, 5, 6 1 == ['b','d",'"E£',"'g"']
assert ('a'..'g')[1, *3..5] == ['b','d','e','f']
assert ('a'..'g')[1, 3..5] == ['b','d','e',"£']
//range in subscript flattened automatically
assert ('a'..'g')[-5..-2] == ['c','d','e',"f']
assert ('a'..'g').getAt([1, *3..5]1) == ['b','d','e','f']
//equivalent method name
assert ('a'..'g').getAt([1, 3..5]1) == ['b','d','e',"f']

We can view a sublist of a list:

def list=[1,2,3,4,5], sl= list.subList(2,4)

sl[0]l= 9 //if we change the sublist...

assert list == [1,2,9,4,5] //...backing list changes...
list[3]= 11

assert sl == [9,11] //...and vice versa

We can perform the same methods on the subscripted lists as we can on the lists they're produced from:

assert ['a','b','c','d','e'][1..3].indexOf('c') == 1
//note: index of sublist, not of list

We can update items using subscripting too:

def list = ['a','b','c','d','e','f','g"]

list[2..3] = 'z’

assert list == ['a', 'b', 'z', 'e', 'f', 'g'l //swap two entries for one
list([4..4]= ['u','v']

assert list == ['a', 'b', 'z', 'e', 'u', 'v', 'g']l //swap one entry for two
def list= ['a', 'b', 'z', 'e', 'u', 'v', 'g'l]

list[0..1]= []

assert list == ['z', 'e', 'u', 'v', 'g'l //remove entries from index range
list([1l..1]= []

assert list == ['z', 'u', 'v', 'g'l //remove entry at index

We can also use a method instead of [] with ranges:

def list = ['a','b','c','d','e','f','g"]
list.putAt(2..3, 'z')

assert list == ['a', 'b', 'z', 'e', 'f', 'g']
list.putAt(4..4, ['u','v'])

assert list == ['a', 'b', 'z', 'e', 'u', 'v', 'g'l]
list.putAt(1l..<3, [])

assert list == ['a', 'e',6 'u', 'v', 'g'l
list.putAt(0..<0, 'm') //

assert list == ['m', 'a', 'e', 'u', 'v', 'g'l]
list.removeRange (1,3) //another method to do similar, means: list[1l..<3]1= []
list[1..2].clear()

assert list == ['m', 'g']

More List Utilities

To reverse a list:

assert [1,2,3].reverse() == [3,2,1]

def list= ['a','b','c','d','e']
Collections.reverse(list)
assert list == ['e','d','c','b','a']
use (Collections){ list.reverse() }
//alternative syntax for null-returning Collections.reverse (List)
assert list == ['a',6'b','c','d','e']

def list2= []
[1,2,3,4,5] .reverseEach{ list2 << it*2 }

//same as, but more efficient than: [...].reverse().each{...}
assert list2 == [10,8,6,4,2]
assert [1,2,3,4,5,6]1[3..1] == [4,3,2]

//use backwards range to reverse returned sublist

def 1list3 = [1, 2, -3, 5, 6, -7, 9]
def rmc= Collections.reverseOrder ()
Collections.sort (list3, rmc)

assert list3 == [9, 6, 5, 2, 1, -3, -7]
def list4 = [1, 2, -3, 5, 6, -7, 9]
def mc= [

compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1}
] as Comparator
def rmc2= Collections.reverseOrder (mc)
Collections.sort (list4, rmc2)
assert list4 == [9, -7, 6, 5, -3, 2, 1]

We can perform a binary search on a sorted list:

assert Collections.binarySearch(I[2,5,6,7,9,11,13,26,31,33], 26) == 7
//1list must already be sorted
assert Collections.binarySearch(I[2,5,6,7,9,11,13,31,33], 26) == -8

//if key not there, give negative of one plus the index before which key
//would be if it was there

def mc= [
compare: {a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
assert Collections.binarySearch([2,-5,-6,7,9,-11,13,26,31,-33], 26, mc) == 7
//give comparator list sorted by

We can remove or retain elements in bulk. retainAll() gives the intersection of two lists; removeAll() gives the assymmetric difference.

def list= ['a','b','c','b','b', 'e','e']

assert list.removeAll(['b','z'])

//remove 'b' and 'z', return true because list changed
assert list == ['a','c', 'e',K 'e']
assert ! list.removeAll(['b','z'])

//return false because list didn't change
assert list == ['a','c', 'e',K 'e']
assert list.retainAll(['a','e'])

//retain only 'a' and 'e', return true because list changed
assert list == ['a','e', 'e']
assert ! list.retainAll(['a','e']l)

//retain only 'a' and 'e', return true because list didn't change
assert list == ['a','e', 'e']

Some miscellaneous methods:

def list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]
Collections.replaceAll(list, 7, 55)

assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]
list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]
use(Collections){ list.replaceAll(7, 55) } //alternative syntax
assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]
list= ['a',2,null,4,'zyx',2.5]
use (Collections){ list.fill('g') } //or: Collections.fill(list, 'g')
assert list == ['g', 'g', 'g', 'g', 'g', 'g'l]
list= ['a', 'e', 'i', 'o', 'u', 'z']
use(Collections){ list.swap(2, 4) } //or: Collections.swap(list, 2, 4)
assert list == ['a', 'e', 'u', 'o', 'i', 'z']
assert Collections.frequency(['a',6 'b','a','c','a','a','d','e']l, 'a') == 4
use (Collections) {
assert ['a','b','a','c','a','a','d",'e'] .frequency('a') == 4
}
list= ['a','b','c','d','e"]
Collections.rotate (list, 3)
assert list == ['c','d','e','a','b"']
use (Collections){ list.rotate(-2) }
assert list == ['e','a','b','c','d"]

list= [1,2,3,4,5]
Collections.shuffle(list, new Random())

//we can supply our own random number generator...
assert list != [1,2,3,4,5]

list= [1,2,3,4,5]
Collections.shuffle(list) //...or use the default one

assert list != [1,2,3,4,5]
assert [3,5,5,5,2] .unique() == [3,5,2]
def mc= [compare:
{a,b-> a.equals(b) || a.equals(-b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }

] as Comparator

assert [3,5,5,-5,2,-7].unique(mc) == [3,5,2,-7]
//remove subsequent items comparator considers equal
assert [3,5,5,-5,2,-7].unique{a, b->
a ==Db || a == -b? 0: Math.abs(a)<Math.abs(b)? -1: 1
} == 1[3,5,2,-7]

list= [1,2,3]

Collections.copy(list, [9,8,7])

assert list == [9,8,7] //overwrites original data

Collections.copy(list, [11,12]) //source list shorter...

assert list == [11,12,7] //...which leaves remaining entries unchanged

try{ Collections.copy(list, [21,22,23,24]); assert 0 } //source list too long
catch(e){ assert e instanceof IndexOutOfBoundsException }

list= [1,8,8,2,3,7,6,4,6,6,2,3,7,5]

assert Collections.indexOfSubList(list, [2,3,7])

assert Collections.lastIndexOfSubList(list, [2,3,7

assert Collections.indexOfSubList(list, [9,9,13]) == -1
//if sublist doesn't exist

=l
1]
]

[

o

Sets

A set is an unordered collection of objects, with no duplicates. It can be considered as a list with restrictions, and is often constructed from a list:

def s1= [1,2,3,3,3,4] as Set,
s2= [4,3,2,1] as Set,
s3= new HashSet([1,4,2,4,3,4])

assert sl.class == HashSet && s2.class == HashSet
//the specific kind of set being used

assert sl == s2

assert sl == s3

assert s2 == s3

assert sl.asList() && sl.toList()
//a choice of two methods to convert a set to a list
assert (([] as Set) << null << null << null) == [null] as Set

A set should not contain itself as an element.

Most methods available to lists, besides those that don't make sense for unordered items, are available to sets.

[{ itl1] }, { it.getAt(1) }, { it.putAt(1,4) }, { it.reverse() }].each{
try{ it([1,2,3] as Set); assert 0 }
catch(e){ assert e instanceof MissingMethodException }

}

The add() and addAll() methods return false if the set wasn't changed as a result of the operation:

def s= [1,2] as Set

assert s.add(3)

assert ! s.add(2)

assert s.addAll([5,4])
assert s.addAll([5,4])
assert s == [1,2,3,5,4] as Set

Examples with Lists and Sets

For small numbers of items, it's common in Groovy to use a list for set processing, and only convert it to a set when necessary, eg, for output.

Though the uniqueness of set items is useful for some processing, for example, if we want to separate the unique and duplicating items in a list:

list=1[1,2,7,2,2,4,7,11,5,2,5]
def uniques= [] as Set, dups= [] as Set

list.each{ uniques.add(it) || dups.add(it) }
uniques.removeAll (dups)
assert uniques == [1,4,11] as Set && dups == [2,5,7] as Set

To calculate the symmetric set difference of two sets non-destructively:

def s1=[1,2,3,4,5,6], s2=[4,5,6,7,8,9]
def diff = (sl as Set) + s2

tmp = sl as Set

tmp.retainAll (s2)

diff.removeAll (tmp)

assert diff == [1,2,3,7,8,9]

Sorted Sets

A sorted set is one with extra methods that utilize the sorting of the elements. It's often more efficient than doing the same with lists.

def list= [3,2,3,3,1,7,5]

assert new TreeSet (list) == new TreeSet([1,1,1,2,5,7,3,1])
assert new TreeSet (list) .toList() == list.unique() .sort()
assert new TreeSet (list) .first() == list.unique().min()
assert new TreeSet (list) .last() == list.unique() .max()

We can construct a TreeSet by giving a comparator to order the elements in the set:

def c= [compare:
{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator
def ts= new TreeSet(c)
ts<< 3 << -7 << 9 << -2 << -4
assert ts == new TreeSet([-2, 3, -4, -7, 9])
assert ts.comparator() == ¢ //retrieve the comparator

The range-views, headSet() tailSet() and subSet(), are useful views of the items in a sorted set. These range-views remain valid even if the
backing sorted set is modified directly. The sorted set returned by these methods will throw an lllegalArgumentException if the user attempts to
insert an element out of the range.

def ss= new TreeSet(['a','b',6'c','d', 'e'])

def hs= ss.headSet('c')
assert hs == new TreeSet(['a','b'])
//return all elements < specified element
hs.remove('a')
assert ss == new TreeSet(['b','c','d','e'])
//headset is simply a view of the data in ss

def ts= ss.tailSet('c')

assert ts == new TreeSet(['c','d','e'])
//return all elements >= specified element

ts.remove ('d")

assert ss == new TreeSet(['b','c','e'])
//tailset is also a view of data in ss

def bs= ss.subSet('b','e')
assert bs == new TreeSet (['b','c'])
//return all elements >= but < specified element
bs.remove ('c')
assert ss == new TreeSet (['b','e'])
//subset is simply a view of the data in ss

ss << 'a' << 'd!'

assert hs == new TreeSet(['a','b'])

//if backing sorted set changes, so do range-views
assert ts == new TreeSet (['d','e'])
assert bs == new TreeSet (['b','d'])

For a SortedSet of strings, we can append "\0' to a string to calculate the next possible string:

def dic= new TreeSet (

['aardvark', 'banana', 'egghead',6 'encephalograph', 'flotsam',6 'jamboree']
)
assert dic.subSet ('banana', 'flotsam').size() == 3

//incl 'banana' but excl 'flotsam'

assert dic.subSet ('banana', 'flotsam\0').size() == 4 //incl both
assert dic.subSet ('banana\0', 'flotsam').size() == 2 //excl both
dic.subSet('e', 'f').clear()
assert dic == new TreeSet (

[taardvark', 'banana', 'flotsam', 'jamboree']
)//clear all words beginning with 'e'

To go one element backwards from an element elt in a SortedSet:

Object predecessor = ss.headSet(elt).last()

Immutable Collections

We can convert a list or set into one that can't be modified:

def imList= ['a', 'b', 'c'].asImmutable()
try{ imList<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

imList= Collections.unmodifiableList(['a', 'b', 'c']l) //alternative way
try{ imList<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

def imSet= (['a', 'b', 'c']l as Set).asImmutable ()
try{ imSet<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

imSet= Collections.unmodifiableSet(['a', 'b', 'c'] as Set) //alternative way
try{ imSet<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

def imSortedSet= (new TreeSet(['a', 'b', 'c'])).asImmutable()
try{ imSortedSet<< 'd'; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

imSortedSet= Collections.unmodifiableSortedSet(new TreeSet(['a', 'b', 'c'l))
//alternative way

try{ imSortedSet<< 'd'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

We can create an empty list or set that can't be modified:

def list= Collections.emptyList ()

assert list == []

try{ list<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }
list= Collections.EMPTY_ LIST

assert list == []

try{ list<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

def set= Collections.emptySet ()

assert set == [] as Set

try{ set<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }
set= Collections.EMPTY_SET

assert set == [] as Set

try{ set<< 'a'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

We can create a single-element list that can't be modified:

def singList= Collections.singletonList('a')

assert singList == ['a']

try{ singList<< 'b'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

def singSet = Collections.singleton('a')

assert singSet == ['a'] as Set

try{ singSet<< 'b'; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

JN1025-Arrays

An object array is a fixed-size sequence of objects:

def a= new Object[4] //we must specify the size of the fixed-size array
assert a.size() == 4

assert a.length == 4 //field alternative to size()

a.each{ assert it == null } //default value is null

assert a instanceof Object[]

assert a.class == Object[]

alol= 'a’

alll= 2 //elements can be any value

a.putAt (2, 'c') //alternative method name syntax
a[3]= false

assert a[0] == 'a' && al[l] == 2 && a.getAt(2) == 'c' && a.getAt(3) == false
//either subscript or method name
assert al[-4] == 'a' && al[-3] == 2 && al[-2] == 'c' && al[-1] == false

//subscripts can be negative

try{ al4]; assert 0 }
catch(e){ assert e instanceof ArrayIndexOutOfBoundsException }
try{ al-5]; assert 0 }
catch(e){ assert e instanceof ArrayIndexOutOfBoundsException }

assert a[l..2] == [2, 'c'] //we can use the same subscripting as for lists
assert a[2..2] == ['c']
assert a0, 2..3] == ['a', 'c', false]

assert a.toList() [ta', 2, 'c', falsel
assert a as List == ['a', 2, 'c', false]

assert a.toArrayString() == '{"a", 2, "c", false}

The subscript used in constructing object arrays is evaluated as an integer:

assert new Object[0x100000003].size() == 3
//index coerced to integer, positive or negative
try{ new Object[0x80000000]; assert 0 }
catch(e){ assert e instanceof NegativeArraySizeException }

We can specify the initial collection of contained objects when we construct the array. Those objects can be any other entity in Groovy, eg,
numbers, boolean values, characters, strings, regexes, lists, maps, closures, expandos, classes, class instances, or even other object arrays:

assert [
14.25,
17g,
[1,2,3],
'Hello, world',
[ta', false, null, 5] as Object|[],
new Object [200],
{ it*it },
ArrayList,
1 as Object[]

We can make a shallow copy using clone():

def ag= [1,2]
assert ([ag, 3] as Objectl[]).clone() [0].is(ag)
//clone() makes a shallow copy only

We have a special syntax for constructing multi-dimensional object arrays with null initial values:

assert [new Object[3], new Object[2], new Object[1l]] as Object|[]
//usual syntax

assert [new Object[3], new Object[3], new Object[3]] as Object|[]
//usual syntax when each constituent array of equal size

def m= new Object[3] [3]
//special syntax when each constituent array of equal size

(0..<m.size()).each{i->
(0..<m[i].size()).each{j->
assert m[i] [j] == null
//we can also subscript with special syntax using consecutive indexes
}
}

We must specify the size of at least the first, outermost, dimension of an object array when we first create it:

//ar= new Object[] //compile error when uncommented
ar= new Object [10] []

ar= new Object [10] [][]

ar= new Object[10] [10] []

A multidimensional array need not have arrays of the same length at each level. Thus, a triangular matrix may be created by:

def triangle= new Object[100] []
(0..<triangle.length) .each{
triangle[it] = new Object [it+1]

}

There are strict rules concerning evaluation when subscripting object arrays:

class MyException extends Exception{}
def exception(){ throw new MyException() }

def i, a, b

i= 4

a= new Object[i] [1=3] //first subscript evaluated before next one
assert a.size() == 4 && al0].size() == 3

a= [11, 12, 13, 14] as Object[]

b= [3, 2, 1, 0] as Object[]

assert al(a=b) [2]] == 12

//outside of subscript evaluated before inside, ie, al[b[2]] or all] or 12

i= 1 //if what's outside subscript throws exception, subscript isn't evaluated
try{ exception() [i=2] }catch(e){ assert i == 1 }
i= 1
a= new Object [2] [2]

//if subscript evaluation throws exception, subscripts to right not evaluated
try{ al exception()][i=2] }catch(e){ assert i == }

//index evaluated before indexing occurs (including checking whether

//what's outside subscript is null)...

a= null

try{ alexception()]; assert 0 }catch(e){ assert e instanceof MyException }
//NullPointerException never occurs here

i= 1

try{ ali=2]; assert 0 }

catch(e){ assert i == 2 && e instanceof NullPointerException }

Implementing an ArrayList with an Object Array

ArrayLists are implemented with object arrays internally. Each ArrayList instance has a capacity, the size of a fixed-size array used to store the
elements. This array is always at least as large as the list size, and its capacity grows automatically as elements are added to the list. To see the
internal capacity of lists constructed with various values:

class Extras({
static eng(List 1){ l.elementData.size() }
}
def measure= { list, times->
def sizes= []
times.times{
def size
use (Extras) { size= list.enqg() }
(size - list.size() + 1).times{ list << 'a' }
sizes << size

}

sizes

def listl= new ArrayList()
def measurel= measure (listl, 10)
assert measurel == [10, 16, 25, 38, 58, 88, 133, 200, 301, 452]

def list2= new ArrayList(10)
def measure2= measure (list2, 10)
assert measure2 == measurel

def list3= new ArrayList(5)
def measure3= measure (list3, 10)
assert measure3 == [5, 8, 13, 20, 31, 47, 71, 107, 161, 242]

def list4= []
def measure4= measure (list4, 10)
assert measure4 == [0, 1, 2, 4, 7, 11, 17, 26, 40, 61]

def list5= new ArrayList (0)
def measure5= measure (list5, 10)
assert measure5 == measure4

For efficiency, we can increase the capacity of a list before adding a large number of elements:

class Extras{ static eng(List 1) {l.elementData.size()} }
use (Extras) {

list= []
list.ensureCapacity (200)
assert list.eng() == 200
list<< 'a'<< 'b'<< 'c'
assert list.eng() == 200

list.trimToSize ()
//we can also trim the internal fixed-size array to the list size
assert list.eng() == 3

}

We can see how many times a list has been modified:

list= [l<< 'a' << 'b'; assert list.modCount == 2
list.remove('a'); assert list.modCount == 3

JN1035-Maps

A map is a mapping from unique unordered keys to values:

def map= ['id':'FX-11', 'name':'Radish', 'no':1234, 99:'Y']
//keys can be of any type, and mixed together; so can values
assert map == ['name':'Radish', 'id':'FX-11', 99:'Y', 'no':1234]
//order of keys irrelevant
assert map.size() == 4
assert [1l:'a', 2:'b', 1:'c'] == [1l:'c', 2:'b'] //keys unique
def map2= [
vid': 'FX-17',

name: 'Turnip', //string-keys that are valid identifiers need not be quoted
99: 123, //any data can be a key
(-97): 987, //keys with complex syntax must be parenthesized
"tail's": true, //trailing comma OK

1

assert map2.id == 'FX-17'

//we can use field syntax for keys that are valid identifiers
assert map2['id'] == 'FX-17' //we can always use subscript syntax
assert map2.getAt('id') == 'FX-17' //some alternative method names
assert map2.get('id') == 'FX-17'
assert map2['address'] == null //if key doesn't exist in map
assert map2.get('address', 'No fixed abode') == 'No fixed abode'

//default value for non-existent keys

assert map2.class == null

//field syntax always refers to value of key, even if it doesn't exist
//use getClass() instead of class for maps...
assert map2.getClass() == LinkedHashMap //the kind of Map being used

assert map2."tail's" == true
//string-keys that aren't valid identifiers used as field by quoting them
assert ! map2.'99' && ! map2.'-97' //doesn't work for numbers, though

map2.name = 'Potato'
map2[-107] = 'washed, but not peeled'
map2.putAt ('alias', 'Spud')
//different alternative method names when assigning value
map2.put ('address', 'underground')
assert map2.name == 'Potato' && map2[-107] == 'washed, but not peeled' &&
map2.alias == 'Spud' && map2.address == 'underground'
assert map2 == [id: 'FX-17', name: 'Potato', alias: 'Spud',
address: 'underground', 99: 123, (-97): 987,
(-107) : 'washed, but not peeled', "tail's": true]

def id= 'address'
def map3= [id: 11, (id): 22]

//if we want a variable's value to become the key, we parenthesize it
assert map3 == [id: 11, address: 22]

It's a common idiom to construct an empty map and assign values:

def map4= [:]
map4[1]= 'a!'
map4[2 1= 'b!'

map4 [true 1= 'p' //we can use boolean values as a key

map4 [false 1= 'q!'

map4 [null 1= 'x' //we can also use null as a key

map4 ['null']= 'z'

assert map4 == [l:'a', 2:'b', (true):'p', (false):'q', (null):'x', 'null':'z'

To use the value of a String as the key value of a map, simply surround the variable with parenthesis.

def foo = "test"
def map = [(foo):"bar"]

println map // will output ["test":"bar"]
map = [foo:"bar"]
println map // will output ["foo":"bar"]

We can use each() and eachWithIndex() to access keys and values:

def p= new StringBuffer ()

[1:'a', 2:'b', 3:'c'].each{ p << it.key +': '+ it.value +'; ' }
//we supply a closure with either 1 param...
assert p.toString() == 'l: a; 2: b; 3: ¢; '

def g= new StringBuffer ()
[1:'a', 2:'b', 3:'c']l.each{ k, v-> g << k +': '+ v +'; ' } //...or 2 params
assert g.toString() == 'l: a; 2: b; 3: ¢; '

def r= new StringBuffer ()
[1:'a', 2:'b', 3:'c'] .eachWithIndex{ it, i-> //eachIndex() always takes 2 params

r << it.key +'('+ i +'): '+ it.value +'; '
}
assert r.toString() == '1(0): a; 2(1): b; 3(2): c; '

We can check the contents of a map with various methods:

assert [:].isEmpty ()

assert ! [1:'a', 2:'b'].isEmpty()

assert [l:'a', 2:'b'] .containsKey (2)
assert ! [1l:'a', 2:'b'].containsKey (4)
assert [l:'a', 2:'b'].containsValue('b")
assert ! [1l:'a', 2:'b'].containsValue('z")

We can clear a map:

def m= [1l:'a', 2:'b']
m.clear ()
assert m == [:]

Further map methods:

def defaults= [1:'a', 2:'b', 3:'c', 4:'d'], overrides= [2:'z', 5:'x', 13:'x']
def result= new HashMap (defaults)

result.putAll (overrides)

assert result == [1:'a', 2:'z', 3:'c', 4:'d', 5:'x', 13:'x"']
result.remove (2)

assert result ==
result.remove (2)
assert result == [1l:'a', 3:'c', 4:'d', 5:'x', 13:'x']

[1:'a', 3:'c', 4:'d'", 5:'x', 13:'x"']

Great care must be exercised if mutable objects are used as map keys. The behavior of a map is not specified if the value of an object is changed
in a manner that affects equals comparisons while the object is a key in the map. A special case of this prohibition is that a map should not
contain itself as a key.

Collection views of a map

We can inspect the keys, values, and entries in a view:

def m2= [1:'a', 2:'b', 3:'c']

def es=m2.entrySet ()
es.each{
assert it.key in [1,2,3]
assert it.value in ['a', 'b','c']
it.value *= 3 //change value in entry set...

}

assert m2 == [1l:'aaa', 2:'bbb', 3:'ccc'] //...and backing map IS updated

def ks= m2.keySet ()

assert ks == [1,2,3] as Set

ks.each{ it *= 2 } //change key...

assert m2 == [1l:'aaa', 2:'bbb', 3:'ccc'] //...but backing map NOT updated
ks.remove(2) //remove key...

assert m2 == [l:'aaa', 3:'ccc'] //...and backing map IS updated

def vals= m2.values|()

assert vals.toList() == ['aaa', 'ccc'l]

vals.each{ it = it+'z' } //change value...

assert m2 == [l:'aaa', 3:'ccc'] //...but backing map NOT updated
vals.remove('aaa') //remove value...

assert m2 == [3:'ccc'] //...and backing map IS updated

vals.clear() //clear values...
assert m2 == [:] //...and backing map IS updated

assert es.is(m2.entrySet()) //same instance always returned
assert ks.is(m2.keySet())
assert vals.is(m2.values())

We can use these views for various checks:

def ml= [1l:'a', 3:'c', 5:'e']l, m2= [l:'a',6 5:'e']
assert ml.entrySet () .containsAll (m2.entrySet())
//true if ml contains all of m2's mappings
def m3= [1l:'g', 5:'z', 3:'x"']
ml.keySet () .equals (m3.keySet()) //true if maps contain mappings for same keys

These views also support the removeAll() and retainAll() operations:

def m= [1:'a', 2:'b', 3:'c', 4:'d', 5:'e']
m.keySet () .retainAll([2,3,4] as Set)

assert m == [2:'b', 3:'c', 4:'d']
m.values () .removeAll(['c','d','e'] as Set)
assert m == [2:'b']

Some more map operations:

def m= [1:'a', 2:'b', 3:'c', 4:'d', 5:'e']
assert [86: m, 99: 'end'].clone() [86].is(m) //clone() makes a shallow copy
def c= []
def d= ['a', 'bb', 'ccc', 'dddd', ‘'eeeee']
assert m.collect{ it.value * it.key } == d
assert m.collect(c){ it.value * it.key } == d
assert ¢ == d
assert m.findAll{ it.key == 2 || it.value == 'e' } == [2:'b', 5:'e']
def me= m.find{ it.key % 2 == 0 }
assert [me.key, me.value] in [[2,'b'], [4,'d']]
assert m.toMapString() == '[1l:"a", 2:"b", 3:"c", 4:"d", 5:"e"]"'
def sm= m.subMap([2,3,4])
sm[3]= 'z’
assert sm == [2:'b', 3:'z', 4:'d']
assert m == [1:'a', 2:'b', 3:'c', 4:'d', 5:'e'] //backing map is not modified
assert m.every{ it.value.size() == 1 }
assert m.any{ it.key % 4 == 0 }
Getting Map key(s) from a value.
def family = [dad:"John" , mom:"Jane", son:"John"]
def val = "John"
The simplest way to achieve this with the previous map:
assert family.find{it.value == "John"}?.key == "dad"
//or
assert family.find{it.value == val}?.key == "dad"

Note that the return is only the key dad. As you can see from the family Map both dad and son are keys for the same values.

So, let's get all of the keys with the value "John"
Basically, findAll returns a collection of Mappings with the value "John" that we then iterate through and print the key if the key is groovy true.

This will place your results for the keys into a List of keys

def retval [l
family.findAll{it.value == val}.each{retval << it?.key}

assert retVal ["son", "dad"]

If you just wanted the collection of Mappings:

assert family.findAll{it.value == val} == ["son":"John", "dad":"John"]

//or
def returnvalue
assert returnvValue

family.findAll{it.value == val}
["son":"John", "dad":"John"]

Special Notations

We can use special notations to access all of a certain key in a list of similarly-keyed maps:

def x = [['a':11, 'b':12], ['a':21, 'b':22]]

assert x.a == [11, 21] //GPath notation

assert x*.a == [11, 21] //spread dot notation

x = [['a':11, 'b':12], ['a':21, 'b':22], null]

assert x*.a == [11, 21, null] //caters for null values
assert x*.a == x.collect{ it?.a } //equivalent notation

try{ x.a; assert 0 }catch(e){ assert e instanceof NullPointerException }
//GPath doesn't cater for null values

class MyClass{ def getA(){ 'abc' } }

x = [['a':21, 'b':22], null, new MyClass()]

assert x*.a == [21, null, 'abc']l //properties treated like map subscripting

def cl= new MyClass(), c2= new MyClass ()

assert [cl, c2]*.getA() == [cl.getA(), c2.getA()]
//spread dot also works for method calls

assert [cl, c2]*.getA() == ['abc', 'abc'l]

assert ['z':900, *:['a':100, 'b':200], 'a':300] == ['a':300, 'b':200, 'z':900]
//spread map notation in map definition

assert [*:([3:3, *:[5:5]], 7:7] == [3:3, 5:5, 7:7]

def £O0{ [1:'u', 2:'v', 3:'w' 1 }

assert [*:f(), 10:'zz'] == [l:'u', 10:'zz', 2:'v', 3:'w']
//spread map notation in function arguments

def f£f(m){ m.c }

assert f£(*:['a':10, 'b':20, 'c':30], 'e':50) == 30

def £(m, i, 3, kK { [m, i, 3, k1 }

//using spread map notation with mixed unnamed and named arguments
assert f('e':100, *[4, 5], *:['a':10, 'b':20, 'c':30], 6) ==

[["e":100, "b":20, "c":30, "a":10], 4, 5, 6]

Grouping

We can group a list into a map using some criteria:

assert ['a', 7, 'b', [2,3]].groupBy{ it.class } == [
(String.class): ['a', 'b'],
(Integer.class): [7 1,
(ArrayList.class): [[2,3]]

]

assert [
[name: 'Clark', city:'London'], [name:'Sharma', city:'London'],
[name: 'Maradona', city:'LA'], [name:'Zhang', city:'HK'],

[name: 'Ali', city: 'HK'], [name:'Liu', city:'HK'],
].groupBy{ it.city } == [

London: [[name:'Clark', city:'London'l],
[name: 'Sharma', city:'London'] 1,

LA: [[name:'Maradona', city:'LA'] 1,

HK: [[name:'Zhang', city:'HK'],

[name:'Ali', city: 'HK'],
[name:'Liu', city:'HK'] 1],

By using groupBY() and findAll() on a list of similarly-keyed maps, we can emulate SQL:

assert ('The quick brown fox jumps over the lazy dog'.toList()*.
toLowerCase() - ' ').
findAll{ it in 'aeiou'.toList() }.
//emulate SQL's WHERE clause with f£indAll() method
groupBy{ it }.
//emulate GROUP BY clause with groupBy() method
findAll{ it.value.size() > 1 }.
//emulate HAVING clause with findAll() method after the groupBy() one
entrySet () .sort{ it.key }.reverse().
//emulate ORDER BY clause with sort() and reverse() methods
collect{ "sit.key:${it.value.size()}" }.join(', ') == 'u:2, o0:4, e:3"'

An example with more than one "table" of data:

//find all letters in the "lazy dog" sentence appearing more often than those
//in the "liquor jugs" one...

def dogLetters= ('The quick brown fox jumps over the lazy dog'.toList()*.
toLowerCase() - ' '),
jugLetters= ('Pack my box with five dozen liquor jugs'.toList()*.
toLowerCase() - ' ')

assert doglLetters.groupBy{ it }.
findall{ it.value.size() > jugletters.groupBy{ it }[it.key].size(
entrySet () .sort{it.key}.collect{ "$it.key:${it.value.size()}" }.join(', ') ==
'e:3, h:2, 0:4, r:2, t:2"'

—

HashMap Internals

A HashMap is constructed in various ways:

def mapl= new HashMap () //uses initial capacity of 16 and load factor of 0.75
def map2= new HashMap (25) //uses load factor of 0.75

def map3= new HashMap (25, 0.8f

def map4= [:] //the shortcut syntax

The capacity is the number of buckets in the HashMap, and the initial capacity is the capacity when it's created. The load factor measures how full
the HashMap will get before its capacity is automatically increased. When the number of entries exceeds the product of the load factor and the
current capacity, the HashMap is rehashed so it has about twice the number of buckets. A HashMap gives constant-time performance for lookup
(getting and putting). Iterating over collection views gives time performance proportional to the capacity of the HashMap instance plus its the
number of keys. So don't set the initial capacity too high or the load factor too low. As a general rule, the default load factor (0.75) offers a good
tradeoff between time and space costs. Higher values decrease the space overhead but increase the lookup cost. Creating a HashMap with a
sufficiently large capacity will allow mappings to be stored more efficiently than letting it perform automatic rehashing as needed to grow the table.

A HashSet is implemented with a HashMap, and is constructed with the same choices of parameters:

def setl= new HashSet () //uses initial capacity of 16 and load factor of 0.75
def set2= new HashSet (25) //uses load factor of 0.75
def set3= new HashSet (25, 0.8f)
def set4= Collections.newSetFromMap([:])
//we can supply our own empty map for the implementation

Sorted Maps

A sorted map is one with extra methods that utilize the sorting of the keys. Some constructors and methods:

def map= [3:'c', 2:'d' ,1:'e', 5:'a', 4:'b'], tm= new TreeMap (map)

assert tm.firstKey () == map.keySet().min() && tm.firstKey() == 1
assert tm.lastKey() == map.keySet () .max() && tm.lastKey() == 5
assert tm.findIndexOf{ it.key==4 } == 3

We can construct a TreeMap by giving a comparator to order the elements in the map:

def c= [compare:
{a,b-> a.equals(b)? 0: Math.abs(a)<Math.abs(b)? -1: 1 }
] as Comparator

def tm= new TreeMap(c)

tm[3]= 'a'; tm[-7]= 'b'; tm[9]= 'c'; tm[-2]= 'd'; tm[-4]= 'e'

assert tm == new TreeMap([(-2):'d', 3:'a', (-4):'e', (-7):'D', 9:'c']
assert tm.comparator() == ¢ //retrieve the comparator

def tm2= new TreeMap(tm) //use same map entries and comparator
assert tm2.comparator() == c

def tm3= new TreeMap(tm as HashMap)
//special syntax to use same map entries but default comparator only
assert tm3.comparator () == null

The range-views, headMap() tailMap() and subMap(), are useful views of the items in a sorted map. They act similarly to the corresponding
range-views in a sorted set.

def sm= new TreeMap(['a':1l, 'b':2, 'c':3, 'd':4, 'e':5])
def hm= sm.headMap('c')
assert hm == new TreeMap(['a':1l, 'b':2])
//headMap () returns all elements with key < specified key
hm.remove('a')
assert sm == new TreeMap(['b':2, 'c':3, 'd':4, 'e':5])
//headmap is simply a view of the data in sm
sm['a'l= 1; sm['f']= 6
assert sm == new TreeMap(['a':1l, 'b':2, 'c':3, 'd':4, 'e':5, 'f':6])
//if backing sorted map changes, so do range-views
def tm= sm.tailMap('c')
assert tm == new TreeMap(['c':3, 'd':4, 'e':5, 'f':6])
//tailMap() returns all elements with key >= specified element
def bm= sm.subMap('b','e')
assert bm == new TreeMap(['b':2, 'c':3, 'd':4])
//subMap () returns all elements with key >= but < specified element
try{ bm['z']= 26; assert 0 }
catch(e){ assert e instanceof IllegalArgumentException }
//attempt to insert an element out of range

Immutable Maps

We can convert a map into one that can't be modified:

def imMap= (['a':1, 'b':2, 'c':3] as Map) .asImmutable ()

try{ imMap['d']l= 4; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

imMap= Collections.unmodifiableMap(['a':1, 'b':2, 'c':3] as Map)
//alternative way

try{ imMap['d']l= 4; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

def imSortedMap= (new TreeMap(['a':1l, 'b':2, 'c':3])).asImmutable()
try{ imSortedMap(['d'l= 4; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }
imSortedMap= Collections.unmodifiableSortedMap (
new TreeMap(['a':1, 'b':2, 'c':3])
) //alternative way
try{ imSortedMap(['d'l= 4; assert 0 }
catch(e){ assert e instanceof UnsupportedOperationException }

We can create an empty map that can't be modified:

def map= Collections.emptyMap ()

assert map == [:]

try{ map['a'l= 1; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }
map= Collections.EMPTY_MAP

assert map == [:]

try{ map['a'l= 1; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

We can create a single-element list that can't be modified:

def singMap = Collections.singletonMap('a', 1)

assert singMap == ['a': 1]

try{ singMap['b'l= 2; assert 0 }

catch(e){ assert e instanceof UnsupportedOperationException }

Observable Maps

We can convert a map into an observable one with the 'as' keyword too. An observable map will trigger a PropertyChangeEvent every time a
value changes:

// don't forget the imports
import java.beans.*
def map = [:] as ObservableMap
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldValue} -> ${evt.newValue}"
} as PropertyChangeListener)

map.key = 'value' // prints key: null -> value
map.key = 'Groovy' // prints key: value -> Groovy

We can also wrap an existing map with an ObservableMap

import java.beans.*
def sorted = [a:1,b:2] as TreeMap
def map = new ObservableMap (sorted)
map.addPropertyChangeListener ({ evt ->

println "${evt.propertyName}: ${evt.oldValue} -> ${evt.newValue}"
} as PropertyChangeListener)
map.key = 'value'
assert ['a','b', 'key
assert ['a','b', 'key

== (sorted.keySet () as List)

']
'] == (map.keySet () as List)

Lastly we can specify a closure as an additional parameter, it will work like a filter for properties that should or should not trigger a
PropertyChangeEvent when their values change, this is useful in conjunction with Expando. The filtering closure may take 2 parameters (the
property name and its value) or less (the value of the property).

import java.beans.*
def map = new ObservableMap ({! (it instanceof Closure)})
map.addPropertyChangeListener ({ evt ->
println "${evt.propertyName}: ${evt.oldvValue} -> ${evt.newValue}"
} as PropertyChangeListener)
def bean = new Expando(map)
bean.lang = 'Groovy' // prints lang: null -> Groovy
bean.sayHello = { name -> "Hello ${name}" } // prints nothing, event is skipped
assert 'Groovy' == bean.lang
assert 'Hello Groovy' == bean.sayHello(bean.lang)

JN1515-Characters

A Character is a single token from the Unicode basic multilingual plane. It can also convert to the lowermost 16 bits of an integer.

assert Character.SIZE == 16 && Character.SIZE == Short.SIZE //16 bits in size
assert Character.MIN_VALUE as int == 0x0000

assert Character.MAX VALUE as int == OXFFFF

assert Character.TYPE == char //often, we can write 'char' instead

Each Unicode character belongs to a certain category, which we can inspect using getType():

def categories= [
'LOWERCASE_LETTER',

//unicode category "L1": a lowercase letter that has an uppercase variant
'UPPERCASE LETTER',

//Lu: an uppercase letter that has a lowercase variant
'TITLECASE LETTER',

//Lt: a letter beginning a word with only the first letter capitalized
'MODIFIER LETTER',

//Lm: a special character that is used like a letter
'OTHER_LETTER',

//Lo: a letter or ideograph not having lowercase and uppercase variants

'NON_SPACING MARK',
//Mn: a combining character that doesnt take up space (eg accents, umlauts)
'COMBINING_ SPACING_MARK',
//Mc: a combining character that takes up space (eg vowel signs in the East)
'ENCLOSING MARK',
//Me: an enclosing character (eg circle, square, keycap)

'SPACE_SEPARATOR',
//Zs: an invisible whitespace character that takes up space
'LINE_SEPARATOR',
//Z1: line separator character 0x2028
' PARAGRAPH_SEPARATOR',
//Zp: paragraph separator character 0x2029

'MATH_SYMBOL', //Sm: any mathematical symbol
'CURRENCY_SYMBOL', //Sc: any currency sign
'MODIFIER SYMBOL',
//Sk: a combining character that's also a full character on its own
'OTHER_SYMBOL',
//So: various other symbols (eg dingbats, box-drawing)

'DECIMAL_DIGIT_NUMBER',
//Nd: a digit zero through nine in any script except ideographic scripts
'LETTER_NUMBER',
//N1: a number that looks like a letter (eg Roman numerals)
'OTHER_NUMBER',
//No: a superscript or subscript digit, or number that's not a digit 0..9

// (excluding from ideographic scripts)
'DASH_PUNCTUATION', //Pd: any kind of hyphen or dash

'START PUNCTUATION', //Ps: any kind of opening bracket

'END_PUNCTUATION', //Pe: any kind of closing bracket

'INITIAL_QUOTE PUNCTUATION', //Pi: any kind of opening quote

'FINAL QUOTE_PUNCTUATION', //Pf: any kind of closing quote

' CONNECTOR_PUNCTUATION',

//Pc: a punctuation character that connects words (eg underscore)
'OTHER_PUNCTUATION',

//Po: any other kind of punctuation character

'FORMAT', //Cf: invisible formatting indicator
'"CONTROL ',

//Cc: 65 ISO control characters (0x00..0x1F and Ox7F..0x9F)
'"PRIVATE_USE', //Co: any code point reserved for private non-unicode use
'SURROGATE', //Cs: one half of a surrogate pair
'UNASSIGNED', //Cn: any code point to which no character has been assigned
]

def stats= (0x0000..0xFFFF) .groupBy{ Character.getType (it) }
stats.entrySet () .sort{ it.value.size }.reverse().each{ cat->
def keyName= Character.fields.
find{ it.get() == cat.key && it.name in categories }.name
println "$keyName: S$cat.value.size"

}

The surrogate category is divided into the high surrogates and the low surrogates. A Unicode supplementary character is represented by two

Characters, the first from the high surrogates, the second from the low. Integers, known as code points, can also represent all Unicode
characters, including supplementary ones. The code point is the same as a Character converted to an integer for basic plane characters, and its
values continue from 0x10000 for supplementary characters. The upper 11 bits of the code point Integer must be zeros. Methods accepting only
char values treat surrogate characters as undefined characters.

assert Character.MIN_HIGH_SURROGATE == 0xD800 &&
Character .MIN_SURROGATE == 0xD800

assert Character.MAX HIGH SURROGATE == OxDBFF

assert Character.MIN_LOW_SURROGATE == 0xDCOO0

assert Character.MAX LOW_SURROGATE == OxDFFF &&
Character.MAX SURROGATE == OxDFFF

assert Character.isSurrogatePair(Character.MIN_HIGH_SURROGATE,
Character.MIN LOW_SURROGATE)

assert Character.isHighSurrogate(Character.MIN_HIGH_SURROGATE)

assert Character.isLowSurrogate (Character.MIN_LOW_SURROGATE)

assert Character.MIN_CODE_POINT == 0x0000
assert Character.MIN_SUPPLEMENTARY CODE POINT == 0x10000 //an integer
assert Character.MAX CODE_POINT == OxXx10FFFF

assert Character.isValidCodePoint (Character.MIN CODE POINT)

assert ! Character.isValidCodePoint (Character.MAX_ CODE_POINT + 1)

assert Character.isSupplementaryCodePoint (
Character.MIN_SUPPLEMENTARY_CODE_POINT)

assert ! Character.isSupplementaryCodePoint (
Character.MIN_SUPPLEMENTARY_CODE_POINT - 1)

assert Character.charCount (0XFFFF) == 1
//number of Characters needed to represent a certain integer as Unicode
assert Character.charCount (0x10FFFF) == 2

assert Character.isDefined (0xFFFD)
assert ! Character.isDefined(0XFFFF) //doesn't include unassigned characters
assert Character.isDefined(0x10000)

To convert a Unicode character between a code point and a Character array:

def minLowSurr= Character.MIN_LOW_SURROGATE,
maxLowSurr= Character.MAX LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH SURROGATE,
maxHighSurr= Character.MAX HIGH SURROGATE

assert Character.toChars (OXFFFF).collect{ it as int }.toList() == [0XFFFF]
//convert integer into array of Characters

assert Character.toChars(0x10000).collect{ it as int }.toList() ==
[minHighSurr as int, minLowSurr as int]

assert Character.toChars (0x10FFFF) .collect{ it as int }.toList() ==
[maxHighSurr as int, maxLowSurr as int]

def charArray= new char[6] //an array that can only contain Characters
assert Character.toChars (0x10000, charArray, 2) == 2 &&
charArray.collect{ it as int }.toList() ==
[0, 0, minHighSurr as int, minLowSurr as int, 0, 0]
charArray= new char [4]
assert Character.toChars (0OXFFFF, charArray, 1) == 1 &&
charArray.collect{ it as int }.toList() == [0, OxFFFF, 0, 0]

assert Character.toCodePoint (minHighSurr, minLowSurr) == 0x10000
//converts surrogate pair to integer representation

We can enquire of code points in a char array or string:

def minLowSurr= Character.MIN_LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH_ SURROGATE

def cal= ['a', 'b', 'c', minHighSurr, minLowSurr, 'e', 'f', 'g'] as char[]
def ca2= ['a', 'b', 'c', OxXFFFF, 'e', 'f', 'g']l as charl[]
assert Character.codePointAt (cal, 3) == 0x10000
//beginning at index 3, look at as many chars as needed
assert Character.codePointAt (ca2, 3) == OXFFFF
assert Character.codePointAt (cal, 3, 4) == minHighSurr
//extra parameter limits sequence of chars to index <4
assert Character.codePointAt (ca2, 3, 4) == OxXFFFF
assert Character.codePointBefore(cal, 4) == minHighSurr
assert Character.codePointBefore(cal, 5) == 0x10000
//if low surrogate, look back more for high one, and use both
assert Character.codePointBefore(cal, 5, 4) == minLowSurr
//extra param limits lookback to index >=4
assert Character.codePointCount (cal, 1, 5) == 4
//number of code points in a subarray given by offset 1 and count 5
assert Character.codePointCount (cal, 1, 4) == 3
//lone high surr counted as 1 code point
assert Character.offsetByCodePoints(cal, 0, 6, 1, 3) == 5

//index of call0..<6] that's offset by 3 code points

//versions of these methods exist for strings...
def sl= 'abc'+ minHighSurr + minLowSurr +'efg'
def s2= 'abcdefg'

assert Character.codePointAt (sl, 3) == 0x10000
//if high surrogate, add on low surrogate
assert Character.codePointAt (sl, 4) == minLowSurr
//if low surrogate, use it only
assert Character.codePointAt (sl, 5) == 'e' as int
assert Character.codePointAt (s2, 3) == 'd' as int
//enquire code point in string
assert Character.codePointBefore(sl, 4) == minHighSurr
assert Character.codePointBefore(sl, 5) == 0x10000

//if low surrogate, look back more for high one, and use both
assert Character.codePointCount (sl, 1, 5) ==

//number of code points in a substring with indexes >=1 and <5
assert Character.offsetByCodePoints(sl, 1, 3) == 5

//index from 1 that's offset by 3 code points

Every character also has a directionality:

def directionalities= [:]
Character.fields.each{
if (it.name =~ /"DIRECTIONALITY /) directionalities[it.get()]= it.name

}

def stats= (0x0000..0xFFFF) .groupBy{ Character.getDirectionality (it) }
//will also work for supplementary chars
stats.entrySet () .sort{ it.value.size }.reverse().each{ dir->
def keyName= Character.fields.
find{ it.get() == dir.key && it.name in directionalities.values() }.name
println "SkeyName: $dir.value.size"

}

Every character is part of a Unicode block:

(0x0000. .0XFFFF) .groupBy{ Character.UnicodeBlock.of(it as char) }.
entrySet () .sort{it.value.size}.reverse() .
each{ println "$it.key: $it.value.size" } //this uses basic plane only

//this one uses supplementary characters also...

(0x0000. .0x10FFFF) .groupBy{ Character.UnicodeBlock.of(it as int) }.
entrySet () .sort{it.value.size}.reverse() .
each{ println "sit.key: $it.value.size" }

try{ Character.UnicodeBlock.of(0x110000); assert 0 }
catch(e){ assert e instanceof IllegalArgumentException }

Character assists integers using different radixes:

assert Character.MIN_RADIX == 2
//the minimum and maximum radixes available for conversion to/from strings
assert Character.MAX RADIX == 36 //0 to 9, and A to Z
assert Character.forDigit (12, 16) == 'c'
//character representation for a digit in a certain radix
assert Character.digit('c' as char, 16) == 12

//digit of a character rep'n in a certain radix

We can find the Unicode block for a loosely-formatted textual description of it:

['"BASIC LATIN', 'basic latin', 'BasicLatin', 'baSiclaTin', 'BaSiC LaTiN',
'BASIC_LATIN', 'BaSiC LaTiN'].
each{ assert Character.UnicodeBlock.forName (it).toString() == 'BASIC LATIN' }

Constructing and Using Characters

We can't represent Characters directly in our programs, but must construct them from a string:

assert 'a'.class == String
def cl= 'a' as char, c2= (char)'b' //constructing
def c3= new Character(c2), c4= c2.charValue() //cloning

[cl, c2, c3, c4l.each{ assert it.class == Character }
assert c2 == c3 && cl != c2
assert cl < c2 && cl.compareTo(c2) == -1

//comparing works just the same as for numbers
assert c2.toString().class == String

There's a number of Character utility methods, accepting either a code point or a basic-plane character, that test some attribute of the character:

def categories= [
'digit': { Character.isDigit (it) },
"letter': { Character.isLetter(it) },
'letter or digit': { Character.isLetterOrDigit(it) },
'identifier ignorable': { Character.isIdentifierIgnorable(it) },
//an ignorable character in a Java or Unicode identifier
'ISO control': { Character.isISOControl(it) }, //an ISO control character
'Java identifier part': { Character.isJavaldentifierPart (it) },
//be part of a Java identifier as other than the first character
'Java identifier start': { Character.isJavaldentifierStart(it) },
//permissible as the first character in a Java identifier
'Unicode identifier part': { Character.isUnicodeIdentifierPart (it) },
//be part of a Unicode identifier other than first character
'Unicode identifier start': { Character.isUnicodeIdentifierStart(it) },
//permissible as first character in a Unicode identifier
'lower case': { Character.isLowerCase (it) },
'upper case': { Character.isUpperCase (it) }
'title case': { Character.isTitleCase (it) },
'space char': { Character.isSpaceChar(it) }, //a Unicode space character
'whitespace': { Character.isWhitespace(it) }, //white space according to Java
'mirrored': { Character.isMirrored(it) },
//mirrored according to the Unicode spec

.

]
def stats= [:]
categories.keySet () .each{ stats[itl= 0 }
(0x0000. .0XFFFF) .each{ch-> //also works with supplementaries (0x0000..0x10FFFF)
categories.each{cat->
if(cat.value(ch)) stats[cat.key 1 += 1

}
}

stats.entrySet () .sort{ it.value }.reverse().each{ println "$it.key: $it.value" }

We can use characters instead of numbers in arithmetic operations:

assert 'a' as char == 97 && 'd' as char == 100
assert ('a' as char) + 7 == 104 && 7 + ('a' as char) == 104
//either first or second arg

assert ('a' as char) + ('d' as char) == 197 //two chars
assert ('a' as char).plus(7) == ('a' as char) + 7 //alternative method name
assert ('a' as char) - 27 == 70 && ('a' as char).minus(27) == 70
assert ('a' as char) * ('d' as char) == 9700 &&

('a' as char) .multiply('d' as char) == 9700
assert 450 / ('d' as char) == 4.5 && 450.div('d' as char) == 4.5
assert 420.intdiv('d' as char) == 4
assert ('a' as char) > 90 && ('a' as char).compareTo(90) == 1
assert 90 < ('a' as char) && 90.compareTo('a' as char) == -1
assert ('a' as char) == ('a' as char) &&

('a' as char) .compareTo('a' as char) == 0

We can auto-increment and -decrement characters:

def c= 'p' as char

assert as char && c == 'q' as char &&
as char && ¢ == 'p' as char &&
as char && ¢ == 'gq' as char &&
as char && ¢ == 'p' as char
assert c.next() == 'q' && c.previous() == '0' && ¢ == 'p'

Some miscellaneous methods:

assert Character.getNumericValue('6' as char) == 6

assert Character.reverseBytes(0x37ae as char) == 0xae37 as char
assert Character.toUpperCase('a' as char) == 'A' as char
assert Character.toLowerCase('D' as char) == 'd' as char
assert Character.toTitleCase('a' as char) == 'A' as char

JN1525-Strings

We can use either single- or double-quotes around strings:

assert 'hello, world' == "hello, world"

assert "Hello, Groovy's world" == 'Hello, Groovy\'s world'
//backslash escapes the quote

assert 'Say "Hello" to the world' == "Say \"Hello\" to the world"

Backslashes can escape other characters in Strings. We can use letter codes (eg '\b") or octal codes (eg \010'):

assert '\010' //backspace

assert '\011"' //horizontal tab

assert '\012' //linefeed

assert '\014' //form feed

assert '\015' //carriage return

assert '"\\' //use backslash to escape the backslash

To span multiple lines, use either triple quotes or a backslash at the end of the continuing lines to join them with the next:

assert '''hello,
world''' == 'hello, \nworld'
//triple-quotes for multi-line strings, adds '\n' regardless of host system
assert 'hello, \
world' == 'hello, world' //backslash joins lines within string

We can also use three double-quotes.

def text = ""m\
Good morning.
Good night again."""

When using double-quotes, either one or three, we can embed code within them using $. Here, they're called GStrings:

def name = 'Groovy'
assert "hello $name, how are you today?" == "hello Groovy, how are you today?"

Anything more complex than a variable name must be surrounded by curlies:

def a = 'How are you?'
assert "The phrase 'Sa' has length ${a.size()}" ==
"The phrase 'How are you?' has length 12"

We can change the variable's value in the GString:

def i= 1, list= []
3.times{ list<< "${i++}" }
assert list.join() == '123"'

String methods

We can convert other objects in Groovy to their string representation in different ways:

def o= new Object ()

assert String.valueOf(o) == o.toString() //this works for any object in Groovy

assert String.valueOf (true) == true.toString() //boolean value

assert String.valueOf ('d' as char) == ('d' as char).toString() //character

assert String.valueOf(7.5d) == 7.5d.toString() //double

assert String.valueOf(8.4f) == 8.4f.toString() //float

assert String.valueOf (13i) == 13i.toString() //integer

assert String.valueOf (14L) == 14L.toString() //long

assert String.valueOf(['a', 'b', 'c¢']l) == ['a', 'b', 'c'].toString()
//list, etc, etc, etc

To find the size and substrings:

def s= 'abcdefg'

assert s.length() == 7 && s.size() == 7

assert s.substring(2,5) == 'cde' && s.substring(2) == 'cdefg'

assert s.subSequence(2,5) == 'cde'

There's different ways to construct a string:

assert new String() == ''

assert new String('hello') == 'hello’

def minLowSurr= Character.MIN_LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH_ SURROGATE

def str= 'abc' + minHighSurr + minLowSurr + 'efg!'

def ca= ['a', 'b', 'c', minHighSurr, minLowSurr, 'e', 'f', 'g'] as charl(]

def ia= ['a', 'b', 'c', 0x10000, 'e', 'f', 'g'l as int/[]

assert new String(ca) == str

assert new String(ca, 2, ca.size()-2) == str[2..-1]

assert new String(ia, 2, ia.size()-2) == str[2..-1]

def ca2= new char[8]

str.getChars (0, str.size(), ca2, 0)
//copy characters from string into character array

assert ca2.size() == str.size()

ca2.eachWithIndex{ elt, i-> assert elt == strl[i] }

def ca3= ['a', 'b', 'c', 'd', 'e'l as charl]

'abcde' . toCharArray () .eachWithIndex{ it, i-> assert it == ca3[i] }
//convert String to char array

assert String.valueOf (ca3) == 'abcde' //convert char array to String

assert String.copyValueOf (ca3) == 'abcde' //alternative method name

assert String.valueOf (ca3, 2, 2) == 'cd' //use substring

assert String.copyValueOf (ca3, 2, 2) == 'cd'

We can pad and center strings:

assert 'hello'.padRight(8,'+"') .padLeft (10,'+') == '++hello+++"'

assert 'hello'.padLeft (7).padRight(10) == ' hello '

assert 'hello'.center (10, '+').center(14, ' ') == ' ++hello+++ '
We can split a string into tokens:

assert 'he she\t it'.tokenize() == ['he',6 'she', 'it']

//tokens for split are ' \t\n\r\f'
assert 'he she\t it'.tokenize() ==
new StringTokenizer ('he she\t it').collect{ it }

assert 'he,she;it, ;they'.tokenize(',;') == ['he', 'she', 'it', 'they'l]
//supply our own tokens
assert new StringTokenizer ('he,she;it,;they', ',;').collect{ it } ==

'he, she;it, ;they' .tokenize(',; ")

assert new StringTokenizer ('he,she,;it', ',;', true).collect{ it } ==
[|he|’ |’|’ ‘She‘, |’|’ |’.|’ |it|]
//long form provides extra option to return the tokens with the split-up data

Some additional methods:

assert 'abcde'.find{ it > 'b' } == 'c' //first one found
assert 'abcde'.findall{ it > 'b' } == ['c', 'd', 'e']l //all found

assert 'abcde'.findIndexOf{ it > 'c' } == 3 //first one found
assert 'abcde'.every{ it < 'g' } && ! 'abcde'.every{ it < 'c' }
assert 'abcde'.any{ it > 'c' } && ! 'abcde'.any{ it > 'g' }
assert 'morning'.replace('n','t') == 'mortitg' &&
'boo' .replace('o', 'at') == 'batat' &&
'book'.replace('oco', 'ie') == 'biek’
assert 'EggS'.toLowerCase() == 'eggs' && 'EggS'.toUpperCase() == 'EGGS'
assert ' Bacon '.trim() == 'Bacon'

assert 'noodles'.startsWith('nood') && 'noodles'.endsWith('dles')
assert 'corn soup'.startsWith('rn', 2) //2 is offset

assert 'abc'.concat('def') == 'abcdef'

assert 'abcdefg'.contains('def')

assert ''.isEmpty() && ! 'abc'.isEmpty ()

assert 'morning'.indexOf ('n') == 3

assert 'morning'.indexOf ('n', 4) == 5 //ignore first 4 characters

assert 'morning'.indexOf ('ni') == 3

assert 'morning'.indexOf ('ni', 4) == -1 //not found

assert 'morning'.lastIndexOf('n') == 5

assert 'morning'.lastIndexOf('n', 4) == 3 //only search first 4 characters
assert 'morning'.lastIndexOf('ni') == 3

assert 'morning'.lastIndexOf('ni', 4) == 3
//only search first 4 characters for first char of search string

We can use operators on strings:

W

e

assert 'hello, ' + 'balloon' - 'lo' == 'hel, balloon'
//'-' subtracts one instance at most of string
assert 'hello, balloon' - 'abc' == 'hello, balloon'
assert 'hello, '.plus('balloon').minus('lo') == 'hel, balloon'
//alternative method syntax

assert 'value is ' + true == 'value is true' &&

'value is ' + 1.54d == 'value 1is 1.54' &&

//first converts double to String (without info loss)

‘value is ' + 7 == 'value is 7' //we can add on various types of values
assert 7 + ' is value' == '7 is value'
assert 'telling true lies' - true == 'telling lies' &&

'week has 7 days' - 7 == 'week has days'

//we can subtract various types of values

assert 'a' * 3 == 'aaa' && 'a'.multiply(3) == 'aaa'
assert 'hello'.reverse() == 'olleh'
assert 'hello'.count('l') == 2
assert 'abc'.collect{ it * 2 } == ['aa', 'bb', 'cc']
def s= [], t= [:]
tabc'.each{ s << it }
'abc'.eachWithIndex{ elt, i-> t[i]l= elt }
assert s == ['a', 'b', 'c'] & t == [0:'a', 1:'b', 2:'c']
assert 'abcde'.toList() == ['a', 'b', 'c', 'd', 'e'l]
assert 'abc'.next() == 'abd' && 'abc'.previous() == 'abb'

can subscript strings just as we can lists, except of course strings are read-only:

assert 'abcdefg'[3] == 'd!

assert 'abcdefg'.getAt(3) == 'd' //equivalent method name
assert 'abcdefg'.charAt(3) == 'd' //alternative method name
assert 'abcdefg'[3..5] == 'def'

assert 'abcdefg'.getAt(3..5) == 'def'

assert 'abcdefg'[1, 3, 5, 6] == 'bdfg'

assert 'abcdefg'[1, *3..5] == 'bdef'

assert 'abcdefg'[1, 3..5 == 'bdef'

]
//range in subscript flattened automatically

//if first arg is true,

assert 'abcdefg'[-5..-2] == 'cdef'
assert 'abcdefg'.getAt([1, *3..5 1) 'bdef’
assert 'abcdefg'.getAt([1, 3..5]) == 'bdef'
assert 'abcde' == 'ab' + 'c' + 'de'
assert 'abcde'.equals('ab' + 'c¢' + 'de') //equivalent method name
assert 'abcde'.contentEquals('ab' + 'c' + 'de') //alternative method name
assert 'AbcdE'.equalsIgnoreCase ('aBCDe')
assert 'abcde' < 'abcdf' && 'abcde' < 'abcdef'!
assert 'abcde'.compareTo ('abcdf') == -1 && 'abcde'.compareTo('abcdef') == -1
//equivalent method
assert 'AbcdEF'.compareTolgnoreCase('aBCDe') == 1
assert 'AbcdE'.compareToIgnoreCase ('aBCDef')
assert Collections.max('abC'.toList(), String.CASE_INSENSITIVE ORDER) == 'C'
assert Collections.min(
['abC', 'ABd', 'AbCd'], String.CASE_INSENSITIVE ORDER) == 'abC'
assert 'abcde'.regionMatches (2, 'ccccd', 3, 2)
//match from index 2 in 'abcde' to 2 chars from index 3 in 'ccccd'
assert 'abcDE'.regionMatches (true, 2, 'CCcCCd', 3, 2)

ignores case

We can format values into a string, using format():

//Strings (conversion type 's')

assert String.format('%1$8s', 'hello') == "' hello!’
//width (here, 8) is minimum characters to be written
assert String.format('$2$6s,%1$2s', 'a', 'hello') == ' hello, a'
//we can re-order arguments
assert String.format('s$1$2s', 7, 'd') == ' 7'
//we can give any type of input; we can ignore arguments
assert String.format('%ls,%2s', null, 'null') == 'null,null’
//null treated as 'null'’
assert String.format('$1$2.4s', 'hello') == 'hell!

//precision (here, 4) is maximum characters to be written

//Characters ('c')
assert String.format('$1l$c,%2$3c', 65, 66 as byte) == 'A, B!'
//convert argument to character; 2nd value 3 chars wide
assert String.format('$-3c', 67 as short) == 'C !
//left-justified with '-' flag; we needn't specify parameter number (1$, etc)
assert String.format('$c', 'D' as char) == 'D'

//Special conversion types:
assert String.format('hello %n world %%') == 'hello \r\n world %'
//platform-specific newline; double % to quote it

//Boolean ('b')
assert String.format('s$b, %b, %b, %b, %b, %b',
null, true, false, 0, 1, new Object()) ==
'false, true, false, true, true, true'

StringBuffers

A StringBuffer is a mutable string. (But from Java 5.0 onwards, we should use a StringBuilder instead, because StringBuffers are normally
reserved for multi-threaded processing.)

def sbl= new StringBuffer(),
sb2= new StringBuffer('Hello'),
sb3= new StringBuffer (sb2)
assert sbl.toString() == '' &&
sb2.toString() == 'Hello' &&
sb2.toString() == sb3.toString()

To find the size and substrings:

def sb= new StringBuffer ('abcdefg')

assert sb.size() == 7 && sb.length() == 7 //different ways to find size
sb.length= 6 //change size

assert sb.toString() == 'abcdef'

assert sb.reverse().toString() == 'fedcba’'

assert sb.toString() == 'fedcba' //reverse() method reverses order permanently

assert sb.substring(2) == 'dcba' //substring from index 2

assert sb.substring(2, 5) == 'dcb' //substring from index 2 to <5
assert sb.subSequence (2, 5) == 'dcb' //substring from index 2 to <5
assert sb + 'zyx' == 'fedcbazyx'

To append to a StringBuffer:

def sbl= new StringBuffer ()

sbl << 'abc'

sbl << 'def' << 'ghi' //can chain two << operators
sbl.leftShift ('jkl') //equivalent method name
sbl.append('mno') //alternative method name
sbl.append(['p', 'q', 'r'l as char([])

sbl.append(['r', 's', 't', 'u', 'v'l as char[]l, 1, 3
assert sbl.toString() == 'abcdefghijklmnopgrstu'

Note that << doesn't yet work with StringBuilders.

If we append to a String, a StringBuffer is returned:

def s= 'foo'
s= s << 'bar'

assert s.class == StringBuffer && s.toString() == 'foobar'

As with strings, we can subscript a StringBuffer, returning a string:

def sb= new StringBuffer ('abcdefg')

assert sb[3] == 'd'
assert sb[3].class == String
assert sb.getAt(3) == 'd' //equivalent method name

assert sb.charAt(3) == 'd' //alternative method name
assert sb[3..5] == 'def’
]

assert sb[1, 3, 5, 6 == 'bdfg'

assert sb[1, 3..5] == 'bdef'

assert sb[-5..-2] == 'cdef'

sb[3..5 1 = 'xy' //use subscripts to update StringBuffer
assert sb.toString() == 'abcxyg'

sb.putAt(2..4, 'z') //equivalent method name

assert sb.toString() == 'abzg'

sb.setCharAt (1, 'm' as char) //alternative method name
assert sb.toString() == 'amzg'

We can insert into, replace within, and delete from StringBuffers using methods:

def sb= new StringBuffer ('hello park')
sb.delete (4, 7)

assert sb.toString() == 'hellark'
sb.deleteCharAt (3)
assert sb.toString() == 'helark'

def ca= new char[6]
sb.getChars (2, 5, ca, 1)

//for indexes 2 to <5, copy into ca beginning from index 1
(f'\o', 1, 'a', 'r', '\o', '\0'l as char(]).

eachWithIndex{ elt, i-> assert cal[i] == elt }

sb.insert (4, 'se')

assert sb.toString() == 'helaserk'
sb.insert (4, new StringBuffer('ct '))
assert sb.toString() == 'helact serk'
sb.insert (10, ['i', 'c'] as char[])
assert sb.toString() == 'helact serick'
sb.insert(6, ['m', 'a', 'l', 't'l as char([]l, 1, 2)
//insert 2 chars from subscript 1
assert sb.toString() == 'helactal serick'
sb.insert (10, 'snapla', 3, 5) //insert chars from subscript 3 to <5
assert sb.toString() == 'helactal splerick'
sb.replace(4, 13, 'dor') //replace chars from subscript 4 to <13
assert sb.toString() == 'heladorrick'

We can find the index of substrings:

def sb= new StringBuffer ('hello elm')
assert sb.indexOf ('el') ==

assert sb.indexOf('el', 3) == 6 //first occurence of 'el' from index 3
assert sb.lastIndexOf ('el') == 6
assert sb.lastIndexOf ('el', 3) == 1 //last occurence of 'el' up to index 3

Some miscellaneous methods:

def s= new String(new StringBuffer ('abcdefg'))
assert s == 'abcdefg'

assert s.contains('def')

assert s.contentEquals('abcdefg!')

assert s.contentEquals(new StringBuffer ('abcdefg'))
def s2= s.replace('def', 'xyz')

assert s2 == 'abcxyzg'

We can enquire of code points in a String or StringBuffer using methods on them, just as we can with methods on Character:

def minLowSurr= Character.MIN_LOW_SURROGATE,
minHighSurr= Character.MIN_HIGH_ SURROGATE

def sl= 'abc'+ minHighSurr + minLowSurr +'efg'

assert sl.codePointAt (3) == 0x10000 //if high surrogate, add on low surrogate
assert sl.codePointAt (4) == minLowSurr //if low surrogate, use it only
assert sl.codePointAt (5) == 'e' as int
assert sl.codePointBefore(4) == minHighSurr
assert sl.codePointBefore(5) == 0x10000
//if low surrogate, look back more for high one, and use both
assert sl.codePointCount (1, 5) == 3
//number of code points in a substring with indexes >=1 and <5
assert sl.offsetByCodePoints(l, 3) == 5

//index from 1 that's offset by 3 code points

def sb= new StringBuffer('abc'+ minHighSurr + minLowSurr +'efg')

//also, for StringBuffers
assert sb.codePointAt (5) == 'e' as int
assert sb.codePointBefore (4)

== minHighSurr
assert sb.codePointCount (1, 5) == 3
assert sb.offsetByCodePoints(l, 3) == 5

sb .appendCodePoint (0x10000)
assert sb.toString() ==
'abc'+ minHighSurr + minLowSurr +'efg'+ minHighSurr + minLowSurr

We can manipulate the implementation of a StringBuffer:

def sbl= new StringBuffer() //default initial capacity is 16
assert sbl.capacity() == 16

def sb2= new StringBuffer (5) //we can specify initial capacity
assert sb2.capacity() == 5

sb2<< 'abc'

assert sb2.capacity() == 5 && sb2.size() == 3
sb2.trimToSize ()

assert sb2.capacity() == 3
sb2.ensureCapacity (10)

assert sb2.capacity() == 10

def sb3= new StringBuffer (0) //capacity approximately doubles when required
def cap= 0, caps=[]

100.times{

if ((sb3<< 'a') .capacity() != cap) caps<< (cap= sb3.capacity())
}
assert caps == [2, 6, 14, 30, 62, 126]

JN1535-Patterns

Matching Strings to Patterns

We can define string patterns, aka "Regular Expressions" or "Regexes", and see if a String matches it:

assert 'abc' ==~ /abc/ //pattern on righthand side between single-slashes
assert ! ('abc' ==~ /ace/)
assert ! ('abc' ==~ /ab/)

assert 'abc' ==~ /a.c/

assert 'abc'.matches(/a.c/) //alternative method name

assert java.util.regex.Pattern.matches(/a.c/, 'abc') //alternative syntax

assert java.util.regex.Pattern.compile(/a.c/).matcher('abc').matches ()
//alternative syntax

assert '\t\n\f\r' ==~ /\t\n\f\r/
//some control chars have same notation as in strings
assert '\t\n\f\r' ==~ /\x09\x0a\x0c\x0D/
//alternatively use hex codes (leading zero required to make 2 digits)
assert '\t\n\f\r' ==~ /\011\012\014\015/
//alternatively use octal codes (leading zero required)
assert '\b' ==~ /\x08/ && ! ('\b' ==~ /\b/)
// \b has different meaning in regex than in string
assert '\07\013\033' ==~ /\a\v\e/

//regex-only notation: bell \a, vertical tab \v, escape \e

//the . in the pattern matches any character, except \n (or \r\n on Windows)

Twelve characters that are special syntax for regexes need to be quoted:

The

The

assert 'a.c' ==~ /a\.c/ //backslash before . to quote it

assert ' {LON\$] 2%+ ==~ /N NN INVOOD NS\ 2\ *\+/
//the 12 chars that need quoting

assert ' {[O\\"$|2*+' ==~ /NQ.{[O\"$|?2*+\E/

//another way to quote text is to bracket with \Q and \E
import java.util.regex.Pattern
assert Pattern.quote(/.{[O\"$[?*+/) == /\Q.{[O\"$]2*+\E/
//a special method to quote text in this way

chars \c@, \cA, \cB, ..., \cZ, \c[, \c], \c?, and \c_ map to the special characters 0x0 to 0x1f, except Ox1c:

assert "${0x0 as char}" =~ /\ce@/

for(int c= 'A'; int d= 0x1l; c <= 'Z'; c++; d++){
assert "${d as char}" =~ /\c${c as char}/

}

0x1b as char}" =~ /\cl/
0x1d as char}" =~ /\cl/
Oxle as char}" =~ /\c*/
0x1f as char}" =~ /\c_/

assert "$
assert "$
assert "$
assert "$

{
{
{
{

have special pattern syntax for whitespace \s, word characters \w, digits \d, and their complements:

assert (0x0..0x7F).findAll{ (it as char) ==~ /\s/ } ==
['\t', "\n', '\o13', '\f', "\r', ' 'l.collect{it as int}
assert (0x0..0x7F).findAll{ (it as char) ==~ /\w/ } ==
[*'0'..'9", *'A'. . 'Z', ' ', *'a' .'z'].collect{it as int}
assert (0x0..0x7F).findAll{ (it as char) ==~ /\d/ } ==
('0'..'9") .collect{it as int}

U [/\w/, /\W/1, [/\d/, /\p/1, [/\s/, /\8/1].each{ pair->
assert (0x0..0x7F).findAll{ (it as char) ==~ pair[0] &&
(it as char) ==~ pair[l] }.size() == 0
} // \S means not \s; \W means not \w; \D means not \d

re's certain characters that the dot . doesn't match, except when (?s) is used:

assert (0x0..0x7F).findAll{ !((it as char) ==~ /./) } ==
['\n' as int, '\r' as int]
//chars that . doesn't match //also: 0x85, 0x2028, 0x2029

assert 'abc\ndef' ==~ /a.c\ndef/

assert ! ('abc\ndef' ==~ /abc.def/) //the . doesn't match \n

assert (0x0..0x7F).findall{ !((it as char) ==~ /(?s)./) } == []
//when (?s) used, . matches every character

assert 'abc\r\ndef' ==~ /(?s)abc..def/ && ! ('abc\r\ndef' ==~ /(?s)abc.def/)
//on Windows, \r\n needs .. for match

assert (0x0..0x7F).findAall{ !((it as char) ==~ /(?d)./) } == ['\n' as int]
//only char that . doesn't match for (?d) flag

assert (0x0..0x7F).findAll{ !((it as char) ==~ /(?sd)./) } == []

// (?sd) together same as (?s) alone

Some other flags:

assert ('gOoDbYe' ==~ /(?1i)goodbye/)
//when (?1i) used, case-insensitive matching for ASCII characters

assert 'an ace' ==~ /(?x) an\ ace #comment here after hash/
//quote the space, ignore unquoted whitespace and comments

Some other ways to use flags:

assert 'abcDEFG' ==~ /abc(?i)defg/
//turn on flag halfway thru pattern
assert 'abCDefg' ==~ /ab(?i)cd(?-1i)efg/
//turn flag on, then off again
assert 'abCDEfg' ==~ /ab(?i:cde)fg/
//turn flag on for only a certain span of text
assert 'ABcdeFG' ==~ /(?i)ab(?-i:cde)fg/

//turn flag on, but off for only a certain span

assert 'abcdefg' ==~ /abc(?ix) d e f g #comment here/
//turn more than one flag on together

assert 'abcdefg' ==~ /(?ix) a b ¢ (?-ix)defg/
//turn more than one flag off together

assert 'abcdefg' ==~ /(?ix) a b ¢ (?s-ix)defg/
//turn some flag(s) on and other flag(s) off together

import java.util.regex.Pattern
assert Pattern.compile(/abc.def/, Pattern.DOTALL) .matcher ('abc\ndef') .matches ()
//alternative to (?s
assert ! Pattern.compile(/abc.def/, Pattern.UNIX LINES).
matcher ('abc\ndef ') .matches () //alternative to (?d)
assert Pattern.compile(/goodbye/, Pattern.CASE_INSENSITIVE) .
matcher ('gOoDbYe') .matches () //alternative to (?1i)
assert Pattern.compile(/ an\ ace #comment here/, Pattern.COMMENTS) .
matcher ('an ace') .matches() //alternative to (?x)

//we can enquire the flags set at the end-point of a pattern...

import java.util.regex.Pattern

assert Pattern.compile(/ab(?i)c.def/, Pattern.DOTALL) .flags() ==
Pattern.DOTALL + Pattern.CASE_INSENSITIVE

assert Pattern.compile(/ab(?i)c.d(?-i)ef/, Pattern.DOTALL).flags() ==
Pattern.DOTALL

assert Pattern.compile(/ab(?i:c.d)ef/, Pattern.DOTALL).flags() ==
Pattern.DOTALL

A character class is a set of characters, one of which may be matched. We've already seen the predefined character classes \s, \w, \d, \S, \W, \D.

We can also define our own:

['bat', 'bet', 'bit', 'bot', 'but'].each{ assert it ==~ /blaeioult/ }
// laeiou] matches one of a,e,i,o,u

assert ! ('bnt' ==~ /blaeioult/

['bat', 'bet', 'bit', 'bot', 'but'l].each{ assert ! (it ==~ /b["aeioult/) }
//["aeiou] matches anything except a,e,i,o,u...

['bbt', 'bxt', 'b%t', 'b)t', 'b*t', 'b\nt'].each{ assert it ==~ /b["aeioult/ }
//...even newlines

assert 'b' ==~ /[abbbc]l/ //duplicate chars in character class have no effect

assert '&' ==~ /[a&]l/ &&
L('&' ==~ /la&&z]/) &&
'8! ==~ /[a&&&]/ &&
V(&' ==~ /[ag&l/) &&
‘&' ==~ /la&\&]/ //all legal syntax

[/[a-3j1/: [*'a'..'J']1,
//we can specify a range of characters inside a class using hyphen -

/1 _a-zA-2]/: [*'A'..'Z', '_', *ra'..'z'],

//we can have many ranges mixed with single characters
/1 a-z[BA-2]1/: [*'A'..'2', ' ', *'a'. . 'z'],

//same effect as [_a-zA-Z]
/la-m&&g-2z1/: [*'g'..'m'],

//&& is intersection operator
/la-z&&["bcl]l/: ['a', *'d'..'z'],
//” means 'not' everything in the character class

/la-z&&[*m-pll/: [*'a'..'1l', *'q'..'z'],
//&& with * works like subtraction
/[*\d\sl/: [*0x0..0x7F].collect{ it as char } - [*'\t'..'\zr', ' ', *'0'..'9'],

//not digit AND not whitespace
/I\D\S1/: [*0x0..0x7F].collect{ it as char },
//not equal to above, but means: not digit OR not whitespace
] .each{ regex, validvals->
assert (0x0..0x7F).findAll{ (it as char) ==~ regex } ==
validvals.collect{ it as int }

The only meta-characters inside a character class are \, [, * (in the first position),] (not in the first position or after the *), - (not in the first position,
after the *, or before the]), and &&. Quote them with a / to get the literal character. The other usual meta-characters are normal characters inside
a character class, and do not need to be quoted with a backslash, though can be. Character class precedences are, from highest: literal escapes
(eg \s), grouping (eg [abc]), ranges (eg a-g), unions (eg [abc][xyz]), then intersections ([a-z&&[gjpay]]).

We can use the alternation operator | to give some options:

['abc', 'def', 'xyz'l.each{ assert it ==~ /abc|def|xyz/ }
['abcz', 'aijz', 'axyz'l].each{ assert it ==~ /a(bc|ij|xy)z/ }
//we delimit the alternation with parentheses

//when using longhand syntax, we can see what option was matched, using groups,
//which we'll meet soon:

def m= java.util.regex.Pattern.compile(/a(bc|ij|xy)z/) .matcher('abcz')
m.matches ()

assert m.group (l) == 'bc' //whatever was matched between the parens

We use ? to indicate optional character/s:

['0 days', 'l day', '2 days'].each{ assert it ==~ /. days?/ }
['Mon', 'Monday'].each{ assert it ==~ /Mon(day)?/ }

Use {n} to match a character exactly n times:

assert 'aaab' ==~ /a{3}b/
assert 'abcabc' ==~ /(abc){2}/ // {n} can apply to a multi-character sequence
['ab', 'ba', 'bb', 'aa'l.each{ it ==~ /[abl {2}/ }
// {n} can apply to a character class
['abab', '%&@b'].each{ assert it ==~ /.{3}b/ }

We can match a character a variable number of times. Use the * operator to match any number of a character:

['aaab', 'aab', 'ab', 'b'l.each{ assert it ==~ /a*b/ }
//even zero occurences of the character is matched

['abcabc', 'abc', ''l.each{ assert it ==~ /(abc)*/ }
// * can apply to a multi-character sequence

['abbacb', 'acaba', 'cbbbac', 'c', '']l.each{ assert it ==~ /[abcl*/ }
// * can apply to a character class

['aaab', 'b', 'abab'l.each{ assert it ==~ /.*b/ }

// * is greedy: in 'abab' .* matches 'aba'

//Use + to match at least one occurence of a character:

['aaab', 'aab', 'ab'l.each{ assert it ==~ /a+b/ }
assert ! ('b' ==~ /a+b/) //at least one 'a' is required
assert 'abcabcxz' ==~ /(abc)+[xyzl+/

// + can apply to character class or multi-character sequence

//Other variable-length repetition operators:

assert 'aaaab' ==~ /a{3,}b/ // {n,} matches at least n characters
assert 'aaaab' ==~ /a{3,5}b/ // {nl,n2} matches between nl and n2 characters
assert 'abaxyzxyz' ==~ /[abl{2,}(xyz){2,4}/

//these also can apply to multi-character sequences or character classes

By using longhand syntax, we see that * operator is greedy, repeating the preceding token as often as possible, returning the leftmost longest
match:

def m= java.util.regex.Pattern.compile(/(.*), (.*)/) .matcher('one,two,three')
m.matches ()

assert m.group(l) == 'one,two' //what was matched between the first parens
assert m.group(2) == 'three' //what was matched between the second parens

assert m.hasGroup() //misc method to check whether the pattern has groups
assert m.groupCount () == 2 //misc method to count them

Anything between parentheses is a capturing group, whose matched values can be accessed later:

//we can access matched values in groups outside the pattern using
//longhand syntax...

def m= java.util.regex.Pattern.compile(/(a*) (b*)/).matcher('aaabb')
m.matches ()

assert m.group (1) == 'aaa' && m.start(l) == 0 && m.end(l) == 3
assert m.group (2) == 'bb' && m.start(2) == 3 && m.end(2) == 5
assert m.group (0) 'aaabb' //group(0) is the entire string

assert m.group () == 'aaabb' && m.start() == 0 && m.end() == 5

//parameters default to 0

//...or outside the pattern using indexing (don't forget the first [0] index)...
m= java.util.regex.Pattern.compile(/(a*) (b*)/) .matcher('aaabb')
m.matches ()

assert m[0] [0] == 'aaabb' //the entire string
assert m[0] [1] == 'aaa' && m.start(l) == 0 && m.end (1)
assert m[0] [2] == 'bb' && m.start(2) == 3 && m.end(2)

//...or within the pattern using \n notation:
assert 'aaabb,aaa,bb' ==~ /(a*) (b*),\1,\2/
// \1 is the first group matched, \2 the second matched

assert 'abbec,abb,bb,cc' ==~ /(a(b*)) (c*),\1,\2,\3/
//groups numbered by sequence of their opening parens from left to right
assert 'abcddd,ab,ddd' ==~ /(a(?:b)) (?>c) (d*),\1,\2/
//groups beginning with ?: or ?> aren't numbered
assert 'aba,a,b' ==~ /(a(b)?)+,\1,\2/
//second match for \1 has no match for \2, so \2 keeps value from first match

assert 'abc,bc' ==~ /a(bc)?,\1/
assert ! ('a,' ==~ /a(bc)?,\1/)

//referencing \1 causes entire match to fail if it hasn't already matched
assert ! ('a' ==~ /(labcl\1)/)

//referencing a group within itself causes entire match to fail

\1 through \9 in patterns are always interpreted as group references, and a backslash-escaped number greater than 9 is treated as a group
reference if at least that many groups exist at that point in the string pattern. Otherwise digits are dropped until either the number is smaller or
equal to the existing number of groups or it is one digit. Grouping parentheses and group references cannot be used inside character classes.

Some miscellaneous methods:

def m= (~/(a*)|bc/).matcher('bec') //another longhand syntax
m.matches ()
assert m.group (1) == null && m.start(l) == -1 && m.end(l) == -1

//if match successful but group didn't match anything

def p= java.util.regex.Pattern.compile(/ab*c/)
assert p.pattern() == /ab*c/ //retrieve the definition from a compiled pattern

Finding Patterns in Strings

As well as matching an entire string to a pattern, we can also find a pattern within a string using =~ syntax:

assert 'abcdefg' =~ /cde/ //is 'cde' within 'abcdefg'?
assert ! ('abcdefg' =~ /ace/)
assert java.util.regex.Pattern.compile(/cde/).matcher('abcdefg').find(
//alternative syntax
assert 'xxx z9g\t\nxxx' =~ /\s\w\d.\t\n/
//special characters work the same as with ==~ matching
assert ('xxxgOoDbYexxx' =~ /(?1)goodbye/)
//flags also work the same as with ==~
assert 'xxxbatxxx' =~ /blaeioult/
//character classes also work the same as with ==~

There can be more than one occurence of the pattern:

def s= 'horse house'

assert s =~ /ho.se/ //to check for the first occurence only
def m= (s =~ /ho.se/
assert m.size() == 2 && m[0] == 'horse' && m[1l] == 'house'

//to retrieve all occurences

def 1= []

s.eachMatch(/ho.se/){ 1 << it[0] } //alternative syntax, be sure to use it [0]
assert == ['horse', 'house']

def 12= []

s.eachMatch(/abc/){ 12 << it[0] } //no matches

assert 12 == []

def 13= []

s.eachMatch(/hor./){ 13 << it[0] } //one match only

assert 13 == ['hors']

Some longhand syntax, with various methods:

import java.util.regex.Pattern
def s= 'hoose horse house'

def m= Pattern.compile(/ho.se/) .matcher(s)

assert m.find() && s[m.start()..<m.end()] == 'hoose'
assert m.find() && s[m.start()..<m.end()] == 'horse'
assert m.find() && s[m.start()..<m.end()] == 'house'
assert ! m.find()

assert m.reset () && s[m.start()..<m.end()] == 'hoose'

//use reset() to find from beginning

assert m.find() && s[m.start()..<m.end()] == 'horse'
assert m.find(1) && s[m.start()..<m.end()] == 'horse'

m.setIndex (1)
//alternatively, calling setIndex() resets from that index,
//until find() called

assert m.find() && s[m.start()..<m.end()] == 'horse'

//giving a parameter to find() starts finding from that index

without finding

We can group when finding with =~ just as we do when matching with ==~:

def m= ('mistlemuscle' =~ /m(.)s(.)le/)

assert m.size() == 2

assert m.count == 2 //alternative to size()

assert m[0] == ['mistle', 'i', 't']

assert m[0] .size() == 3 && m[0] [0] == 'mistle' &&
m[0] [1] == 'i' && m[0][2] == 't°

assert m[1] == ['muscle', 'u', 'c']

assert m[1l] .size() == 3 && m[1] [0] == 'muscle' &&
m[1] [1] == 'u' && m[1l][2] == 'c'

//using the eachMatch() method...

def 1= []

'mistlemuscle’.eachMatch(/m(.)s(.)le/){ 1 << it }

assert l*.toList() == [['mistle', 'i', 't'], ['muscle', 'u', 'c'l]

def 12= []

'mistle'.eachMatch(/m(.)s(.)le/){ 12 << it }

assert 12*.toList() == [['mistle', 'i', 't']]

def 13= []

'practical'.eachMatch(/m(.)s(.)1le/){ 13 << it }

assert 13*.toList() == []

//using longhand notation...
import java.util.regex.Pattern
m= Pattern.compile(/(a+) (b+)/) .matcher('aaabbcccaabbb')

m.find ()

assert m.group(l) == 'aaa' && m.start(l) == 0 && m.end(l) == 3 &&
m.group(2) == 'bb' && m.start(2) == 3 && m.end(2) == 5 &&
m.group() == 'aaabb' && m.start() == 0 && m.end() == 5

m.find ()

assert m.group(l) == 'aa' && m.start(l) == 8 && m.end(l) == 10 &&
m.group(2) == 'bbb' && m.start(2) == 10 && m.end(2) == 13 &&
m.group() == 'aabbb' && m.start() == 8 && m.end() == 13

Calling collect() and each() require some special tricks to work:

def m= ('redeem coffee' =~ /ee/)
assert m.collect{it} == ['ee', 'ee']
//when calling collect() on a pattern with no groups...

assert m.collect{it} == []

//...we must call reset() if we want to access the found matches again
m.reset ()
assert m.collect{it} == ['ee', 'ee']

def 1= [] //ditto for each()
m.each{ 1 << it }

assert 1 == []

m.reset ()

1= []

m.each{ 1 << it }
assert 1 == ['ee', 'ee']

1= [] //ditto for eachWithIndex
m.eachWithIndex{it, i-> 1 << it+i }

assert 1 == []

m.reset ()

1= []

m.eachWithIndex{it, i-> 1 << it+i }

assert 1 == ['ee0', 'eel']

m= ('play the game\nfollow the rules' =~ /(?m)”*(.*?) the (.%*?)s/)
//for a pattern with groups...

1= []

m.each{g0, g1, g2-> 1 << [g0, g1, g2] }
//...we must pass the groups separately to the closure of each()

assert 1 == [['play the game',6 'play', 'game'l],
['follow the rules', 'follow', 'rules']]
m= ('mistlemuscle' =~ /m(.)s(.)le/)
assert m[1] == ['muscle', 'u', 'c'l]
assert m.group (0) == 'muscle' && m.group(l) == 'u' && m.group(2) == 'c'

//only call group() after using subscripting first

Aggregate functions we can use are:

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
findAll{ it[1] == 'a' } == ['tame', 'tape', 'take']

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
find{ it[1] == 'a' } == 'tame'

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
findIndexOf{ it[1] == 'a' } == 2 //index of 'tame'

assert ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
any{ it[1] == 'a' }

assert ! ('tone, true, tame, tape, take, tile, time' =~ /t..e/).
every{ it[1] == 'a' }

The sequence of text joined by operators such as | ? * + {} has no effect on the success of the ==~ matcher, but does affect what's found with the
=~ finder. The first choice of the | is found first, and backtracking to the second choice is only tried if necessary. The choice of the ? is tried first,
and backtracking to ignore the choice only tried if necessary. As much as possible of the * + {} is found first, and backtracking to find less text only
tried if necessary.

assert ('abcdefg' =~ /bcd|bedef/) [0] == 'bed!
assert ('abcdefg' =~ /bcdef|bed/) [0] == 'bedef!
//first choice always tried first

assert ('Friday 13th' =~ /Fri(day)?/) [0] [0] == 'Friday'

assert ('Say "hello" and "goodbye" to the world!' =~ /".*"/)[0] ==
'"hello" and "goodbye"'

1=]

'Say "hello" and "goodbye" to the world!'.eachMatch(/"[""]1*"/){ 1 << it }
//use NOT DOUBLE-QUOTES instead of ANY CHARACTER

assert 1*.toList() == [['"hello"']l, ['"goodbye"']]

Because the ? and * operators can match nothing, they may not always be intuitive to understand:

def m= ('grgggr'=~/g?/)

def 1= []
for(int 1 in 0..<(m.size() as int)) 1 << m[i]
assert 1 == ['g', '', 'g', 'g', 'g', '', ']

// ? also matches the empty space before each 'r', and the end of string

m= ('grgggr'=~/g*/)

1= 0]
for(int i in 0..<(m.size() as int)) 1 << ml[i]
assert 1 == ['g', '', 'ggg', '', '']

// * also matches the empty space before each 'r', and the end of string

m= ('grgggr'=~/g+/)

1= [1
for(int 1 in 0..<(m.size() as int)) 1 << m[i]
assert 1 == ['g', 'ggg'l // + repetition is the most intuitive to use

By putting a ? after the operators ? * + {}, we can make them "lazy" instead of "greedy", that is, as little as possible is found first, and backtracking
to find MORE text is tried if necessary:

assert ('Friday 13th' =~ /Fri(day)??/)[0][0] == 'Fri' //instead of 'Friday'
def 1= []

'Say "hello" and "goodbye" to the world!'.eachMatch(/".*?"/){ 1 << it }
assert 1*.toList() == [['"hello"'], ['"goodbye"']]

We've seen some longhand methods such as 'find’, 'matches’, 'start’, and 'end'. There's many more such methods:

def s= 'a quick quick dog'

def m= (s =~ /a.*k/)

//starts at the beginning, but doesn't try to match the entire string
assert m.lookingAt () && s[m.start()..<m.end()] == 'a quick quick'
//replaceFirst. ..
assert (s =~ /quick/) .replaceFirst('fast') == 'a fast quick dog'
assert (s =~ /qu(ick)/).replaceFirst('kw$l') == 'a kwick quick dog'

//can reference groups in pattern using $
assert (s =~ /qu(ick)/).replaceFirst('kw\\$1l') == 'a kw$l quick dog'

//include literal $ by writing \$, escaping \ as \\

//utility method to create a literal replacement String for the given String...

import java.util.regex.Matcher

assert Matcher.quoteReplacement ('kws$l') == 'kw\\S$1'

assert (s =~ /qu(ick)/).replaceFirst(Matcher.quoteReplacement ('kw$l')) ==
'a kw$l quick dog!'

//we can mix GStrings and replacement group refs by mixing single-quoted and

//double-quoted strings...

def ice= 'ice cream'

assert ('some malting beer' =~ /a(lting).*/).replaceFirst('esl' + "$ice") ==
'some melting ice cream'

//replaceAll. ..

assert (s =~ /quick/) .replaceAll('fast') == 'a fast fast dog'

s= 'a quickly quacking duck'

assert (s =~ /qu(.)ck/).replaceAll('kw$lck') == 'a kwickly kwacking duck'

//another shorthand...

assert 'a quick quick dog'.replaceFirst(/qu(ick)/, 'kw\\$1') ==
'a kws$l quick dog'

assert 'a quickly quacking duck'.replaceAll (/qu(.)ck/, 'kw$lck') ==
'a kwickly kwacking duck'

//'appendReplacement' and 'appendTail' should be used together for more
//complex replacements.. .

m= 'one banana two havana three matana four' =~ /(.a.)ana/

def i=0, sb= new StringBuffer ()

while(m.find()) m.appendReplacement (sb, '$la' + 'na'*i++)
m.appendTail (sb)

assert sb.toString() == 'one bana two havana three matanana four'

Similarly to back-references in patterns, $1 through $9 in replacement strings are always interpreted as group references, and a dollar-escaped
number greater than 9 is treated as a group reference if at least that many groups exist in the string pattern. Otherwise digits are dropped until
either the number is smaller or equal to the existing number of groups or it is one digit.

We've already seen the greedy and lazy operators. There's also possessive operators, which act like greedy operators, except they never
backtrack. Whereas choosing greedy or lazy operators affects the efficiency of a match, they don't affect the outcome. However, possessive
operators can affect the outcome of a match:

//the greedy * operator, with backwards backtracking...
def m= (~/(.*),(.*)/).matcher('one,two,three')
assert m.matches() && m.group(l) == 'one,two' && m.group (2) == 'three'

//the lazy *? operator, with forwards backtracking...
m= (~/(.*?),(.*)/).matcher('one,two,three')
assert m.matches() && m.group(l) == 'one' && m.group(2) == 'two,three'

//the possessive *+ operator, with no backtracking at all, even when doing so
//would cause a match...
assert ! (~/(.*+),(.*)/).matcher('one,two,three').matches()

//we can qualify other operators with possessiveness, such as ++, ?+, {m,n}+...
m= (~/([abc,]*+), (.*)/).matcher('abba,and,beegees')
assert ! m.matches ()

//greedily matches 'abba,a', but doesn't backtrack to 'abba'

Atomic grouping, a more general form of possessiveness, enables everything in the atom group to be considered as one token. No backtracking
occurs within the group, only outside of it:

assert ! ('abbbc' ==~ /a(?s>b*)bc/)
//after 'bbb' matched, no backtracking to 'bb' within atomic group

Atomic grouping and possessiveness are handy with nested repetition, allowing much faster match failures.
Finding Positions in Strings

We can use * and $ to match the beginning and end of each line using flag m:

def s= 'an apple\nthe lime\na banana'
assert ! (s =~ /"a.{7}%/)

//normally, * matches the beginning of the entire input,
//and $ matches its end

def m= (s =~ /(?m)*a.{7}s/)
//in multi-line mode, ” matches the beginning of each line,
//and $ matches each line's end

assert m.size() == 2 && m[0] == 'an apple' && m[l] == 'a banana'
assert m.toString() ==
'java.util.regex.Matcher [pattern=(?m)”“a.{7}$ region=0,26 lastmatch=a bananal'
//some technical info

assert ((s+'\n') =~ /(?m)”a.{7}$/) // $ ignores any \n at the end of the string

import java.util.regex.Pattern

m= Pattern.compile(/"a.{7}$/, Pattern.MULTILINE).matcher (s)
//alternative to (?m) in longhand syntax

assert m.find() && s[m.start()..<m.end()] == 'an apple'

assert m.find() && s[m.start()..<m.end()] == 'a banana'

assert ! m.find()

At the end of strings with \n at the end, $ matches twice:

Wi

e

m= ('nine\nlives' =~ /$/)

assert m.find() && m.start() == 10 && m.end() == 10
// $ matches at end of string once only

assert ! m.find()

m= ('nine\nlives\n' =~ /$/)

assert m.find() && m.start() == 10 && m.end() == 10
// $ matches just before \n ...

assert m.find() && m.start() == 11 && m.end() == 11

//...and again, $ matches after the \n
assert ! m.find()

m= ('nine\nlives\n' =~ /(?m)s$/)
assert m.find() && m.start() == 4 && m.end() == 4

//in multiline mode, $ matches at end of each line
assert m.find() && m.start() == 10 && m.end() 10
assert m.find() && m.start() == 11 && m.end() == 11

// $ also always matches after the \n in multiline mode
assert ! m.find()

m= ('nine\nlives\n' =~ /*/)

// * matches at beginning of string once only,
//even if there's an \n at the end
assert m.find() && m.start() == 0 && m.end() == 0
assert ! m.find()

m= ('nine\nlives\n' =~ /(?m)"/)
assert m.find() && m.start() == 0 && m.end() == 0
assert m.find() && m.start() == 5 && m.end() == 5

//in multiline mode, * matches at beginning of each line
assert ! m.find()
// ~ also never matches after the \n in multiline mode

can use \A \Z and \z to match the beginning and end of input, even in multiline mode:

def sl= 'an apple\na banana'
assert (sl =~ /\A.{8}\n.{8}\z/)

// \A always matches the beginning of the entire input, and \Z its end
assert (sl =~ /\A.{8}\n.{8}\z/) // \z also matches its end

assert (sl =~ /(?m)\A.{8}\n.{8}\2/)
// ?m flag has no effect on meaning of \A \Z and \z

def s2= sl + '\n'

assert (s2 =~ /(?m)\A.{8}\n.{8}\2/)
// \Z ignores an extra \n when matching the end of input...
assert ! (s2 =~ /(?m)\A.{8}\n.{8}\z/) // ...but \z is fussy

We can match at word boundaries:

// \b matches either the preceding or following character, but not both, is
//a word (matched by \w)
(0x20..0x7F) .each{itl->
(0%20. .0x7F) .each{it2->
def s= "${itl as char}${it2 as char}"
if(s ==~ /.\b./) assert (s[0] ==~ /\w/) * (s[1] ==~ /\w/)

b}

// \B matches where \b doesn't
assert (0x0..0x7F).findAll{ (it as char) ==~ /\b/ && (it as char) ==~ /\B/ }.
size() == 0

// * means xor (exclusive or)

We can can look behind or ahead of a position, ie, find a position based on text that precedes follows it, but without matching that text itself. We
can only use fixed-length strings when looking behind, ie, literal text, character classes, finite repetition ({length} and ?), and alternation where
each string in it is also of fixed length, because the length of the match must be able to be predetermined:

//use (?=) to find the position just in front of all 'qu'...
assert 'the queen quietly quacked'.replaceAll(/(?=qu)/, 'we') ==
'the wequeen wequietly wequacked'

//use (?!) to find all 'c' not followed by 'a'...
assert 'clever cats can count mice'.replaceAll(/c(?!a)/, 'k') ==
'klever cats can kount mike'

//use (?<=) to find all words ending in '-gry'...
assert 'The angry, hungry boy gried out.'.
replaceAll (/\b\w+?(?<=gry)\b/, 'naughty') ==
'The naughty, naughty boy gried out.'

//use (?<!) to find 3-letter words not ending with 'e'...
assert 'The spy saw seven spuds.'.replaceAll(/\b\w{3}(?<!e)\b/, 'hid') ==
'The hid hid seven spuds.

//lookaheads and lookbehinds can contain capturing groups...
assert 'the landlord dared band led not'.
replaceAll (/\b\w{4,}(?<=(\w{3})d)\b/, '$1') ==
'the lor are ban led not'

Matching positions in a string is useful for splitting the string, and for inserting text:

assert 'The leaky cauldron.'.split(/\b/) .toList() ==
(v, 'The', ' ', 'leaky', ' ', 'cauldron', '.']
//note that an empty string is prepended
assert 'Hi, my, bye.'.split(/\b(?=\w)/).toList() ==
[**, '"Hi, ', 'my, ', 'bye.']
assert 'The leaky cauldron.'.replaceAll(/\b/, '*') =
'*The* *leaky* *cauldron*.
//note that text inserted at beginning but not at end

We can split a string in many ways:

def s= 'hi,my,spy, tie,bye,, '
assert s.split(/,/).toList() == ['hi', 'my', 'spy', 'tie', 'bye']
assert s.split(/,/, 1).toList() == ['hi,my,spy,tie,bye,,']

//extra argument gives max number of splits
assert s.split(/,/, 2).toList() == ['hi', 'my,spy,tie, bye,,']
assert s.split(/,/, 3).tolList() == ['hi', 'my', 'spy,tie,bye,,']
assert s.split(/,/, 0).toList() == ['hi', 'my', 'spy', 'tie', 'bye']
//any number of splits; same as no arg
assert s.split(/,/, -1).toList() == ['hi', 'my', 'spy', 'tie', 'bye', '', '']

//a negative arg doesn't remove trailing empty strings

assert (~/,/).split(s).toList() == ['hi', 'my', 'spy',6 'tie', 'bye'l
//alternative syntax
assert (~/,/).split(s, 2).toList() == ['hi', 'my,spy,tie,bye,,"']

Restricting a String to a Region for a Pattern

We can set the limit of the part of the input string that will be searched to find a match:

import java.util.regex.Pattern

def m= Pattern.compile(/abc+/).matcher('aaabc')

assert m.find()

m.region(l, 4) //restrict string 'aaabc' to a region within, ie, 'aab'
assert ! m.find()

assert m.regionStart() == 1 && m.regionEnd() == 4

assert ! m.region(l, 4).find() //alternative syntax

//we can make a region's boundaries transparent to lookaround and boundary
//matching constructs...

m= Pattern.compile(/abc\b/).matcher('aaabcdef')

m.region(1l, 5)

assert m.find() //doesn't consider whether there's a word boundary (\b) after
//'aabc' in full string

assert ! m.hasTransparentBounds ()

m.region(1l, 5)

m.useTransparentBounds (true)

assert ! m.find() //doesn't find anything because the \b doesn't match

assert m.hasTransparentBounds ()

assert ! m.region(l, 5).useTransparentBounds (true).find() //alternative syntax

//we can decide whether to match anchors such as * and $ at the boundaries of
//the region...

m= Pattern.compile(/“abc$/).matcher('aaabcdef')

m.region (2, 5)

assert m.find()

assert m.hasAnchoringBounds () //match such anchors by default

m.region (2, 5)

m.useAnchoringBounds (false)

assert ! m.find() //the * and $ no longer match

assert ! m.region(2, 5).useAnchoringBounds (false).find() //alternative syntax

JN2015-Files

To see the OS-dependent characters used for formatting filenames (here, when running on Windows):

assert File.separator == '\\' && File.separatorChar == '\\' as char
//used for formatting file names
assert File.pathSeparator == ';' && File.pathSeparatorChar == ';' as char

Instances of File are immutable representations of objects in the file system, that may or may not exist. To see different formats of a filename
(here, when running within D:\Groovy\Scripts directory):

Non

def f= new File('File.txt') //relative file name

assert f.name == 'File.txt'

assert ! f.isAbsolute()

assert f.path == 'File.txt'

assert f.parent == null

assert f.absolutePath == 'D:\\Groovy\\Scripts\\File.txt' //returns a string

assert f.absoluteFile.toString() == 'D:\\Groovy\\Scripts\\File.txt'
//returns a File object instead of string

assert f.canonicalPath == 'D:\\Groovy\\Scripts\\File.txt'

assert f.canonicalFile.toString() == 'D:\\Groovy\\Scripts\\File.txt'
//returns a File object instead of string

assert f.toURI().toString() == 'file:/D:/Groovy/Scripts/File.txt'

//toURI() returns a URI object

f= new File('D:/Groovy/Scripts/File.txt') //absolute file name

assert f.name == 'File.txt'

assert f.isAbsolute()

assert f.path == 'D:\\Groovy\\Scripts\\File.txt'

assert f.parent == 'D:\\Groovy\\Scripts'

assert f.parentFile.toString() == 'D:\\Groovy\\Scripts'
//returns a File object instead of string

assert f.absolutePath == 'D:\\Groovy\\Scripts\\File.txt'

assert f.canonicalPath == 'D:\\Groovy\\Scripts\\File.txt'

f= new File('../File.txt")

assert f.name == 'File.txt'

assert ! f.isAbsolute()

assert f.path == '..\\File.txt'

assert f.parent == '..'

assert f.absolutePath == 'D:\\Groovy\\Scripts\\..\\File.txt'

assert f.canonicalPath == 'D:\\Groovy\\File.txt'

f= new File('') //current directory

assert f.name == ''
assert ! f.isAbsolute()

assert f.path == "'

assert f.parent == null

assert f.absolutePath == 'D:\\Groovy\\Scripts'

assert f.canonicalPath == 'D:\\Groovy\\Scripts'

assert new File('File.txt') == new File('File.txt')
//compares two filenames' lexical names

assert new File('File.txt').compareTo (new File ('File.txt')) == 0
//equivalent method name

assert new File('File.txt') != new File('../Scripts/File.txt')

//lexical names different (although files are the same)

e of the above example's files were created. Files are only created by some event:

def fl= new File('Filel.txt')
fl << 'abcdefg'

assert fl.length() == 7 && fl.size() == 7
assert fl.isFile() && ! fl.isDirectory() && ! f1.isHidden/(

def f2= new File('D:/Groovy/Scripts', 'File2.txt')
//we can optionally supply the parent, either as a string...
f2= new File(new File('D:/Groovy/Scripts'), 'File2.txt!')

//...or as a File object
assert ! f2.exists()
f2.createNewFile() //if it doesn't already exist
assert f2.exists()

def dl= new File('Directoryl')

//file created by writing to it; file appended to if it already exists

dl.mkdir () //make directory, if it doesn't already exist
def d2= new File('Directory2/SubDirl')
d2.mkdirs ()
//make directory, including necessary but nonexistent parent directories

println fl.getFreeSpace ()

//the number of unallocated bytes in the partition this abstract file is
println fl.getUsableSpace ()

//the number of bytes available to this virtual machine in the partition
//this abstract file is in
println fl.getTotalSpace() //the size of the partition this abstract file is

//We can set file permissions:

assert f2.setWritable (true, false) && f2.canWrite()
//set writable permission for every user
assert f2.setWritable (true) && f2.canWrite ()
//set writable permission on file for owner only
assert f2.setWritable (false, false) && ! f2.canWrite(
//unset writable permission for every user
assert f2.setWritable (false) && ! f2.canWrite()
//unset writable permission on file for owner only
f2.writable= true //property format for owner only
assert f2.canWrite ()

assert f2.setReadOnly () && ! f2.canWrite ()
assert f2.setExecutable(true, false) && f2.canExecute ()
//set executable permission for every user
assert f2.setExecutable(true) && f2.canExecute ()
//set executable permission on file for owner only
f2.executable= true //property format for owner only
assert f2.canExecute()
assert ! f2.setExecutable(false)
//returns false because command unsuccessful: can't make file
//nonexecutable on Windows, though can on other systems

assert f2.setReadable (true, false) && f2.canRead()

//set readable permission for every user
assert f2.setReadable (true) && f2.canRead ()

//set readable permission on file for owner only
f2.readable= true //property format for owner only
assert f2.canRead()
assert ! f2.setReadable(false)

//can't make file nonreadable on Windows

//We can retrieve a list of files from a directory:

assert new File ('D:/Groovy/Scripts').list().toList () ==
['Script.bat', 'Filel.txt', 'File2.txt', 'Directoryl', 'Directory2']
//1list () returns an array of strings

assert new File ('Directory2').list().toList() == ['SubDirl']
assert new File('').list() == null
//1list () returns null if directory not explicitly specified

assert new File('D:/Groovy/Scripts') .list (
l[accept:{d, f-> £ ==~ /.*?1.%/ }] as FilenameFilter
) .toList() == ['Filel.txt', 'Directoryl']
//filter taking dir (File) and file (String) arguments, returns boolean

assert new File('D:/Groovy/Scripts') .list (
{d, £-> £ ==~ /.*?1.%/ } as FilenameFilter
) .toList() == ['Filel.txt', 'Directoryl'] //shorter syntax

assert new File('D:/Groovy/Scripts').listFiles().toList()*.name ==
['Script.bat', 'Filel.txt', 'File2.txt', 'Directoryl', 'Directory2']
//1listFiles() returns array of File objects

in

assert new File ('Directory2') .listFiles() .toList()*.toString() ==
['Directory2\\SubDirl']

assert new File('D:/Groovy/Scripts').listFiles(
{dir, file-> file ==~ /.*?\.txt/ } as FilenameFilter
) .toList () *.name == ['Filel.txt',6 'File2.txt']

assert new File('D:/Groovy/Scripts').listFiles(
[accept: {file-> file ==~ /.*?\.txt/ }] as FileFilter
) .toList () *.name == ['Filel.txt',6 'File2.txt']
//use a filter taking one argument only, returning boolean

//Renaming and deleting files:

f2.renameTo(new File ('RenamedFile2.txt'))
assert f2.name == 'File2.txt' //because File object is immutable
assert new File ('RenamedFile2.txt').exists()

[new File ('RenamedFile2.txt'), new File('Directoryl'), new File('Directory2')].
each{ it.delete() } //delete files

assert ! new File('RenamedFile2.txt') .exists()

assert | new File('Directoryl') .exists()

assert new File ('Directory2') .exists()
//because each sub-directory must be deleted separately

assert new File('Directory2/SubDirl') .delete() //returns true if file deleted OK
assert new File ('Directory2') .delete()
assert | new File('Directory2') .exists()

new File ('Filel.txt') .deleteOnExit ()
assert new File('Filel.txt') .exists() //but will be deleted when VM exits

def mod= new File('Filel.txt') .lastModified ()

assert new File('Filel.txt') .setLastModified (mod - 60000)
//60 seconds previously, returns true if successful

new File ('Filel.txt') .lastModified= mod - 120000

//property syntax for setting only
assert new File('Filel.txt') .lastModified() == mod - 120000

To perform general file manipulation in a file system, we can retrieve all the topmost directories:

println File.listRoots() .toList ()*.toString()
//listRoots () returns an array of File objects

To create a temporary file, with given prefix (of at least 3 chars) and suffix:

File.createTempFile('Tem', '.txt')
//created in directory for temporary files
File.createTempFile('Tem', '.txt', new File('D:\\Groovy\\Scripts'))

//eg, created D:/Groovy/Scripts/Tem59217.txt

We can read and write to files in various ways, as in this example:

def fl= new File('Filel.txt') << 'abcdefg:hijklmnop:grstuv:wxyz\n'
//create and write to the file
fl.leftShift ('123:456:7890\n') //equivalent method name
new File('File2.txt') .createNewFile ()
[new File ('Directoryl'), new File('Directory2/SubDirl')].each{ it.mkdirs() }

def list= []
new File ('D:\\Groovy\\Scripts').eachFile{ list<< it.name }
//eachFile() returns a list of File objects
assert list ==
['Script.bat', 'Filel.txt', 'File2.txt', 'Directoryl', 'Directory2']

list= []
new File ('D:\\Groovy\\Scripts').eachFileMatch(~/File.*?\.txt/){ list<< it.name }
//a regular expression, or any caseable expression

assert list == ['Filel.txt',6 'File2.txt']

list= []

new File ('D:\\Groovy\\Scripts').eachFileRecurse{ list<< it.name }

assert list == ['Script.bat', 'Filel.txt',6 'File2.txt',
'Directoryl', 'Directory2', 'SubDirl']

list= []

new File ('D:\\Groovy\\Scripts').eachDir{ list<< it.name }

assert list == ['Directoryl', 'Directory2']

list= []

fl.eachLine{ list<< it }

assert list == ['abcdefg:hijklmnop:grstuv:wxyz', '123:456:7890"']

list= fl.readLines/()

assert list == ['abcdefg:hijklmnop:grstuv:wxyz', '123:456:7890"']
list= []
fl.splitEachLine(':'){ list<< it } //splits each line into a list

assert list == [
['abcdefg', 'hijklmnop', 'grstuv', 'wxyz'l]l,
['123', '456', '7890'],

def f2= new File('File2.txt')

f2.write ('abcdefg\n') //can only write strings
assert f2.getText() == 'abcdefg\n'

f2.append ('hijklmnop, ')

f2.append(42) //can append any object

assert f2.getText() == '''abcdefg
hijklmnop,42'""'

f2.write('', 'unicode') //overwrites existing contents
assert f2.getText ('unicode') == "'
f2.append('', 'unicode') //also appends unicode marker OXFEFF

assert f2.getText('unicode') == '' + (OXFEFF as char) + "'
[new File('Filel.txt'),
new File ('File2.txt'),

new File ('Directory2/SubDirl'),
new File ('Directory2'),
].each{ it.delete() } //delete files used by this example

(
(
new File ('Directoryl'),
(
(

JN2025-Streams

We can create streams of data from files, network resources, memory locations, etc, both input and output. To initially demonstrate the use of
streams, we'll use streams around a file, both byte and Character streams. The methods introduced in these example can be used for any stream.

InputStreams and OutputStreams are streams of bytes:

def fos= new FileOutputStream('TestFile.txt')

//These methods are available for all output streams, not just FileOutputStream:
[21, 34, 43, 79].each{ fos.write(it) }
//write out the lowest-order 8 bits of the supplied integer
fos.flush()
fos.write([69, 32, 22] as bytell)
fos.write([10, 11, 12, 13, 88, 89] as bytell, 3, 2)
//write 2 bytes from array starting at index 3
fos.close()
try{ fos.write(77); assert 0 }catch(e){ assert e instanceof IOException }
//no writing after file closed

//check the byte contents of the file with a File utility method:
assert new File('TestFile.txt') .readBytes () .toList () ==
[21, 34, 43, 79, 69, 32, 22, 13, 88]

def fis= new FileInputStream('TestFile.txt')

//These methods are available for all input streams, not just FileInputStream:

assert fis.available() == 9

//an estimate of bytes left for reading or skipping in the input stream
assert fis.read() == 21 //actually, the next byte is returned as an integer
fis.skip(2) //skip over, here, 2 bytes of data from the stream
assert fis.available() == 6

def ba2= new byte[3]
fis.read (ba2)

assert ba2.toList() == [79, 69, 32]

def ba3= new byte[6]

assert fis.read(ba3, 3, 2) == 2 //fill ba3 with 2 elements from index 3,
//return num of elements copied, here, 2

assert ba3.toList() == [0, 0, 0, 22, 13, 0]

assert fis.read(ba3) == 1 //return num of elements copied, here, 1
assert ba3.toList() == [88, 0, 0, 22, 13, 0]

assert fis.read(ba3) == -1 //return -1 if already at end-of-stream

//true if this input stream support the mark() and reset() methods...
if (fis.markSupported()) {

fis.reset ()

//reset reading to beginning of stream if mark() hasn't ever been called

assert fis.read() == 21

fis.mark(0) //mark this position in the stream; argument has no meaning here
fis.read (new bytel[4])

fis.reset () //reset reading to where the last mark() method was called
assert fis.read() == 34
}
fis.close()
try{ fis.read(); assert 0 }catch(e){ assert e instanceof IOException }

new File('TestFile.txt') .delete() // delete the file used by this example

Readers and Writers are streams of Characters:

def fw= new FileWriter('TestFile.txt')

//These methods are available for all writers, not just for FileWriter:

['a', 'b']l.each{ fw.write(it as char) } //write out the supplied character
['ed', 'efg'].each{ fw.write(it) } //write out the supplied string
fw.flush ()

fw.write(['h', 'i', 'j'] as char[]

fw.write(['h', 'i', 'j', 'k', '1l', 'm'] as charl[], 3, 2)

//write 2 chars from array starting at index 3
fw.write ('klmnopqg', 2, 4) //write 4 chars from string starting at index 2
fw.append('q' as char). //these Java 5.0 methods allow chaining
append ('rstuv') .

append ('uvwxyz', 2, 6)
//use subsequence from index 2 to index 6 of supplied string

fw.close ()
try{ fw.write('z'); assert 0 }catch(e){ assert e instanceof IOException }

//no writing after file closed

assert new File('TestFile.txt') .readLines() == ['abcdefghijklmnopgrstuvwxyz']

def fr= new FileReader('TestFile.txt')

//These methods are available for all readers, not just for FileReader:
if (fr.ready()) {

assert fr.read() == 'a'

fr.skip(2) //skip over, here, 2 chars
def ca2= new char[3]

fr.read(ca2)

assert ca2.tolList()*.toString() == ['d', 'e', 'f']

def ca3= new char[6]

assert fr.read(ca3, 3, 2) == 2 //fill ca3 with 2 elements from index 3,
//return num of elements copied, here, 2
assert ca3.toList()*.toString() == ['\0', '\o', '\o', 'g', 'h', '\0']
//similar to InputStream method
fr.skip(20)

assert fr.read(ca3) == -1 //return -1 if already at end-of-stream

//true if this input stream support the mark() and reset() methods...

if (fr.markSupported()) {

fr.reset ()

//reset reading to beginning of stream if mark() hasn't ever been called

assert fr.read() == 'a' as char

fr.mark(0) //mark this position in the stream; argument has no meaning here
fr.read(new char[4])

fr.reset () //reset reading to where the last mark() method was called

assert fr.read() == 'b' as char
}
fr.close()
try{ fr.read(); assert 0 }catch(e){ assert e instanceof IOException }

}

new File ('TestFile.txt') .delete() //delete the file used by this example

Closing Streams

When we write to an output stream or writer such as FileWriter, we should always close() it in some way:

//here, because we don't close() the FileWriter, if there's an IOException,
//some written data may be lost...
def fw= new FileWriter('TestFilel.txt')

try(

fw.write ('abc\r\ndefg')

throw new IOException('') //simulate error on write() in previous line
}catch(e){ }
assert new File ('TestFilel.txt') .readLines() .toList() == []

//nothing written because wasn't closed or flushed
new File('TestFilel.txt').delete()
assert new File('TestFilel.txt').exists() //not deleted because wasn't closed

//here, we close() the FileWriter in a 'finally' block, not losing any written

//data. ..
def fw2= new FileWriter('TestFile2.txt')
try(
try(
fw2.write ('abc\r\ndefg')
throw new IOException('') //simulate error on write() in previous line
}finally{

fw2.close() //or flush() file so no data will be lost when exception thrown
}
}catch(e){ }
assert new File ('TestFile2.txt').readLines() == ['abc', 'defg']
//contents written OK
new File('TestFile2.txt') .delete()
assert ! new File('TestFile2.txt').exists() //file deleted OK

//using withWriter () always closes the File, whatever is thrown inside
//closure. ..
try(
new File('TestFile3.txt').withWriter(){ w->
w.write ('abc\r\ndefg')
throw new IOException('') //simulate error on write() in previous line
}
}catch(e){ }
new File('TestFile3.txt') .delete()
assert ! new File('TestFile3.txt').exists()
//deleted OK because withWriter () closed the file

We can choose from many such methods to read and write characters to streams, where the stream is always closed automatically. Here's so
methods which use a Reader and/or Writer. Although these examples use Files, all these methods work for other streamed resources also.

new File('TestFilel.txt').withWriter{ w->
w<< 'abc' << 'def' //operator syntax
w.leftsShift('ghi') .leftShift('jkl') //equivalent method name

}

//file overwritten because it already exists...
new File('TestFilel.txt').withWriter ('unicode'){ w->
w<< 'abcdefghij'

new File ('TestFilel.txt').withWriterAppend('unicode'){ w->
w<< 'klmnop' //although appending, unicode marker OxFEFF also added

//here, we'll use concatenation format for string because it's easier to read
def fw= new FileWriter('TestFilel.txt')
fw.withWriter{ w->

[tab,cd\n' + 'efg\n' + 'hi,jk\n' + '1°', ‘mn,op‘].each{

w<< it

new File('TestFilel.txt').withReader{ r->
assert r.read() == 'a'

def list= []

new File ('TestFilel.txt').eachLine{
list<< it

}

assert list == ['ab,cd', 'efg', 'hi,jk', 'lmn,op']

assert new File('TestFilel.txt') .readLines() ==
['ab,cd', 'efg', 'hi,jk', 'lmn,op'l]

assert new File('TestFilel.txt') .text ==
'ab,cd\n' + 'efg\n' + 'hi,jk\n' + 'lmn,op' //property

//filter lines from file, and write to writer...
def fw2= new FileWriter('TestFile2.txt')
new File('TestFilel.txt').filterLine (fw2){ line->
! line.contains('g')
}
assert new File ('TestFile2.txt') .text ==
'ab,cd\r\n' + 'hi,jk\r\n' + 'lmn,op\r\n'
// \n was changed to \r\n for Windows

def fw2a= new FileWriter('TestFile2.txt')
new FileReader ('TestFilel.txt').filterLine(fw2a){ line->
! line.contains('g')
}
assert new File ('TestFile2.txt') .text ==
tab,cd\r\n' + 'hi,jk\r\n' + 'lmn,op\r\n’'

def fr2= new FileReader('TestFile2.txt')

assert [fr2.readLine(), fr2.readLine()] == ['ab,cd', null]
//known bug: only returns correctly on first call

fr2.close()

new FileReader ('TestFile2.txt').withReader{ r->
def ca= new char[25]
r.read (ca)

assert ca.toList().join('').trim() == 'ab,cd\r\n' + 'hi,jk\r\n' + 'lmn,op'
}
def list2= []
new FileReader ('TestFile2.txt').splitEachLine(','){ line->
list2<< line
}
assert list2 == [['ab', 'cd'l, ['hi', 'jk']l, ['lmn', 'op'] 1]

def fw2b= new FileWriter('TestFile2.txt')
new FileReader ('TestFilel.txt').transformLine (fw2b){ line->
if (line.contains(',')) line += ', z'
line
}
assert new File('TestFile2.txt') .text ==
tab,cd,z\r\n' + 'efg\r\n' + 'hi,jk,z\r\n' + 'lmn,op,z\r\n'
def fw2c= new FileWriter('TestFile2.txt')
new FileReader ('TestFilel.txt').transformLine (fw2c){ line->
if (line.contains(',')) line += ', z'
line
}
assert new File ('TestFile2.txt') .text ==
tab,cd,z\r\n' + 'efg\r\n' + 'hi,jk,z\r\n' + 'lmn,op,z\r\n'

def fw2d= new FileWriter ('TestFile2.txt')

new FileReader ('TestFilel.txt').transformChar (fw2d){ ch->
if(ch == ', ") ch= '***!
ch

}

assert new File ('TestFile2.txt') .text ==

tab***cd\n' + 'efg\n' + 'hi**xjk\n'

+ 'lmn***op' // \n not converted

[new File ('TestFilel.txt'), new File('TestFile2.txt')].each{ it.delete() }
//delete files created by this example

Some methods which use an input and/or output stream which, although using Files in the examples, all work for other streamed resources also:

new File ('TestFilel.txt').withOutputStream{ os->
os<< ([95, 96] as byte[]l) //operator syntax for byte arrays
os.leftShift ([97, 98, 99] as bytel[]l) //equivalent method name

}
assert new File('TestFilel.txt') .readBytes() .toList() == [95, 96, 97, 98, 99]

def list= []
new File ('TestFilel.txt').eachByte(){ b->
list<< b

}

assert list == [95, 96, 97, 98, 99]

new FileOutputStream('TestFilel.txt') .withStream{ os->
os.write([100, 101, 102, 103] as bytel[])

def list2= []
new FileInputStream('TestFilel.txt').eachByte(){ b->
list2<< b

}

assert list2 == [100, 101, 102, 103]

new File ('TestFilel.txt').withInputStream{ is->
def ba= new byte[5]
is.read (ba)
assert ba == [100, 101, 102, 103, 0]

new FileInputStream('TestFilel.txt').withStream{ s->
def ba= new byte[5]
s.read (ba)
assert ba == [100, 101, 102, 103, 0]

assert new FileInputStream('TestFilel.txt').text == 'defg'
assert new FileInputStream('TestFilel.txt').getText ('unicode') == "'

new FileInputStream('TestFilel.txt').withReader{ r->
assert r.read() == 'd’

new FileOutputStream('TestFile2.txt') .withWriter ('unicode'){ w->
w<< !

}

assert new FileInputStream('TestFile2.txt').getText ('unicode') == "'

new FileOutputStream('TestFile2.txt') .withWriter{ w-»>
w<< new FileInputStream('TestFilel.txt')
//send contents of input stream directly to output stream
w<< 2.495 << '\n' //send an object to output stream as string, returning
//a writer, then send another object to that writer
w<< [3,4,5]
//send another object to output stream as string, returning a writer

}

assert new FileInputStream('TestFile2.txt').text == 'defg2.495\n' + '[3, 4, 5]'

def list3= []
new FileInputStream('TestFile2.txt').eachLine{ line->
list3<< line

}

assert list3 == ['defg2.495', '[3, 4, 5]']
new FileInputStream('TestFile2.txt').readLine() == 'defg2.495'
new FileInputStream('TestFile2.txt').readLines() == ['defg2.495', '[3, 4, 5]']

def fw3= new FileWriter('TestFile3.txt')
new FileInputStream('TestFile2.txt').filterLine (fw3){ line->
line.contains('g")

}

assert new File ('TestFile3.txt') .readLines() == ['defg2.495']

[new File('TestFilel.txt'),

new File ('TestFile2.txt'),
new File ('TestFile3.txt')].each{ it.delete() }

Although the examples above are for files, they're all available for streams, readers, and writers around all other resources also.

Resource-specific Streams

When we met the FilelnputStream, FileOutputStream, FileReader, and FileWriter in the above examples, we constructed them with a single

String. We can also construct them with a file, and add an 'append' flag:

def fos= new FileOutputStream(new File ('TestFile.txt'), true)

(

fos= new FileOutputStream(new File ('TestFile.txt'))

fos= new FileOutputStream('TestFile.txt', true) //appends to the file
fos= new FileOutputStream('TestFile.txt', false) //overwrites the file
fos= new FileOutputStream('TestFile.txt') //overwrites the file
def fis= new FileInputStream(new File ('TestFile.txt'))

fis= new FileInputStream('TestFile.txt')

def fr= new FileReader (new File ('TestFile.txt'))
fr= new FileReader ('TestFile.txt')

def fw= new FileWriter (new File('TestFile.txt'), true) //appends to the file
fw= new FileWriter (new File ('TestFile.txt'), true) //overwrites the file

fw= new FileWriter (new File ('TestFile.txt')) //overwrites the file

fw= new FileWriter ('TestFile.txt', true) //appends to the file

fw= new FileWriter('TestFile.txt', false) //overwrites the file

fw= new FileWriter('TestFile.txt') //overwrites the file

//appends to the file
fos= new FileOutputStream(new File ('TestFile.txt'), false) //overwrites the file
//overwrites the file

There are many other streams, readers, and writers that wrap around specific resources. ByteArraylnputStream and ByteArrayOutputStream

wrap around an array of bytes:

def bais= new ByteArrayInputStream([33, 34, 35] as bytel[])

[33, 34, 35, -1].each{ assert bais.read() == it }
def bais2=

new ByteArrayInputStream([33, 34, 35, 36, 37, 38, 39] as bytel],
[35, 36, 37, 38, -1].each{ assert bais2.read() == it }

def baos= new ByteArrayOutputStream()

baos.write([100, 101, 102, 103] as bytel[])

assert baos.size() == 4

assert baos.toByteArray().toList() == [100, 101, 102, 103]

def baos2= new ByteArrayOutputStream(10)

//we can specify initial size of internal buffer
baos.writeTo(baos2) //we can writeTo any OutputStream
assert baos2.toByteArray () .toList () == [100, 101, 102, 103]
assert baos2.toString() == 'defg'
assert baos2.toString('unicode') == '!
baos2.reset ()
assert baos2.toByteArray () .toList () == []

2,

4

)

CharArrayReader and CharArrayWriter wrap around an array of chars:

def car= new CharArrayReader(['a', 'b', 'c']l as char[])

['a', 'b', 'c', -1].each{ assert car.read() == it }
def car2=

new CharArrayReader(['a', 'b', 'c¢', 'd', 'e', 'f', 'g']l as charl[]l, 2, 4
[te', 'd', 'e', '£', -1].each{ assert car2.read() == it }

def caw= new CharArrayWriter()

caw.write(['a', 'b', 'c', 'd']l as char[])
assert caw.size() == 4
assert caw.toCharArray().toList() == ['a', 'b', 'c', 'd'].collect{ it as char }

def caw2= new CharArrayWriter (10
//we can specify initial size of internal buffer

caw.writeTo(caw2) //we can writeTo any Writer

assert caw2.toCharArray().toList() == ['a', 'b', 'c', 'd']l.collect{ it as char }
assert caw2.toString() == 'abcd'

caw2.reset ()

assert caw2.toCharArray () .toList() == []

StringReader and StringWriter wrap around a StringBuffer:

def sr= new StringReader('abcde')
[ta', 'b', 'c', 'd', 'e', -1].each{ assert sr.read() == it }

def sw= new StringWriter()

sw= new StringWriter(10) //we can specify initial size of StringBuffer
sw.write('abcde')

assert sw.buffer.toString() == 'abcde'

assert sw.toString() == 'abcde'

InputStreamReader and OutputStreamWriter are a reader and writer pair that forms the bridge between byte streams and character streams. An
InputStreamReader reads bytes from an InputStream and converts them to characters using a character-encoding, either the default or one
specified by name. Similarly, an OutputStreamWriter converts characters to bytes using a character-encoding and then writes those bytes to an
OutputStream. In this example, we use a FilelnputStream and FileOutputStream, but any InputStream or OutputStream could be used:

def wtr= new OutputStreamWriter (new FileOutputStream('TheOutput.txt'))
wtr<< 'abc'
wtr.close ()

def rdr= new InputStreamReader (new FileInputStream('TheOutput.txt'))
def list= []

rdr.eachLine{ list<< it }

assert list == ['abc'l]

println System.getProperty ("file.encoding")
//to see the default file encoding used

wtr= new OutputStreamWriter (new FileOutputStream('TheOutput.txt'), 'unicode')
wtr<< 'def!

println wtr.encoding //perhaps, 'UTF-16', as 'unicode' above is an alias
wtr.close ()

rdr= new InputStreamReader (new FileInputStream('TheOutput.txt'), 'unicode')
println rdr.encoding

list= []

rdr.eachLine{ list<< it }

assert list == ['def']

The buffered streams, reader, and writer wrap around another, buffering the data read or written so as to provide for the efficient processing of
bytes, characters, arrays, and lines. It's very useful for streams, readers, and writers whose input/output operations are costly, such as files.

def bos= new BufferedOutputStream(new FileOutputStream('TheOutput.txt'))
println bos.buf.size() //see the size of the default buffer

bos= new BufferedOutputStream(new FileOutputStream('TheOutput.txt'), 16384)
//set the buffer size
assert bos.buf.size() == 16384

bos= new File ('TheOutput.txt') .newOutputStream()
//returns a buffered output stream

def bis= new BufferedInputStream(new FileInputStream('TheOutput.txt'))
bis= new BufferedInputStream(new FileInputStream('TheOutput.txt'), 16384)
//set the buffer size
bis= new File ('TheOutput.txt') .newInputStream()
//returns a buffered input stream

def bwtr= new BufferedWriter (new FileWriter ('TheOutput.txt'))
bwtr= new BufferedWriter (new FileWriter ('TheOutput.txt'), 16384)
//set the buffer size

bwtr= new File ('TheOutput.txt') .newWriter() //returns a buffered writer

bwtr= new File ('TheOutput.txt') .newWriter ('unicode')

bwtr= new File ('TheOutput.txt') .newWriter (true) //appends to the file

bwtr= new File ('TheOutput.txt').newWriter ('unicode', true) //appends to the file

def brdr= new BufferedReader (new FileReader ('TheOutput.txt'))
brdr= new BufferedReader (new FileReader ('TheOutput.txt'), 16384)
//set the buffer size
brdr= new File ('TheOutput.txt').newReader() //returns a buffered reader
brdr= new File ('TheOutput.txt') .newReader ('unicode')
brdr= new FileInputStream('TheOutput.txt') .newReader ()

def file= new File ('TheOutput.txt')

def wtr= file.newWriter ()

wtr.writeLine ('abc!')

wtr.writeLine('def')

wtr.newLine() //writes blank line

wtr.close()

def rdr= file.newReader ()

assert rdr.readLine() == 'abc' //doesn't return end-of-line characters
assert rdr.text == 'def' + '\r\n' + '\r\n' //returns end-of-line characters

A SequencelnputStream joins two other streams together:

def fl= new File ('TheOutputl.txt'), f2= new File ('TheOutput2.txt')
fl<< 'abcde'; f2<< 'fghij'

def isl= new FileInputStream(fl), is2= new FileInputStream(£f2)

def sis= new SequenceInputStream(isl, 1is2)

assert sis.text == 'abcdefghij'

SequencelnputStream can also join three or more streams together using a Vector. See the upcoming tutorial on multi-threading for more on
Vectors:

def fl= new File ('TheOutputl.txt'),
f2= new File ('TheOutput2.txt'),
f3= new File ('TheOutput3.txt')
fl<< 'abc'; f2<< 'def'; £f3<< 'ghij’
def list=[new FileInputStream(£fl),
new FileInputStream(f2),
new FileInputStream(£3)]
def sis= new SequenceInputStream(new Vector(list) .elements())
assert sis.text == 'abcdefghij'

A line-number reader keeps track of line numbers:

def w= new File ('TheOutput.txt') .newWriter ()
w.writeLine('abc'); w.writeLine ('defg'); w.close()

def lnr= new LineNumberReader (new FileReader ('TheOutput.txt'))

Inr= new LineNumberReader (new FileReader ('TheOutput.txt'), 16384)
//set the buffer size

assert lnr.lineNumber == 0

assert lnr.readLine() == 'abc'

assert lnr.lineNumber ==

Inr.lineNumber= 4

assert lnr.readLine() == 'defg'’

assert lnr.lineNumber ==

A pushback input stream allows read input to be pushed back on:

def ba= [7, 8, 9, 10, 11, 12, 13] as bytel]

def pis= new PushbackInputStream(new ByteArrayInputStream (ba))

pis= new PushbackInputStream(new ByteArrayInputStream(ba), 1024)
//or specify buffer size

def ba2= new byte[3]

pis.read (ba2)

assert ba2.toList() == [7, 8, 9]

pis.unread(2)
pis.read (ba2)
assert ba2.toList() == [2, 10, 11]

pis.unread([3, 4, 5, 6] as bytell])
pis.read (ba2)

assert ba2.toList() == [3, 4, 5]
pis.read (ba2)
assert ba2.toList() == [6, 12, 13]

A pushback reader provides a similar facility for characters:

def ca= ['g', 'h', 'i', 'J', 'k', '1]', 'm'] as char(]

def prdr= new PushbackReader (new CharArrayReader (ca))

prdr= new PushbackReader (new CharArrayReader (ca), 1024)
//or specify buffer size

def ca2= new char[3]

prdr.read(ca2)

assert ca2.toList() == ['g', 'h', 'i'].collect{it as char}

prdr.unread('b' as int)
prdr.read(ca2)

assert ca2.toList() == ['b', 'j', 'k'].collect{it as char}
prdr.unread(['c', 'd', 'e', 'f'] as charl]

prdr.read(ca2)

assert ca2.toList() == ['c', 'd', 'e'].collect{it as char}
prdr.read(ca2)

assert ca2.toList() == ['f', '1l', 'm'].collect{it as char}
prdr.unread(['a', 'b', 'c', 'd', 'e', 'f', 'g']l as char([], 1, 4)

//offset 1, length 4 of array
prdr.read(ca2)
assert ca2.toList() == ['b', 'c', 'd'].collect{it as char}

A DataOutputStream writes out Groovy structures as bytes, and a DatalnputStream reads such bytes in as Groovy structures:

def baos= new ByteArrayOutputStream(30)
def dos= new DataOutputStream(baos)
assert dos.size() == 0

def bais= new ByteArrayInputStream(baos.buf)
def dis= new DatalInputStream(bais)

dos.writeBoolean(true)
assert baos.toByteArray().toList() == [1] //writes boolean as a l-byte value

assert dis.readBoolean() == true

dos.writeByte(200) //converted to -56, a l-byte value

assert baos.toByteArray () .toList() == [1, -56]
//'true', followed by '200 as byte'
assert dis.readByte() == -56

dis.reset() //resets input stream
dis.skipBytes(l) //we can skip bytes
assert dis.readUnsignedByte () == 200
baos.reset () //flushes backing stream
dis.reset ()

dos.writeBytes ('abcdefg') //writes string as a sequence of bytes
assert baos.toByteArray() as List == [97, 98, 99, 100, 101, 102, 103]
dis.reset ()

def ba= new byte[5]

dis.readFully(ba) //readFully() is converse of writeBytes()

assert ba as List == [97, 98, 99, 100, 101]

dis.reset ()

ba= new byte[5]

dis.readFully(ba, 1, 2) //offset 1 and length 2 of ba
assert ba as List == [0, 97, 98, 0, 0]

baos.reset () ; dis.reset ()

dos.writeChar('a' as int) //writes char as 2-byte value, high byte first

assert baos.toByteArray() as List == [0, 97]
assert dis.readChar() == 'a'
baos.reset () ; dis.reset ()

dos.writeChars('ab') //writes string as a sequence of characters
assert baos.toByteArray() as List == [0, 97, 0, 98]
baos.reset () ; dis.reset() //DatalnputStream has no readChars () method

dos.writeShort (5000) //writes a short as two bytes, high byte first
assert baos.toByteArray() as List == [19, -120] && 20%*256 - 120 == 5000
assert dis.readShort() == 5000

dis.reset ()
dis.readUnsignedShort () == 5000 //similar to readUnsignedByte ()
baos.reset () ; dis.reset ()

dos.writelInt (5000) //writes an integer as four bytes, high byte first

assert baos.toByteArray() as List == [0, 0, 19, -120]
assert dis.readInt() == 5000
baos.reset () ; dis.reset ()

dos.writeLong(5000) //writes a long as eight bytes, high byte first

assert baos.toByteArray() as List == [0, 0, O, O, O, O, 19, -120]
assert dis.readLong() == 5000
baos.reset () ; dis.reset ()

dos.writeDouble (123.456)

//calls Double.doubleToLongBits (), writes as 8 bytes, high first
println baos.toByteArray () as List
assert dis.readDouble () == 123.456d
baos.reset () ; dis.reset ()

dos.writeFloat (123.456f)
//calls Float.floatToIntBits(), writes as 4 bytes, high first
println baos.toByteArray () as List

assert dis.readFloat () 123.456fF

baos.reset(); dis.reset()

dos.writeUTF ('abc')
//writes using "modified UTF-8 encoding in a machine-independent manner"

assert baos.toByteArray() as List == [0, 3, 97, 98, 99]
//UTF-8 adds 0, 3 at beginning
assert dis.readUTF() == 'abc'

dis.reset ()

assert DatalInputStream.readUTF (dis) == 'abc'
//a static method to perform the same action

We'll meet more different types of streams, readers, and writers in the tutorials on Inheritance, Networking, Multi-threading, and others coming up.

ObjectinputStream and ObjectOutputStream sugar

There are also helper methods for Object input/output classes as this example shows:

@Immutable class Point implements Serializable { int x, y }

def file = new File('points.dat')
def square = [new Point (10, 10),
new Point (20, 10)
new Point (20, 20)
new Point (10, 20)]
file.withObjectOutputStream { oos ->
oos.writeObject (square)
}
file.withObjectInputStream(getClass () .classLoader){ ois ->
def saved = ois.readObject()
assert square == saved

JN2515-Closures

Blocks

We can embed a sequence of statements inside "try", called a "block". Defined variables are only visible within that block, not outside:

def a = 'good morning'
try(
def b = 'greetings', c = 'nice day'

//'def' keyword applies to both 'b' and 'c'

assert a == 'good morning'
assert b == 'greetings'
assert a == 'good morning'

//println b //a compile error if uncommented: b not visible here

Using the "def" keyword is optional because we are inside a script:

def ¢ =5

assert c ==

d =6

assert d == 6 //def keyword optional because we're within a script context
assert binding.variables.c == null

assert binding.variables.d ==
//when def not used, variable becomes part of binding.variables

But variables without "def" are visible outside the block:

try{

h =9

assert binding.variables.h == 9
}
assert h == 9

assert binding.variables.h ==

We can't define a variable (using "def") with the same name as another already visible (ie, another "in scope"):

def a = 'island'
//def a = 'snake' //a compile error if uncommented: a already defined
try{

//def a = 'jewel' //a compile error if uncommented: a already defined

}

We can nest blocks:

def a = 123
try{
try{
try{
assert a == 123
}
}
}

Closures

We can take a sequence of statements that refers to its external context and assign it to a variable, then execute it later. It's technically called a

"closable block", commonly called a "closure":

def a = 'coffee'
def ¢ = {
def b = 'tea'
a+ ' and ' + b //a refers to the variable a outside the closure,

//and is remembered by the closure

}

assert c() == 'coffee and tea' //short for c.call()

The closure assigned to the variable (here, c) will remember its context (here, including a) even if that context is not in scope when the closure

called:
def c
try{
def a = 'sugar'
c ={ a} //a closure always returns its only value
}
assert c() == 'sugar'
def d = ¢ //we can also assign the closure to another variable
assert d() == 'sugar'

A closure always returns a value, the result of its last statement:

giveSeven = { 7 }
assert giveSeven() == 7 //value of last statement is returned

giveNull = { def a }

assert giveNull() == null //null returned if last statement has no value

By putting a closure within another, we can create two instances of it:

c={ def e={ 'milk' }; e }

d=c

assert ¢ == d
vl = c()

v2 = c()

assert vl != v2

S

Closure Parameters

We can put parameters at the beginning of a closure definition, and pass values in when we call the closure:

def toTriple = {n -> n * 3}

assert toTriple.call(5) == 15

We can also pass information out using the parameters:

def £ = { list, value -> list << value }

x =[]

f(x, 1)

f(x, 2,) //trailing comma in argument list OK
f(x, 3)

assert x == [1, 2, 3]

One parameter is always available, called "it", if no explicit parameters are named:

c = { it*3 }
assert c('run') == 'runrunrun'

If parameters aren't specified, "it" will still be implicitly defined, but be null:

//c = { def it = 789 }
//a compile error when uncommented: 'it' already implicitly defined
c = { valuel -> def it = 789; [valuel, it] }

//works OK because no 'it' among parameters

assert c(456) == [456, 789]
c = {-> def it = 789; it } //zero parameters, not even 'it', so works OK
assert c() == 789

Parameters can't have the same name as another variable in scope, except for the implicit parameter 'it":

def name= 'cup'
//def c={ name-> println (name) } //a compile error when uncommented:
//current scope already contains name 'name'
c= { def d= { 2 * it }; 3 * d(it) }
//'it' refers to immediately-surrounding closure's parameter in each case
assert c(5) == 30

If there's already a variable called 'it' in scope, we can access it using owner.it:

it= 2
c= { assert it == 3; assert owner.it == }
c(3)

We can pass one closure into another as a parameter:

toTriple = {n -> n * 3}
runTwice = { a, ¢ -> c(c(a))}
assert runTwice(5, toTriple) == 45

We can return a closure from another:

def times= { x -> { y -> x * y }}
assert times(3) (4) == 12

There's a shortcut syntax when explicitly defining a closure within another closure call, where that closure is the last or only parameter:

def runTwice = { a, ¢ -> c(c(a)) }
assert runTwice(5, {it * 3}) == 45 //usual syntax
assert runTwice(5){it * 3} == 45

//when closure is last param, can put it after the param list

def runTwiceAndConcat = { ¢ -> c() + c() }

assert runTwiceAndConcat ({ 'plate' }) == 'plateplate' //usual syntax
assert runTwiceAndConcat (){ 'bowl' } == 'bowlbowl' //shortcut form
assert runTwiceAndConcat{ 'mug' } == 'mugmug’

//can skip parens altogether if closure is only param

def runTwoClosures { a, c1, c2 -> cl(c2(a)) }
//when more than one closure as last params
assert runTwoClosures(5, {it*3}, {it*4}) == 60 //usual syntax

assert runTwoClosures(5){it*3}{it*4} == 60 //shortcut form

Arguments in a closure call can be named. They are interpreted as the keys in a map passed in as the first parameter:

def f= {m, i, j-> i + j + m.x + m.y }

assert f(6, x:4, y:3, 7) == 20

def g= {m, i, j, k, c-> c(d + J + k, m.x + m.y) }
assert g(y:5, 1, 2, x:6, 3){a,b->a * b } == 66

We can enquire the number of parameters for a closure, both from inside and outside the closure:

c= {x,y,z-> getMaximumNumberOfParameters ()
assert c.getMaximumNumberOfParameters ()
assert c(4,5,6) 3

}
3

A closure may have its last parameter/s assigned default value/s:

def e = { a, b, c=3, d='a' -> "${a+b+c}sa" }
assert e(7, 4) == 'l4a’'
assert e(9, 8, 7) == '24a' //override default value of 'c'

A closure can take a varying number of arguments by prefixing its last parameter with Object[], and accessing them using 'each":

def c { arg, Object[] extras ->
def list= []
list<< arg
extras.each{ list<< it }

list
}
assert c(1) == [11
assert c(1, 2) == [1, 2]
assert c(1, 2, 3) == [1, 2, 3]
assert c¢(1, 2, 3, 4) ==1[1, 2, 3, 4]

We can also prefix the last parameter of a closure with Closure[] to pass in a varying number of other closures, even using the shortcut syntax:

def apply { a, Closurel] cc ->
(cc as List) .inject (a){ flo, it-> it(flo) }
//apply the closures nestedly to the initial value

}

assert apply(7){it*3}{it+1}{it*2}.toString() == '44'

When we call a closure with a list argument, if there's no closure defined with a list parameter, the arguments are passed in as separate
parameters:

def c= {a, b, c-> a + b + c}
def list=[1,2,3]
assert c(list) == 6

A closure may be copied with its first parameter/s fixed to a constant value/s, using curry:

def concat = { pl, p2, p3 -> "$pl $p2 Sp3" }
def concatAfterFly = concat.curry('fly')

assert concatAfterFly('drive', 'cycle') == 'fly drive cycle'
def concatAfterFlySwim = concatAfterFly.curry('swim')
assert concatAfterFlySwim('walk') == 'fly swim walk'

In closures, we can use currying and parameter-count-varying together:

def ¢ = { arg, Object[] extras -> arg + ', ' + extras.join(', ') }
def d = c.curry(1) //curry first param only

assert d(2, 3, 4) == '1, 2, 3, 4'

def e = c.curry(1, 3) //curry part of Object[] also

assert e(5) == '1, 3, 5°'

def £ = e.

curry(5, 7, 9, 11) //currying continues on Object
assert £(13, 15) == '1, 3, 5, 7, 9, 11, 13, 15"

We can make closures recursive:

def gcd //predefine closure name
gcd={ m,n-> m%n==0? n: gcd(n,m%n) }
assert gcd(28, 35) == 7

We can even make a recursion of anonymous closures (thanks to 'call' method available for each closure)

def results = [];
{ a, b ->
results << a
a<1l0 && call(b, a+b)
}(1,1)
assert results == [1, 1, 2, 3, 5, 8, 13] // Fibonacci numbers

Functions

A function is similar to a closure, though a function can't access defined variables in its surrounding context:

a = 32 //def keyword not used for this one

def ¢ = 'there', d = 'yonder'
def £(){

assert a == 32 //outer 'a' visible because 'def' keyword wasn't used with it
def ¢ = 'here'

//compiles OK because other defined c¢ invisible inside function definition
//println d //a compile error when uncommented: d not accessable
c

}

assert f() == 'here' //syntax to invoke a function

The def keyword is compulsory when defining functions:

c = { 'here, again' }

assert f() == 'here, again'
//90) { println 'there, again' }
//a compile error when uncommented: def keyword required

We use a special syntax to assign a function to another variable when using the original definition name:

def £(){ 77 } //define function using name 'f'

assert f£() == 77

def g = this.&f //special syntax to assign function to another variable
assert g() == 77

def h = g //don't use special syntax here

assert h() == 77

f = 'something else' //this 'f' is a VARIABLE, not the function NAME
assert f£() == 77 //the function name can't be reassigned

Unlike blocks and closures, we can't nest functions:

def £(){

//def g1(){ println 'there' }
//a compile error when uncommented: can't nest functions
'here'
}
assert f() == 'here'
try(

//def g2 (){ println 'yonder' }
//a compile error when uncommented: can't nest functions
}
c = {

//def g3 (){ println 'outer space' }
//a compile error when uncommented: can't nest functions
}
def h(){

try{ def ¢ = { 'here, again' } }

//we can have blocks and closures within functions

Function Parameters

A function can have parameters, with which we can pass information both in and out:

def foo(list, value)({
list << value

}

x =[]

foo(x, 1)

foo(x, 2)

assert x == [1, 2]

We can have more than one function of the same name if they each have different numbers of (untyped) parameters.

def foo(value){ 'vi' }

def foo(list, value){ 'v2' }
assert foo(9) == 'v1'
assert foo([], 1) == 'v2'

A function returns a value, unless prefixed by void instead of def, when it always returns null:

def £1(){ 7}
) =

assert f1(= 7 //value of last statement is returned

def £2(){ return 8; 3 }
assert f2() == 8 //return explicitly using return

void £3(){ 10 }
assert £3() == null //null always returned

//void £4(){ return 9 }
//a compile error when uncommented: can't use 'return' in a void function

When there's a method and closure with the same name and parameters, the method is chosen instead of the closure:

def c(){'method c'}
def c= {-> 'closure c'}
assert c() == 'method c'

def d(i){'method d'}
def d= {'closure d'}
assert d(9) == 'method d'

Some Similarities with Closures

We can use the shortcut invocation syntax for closure parameters:

def f(Closure c){ c() }

assert £{ 'heehee' } == 'heehee'

A function may have its last parameter/s assigned default value/s:

def dd(a, b=2){ "$a, $b" }
assert dd(7, 4) == '7, 4°'
assert dd(9) == '9, 2!

Arguments in a function call can be named, interpreted as keys in a map passed in as first parameter:

def £f(m, i,){ i + 3 + m.x + m.y }
assert f(6, x:4, y:3, 7) == 20

def g(m, i, 3, k, o){ c(i + J + k, m.x + m.y) }
assert g(y:5, 1, 2, x:6, 3){a,b->a * b } == 66

A function can take a varying number of arguments by prefixing its last argument by Object[], and accessing them using each:

def c(arg, Object[] extras) {
def list= []
list<< arg
extras.each{ list<< it }
list

}

assert c(1)

assert c¢(1, 2, 3, 4)

When we call a function with a list argument, if there's none defined with a list parameter, the arguments are passed in separately:

def x(a, b, c){a + b + c}
def list=[1,2,3]
assert x(list) == 6

We can call a function recursively by referencing its own name:

o

def ged(m, n){ if(m%n == 0)return n; gcd(n,m%n) }
assert ged(28, 35) == 7

JN2525-Classes

Accessing Private Variables

Closures and functions can't remember any information defined within themselves between invocations. If we want a closure to remember a
variable between invocations, one only it has access to, we can nest the definitions inside a block:

def c
try(
def a= new Random() //only closure ¢ can see this variable; it is private to c
c= { a.nextInt(100) }
}
100.times{ println c() }
try{ a; assert 0 }catch(e) //'a' inaccessable here
{ assert e instanceof MissingPropertyException }

We can have more than one closure accessing this private variable:

def counterInit, counterIncr, counterDecr, counterShow
//common beginning of names to show common private variable/s

try(
def count
counterInit= { count= it }
counterIncr= { count++ }
counterDecr= { count-- }
counterShow= { count }
}
counterInit (0)
counterIncr(); counterIncr(); counterDecr(); counterIncr ()
assert counterShow() == 2

We can also put all closures accessing common private variables in a map to show they're related:

def counter= [:]

try(
def count= 0
counter.incr= { count++; counter.show() }
counter.decr= { count--; counter.show() }

counter.show= { count }

counter. incr ()
assert counter.show() == 1

Expando

We can access private variables with an Expando instead. An expando allows us to assign closures to Expando names:

def counter= new Expando ()

try{
def count= 0
counter.incr= { count++; show() }

//no need to qualify closure call with expando name
counter.decr= { count--; show() }
counter.show= { timesShown++; count }
counter.timesShown= 0
//we can associate any value, not just closures, to expando keys
}
counter.incr(); counter.incr(); counter.decr(); counter.incr()
assert counter.show() == 2

An expando can also be used when common private variables aren't used:

def language= new Expando ()
language .name= "Groovy"
language .numletters= { name.size() }

assert language.numlLetters() == 6
language .name= "Ruby"

assert language.numLetters() == 4
language .name= "PHP"
assert language.numLetters() == 3

Like individual closures, closures in expandos see all external variables all the way to the outermost block. This is not always helpful for large
programs as it can limit our choice of names:

def a= 7
try(

//... lots of lines and blocks in between
def exp= new Expando ()

exp.c= {

//def a= 2 //does not compile if uncommented: a is already defined
/] ..
}
}

For single-argument closures, both standalone and within expandos, we can use the implicit parameter as a map for all variables to ensure they're
all valid, though the syntax is not very elegant:

def a= 7
try(
def c= {
it= [it: it]
it.a= 2
it.it + it.a
}

assert c(3) == 5

There is a better way to ensure a chosen variable name will not "shadow" another from the same scope.

Static Classes

Just as we can use functions instead of closures to hide names from the surrounding context, so also we can use static classes instead of
expandos to hide such external names. We use the static keyword to qualify the individual definitions in a class definition:

def a= 7
def a= 7
class Counter{
//variable within a class is called a field...
static public count= 0
//count has 'public' keyword, meaning it's visible from outside class

//function within a class is called a method...
static incr () {
count++

}

static decr () {
//println a //compile error if uncommented:
//a is outside the class and not visible

count --
Counter.incr(); Counter.incr(); Counter.decr(); 5.times{ Counter.incr() }
assert Counter.count == 6

//variables defined within class visible from everywhere else inside class

Methods act quite similar to standalone functions. They can take parameters:

class Counter{
static private count = 0
//qualified with private, meaning not visible from outside class
static incr(n){ count += n }
static decr(count){ this.count -= count }
//params can have same name as a field; 'this.' prefix accesses field
static show(){ count }
}
Counter.incr (2); Counter.incr(7); Counter.decr(4); Counter.incr(6)
assert Counter.show() == 11

We can have more than one method of the same name if they each have different numbers of parameters.

class Counter{
static private count = 0
static incr(count++ }
static incr

{
){ count += n }
static decr () {

)
(n
(){ count-- }
(n

0

static decr){ count -=n }

static show(){ count }
}
Counter.incr(17); Counter.incr(); Counter.decr(4)
assert Counter.show() == 14

Methods are also similar to other aspects of functions:

class U{
static a(x, Closure c){ c(x) }
static b(a, b=2){ "$a, sb" } //last argument/s assigned default values
static c(arg, Object[] extras){ arg + extras.inject(0){ flo, it-> flo+it } }
static ged(m, n){ if(m%n == 0)return n; gcd(n,m%n) }
//recursion by calling own name

}

assert U.a(7){ it*it } == 49 //shorthand passing of closures as parameters
assert U.b(7, 4) == '7, 4°'

assert U.b(9) == '9, 2!

assert U.c(1,2,3,4,5) == 15 //varying number of arguments using Object []
assert U.gcd(28, 35) == 7

We can assign each method of a static class to a variable and access it directly similar to how we can with functions:

class U{
static private a= 11
static f£(n){ a*n }

}

assert U.f(4) == 44

def g= U.&f //special syntax to assign method to variable
assert g(4) == 44

def h = g //don't use special syntax here

assert h(4) == 44

When there's no accessibility keyword like 'public' or 'private’ in front of a field within a static class, it becomes a property, meaning two extra
methods are created:

class Counter{

static count = 0

//property because no accessibility keyword (eg 'public', 'private')

static incr(n){ count += n }

static decr(n){ count -= n }
}
Counter.incr (7); Counter.decr(4)
assert Counter.count == 3
assert Counter.getCount () == 3 //extra method for property, called a 'getter'
Counter.setCount (34) //extra method for property, called a 'setter'
assert Counter.getCount() == 34

When we access the property value using normal syntax, the 'getter’ or 'setter' is also called:

class Counter{
static count= 0 //'count' is a property

//we can define our own logic for the getter and/or setter...
static setCount (n){ count= n*2 } //set the value to twice what's supplied
static getCount(){ 'count: '+ count }
//return the value as a String with 'count: ' prepended

}

Counter.setCount (23) //our own 'setCount' method is called here

assert Counter.getCount () == 'count: 46'
//our own 'getCount' method is called here
assert Counter.count == 'count: 46'

//our own 'getCount' method is also called here
Counter.count= 7
assert Counter.count == 'count: 14'
//our own 'setCount' method was also called in previous line

To run some code, called a static initializer, the first time the static class is accessed. We can have more than one static initializer in a class.

class Counter{
static count = 0
static{ println 'Counter first accessed' } //static initializer
static incr(n){ count += n }
static decr(n){ count -= n }
}
println 'incrementing...'
Counter.incr(7) //'Counter first accessed' printed here
println 'decrementing...'
Counter.decr (4) //nothing printed

Instantiable Classes

We can write instantiable classes, templates from which we can construct many instances, called objects or class instances. We don't use the
static keyword before the definitions within the class:

class Counter{
def count
def incr(n
def decr(

= 0 //must use def inside classes if no other keyword before name
){ count += n }

n){ count -=n }

}

def cl= new Counter () //create a new object from class

cl.incr(2); cl.incr(7); cl.decr(4); cl.incr(6

assert cl.count == 11

def c2= new Counter ()
c2.incr(5); c2.decr(2)
assert c2.count == 3

//create another new object from class

We can run some code the first time each object instance is constructed. First, the instance initializer/s are run. Next run is the constructor with
the same number of arguments as in the calling code.

class Counter{
def count
{ println 'Counter created' }
//instance initializer shown by using standalone curlies
Counter () { count= 0 }
//instance constructor shown by using class name
Counter (n) { count= n }
//another constructor with a different number of arguments
def incr(n){ count += n }
def decr(n){ count -=n }
}
¢ = new Counter() //'Counter created' printed
c.incr(17); c.decr(2)
assert c.count == 15
d = new Counter (2) //'Counter created' printed again
d.incr(12); d.decr(10); d.incr(3)
assert d.count == 7

If we don't define any constructors, we can pass values directly to fields within a class by adding them to the constructor call:

class Dog{
def sit
def number
def train(){ ([sit()] * number).join(' ') }
}
def d= new Dog(number:3, sit:{'Down boy!'})
assert d.train() == 'Down boy! Down boy! Down boy!"'

Methods, properties, and fields on instantiable classes act similarly to those on static classes:

class U{

private timesCalled= 0 //qualified with visibility, therefore a field
def count = 0 //a property
def a(x){ x }

def a(x, Closure c){ c(x) } //more than one method of the same name but
//each having different numbers of parameters

def b(a, b=2){ "$a, $b" } //last argument/s assigned default values
def c(arg, Object[] extras){ arg + extras.inject(0){ flo, it-> flo+it } }
def gcd(m, n){ if(m%n == 0)return n; gcd(n,m%n) }
//recursion by calling own name

}

def u=new U()

assert u.a(7){ it*it } == 49 //shorthand passing of closures as parameters
assert u.b(7, 4) == '7, 4°'

assert u.b(9) == '9, 2!

assert u.c(1,2,3,4,5) == 15 //varying number of arguments using Object []
assert u.gcd(28, 35) == 7

u.setCount (91

assert u.getCount () == 91

A class can have both static and instantiable parts by using the static keyword on the definitions that are static and not using it on those that are
instantiable:

class Dice(

//here is the static portion of the class...
static private count //doesn't need a value
static{ println 'First use'; count = 0 }

static showCount () { return count }

//and here is the instantiable portion...
def lastThrow
Dice() { println 'Instance created'; count++ }

//static portion can be used by instantiable portion, but not vice versa

def throww() {
lastThrow = 1+Math.round(6*Math.random()) //random integer from 1 to 6

return lastThrow

}
}
dl = new Dice() //'First use' then 'Instance created' printed
d2 = new Dice() //'Instance created' printed
println "Dice 1: ${(1..20).collect{dl.throww()}}"
println "Dice 2: ${(1..20).collect{d2.throww()}}"
println "Dice 1 last throw: $dl.lastThrow, dice 2 last throw: $d2.lastThrow"
println "Number of dice in play: ${Dice.showCount ()}"

A class can have more than one constructor:

class A{
def list= []
AQ){
list<< "A constructed"
}
A(int 1) {
this ()
//a constructor can call another constructor if it's the first statement
list<< "A constructed with $i"
}
A(String s){
this (5)
list<< "A constructed with '$s'"
}
}

def al= new A()
assert al.list == ["A constructed"]

def a2= new A(7)

assert a2.list.collect{it as String} == [
"A constructed",
"A constructed with 7",

def a3= new A('bird')

assert a3.list.collect{it as String}
"A constructed",
"A constructed with 5",
"A constructed with 'bird'",

Categories

When a class has a category method, that is, a static method where the first parameter acts like an instance of the class, we can use an
alternative 'category' syntax to call that method:

class View(
def zoom= 1
def produce (str){ str*zoom }
static swap (self, that){ //first parameter acts like instance of the class
def a= self.zoom
self.zoom= that.zoom
that.zoom= a
}
}
def vl= new View(zoom: 5), v2= new View(zoom: 4)
View.swap(vl, v2) //usual syntax
assert vl.zoom == 4 && v2.zoom ==
use (View) { vl.swap(v2) } //alternative syntax
assert vl.zoom == 5 && v2.zoom ==
assert vl.produce('a') == 'aaaaa'

We can also use category syntax when the category method/s are in a different class:

class View(
static timesCalled= 0 //unrelated static definition
def zoom= 1
def produce (str){ timesCalled++; str*zoom }
}
class Extraf{
static swap (self, that){ //first parameter acts like instance of View class
def a= self.zoom
self.zoom= that.zoom
that.zoom= a

}
}
def vl= new View(zoom: 5), v2= new View(zoom: 4)
use (Extra){ vl.swap(v2) }
//alternative syntax with category method in different class
assert vl.zoom == 4 && v2.zoom ==
assert vl.produce('a') == 'aaaa'

Many supplied library classes in Groovy have category methods that can be called using category syntax. (However, most category methods on
Numbers, Characters, and Booleans do not work with category syntax in Groovy-1.0)

assert String.format('Hello, %1$s.', 42) == 'Hello, 42.
use (String) {

assert 'Hello, %1$s.'.format(42) == 'Hello, 42.'
}

Far more common are supplied library classes having category methods in another utility class, eg, List having utilities in Collections:

def list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]
Collections.replaceAll(list, 7, 55) //normal syntax
assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]
list= ['a', 7, 'b', 9, 7, 7, 2.4, 7]

use (Collections) {
list.replaceAll (7, 55) //category syntax

}

assert list == ['a', 55, 'b', 9, 55, 55, 2.4, 55]

We can call category methods inside other category methods:

class Extras({
static f(self, n){ "Hello, $n" }
}
class Extras2{
static g(self, n){
Extras.f (self, n)

}
static h(self, n){
def ret
use (Extras) { ret= self.f(n) } //call Extras.f() as a category method
ret
}
}
assert Extras.f (new Extras(), 4) == 'Hello, 4'
assert Extras2.g(new Extras2(), 5) 'Hello, 5°'
assert Extras2.h(new Extras2(), 6) == 'Hello, 6'
class A{ }
def a= new A()
use (Extras) {
assert a.f(14) == 'Hello, 14'
}
use (Extras2) {
assert a.g(1l5) == 'Hello, 15'
assert a.h(16) == 'Hello, 16' //call category method within another
}

But we can't call category methods inside another category method from the same class:

class Extras({
static f(self, n){ "Hello, $n" }
static g(self, n){ f(self, n) }
static hl(self, n){ £(n) } //calling f without first parameter only valid
//when called within a category method
static h2(self, n) {
def ret
use (Extras) {
ret= self.f(n)
} //class as category within itself only valid if method wasn't called

)
)

//using category syntax

ret
}
}
assert Extras.f (new Extras(), 4) == 'Hello, 4'
assert Extras.g(new Extras(), 5) == 'Hello, 5'
try{ Extras.hl(new Extras(), 6); assert 0 }
catch(e){ assert e instanceof MissingMethodException }
assert Extras.h2(new Extras(), 7) == 'Hello, 7'

class A{ }
def a= new A()
use (Extras) {

assert a.f(14) == 'Hello, 14'
assert a.g(1l5) == 'Hello, 15'
assert a.hl(16) == 'Hello, 16'

try{ a.h2(17); assert 0 }
catch(e){ assert e instanceof GroovyRuntimeException }

A lot of entities in Groovy are classes, not just the explicit ones we've just learnt about. Numbers, lists, sets, maps, strings, patterns, scripts,
closures, functions, and expandos are all implemented under the hood as classes. Classes are the building block of Groovy.

JN2535-Control

A Groovy script is a sequence of statements:

def a= 1 i

assert "a is $a" == 'a is 1!

def b= 2; assert "b is $b" == 'b is 2 :
//if two statements on one line, separate by semicolons

def c= 3; ; def d= 4 //empty statement in between i

When defining classes, we can provide 'asType' methods to convert the class into another using the 'as' operator. Classes we've seen in previous
tutorials that convert to another using 'as' (eg, Integer, BigDecimal, String) use the 'asType' method under the hood:

class A{
def x
Object asType(Class c){
if (¢ == B) return new B (x:x*3)
}
}

class B{
def x

}

def a= new A(x:3)

def bl= a.asType(B)
assert bl.class == B && bl.x == 9

def b2= a as B //more common, shortcut syntax for asType ()
assert b2.class == B && b2.x ==

We can use 'as' to convert a list into a class instance using the list elements as constructor arguments:

class A{
int x,y
A(x,y){ this.x=x; this.y=y }
String toString(){ "x: $x; y: Sy" }
}
def a= [1,2] as A
assert a.class == A && a.toString() == 'x: 1; y: 2'

Conditional Statements

The if and if-else statements let us choose subsequent statements to execute based on a condition:

def x= 7
if(x > 4){ println 'x is greater than 4' } //if-statement (no 'else' clause)

if(x > 4) println 'x is greater than 4'
//curlies optional if only one statement
//if-else statement...
if(x > 4)
println 'x is greater than 4'
telse{
println 'x is less than or equal to 4'

}

if(x > 8) println 'x is greater than 8'
//again, curlies optional if only one statement
else println 'x is less than or equal to 8'

//an 'else' clause always belongs to
def result
if(x > 4)
if(x > 8) result= 'x is greater than 8'
else result= 'x is less than or equal to 8'
//a single 'else' with two 'if' clauses belongs to the innermost
assert result == 'x is less than or equal to 8'

The meaning of the 'in' operator depends whether its context in the code is conditional or iterative. When in a conditional context, the 'isCase'
method of the target is invoked:

class A{
boolean isCase (Object o) {
if (o == 'A') return true
else return false

def a= new A()

assert a.isCase('A')
assert 'A' in a //more common, shortcut syntax for isCase()

assert ! (a.isCase('Z')
assert ! ('Z' in a) //more common, shortcut syntax for isCase()

The switch statement inspects an expression and resumes execution from the first matching case-expression, ie, regex matched, list or set or
range contained in, class an instance of, or object equal to:

def values= [
‘abc': 'abc',
'xyz': 'list',
18: 'range',
31: BigInteger,
'dream': 'something beginning with dr',
1.23: 'none',
]
values.each{
def result
switch(it.key){
case 'abc': //if switched expression matches case-expression, execute all
//statements until 'break'
result= 'abc'
break
case [4, 5, 6, 'xyz']l:
result= 'list'
break
case 'xyz': //this case is never chosen because 'xyz' is matched by
//previous case, then 'break' executed
result= 'xyz'
break
case 12..30:
result= 'range'
break
case Integer:
result= Integer //because this case doesn't have a 'break',6 result
//overwritten by BigInteger in next line
case BigInteger:
result= BigInteger
break
case ~/dr.*/:
result= 'something beginning with dr'
break
case {it instanceof Integer && it>30}: //use Closure
result= 'result is > 30
break
default:
result= 'none'
}

assert result == it.value

When we supply our own values in the case-expression, the 'isCase' method is invoked to determine whether or not the switch-expression is
matched. If there's no 'isCase' method, the 'equals' method is used to test for equality:

class A{
boolean isCase (Object switchvalue){ //'isCase' method used for case-expression
if (switchvalue == 'Hi') return true
else return false
}
}
switch('Hi'){
case new A():
assert true
break
default:
assert false

class B{

boolean equals(Object switchvalue){ //'equals' method used for case-expression
this.class == switchValue.getClass()

}
}

switch(new B()){
case new B():
assert true
break
default:
assert false

Iterative Statements

The while statement lets us iterate through a block of code:

def x= 0, y= 0
while(x < 5){

X++
Y += X
assert x == 5 && y == 15

while(x < 10) x++ //curlies optional if only one statement
assert x == 10

while(x < 15){ //we can break out of a while-loop using 'break'
X++
if(x == 12) break

}

assert x == 12
while(x != 15 && x != 18){
//we can jump to the next iteration of a while-loop using 'continue'
X++
if((x == 15){
X++
continue
}
}
assert x == 18

We've already seen the 'each' and other related method calls, which emulate the while-statement at a higher level of abstraction, but with some
restrictions: the loop variable isn't available outside the loop, no guarantees are made about the order of iteration through the collection, and the
'break’, ‘continue’, and 'return' commands aren't available:

int n=1
while(n <= 5){

def y= 0
(1..n) .each{ //loop variable, here 'it', not available outside loop
y += it

//if(y > 8) break
//a syntax error when uncommented: 'break' command not available here
}

assert y == (n+l)*(n/2.0) //another way to add the numbers 1 to n
n++

}

Other method calls that loop are 'times', 'upto', 'downto’, and 'step'. Like 'each’, they don't allow 'break’, 'continue’, and 'return' commands, but do
make guarantees about the order of iteration:

def a= 2
3.times{

a= a*a
}

assert a == 256

def list= []
1.upto(5) {

list<< it
}

assert list == [1, 2, 3, 4, 5]

list= []
5.3.downto(2.1){ //'upto', 'downto', and 'step' also work with decimal numbers
list<< it

}

assert list == [5.3, 4.3, 3.3, 2.3]

list= []

1.step(9.5, 2.5){
list<< it

}

assert list == [1, 3.5, 6, 8.5]

We can label any statement with a name. Labelling a while loop lets any arbitrarily deep nested statement break out of or continue on from it:

yonder: def d= 4
there: {

def e= 5

here: if(e == 5){

def f= 6

there: def g= 7 //label can repeat a previously-used outer label
}
}

there: def h= 8
//label can repeat a previously-used label at same syntactic level

def i=0, j=0
outer: while(i<5){ //labelling a while loop is especially useful...
j=0
i++
while(j<5){
J++
if(i==3 && j==2) break outer
//...because we can break out of a specified labelled while loop
}
}

assert i==3 && j==2

def outer= 0, inner= 0
outer: while(outer != 5 && outer != 8){
//label can have same name as any variables
inner= 0
outer++
while(inner<5) {
inner++
if (outer==5) {
outer++
continue outer
//we can also continue on from a specified labelled while loop

}
}

assert outer==8

}

For-Statements

For-statements are complex yet powerful iterative statements with many possible formats. When 'in' is used in the iterative context of a
for-statement, the 'iterator' method of the target is invoked. The 'iterator' method must return an Iterator, defining at least the 'hasNext' and 'next'
methods:

class CountToFive{

def n= 0

def iterator() {
hasNext: { n<5 },
next: { n++ },
] as Iterator

def list= []
def counter= new CountToFive ()
for(int i in counter)

list<< 1

}

assert list == [0, 1, 2, 3, 4]

The for-statement works with many kinds of objects (eg, Collection, array, Map, String, regex, File, Reader, InputStream, etc):

def list= []
for(e in [0, 1, 2, 3, 4]){ //iterate over a list
list<< e

}

assert list == [0, 1, 2, 3, 4]

list= []
for(i in 1..9){ //iterate over a range
list<< 1

}

assert list == [1, 2, 3, 4, 5, 6, 7, 8, 9]

list= []

for(e in (3..6).toArray()){ //over an array
list<< e

}

assert list == [3, 4, 5, 6]

list= []
for(e in ['abc':1, 'def':2, 'xyz':3]){ //over a map
list<< e.value

}

assert list as Set == [1, 2, 3] as Set

list= []
for(v in [1:'a', 2:'b', 3:'c']l.values()){ //over values in a map
list<< v

}

assert list as Set == ['a', 'b', 'c'l as Set

list = []
for(¢ in "abc"){ //over the chars in a string
list<< c

}

assert list == ['a', 'b', 'c']

We can use 'break' and 'continue' within a for-loop using 'in":

def list = []
for(¢ in 'abc'){

list<< ¢
if(¢ == 'b') break
}
assert list == ['a', 'b']
list = []
for(¢ in 'abc'){
if(¢ == 'b') continue
list<< ¢
}
assert list == ['a', 'c']

'‘each' methods can also be considered as emulating for-loops at a higher level of abstraction, without the guarantees about the order of iteration,
and the 'break’, 'continue’, and 'return' commands being unavailable:

def list= []

[|a|’ ‘b, ter] .each{
list<< it

}

assert list == ['a', 'b', 'c']

//instead of...

list= []

for(item in ['a', 'b', 'c']){
list<< item

}

assert list == ['a', 'b', 'c']

Another format for the for-statement is the initializer-condition-incrementer format:

def list= []
for(def i=0; i<5; i++){

//first value an initializer, second a condition, third an incrementer
list<< 1

}

assert list == [0, 1, 2, 3, 4]

//equivalent while-statement...
list= []
try(

def i=0 //initializer
while(i<5){ //condition
list<< 1

i++ //incrementer

}
}

assert list == [0, 1, 2, 3, 4]

//for-statement with 'break'

list= []

for(def i=0; i<5; i++){
list<< 1
if(1 ==) break

}

assert list == [0, 1, 2]

//equivalent while-statement with 'break'
list= []
try{
def i=0
while(i<5
list<< 1
if(1 == 2) break
i++

}

—_—

}

assert list == [0, 1, 2]

//for-statement with 'continue'

list= []
for(def i=0; i<5; i++){
if(i == 2){ i++; continue }
//the incrementer isn't executed automatically when we 'continue'
list<< 1
}
assert list == [0, 1, 3, 4]

//equivalent while-statement with 'continue'
list= []
try(
def i=0
while(i<5) {
if(i == 2){ i++; continue }
list<< 1
1++
}
}

assert list == [0, 1, 3, 4]

We can have more than one initializer, and more than one incrementer:

//two initializers and two incrementers...

def list= []

for(def i=0; def j=10; i<5; i++; j++){ //the middle expression is the condition
list<< 1 + j

}

assert list == [10, 12, 14, 16, 18]

//three initializers and three incrementers...

list= []

for(def i=0; def j=10; def k=20; i<3; i++; j++; k++){
list<< 1 + j + k

}

assert list == [30, 33, 36]

//when there's an even number of expressions, the condition is just before
//the middle...
list= []
try{

def i=0

for(def j=10; i<5; i++; j++){

list<< i + jJ

}

}

assert list == [10, 12, 14, 16, 18]

//we can force in more initializers than incrementers by using
//'null' statements...
list= []
for(def i=0; def j=10; i<5; i++; null){
list<< 1 + j
}

assert list == [10, 11, 12, 13, 14]

Operator Overloading

The precedence heirarchy of the operators, some of which we haven't looked at yet, is, from highest to lowest:

S (scope escape)
new () (parentheses)
[]1 (subscripting) () (method call) {} (closable block) I[] (list/map)
?. *. (dots)
~ 1 $ () (cast type)
** (power)
(

++ (pre/post) --(pre/post) +(unary) - (unary)

*
~
oe

+(binary) - (binary)
<< >> >>> <

< <= > >= instanceof in as

We've seen how the 'as' operator is mapped to the asType() method, and how the 'in' operator is mapped to the isCase() and iterator() methods.
Many more operators have equivalent method names. We've seen how [] subscripting has equivalent methods getAt() and putAt() in the
HashMap class. They are also equivalent when we define such methods on our own classes:

class A{

int key

def value

def getAt(int n){ if (key == n) return value }
void putAt (int n, def o){ key= n; value= o }

}

def a= new A()

alll= 'abc' //calls putAt()

assert a[l] == 'abc' //calls getAt()
assert al[2] == null

We've also seen how various operators have equivalent method names in the numerical classes, such as Integer, BigDecimal, float, etc. They,
too, are also equivalent when we define such methods on our own classes:

class OddNumber{ //only gives odd results to operations, adding 1 if necessary
int value
OddNumber (int n){ value= (n%2)? n: n+l }

def power (int n){ value**n }

def multiply(int n){ def i= value*n; (i%2)? i: i+1 }

def div(int n){ int i= value/n; (i%2)? i: i+1 }

def mod(int n){ int i= value - div(n)*n; (i%2)? i: i+1 }
def plus(int n){ int i= value + n; (i%2)? i: i+1 }

def minus(int n){ int i= value - n; (i%2)? i: i+1 }

def and(int n){ n == value }
def or(int n){ n == value || (n == value-1) }
def xor(int n) {n == value-1 }

def leftShift (int n){ value= (n%2)? n: n+l }
def rightShift (int n){ (value * 10**n) + 1 }
def rightShiftUnsigned (int n){ (value * 10**(n*2)) + 1 }

def next (){ new OddNumber (value + 2) }
def previous(){ new OddNumber (value - 2) }

}

def e= new OddNumber (6)

assert e.value == 7

assert e**3 == 343 //calls power ()
assert e*4 == 29 //calls multiply ()
assert e/3 == 3 //calls div()
assert e%3 == -1 //calls mod()
assert e+5 == 13 //calls plus()
assert e-1 == 7 //calls minus()
assert e & 7 //calls and()

assert e | 6 && e | 7 //calls or()
assert e ~ 6 //calls xor()

e<< 2 //calls leftsShift()

assert e.value == 3

assert e>>2 == 301 //calls rightShift ()

assert e>>>2 == 30001 //calls rightShiftUnsigned()
assert (e++).value == 3 //calls next ()

assert e.value ==

assert (++e).value == 7

assert e.value ==

assert (e--).value == 7 //calls previous()
assert e.value ==
assert (--e).value == 3

assert e.value ==

JN3015-Types

We can restrict the types of values a variable may hold by specifying some restricting class instead of 'def":

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

def v= 3 //variable v can hold any value
v= 'helicopter'

v= false
v= new StringBuffer ()
v= null

int i= 15 //variable i can only hold integer values
i= 'A'
assert i == 65 //'A' casted to its integer value

//unable to cast boolean value to integer
try{ i= false; assert 0 }catch(e){ assert e in GroovyCastException }

Closure c= {it * 3} //variable c can only hold Closures
try{ c= false; assert 0 }catch(e){ assert e in GroovyCastException }
//unable to cast boolean value to Closure

StringBuffer s= new StringBuffer ('morning')
//variable s can only hold StringBuffers

try{ s= { it * 5 }; assert 0 }catch(e){ assert e in GroovyCastException }
//unable to cast Closure value to StringBuffer

When we assign values not of a variable's type to the variable, sometimes it may be 'cast' to the type, other times an exception is thrown:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

int 1
i= 45L; assert i == 451
i= 45.1f; assert i == 45i

try{ i= '42'; assert 0 }catch(e){assert e in GroovyCastException}
try{ i= false; assert 0 }catch(e){assert e in GroovyCastException}

//long similar to int

byte by
by= 200i; assert by == -56

//short similar to byte

float £
f= 123i; assert f == 123.0f
try{ f£= '42.1'; assert 0 }catch(e){assert e in GroovyCastException}

//double similar to float

BigInteger bi
bi= 42L; assert bi == 42g
try{ bi= '421'; assert 0 }catch(e){assert e in GroovyCastException}

BigDecimal bd
bd= 42.1f; assert bd == 42.1g
try{ bd= '4.21'; assert 0 }catch(e){assert e in GroovyCastException}

boolean b

b= 0; assert ! b

b= 1i; assert b

b= 1g; assert b

b= 1.1g; assert b
b= 1.1f; assert b
b= ''; assert ! b
b= 'a'; assert b

b= 'abc'; assert b
b= null; assert ! b

char c
c= 'a'; assert ¢ == ('a' as char)
try{ c= 'abc'; assert 0 }catch(e){assert e in GroovyCastException}

String s

s= 421i; assert s == '42'

s= 42L; assert s == '42'

s= 42g; assert s == '42'

s= 42.1g; assert s == '42.1'

s= 42.100g; assert s == '42.100'
s= 42.1f; assert s == '42.1'

StringBuffer sb
try{ sb= 'abc'; assert 0 }catch(e){ assert e in GroovyCastException }

We can statically type Closure parameters. The casting is more restrictive than for assigning to variables:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

int 1

def toTriple= {int n -> n * 3}
i= 5

assert toTriple(5) == 15

//a float is cast to an integer when assigning to a variable, but not when
//passing as a parameter...

i= 5.0f

try{ toTriple(5.0f); assert 0 }

catch(e) {assert e.class in MissingMethodException}

//a String can't cast to an integer, either when assigning to a variable or
//passing as a parameter...

try{ i= 'abc'; assert 0 }

catch(e) {assert e.class in GroovyCastException}

try{ toTriple('abc'); assert 0 }

catch(e) {assert e.class in MissingMethodException}

We can also statically type the variable-numbered parameters in a closure:

def ¢ = { int[] args ->
args.toList () .inject (0) { flo, it-> flo + it }

}

assert ¢(5) ==5
assert c(4, 2, 3) == 9
try{ c(2, 'abc'); assert 0 }catch(e){ assert e in MissingMethodException }

We can statically type function parameters:

def f(String s, int i){ ([s]l*i).join(',") }
assert f('abc', 3) == 'abc,abc,abc’

def f(int n, int i){ "$n * $i" } //another function f defined with same
//number of but different types of parameters
assert f(4, 5) == '4 * 5!
assert f('a', 5) == 'a,a,a,a,a’'
//correct function selected based on parameter types...
try{ £(4, 'x'); assert 0 }catch(e){ assert e in MissingMethodException }
//...or no method selected

We can statically type the return type from a function. Casting a returned value of a different type follows the same rules as for assigning to
variables:

String £(){ 'abec' }
assert f() == 'abc'

int g(){ 2.4f }
assert g() == 21

We can statically type method parameters just like we do with function parameters, including selecting a method based on its parameter types, for
both static methods and instance methods:

//static methods. ..
class A{

static f(String s, int i){ ([s]*i).join(',') }

static f(int n, int i){ "$n * $i" } //another method f defined with same
//number of but different types of parameters

}

assert A.f('abc', 3) == 'abc,abc,abc'
assert A.f(4, 5) == '4 * 5!
assert A.f('a', 5) == 'a,a,a,a,a’
//correct method selected based on parameter types...
try{ A.£(4, 'x'); assert 0 }catch(e){ assert e in MissingMethodException }

//...or no method selected

//instance methods. ..

class Counter{
def count = 0
def incr(String n){ count += new Integer(n) }
def incr(int n){ count += n }

}
def c= new Counter (count: 5)
c.incr(3)

c.incr('4")
try{ c.incr(2.5); assert 0 }catch(e){ assert e in MissingMethodException }
assert c.count == 12

Wi

[0)

can statically type the return type from a method, just as we can from a function, both static and instance methods:

class A{
static String £(){ 'abc' }
static int g(){ 2.4f }
byte h(){ 200i }

}

assert A.f() == 'abc'
assert A.g() == 2i
assert new A().h() == -56

Property getters and setters can accept and return any statically-typed value:

class Counter{

def count= 0

void setCount (int n){ count= n*2 } //set the value to twice what's supplied
String getCount(){ 'count: '+ count }

//return the value as a String with 'count: ' prepended

}
def c= new Counter ()
c.count= 23
assert c.count == 'count: 46"

A list can be cast to a class using that class's constructor:

class A{
int x,y
A(x,y){ this.x=x; this.y=y } //2-arg constructor
String toString(){ "x: $x; y: Sy" }
}
A a
a= [1,2] //2-element list causes 2-arg constructor of A to be called
assert a.class == A && a.toString() == 'x: 1; y: 2'

Statically-Typed Arrays

We can statically type an Object array variable:

Object[] oca= new Object [2]
assert oa.class in Object[] && oa.size() == 2 && oal[0,1] == [null, null]

oa= 7 //if we assign another scalar value, it's wrapped into an array
assert oa.class in Object[] && oa.size() == 1 && oal0] == 7

oa= [3, 5] //if we assign another collection value, it's cast to an array
assert oa.class in Object[] && oa.size() == 2 && oal0,1] == [3, 5]

def map= ['a':4, 'b':8, 'c':12]
oa= map
assert oa.class in Object[] && oa.size() == 3
//it's cast to an array of MapEntrys
oa.each{ assert it.key in map.keySet () && it.value == mapl[it.key] }

Wi

[0)

can statically type a variable not only as an array, but as a certain type of array:

int[] ia

ia= 7.5

assert ia.class in int[] && ia.size() == 1 && ial[0] == 7i
//assigned value above cast to an integer array

try{ ia= ['abc', 'def']; assert 0 }catch(e){ assert e in ClassCastException }
//can't cast Strings to Integers

We can instead statically type each array element:

def a= new int([3]

assert al[0] == 0 && al[l] == 0 && a[2] == 0 //default value is 0

al0l= 7.5

assert al[0] == 71 //assigned value in above line was cast to an integer
try{ alll= 'abc'; assert 0 }catch(e){ assert e in ClassCastException }

//can't cast String to an Integer

Statically typing both the variable and each element allows both array assignments and element assignments to be cast or disallowed:

int[] ia= new int([3]

ia[0]= 7.5

assert ial[0] == 7i

ia= 7.5

assert ia.class in int[] && ia.size() == 1 && ial[0] == 7i

A multidimensional array type casts its assigned value in various ways:

//a scalar value is cascadingly wrapped by arrays...
Object[][] ia

ia= 7.5

assert ia in Object[] [] && ia.size() == 1 &&
ia[0] in Object[] && ial[0].size() == 1 &&
iaf0] [0] == 7.5

//a one-dimensional vector value is array-wrapped at the innermost level...
ia= ['a', 'b', 'c']

assert ia in Object[] [l && ia.size() == 3 &&
ia[0] in Object[] && ia[0].size() == 1 &&
ia[0] [0] == 'a' && ia[1l] [0] == 'b' && ial2][0] == 'c'

Interfaces

Groovy enables a construct known as an interface, which classes can implement. We can test for implemented interfaces with the 'in' operator:

class A{} //a standard class definition, though without any fields,
//properties, or methods

def a= new A()

assert a in A

interface X{}
class B implements X{} //a class can implement an interface
def b= new B()
assert b in B && b in X

//'in' tests for the class and for interfaces implemented
assert ! (a in X)

interface Y{}

interface Zz{}

class C implements X, Y, Z{} //a class can implement more than one interface
def c= new C()

assert ¢ in C && ¢ in X && c in Y && c in 2

Interfaces can contain method declarations. Each declared method must be defined in implementing classes:

interface X{
String sayPies (int 1)

}

class A implements X({
String sayPies (int n){ "There are $n pies!" } //sayPies(int) in X defined
String sayBirds(int n){ "There are $n birds!" }
}
def a= new A()
assert a.sayPies(24) == 'There are 24 pies!'

//class B implements X({}
//a compile error when uncommented: sayPies (int) must be implemented

//these each give a compile error when uncommented...
//class C implements X{ String sayPies(float n){ "$n" } } //wrong parameter type
//class D implements X{ Object sayPies(int n){ "$n" } } //wrong return type

An interface can also be composed of other interfaces, using the 'extends' keyword:

interface X{
def x1(int i)
def x2()
}
interface Y{
def x1(int i)
def y()
}
interface Z extends X, Y{ }
//it's OK if a method, here x1(int), is in more than one interface

class A implements Z{
def x1(int i){ i }
def x2(){ 2 }
def y(){ 3}

}

assert new A().x1(1) ==1

We can implement an interface with map syntax:

interface X{
int echo(int i)
def sayTarts(int i)
String sayPies (int 1)
}
def a= [
echo: {n-> n},
sayTarts: {n-> "There are $n tarts!"},
sayPies: {n-> "There are $n pies!" as String},
//explicit cast from GString to String required here

] as X

assert a.echo(12) == 12

assert a.sayTarts(18) 'There are 18 tarts!'
assert a.sayPies(24) == 'There are 24 pies!'

//when interface has only one method, we don't need a map, but can assign and
//cast the closure directly...
interface Y{

def sayCakes (int 1)

}

def b= {n-> "There are $n cakes!"} as Y

assert b.sayCakes(36) == 'There are 36 cakes!'

Interfaces can also have fields, but their values can't be changed:

interface X{
int status= 1 //constant field on interface
int changeCounter ()
}
class A implements X({
int counter= 1 //updateable field on class itself
int changeCounter(){ counter++ }
int changeStatus() { status++ }
}
def a= new A()
a.changeCounter () //field 'counter' can be changed...
try{ a.changeStatus(); assert 0 }catch(e){ assert e in IllegalAccessException }
//...but field 'status' can't

Static Typing with Interfaces

We can use an interface, instead of a class, to statically type a variable, field, parameter, etc:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

interface X{}

class A implements X{}

class B{}

X a

a= new A()

try{ a= new B(); assert 0 }catch(e){ assert e in GroovyCastException }

Groovy supplies many interfaces we can use to statically type variables. Some have no methods, eg, Serializable, while others have one or m

ore:

class A implements Serializable{}
//Serializable interface marks class A via the 'in' operator
assert A in Serializable

//class B implements Closeable({}
//compile error when uncommented: method close() must be defined

class C implements Closeable{
void close () {}
//Closeable interface signifies that this close() method is present
}
def c= new C()
if (¢ in Closeable) c.close()

We've met the Comparator interface in the tutorial on Collections, and the Iterator interface in the tutorial on Control Structures.

Many Groovy classes we've met implement interfaces, which we can use to statically type variables:

import org.codehaus.groovy.runtime.typehandling.GroovyCastException

List listl= new ArrayList(),
list2= [],
list3= new LinkedList ()
assert listl in Arraylist &&
list2 in ArraylList &&
list3 in LinkedList

Set setl= new HashSet(),
set2= listl,
set3= list3,
set4= new TreeSet ()
assert [setl, set2, set3].every{ it in HashSet } &&
set4 in TreeSet

SortedSet ssl= new TreeSet (),
s82
try{ ss2= new HashSet (); assert 0 }catch(e){ assert e in GroovyCastException }

Map mapl= new HashMap (),
map2= new TreeMap (),
map3= [:],
map4= new LinkedHashMap ()
assert mapl in HashMap &&
map2 in TreeMap &&
[map3, map4].every{ it in LinkedHashMap }

SortedMap sml= new TreeMap (),
sm2
try{ sm2= new HashMap(); assert 0 }catch(e){ assert e in GroovyCastException }

JN3025-Inheritance

Groovy enables one class to extend another, just as interfaces can, though classes extend at most one class. We can test for extended classes
with the 'in' operator, just like with implemented interfaces:

class A{}

class B extends A{}

def b= new B()

assert b in B && b in A

class A1{}

class A2{}

//class C extends Al, A2{}

//compile error when uncommented: a class can extend at most one class

Public instance fields, properties, and methods defined on an extended class are also available on the extending class:

class A{
public int prev //field
int signature //property
String sayPies(int n){ "There are ${prev= signature= n} pies!" } //method
}
class B extends A{
String sayBirds(int n){ "There are $n birds!" }
}

def b= new B()

assert b.sayBirds(17) == 'There are 17 birds!'
assert b.sayPies(11l) == 'There are 11 pies!'
//method sayPies(int) from A acts as part of B
assert b.prev == 11 //field 'prev' from A acts as part of B
b.signature= 19
assert b.signature == 19 //property 'signature' from A acts as part of B
assert b.getSignature() == 19

We can use the 'private' and 'protected' modifiers to restrict the visibility of instance methods, properties, and fields:

class A{

//private methods, properties, and fields are not visible outside the class,
//even in inheriting classes...
private int prevPies

private String sayPies (int n){ "There are ${prevPies= n} pies!" }

//protected methods, properties, and fields are visible in inheriting
//classes (and within the same package)...
protected int prevBeans
protected String sayBeans (int n){ "There are ${prevBeans= n} beans!" }
}
class B extends A{
def testAccesses () {
assert sayPies(23) == 'There are 23 pies!'
//Groovy bug: this private method shouldn't be visible here
try{ prevPies; assert 0 }catch(e){ assert e in MissingPropertyException }
//A's private field 'prevPies' not visible here

assert sayBeans(29) == 'There are 29 beans!'
//A's protected method visible here in an inheriting class
assert prevBeans == 29

//A's protected field visible here in an inheriting class

}
}

def b= new B()
assert b.sayPies(11l) == 'There are 11 pies!'
//Groovy bug: this private method shouldn't be visible here
try{ b.prevPies; assert 0 }catch(e){ assert e in MissingPropertyException }
//A's private field 'prevPies' not visible here

assert b.sayBeans(14) == 'There are 14 beans!'
//this protected method is visible here in the same package it's defined in
assert b.prevBeans == 14

//this protected field is visible here in the same package it's defined in

b.testAccesses ()

Public static fields, properties, and methods are inherited by extending classes:

class A{
static public int numBananas //field

static signature //property

static String sayBananas(int n){ //method

"There are ${numBananas= signature= n} bananas!"
}

}

class B extends A{}

assert A.sayBananas(23) == 'There are 23 bananas!' //method call
assert A.numBananas == 23 //field access

assert A.signature == 23 //property accesses

assert A.getSignature() == 23

assert B.sayBananas(23) == 'There are 23 bananas!' //method call
assert B.numBananas == 23 //field access

assert B.signature == 23 //property access

B.getSignature() == 23 //property access using method syntax

We can make static methods, properties, and fields private or protected:

class A{

static private int numBananas= 0

static private String sayBananas(int n) {
"There are ${numBananas= n} bananas!"

}

static protected int numApples= 0

static protected String sayApples (int n) {
"There are ${numApples= n} apples!"

}

class B extends A{
static testAccesses () {
assert sayBananas(37) == 'There are 37 bananas!'
//numBananas //compile error when uncommented:
//A's private field not visible here

assert sayApples(29) == 'There are 29 apples!'
//numApples //compile error when uncommented:
//A's protected field not visible here in an inheriting class
}
}

assert B.sayBananas(31) == 'There are 31 bananas!'

try{ B.numBananas; assert 0 }catch(e){ assert e in MissingPropertyException }
assert B.sayApples(23) == 'There are 23 apples!'

assert B.numApples == 23

B.testAccesses ()

We can define what's called an "abstract class", a class with only some methods defined, the others being only declarations just like in interfaces.
An abstract class and each method declaration in it must be modified with the keyword 'abstract":

interface X{
def x()
}
interface Y{
def y()
}
abstract class A{
def a(){ println 1 } //method definition
abstract b() //declaration of method only
}
class B extends A implements X, Y{
def x(){ println 2 }
def y(){ println 3 }
def b(){ println 4 } //declared method from abstract class A defined here

Whether a method is static or not is part of its definition, not its declaration. So interface and abstract methods may not be declared static.

interface X{
def x()
//static x1() //error when uncommented: interface methods can not be static
}
interface Y{
def y()
}
abstract class A{
static a(){ println 1 }
abstract b()
abstract c()
//abstract static cl()
//error when uncommented: abstract methods can not be static
}
class B extends A implements X, Y{
static x(){ println 2 }
def y(){ println 3 }
static b(){ println 4 }
def c(){ println 5 }

At the other end from abstract classes and methods are "final classes" and "final methods". A final class may not be extended; a final method may
not be overriden:

class A{
final a(){ 11 }
def b(){ 12 }
}
final class B extends A{
//def a(){ 15 } //compile error when uncommented: can not override final A.a()
def b(){ 16 }
}

//class C extends B{} //compile error when uncommented: can not extend final C

Constructors

Just as a class's constructor can call another constructor at the beginning of its code, so also it can call a constructor on the superclass at the
beginning of its code:

class A{
def list= []
AQ){
list<< "A constructed"
}
A(int 1) {
this()
list<< "A constructed with si"
}
}
class B extends A{
B(){
list<< "B constructed"
}
B(String s) {
super (5) //a constructor can call its superclass's constructor if it's
//the first statement
list<< "B constructed with 'S$s'"
}
}

def bl= new B('kea')
assert bl.list.collect{it as String}
"A constructed",
"A constructed with 5",
"B constructed with 'kea'",
]
def b2= new B()
assert b2.list == [
"A constructed",
//default parameterless constructor called if super () not called
"B constructed",

1

Using Classes by Extending Them

Some classes supplied with Groovy are intended to be extended to be used. For example, FilterinputStream, FilterOutputStream, FilterReader,
and FilterWriter:

//When not extended, FilterOutputStream simply passes its method calls to the
//wrapped stream.. .
try(
def fos= new FilterOutputStream(new FileOutputStream('abc.txt'))
fos.write(331)
fos.write([34,35,36] as bytel[])
fos.write([34,35,36,37,38,39,40] as bytell, 3, 2)
fos.close()
def fis= new FilterInputStream(new FileInputStream('abc.txt'))
def ba= new byte[6]
fis.read (ba)
assert ba.toList() == [33,34,35,36,37,38]

//We can extend FilterOutputStream to provide the logic for the filter...
class EvenNumberOutputStream extends FilterOutputStream(
EvenNumberOutputStream (OutputStream out) {
super (out)

}
def write(int i) {
if(i%2 == 0) super.write(i) //call method of same name in the super-class
}
def write(bytel]l ba)
super.write(ba.toList().findAll{ it%2 == 0 } as bytel[])
}
def write(bytel[] ba, int start, int size){
this.write(balstart..<(start+size)] as bytel[])
//another way to call method of same name in same class definition
}
}

try{ //...then call the methods...
def fos= new EvenNumberOutputStream(new FileOutputStream('abc.txt'))
fos.write(331)
fos.write([34,35,36] as bytel[])
fos.write([34,35,36,37,38,39,40] as bytell, 3, 2)
fos.close()
def fis= new FilterInputStream(new FileInputStream('abc.txt'))
def ba= new byte[6]
fis.read (ba)
assert ba.toList() == [34,36,38,0,0,0]

We can similarly extend FilterInputStream, FilterReader, and FilterWriter.

The Object Hierarchy

All classes are arranged in a hierarchy with java.lang.Object as the root. Here are those we've met so far; those labelled as such are abstract and
final classes:

java.lang.Object
java.lang.Boolean (final)
java.lang.Character (final)
java.lang.Number (abstract)
java.lang.Integer (final)
java.lang.Long (final)
java.math.BigInteger
java.math.BigDecimal
java.lang.Short (final)
java.lang.Byte (final)
java.lang.Float (final)
java.lang.Double (final)
java.math.MathContext (final)
java.util.Random
java.util.Date

java.util.TimeZone (abstract)
java.util.SimpleTimeZone
java.util.Calendar (abstract)
java.util.GregorianCalendar
groovy.time.BaseDuration (abstract)
groovy.time.Duration
groovy.time.TimeDuration
groovy.time.DatumDependentDuration
groovy.time.TimeDatumDependentDuration
java.util.AbstractCollection (abstract)
java.util.AbstractList (abstract)
java.util.ArrayList
groovy.lang.Sequence
groovy.lang.IntRange
groovy.lang.ObjectRange
java.util.AbstractSet (abstract)
java.util .HashSet
java.util.TreeSet
java.util.AbstractMap (abstract)
java.HashMap
java.util.LinkedHashMap
groovy.lang.SpreadMap
java.TreeMap
java.util.Collections
java.lang.String (final)
java.lang.StringBuffer (final)
java.util.regex.Pattern (final)
java.util.regex.Matcher (final)
groovy.lang.GroovyObjectSupport (abstract)
groovy.lang.Binding
groovy.lang.Closure (abstract)
groovy.lang.GString (abstract)
groovy.util.Expando
java.text.Format (abstract)
java.text.NumberFormat (abstract)
java.text .DecimalFormat
java.text.DateFormat (abstract)
java.text.SimpleDateFormat
java.text.DecimalFormatSymbols
java.text.DateFormatSymbols
java.io.File
java.io.InputStream (abstract)
java.io.ByteArrayInputStream
java.io.FileInputStream
java.io.FilterInputStream
java.io.BufferedInputStream
java.io.DataInputStream
java.io.LineNumberInputStream
java.io.PushbackInputStream
java.io.SequenceInputStream
java.io.StringBufferInputStream
java.lo.OutputStream (abstract)
java.io.ByteArrayOutputStream
java.io.FileOutputStream
java.io.FilterOutputStream
java.io.BufferedOutputStream
java.io.DataOutputStream
java.io.PrintStream
java.lo.Reader (abstract)
java.io.BufferedReader
java.io.LineNumberReader
java.io.CharArrayReader
java.io.FilterReader (abstract)
java.io.PushbackReader
java.io.InputStreamReader
java.io.FileReader
java.io.StringReader
java.lo.Writer (abstract)
java.io.BufferedWriter
java.io.CharArrayWriter

java.io.FilterWriter (abstract)
java.io.OutputStreamWriter
java.io.FileWriter

java.io.PrintWriter
java.io.StringWriter

JN3035-Exceptions

Exceptions and Errors are together known as Throwables. The Throwables are positioned like so in the Object hierarchy:

java.lang.Object
java.lang.Throwable
java.lang.Error
java.lang.Exception

Errors are fatalities that we would normally want to cause a program failure, while Exceptions are events that we would normally want to handle in
our program. An example of using them with a try-catch statement, a 'try' clause followed by a 'catch’ clause:

//assert 1 == 0 //AssertionError when uncommented

//try{ assert 1 == }catch(e) {}
//AssertionError when uncommented: Exceptions, not Errors, are caught here

try{
assert 1 ==
}catch (Error e) {}
//by specifying Error, prevents bad assertion from causing program failure

try{
assert 1 == 0
}catch (Throwable e){} //specifying Throwable also prevents program failure

//try{ assert 1 == }catch (Object o) {}
//compile error when uncommented:
//only Throwables and its subclasses may be caught

A common idiom for asserting for exceptions is:

try(

'moo' .toLong () //this will generate an exception
assert false //asserting that this point should never be reached
}catch (e) {

assert e in NumberFormatException

}

Some common exceptions associated with Groovy:

assert new java.lang.ArithmeticException ()

assert new java.lang.ArrayIndexOutOfBoundsException ()
assert new java.lang.NullPointerException ()

assert new java.io.IOException()

We can put code within a 'finally’ clause following a matching 'try' clause, so that if the code in the 'try' clause throws an exception, the code in the
finally clause will always execute:

def z
try(
def i= 7, j= 0
try(
def k=1 / j
assert false //never reached due to Exception in previous line
}finally{
z= 'reached here' //always executed even if Exception thrown

}catch (e) {
assert e in ArithmeticException
assert z == 'reached here'

We can attach more than one 'catch’ clause to a 'try' clause, and attach a 'finally' clause also:

class El extends Exception{} //we can define our own exceptions
class E2 extends Exceptionf{}
class E3 extends Exceptionf{}

try(
def z

//multi-catch try-block with finally-clause...
try(
throw new E2()
assert false
}catch(E1l e){
assert false
}catch(E2 e){
z= 'reached here'
throw new E3() //uncaught exception because only one catch clause executed
}catch(E3 e){
assert false //never reached
}finally{
assert z == 'reached here'
throw new E1()
assert false

}

}catch(E1l e){} //catches exception thrown in embedded finally clause

An exception will ripple up through the nested blocks, executing only code in finally' clauses, until caught, or the thread terminates.

class MyException extends Exception{}
def z
try(
try(
throw new MyException ()
assert false
}
}catch (e) {
assert e in MyException
z= 'been here'
}

assert z == 'been here'

Exceptions will also ripple through function and method invocations

class MyException extends Exceptionf{}

def z= []
def met () {
throw new MyException ()
}
try{ met(); assert false }
catch(e) {assert e in MyException; z << 'function'}

class M{
def m(){ throw new MyException() }

}
try{ new M().m(); assert false }
catch(e) {assert e in MyException; z << 'method' }

def c= { throw new MyException() }
try{ c(); assert false }
catch(e) {assert e in MyException; z << 'closure'}

assert z == ['function', 'method', 'closure']

//Method embedded in closure...

def z2
def d= { new M().m(); assert false }
try{ d(); assert false }

)i
catch(e) {assert e in MyException; z2= 'closure d'}
assert z2 == 'closure d'

We can mark a function or method indicating what type of Exception it might throw. This is a useful documentation feature:

class MyException extends Exceptionf{}
def z= []

def met() throws MyException{ // 'function met() may throw MyException'
throw new MyException ()

}

try{ met(); assert false }

catch(e) {assert e in MyException; z << 'function'}

class M{

def m() throws MyException{ // 'method m() of class M may throw MyException'
throw new MyException ()

}
}

try{ new M().m(); assert false }
catch(e) {assert e in MyException; z << 'method' }

assert z == ['function', 'method']

JN3515-Interception

We can use the ProxyMetaClass to intercept methods in a class within a selected block for the current thread.

Interceptors with ProxyMetaClass

By using ProxyMetaClass, we can attach an interceptor to a class for a block of code. The Groovy-supplied Interceptor interface has three

methods. The beforelnvoke() method specifies code to be executed before the intercepted method, the dolnvoke() indicates whether to execute

the intercepted method, and afterinvoke() executes after the intercepted method finishes, or after a false-returning dolnvoke(). The result

parameter passed to afterinvoke() is the result of executing the method, or what was returned from beforelnvoke() if the intercepted method

wasn't executed. What afterlnvoke() returns is returned from the method call in the main flow of the program.

class MyClass{
public MyClass (String s){ println "constructing $s" }
public String sayHello(String name) {
println "saying hello to $name"
"Hello " + name //return this value
}
}

class MyInterceptor implements Interceptor{
Object beforeInvoke (Object object, String methodName, Object[] arguments) {
println " BEFORE Sobject .SmethodName S$arguments"
if (methodName == 'sayHello') arguments[0] += ' and family'
//we can change the arguments
null //value returned here isn't actually used anywhere else
}
boolean doInvoke(){ true } //whether or not to invoke the intercepted
//method with beforeInvoke's copy of arguments

Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {
println " AFTER Sobject .SmethodName Sarguments: Sresult"
if (methodName == 'sayHello') result= (result as String) + ' and in-laws'
//we can change the returned value
result
}
}

def proxy= ProxyMetaClass.getInstance(MyClass)
//create proxy metaclass for MyClass
proxy.interceptor= new MyInterceptor ()
//attach new interceptor to MyClass's proxy metaclass
proxy.use(
def invoice= new MyClass ('trade')
println invoice.sayHello('Ms Pearl')

}

/*example output:
BEFORE class MyClass .ctor {"trade"}
constructing trade
AFTER class MyClass .ctor {"trade"}: MyClass@ldé63e39
BEFORE MyClass@ldé63e39 .sayHello {"Ms Pearl"}
saying hello to Ms Pearl and family
AFTER MyClass@ld63e39 .sayHello {"Ms Pearl and family"}: Hello Ms Pearl and family
Hello Ms Pearl and family and in-laws

*/

We can invoke a different method instead of the one called:

class MyClass{
public String sayHello(String name) {
println "saying hello to $name"
return "Hello " + name
}
public String sayGoodbye (String name) {
println "saying goodbye to Sname"
return "Goodbye " + name
}
}

class MyInterceptor implements Interceptor{
def toInvoke= true
//so we can change whether or not to invoke the original method
def resultFromSayGoodBye

Object beforeInvoke (Object object, String methodName, Object[] arguments) {
if (object instanceof MyClass && methodName == 'sayHello') {
resultFromSayGoodBye= object .sayGoodbye (arguments [0])
//so we can invoke a different method
toInvoke= false //don't invoke sayHello
}
}

boolean doInvoke(){ toInvoke }

Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {
if (object instanceof MyClass && methodName == 'sayHello') {
toInvoke= true
result= resultFromSayGoodBye

}

result

//a utility to match up class, interceptor, and code...
def uselnterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
//must use dynamic constructor here because class not yet known
proxy.interceptor= interceptor
proxy.use(theCode)
}

uselnterceptor(MyClass, MyInterceptor) {
println new MyClass () .sayHello('Ms Pearl')
}

/*output :

saying goodbye to Ms Pearl
Goodbye Ms Pearl

*/

We can even use interceptors on predefined Java classes:

class MyInterceptor implements Interceptor{
Object beforeInvoke (Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {

if (object instanceof ArrayList && methodName == 'size'){
result = (result as Integer) + 10 //add 10 to size of ArrayLists
}
result

}
}

def uselnterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
proxy.interceptor= interceptor
proxy.use(theCode)

}

uselnterceptor(ArraylList, MyInterceptor) {
assert ['a', 'b', 'c']l.size() == 13

}

We can prevent methods being intercepted inside the interceptor by using special & notation:

class MyInterceptor implements Interceptor{
Object beforeInvoke(Object object, String methodName, Object[] arguments) {

null

}

boolean doInvoke(){ true }

Object afterInvoke(Object object, String methodName,Object[] arguments,
Object result){
if (object instanceof ArrayList && methodName == 'size') {
result = (result as Integer) + [1,2,3,4,5,6,7,8,9,10].&size()
// & before method name prevents re-interception of method

result

}
}

def uselInterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newlInstance ()
proxy.interceptor= interceptor
proxy.use(theCode)

}

uselnterceptor(ArraylList, MyInterceptor) {
assert ['a', 'b', 'c']l.size() == 13

Like categories, interceptors are only valid for a certain block in the current thread. We can also combine categories with interceptors in various
ways, also only valid in the current thread:

class MyCategory{
static String categorize(String s){ "categorized: $s" }

}

class StringInterceptor implements Interceptor
Object beforeInvoke (Object object, String methodName, Object[] arguments) {
if (object instanceof String)
use (MyCategory) {
assert object.&categorize() == "categorized: sobject"
}
null
}
boolean doInvoke(){ true }
Object afterInvoke (Object object, String methodName, Object[] arguments,
Object result) {
if (object instanceof String)
result= "intercepted: S$result"
result
}
}

def uselnterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
proxy.interceptor= interceptor
proxy.use(theCode)

}

uselnterceptor(String, StringInterceptor) {
assert new String('silver').toString() == 'intercepted: silver'

use (MyCategory) {
assert new String('golden') .categorize() ==
'intercepted: categorized: golden'

}

Thread.start{ //no interception in spawned thread...
use (MyCategory) {
assert new String('bronze').categorize() == 'categorized: bronze'
}
}
}

Unintercepted Interceptors

The special & notation for bypassing interceptors handles simple code, but for more complex code we often need our own
Uninterceptedinterceptor:

abstract class UninterceptedInterceptor implements Interceptor
def proxy= null //we need to know the proxy...

abstract Object doBefore(Object object, String methodName,
Object [] arguments)

public Object beforeInvoke(Object object, String methodName,
Object[] arguments) {

proxy.interceptor= null //...so we can turn off interception...
def result
try(
result= doBefore(object, methodName, arguments)
}catch (Exception e) {
throw e
}finally{
proxy.interceptor= this //...and turn interception back on

result

}

abstract boolean doInvoke ()

abstract Object doAfter(Object object, String methodName, Object[] arguments,
Object result)

public Object afterInvoke(Object object, String methodName,
Object[] arguments, Object result) {
proxy.interceptor= null //turn off interception
try(
result= doAfter (object, methodName, arguments, result)
}catch (Exception e) {
throw e
}finally{
proxy.interceptor= this //turn interception back on

result

}
}

class MyInterceptor extends UninterceptedInterceptor(
Object doBefore(Object object, String methodName, Object[] arguments) {
null
}

boolean doInvoke(){ true }

Object doAfter(Object object, String methodName,Object[] arguments,
Object result){
if (object instanceof ArrayList && methodName == 'size'){
result = (result as Integer) + [1,2,3,4,5,6,7,8,9,10].size()
//call ArrayList size () method here without stack overflow

result

}
}

def uselInterceptor= { Class theClass, Class thelnterceptor, Closure theCode->
def proxy= ProxyMetaClass.getInstance(theClass)
def interceptor= thelnterceptor.newInstance ()
proxy.interceptor= interceptor
interceptor.proxy= proxy
//we must now store a proxy reference in the interceptor
proxy.use(theCode)

}

uselnterceptor(ArraylList, MyInterceptor) {
assert ['a', 'b', 'c']l.size() == 13
}

Intercepting many classes in one block

Often, we want to intercept more than one class in one block. This example is of an aliasing interceptor, which disables some English-language
names for selected classes, and replaces them with Spanish-language names. We re-use the Uninterceptedinterceptor class and uselnterceptor

utility from the previous example.

import org.codehaus.groovy.runtime.InvokerHelper

abstract class AliasInterceptor extends UninterceptedInterceptor{
protected aliases= [:]

private toReturn= null, toThrow= false, toInvoke= false

Object doBefore(Object object, String methodName, Object[] arguments) {
if (methodName in aliases.keySet())
toReturn= InvokerHelper.invokeMethod(object, aliases [methodName],
arguments)
//use Spanish names instead
else if(methodName in aliases.values()) toThrow= true
//disable the English names
else toInvoke= true //run other methods unchanged
null

}

Object doAfter(Object object, String methodName, Object[] arguments,
Object result){
if (toReturn != null) {
result= toReturn
toReturn= null
}else if(toThrow) {
toThrow= false
throw new MissingMethodException(methodName, object.getClass(),
arguments)
}else toInvoke= false
result

}

boolean doInvoke(){ toInvoke }

}

class ArrayListAliasInterceptor extends AliasInterceptor{
{aliases.putAll([tamano:'size', todos:'each'])} //Spanish aliases

}

class HashMapAliasInterceptor extends AliasInterceptor(
{aliases.putAll([tamano:'size', todos:'each' 1)}

}

class LinkedHashMapAliasInterceptor extends AliasInterceptor{
{aliases.putAll([tamano:'size', todos:'each'])}

We call the code like so:

def useAliasing= { Closure c->
useInterceptor (ArrayList, ArrayListAliasInterceptor) {
uselnterceptor (HashMap, HashMapAliasInterceptor) {
useInterceptor (LinkedHashMap, LinkedHashMapAliasInterceptor) {
c()

useAliasing{
def a= [1, 3, 5, 7, 9]
println 'size: '+ a.tamano()
//Spanish 'tamano' is an alias for the 'size' method
try{ println a.size(); assert 0 }
catch(e){ assert e instanceof MissingMethodException }
//English 'size' method disabled
a.todos{ println 'item: '+ it }
println '!'

def b= [a:1, c:3, e:5, g:7]

println 'size: '+ b.tamano()

try{ println b.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
b.todos{ println 'item: '+ it }

println '!'

def c= new LinkedHashMap([e:5, g:7, 1:9])

println 'size: '+ c.tamano()

try{ println c.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
c.todos{ println 'item: '+ it }

We can put the cascadingly indented code into a list to make it neater by defining a utility category method on the List class.

class Extras({
static closureInject (List self, Closure base)
def z= []
self.eachWithIndex{ it, i-> z<< {-> it(z[i+1])} }
z<< base
z [0] ()

use (Extras) {
[{c-> uselnterceptor (ArrayList, ArrayListAliasInterceptor){ c() }},
{c-> useInterceptor (HashMap, HashMapAliasInterceptor){ c() }},
{c-> useInterceptor (LinkedHashMap, LinkedHashMapAliasInterceptor){ c() }},

] .closureInject{
def a= [1, 3, 5, 7, 9],
b= [a:1, ¢:3, e:5, g:7],
c= new LinkedHashMap([e:5, g:7, 1:9])

println 'size: '+ a.tamano()

try{ println a.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
a.todos{ println 'item: '+ it }

println "'

println 'size: '+ b.tamano()

try{ println b.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
b.todos{ println 'item: '+ it }

println "'

println 'size: '+ c.tamano()

try{ println c.size(); assert 0 }

catch(e){ assert e instanceof MissingMethodException }
c.todos{ println 'item: '+ it }

Our own ProxyMetaClass

We can define our own proxy meta-classes. One case for which we'd do so is to implement our own style of interceptors, here, an
around-interceptor:

import org.codehaus.groovy.runtime.InvokerHelper

public class MyProxyMetaClass extends MetaClassImpl{
protected adaptee= null
def interceptor= null
MyProxyMetaClass (MetaClassRegistry registry, Class theClass,
MetaClass adaptee) {
super (registry, theClass); this.adaptee = adaptee
}
static getInstance (Class theClass) {
def metaRegistry = InvokerHelper.getInstance().getMetaRegistry ()
new MyProxyMetaClass (metaRegistry, theClass,
metaRegistry.getMetaClass (theClass))
}
void use (Closure closure) {
registry.setMetaClass (theClass, this)
try{ closure.call() }
finally{ registry.setMetaClass (theClass, adaptee) }
}
void use (GroovyObject object, Closure closure) {
object.setMetaClass (this)
try{ closure.call() }
finally{ object.setMetaClass (adaptee) }
}
Object invokeMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeMethod (object, methodName, arguments) })
}
Object invokeStaticMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeStaticMethod (object, methodName, arguments) })
}
Object invokeConstructor (final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructor (arguments) })
}
Object invokeConstructorAt (final Class at, final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructorAt (at, arguments) })
}
private Object doCall (Object object, String methodName, Object[] arguments,
Closure howToInvoke) {
if (null == interceptor){ return howToInvoke.call() }
interceptor.aroundInvoke (object, methodName, arguments, howToInvoke)

interface AroundInterceptor{
Object aroundInvoke (Object object, String methodName, Object[] arguments,
Closure proceed)

We can then run our code:

class MyInterceptor implements AroundInterceptor{
Object aroundInvoke (Object object, String methodName, Object[] arguments,
Closure proceed) {

println " BEFORE Sobject .$methodName Sarguments"

def result= proceed()

println " AFTER Sobject .s$methodName Sarguments: $Sresult"
result

}
}

class MyClass{
void sayHi(){ System.out.println 'hi' }

}

def interceptor= new MyInterceptor (
def proxy= MyProxyMetaClass.getInstance(MyClass)
proxy.use(

proxy.interceptor= interceptor

new MyClass () .sayHi ()

}

/*outputs:
BEFORE class MyClass .ctor {}
AFTER class MyClass .ctor {}: MyClass@lf5d386
BEFORE MyClass@l1£5d386 .sayHi {}
hi
AFTER MyClass@l1f5d386 .sayHi {}: null
*/

Using many Interceptors with our own ProxyMetaClass

We can only use one interceptor with the ProxyMetaClass supplied by Groovy, so we need to provide our own when attaching more than one
interceptor to a class:

import org.codehaus.groovy.runtime.InvokerHelper

public class MultilInterceptorProxyMetaClass extends MetaClassImpl{
protected adaptee= null
def interceptors= [] //reference a list of interceptors, instead of just one

MultiInterceptorProxyMetaClass(MetaClassRegistry registry, Class theClass,
MetaClass adaptee) {
super (registry, theClass)
this.adaptee = adaptee
if(null == adaptee)
throw new IllegalArgumentException("adaptee must not be null")
}
static getInstance (Class theClass) {
def metaRegistry= InvokerHelper.getInstance ().getMetaRegistry()
new MultiInterceptorProxyMetaClass (metaRegistry, theClass,
metaRegistry.getMetaClass (theClass))
}
void use(Closure closure) {
registry.setMetaClass (theClass, this)
registry.getMetaClass (theClass) .initialize ()
try{ closure.call() }
finally{ registry.setMetaClass (theClass, adaptee) }
}
void use (GroovyObject object, Closure closure) {
object.setMetaClass (this)
try{ closure.call() }
finally{ object.setMetaClass (adaptee) }
}
Object invokeMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeMethod (object, methodName, arguments) })
}
Object invokeStaticMethod(final Object object, final String methodName,
final Object[] arguments) {
doCall (object, methodName, arguments,
{ adaptee.invokeStaticMethod(object, methodName, arguments) })
}
Object invokeConstructor (final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructor (arguments) })
}
public Object invokeConstructorAt(final Class at, final Object[] arguments) {
doCall (theClass, '"ctor", arguments,
{ adaptee.invokeConstructorAt (at, arguments) })
}
private Object doCall(Object object, String methodName, Object[] arguments,
Closure howToInvoke) {
if (interceptors == []){ return howToInvoke.call() }
def result
interceptors.each{ //different logic to cater for all the interceptors

result= it.beforeInvoke (object, methodName, arguments)
if (it.doInvoke()){ result= howToInvoke.call() }
it.afterInvoke (object, methodName, arguments, result)

}

result

Using a MultilnterceptorProxyMetaClass for the Observer pattern

A common design pattern is the Observer pattern. Using interceptors, we can abstract the observation code into its own class, the
ObserverProtocol, which can be used by subclasses. It enables us to add and remove observing objects for an observed object. We use method
interception to decouple the observing and observed objects from the observation relationship itself.

abstract class ObserverProtocol implements Interceptor(
private perSubjectObservers

protected getObservers(subject) {

if (perSubjectObservers == null) perSubjectObservers= [:]
def observers= perSubjectObservers[subject]
if (observers == null) {

observers= []

perSubjectObservers[subject]= observers

}

observers

public void addObserver(subject, observer) {
getObservers (subject) << observer

}

public void removeObserver(subject, observer) {
getObservers (subject) .remove (observer)

}

abstract Object beforeInvoke(Object object, String methodName,
Object [] arguments)

abstract boolean doInvoke ()

abstract Object afterInvoke(Object object, String methodName,
Object[] arguments, Object result)

We can extend this ObserverProtocol with domain-specific observers. The example is a Groovy rewrite of one first implemented in AspectJ by Jan
Hannemann and Gregor Kiczales.

public class Screen{ //class to be observed
def name
public Screen(String s){
this.name= s
}
public void display(String s){
println(this.name + ": " + s)
}
}

public class Point{ //class to be observed
def x, y, color
public Point(int x, int y, Color color) {
this.x=x
this.y=y
this.color=color
}
}

class ColorObserver extends ObserverProtocol{
Object beforeInvoke(Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke(Object object, String methodName, Object[] arguments,
Object result){
if (object instanceof Point && methodName == 'setColor') ({
getObservers (object) . each{
it.display ("Screen updated (point subject changed color).")
}
}
result
}
}

class CoordinateObserver extends ObserverProtocol{
Object beforeInvoke(Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke(Object object, String methodName, Object[] arguments,
Object result){
if (object instanceof Point && ['setX', 'setY'].contains(methodName)) {
getObservers (object) . each{
it.display("Screen updated (point subject changed coordinates)."
}
}
result
}
}

class ScreenObserver extends ObserverProtocol({
Object beforeInvoke(Object object, String methodName, Object[] arguments) {
null
}
boolean doInvoke(){ true }
Object afterInvoke(Object object, String methodName, Object[] arguments,
Object result){
if (object instanceof Screen && methodName == 'display'){
getObservers (object) . each{
it.display("Screen updated (screen subject changed message).")
}
}

result

Now we run the program. It first creates five Screen objects (s1, s2, s3, s4, and s5) and one point object, then sets up some observing
relationships (namely, s1 and s2 will observe color changes to the point, s3 and s4 will observe coordinate changes to the point, and s5 will
observe s2's and s4's display method), and finally, make changes to the point, first, the color, then its x-coordinate. The color change triggers s1
and s2 to each print an appropriate message. s2's message triggers its observer s5 to print a message. The coordinate change triggers s3 and s4
to print a message. s4's message also triggers the observer s5.

import java.awt.Color

def colorObserver= new ColorObserver ()
def coordinateObserver= new CoordinateObserver ()
def screenObserver= new ScreenObserver ()

def pointProxy= MultiInterceptorProxyMetaClass.getInstance(Point)
pointProxy.interceptors << colorObserver << coordinateObserver

//multi-interception used here
pointProxy.use{

def screenProxy= MultiInterceptorProxyMetaClass.getInstance(Screen)
screenProxy.interceptors << screenObserver
screenProxy.use{

println("Creating Screen sl,s2,s3,s4,s5 and Point p")
def sl= new Screen('sl'),

s2= new Screen('s2'),
s3= new Screen('s3'),
s4= new Screen('s4'),
s5= new Screen('s5')

s
def p= new Point (5, 5, Color.blue)

println("Creating observing relationships:")

(
println(" - sl and s2 observe color changes to p")
println(" - s3 and s4 observe coordinate changes to p")
println(" - s5 observes s2's and s4's display () method")

colorObserver.addObserver (p, sl)
colorObserver.addObserver (p, s2)
coordinateObserver.addObserver (p, s3)
coordinateObserver.addObserver (p, s4)
screenObserver.addObserver (s2, s5)
screenObserver.addObserver (s4, s5)

println("Changing p's color:")
p.setColor (Color.red)

println("Changing p's x-coordinate:")
p.setX(4)

println("done.")

/*output :

Creating Screen sl,s2,s3,s4,s5 and Point p

Creating observing relationships:

- sl and s2 observe color changes to p

- s3 and s4 observe coordinate changes to p

- s5 observes s2's and s4's display() method

Changing p's color:

sl: Screen updated (point subject changed color) .

s2: Screen updated (point subject changed color) .

s5: Screen updated (screen subject changed message) .
Changing p's x-coordinate:

s3: Screen updated (point subject changed coordinates) .
s4: Screen updated (point subject changed coordinates) .
s5: Screen updated (screen subject changed message) .
done.

*/

Using a MultilnterceptorProxyMetaClass and UninterceptedFriendlyinterceptor for the Decorator pattern

We can use more than one unintercepted interceptor with a proxy meta-class. A good example where this is necessary is the Decorator pattern.
We re-use the MultilnterceptorProxyMetaClass from previous examples, but must write a special unintercepted interceptor, which we call an
UninterceptedFriendlyInterceptor, that can be used as one of many with the MultilnterceptorProxyMetaClass.

abstract class UninterceptedFriendlyInterceptor implements Interceptor
def proxy= null

abstract Object doBefore(Object object, String methodName,
Object [] arguments)

public Object beforeInvoke (Object object, String methodName,
Object[] arguments) {
def thelnterceptors= proxy.interceptors
proxy.interceptors= null
def result
try(
result= doBefore (object, methodName, arguments)
}catch (Exception e) {
throw e
}finally{
proxy.interceptors= theInterceptors
}

result

}

abstract boolean doInvoke ()

abstract Object doAfter(Object object, String methodName,
Object[] arguments, Object result)

public Object afterInvoke (Object object, String methodName,
Object[] arguments, Object result) {

def thelnterceptors= proxy.interceptors
proxy.interceptors= null
try(

result= doAfter (object, methodName, arguments, result)
}catch (Exception e) {

throw e
}finally{

proxy.interceptors= theInterceptors
}

result

For our example Decorator pattern, we'll code an OutputStreamWriter that prints extra if necessary. We use decorators extended from the
UninterceptableFriendlyInterceptor. Firstly, a NewlineDecorator that uses a line-width policy to perhaps place the output on a new line. And
second, a very simple WhitespaceDecorator that ensures there's some whitespace between any two consecutive items output. Each has only
very simple logic for this example.

abstract class PrintDecorator extends UninterceptedFriendlyInterceptor
abstract Object doBefore(Object object, String methodName,
Object [] arguments)

abstract Object doAfter(Object object, String methodName, Object[] arguments,
Object result)

//only execute the intercepted method if it's the last class in the chain of
//decorators around the method. ..
boolean doInvoke(){ proxy.interceptors[-1] == this }

}

class NewlineDecorator extends PrintDecorator{
int lineSizeSoFar= 0

Object doBefore(Object object, String methodName, Object[] arguments) {

if (methodName == 'leftShift' && arguments[0] instanceof String) {
if (lineSizeSoFar + arguments [0].size() > 30){
arguments [0]= '\r\n' + arguments [0]
lineSizeSoFar= 0
}else{

lineSizeSoFar += arguments[0] .size()

Object doAfter(Object object, String methodName, Object[] arguments,
Object result){
result
}
}

class WhitespaceDecorator extends PrintDecorator{
def prevOutput= ' '

Object doBefore(Object object, String methodName, Object[] arguments) {

if (methodName == 'leftShift' && arguments[0] instanceof String) {
if (prevOutput [-1] != ' ' && prevOutput [-1] != '\n'){
arguments[0] = ' ' + arguments[0]

}
}
}

Object doAfter(Object object, String methodName, Object[] arguments,
Object result){
if (methodName == 'leftShift' && arguments[0] instanceof String) {
prevOutput= arguments [0]
}

result

After the classes, interceptors, and code block are matched up, the printing logic and the OutputStreamWriter are both unaware that the output is
being decorated. Each decorator will perhaps modify the output, then pass it along to the next decorator to do the same. The distinct items of
output sent to the OutputStreamWriter are separated by spaces, whether or not a space was in the output string in the program, and the output
fits within a certain width.

oswProxy= MultiInterceptorProxyMetaClass.getInstance(OutputStreamWriter)
[new NewlineDecorator(),
new WhitespaceDecorator (), //the order of these decorators is important
] .each{
it.proxy= oswProxy
oswProxy.interceptors << it
}
oswProxy .use{
def wtr= new OutputStreamWriter (
new FileOutputStream(new File ('TheOutput.txt')))
wtr<< "Singing in the Rain" <<
"hello " <<
"climate <<
"hotrod" <<
"far out and spacy" <<
'Clementine, darling'
wtr.close ()

/*output file:

Singing in the Rain hello

climate hotrod far out and spacy
Clementine, darling

*/

JN3525-MetaClasses

Groovy gives us a wide variety of choices for meta-programming. We've looked at Categories and Interceptors, which change the behavior of
objects within a selected block and current thread only, in other tutorials. In this tutorial, we'll learn about more ways of meta-programming in
Groovy.

Intercepting Method Calls and Property Accesses

We can add a special method called 'invokeMethod' to a class definition that executes calls to undefined methods:

class MyClass{
def hello(){ 'invoked hello directly' }
def invokeMethod (String name, Object args) {
return "unknown method $name (${args.join(', ')})"
}
}

def mine= new MyClass ()
assert mine.hello() == 'invoked hello directly'
assert mine.foo("Mark", 19) == 'unknown method foo(Mark, 19)

If our class implements GroovyInterceptable, invokeMethod is called for all method invocations whether they exist or not:

class MyClass implements GroovyInterceptable{
def hello(){ 'invoked hello() directly' }
def invokeMethod (String name, Object args)
"invoked method $name (${args.join(', ")})"
}
}

def mine= new MyClass ()

assert mine.hello() == 'invoked method hello()'
assert mine.foo('Mark', 19) == 'invoked method foo(Mark, 19)'
assert mine.&hello() == 'invoked hello() directly'

//we can still invoke a method directly using .& syntax

We can get and set properties using special method names:

class MyClass{
def greeting= 'accessed greeting directly'
Object getProperty (String property) {
"read from property Sproperty"
}
void setProperty(String property, Object newValue) {
throw new Exception("wrote to property Sproperty")
}
}

def mine= new MyClass ()

assert mine.greeting == 'read from property greeting'
try{
mine.greeting= 'hi’
}catch(e) { assert e.message == 'wrote to property greeting' }
assert mine.@greeting == 'accessed greeting directly'

//we can access a property directly using .@ syntax

When there's a field of some name, refering to that name still considers it to be a property unless the syntax .@ is used:

class MyClass{

public greeting= 'accessed field greeting (directly)' //field, not property
Object getProperty (String property) {

"read from property Sproperty"

}
}
def mine= new MyClass ()
assert mine.greeting == 'read from property greeting'
assert mine.@greeting == 'accessed field greeting (directly)'

We can call methods and access properties directly, both statically and dynamically, from within the class using various syntaxes:

class MyClass implements GroovyInterceptable{
def greeting= 'accessed greeting'
def id= 'White: '

Object getProperty (String property) {
try(
return this.e@id + //access field directly
'indirectly ' +
this.e"$property" //access field directly and dynamically
}catch (e) {
return "no such property $property"
}
}

def hello(Object[] args){ "invoked hello with (${args.join(', '")})" }
def id(){ 'Green: ' }

def invokeMethod (String name, Object args) {
try(
return this.&id() + //call method directly
'indirectly ' +
this.&"$name" (args) //call method directly and dynamically
}catch (e) {
return "no such method $name"
}
}
}

def mine= new MyClass ()

assert mine.greeting == 'White: indirectly accessed greeting'

assert mine.farewell == 'no such property farewell'

assert mine.hello(1l, 'b', 3) == 'Green: indirectly invoked hello with (1, b, 3)°'
assert mine.foo('Mark', 19) == 'no such method foo'

If we add such 'invokeMethod', 'getProperty’, or 'setProperty’ methods to an object using Expando or Category syntax, they act just like normal
methods. Not many supplied classes have 'invokeMethod' and such defined. For such cases, we need to use MetaClasses.

MetaClasses

We've seen how classes behave with the default MetaClass:

class A{
def bark(){ 'A: invoked bark()' }
def invokeMethod (String name, Object args) {
"A: missing $name(${args.join(', ')})"

}
}
def a= new A()
assert a.bark() == 'A: invoked bark()'
assert a.bleet() == 'A: missing bleet ()"

We can create our own MetaClass which wraps around the existing one. DelegatingMetaClass provides the infrastructure for this, so we only
need extend it with our own logic. We can do so on an instance-by-instance basis:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyMetaClass: ${super.invokeMethod (object, methodName, arguments)}"
}
}

public class MyOtherMetaClass extends DelegatingMetaClass{
MyOtherMetaClass (Class theClass)
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyOtherMetaClass: ${super.invokeMethod (object, methodName, arguments)}"
}
}

class A{
def bark(){ 'A: invoked bark()' }
def invokeMethod (String name, Object args)
"A: missing $name(${args.join(', ')})"
}
}

def amc= new MyMetaClass (A)
amc.initialize ()
def a= new A()
a.metaClass= amc
//using metaClass property on an instance affects only that instance...

def amc2= new MyOtherMetaClass (A)
amc2.initialize ()

def a2= new A()

a2.metaClass= amc2

assert a.bark() == 'MyMetaClass: A: invoked bark()'
assert a2.bark() == 'MyOtherMetaClass: A: invoked bark()'
Thread.start{ //...even in a new thread
assert a.bark() == 'MyMetaClass: A: invoked bark()'
assert a2.bark() == 'MyOtherMetaClass: A: invoked bark()'
}
assert new A().bark() == 'A: invoked bark()'

//new instances don't have new MetaClass

assert a.bleet () == 'A: missing bleet ()"
//MetaClass invokeMethod () NOT called here

Or we can do so on a class-wide basis:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyMetaClass: ${super.invokeMethod (object, methodName, arguments)}"
}
}

class A{
def bark(){ 'A: invoked bark()' }
def invokeMethod (String name, Object args) {
"A: missing $name(${args.join(', ')})"
}
}

def amc= new MyMetaClass (A)
amc.initialize()

def a= new A()
import org.codehaus.groovy.runtime.InvokerHelper

InvokerHelper.instance.metaRegistry.setMetaClass (A, amc)
//all newly-created instances of A after this call will be affected

assert a.bark() == 'A: invoked bark()' //created before so old MetaClass used
assert a.bleet () == 'A: missing bleet ()"
assert new A() .bark() == 'MyMetaClass: A: invoked bark()' //new MetaClass used

Thread.start{
assert a.bark() == 'A: invoked bark()' //old MetaClass used
assert new A() .bark() == 'MyMetaClass: A: invoked bark()' //new MetaClass used

}

Classes we define ourselves return a MetaClass when accessing the metaClass property, but many Groovy-supplied classes don't. There's only
one instance of a MetaClass in such cases:

class A{}
assert new A().metaClass.class == MetaClassImpl
assert new ArrayList () .metaClass.class == ArrayList //class itself returned

When we use Groovy-supplied classes without their own MetaClass, both already-created and newly-created classes are affected by changes to
the MetaClass:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeMethod (Object object, String methodName, Object[] arguments) {
"MyMetaClass: ${super.invokeMethod (object, methodName, arguments)}"

}

def amc= new MyMetaClass (ArrayList)
amc.initialize ()

def listl= [1, 2, 3]

import org.codehaus.groovy.runtime.InvokerHelper
InvokerHelper.instance.metaRegistry.setMetaClass (ArrayList, amc)
//all instances of ArrayList will be affected, even already created ones

assert listl.join(',') == 'MyMetaClass: 1,2,3'
//new MetaClass used with already created ArrayList

def list2= [4, 5, 6]
assert list2.join(',') == 'MyMetaClass: 4,5,6'
//new MetaClass used with newly created ArrayList

//even in new Thread...
Thread.start{

assert listl.join(',') == 'MyMetaClass: 1,2,3' //new MetaClass used
assert list2.join(',') == 'MyMetaClass: 4,5,6' //new MetaClass used
assert [7, 8, 9].join(',') == 'MyMetaClass: 7,8,9' //new MetaClass used

}

Other methods besides invokeMethod are available on the MetaClass:

Object invokeStaticMethod (Object object, String methodName, Object[] arguments)
Object invokeConstructor (Object[] arguments)

Object getProperty (Object object, String property)

void setProperty (Object object, String property, Object newValue)

Object getAttribute(Object object, String attribute)

void setAttribute (Object object, String attribute, Object newValue)

Class getTheClass ()

For example, making the constructor return an instance of something other than what we called the constructor on:

public class MyMetaClass extends DelegatingMetaClass{
MyMetaClass (Class theClass) {
super (theClass)
}
Object invokeConstructor (Object[] arguments) {
[1
}
}

class A{}

def amc= new MyMetaClass (A)

amc.initialize ()

import org.codehaus.groovy.runtime.InvokerHelper
InvokerHelper.instance.metaRegistry.setMetaClass (A, amc)

def a= new A()
assert a.class == ArrayList
assert (a << 1 << 2 << 3).size() == 3

ExpandoMetaClass

There's some easy-to-use facilities available through the MetaClass, known as ExpandoMetaClass, to which we can add properties and methods
easily

class A{
String text
}
def al= new A(text: 'aBCdefG')
assert al.metaClass.class == MetaClassImpl //usual MetaClass type

A.metaClass.inSameCase= {-> text.toUpperCase() }
//triggers conversion of MetaClass of A to ExpandoMetaClass

//then adds new instance method 'inUpperCase' to class

def a2= new A(text: 'hiJKLmnOp')

assert a2.metaClass.getClass() == ExpandoMetaClass
//MetaClass of A changed for instances created after conversion trigger only
assert a2.inSameCase() == 'HIJKLMNOP'
assert al.metaClass.class == MetaClassImpl //still usual MetaClass type
try{ println al.inSameCase(); assert false }

catch(e){ assert e in MissingMethodException } //new method not available

A.metaClass.inLowerCase= {-> text.toLowerCase() }
assert a2.inLowerCase () == 'hijklmnop'

//we can replace the method definition with another
A.metaClass.inSameCase= {-> text.toLowerCase() }
assert a2.inSameCase() == 'hijklmnop'

A.metaClass.inSameCase= null //remove method
try{ println al.inSameCase(); assert false }
catch(e){ assert e in MissingMethodException } //method no longer available

//we can add static methods...
A.metaClass.'static'.inSameCase= { it.toLowerCase()}
assert A.inSameCase('gRStuVwXyz') == 'grstuvwxyz'

We can also add properties and constructors:

class A{}

//we can let ExpandoMetaClass manage the properties...
A.metaClass.character = 'Cat in the Hat' //add property 'character'

def al= new A()
assert al.character == 'Cat in the Hat'

//...or we can manage the properties ourselves...
def ourProperties = Collections.synchronizedMap ([:])
//see tutorial on Multi-Threading to learn about synchronized objects
A.metaClass.setType= { String value ->
ourProperties["${delegate}Type"] = value
}
A.metaClass.getType= {->
ourProperties["${delegate}Type"]
}
al.type= 'Hatted Cat'
assert al.type == 'Hatted Cat'

//we can add our own constructors...
def a2= new A()
A.metaClass.constructor= {-> new A() }
try(
a2= new A() //be careful when overriding default or existing constructors
assert false
}catch (Error e){ assert e in StackOverflowError }

A.metaClass.constructor= {-> new A() }
try(
A.metaClass.constructor << {-> new A() }
// << notation doesn't allow overriding
assert false
}catch(e){ assert e in GroovyRuntimeException }

A.metaClass.constructor= { String s-> new A(character: s) }
a2 = new A("Thing One")

//We can quote method and property names...
A.metaClass. 'changeCharacterToThingTwo'=
{-> delegate.character = 'Thing Two' }
a2.character= 'Cat in the Hat'
a2 .changeCharacterToThingTwo ()
assert a2.character == 'Thing Two'

//...which is handy for dynamically constructing method/property names...

['Hatted Cat', 'Thing', 'Boy', 'Girl', 'Mother'].each{p->
A.metaClass."changeTypeTo${p}"= {-> delegate.type= p}

}

a2 .changeTypeToBoy ()

assert a2.type == 'Boy'

a2.'changeTypeToHatted Cat' ()
assert a2.type == 'Hatted Cat'

We can also add methods for supplied Groovy classes, ones we don't define ourselves:

ExpandoMetaClass.enableGlobally ()
//call 'enableGlobally' method before adding to supplied class
List.metaClass.sizeDoubled = {-> delegate.size() * 2 }
//add method to an interface
def list = [] << 1 << 2
assert list.sizeDoubled() == 4

We can override MetaClass class methods such as 'invokeMethod' and 'getProperty' using ExpandoMetaClass's easy syntax:

class Bird{
def name= 'Tweety'
def twirp(){ 'i taught i saw a puddy cat' }
}
Bird.metaClass.invokeMethod= {name, args->
def metaMethod= Bird.metaClass.getMetaMethod (name, args)
//'getMetaMethod' gets method, which may be an added or an existing one
metaMethod? metaMethod.invoke (delegate,args): 'no such method'
}
def a= new Bird()
assert a.twirp() == 'i taught i saw a puddy cat'
assert a.bleet() == 'no such method'

Bird.metaClass.getProperty= {name->

def metaProperty= Bird.metaClass.getMetaProperty (name)

//'getMetaProperty' gets property, which may be an added or an existing one

metaProperty? metaProperty.getProperty(delegate): 'no such property'
}
def b= new Bird()
assert b.name == 'Tweety'
assert b.filling == 'no such property'

JN3535-Reflection

We can examine classes in Groovy to find out information in the form of strings.

Examining Classes

To find out a class's name and superclasses:

class A{}

assert A.name == 'A'

assert new A().class.name == 'A'

assert A.class.name == 'A' //'class' is optionally used here

class B extends A{}
assert B.name == 'B'

class C extends B{}
def hierarchy= []

def s = C
while(s != null){ hierarchy << s.name; s= s.superclass }
assert hierarchy == ['C', 'B', 'A', 'java.lang.Object']

To examine the interfaces:

interface A1{}
interface A2{}
class A implements Al, A2{}

def interfacesA = [] as Set //use a set because interfaces are unordered
A.interfaces.each{ interfacesA << it.name }
assert interfacesA == ['Al', 'A2', 'groovy.lang.GroovyObject'] as Set

interface B1{}
class B extends A implements B1{}

def interfacesB = [] as Set
B.interfaces.each{ interfacesB << it.name }
assert interfacesB == ['Bl'] as Set

//only immediately implemented interfaces are reported

We can check if a class is a class or an interface:

assert Observer.isInterface ()
assert ! Observable.isInterface()

We can examine public fields and their types:

class A{
def adyn //if no modifier, field is private
String astr
public apdyn
public String apstr
protected agdyn
}
interface B1{}
interface B2{}
class B extends A implements B1l, B2{
def bdyn
int bint
public bpdyn
public int bpint
protected bgdyn
}
def dets = [] as Set
B.fields.each{ //public fields only
dets << [it.name, it.type.name] //name of field and name of type

}

assert dets == [

["apstr', 'java.lang.String' 1,
['apdyn', 'java.lang.Object' 1,
['bpint', 'int'],

[

'bpdyn', 'java.lang.Object' 1,
[' timeStamp', 'java.lang.Long'], //added by Groovy
] as Set

We can look at a certain field of a class:

assert Math.fields.name as Set == ['E', 'PI'] as Set

assert Math.class.getField('PI') .toString() ==
'public static final double java.lang.Math.PI'

assert Math.class.getField('PI') .getDouble () == 3.141592653589793
//we must know the type of the value

We can also look at the constructors and methods of a class:

assert HashMap.constructors.collect{ it.parameterTypes.name } as Set ==
[['int'], [1, ['java.util.Map'l, ['int', 'float']] as Set
GroovyObject .methods.each{ println it }
//to print full details of each method of a class
assert GroovyObject.methods.name as Set ==
['invokeMethod', 'getMetaClass', 'setMetaClass',
'setProperty', 'getProperty'] as Set
assert GroovyObject.getMethod('getMetaClass').toString() ==
'public abstract groovy.lang.MetaClass groovy.lang.GroovyObject.getMetaClass() '

Some code to find out all the getters for a class:

getters= {
it.methods.name.findAll{ it =~ /“get[A-Z]/ }.
collect{ it[3].toLowerCase ()+it[4..-1] }.join(', ')
}

assert getters(GroovyObject) == 'metaClass, property'

To see all nested classes for a particular class (eg, of Character):

assert Character.classes.name as Set ==
['java.lang.Characters$Subset', 'java.lang.CharactersUnicodeBlock'] as Set

To query a particular nested class (eg, Character.UnicodeBlock):

Character.UnicodeBlock.fields.name.each{ println it }
//to list all public constants

Reflecting the Reflection classes themselves

We can use reflection on the reflection classes themselves. For example:

assert Class.methods [0].class == java.lang.reflect.Method
//find the class of any method of any class...

java.lang.reflect.Method.methods.each{ println it.name }
//...then find its method names...

//...to help us build a custom-formatted listing of method details
HashMap.class.methods.each{

println """$it.name(${it.parameterTypes.name.join(', ')}) returns \
$it.returnType.name ${it.exceptionTypes.size()>0?'throws ':''}\
${it.exceptionTypes.name.join(', ')}"""

}

We can look at the modifiers of methods and classes:

import java.lang.reflect.Modifier
Modifier.methods.name.sort{}.each{ println it }
//use reflection on the reflection classes themselves...

//...to help us build a custom-formatted listing of modifier details

[(ArrayList.getMethod('remove', [Object] as Class[])):
['public'] as Set,
(Collections.getMethod ('synchronizedList', [List] as Class[])):
['public', 'static'] as Set,
(Math) : ['public', 'final'] as Set,
(ClassLoader): ['public', 'abstract'] as Set,

] .each{ key, val->
def m= key.modifiers
def mods= [

({Modifier.isPublic (it)}): 'public',
({Modifier.1sProtected(1t)}) 'protected’,
({Modifier.isPrivate (it)}): 'private’,
({Modifier.lslnterface(1t)}) 'interface!',
({Modifier.isAbstract (it)}) 'abstract!',
({Modifier.isFinal (i)}) 'final',
({Modifier.isStatic (it)}): 'static',
({Modifier.lsVolatlle(t)}): 'volatile',
({Modifier.isNative (it)}): 'native!',
({Modifier.isStrict (it)}): 'strict!',
({Modifier.isSynchronized(it)}): 'synchronized',
({Modifier.isTransient (it)}): 'transient',

].collect{ k, v-> k(m)? v: null } as Set
mods.removeAll ([null])
assert mods == val

Manipulating Objects

When a class is unknown at compile time (eg, we only have a string representation of a class name), we can use reflection to create objects:

assert Class.forName ("java.util.HashMap") .newInstance() == [:]

def constructor = Class.forName ("java.util.HashMap") .

getConstructor([int, float] as Classl[])
assert constructor.toString() == 'public java.util.HashMap (int, float)
assert constructor.newlnstance(12, 34.5f) == [:]

We can examine and change public fields for a class refering using a String for the name:

class A{
public valuel
protected value2
A(int v){ valuel= v; value2 = v }

}

def a= new A(100)

assert A.getField('valuel').get(a) == 100 //public fields only
try{ A.getField('value2').get(a); assert false }

catch(Exception e){ assert e instanceof NoSuchFieldException }

A.getField('valuel').set(a, 350)
assert a.valuel == 350

And we can call methods using a string for the name:

assert String.getMethod('concat', [String] as Class[]).
invoke ('Hello, ', ['world!'] as Object[]) == 'Hello, world!'
Working with Arrays

We can examine and manipulate arrays. To enquire the public array fields of a class:

class A{
public boolean alive
public int[] codes
public Date[] dates
protected boolean|]

}

//find all public array fields

states

def pubFields= new A().class.fields.findAll{ it.type.isArray()

}.

[it.name,

it.type.name]

['dates',

assert pubFields == [
['codes',

YIv 1, // 01 me
' [Ljava.util.Date;

collect(

ans array of int
1, //means array of object java.util.Date

}

1

To enquire the component type/s of an array:

[(int([1): [
(Date[]): [
(new Date[6] .class): [

v[I', 'int' 1,
'[Ljava.util.Date; "',
'[Ljava.util.Date; "',

'java.util.Date'],
'java.util.Date' 1,
//instantiated class

(String[] [1): ['[[Ljava.lang.String;', '[Ljava.lang.String;'],
] .each{
k, v -> assert [k.name, k.componentType.name] == v

}

We can create and copy arrays when their component type and size is unknown at compile time:

import java.lang.reflect.Array
def al [55, 66] as int[]

//component type and size unknown at compile time...

def a2 = Array.newlInstance(al.class.componentType, al.size() * 2)
assert a2.class.componentType == int

assert a2.size() == 4

System.arraycopy(al, 0, a2, 0, al.size())

assert a2 as List == [55, 66, 0, 0] as List

We can create

multi-dimensional arrays in a similar way, where component type and array sizes can be unknown at compile time:

import java.lang.reflect.Array

//assertion checking code...
assertlD= {x,y->

assert x.size() == y.size()

for(int i: x.size() - 1) assert x[i] == yI[1]
}
assert2D= {x,y->

assert x.size() == y.size()

for(int i: x.size() - 1){

assert x[i].size() == y[i].size()
)

for(int j: x[1 l.size() - 1) assert x[1 1[] ==y[11[31

}
}

//each is a 1-D int array with 3 elts
def a0= new char[3]

def al= Array.newlnstance(char, 3
def a2= Array.newlInstance(char, [
assertlD(a0, al)

assertlD(a0, a2)

)
3] as int[])

//both are a 2-D 3x4 array of String elts

def b0= new String(3] [4]

def bl= Array.newlInstance(String, [3, 4] as int[])
assert2D(b0, bl)

//both are a 2-D array of 6 char arrays, with undefined tail dimension
def c0 = new char([6][]

def cl = Array.newInstance(char[]l, [6] as int[])

assertlD(cO, cl)

We can use set() and get() to copy the contents of one array index to another:

import java.lang.reflect.Array

def a= [12, 78] as int[], b= new int[4]
Array.set(b, 0, Array.get(a, 0))
assert b[0] == 12

This tutorial is loosely based on Sun's tutorial on Java Reflection, but using Groovy code instead.

Groovy for the Office

We all
as hap

know Groovy as our super hero for enhancing Java with all the latest programming features. When not in super hero mode, Groovy is just
py as a mild-mannered office worker. Here are some links to get you started if you need some help around the office:

The Scriptom Module can be used to script Word, Excel, PowerPoint etc. on Windows.
OpenXML4J is a Java library dedicated to the creation and manipulation of Office Open XML (ECMA-376) and OPC based documents
(for example Office 2007 Word, Excel and PowerPoint documents). OpenXML4J provides you a way to create and manipulate Open XML

documents for a bunch of scenarios without using any office suite.

Apache POI consists of APIs for manipulating various file formats based upon Microsoft's OLE 2 Compound Document format using pure
Java. In short, you can read and write MS Excel, Word, PowerPoint files (97-2003 with varying levels of support) using Java.

WebTest's Excel Steps lets you test Excel content. The examples are in XML (Ant build format) but you can use Groovy with AntBuilder
too.

Using Java to Crack Office 2007 is an article about using Java to read and write any Office 2007 document. You can use Groovy's XML
features to make these examples even simpler.

Ted Neward's Best of Both Worlds whitepaper describes how to make the Java and Microsoft/.Net worlds interoperate. Most of those
examples apply equally well to Groovy and .Net.

® JExcel is a commercial offering that provides an effective way to integrate Microsoft Excel into Swing applications.
® Groovy For OpenOffice is an OpenOffice Extension that adds support for scripting OpenOffice Macros in Groovy. Related Articles:

® Record macros in OpenOffice with Groovy
® Groovy as a business user language?

Groovy Quick Start Project

One of the first questions | face when | start playing with a new language, is about how to set a project using this language so that | can build and
package my code. While learning how to do this with Groovy | ended up putting together a starter project that has a reusable build script and
runner class that allows me to quickly get a new Groovy project up and running.

Groovy Quick Start is meant to help developers new to groovy to get started by providing a way to have a groovy project up and running with a
minimum effort. It provides a default layout and a reusable gant script that knows how to compile, test and package your project out of the box.

Compiling your project
prompt> gant compile

This target knows how to compile any source files that are available in the default source location. If you execute this target out of the box should
report the succesful creation of the required build output folders and the compilation of one sample java class and two sample groovy classes

Testing your project
prompt> gant test

The test target will compile the source code in the src and test_src folders, and then it will execute the unit tests located in the tests_src folder.
When you run this target out of the box it will succesfully report the execution of two sample test classes

Preparing to distribute your project

prompt> gant distro

the distro target will create a distribution folder in your build_output folder. This dist folder will contain a lib folder with all the jars from the project
lib folder, as well as the contents of the src folder packaged as a jar. Also in the dist folder is your README.txt file and a bin folder that contains
the sample batch file provided with the project. To test the distribution you can cd into your

%path%\groovyquickstart\build_output\dist\bin and run the file "run.bat". This launch script will print the help message:

usage: runner [option]

"-h" help Print out this message containing help.
"-n" name <name to greet> The name of the user to be greeted.
"-r" run Runs some target.

"-v" version Print version information.

To test the sample commands in the Runner class, enter the command "run -n "foo" -r" This will return the output:
prompt> Hello from the starter class foo

This sample Runner class demonstrates how to use the CLI builder to read parameters from the command line and to execute a class in the
project, based on those parameters.

Packaging your project
prompt> gant package

This target will create a zip file with the content of your dist folder in the
"\build_output\dist" folder

Customizing GroovyQuickStart

When you use the default folders for your project artifacts the gant script should work without modifications, If you feel that you need to add or
improve your build steps just modify the gant build script to suit your needs.

Eclipse Support

The GroovyQuickStart can be imported into Eclipse, once you use the Eclipse import facilities you will need to update the project build
dependencies to point to the correct location of the Groovy libraries.

For more information review the readme file located in the "groovyquickstart\docs" folder

| hope you can take advantage of Groovy Quick Start Project to get started on your groovy project and please feel free to contact me with any
questions at davilameister@gmail.com

Additional info for unix/linux users

An example 'run’ script to test the distribution: run

Use that instead of the 'run.bat' that comes packaged in the groovyquickstart.zip .

Update

It appears the original blog/site went down, the zip file is now attached: groovyquickstart.zip

Update (08/2008)

My blog was out of comission for a while , but | am working on updating this project to use the new joint compiler, in the meantime here is a new
zip file containing the run file for linux groovyquickstart1.zip

Quick Start

Before beginning...

Before playing with the examples you'll find below, you should first look at:

® Installing Groovy
® Running

Some optional more advanced topics you may also wish to peruse:

Command Line : Groovy can be launched in shell script mode

Compiling Groovy : Groovy can be launched as any Java program

Embedding Groovy : embedding Groovy in Java code using built-in capabilities
JSR 223 Scripting with Groovy : embedding Groovy in Java code using JSR 223
Bean Scripting Framework : embedding Groovy in Java code using the BSF

Your First Groovy

//hello.groovy
println "hello, world"
for (arg in this.args) {
println "Argument:" + arg;
}
// this is a comment
/* a block comment, commenting out an alternative to above:
this.args.each{ arg -> println "hello, ${arg}"}
*/

To run it from command line

groovy hello.groovy MyName yourName HisName

Overview

Groovy classes compile down to Java bytecode and so there's a 1-1 mapping between a Groovy class and a Java class.
Indeed each Groovy class can be used inside normal Java code - since it is a Java class too.

Probably the easiest way to get groovy is to try working with collections. In Groovy List (java.util.List) and Map (java.util.Map) are both first class
objects in the syntax. So to create a List of objects you can do the following...

def list = [1, 2, 'hello', new java.util.Date()]
assert list.size() == 4

assert list.get(2) == 'hello'

assert list[2] == 'hello'

Notice that everything is an object (or that auto-boxing takes place when working with numbers). To create maps...

def map = ['name':'James', 'location':'London']

assert map.size() == 2
assert map.get ('name') == 'James'
assert map['name']l == 'James'

Iterating over collections is easy...

def list = [1, 2, 3]
for (i in list) { println i }

Once you have some collections you can then use some of the new collection helper methods or try working with closures...

Working with closures

Closures are similar to Java's inner classes, except they are a single method which is invokable, with arbitrary parameters. A closure can have as
many parameters as you wish...

def closure = { param -> println("hello ${param}") }
closure.call ("world!")

closure = { greeting, name -> println(greeting + name) }
closure.call ("hello ", "world!")

If no parameter(s) is(are) specified before -> symbol then a default named parameter, called 'it' can be used. e.g.

def closure = { println "hello " + it }
closure.call ("world!")

Using closures allows us to process collections (arrays, maps, strings, files, SQL connections and so forth) in a clean way. e.g

[1, 2, 3].each ({ item -> print "${item}-" })
["kiv:vvin, "k2":"v2"] .each {key, value -> println key + "=" + value}

Note: If a given closure is the last parameter of a method, its definition can reside outside of the parentheses. Thus the following code is valid:

def fun(int i, Closure c) {
c.call (i)

}

// put Closure out of ()

[1, 2, 3].each() { item -> print "${item}-" } // 1-2-3-
fun(123) { i -> println i } // 123

// omit ()
[1, 2, 3].each ({ item -> print "${item}-" }) // 1-2-3-

// omit enclosing ()
[1, 2, 3].each { item -> print "${item}-" } // 1-2-3-

// normal
[1, 2, 3].each(({ item -> print "${item}-" })) // 1-2-3-

// using the fun function to do the same thing
[1,2,3].each {fun(it, {item -> print "${item}-"})} // 1-2-3-

def closure = { i -> println i}

//11, 2, 3].each() closure // error. closure has been previously defined

Here are a number of helper methods available on collections & strings...

each

iterate via a closure

[1, 2, 3].each { item -> print "${item}-" }

collect

collect the return value of calling a closure on each item in a collection

def value = [1, 2, 3].collect { it * 2 }
assert value == [2, 4, 6]

find

finds first item matching closure predicate

def value = [1, 2, 3].find { it > 1 }
assert value ==

findAll

finds all items matching closure predicate

def value = [1, 2, 3].findAll { it > 1 }
assert value == [2, 3]

inject

allows you to pass a value into the first iteration and then pass the result of that iteration into the next iteration and so on. This is ideal for counting
and other forms of processing

def value = [1, 2, 3].inject('counting: ') { str, item -> str + item }
assert value == '"counting: 123"
value = [1, 2, 3].inject(0) { count, item -> count + item }

assert value ==

In addition there's 2 new methods for doing boolean logic on some collection...

every

returns true if all items match the closure predicate

def value = [1, 2, 3].every { it < 5 }
assert value

value = [1, 2, 3].every { item -> item < 3 }
assert ! value

any

returns true if any item match the closure predicate

def value = [1, 2, 3].any { it > 2 }
assert value

value = [1, 2, 3].any { item -> item > 3 }
assert value == false

Other helper methods include:

max / min

returns the max/min values of the collection - for Comparable objects

value = [9, 4, 2, 10, 5] .max()
assert value == 10

value = [9, 4, 2, 10, 5].min()
assert value == 2

value = ['x', 'y', 'a', 'z']l.min()
assert value == 'a'

join

concatenates the values of the collection together with a string value

def value = [1, 2, 3].join('-")
assert value == '1-2-3'

Installing Groovy

These instructions describe how to install a binary distribution of Groovy.

first, Download a binary distribution of Groovy and unpack it into some file on your local file system
set your GROOVY_HOME environment variable to the directory you unpacked the distribution
add GROOVY_HOME/bin to your PATH environment variable

etc. If you've already installed tools like Ant or Maven you've probably already done this step.

You should now have Groovy installed properly. You can test this by typing the following in a command shell:

set your JAVA_HOME environment variable to point to your JDK. On OS X this is /Library/Java/Home, on other unixes its often /usr/java

groovysh

Which should create an interactive groovy shell where you can type Groovy statements. Or to run the Swing interactive console type:

groovyConsole

To run a specific Groovy script type:

groovy SomeScript.groovy

Installing Groovy and Grails on the Eee PC

Have an ASUS Eee PC?

Worried that framework bloat might cramp your development practices on such a small device? Why

not run Groovy and Grails on it! Shown here running Linux, several command shells, a Firefox browser,
the Groovy Console, a database, a web container and Grails (which itself includes Hibernate and
Spring) all in 512M of memory. And of course it has no (traditional) hard disk, so the whole footprint of
Groovy, Grails and Java 6 is just a few hundred meg of the available flash memory.

Installing Java

® Given the relatively humble processor in the Eee PC, you probably want to use Java 6. Install it
as per these instructions. This is a flash memory vs speed trade-off.

Installing Groovy

® Then download and install the Groovy linux distribution. Ctrl-Alt-T will start up a terminal, then type:

sudo dpkg -1 groovy-1.5.1.deb

Installing Grails
® You might also want to grab Grails and install that too by unzipping it or installing the deb from here.
Going further

® Google and you will find instructions for installing Eclipse and other applications too.

Running

Groovy scripts are a number of statements and class declarations in a text file. Groovy scripts can be used similarly to other scripting languages.
There are various ways of running Groovy scripts

Using the interactive console

Groovy has a Swing interactive console that allows you to type in commands and execute them rather like using an SQL query tool. History is
available and such like so you can move forwards and backwards through commands etc.

If you install a binary distribution of Groovy then you can run the Groovy Swing console by typing this on the command line.

groovyConsole

For a command line interactive shell type

groovysh

To see how to add things to the classpath see below.

Running Groovy scripts from your IDE

There is a helper class called GroovyShell which has a main(String[]) method for running any Groovy script. You can run any groovy script as
follows

java groovy.lang.GroovyShell foo/MyScript.groovy [arguments]

You can then run the above Groovy main() in your IDE to run or debug any Groovy script.

Running Groovy scripts from the command line

There are shell scripts called 'groovy' or 'groovy.bat' depending on your platform which is part of the Groovy runtime.
Once the runtime is installed you can just run groovy like any other script...

groovy foo/MyScript.groovy [arguments]

If you are using Groovy built from CVS Head (after Beta-5, see below if you want to upgrade), apart from Groovy scripts, you may also now run
different kind of classes from the command-line.

® Classes with a main method of course,
® Classes extending GroovyTestCase are run with JUnit's test runner,
® Classes implementing the Runnable interface are instanciated either with a constructor with String[] as argument, or with a no-args
constructor, then their run() method is called.
To work from the latest and greatest Groovy see Building Groovy from Source. Once built you'll then have a full binary distribution made for you in
groovy/target/install. You can then add groovy/target/install/bin to your path and you can then run groovy scripts easily from
the command line.

To see how to add things to the classpath see below.

Creating Unix scripts with Groovy

You can write unix scripts with Groovy and execute them directly on the command line as if they were normal unix shell scripts. Providing you
have installed the Groovy binary distribution (see above) and 'groovy' is on your PATH then the following should work.

The following is a sample script, which you should copy and save as helloWorld.groovy.

#!/usr/bin/env groovy

println("Hello world")

for (a in this.args) {
println("Argument: " + a)

}

Then to run the script from the command line, just make sure the script is executable then you can call it.

chmod +x helloWorld
./helloWorld

Adding things to the classpath

When running command line scripts or interactive shells you might want to add things to your classpath such as JDBC drivers or JMS
implementations etc. To do this, you have a few choices:

® Add things to your CLASSPATH environment variable

® Pass -classpath (or -cp) into the command you used to create the shell or run the script
L]

L]

It's also possible to create a ~/.groovy/lib directory and add whatever jars you need in there.
If the jars you need are in a Maven or Ivy repository, you can "grab" them with Grape.

Increasing Groovy's JVM Heap Size

To increase the amount of memory allocated to your groovy scripts, set your JAVA_OPTS environment variable. JAVA_OPTS="-Xmx..."

User Guide

User Guide

Welcome to the Groovy User Guide. We hope you find it useful.
The User Guide assumes you have already downloaded and installed Groovy. See the Getting Started Guide if this is not the case.

® OSGiand Groovy
® Advanced OO
® Groovy way to implement interfaces
® Annotations with Groovy
® Ant Integration with Groovy
® The groovy Ant Task
® The groovyc Ant Task
® The groovydoc Ant task
® Using Ant from Groovy
® Using Ant Libraries with AntBuilder
® Bean Scripting Framework
® Bitwise Operations
® Builders
® How Builders Work
® FactoryBuilderSupport
® Closures
® Closures - Formal Definition
® Closures - Informal Guide
® Collections
® Compile-time Metaprogramming - AST Transformations
® Bindable and Vetoable transformation
Building AST Guide
Category and Mixin transformations
Compiler Phase Guide
Delegate transformation
Immutable AST Macro
Immutable transformation
Lazy transformation
Newify transformation
PackageScope transformation
® Singleton transformation
® Control Structures
® Logical Branching
® Looping
® Returning values from if-else and try-catch blocks
® Database features
® Dynamic Groovy
® Evaluating the MetaClass runtime
® ExpandoMetaClass
ExpandoMetaClass - Borrowing Methods
ExpandoMetaClass - Constructors
ExpandoMetaClass Domain-Specific Language
ExpandoMetaClass - Dynamic Method Names
ExpandoMetaClass - GroovyObject Methods
ExpandoMetaClass - Interfaces
ExpandoMetaClass - Methods
ExpandoMetaClass - Overriding static invokeMethod
ExpandoMetaClass - Properties
ExpandoMetaClass - Runtime Discovery
® ExpandoMetaClass - Static Methods
Global AST Transformations
Local AST Transformations
Per-Instance MetaClass
Runtime mixins
Using invokeMethod and getProperty
® Using methodMissing and propertyMissing
GDK Extensions to Object
Generics
GPath
Grape
Groovy and JMX
® Groovy JmxBuilder
Groovy Categories
® Groovy CLI

Groovy Console
Groovy Math
Groovy Shell
Groovy Truth
Groovy Utils
® ConfigSlurper

® ObjectGraphBuilder

® ObservableMap

GUI Programming with Groovy

® Swing Builder
® Alphabe
L]

tical Widgets List

SwingBuidler.borderLayout
