Conversion Style manual

The mkgmap team

Conversion Style manual
The mkgmap team

Publication date 19 February 2013

Table of Contents

IR g 1 [F o o o RSP USRPRSR 1
2. The SIIUCLUIE Of @ SEYIE ...ttt et te et e e e sneenee s 2
0t T 1 1 U 2
200, TOP [EVEL FOIARN ... et 2

2.2. TRE VEISION FH@ .ottt e e et e b ee e e e ne e e e 2
P20 T I o T oo I = TSR 2
P2 S N TN 0 o 0] S 11 R 3
2.4.1. Non command 1IN OPLIONSc.eeiuiiieiieieeieseeie et sre e e beeee e e sseeneens 3

P22 T I TN oo 01K] = ST 3
2.6. TNE TINES TIl@ .ottt ettt et e s ae e sbe et e e ae e be et e sreenaeennens 4
2.7. THE POIYGONS FIE ..ottt ettt s b e teeseesae et e neenneeneeas 4
P2 T I Tl g K= oIS = S 4
G Y (3N 1 -SSR 5
G300 N 1 11 0o [T 1 o o PR 5
R - o I = £ OO P PSP 5
A N 0T/ o oo < =11 0] P 6
3.2.2. COMDINING Y TESESecueeitieieiiesieee ettt e st et s e sbeebesreesreeseeneesreeneas 6
G20 TR o U o1 o LSS 7

GG T ot o 0 TN o] o GRS 7
GG T I 1 7= 1 0L OSSR UPUURUPPURRI 8

G 17 o (o SRR 8
T G T USRS 8
G o 1= [(TS 9
GG J T - o o] RSSO 9
GG H G T = o0 Yo 0o SRR 9

G Y= = o= 9
O Y= = o L= 1L (= PSR 10

G S Y 1] 00 o0 (== O SP 11

3.5. Useful tags for routing and address SEarch ... 11
3.6. Element type defiNitiONcccoiieiiei et re e 12
Gt 1Y PSPPSR 12

G A (= o 11 11 o o RS TPSTRN 12
3.6.3. AEfAUIT_NAIME ...t sttt s reesneeneesneeeeas 13
G0 A (0= o [o = .S PR 13

G ST (0= o [0= o PR 13
3.6.6. COMLINUE ...ttt sttt e e et e s be et e e me e s seebeemeesbeebeeneesaeeseeneeeneenes 14
3.6.7. CONLINUE WIth_BCHIONSoiuiiiiiiiiieieeie ettt et s re e e e e sneentesneenneas 14

3.7. SOME EXAIMPIES ..ottt sttt e e st e s bt et e s seesbeeneesseenseeneeeneenteeneenns 14
3.7.1. POINES SEYI@ FIE et ne e 14

ICTR S T I o101 =-= oo 11 o TSRS 16
GRS T 1 g Tox W o [o T 1 =SS 16
3.10. SIMPIE EXAMPIE ...ttt b et et e st et e sneenae e e eneenns 16
O = 1] o = TR Y = R 17
g T = 1] o = TR Y PSS 17
4.2. MaKing @ StY1€ PACKAJEcveeeeieeeeieee ettt nns 17
A.2.1. ZIP @CRIVE ...ttt a et en 17
4.2.2. SIMPLE FIl@ @rChIVE ... e 17

Conversion Style manual

List of Tables

G I W B T o o o= = (0] SRR 6
A 1Y (< 0 (o o] TSR 7
3.3. List Of @l SUBSHITULION TIITEIS ...eoieieieeeee et s 10
3.4. Highway SYMDOI COUBS ..ottt sttt b et sreesreeneesne e s 11
G 0 =0 0 =S S SR 13
G I (0= 0 BB o o S 14

List of Examples

2.1, AN eXaMPLE INFO TII ettt et e b ee et e saeenneeneen 3
2.2. AN eXampPle OPLIONS FIE ...ttt et e st e et e esbe e e e nnee e 3
3.1, SEttiNG The NAIME ...ttt ae e bt e s ae e beeneeeaeesbeeneesneenseenseeneenrens 8
A 1 1= 1 1= 0= S TSP 14
GG T 0 (o (= o0 SR 15
O O g [0] 0 RSP 15
3.5. Opening hours in POStCOAE FIEIAc.oiiiiiie e 15
T IS Y [0= ot = o T = (Yo | TR RRS 17

Vi

Chapter 1. Introduction

This manual explains how to write a mkgmap style to convert between OSM tags and features on a
Garmin GPS device.

A styleis used to choose which OSM map features appear in the Garmin map and which Garmin
symbols are used.

There are afew styles built into mkgmap, but as there are many different purposes a map may be used
for, the default stylesin mkgmap will not be ideal for everyone, so you can create and use styles external
to mkgmap.

The term style could mean the actual way that the features appear on a GPS device, the colour, thickness
of the line and so on. This manual does not cover such issues, and if that is what you are looking for,
then you need the documentation for TYP files.

Few people will want to write their own style from scratch, most people will use the built in conversion
style, or at most make afew changes to the default style to add or remove a small number of features.
For general information about running and using mkgmap see the Tutorial document.

To be clear thisis only needed for converting OSM tags, if you are starting with a Polish format file,
there is no style involved as the garmin types are already fully specified in theinput file.

For general information about the OpenStreetMap project see the OpenStreetMap wiki [http://
wiki.openstreetmap.org].

http://wiki.openstreetmap.org
http://wiki.openstreetmap.org
http://wiki.openstreetmap.org

Chapter 2. The structure of a style

A style consists of anumber of filesin asingle directory. The best way isto start out with an existing
style that is close to what you want and then work from there.

A style can be packed into asingle file using the standard zip utilities that are available on every
operating system, or it can be written as one large text file using the single file style format. These
aternatives are explained in making a style package.

2.1. Files

These files areread in the order that they are listed here. In general, files that are read first take priority
over filesread later. The only one of these filesthat is actually required isthe ver si on file, asthat is
used to recognise the style. At least one of the poi nt s, | i nes or pol ygons filesmust be present or else
the resulting maps will be empty.

2.1.1. Top level folder

Choose a short name for your style, it should be one word or a couple of words joined by an underscore
or hyphen. Thisis how people will refer to the style when it is finished. Create a directory or folder with
that name. Then you must create one or more files in this directory as detailed below. Only thever si on
fileisrequired.

2.2. The version file

Thisfile must exist asit is used to recognise avalid style. It contains the version number of the style
language itself, (not the version number of your style, which you can specify inthei nf o fileif you so
wish). The current version number of the style languageis 1. Make sure that thereis anew line after the
number, place an empty line afterwards to be sure.

2.3. The info file

Thisfile contains information about your style. It isall optional information, and there is only really any
point adding this information if you are going to distribute your style, or you have more than one style
that you maintain.

The file consists of key=value pairsin the same syntax as the command line option file. To summarise
you can use either an equal sign = or acolon : to separate the key from the value. Y ou can also surround
the value with curly braces{ } and this allows you to write the value over several lines.

version The version number of your style.
summary A short description of your stylein oneline.
description A longer description of your style.

base-style Do not use anymore. This was used to base a style on another one. However, it is bug
prone and behavesin away that is not intuitive without a good understanding of how
things work. The preferred way to do thisis to use the include mechanism.

The structure of astyle

Example 2.1. An exampleinfofile

Hereis an example based on thei nf o file from the default style. Y ou can see it uses both equal and
colon as separators, normally you would just pick one and use it consistently, but it doesn’t make any
difference which one you use. The description is written over severa lines surrounded in curly brackets.
Lines beginning with a hash symbol # are comments and are ignored.

#
This file contains information about the style.
#

sunmary: The default style
version=1.0

description {

The default style. This is a heavyweight style that is

desi gned for use when napping and especially in lightly covered
ar eas.

}
2.4. The options file

Thisfile contains a number of options that should be set for this style asif they were set on the command
line. Only command line options that affect the style will have any effect. The current list isnane- t ag-
list,levelsandextra-used-tags.

It is advisable to set up the levels that you want, as the default is not suitable for all kinds of maps and
may change in the future. Ideally, you should set the same levels as are used in your style files. For
example, if your style files use levels 12,16,20,22,23,24 then it's a good idea to make sure your options
style file declares these levels explicitly.

Example 2.2. An example optionsfile

nane-tag-list = nane:en, int_nane, nane
levels = 0:24, 1:22, 2:20, 3:18, 4:16
extra-used-tags=

2.4.1. Non command line options

Most of the options are the same as the command line option of the same name and so you should see its
description in the option help. There are however some options that can only be set in thisfile (just the
currently).

extra-used-tags
A list of tags used by the style. Y ou do not normally need to set this, as mkgmap can work out which
tags are used by a style automatically in most cases. It exists only to work around cases where this
doesn’t work properly.

2.5. The points file

Thisfiles contains a set of rules for converting OSM nodes to Garmin POIs (restaurants, bars, ATMs
etc). It can also contain rules for some kind of OSM nodes that may affect routing behavior, for example
barriers, traffic_calming, traffic_signals, etc.

If thisfileis not present or empty then there will be no POI’sin the final map.

The structure of astyle

The syntax of the file is described in the style rules section. Like all other files, a hash symbol #
introduces a comment.

2.6. The lines file

Thisfile contains a set of rules for converting OSM ways to Garmin lines (roads, rivers, barriers, etc).
The syntax of the file is described in the style rules section.

2.7. The polygons file

Thisfile contains a set of rules for converting polygons to Garmin areas (fields, buildings, residential
areas, etc). The syntax of thefileis described in the style rules section.

2.8. The relations file

Thisfile contains a set of rulesto convert OSM relations. Unlike the poi nt s, | i nes and pol ygons files
this file does not lead directly to a Garmin object. Instead it is used to modify the ways or nodes that are
contained in the relation.

So for example, if the relation represents a route, then you might add one or more tagsto all the ways
that make up the route so that they can be processed inthel i nes file specialy.

The syntax of the file is also described in the style rules section, but the rules can only have an action
part, they must not have a type description part.

Chapter 3. Style rules

Rules allow you to take a map feature in the OSM format, which uses a set of tags to describe the feature
into the format required by Garmin maps, where features are identified by a number.

The rules for converting points, lines and polygons are held in correspondingly named files, as described
in the structure of astyle.

Each file contains a number of rules where you test the values of the tags of an OSM node or way and
select a specific Garmin type based on the result of those tests.

3.1. Introduction

Each rule starts off with an expression to test the value of one or more tags.

A ruleis made up of two or three parts. The three possible parts are:

» Thefirst partisrequired: thisis a set of teststhat are performed on the tags of the item to be
converted.

» The second part is the action block that can be used to do things with the tags of objects that match the
tests and is contained in curly brackets{...}.

» Thethird part is the element type definition and sets the Garmin type and sometimes other parameters
that will be used if the tests match. This part is contained in square brackets| . ..].

Asageneral point, space and newlines don’t matter. Thereis no need to have rules all on the sameline
(although most of the examples here are shown in one line), and you can spread them out over several
lines and add extra spaces wherever you like if it helps to make them easier to read. Here is an example
of arule containing all three sections:

natural =cliff { nanme '${nane} cliff' | 'cliff' } [0x10501 resol uti on 22]
* Thetestssectionisnatural =cl i f f

* Theactionblockis{ name '${nane} cliff' | 'cliff' }

» The element type definition iS[0x10501 resol uti on 22]

3.2. Tag tests

The most common test is that a particular OSM tag has a given value. So for example if we have
hi ghway=not or way

This means that we look up the highway tag in the OSM input file and if it exists and has the value
motorway then this test has matched.

Y ou can also compare numeric quantities:

popul ati on > 10000
maxspeed >= 30
popul ati on < 10000000

Respectively, these mean: a population greater than ten thousand, a max speed greater than or equal to
30 and a population less than one million. Y ou will be able to compare quantities that have units too, for
example

Stylerules

max_speed > 30nph

If adifferent unit is given in the tag (say km/h) then it will be removed before comparison. Conversion
of unitsis not implemented at the time of writing.

Y ou may also use regular expressions:
ele ~ '\ d*00

This checks whether ele is a multiple of 100.

3.2.1. Allowed operations
The following table describes the operations that may be used.

Table 3.1. Full list of operations

Operation description and examples

tag=value This matches when a tag has the given value.
tag!=value The tag exists and does not have the given value.
tag=* Matches when the tag exists, regardless of its value.
tag!=* Matches when the tag does not exist.

tag < value Matches when the tag when converted as a number is less than the
given value. If the value is not numeric then thisis aways false.
A unit isremoved before comparison however so max_speed <
100 will work if max_speed is80knh for example.

tag<=vaue, Asabove, forlessthan or equal, greater than and greater than or
tag > value, tag equal.
>=value

tag ~ REGEX Thisistrue when the value of the tag matches the given regular
expression. The Javaregular expression [:http://docs.oracle.com/
javase/1.4.2/docs/api/javalutil/regex/Pattern.html] syntax is
recognised. For examplename ~ ' . *[LI]ane' would match
every name that ended in Lane or lane.

I (expr) The not operator (!) reverses the truth of the expression following.
That expression must be in brackets.

3.2.2. Combining tag tests

Although it is possible to convert many OSM nodes and ways just using onetag, it is also often
necessary to use more than one.

For example, say you want to take roads that are tagged both as hi ghway=uncl assi fi ed and
maxspeed>60 differently to roadsthat are just hi ghway=uncl assi fi ed. In thistype of case, you might
create two separate rules as follows:

hi ghway=uncl assi fi ed & naxspeed>60 [0x06]
hi ghway=uncl assi fi ed [0x05]

This means that roads that are unclassified and have a maxspeed of greater than 60 would use Garmin
element type 0x06, whereas unclassified roads without a maxspeed tag, or where it is less than 60 would
use type 0x05.

:http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
:http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html
:http://docs.oracle.com/javase/1.4.2/docs/api/java/util/regex/Pattern.html

Stylerules

It isimportant to note that the order of the rules isimportant here. The rules are matched in the order that
they occur in the style file and mkgmap stops trying to apply them after the first one that matches. If you
had the rules above in the reverse order, then the hi ghway=uncl assi f i ed rule would match first to any
OSM way with that tag/key pair, and the second rule would never get applied. Therefore, in general you
want the most specific rulesfirst and ssmpler, more general rules later on to catch the cases that are not
caught by the more complex rules.

Y ou can aso combine alternatives into the one rule using alogical or, represented with a pipe (|) symbol.
For example

hi ghway=f oot way | hi ghway=pat h [0x07]

This meansif the road has either the highway=footway tag or the highway=path tags (or both), then
the condition matches and mkgmap would use type 0x07 for the map. This works exactly the same as if
you had written two separate rules - one for footway and one for path - and indeed is converted to two
separate rules internally when mkgmap runs.

You are not limited to two tests for agiven rule... you can combine and group tests in almost whatever
way you like. So for adlightly forced example the following would be possible:

pl ace=t own & (popul ati on > 1000000 | capital =true) | place=city

Thiswould match if there was apl ace tag which had the value t own and either the population was over
amillion or it was tagged a capital, or there was apl ace tag with thevaluecity.

restriction is you must have at least one test that depends on atag existing. So you cannot

There used to be some restrictions on the kind of expression you could use. Now the only
match on everything, regardless of tags, or test for an object that does not have atag.

3.2.3. Functions

Functions calcul ate a specific property of an OSM element.

Table 3.2. Style functions

Function Node Way Relation Description

length() X X Calculates the length in m. For relations its the sum
of all member length (including sub relations).

Is_complete() X t rue if all nodes of away are contained in thetile.
f al se if some nodes of the way are missing in the
tile.

is_closed() X t rue theway isclosed. f al se theway is not

closed and cannot be processed as polygon.

The following rule matches for all service ways longer than 50m.

hi ghway=servi ce & | ength()>50

3.3. Action block

An action block isenclosed in braces{ ...} and contains one or more statements that can alter the
element being displayed; multiple statements are separated by *;” symbol. When there is an action block,
the element type definition is optional, but if used it must come after the action block.

Stylerules

A list of all the command that can be used in the action block follows. In the examples you will see
notation of the form ${ nane}, thisis how tag values can be substituted into strings, in a similar way to
many computer languages. For full details see the section on variable substitution.

3.3.1. name

This sets the final name of the element, that is, the name that will be used in the Garmin map. Itis
distinct from any name tag on the element. Y ou can give alist of alternatives separated by | pipe
symbols. The first alternative that matches will be used. Once the name is set it cannot be overridden, so
if more than one name command matches then only the first to set the name will take effect.

Example 3.1. Setting the name
{name '${name} (${ref})" | "${ref}' | '${name}'}

If both the nane and r ef tags are are set, then the first alternative would be completed and the resulting
name might be Main & (Al). If just nane was set, then the first two alternatives can not be fully and so
the final name might in that case be Main .

For highway shields, you can use the notation ${ t agnane| hi ghway- synbol : box} . Valid symbols are

i nterstate, shield, round, hbox, box and oval . The appropriate kind of highway shield will be added
to the value of t agname. The exact result of the way it looks is dependant on where you view the map.
3.3.2. add

The add command adds atag if it does not already exist. Thisis often used if you want to set the value of
atag as adefault but do not want to overwrite any existing tag.

For example, motorways are one way by default so we need to add the oneway=yes tag in the style so
that is treated as one way by the device. But there are some stretches of motorway that are one-way and
these will be tagged as oneway=no. If we used set then that tagging would be lost, so we use add.

hi ghway=not orway { add oneway=yes }
The other use isin in relations with the apply command.

All the same you can set any tag you want, it might be useful so you can match on it elsewhere in the
rules.

Y ou can also use substitutions.
{set name='${ele}'; set name='${ref}';}

These two commands would set the name tag to the value of the ele tag if it exists, or to the value of the
ref tag if that exists.

You can aso give alist of alternative expressions separated with a vertical bar in the same way as on the
name command. Thefirst one that is fully defined will be used.

{set keyl23 = '${nane:en}' | '${nane}'; }
Will set key123 to the value of the name:en tag if it exists and to the nametag if not.

3.3.3. set

The set command isjust like the add command, except that it sets the tag, replacing any existing value it
had.

Stylerules

3.3.4. delete
The delete command deletes a tag.
{ delete keyl123 }

3.3.5. apply

The "apply" action only makes sense in relations. Say you have arelation marking a bus route, but none
of the ways that are in the relation have any specia tags to indicate that they form part of that bus route,
and you want to be able to tell from looking at the map which buses go where. You can writearulein
therelationsfile such as:

type=route & route=bus {

apply {
set route=bus;
set route ref="${route ref}';

}

Then in the linesfile you will need to write arule to match route=bus. All the relation rules are run
before any others so that this works.

The substitution ${r out e_r ef } takesthe value of the tag on the relation and appliesit to each of the
waysin therelation.

The substitution $(rout e_r ef) (with parenthesis, rather than curly brackets) can be used for accessing
the value of the tag on the actually processed member of therelation, e.g.

type=route & route=bus {

apply {
set route=bus;
set nanme=' $(nanme) ${route_ref}"';

}
3.3.6. apply_once

The apply_once action islike appl y, but it will apply the action once per relation member. A round-trip
route relation may include the same ways multiple times, unless all member ways have been defined as
parallel one way streets.

3.4. Variables

Y ou can substitute the value of tags within stringsin an action. A dollar sign ($) introduces the
substitution followed by the tag name surrounded by curly braces like so ${ nare} .

The most obvious use for variables isin setting the name of the element. Y ou are able to use any
combination of tags to make the name from. Here we name afuel station by its brand and the namein
brackets following.

ameni ty=fuel { name '${brand} (${operator})' } [Ox2f01]

If the operator tag was not set, then the name would not be set because all substitutionsin a string must
exist for the result to be valid. Thisiswhy the "name" command takes alist of possibilities, if operator
was simply replaced with a blank, then you would have an empty pair of brackets. So you would fix the
previous rule by adding another name option.

aneni t y=f uel
{ nanme '${brand} (${operator})' | '${brand}' }

Stylerules

[0x2f01]

If only the brand tag exists, then the first option will be skipped and the second will be used.

3.4.1. Variable filters

The value of avariable can be modified by ‘filters' . The value of the tag can be transformed in various
ways before being substituted.

A filter is added by adding a vertical bar symbol "|" after the tag name, followed by the filter name, then
acolon":" and an argument. If there is more than one argument required then they are usually separated
by colonstoo, but that isnot arule.

${tagnane|filter:argl: arg2}

Y ou can apply as many filter expressions to a substitution as you like.

${tagnane|filterl:arg|filter2:arg}

Table3.3. List of all substitution filters

Name

Arguments

Description

def

def aul t

If the variable is not set, then use the argument as a default
value. This means that the variable will never be ‘unset’ in
places where that matters.

${ oneway| def : no}

conv

f act or

Use for conversions between units. The only supported
version is from meters to feet number. It is multiplied by the
argument.

${ hei ght | conv: m=>ft}

subst

fronmE>to

Substitutes al occurrences of the string f r omwith the string
t o inthe value of the tag. Thereisn’'t alarge number of uses
for this, perhaps you can use it to correct mistakes. Thet o
can be empty to remove the f r omstring altogether and thisis
probably the most popular use.

${ nanme| ref : A=>}

highway-symbol

synbol nax-num
max- al pha

Prepares the value as a highway reference such as"A21"
"[-80" and so on. A code is added to the front of the string so
that a highway shield is displayed, spaces are removed and
the text is truncated so as not to overflow the symbol.

${ref | hi ghway- synbol : box: 4: 8}

See below for alist of the hi ghway- synmbol values.

The first number is the maximum number of characters to
alow for references that contain numbers and letters. The
second is the maximum length of references that do not

contain numbers. If there isjust the one number then it is
used in both cases.

height

me>f t

Thisisthe same asthe conv filter, except that it prepends
a special separation character before the value which is

10

Stylerules

Name

Arguments

Description

intended for elevations. Aswith conv the only supported
conversion currently is from meters to feet.

${elel m=>ft}

not-equal

tag

Used to check for duplicate tags. If the value of thistag is
equal to the value of the tag named as the argument to not -
equal , then value of thistag is set to undefined.

pl ace=* {
nane ' ${nane} (${int_nane| not - equal : nane})
| " ${nane}’

}

In that example, if the international name is different to the
name then it will be placed in parenthesis after the name.
Otherwise there will just be the name as given in the "name"

tag.

substring

start:end

Extract part of the string. The start and end positions are
counted starting from zero and the end position is not
included.

${nane| 2: 5} If the"name" was"Dorset Lane", then the
result is"rse". If there isjust the one number, then the
substring starts from that character until the end of the string.

3.4.2. Symbol codes

Hereisalist of al the symbols that can be created with images to give an idea of where they should be
used. The actual symbol will depend on the device that it is displayed on.

Table 3.4. Highway symbol codes

Shield name Symbol

Description

interstate @ US Interstate, digits only

shield US Highway shield, digits
orly ghway g

round US Highway round, digits
orly gnway g

hbox Box for major roads

box m Box for medium roads

ovd Box for smaller roads

3.5. Useful tags for routing and address search

For general routing, using avoid options, and address search, the use of some specia tagsis necessary.

11

Stylerules

3.6. Element type definition
As noted above thisis contained in square brackets and if used must be the last part of therule.

The first and only mandatory part of this section is the Garmin type code which must always be written
in hexadecimal. Following this the element type definition rule can contain a number of optional
keywords and values.

3.6.1. level

Thisisthe highest zoom level that this element should appear at (like EndLevel in the mp format). The
lower the level the detailed the view. The most detailed, most zoomed in, level islevel 0. A map will
usually have between three and five levels. If the level for an object is not given then it defaults to O and
so the specified feature will only appear at the most detailed level.

In the following example, we set highways to appear from zoom level 4 down to zoom level O:

hi ghway=not or way [0x01 | evel 4]

You can usel evel to place elementsinto the layers of the map that you want but you can’t
force the device to actually display them.
Some pieces of software (such as QLandkarteGT, | believe) will honour your selections,

but actual GPS devices have their own ideas about which POI’ s can be shown at which
resol utions.

Level ranges. You can also give arange (e.g. 1-3) and the map will then contain the object only
between the specified levels.

hi ghway=not or way [0x01 | evel 3-5]

In this example, motorways will appear at zoom level 5, which is most zoomed out, and continue to be
visible until zoom level 3, which is moderately zoomed in, and then will not be shown in zoom levels 2,
1 and O (most zoomed-in).

Of course you are unlikely to want a feature to disappear as you zoom in, but this can be used

o for interesting effects where a different representation takes over at the lower zoom levels.
For example a building may be a point at high levels and then become a polygon at lower
levels.

3.6.2. resolution

Thisis an alternative way of specifying the zoom level at which an object appears. It is specified as a
number from 1-24, which corresponds to one of the zoom levels that Garmin hardware recognises. Y ou
should not use resolution if you have used level as they achieve the same outcome.

In either case, the mapping between level and resolution is given in the options style file, where you will
see something like this:

The | evels specification for this style
#
l evel s = 0:24, 1:23, 2:22, 3:20, 4:18, 5:16

This setslevel zero equal to resolution 24, level 1 to resolution 23 and so on.

Although the default style usesr esol ut i on rather than | evel it ison the whole much easier to use
| evel asitisimmediately clear where the element will end up. If you usear esol uti on thatis
‘between’ two levels for example it will only show up in the lower one.

12

Stylerules

Resolution ranges. Just aswith levels, you can specify arange of resolutions at which an object
should appear. Here is an example.

hi ghway=r esi denti al [0x06 resol ution 16-22 conti nue]
hi ghway=r esi denti al [0x07 resol uti on 23-24]

This example creates roads of type 0x08 between resolutions 16 and 22, then roads of type 0x09 between
resolutions 23 and 24. This example makes use of the continue statement, which is discussed in more
detail below.

Since 24 is the default upper bound for arange, that second range could just have been
o written as the single number ‘23'.

3.6.3. default_name

If the element has not already had a name defined elsewhere in the rule, it will be given the name
specified by def aul t _name. This might be useful for things that usually don’t have names and don’t
have a recognisable separate Garmin symbol. Y ou could give a default name of ‘bus stop’ for example
and all bus stops that didn’t have their own name would now be labelled as such.

o Be careful to use this sparingly and not overwhelm the map or the search.

3.6.4. road _class

Setting this makes the line a"road" and it will be routable and can be part of an address search. It gives
the class of the road where class 4 is used for major roads that connect different parts of the country,
class 3 is used for roads that connect different regions, down to class O which is used for residential
streets and other roads that you would only use for local travel.

It isimportant for routing to work well that most roads are class 0 and there are fewer and fewer roadsin
each of the higher classes.

Table 3.5. Road classes

Class Used as

4 Major HW/Ramp

3 Principa HW

2 Arterial St/ Other HW

1 Roundabout / Collector

0 Residential Street / Unpaved

road / Trail

3.6.5. road_speed

This keyword is used along with r oad_cl ass to indicate that the lineisa"road" that can be used for
routing and for address searches. It is an indication of how fast traffic on theroad is. O is the slowest and
7 the fastest. Thisis not a speed limit and does not activate the maximum speed symbol on the newer
Garmin car navigation systems. The speed limits that Garmin knows are shown in the following table:

13

Stylerules

Table 3.6. Road Speeds

road_speed highest speed

No speed limit

70 mph / 110 kmh
60 mph / 90 kmh
50 mph / 80 kmh
35 mph / 60 kmh
25 mph / 40 kmh
15 mph/ 20 kmh
3 mph/5kmh

OR[N W OO

3.6.6. continue

As discussed above, style rules are matched in the order that they occur in the style file. By default, for
any given OSM object mkgmap will try each rule in turn until one rule wth a element type definition
matches; it will then stop trying to match further rules against the current OSM object. If the rule only
has an action block mkgmap will continue to find other matches.

However, if you add a continue statement to the definition block of a rule, mkgmap will not stop
processing the object but will instead carry on trying to match subsequent rules until it either runs out of
rules or finds a matching rule that does not include a continue statement.

Thisfeature is used when you want more than one symbol to result from asingle OSM element. This
could be for clever effects created by stacking two lines on top of each other. For example if you want to
mark a bridge in a distinctive way you could match on bri dge=yes, you would then amost always use
cont i nue SO that the hi ghway tag could be matched later. If you failed to do this then there might be a
break in the road for routing purposes.

Note that by default when using the continue statement the action block of the rule (if there is one)
will only be applied within this rule and not during any following rule matches. Use the continue
with_actions statement if you want to change this behaviour (see next section).

3.6.7. continue with_actions

The with_actions statement modifies the continue behaviour in such away, that the action block of this
ruleis also applied, when this element is checked for additional conversions.

Example of a full element type definition.

[0x2 road _cl ass=3 road_speed=5 | evel 2 default nane 'exanple street' continue w th _actions

3.7. Some examples

The following are some examples of style rules, with explanations of what they do.

3.7.1. Points style file

Example 3.2. Internet cafes

ameni ty=cafe & internet_access=w an {nane '${nane} (wifi)'} [Ox2al4d resol ution 23]

14

Stylerules

Checksto seeif an OSM object has both the amenity=cafe and internet_access=wlan key/tag pairs. If
name=Joe’ s Coffee Shop, then the Garmin object will be named Joe' s Coffee Shop (wifi). The Garmin
object used will be Ox2al4 and the object will only appear at resolutions 23 and 24

Example 3.3. Guideposts

i nf or mati on=gui depost
{ nane '${nane} - ${operator} - ${description} '
| ' ${name} - ${description}’
' ${ nane}’
" ${description}’
' ${operator}’

|
|
|
| " ${ref}"

}

[0x4c02 resol ution 23 default_name 'Infopost']

Checksto see if an OSM object has the information=guidepost key/tag pair. If so then the name will be
set depending on the available nane, oper at or and descri pti on tagsasfollows.

1. If for example we have the tags nanme="Rout e 7", oper at or =" Ki zonba Nati onal Parks" and
description="Trail signpost",thenthe Garmin object will be named Route 7 - Kizomba
National Parks - Trail signpost.

2. If the OSM object just has the nane and descri pti on tags set, the Garmin object will be named
Route 7 - Trail signpost

3. If just the nane tag is available, the Garmin object will be named Route 7
4. If just thedescri pti on tag is available, the Garmin object will be named Trail signpost;
5. andif just the oper at or tag isavailable, the Garmin object will be named Kizomba National Parks.

The Garmin object used will be 0x4c02 and will only appear at resolutions 23 and 24

Example 3.4. Car salesrooms

shop=car {nane '${nane} (${operator})' | '${nane}’' |'${operator}'} [Ox2f07 resol ution 23]
If name="Alice' s Car Salesroom" and operator=Nissan, the Garmin object will be named Alice's Car
Salesroom (Nissan)

Example 3.5. Opening hoursin postcode field

Thisisatrick to get opening hoursto show up in the postcode field of aPOI. Trickslike this can
enhance the map for certain uses, but of course may prevent the proper use of the postcode field.

openi ng_hours=* {set addr:postcode = '${addr: postcode} open ${openi ng_hours}’
| ' open ${opening_hours}'}

For any OSM object which has the opening_hours key set to avalue, this sets the postcode to include
the opening hours. For example, if addr:postcode=90210, addr:street=Alya Street, addr:city=L agos and
addr:housenumber=7 and opening_hours=09.00-17.00, the address field of the Garmin POI will be 7,
Alya Street, Lagos, 90210 open 09.00-17.00.

15

Stylerules

3.8. Troubleshooting

For each node/way/relation, mkgmap goes through the tags exactly once in order from the top of thefile
downward. For each rule that matches, any action block will be run. As soon as arule that ends with a
type definition is found then processing stops and that is the Garmin symbol that is produced.

The only exception isif the Type Definition contains the cont i nue statement. In that case mkgmap will
continue looking for further matches.

* Where possible always have the same tag on the left. Thiswill make things more predictable.

» Always set made-up tag names if you want to also match on them later, rather than setting tags that
might be used already.

3.9. Including files

Its often convenient to split afile into smaller parts or to use the same rules in two different files. In
these cases you can include one rule file within another.

i ncl ude "inc/ comnmon”;

Here some common rules have been included in arule file from adirectory called "inc" within the style.
Note that the line ends in a semi-colon which is easy to forget.

The included files don’t have to be located within the style and can be anywhere else.

When you include afile, the effect is exactly as if you had replaced the include line with the contents
of thefile. Ani ncl ude directive can occur anywhere that arule could start, and it is possible to include
another file from with in the file that is included.

Including from another style. Itisalso possibleto include afile from another style. To do thisyou
simply add +from +stylename to the end of the include statement.

i ncl ude "points" fromdefault;

That will include the poi nt s file from the default style. This might be useful if you want to only change
afew things about the default style.

3.10. Simple example

In the majority of cases everything isvery simple. Say you want roads that are tagged as
highway=motorway to have the Garmin type 0x01 (*motorway") and for it to appear up until the zoom
level 3.

Then you would write the following rule.

hi ghway=not or way [0x01 | evel 3]

Nodes that have an id and a subid are referenced by concatenating both ids.
aneni ty=bank [0x2f06 |evel 3]

Thiswill be explained in more detail in the following sections along with how to use more than one tag
to make the choice. However with that one form of rule, you can do everything that the old map-features
file could do.

16

Chapter 4. Creating a style

4.1. Testing a style

Y ou can test your style by calling mkgmap with the - - st yl e- fi | e=path-to-style and the- -1 i st -
styl es option. If you see your style listed, then your style is recognized by mkgmap. Then you can test
if your styleisvalid by using it when creating a map.

A style can be used just as it was created, but if you want to make it available to othersit will be easier if
you make a zip file out of it and then you just have the one file to distribute. Y ou just can zip al files of
the style. Several different styles can be placed into the same zip archivefile.

To use azipped style, you can use - - st yl e-fi | e=stylename. zi p. If there is more than one stylein the
zipfile, thenyou can use- - styl e-fi | e=zZipname. zi p - - st yl e=Stylename.

4.2. Making a style package

A style can be used just as it was created, but if you want to make it available to othersit will be easier if
you combine all theindividual filesinto asingle archivefile.

4.2.1. Zip archive

Thefirst way of doing thisisto combine the filesinto a zip file and then you just have the onefile to
distribute.

To use azipped style, you can use --style-file=stylename.zip

It does not matter if you include the directory holding the files or not in the archive. The style is found
by searching for thever si on file.

Y ou can have more than one style in the zip file, each in their own directory. In this case you must
include the top level directories of the style (and you can include other parent directories aswell if you
like). If there is more than one style in the zip file, then you can use the - - st yl e option alongside the - -
styl e-fil e option. --style-file=zipname.zip --style=stylename.

Example 4.1. Style package layout

“-- nystyles
| -- cycle
| |-- lines
| | -- points
| | -- pol ygons
| T-- version
“-- hiking
|-- lines
| -- points
| -- pol ygons
T-- version

Here there are two styles named cycle and hiking. You can select the *hiking’ style with the options --
style-file=mystyles.zip --style=hiking
4.2.2. Simple file archive

Thisisformed by appending all of the files of a style into asingle file separated by lines that contain the
file namein triple angled brackets.

17

Creating astyle

Singlefile archive.

<<<ver si on>>>
0

<<<poi nt s>>>
aneni ty=doct or [0x2a2a | evel 0]
More point definitions here..

<<<| i nes>>>
All the line definitions here..

The file must have aname ending in . st yl e to be recognised.

Thisfile can be easily created in its entirity in atext editor, but you can also convert between the files-in-
a-directory format and the single-file format using the following command:

(to be typed all on one |line)
java -cp nkgmap.jar uk. ne. parabol a. ntkgmap. osnst yl e. Conbi nedSt yl eFi | e

nystyle > nystyle.style

To convert back then supply the file as the argument, rather than the directory.

18

Chapter 5. About

5.1. Licence

This manual is released under the Creative Commons Attribution-ShareAlike 2.0 license [http://
creativecommons.org/licenses/by-sa/2.0/]. It makes use of some material that was added to the OSM
Wiki which is release under the same licence.

5.2. Authors and acknowledgments

This manual is created from material that originated from the mkgmap doc files and added to OSM wiki.
While on the OSM wiki modifications were made by many people.

People who have contributed suggestions and corrections to this document are: Carlos Davila, Geoff
Sherlock

Thelist of nicknames of everyone that had modified the wiki pages at the time that this manual was
created is as follows. Brogo, Christian Gawron, Csdf, De muur, Derstefan, DirkS, Extremecarver,
Gernat, !i!, Jinx1971, Katpatuka, MarkS, Master, Mezzanine, Nakor, Nop, Richard, Skela,
SomeoneElse, Tommybgoode, Ulfl, Walterschloegl, WanMil, Willem1, Y ggdrasil

19

http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/

	Conversion Style manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. The structure of a style
	2.1. Files
	2.1.1. Top level folder

	2.2. The version file
	2.3. The info file
	2.4. The options file
	2.4.1. Non command line options

	2.5. The points file
	2.6. The lines file
	2.7. The polygons file
	2.8. The relations file

	Chapter 3. Style rules
	3.1. Introduction
	3.2. Tag tests
	3.2.1. Allowed operations
	3.2.2. Combining tag tests
	3.2.3. Functions

	3.3. Action block
	3.3.1. name
	3.3.2. add
	3.3.3. set
	3.3.4. delete
	3.3.5. apply
	3.3.6. apply_once

	3.4. Variables
	3.4.1. Variable filters
	3.4.2. Symbol codes

	3.5. Useful tags for routing and address search
	3.6. Element type definition
	3.6.1. level
	3.6.2. resolution
	3.6.3. default_name
	3.6.4. road_class
	3.6.5. road_speed
	3.6.6. continue
	3.6.7. continue with_actions

	3.7. Some examples
	3.7.1. Points style file

	3.8. Troubleshooting
	3.9. Including files
	3.10. Simple example

	Chapter 4. Creating a style
	4.1. Testing a style
	4.2. Making a style package
	4.2.1. Zip archive
	4.2.2. Simple file archive

	Chapter 5. About
	5.1. Licence
	5.2. Authors and acknowledgments

