
qooxdoo Documentation
Release 1.6

qooxdoo developers

December 06, 2011

CONTENTS

1 Introduction 1
1.1 About . 1
1.2 Framework . 1
1.3 GUI Toolkit . 1
1.4 AJAX . 2
1.5 More Information (online) . 2

2 Getting Started 3
2.1 Requirements . 3

2.1.1 Client . 3
2.1.2 Server . 3
2.1.3 Tools . 4

2.2 Hello World . 4
2.2.1 Setup the Framework . 4
2.2.2 Create your Application . 5
2.2.3 Run your Application . 6
2.2.4 Write Application Code . 7
2.2.5 Debugging . 7
2.2.6 Deployment . 8
2.2.7 API Reference . 9
2.2.8 Unit Testing . 10

2.3 Troubleshooting . 10
2.3.1 Python Installation . 10

2.4 Tutorials . 12
2.4.1 Rich Internet Applications (RIA) . 12
2.4.2 Mobile Apps . 55
2.4.3 Tooling . 55
2.4.4 Video Tutorials . 55

2.5 SDK . 55
2.5.1 Introduction to the SDK . 55
2.5.2 Framework Structure . 56
2.5.3 Application Structure . 57
2.5.4 Manifest.json . 58
2.5.5 Code Structure . 59
2.5.6 Architecture . 60

3 Core Framework 63
3.1 Object Orientation . 63

3.1.1 Introduction to Object Orientation . 63

i

3.1.2 Features of Object Orientation . 64
3.1.3 Classes . 70
3.1.4 Interfaces . 76
3.1.5 Mixins . 79

3.2 Properties . 81
3.2.1 Introduction to Properties . 81
3.2.2 Properties in more detail . 85
3.2.3 Initialization Behavior . 95
3.2.4 Property features summarized . 96

3.3 Environment . 98
3.3.1 Environment . 98

3.4 Data Binding . 103
3.4.1 Data Binding . 103

4 Low Level Framework 115
4.1 General . 115

4.1.1 Overview . 115
4.2 Tutorials . 115

4.2.1 Setting up a low-level library . 115
4.2.2 Low-Level APIs . 116
4.2.3 Back-Button and Bookmark Support . 119
4.2.4 Low-level tutorial for web developers . 120

4.3 Technical Topics . 124
4.3.1 HTML Element Handling . 124
4.3.2 Image Handling . 126
4.3.3 The Event Layer . 126
4.3.4 The Focus Layer . 127
4.3.5 qooxdoo Animation . 129
4.3.6 Transforms and Animations (CSS3) . 131
4.3.7 From jQuery to qooxdoo . 132

5 GUI Toolkit 143
5.1 Overview . 143

5.1.1 Widgets . 143
5.1.2 Composites . 143
5.1.3 Roots . 143
5.1.4 Applications . 144

5.2 Widgets Introduction . 144
5.2.1 Widget . 144
5.2.2 Basic Widgets . 146
5.2.3 Interaction . 147
5.2.4 Resources . 150
5.2.5 Selection Handling . 152
5.2.6 Drag & Drop . 155
5.2.7 Inline Widgets . 160
5.2.8 Custom Widgets . 162
5.2.9 Form Handling . 165
5.2.10 Menu Handling . 182
5.2.11 Window Management . 185
5.2.12 HTML Editing . 187
5.2.13 Table Styling . 202
5.2.14 Widget Reference . 215

5.3 Layouts . 215
5.3.1 Layouting . 215

ii

5.4 Themes . 220
5.4.1 Theming . 220
5.4.2 Appearance . 226
5.4.3 Custom Themes . 232
5.4.4 Decorators . 234
5.4.5 Web Fonts . 237
5.4.6 Using themes of contributions in your application . 238

6 Mobile Framework 241
6.1 Introduction . 241

6.1.1 Overview . 241
6.1.2 Tutorial: Creating a Twitter Client with qooxdoo mobile 243

7 Server Framework 253
7.1 Server Overview . 253

7.1.1 How to get it? . 253
7.1.2 Included Features . 253
7.1.3 Supported Runtimes . 254
7.1.4 Basic Example . 254
7.1.5 Additional Scenarios . 254

8 Communication 255
8.1 Low-level requests . 255
8.2 Higher-level requests . 255

8.2.1 Higher-level requests . 255
8.2.2 AJAX . 260

8.3 REST . 262
8.3.1 REST (Representational State Transfer) . 262

8.4 Remote Procedure Calls (RPC) . 265
8.4.1 RPC (Remote Procedure Call) . 265
8.4.2 RPC Servers . 270

8.5 Specific Widget Communication . 274
8.5.1 Using the remote table model . 274

9 Development 279
9.1 Application Creation . 279

9.1.1 Application Skeletons . 279
9.2 Debugging . 281

9.2.1 Logging System . 281
9.2.2 Debugging Applications . 283

9.3 Performance . 285
9.3.1 Memory Management . 285
9.3.2 Profiling Applications . 287

9.4 Testing . 289
9.4.1 Unit Testing . 289
9.4.2 The qooxdoo Test Runner . 289
9.4.3 Simulator . 298
9.4.4 Simulator: Locating elements . 302

9.5 Parts . 305
9.5.1 Parts and Packages Overview . 305
9.5.2 Using Parts . 306
9.5.3 Further Resources . 310

9.6 Internationalization . 310
9.6.1 Internationalization . 310

9.7 Miscellaneous . 314

iii

9.7.1 Image clipping and combining . 314
9.7.2 Writing API Documentation . 317
9.7.3 Reporting Bugs . 321
9.7.4 An Aspect Template Class . 321
9.7.5 Internet Explorer specific settings . 323

10 Tooling 325
10.1 Generator . 325

10.1.1 Introduction . 325
10.1.2 Configuration . 338
10.1.3 Reference Material . 362

10.2 Further Tools . 362
10.2.1 Source Code Validation . 362

11 Standard Applications 365
11.1 Demo Applications . 365

11.1.1 Demobrowser . 365
11.1.2 Feedreader . 366
11.1.3 Playground . 366
11.1.4 ToDo . 368
11.1.5 Portal . 368
11.1.6 Showcase . 369
11.1.7 Widgetbrowser . 369

11.2 Developer Tools . 370
11.2.1 Apiviewer . 370
11.2.2 Testrunner . 370
11.2.3 Inspector . 371
11.2.4 Simulator . 377
11.2.5 Feature Configuration Editor . 382

12 Migration 385
12.1 Migration Guide . 385

13 References 387
13.1 Core . 387

13.1.1 Class Declaration Quick Ref . 387
13.1.2 Interfaces Quick Ref . 388
13.1.3 Mixin Quick Ref . 389
13.1.4 Properties Quick Reference . 390
13.1.5 Array Reference . 391
13.1.6 Framework Generator Jobs . 392

13.2 GUI Toolkit . 394
13.2.1 Widget Reference . 394
13.2.2 Layout Reference . 438

13.3 Tooling . 449
13.3.1 Generator Default Jobs . 449
13.3.2 Generator Config Keys . 456
13.3.3 Generator Config Macros . 475
13.3.4 Syntax Diagrams . 477
13.3.5 ASTlets - AST Fragments . 477

13.4 Miscellaneous . 480
13.4.1 Third-party Components . 480

13.5 Glossary . 481
13.5.1 Glossary . 481

13.6 License . 483

iv

13.6.1 qooxdoo License . 483

Index 499

v

vi

CHAPTER

ONE

INTRODUCTION

1.1 About

qooxdoo (pronounced [’kuksdu:]) is a universal JavaScript framework that enables you to create applications for a
wide range of platforms. With its object-oriented programming model you build rich, interactive applications (RIAs),
native-like apps for mobile devices, traditional web applications or even applications to run outside the browser.

You leverage its integrated tool chain to develop and deploy applications of any scale, while taking advantage of a
comprehensive feature set and a state-of-the-art GUI toolkit. qooxdoo is open source under liberal licenses, led by the
world’s largest web host 1&1, with a vibrant community.

1.2 Framework

qooxdoo is entirely class-based and tries to leverage the features of object-oriented JavaScript. It is fully based on
namespaces and does not extend native JavaScript types to allow for easy integration with other libraries and existing
user code. Most modern browsers are supported (e.g. Firefox, Internet Explorer, Opera, Safari, Chrome) and it
is free of memory leaks. It comes with a comprehensive API reference, that is auto-generated from Javadoc-like
comments. The fast and complete JavaScript parser not only allows doc generation, but is an integral part of the
automatic build process that makes optimizing, compressing, linking and deployment of custom applications very
user-friendly. Internationalization and localization of applications for various countries and languages is a core feature
and easy to use. more ...

1.3 GUI Toolkit

Despite being a pure JavaScript framework, qooxdoo is quite on par with GUI toolkits like Qt or SWT when it comes
to advanced yet easy to implement user interfaces. It offers a full-blown set of widgets that are hardly distinguishable
from elements of native desktop applications. Full built-in support for keyboard navigation, focus and tab handling
and drag & drop is provided. Dimensions can be specified as static, auto-sizing, stretching, percentage, weighted flex
or min/max or even as combinations of those. All widgets are based on powerful and flexible layout managers which
are a key to many of the advanced layout capabilities. Interface description is done programmatically in JavaScript for
maximum performance.

No HTML has to be used and augmented to define the interface. The qooxdoo developer does not even have to know
CSS to style the interface. Clean and easy-to-configure themes for appearance, colors, borders, fonts and icons allow
for a full-fledged styling.

1

http://api.qooxdoo.org
http://qooxdoo.org/about/framework
http://qooxdoo.org/documentation/general/styling_without_css_know-how

qooxdoo Documentation, Release 1.6

1.4 AJAX

While being a client-side and server-agnostic solution, the qooxdoo project includes different communication facilities,
and supports low-level XHR requests as well as an RPC API. An abstract transport layer supports queues, timeouts
and implementations via XMLHttpRequest, Iframes and Scripts. Like the rest of qooxdoo it fully supports event-based
programming which greatly simplifies asynchronous communication.

1.5 More Information (online)

• FAQ

• License

• Framework Features

• Release Notes

• Roadmap

• Developers

• Committers Guide

• Media Download

2 Chapter 1. Introduction

http://qooxdoo.org/documentation/general/faq
http://qooxdoo.org/license
http://qooxdoo.org/about/framework
http://qooxdoo.org/about/release_notes
http://qooxdoo.org/about/roadmap
http://qooxdoo.org/about/developers
http://qooxdoo.org/documentation/general/committers_guide
http://qooxdoo.org/about/media_download

CHAPTER

TWO

GETTING STARTED

2.1 Requirements

Here are the requirements for developing and deploying a qooxdoo application. A typical qooxdoo application is a
JavaScript-based “fat-client” that runs in a web browser. It does not enforce any specific backend components, any
HTTP-aware server should be fine. The framework comes with a powerful tool chain, that helps both in developing
and deploying applications.

It is very straightforward to satisfy the requirements for those three topics (client, server, tools).

2.1.1 Client

A qooxdoo application runs in all major web browsers - with identical look & feel:

Internet Explorer 6+

Firefox 2+

Opera 9+

Safari 3+

Chrome 2+

Not only the end users of your application benefit from this true cross-browser solution. As a developer you can also
pick your preferred development platform, i.e. combination of browser and operating system. Most built-in developer
Tools (e.g. for debugging, profiling) work cross-browser as well.

2.1.2 Server

Developing a qooxdoo application does not require a server. Its static application contents (initial html file, JavaScript
files, images, etc.) may just be loaded from your local file system.

Of course, for the actual deployment of your final app you would use a web server to deliver the (static) contents.
For developing a qooxdoo app it is not a prerequisite to setup a web server, so you can start right away on your local
computer.

Any practical qooxdoo client application will communicate with a server, for instance to retrieve and store certain
application data, to do credit card validation and so on. qooxdoo includes an advanced RPC mechanism for direct
calls to server-side methods. It allows you to write true client/server applications without having to worry about the
communication details. qooxdoo offers such optional RPC backends for Java, PHP, Perl and Python. If you are missing
your favorite backend language, you can even create your own RPC server by following a generic server writer guide.

3

http://qooxdoo.org/contrib/project#backend

qooxdoo Documentation, Release 1.6

If you already have an existing backend that serves HTTP (or HTTPS) requests and you do not want to use those
optional RPC implementations, that’s fine. It should be easy to integrate your qooxdoo app with your existing backend
using traditional AJAX calls.

2.1.3 Tools

qooxdoo comes with a platform-independent and user-friendly tool chain. It is required for creating and developing a
qooxdoo application. It is not needed for running an application.

The tool chain only requires to have Python installed. Use a standard Python 2.x release, version 2.5 or above. Python
3 is currently not supported! As a qooxdoo user you do not need any Python knowledge, it is merely a technology
used internally for the tools. Python comes either pre-installed on many systems or it can very easily be installed:

Windows

It is trivial! Just download and install the excellent ActivePython package. Its default settings of the installation wizard
are fine, there is nothing to configure. (It is no longer recommended to use the Windows package from Python.org, as
this requires additional manual configuration).

Cygwin

Cygwin can be used as an optional free and powerful Unix-like environment for Windows. You won’t need a native
Python installation, just make sure to include Cygwin’s built-in Python as an additional package when using Cygwin’s
setup program.

Mac

Python is pre-installed on Max OS X. No additional software needs to be installed, but on older systems it might need
an update.

Linux

Python often comes pre-installed with your favorite distribution. If not, simply use your package manager to install
Python.

2.2 Hello World

This tutorial is a step-by-step instruction on how to get started with qooxdoo by creating your very first application.

2.2.1 Setup the Framework

Requirements

Please make sure to have read the detailed Requirements. To recap, there are only a few requirements for full-featured
qooxdoo application development:

• client: any major web browser

4 Chapter 2. Getting Started

http://www.python.org
http://qooxdoo.org/documentation/general/python_3_support
http://www.activestate.com/Products/activepython/
http://www.python.org/download/releases/2.6.1/
http://www.cygwin.com/
http://cygwin.com/setup.exe

qooxdoo Documentation, Release 1.6

• server: any HTTP-aware backend. During development the local file system should also be ok (*)

• operating system: any

• tools: Python required

(*) Developers using Chrome should note that there is a known issue loading reasonably complex qooxdoo applications
(such as the API viewer or the demo browser) via the file:// protocol. It is recommended to Chrome users to use the
HTTP protocol, even while developing.

Download

Go to the Download section and grab the latest stable Software Development Kit (SDK).

Installation

Unzip the SDK archive.

Disk Space

The unpacked SDK will require around 110 MB disk space (most of this is due to media files, like images).

The tool chain also uses a directory in your system’s TMP path, to cache intermediate results and downloaded files.
Depending on your activities this cache directory can become between 0.5 and 1.5 GB in size. If the default cache
path does not suite you, you can change it in your configuration.

2.2.2 Create your Application

It is easy to setup your own application using the platform-independent script create-application.py. It will
create a skeleton application in a directory you specify, that is automatically configured to work with your version of
the qooxdoo framework.

To create a new skeleton with create-application.py you will need to follow some initial platform-dependent
steps - even when the rest of your development is independent of the platform. Please see the appropriate section
below for Windows , Cygwin or Mac , Linux

Note: If you have any problems setting up the qooxdoo tool chain, please see some additional help for troubleshoot-
ing.

Windows

Installing ActivePython for Windows is trivial. Now let’s create an application named custom in C:, with the
qooxdoo SDK available at C:\qooxdoo-1.6-sdk:

C:\qooxdoo-1.6-sdk\tool\bin\create-application.py --name=custom --out=C:

Cygwin

To create your application custom to C:, with the qooxdoo SDK available at C:\qooxdoo-1.6-sdk, call the
script as follows:

2.2. Hello World 5

http://qooxdoo.org/download
http://qooxdoo.org/documentation/general/snippets#finding_your_system-wide_tmp_directory
http://qooxdoo.org/documentation/general/snippets#finding_your_system-wide_tmp_directory
http://www.activestate.com/Products/activepython/index.mhtml

qooxdoo Documentation, Release 1.6

/cygdrive/c/qooxdoo-1.6-sdk/tool/bin/create-application.py --name=custom --out=C:

Mac , Linux

To create an application custom in your home directory, change to your home directory (just cd). With a qooxdoo
SDK available at /opt/qooxdoo-1.6-sdk, call the script as follows:

/opt/qooxdoo-1.6-sdk/tool/bin/create-application.py --name=custom --out=.

2.2.3 Run your Application

Now that your application is setup, lets generate a version that can be opened in your browser. Move to the newly
created application directory and kick off the automatic build process:

cd C:/custom
generate.py source-all

Under non-Windows systems you might have to prefix the command with the local directory, i.e. execute
./generate.py source-all instead.

Please note, that the additional source-all target was introduced with qooxdoo 0.8.1. The regular source target
now only includes those qooxdoo classes that are actually required by your app, not all the source classes.

After the application has been generated, open source/index.html file in your web browser to run your applica-
tion and click the button:

6 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

2.2.4 Write Application Code

The folder source/class contains all your application classes. When starting with a newly created application,
there is only a single file custom/Application.js. Open it in your favorite editor or IDE.

The method main() contains the entire code of your little skeleton app. Even if you haven’t done any qooxdoo
programming before, you should be able to figure out what the code does. Get familiar with the code and change it,
e.g. modify the label of the button, move the button to another position or add a second button.

To see the changes, you just have to refresh your document in the browser, e.g. by hitting F5. During develop-
ment there usually is no need to re-generate this so-called “source” version of your app. Only if you later introduce
new classes or if dependencies between classes change, you would have to regenerate your app. To do so, execute
generate.py source-all (to include all source classes) or generate.py source (to only include the re-
quired classes) before refreshing your browser.

2.2.5 Debugging

In your newly created application you have certainly noticed the following code:

if (qx.core.Environment.get("qx.debug"))
{

qx.log.appender.Native;

2.2. Hello World 7

qooxdoo Documentation, Release 1.6

qx.log.appender.Console;
}

This code turns on two different ways of “logging”, i.e. capturing and printing out information about the operation of
your application.

qx.log.appender.Native uses the native logging capabilities of your client if available, e.g. Firebug in Firefox
(use F12 to toggle). If your browser doesn’t come with developer-friendly logging, qx.log.appender.Console
provides such a feature for all browsers: the console prints out the log messages in an area inside your browser window.
It also includes an interactive JavaScript shell (use F7 to toggle):

The reason for enclosing the two logging classes in a so-called “debug” variant is explained in more detail in the next
section. It ensures that logging is only turned on in the development version (i.e. “source” version) of your app. It will
automatically be turned off in the final version of your app that is to be deployed:

2.2.6 Deployment

The development version of a qooxdoo app is called the “source” version, the deployment version of an app is called
“build” version. It is easily generated by executing

generate.py build

After successful completion let the browser open index.html from the newly created build folder. Although you
probably won’t see a difference between this deployment version of your app and the previous “source” version, it
should have started up faster.

8 Chapter 2. Getting Started

http://getfirebug.com

qooxdoo Documentation, Release 1.6

Unlike the “source” version, with its numerous unmodified JavaScript files, the “build” version only has to load a
single, optimized JavaScript file.

Manually creating such a “custom build” from your application class (or classes) would have been a very tedious and
complex job. In fact most other JavaScript libraries do provide built-in support to automate this task. Building your
app strips off unneeded whitespaces and comments, optimizes and reorganizes your code, uses a JS linker to only
include classes that your application needs, and many more refinements and optimizations as well.

A lot of debugging code is also removed when a “build” is generated, that would only be useful during development
of your application, e.g. printing out informative warnings or coding hints. Just like the logging code in the section
above, you can put arbitrary code into such “variants”, which may then be automatically removed during “conditional
compilation” of the build process. This lets you receive information on your app when you’re developing it, but
removes this for your final code, so your end users don’t see it.

2.2.7 API Reference

qooxdoo supports inline comments that are similar to Javadoc or JSDoc comments. They allow for JavaScript and
qooxdoo specific features, and look like /** your comment */.

From those comments a complete, interactive API reference can be generated:

generate.py api

To start the “API Viewer” application, open index.html from the newly created api folder in your browser. It
includes fully cross-linked and searchable documentation of your application classes as well as the framework classes.

2.2. Hello World 9

qooxdoo Documentation, Release 1.6

2.2.8 Unit Testing

You might have noticed the test/DemoTest.js file in the source/class folder of your application. This class
demonstrates how to define “unit tests” for your application. qooxdoo comes with its own unit testing framework, it
does not require any additional software installation. Simply execute the following command:

generate.py test

Open index.html from the newly created top-level test folder in your browser. The “Testrunner” application
allows you to select and run the tests under your application namespace:

You may skip the rather advanced topic of unit tests while continuing to extend your custom application code. In
case you are interested in test-driven development and creating your own unit tests, please see the corresponding Unit
Testing documentation.

2.3 Troubleshooting

2.3.1 Python Installation

Python 3.0

Please make sure that you use a regular Python 2.x release (v2.5 or above). Python 3.0 is currently not supported.

Execute python -V in a console to get the installed Python version.

10 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

Windows

Making the interpreter available

Note: The following is only required when installing the Windows package from Python.org. When installing the
preferred ActivePython this installation step is conveniently handled within its graphical installation wizard.

After your successful Python installation, you need to add the installation folder to the so-called PATH environment
variable, which contains a list of directories that are searched for executables.

Suppose you installed Python to its default location C:\Python26, open a Windows command shell (choose menu
Start -> Run... and type cmd). The following command prepends the installation folder to the value of PATH,
separated by a semicolon:

set PATH=C:\Python26;%PATH%

When you now execute python -V, it should print out its version number.

The modification of the PATH variable as described above is only temporary. In order not to repeat the command
each time you open a new command shell, modify the PATH variable permanently: in Start -> Preferences
-> System choose Environment variables under the Advanced tab. Edit the system variable Path by
prepending C:\Python26;.

File association

Note: The following is only required when installing the Windows package from Python.org. When installing the
preferred ActivePython this installation step is conveniently handled within its graphical installation wizard.

In a standard Python installation on Windows, the .py file extension gets associated with the Python interpreter. This
allows you to invoke .py files directly. You can check that in the following way at a command prompt:

C:\>assoc .py
.py=Python.File

If this doesn’t work, you can add a file association through Windows Explorer -> Extras -> Folder
Options -> File Types.

If for any reason you cannot use a file association for .py files, you can still invoke the Python interpreter directly,
passing the original command line as arguments. In this case, make sure to provide a path prefix for the script name,
even for scripts in the same directory, like so (this will be fixed later):

python ./generate.py source

Windows Vista

To run qooxdoo’s Python-based tools without problems, it is important to have Python installed as an administrator
“for all” users.

Administrators installing Python “for all” users on Windows Vista either need to be logged in as user
Administrator, or use the runas command, as in:

runas /user:Administrator "msiexec /i <path>\<file>.msi"

2.3. Troubleshooting 11

http://python.org
http://www.activestate.com/Products/activepython/
http://python.org
http://www.activestate.com/Products/activepython/

qooxdoo Documentation, Release 1.6

Windows 7

It has been reported that you need to use the PowerShell that comes with Windows 7 for the tools to work properly.
The simple command shell doesn’t seem to be sufficient. To launch the PowerShell, hit the WIN+R keys and enter
powershell.

Mac OS X

Older Macs (e.g. 10.4) may need an update of the pre-installed Python. See the following comment from the Python
on Mac page : “Python comes pre-installed on Mac OS X, but due to Apple’s release cycle, it’s often one or even
two years old. The overwhelming recommendation of the “MacPython” community is to upgrade your Python by
downloading and installing a newer version from the Python standard release page.”

If the generator is very slow on your Mac, it may be due to Spotlight or more precisely it’s indexing daemon mds.
mds can end up in an infinite loop resulting in very high disk load. While this is a general Mac issue, the generator
can trigger this behaviour. To end the infinite loop:

Delete Spotlight cache
sudo rm -r /.Spotlight-V100

2.4 Tutorials

2.4.1 Rich Internet Applications (RIA)

Tutorial Part 1: The Beginning of a twitter App

The Missing Manual

We have heard it a couple of times: Users are missing a tutorial a bit more complex than the simple “Hello World”
tutorial we already have. Today, we want to close that gap between the first tutorial and the demo applications included
in the framework like the Feedreader.

As you sure have read in the headline, we are building a simple twitter application. twitter is a well known service
for posting public short messages and has a good API for accessing data. The following mockup shows you how the
application should look like at the end.

12 Chapter 2. Getting Started

http://www.python.org/download/mac/
http://www.python.org/download/mac/
http://www.python.org/download/releases/
http://qooxdoo.org/demo
http://demo.qooxdoo.org/1.6/feedreader
http://twitter.com
http://apiwiki.twitter.com

qooxdoo Documentation, Release 1.6

If you take a closer look at the mockup, you see a window containing a toolbar, a list, a text area and a button to post
messages. This should cover some common scenarios of a typical qooxdoo application.

In the first part you’ll learn how to create a new application and how to build a part of the main UI. But before we get
started, be sure you looked at the “Hello World” tutorial. We rely on some of the fundamentals explained there.

Getting started

The first step is to get a working qooxdoo application where we can start our development. You should have already
have the qooxdoo SDK and know how to use create-application.py, so we just create an application called
twitter.

create-application.py -n twitter

After that, we should check if everything works as expected. Change the directory to twitter and
run ./generate.py. Now the skeleton application is ready to run and you can open the in-
dex file located in the source directory. After that, open the Application.js file located in
source/class/twitter/Application.js with your favorite editor and we are set up for development!

You should see the unchanged skeleton code of the application containing the creation of a button. We don’t need that
anymore so you can delete it including all the listener stuff.

The first part is to create a Window. As the Window contains all the UI controls, we should extend from the qooxdoo
Window and add the controls within that class. Adding a new class is as easy as creating a new file. Just create a file

2.4. Tutorials 13

qooxdoo Documentation, Release 1.6

parallel to the Application.js file named MainWindow.js. Now it is time to add some code to that file. We
want to create a class so we use the qooxdoo function qx.Class.define for that. Add the following lines to your
newly created file.

qx.Class.define("twitter.MainWindow",
{

extend : qx.ui.window.Window,

construct : function()
{

this.base(arguments, "twitter")
}

});

We have created our own class extending the qooxdoo Window. In the constructor, we already set the caption
of the window, which is the first constructor parameter of the qooxdoo window. So you already have guessed it,
this.base(arguments) calls the overridden method of the superclass, in this case the constructor. To test the
window, we need to create an instance of it in the main application. Add these two lines of code in the Application.js
file to create and open the window. Make sure to add it at the end of the main function in the application class.

var main = new twitter.MainWindow();
main.open();

Now its time to test the whole thing in the browser. But before we can do that, we need to run the generator once more
because we added the window class as new dependency. So run ./generate.py and open the page in the browser.
You should see a window in the top left corner having the name “twitter”.

Programming as Configuring

The last task of this tutorial part is to configure the window. Opening the window in the left corner does not look so
good, so we should move the window a bit away from the edges of the viewport. To do this add the following line to
your application file:

main.moveTo(50, 30);

Another thing we should configure are the buttons of the window. The user should not be able to close, minimize nor
maximize the window. So we add the following lines of code in our windows constructor.

// hide the window buttons
this.setShowClose(false);
this.setShowMaximize(false);
this.setShowMinimize(false);

The last thing we could change is the size of the window on startup. Of course the user can resize the window but we
should take care of a good looking startup of the application. Changing the size is as easy as hiding the buttons, just
tell the window in its constructor:

// adjust size
this.setWidth(250);
this.setHeight(300);

At this point, your application should look like this.

14 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.window.Window

qooxdoo Documentation, Release 1.6

Thats it for the first part. If you want to have the code from the tutorial, take a look at the project on github and just
fork the project. The next part of the tutorial will contain the building of the rest of the UI. If you have feedback or
want to see something special in further tutorials, just let us know!

Tutorial Part 2: Finishing the UI

In the first part of the tutorial, we built a basic window for our target application, a twitter client. In the second part of
the tutorial, we want to finish the UI of the application. So lets get started, we got a lot to do!

I hope you remember the layout of the application we are trying to build. If not, here is a little reminder.

2.4. Tutorials 15

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step1

qooxdoo Documentation, Release 1.6

The first thing we need to do is to set a layout for our window. You can see that the text area and the button are
side by side while all the other elements are ordered vertically. But all elements are aligned in a grid so we should
choose a grid layout for that. We can add the grid layout in our own window class. Just add these lines of code in
MainWindow.js:

// add the layout
var layout = new qx.ui.layout.Grid(0, 0);
this.setLayout(layout);

But a layout without any content is boring so we should add some content to see if it’s working. Lets add the first two
elements to the window, the toolbar and the list view.

Layout and Toolbar

First, we need to create the toolbar before we can add it. Creating the toolbar and adding it is straight forward.

// toolbar
var toolbar = new qx.ui.toolbar.ToolBar();
this.add(toolbar, {row: 0, column: 0});

This will add the toolbar to the grid layout of our main window. The only thing you should take care of is the second
parameter of .add(). It contains a map with layout properties. You can see the available layout properties in the API of
the layout, in this case of the grid layout. Here, we use only the row and column property to tell the layout that this is
the element in the first row and column (rows and columns start at index 0, you guessed it).

16 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Grid
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Grid

qooxdoo Documentation, Release 1.6

List and Layout, again

Adding the list should look familiar now.

// list
var list = new qx.ui.form.List();
this.add(list, {row: 1, column: 0});

Now its time to see our work in the browser. But again, we have added new class dependencies so we need to invoke
the generator with ./generate.py. After that, we can see the result in the browser. I guess it’s not the way we like
it to be. You cannot see any toolbar, the list has too much padding against the window border and doesn’t fit the whole
window. That’s something we should take care of now.

First, get rid of that padding we don’t need. The window object has a default content padding which we just to set to
0.

this.setContentPadding(0);

Put that line in your windows constructor and the padding is gone.

Next, we take care of the size of the list. The layout does not know which column(s) or row(s) it should stretch. So we
need to tell the layout which one it should use:

layout.setRowFlex(1, 1);
layout.setColumnFlex(0, 1);

The first line tells the layout to keep the second row (the row for the list) flexible. The second row does the same for
the first column.

The last thing we need to fix was the invisible toolbar. If you know the reason why it’s not visible, you sure know how
to fix it. It contains not a single element so it won’t be visible. Fixing it means adding an element, in our case we just
add the reload button. We already know how to create and add widgets so just add the following lines of code.

// reload button
var reloadButton = new qx.ui.toolbar.Button("Reload");
toolbar.add(reloadButton);

Now its time to see if all the fixes work. But be sure to run the generator before you reload the browser page because
we added (again) another class (the button). Now everything should look the way we want it to be.

Text Area and Button

After that success, we can got to the next task, adding the text area and “Post” button. This is also straight forward
like we have seen in all the other adding scenarios.

// textarea
var textarea = new qx.ui.form.TextArea();
this.add(textarea, {row: 2, column: 0});

// post button
var postButton = new qx.ui.form.Button("Post");
this.add(postButton, {row: 2, column: 1});

This time, we have to add the button in the second column to get the button and the text area aligned horizontally. Its
time to test this... again generate and reload.

Like the last time, the result is not quite what we want it to be. The list and toolbar do not fill the whole window. But
that’s a home-made problem because we extended our grid to two columns by adding the post button. The list and the

2.4. Tutorials 17

qooxdoo Documentation, Release 1.6

toolbar need to span both available columns to have the result we want. But that’s easy too, add colSpan: 2 to
the layout properties used by adding the list and the toolbar. Your code should look like this:

this.add(toolbar, {row: 0, column: 0, colSpan: 2});
// ...
this.add(list, {row: 1, column: 0, colSpan: 2});

This time, we did not add a new class dependency so we can just reload the index file and see the result.

Breathing Life into the UI

The UI now looks like the one we have seen in the mockup. But how does the UI communicate with the application
logic? It’s a good idea to decouple the UI from the logic and use events for notifying the behaviour. If you take a look
we only have two actions where the UI needs to notify the rest of the application: reloading the tweets and posting a
tweet.

These two events we add to our window. Adding events is a two step process. First, we need to declare what kind of
event we want to fire. Therefore, we add an events section alongside to the constructor section of the window class
definition:

events :
{
"reload" : "qx.event.type.Event",
"post" : "qx.event.type.Data"

},

As you can see in the snippet here, it ends with a comma. It always depends on what position you copy the section
if the comma is necessary. Just take care the the class definition is a valid JavaScript object. But now back to the
events. The reload event is a plain event which only notifies the receiver to reload. The post event is a data event which
contains the data to post to twitter. That’s why there are two different types of events used.

Declaring the events is the first step of the process. The second part is firing the events! Let’s take a look at the reload
event. It needs to be fired when the reload button was triggered (or “was executed” in qooxdoo parlance). The button
itself fires an event on execution so we could use this event to fire our own reload event.

reloadButton.addListener("execute", function() {
this.fireEvent("reload");

}, this);

Here we see two things: First, how to add an event listener and second, that firing an event is as easy as a method call.
The only parameter to .fireEvent() is the name of the event we have declared in the class definition. Another interesting
thing here is the third parameter of the addListener call, this. It sets the context of the callback function to our
window instance, so the this in this.fireEvent() is resolved correctly.

The next case is a bit different but also easy.

postButton.addListener("execute", function() {
this.fireDataEvent("post", textarea.getValue());

}, this);

This time, we call the fireDataEvent method to get a data event fired. The second parameter is the data to embed
in the event. We simply use the value of the text area. That’s it for adding the events. To test both events we add a
debug listener for each event in out application code, in the main() method of Application.js:

main.addListener("reload", function() {
this.debug("reload");

}, this);

18 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

main.addListener("post", function(e) {
this.debug("post: " + e.getData());

}, this);

You can see in the event listener functions that we use the qooxdoo debugging function debug. Now it’s time to test
the whole UI. Open the index file in a browser you like and see the UI. If you want to see the debugging messages you
have to open either a the debugging tool of your chosen browser or use the qooxdoo debugging console. Press F7 to
get the qooxdoo console visible.

Finishing Touches

As a last task, we can give the UI some finishing touches. Wouldn’t it be nice if the text area had a placeholder text
saying you should enter your message here? Easy task!

textarea.setPlaceholder("Enter your message here...");

Another nice tweak could be a twitter logo in the windows caption bar. Just download this logo from twitter and save
it in the source/resource/twitter folder of your application. Adding the logo is easy because the window
has also a property for an icon, which can be set in the constructor. Adding the reference to the icon in the base call
should do the job.

this.base(arguments, "twitter", "twitter/t_small-c.png");

This time, we added a new reference to an image. Like with class dependencies, we need to run the generator once
more. After that, the image should be in the windows caption bar.

Two more minor things are left to finish. First, the button does not look very good. Why don’t we just give it a fixed
width to fit its height.

postButton.setWidth(60);

The last task is a bit more complicated than the other tweaks before. As you probably know, twitter messages have a
maximum length of 140 characters. So disabling the post button if the entered message has more the 140 characters
could help us out in the communication layer. A twitter message with no text at all is also useless and we can disable
the post button in that case. To get that we need to know when the text was changed in the text area. Fortunately, the
text area has a data event for text changes we can listen to:

textarea.addListener("input", function(e) {
var value = e.getData();
postButton.setEnabled(value.length < 140 && value.length > 0);

}, this);

The event handler has only two rows. The first gets the changed text of the text area from the data event. The second
row sets the enabled property of the post button if the length of the message is lower than 140 characters and not 0.
Some of you might have a bad feeling about this code because the listener is called every time the user adds a character.
But that’s not a problem because the qooxdoo property system takes care of that. If the value passed into the setter is
the same as the existing value, it is ignored and no event is fired.

The last thing we should consider is the startup of the application. The text area is empty but the button is enabled.
Disabling the button on startup is the way to go here.

postButton.setEnabled(false);

Now go back to the browser and test your new tweaks. It should look like this.

2.4. Tutorials 19

http://twitter-badges.s3.amazonaws.com/t_small-c.png

qooxdoo Documentation, Release 1.6

That’s it for building the UI. Again, if you want to take a look at the code, fork the project on github. Next time we
take care of getting the data. If you have feedback on this post, just let us know!

Tutorial Part 3: Time for Communication

After we created the application and the main window in the first tutorial part and finished the UI in the second, we
will build the communication layer today. With that part the application should be ready to use.

Pre-Evaluation

First, we need to specify what’s the data we need to transfer. For that, we need to take a look what tasks our application
can handle:

1. Show the public twitter timeline.

2. Post a tweet.

So it’s clear that we need to fetch the public timeline (that’s how it is called by twitter), and we need to post a message
to twitter. It’s time to take a look at the twitter API so that we know what we need to do to communicate with the
service. But keep in mind that we are still on a website so we can’t just send some POST or GET requests due to

20 Chapter 2. Getting Started

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step2
http://apiwiki.twitter.com/Twitter-API-Documentation

qooxdoo Documentation, Release 1.6

cross-site scripting restrictions. The one thing we can and should do is take advantage of JSONP. If you have never
heard of JSONP, take some time to read the article on ajaxian to get further details.

Creating the Data Access Class

Now, that we know how we want to communicate, we can tackle the first task, fetching the public timeline. twitter
offers a JSONP service for that which we can use. Luckily, there is no login process on the server side so we don’t
need to bother with that in the client. The following URL returns the public timeline wrapped in a JavaScript method
call (that’s what JSONP is about):

http://api.twitter.com/1/statuses/public_timeline.json?callback=methodName

Now we know how to get the data from twitter. Its time for us to go back to the qooxdoo code. It is, like in the
case of the UI, a good idea to create a separate class for the communication layer. Therefore, we create a class
named TwitterService. We don’t want to inherit from any advanced qooxdoo class so we extend straight from
qx.core.Object. The code for that class should looks like this:

qx.Class.define("twitter.TwitterService",
{

extend : qx.core.Object,
members :
{
}

});

Fetching the Data

As you can see, we omitted the constructor because we don’t need it currently. But we already added a members block
because we want to add a method named fetchTweets:

fetchTweets : function() {

}

Now it’s time to get this method working. But how do we load the data in qooxdoo? As it is a JSONP service, we can
use the JSONP data store contained in the data binding layer of qooxdoo. But we only want to create it once and not
every time the method is called. Thats why we save the store as a private instance member and check for the existence
of it before we create the store. Just take a look at the method implementation to see how it works.

if (this.__store == null) {
var url = "http://api.twitter.com/1/statuses/public_timeline.json";
this.__store = new qx.data.store.Jsonp(url, null, "callback");
// more to do

} else {
this.__store.reload();

}

We already added the code in case the store exists. In that case, we can just invoke a reload. I also mentioned that the
instance member should be private. The two underscores (__) mark the member as private in qooxdoo. The creation
of the store or the reload method call starts the fetching of the data.

But where does the data go? The store has a property called model where the data is available as qooxdoo objects
after it finished loading. This is pretty handy because all the data is already wrapped into qooxdoo objects! Wait, hold
a second, what are qooxdoo properites? Properties are a way to store data. You only need to write a definition for a
property and qooxdoo will generate the mutator and accessor methods for that property. You will see that in just a few
moments.

2.4. Tutorials 21

http://ajaxian.com/archives/jsonp-json-with-padding
http://dev.twitter.com/doc/get/statuses/public_timeline

qooxdoo Documentation, Release 1.6

We want the data to be available as a property on our own service object. First, we need to add a property definition
to the TwitterService.js file. As with the events specification, the property definition goes alongside with the
members section:

properties : {
tweets : {
nullable: true,
event: "changeTweets"

}
},

We named our property tweets and added two configuration keys for it:

• nullable describse that the property can be null

• event takes the name of the event fired on a change of the property

The real advantage here is the event key which tells the qooxdoo property system to fire an event every time the
property value changes. This event is mandatory for the whole data binding we want to use later. But that’s it for
setting up a property. You can find all possible property keys in the documentation.

Now we need to connect the property of the store with the property of the twitter service. That’s an easy task with the
single value binding included in the qooxdoo data binding. Just add the following line after the creation of the data
store:

this.__store.bind("model", this, "tweets");

This line takes care of synchronizing the two properties, the model property of the store and the tweets property of
our service object. That means as soon as data is available in the store, the data will also be set as tweets in the twitter
service. Thats all we need to do in the twitter service class for fetching the data. Now its time to bring the data to the
UI.

Bring the tweets to the UI

For that task we need to go back to our Application.js file and create an instance of the new service:

var service = new twitter.TwitterService();

You remember the debug listener we added in the last tutorial? Now we change the reload listener to fetch the tweets:

// reload handling
main.addListener("reload", function() {

service.fetchTweets();
}, this);

Thats the first step of getting the data connected with the UI. We talk the whole time of data in general without even
knowing how the data really looks like. Adding the following lines shows a dump of the fetched data in your debugging
console.

service.addListener("changeTweets", function(e) {
this.debug(qx.dev.Debug.debugProperties(e.getData()));

}, this);

Now it’s time for a test. We added a new classes so we need to invoke the generator and load the index file of the
application. Hit the reload button of the browser and see the data in your debugging console. The important thing you
should see is that the data is an array containing objects holding the items we want to access: the twitter message as
text and "user.profile_image_url" for the users profile picture. After evaluating what we want to use, we
can delete the debugging listener.

22 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

But how do we connect the available data to the UI? qooxdoo offers controllers for connecting data to a list widget.
Thats the right thing we need in that case. But we currently can’t access the list of the UI. Thats something we need to
change.

Switch to the MainWindow.js file which implements the view and search for the line where you created the list.
We need to implement an accessor for it so its a good idea to store the list as a private instance member:

this.__list = new qx.ui.form.List();

Of course, we need to change every occurance of the old identifier list to the new this.__list. Next, we add
an accessor method for the list in the members section:

getList : function() {
return this.__list;

}

Data Binding Magic

That was an easy one! Now back to the application code in Application.js. We need to set up the already
mentioned controller. Creating the controller is also straight forward:

// create the controller
var controller = new qx.data.controller.List(null, main.getList());

The first parameter takes a model we don’t have right now so we just set it to null. The second parameter takes the
target, the list. Next, we need to specify what the controller should use as label, and what to use as icon:

controller.setLabelPath("text");
controller.setIconPath("user.profile_image_url");

The last thing we need to do is to connect the data to the controller. For that, we use the already introduced bind
method, which every qooxdoo object has:

service.bind("tweets", controller, "model");

As soon as the tweets are available the controller will know about it and show the data in the list. How about a test of
the whole thing right now? You need (again) to tell the generator to build the source version of the application.

After the application has been loaded in the browser, I guess you see nothing until you hit the reload button of the UI.
That’s one thing we have to fix: Load the tweets at startup. Two other things are not quite the way we want them to
be: The tweets get cut off at the end of the list, and the icons can be delivered by twitter in different sizes. So let’s fix
those three problems.

The first thing is quite easy. We just add a fetch at the end of our application code and that will initiate the whole
process of getting the data to the UI:

// start the loading on startup
service.fetchTweets();

The other two problems have to be configured when creating the items for the list. But wait, we don’t create the
list items ourselves. Something in the data binding layer is doing that for us and that something is the controller we
created. So we need to tell it how to configure the UI elements it is creating. For exactly such scenarios the controller
has a way to handle code from the user, a delegate. You can implement the delegate method configureItem to
manipulate the list item the controller creates:

controller.setDelegate({
configureItem : function(item) {
item.getChildControl("icon").setWidth(48);
item.getChildControl("icon").setHeight(48);

2.4. Tutorials 23

http://en.wikipedia.org/wiki/Delegation_pattern

qooxdoo Documentation, Release 1.6

item.getChildControl("icon").setScale(true);
item.setRich(true);

}
});

You see that the method has one parameter which is the current UI element which needs to be configured. This item is
a list item which stores its icon as a child control you can access with the getChildControl method. After that,
you can set the width, height and the scaling of the icon. The last line in the configurator set the item to rich, which
allows the text to be wrapped. Save your file and give it a try!

Now it should be the way we like it to be. Sure it’s not perfect because it has no error handling but that should be good
enough for the tutorial.

Posting tweets

As you have seen in the last paragraphs, creating the data access layer is not that hard using qooxdoo’s data binding.
That is why we want you to implement the rest of the application: Posting of tweets. But I will give you some hints so
it does not take that much time for you.

• twitter does only offer an OAuth authentification. Don’t make your self too much work by implementing the
whole OAuth thing.

• Tweets can be set to twitters web view by just giving a decoded parameter to the URL:
http://twitter.com/?status=123

That should be possible for you right now! If you need to take a look at an implementation, you can always take a
look at the code on github or fork the project.

That’s it for the third part of the tutorial. With this tutorial, the application should be ready and we can continue our
next tutorial lines based on this state of the application. As always, if you have any feedback, please let us know!

Tutorial Part 4.1: Form Handling

Note: This tutorial is outdated! twitter changed its API and does not allow basic authentication anymore. Still, the
qooxdoo part is valid and worth trying even if you can not access you friends timeline anymore.

24 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.ListItem
http://twitter.com/?status=123
https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step3

qooxdoo Documentation, Release 1.6

In the previous steps of this tutorial, we laid the groundwork for a Twitter client application, gave it a neat UI and
implemented a communication layer. One thing this application still lacks is a nice way for users to input their Twitter
user name and password in order to post a status update. Fortunately, qooxdoo comes with a forms API that takes the
pain out of creating form elements and handling user input.

Before we get started, make sure you’re working on the version of the Twitter tutorial application tagged with “Step 3”
in the GitHub repository. This includes the posting part of the communication layer that we’ll be using in this tutorial.

The plan

We want to create a new window with user name and password fields that pops up when the Twitter application starts.
The values will be used to retrieve the user’s list of Tweets. Seems simple enough, so let’s get right down to business.

Creating the login window

We start by creating a new class called twitter.LoginWindow that inherits from qx.ui.window.Window, similar to the
MainWindow class from the first part of this tutorial:

qx.Class.define("twitter.LoginWindow",
{

extend : qx.ui.window.Window,
construct : function()
{
this.base(arguments, "Login", "twitter/t_small-c.png");

}
});

The Login window will only contain the form, which takes care of its own layout. So for the window itself, a Basic
layout will suffice. We’ll also make the window modal:

var layout = new qx.ui.layout.Basic();
this.setLayout(layout);
this.setModal(true);

Adding the Form

Now it’s time to add a form and populate it with a pair of fields:

var form = new qx.ui.form.Form();
var username = new qx.ui.form.TextField();
username.setRequired(true);
form.add(username, "Username", null, "username");
var password = new qx.ui.form.PasswordField();
password.setRequired(true);
form.add(password, "Password", null, "password");

Note how the fields are marked as required. This is a simple kind of validation and in this case it’s all we need, which
is why the third argument for form.add is null instead of a validation function. Required fields will be displayed
with an asterisk (*) next to their label.

The next step is to add a dash of data binding awesomeness:

var controller = new qx.data.controller.Form(null, form);
var model = controller.createModel();

2.4. Tutorials 25

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step3
https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step3
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.window.Window

qooxdoo Documentation, Release 1.6

Just like in the previous tutorial, we create a controller without a model. Then, we ask the controller to create a model
from the form’s elements. This model will be used to serialize the form data.

The form still needs a “submit” button, so we’ll add one, plus a “cancel” button to close the window:

var loginbutton = new qx.ui.form.Button("Login");
form.addButton(loginbutton);
var cancelbutton = new qx.ui.form.Button("Cancel");
form.addButton(cancelbutton);
cancelbutton.addListener("execute", function() {
this.close();

}, this);

That’s all the elements we need, let’s get them displayed. We’ll let one of qooxdoo’s built-in form renderer classes
worry about the form’s layout:

var renderer = new qx.ui.form.renderer.Single(form);
this.add(renderer);

The renderer is a widget, so we can just add it to the window. In addition to the standard renderers, it’s fairly simple
to create a cusstom renderer by subclassing qx.ui.form.renderer.AbstractRenderer, though that’s outside the scope of
this tutorial.

Accessing the form values

Similar to MainWindow, we’ll use an event to notify the other parts of our application of changes to the form. As
you’ll remember, the “event” section is on the same level as the constructor in the class declaration:

events : {
"changeLoginData" : "qx.event.type.Data"

},

Then we add a listener to the submit button that retrieves the values from the model object and attaches them to a data
event, making sure the form validates, i.e. both fields aren’t empty.

loginbutton.addListener("execute", function() {
if (form.validate()) {
var loginData = {

username : controller.getModel().getUsername(),
password : controller.getModel().getPassword()

};
this.fireDataEvent("changeLoginData", loginData);
this.close();

}
}, this);

Tying it all together

Now to integrate the login window with the other parts of the application. Twitter’s friends timeline uses .htaccess for
authentication so we can add the login details to the request sent by TwitterService.fetchTweets():

fetchTweets : function(username, password) {
if (this.__store == null) {
var login = "";
if (username != null) {

login = username + ":" + password + "@";
}

26 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.data.controller.Form
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.form.renderer
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.form.renderer.AbstractRenderer

qooxdoo Documentation, Release 1.6

var url = "http://" + login + "twitter.com/statuses/friends_timeline.json";
this.__store = new qx.data.store.Jsonp(url, null, "callback");
this.__store.bind("model", this, "tweets");

} else {
this.__store.reload();

}
},

All that’s left is to show the login window when the application is started and call fetchTweetswith the information
from the changeLoginData event. In the main application class, we’ll create an instance of twitter.LoginWindow,
position it next to the MainWindow and open it:

this.__loginWindow = new twitter.LoginWindow();
this.__loginWindow.moveTo(320,30);
this.__loginWindow.open();

And finally, we’ll attach a listener to changeLoginData:

this.__loginWindow.addListener("changeLoginData", function(ev) {
var loginData = ev.getData();
service.fetchTweets(loginData.username, loginData.password);

});

Note how all the other calls to service.fetchTweets can remain unchanged: By making the login window
modal, we’ve made sure the first call, which creates the store, contains the login data. Any subsequent calls (i.e. after
reloading or posting an update) will use the same store so they won’t need the login details.

OK, time to run generate.py and load the application in a browser to make sure everything works like it’s supposed
to.

Twitter client application with login window

And that’s it for the form handling chapter. As usual, you’ll find the tutorial code on GitHub. Watch out for the next
chapter, which will focus on developing your own custom widgets.

Tutorial Part 4.2: Custom Widgets

In this tutorial we will deal with how to create a custom widget for our Twitter application. It is necessary that you
finished the tutorials part 1 through part 3 to work with this tutorial, but previous knowledge from tutorial 4.1 is not

2.4. Tutorials 27

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.1

qooxdoo Documentation, Release 1.6

needed.

Do you remember the mockup from tutorial part 1?

You can see that one tweet consists of a photo, a text and a creation date, but at the moment the Twitter application
doesn’t show the creation date of a tweet. This is because we use the default ListItem to show a tweet and a ListItem
can only show an image and/or label. To achieve our goal, we have to create a custom widget which we can use instead
of the ListItem.

Note: The code in this tutorial should also work when you haven’t completed the 4.1 tutorial because it doesn’t
depend on the code changes from tutorial 4.1. But if you have any problems to run the tutorial, you can also checkout
the code from tutorial 4.1 on github.

The plan

First of all we have to create a custom widget which fulfills our requirements from the mockup. We will achieve this
by combining a widget with two labels and one image. Afterwards we have to configure the controller so that it uses
our custom widget for the tweets.

28 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.ListItem
https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.1

qooxdoo Documentation, Release 1.6

Create the custom widget class

You should know how to create a class from the previous tutorials. So please create a class for
twitter.TweetView, but in our case we need to extend from qx.ui.core. Widget.

qx.Class.define("twitter.TweetView",
{

extend : qx.ui.core.Widget,
include : [qx.ui.form.MModelProperty],

construct : function() {
this.base(arguments);

}
});

The attentive reader noticed that we use the include key for the first time. include is used to include a mixin
in a class. This is necessary in our case to support Data Binding. Our Twitter application uses it and therefore it is
expected that the new widget implements the qx.ui.form.IModel interface. Otherwise the widget can’t be used with
Data Binding. But fortunately the mixin qx.ui.form.MModelProperty already implements it, so we can reuse
the implementation.

Define the needed properties

Our widget should show a Tweet as shown in the mockup. To achieve this, we need properties to save the data for a
Tweet. Add this definition to the TweetView class:

properties :
{

appearance :
{
refine : true,
init : "listitem"

},

icon :
{
check : "String",
apply : "_applyIcon",
nullable : true

},

time :
{
check : "Date",
apply : "_applyTime",
nullable : true

},

post :
{
check : "String",
apply : "_applyPost",
nullable : true

}
},

The properties icon, time and post contain the data from a tweet. In this definition you’ll also find a property

2.4. Tutorials 29

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.IModel

qooxdoo Documentation, Release 1.6

appearance. This property is needed for the theming, it tells the appearance system that the TweetView should
be styled like the ListItem. We could also use a new appearance id, but than we’d have to define an appearance for
it and that’s not part of this tutorial.

How to define properties was explained in tutorial part 3, so we don’t repeat it. But we use some unfamiliar keys for
definition and I will explain them:

• check: check ensures that the incoming value is of this type. But be careful, the check is only done in the source
version.

• apply: here you can define which method should be called when the value changes.

• refine: this is needed when an already defined property should be overridden.

• init: defines the initialized value of a property.

Using Child Control

qooxdoo has a special system to realize combined widgets like in our case. This system is called child controls and
you can find a detailed documentation in our manual.

Okay, back to our problem. To achieve the requirements we need an Image for the photo, a Label for the post and
another Label for the creation time. So three widgets, also called sub widgets, are needed for our custom widget. And
last but not least the familiar Grid layout for layouting, but that’s not created in the child control implementation. We
just need to keep it in mind when adding the child control with _add.

members :
{

// overridden
_createChildControlImpl : function(id)
{
var control;

switch(id)
{

case "icon":
control = new qx.ui.basic.Image(this.getIcon());
control.setAnonymous(true);
this._add(control, {row: 0, column: 0, rowSpan: 2});
break;

case "time":
control = new qx.ui.basic.Label(this.getTime());
control.setAnonymous(true);
this._add(control, {row: 0, column: 1});
break;

case "post":
control = new qx.ui.basic.Label(this.getPost());
control.setAnonymous(true);
control.setRich(true);
this._add(control, {row: 1, column: 1});
break;

}

return control || this.base(arguments, id);
}

},

30 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Image
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Label
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Grid

qooxdoo Documentation, Release 1.6

The child control system has a special method to create sub widgets. The method is called
_createChildControlImpl and we override it to create our sub widgets. This method is called from the child
control system when it notices that a sub widget is needed but not already created.

In our case:

• icon: for the photo

• time: for the creation time

• post: for the text from the tweet

Dependent on the passed id we create the correct sub widget, configure it and add it to the Grid layout at the right
position. If an unknown id is passed, we delegate it to the superclass.

Finishing the constructor

Now i’ts time to finish the constructor.

// create a date format like "June 18, 2010 9:31 AM"
this._dateFormat = new qx.util.format.DateFormat(
qx.locale.Date.getDateFormat("long") + " " +
qx.locale.Date.getTimeFormat("short")

);

The property for the date saves only a date object and our requirement from the mockup describes a spacial format
and a simple toString usage is not enough. Therefore we need a special transformation which we can achieve by
using DateFormat.

// initialize the layout and allow wrap for "post"
var layout = new qx.ui.layout.Grid(4, 2);
layout.setColumnFlex(1, 1);
this._setLayout(layout);

Now we create a layout for our custom widget. This should be known from tutorial part 2.

// create the widgets
this._createChildControl("icon");
this._createChildControl("time");
this._createChildControl("post");

Time for our child control implementation. With these lines we trigger the subwidget creation which we implemented
before.

Adding the apply methods

We have already defined the properties, but we haven’t implemented the needed apply methods for them. So, time to
add the missing apply method for the properties to the members section.

// property apply
_applyIcon : function(value, old) {
var icon = this.getChildControl("icon");
icon.setSource(value);

},

_applyPost : function(value, old) {
var post = this.getChildControl("post");
post.setValue(value);

2.4. Tutorials 31

http://demo.qooxdoo.org/1.6/apiviewer/#qx.util.format.DateFormat

qooxdoo Documentation, Release 1.6

},

// property apply
_applyTime : function(value, old) {
var time = this.getChildControl("time");
time.setValue(this._dateFormat.format(value));

}

The apply methods for icon and post are trivial, we have to ensure that we delegate the value change to the correct
widget. To get the correct widget instance we can use the getChildControl method and afterwards we can set
the value on the widget.

The date, however, needs some extra love. We have to use the DateFormat instance to format the date before we set
the value.

Finishing the custom widget

At the end we have to add the attribute _dateFormat to the members section and a destructor to clean up the
created DateFormat instance.

Just add this line at the beginning of the members section:

_dateFormat : null,

And the destructor after the members section:

destruct : function() {
this._dateFormat.dispose();
this._dateFormat = null;

}

Great, now we have finished the custom widget.

Configure the List Controller

At the moment the controller doesn’t know that it should use our TweetView class. Therefore we have to change the
old controller configuration. Search for these lines of code in the Application.js file:

// create the controller
var controller = new qx.data.controller.List(null, main.getList());
controller.setLabelPath("text");
controller.setIconPath("user.profile_image_url");
controller.setDelegate({

configureItem : function(item) {
item.getChildControl("icon").setWidth(48);
item.getChildControl("icon").setHeight(48);
item.getChildControl("icon").setScale(true);
item.setRich(true);

}
});

First of all, remove these two lines:

controller.setLabelPath("text");
controller.setIconPath("user.profile_image_url");

Now to the delegate, just replace the current delegate with this one:

32 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

controller.setDelegate({
createItem : function() {
return new twitter.TweetView();

},

bindItem : function(controller, item, id) {
controller.bindProperty("text", "post", null, item, id);
controller.bindProperty("user.profile_image_url", "icon", null, item, id);
controller.bindProperty("created_at", "time", {

converter: function(data) {
if (qx.core.Environment.get("engine.name")) {
data = Date.parse(data.replace(/(\+)/, " UTC$1"));

}
return new Date(data);

}
}, item, id);

},

configureItem : function(item) {
item.getChildControl("icon").setWidth(48);
item.getChildControl("icon").setHeight(48);
item.getChildControl("icon").setScale(true);
item.setMinHeight(52);

}
});

The concept of a delegate should be known from tutorial part 3, I will only explain the modifications.

You can see that we added a createItem method: With this method we can configure the controller to use our
TweetView for item creation. The method bindItem is used to configure the controller to keep the properties
of the model and the widget synchronized. In our case it is important to keep the photo, post and creation date
synchronous.

controller.bindProperty("text", "post", null, item, id);

Let us have a look at the above example. The bindProperty method is responsible for the binding between model and
widget. The first parameter is the path from the model, the second is the name of the property in the widget, the third
parameter is an options map to do e. g. a conversion, the fourth parameter is the widget and the last is the index.

In our case the photo and the post need no conversion because the source data and target data are of the same type. But
the creation time needs a conversion because the model contains a String with the UTC time while the widget expects
a date object. So we have to convert the data:

converter: function(data) {
if (qx.core.Environment.get("engine.name")) {
data = Date.parse(data.replace(/(\+)/, " UTC$1"));

}
return new Date(data);

}

The converter method creates a date object from the given String. Don’t be confused by the if statement. The Twitter
model has a format which is not standard UTC format in JavaScript and Internet Explorer has problems parsing the
String, therefore a short conversion is needed before the date object can be created.

The configureItem method should be known from tutorial part 3, there are only some improvements to keep the
same behavior as before.

Great, now we’ve got it! Run generate.py to create the application.

2.4. Tutorials 33

http://demo.qooxdoo.org/1.6/apiviewer/#qx.data.controller.List~bindProperty
http://demo.qooxdoo.org/1.6/apiviewer/#qx.data.SingleValueBinding~bind

qooxdoo Documentation, Release 1.6

Again, if you want to take a look at the code, fork the project on github.

Tutorial Part 4.2.1: Basic Theming

This time, we continue with a very exciting topic for the tutorials: Theming. As you might already know, the theming
system in qooxdoo is not based on CSS which means you, as an application developer, don’t have to bother with cross
browser CSS. The qooxdoo framework takes care of all that for you. As a base for theming an app, we use the already
known twitter client we built in the former tutorials. On the left is a picture how it should look to get you started. The
the code of the tutorial on GitHub.

The plan

Giving the whole application a new look is too much detail and work for such a short tutorial. We concentrate on
some basic key aspects which are important to get you an idea how to use the theming system and get you started. So
I picked three basic tasks we could do to make the app look different.

34 Chapter 2. Getting Started

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.2
https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.2.1

qooxdoo Documentation, Release 1.6

• Style the widget we created for showing tweets.

• Change the default theme.

• Change the look of a built-in widget

Lets get started with the first one:

Style the widget we created for showing tweets

In Tutorial 4.2, we created a custom widget for showing the tweets icons, content and date. As you can see on the
screenshot above, the time and the content have the same text color which might be irritating. That’s why we want to
change the time’s color to a lighter gray. So how should we do that?

First, we need to get some knowledge about the theming system itself. Every widget has a so called appearance,
which is used to identify the styling of a widget. In our case, we used the listitem appearance in the former
tutorial, which is defined in qooxdoo’s default theme, the Modern theme. But now we want to change that so we need
to edit the TweetView class and change the appearance property’s init value from listitem to a custom name we
choose, lets say tweet-view. The new code should look like this:

appearance :
{
refine : true,
init : "tweet-view"

},

Now, we have defined a custom appearance key for our own widget but the appearance definition is still missing. But
where should we put that definition?

The twitter application is based on a default GUI skeleton which has already a predefined custom theme. This can be
found in the theme namespace of the applications source code (source/class/twitter/theme/). Taking a
look at the namespace shows you five files in total:

• Appearance.js holds all appearance definitions

• Color.js holds all color definitions

• Decoration.js holds all decorator definitions

• Font.js holds all font definitions

• Theme.js meta theme which combines all others

Except the meta file, all other files are only a skeleton for adding custom theme definitions. So I guess you have
already seen the file we should modify now: Appearance.js. The basic outline of such an appearance definition
can be compared to a class definition. You can find a name, an extend key and something where the content should go
called appearances. Thats where we put our new appearance definition. First, we define a appearance definition
for the tweet-view key we defined. That definition can be empty because we only want to style the label showing
the date and time for the tweet. The code looks like this:

qx.Theme.define("twitter.theme.Appearance",
{

extend : qx.theme.modern.Appearance,

appearances :
{
"tweet-view" : {}

}
});

2.4. Tutorials 35

qooxdoo Documentation, Release 1.6

The last missing piece of our first task is to style the label. But how do we access it in the appearance theme if we
haven’t assigned a separate appearance key for it?

Luckily, we defined the label as child control named time (take a look at the custom widget tutorial for more details).
That way, we can assign a separate appearance key using that hierarchy:

"tweet-view/time" : {
style : function() {
return {

textColor: "#E0E0E0"
}

}
}

You can see a complete definition for the time label in the code above. The important part is the map, which is returned
by the style function. It contains a set of themeable properties for the widget which will be assigned. In our case, we
are styling a simple label, which has the property textColor. You can find all themeable properties in the API
viewer (Hint: themeable properties are marked with a little icon). Now we are done and can give the application a try,
which should result into something like this:

Now we have everything the way we want it to be but one little thing is still missing. We defined the color’s value
inline which is considered bad style because in case you want to use the same color somewhere else, you have to write
the value again which results in hard-to-maintain code. That’s where the color theme could help. We have already
seen a file called Color.js which is responsible for holding color definitions. As in the appearance file, we have
one main section but this time its called colors. Here we add a color definition for the color we want to use:

colors :
{

"tweet-time" : "#E0E0E0"
}

Now, we have defined a color alias for our color which can be used in the whole application, no matter if it’s in a
theme or in some application class. As a final step, we change the explicit color definition from "#E0E0E0" to
"tweet-time" in the custom appearance file.

36 Chapter 2. Getting Started

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.core.Widget~textColor
http://demo.qooxdoo.org/current/apiviewer/#qx.ui.core.Widget~textColor

qooxdoo Documentation, Release 1.6

Change the default theme

As a next step, we want to change the default theme, which is the Modern theme, to the new Simple theme we
recently shipped with the 1.4 release. For that, we have to take another look at the files in the theme folder. You
might have already realized that all these files do have an “extend” key which extends from the Modern theme’s files.
Thats what we are going to change now. Just open all the files in the theme folder and change the extend key from
qx.theme.modern.xyz to qx.theme.simple.xyz with xyz as a placeholder for the name of the file you are
editing. There is only one file you don’t have to change which is the meta theme named Theme.js. It does not refer
to the framework theme so there is nothing to change. With that change, we included new dependencies to classes
and resources which means, we have to rebuild our application. Run ./generate.py in the root folder of your
application to rebuild the development version of the twitter application. After the process is done, we can reload the
application and see a dramatically changed application using the Simple theme.

Change the look of a built in widget

As a last and final step, I like to show you how to change the styling of a built in qooxdoo widget. As you can see on
the screenshot of the last step, the toolbar has the same background color as the windows caption bar. It might be nice
if the toolbar had the same color as the window’s inner border. So what we need to do is to override the appearance
of the toolbar. For that, we need to find out how the appearance key for the toolbar is named. You can find that in the
API viewer in the appearance property of toolbar. The init value is used for the styling, in this case, its toolbar.
If we now use that key in our custom appearance file, we can set our own keys for styling the toolbar.

"toolbar" : {
style : function() {
return {

backgroundColor : "window-border-inner"
}

}
}

Like in the former appearance we added, we define one property. In this case, we use the backgroundColor
property to set the background color of the toolbar. But what color is "window-border-inner"? This is a named
color which comes from the frameworks Simple theme. You can find all the colors of the theme in the framework
in the namespace qx.theme or qx.theme.simple for the Simple theme. A little hint: Before overriding an
appearance, check out the original appearance definition in the theme you are using. There might be some edge cases
considered you want to consider writing your own appearance. The final result should look like this:

2.4. Tutorials 37

http://news.qooxdoo.org/qooxdoo-1-4-and-1-3-1-released
http://demo.qooxdoo.org/current/apiviewer/#qx.ui.toolbar.ToolBar~appearance

qooxdoo Documentation, Release 1.6

Job done

With the last step, we have finally managed to change the three basic things we wanted to change. If you are interessted
in more details about the theming possibilities in qooxdoo, check out the manual for more information. As always, the
code of the tutorial is on GitHub.

Tutorial Part 4.3: Translation

We’ve already covered quite a few of qooxdoo’s features to get to this point. In this tutorial, we want to internationalize
the twitter client. Additionally, we want to add a preferences dialog allowing users to change the language during
runtime. Adding a window containing a form should be familiar to you if you’ve read the form handling tutorial

The plan

The first step is to make the application aware of localization. We need to identify all the strings which need to change
on a language change. After that, we need to create translations for our initial string set. After that is done, we can add
a window containing a radio group with all available language options.

Identifying strings to translate

Now we can benefit from the good design of our application. We put all the view code in our main window which
means that’s the spot we need to look for strings. Here we can identify the following strings:

var reloadButton = new qx.ui.toolbar.Button("Reload");
// ...
reloadButton.setToolTipText("Reload the tweets.");
// ...
this.__textarea.setPlaceholder("Enter your message here...");
// ...
var postButton = new qx.ui.form.Button("Post");
// ...
postButton.setToolTipText("Post this message on twitter.");

38 Chapter 2. Getting Started

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.2.1

qooxdoo Documentation, Release 1.6

qooxdoo offers a handy way to tell both the JavaScript code and the generator which strings need to be translated.
Wrapping the strings with this.tr() will mark them as translatable strings. That should be an easy task:

var reloadButton = new qx.ui.toolbar.Button(this.tr("Reload"));
// ...
reloadButton.setToolTipText(this.tr("Reload the tweets."));
// ...
this.__textarea.setPlaceholder(this.tr("Enter your message here...");)
// ...
var postButton = new qx.ui.form.Button(this.tr("Post"));
// ...
postButton.setToolTipText(this.tr("Post this message on twitter."));

Generating the translation files

For the next step, we need to tell the generator what languages we want to support. But why does the generator or the
tool chain in general care about that? The tool chain will help us by generating the files necessary for the translation.
So we need to edit the config.json file located at the root folder of our application, which is the configuration file for
the tool chain. As you can see, this is a plain JSON file which holds some predefined configuration data for the tool
chain. You will find a let section holding a LOCALES key. This key has an array as value holding exactly one locale
named en, right? In this example, I want to add a translation set for German so I need to add de to this array.

"LOCALES" : ["en" , "de"],

Now we are set up to generate our translation files. For that, just invoke the generator with its translation job.

./generate.py translation

This will go through all the steps necessary to generate the translation files. But what are translation files anyway?
Take a look at the folder source/translation. There you’ll find the created files which as you’ll see end with
.po. You may be familiar with that file format from GNU gettext which is quite popular.

You should see two files, one for the default language, English (en.po), and one for the language you added, in my
case German (de.po). For now, we just need the file for our alternative language because English is already used in
the application so this should work right out of the box. Opening the second file, you’ll notice some details about it at
the top of the document. The important part starts with the following text.

#: twitter/MainWindow.js:30
msgid "Reload"
msgstr ""

The first line is a comment, which is a hint containing the class file and line number where the string is used. The
second line holds the identifier we used in our application. The third line currently holds an empty string. This is the
place where the translation should go for that specific string.

You may have already realized that the rest of the file is a list of blocks similar to this one. Now you should translate
all strings and add them in the right spots.

Give it a try

After adding these translations, we should rebuild the application using ./generate.py and load it in any browser.
If your browser uses the locale you added by default, you should already see the application in the new language. If
not, just tell qooxdoo’s locale manager to switch the locale using e.g. the Firebug console.

qx.locale.Manager.getInstance().setLocale("de"); // or the locale you added

2.4. Tutorials 39

http://en.wikipedia.org/wiki/GNU_gettext

qooxdoo Documentation, Release 1.6

If you added a language like German in which most words are longer than in English, you may recognize that we
made a mistake in our main window. postButton.setWidth(60); may cut off the text in the button because
we set the width explicitly. Changing that to postButton.setMinWidth(60); will keep the layout flexible for
different content sizes.

Adding the preferences window

As you should already be familiar with creating new classes and subclassing a window from the form handling tutorial,
we won’t go into any detail about that again. Just add a new class, subclass the window and override the constructor.

qx.Class.define("twitter.SettingsWindow",
{

extend : qx.ui.window.Window,

construct : function()
{
this.base(arguments, this.tr("Preferences"));
// ... more to come

}
});

As you can see here, we added another string: The window’s caption, which should be translated as well. Keep in
mind that you have to use this.tr() on every string you add and want to have in your translation file.

For the next step, we need to fill the window with controls. As in the form example, we use a basic layout, a form and
some form elements. Add the following line to your constructor.

this.setLayout(new qx.ui.layout.Basic());

var form = new qx.ui.form.Form();
var radioGroup = new qx.ui.form.RadioButtonGroup();
form.add(radioGroup, this.tr("Language"));

// TODO: create a radio button for every available locale

var renderer = new qx.ui.form.renderer.Single(form);
this.add(renderer);

This code should be familiar to you except for the RadioButtonGroup, which is a container for radio buttons. It
also makes sure that only one of the buttons is selected at any time. So we don’t need to take care of that ourselves.
Again, we use a translated string as the label for the radio buttons.

The next step is to access all available locales and the currently set locale. For that, qooxdoo offers a locale manager,
as you’ll see in the following code part.

var localeManager = qx.locale.Manager.getInstance();
var locales = localeManager.getAvailableLocales();
var currentLocale = localeManager.getLocale();

It is pretty easy to get this kind of information. You surely know how to continue from here, but before that, I’ll show
you a little trick. We want to keep the name of the selectable language in the translation file itself. That’s a good place
to keep that string because otherwise, we would need a mapping from the locale (e.g. en) to its human readable name
(e.g. English). Instead we’ll, add a special translation key to our application.

// mark this for translation (should hold the langauge name)
this.marktr("$$languagename");

40 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

We will use this key as the label for our radio buttons and then go on, as you would have expected, with a loop for all
available locales.

// create a radio button for every available locale
for (var i = 0; i < locales.length; i++) {
var locale = locales[i];
var languageName = localeManager.translate("$$languagename", [], locale);
var localeButton = new qx.ui.form.RadioButton(languageName.toString());
// save the locale as model
localeButton.setModel(locale);
radioGroup.add(localeButton);

// preselect the current locale
if (currentLocale == locale) {
localeButton.setValue(true);

}
};

This code contains the rest of the trick. But let’s take a detailed look at what we’re doing here. The first line of the
loop just stores the current locale we want to process. Keep in mind that this is the exact value we need to change the
locale later. The second line tells the locale manager to translate the special id we set for the language name using the
current locale. This will return a LocalizedString which is important to know because these strings update their
content on locale switch. But that’s not what we want because otherwise, every language will have the same name.
Thats why we use the toString() method to get the plain string of the current translated value as the label for the
new radio button. With that, we exclude the labels for the radio buttons from being translated. The next two tasks are
pretty easy: 1) we store the locale as the model of the radio button and 2) we add the radio button to the radio group.
Preselecting the currently set locale is really easy as well.

The last thing missing in the window is changing the locale if the user selects a new radio button. For that, we stored
the locales in the model property. We can now use the modelSelection of the radio button group to react on
changes.

// get the model selection and listen to its change
radioGroup.getModelSelection().addListener("change", function(e) {

// selection is the first item of the data array
var newLocale = radioGroup.getModelSelection().getItem(0);
localeManager.setLocale(newLocale);

}, this);

First, we get the model selection array, which is a data array and has a change event for every change in the array.
The new locale is always the first element of the selection array itself, as you can see in the second line. You might
have noticed that we need to access the item with a special method instead of the bracket notation normally used with
arrays. That’s a special method you have to use for data arrays. The third line simply hands the new locale to the
manager, which will take care of all the necessary changes.

Accessing the preferences

With that, we are done with the preferences window, but we can’t access it yet. We should add a button to the main
window’s toolbar. Add this code right after where you added the reload button.

// spacer
toolbar.addSpacer();

// settings button
var settingsWindow = null;
var settingsButton = new qx.ui.toolbar.Button(this.tr("Preferences"));
toolbar.add(settingsButton);

2.4. Tutorials 41

qooxdoo Documentation, Release 1.6

settingsButton.setToolTipText(this.tr("Change the applications settings."));
settingsButton.addListener("execute", function() {
if (!settingsWindow) {
settingsWindow = new twitter.SettingsWindow();
settingsWindow.moveTo(320,30);

}
settingsWindow.open();

}, this);

The first thing we do is to add a spacer to attach the preferences button to the right side of the toolbar. This should be
the only new thing you haven’t seen before, so we won’t go into details here.

Final steps

Now we have created some new code containing new strings to translate. Obviously, we need to add translations for
these as well. Just run the generator again and let it add the new strings to your po files.

./generate.py translation

Now you can edit the po files again and add the new translations. Don’t forget to add the translation for the special
$$languagename key in the english po file as well.

After generating the source version of the application again you should be set up for testing and all should run as
expected.

I hope you enjoyed this little exercise and gained an idea how easy it is to internationalize an application using
qooxdoo’s help. As always, you can find the entire code on GitHub. With that said, I want to encourage you to send
me pull requests containing alternative translations we could add. It would be interesting to have the twitter app in
many different languages. Really looking forward to your feedback and pull requests!

Tutorial Part 4.3: Automated UI Testing

Having previously covered unit testing, it’s time to take a look at qooxdoo’s built-in facilities for automated UI testing.
Over the course of this tutorial, we’ll set up the required infrastructure and develop a test case that interacts with the
Twitter application from the previous tutorials.

42 Chapter 2. Getting Started

https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.3

qooxdoo Documentation, Release 1.6

Simulator: Selenium support for qooxdoo

The Simulator component provides the infrastructure necessary to write GUI tests for qooxdoo applications and exe-
cute them in a real web browser by way of a Selenium server. The Simulator is based on those parts of the Selenium
project that were formerly known as “Selenium RC” and are now referred to as “Selenium 1”. While this tutorial
doesn’t require in-depth Selenium knowledge, you should at least familiarize yourself with its basic concepts and
capabilities before reading on.

The testing API: QxSelenium

Simulator Test cases are defined as qooxdoo classes inheriting from simulator.unit.TestCase. Similar to
unit tests, they live in the namespace of the application they’re testing and support the setUp/testSomething/tearDown
pattern. Test methods interact with an application by using the QxSelenium API. This consists of the DefaultSelenium
API plus several qooxdoo-specific additions. You can get an API reference for these by running generate.py api
in the qooxdoo SDK’s component/simulator directory and then opening /component/simulator/api/
in your browser.

Setting up the infrastructure

For the purposes of this tutorial, we’ll assume that you’re using a working directory named workspace which
contains the Twitter tutorial application in a subdirectory named qooxdoo-tutorial. Replace these paths with
your own as appropriate.

The test browser will load the application under test (AUT) over HTTP, so make sure you’re running a web server
and qooxdoo-tutorial is accessible. If you don’t want to install a full-blown HTTP server like Apache, you can use
Python’s built-in web server module. To do so, open a new shell in your workspace directory and run this command:

2.4. Tutorials 43

http://seleniumhq.org/
http://www.jarvana.com/jarvana/view/org/seleniumhq/selenium/selenium/2.0a2/selenium-2.0a2-javadoc.jar!/com/thoughtworks/selenium/DefaultSelenium.html

qooxdoo Documentation, Release 1.6

python -m SimpleHTTPServer

You should now be able to open the tutorial application by browsing to
http://localhost:8000/qooxdoo-tutorial/build/index.html.

Also, a regular Java Runtime Environment (JRE) is necessary on your machine to run Selenium.

Required Libraries The Simulator depends on these external libraries:

• Mozilla Rhino: Download the ZIP archive and extract js.jar to workspace

• Selenium Server: Place selenium-server-standalone-2.5.0.jar in workspace

• Selenium Java Client Driver: Extract selenium-java-2.5.0.jar and the libs directory and place them
in workspace.

Starting the Selenium Server In a real testing environment, the Selenium server will probably run on a separate
machine - in fact, the same client might use different servers to run tests e.g. in Internet Explorer on Windows, Safari
on OS X and Firefox on Linux. To keep this tutorial straightforward, however, we’ll run the server on the same
machine as the AUT. Wherever selenium-server.jar is located, in order to test qooxdoo-based applications it needs
to use the qooxdoo user extensions for Selenium. They’re located in the Simulator component within the qooxdoo
SDK, so start the server with the -userExtensions option set accordingly by running this command in a new
shell window:

java -jar selenium-server-standalone-2.5.0.jar -userExtensions <QOOXDOO_PATH>/component/simulator/tool/user-extensions/user-extensions.js

The server should now be listening on the default port, 4444.

Test Configuration Settings

The Simulator needs several configuration settings in order to run:

• The paths for the Rhino and Selenium Client Driver JARs

• the host name and port of the Selenium server

• the browser to be used for the test

• and the URI for the application under test

• All these settings are defined by overriding the simulation-run job in config.json (don’t forget to uncom-
ment the “jobs” section if necessary):

"simulation-run" :
{

"let" :
{
"SIMULATOR_CLASSPATH" : [

"../selenium-java-2.5.0.jar",
"../libs/*",
"../js.jar"]

},

"environment" :
{
"simulator.selServer" : "localhost",
"simulator.selPort" : 4444,
"simulator.testBrowser" : "*firefox",

44 Chapter 2. Getting Started

http://www.mozilla.org/rhino/download.html
http://selenium.googlecode.com/files/selenium-server-standalone-2.5.0.jar
http://selenium.googlecode.com/files/selenium-java-2.5.0.zip

qooxdoo Documentation, Release 1.6

"simulator.autHost" : "http://localhost:8000",
"simulator.autPath" : "/qooxdoo-tutorial/build/index.html"

}
}

The simulator.testBrowser key is particularly noteworthy. The value must be one of the browser launcher
strings supported by Selenium. *firefox (for Firefox 3+) and *googlechrome should work fine on any platform
provided you’re using Selenium 2.x as described in this tutorial. *safari usually only works on OS X. Internet
Explorer requires some additional configuration but generally works fine for what it is. Whichever browser you
choose, it must be installed on the machine that runs the Selenium Server.

The simulator.autHost and simulator.autPath settings are combined to form the URI of the tested appli-
cation. Adjust these depending on your web server configuration. Also note that you can test either the source or build
version of the application - just make sure it’s generated before launching the test suite by running generate.py
build or generate.py source.

Making the jobs available The Twitter tutorial application was created before the simulation-* generator jobs
existed, so if you downloaded the tutorial code from Github, you’ll get a “No such job” error if you try to run them. To
fix this, you need to add both simulation-build and simulation-run to the “export” list at the top of the
application’s config.json file. This is not necessary for application skeletons created by more recent qooxdoo SDKs
(1.3 and later).

Defining a test case

Now that we’ve got our infrastructure set up, we can finally start writing tests. First, create a new subfolder named
simulation in qooxdoo-tutorial/source/class/twitter. This is the default location for Simulator
tests. In this folder, create a new file named Settings.js. This will be our test case that is going to interact with
the Twitter application’s settings dialog. For now, just add a test method stub that will cause the test to fail:

qx.Class.define("twitter.simulation.Settings", {

extend : simulator.unit.TestCase,

members :
{
testChangeLanguage : function()
{

this.fail("Test not implemented!");
}

}
});

Building and running the test suite

Time to see the Simulator in action. In the Twitter application’s directory, run generate.py
simulation-build to create the test application. Note that there is no simulation-source job (yet) so you must
run simulation-build every time you modify your test classes.

Once the build job is finished, run generate.py simulation-run. Assuming everything’s set up correctly, two Firefox
windows should (very briefly) open up and you should see the result of the failing test right on the shell:

--
Initializing: qooxdoo-tutorial

--

2.4. Tutorials 45

qooxdoo Documentation, Release 1.6

>>> Processing configuration
- Warning: ! Shadowing job "simulation-run" with local one

--
Executing: simulation-run

--
>>> Running Simulation...
>>> Load runtime: 87ms
>>> Loading tests...
>>> 1 tests ready
>>> Simulator run on Thu, 08 Sep 2011 14:22:29 GMT
>>> Application under test: http://localhost:8000/qooxdoo-tutorial/build/index.html
>>> Platform: Linux
>>> User agent: Mozilla/5.0 (X11; Linux i686; rv:6.0.2) Gecko/20100101 Firefox/6.0.2
>>> Running tests...
>>> Main runtime: 8887ms
>>> Finalize runtime: 0ms
>>> Assertion error! Test not implemented!: Called fail().
>>> Stack trace:

>>> ERROR twitter.simulation.Settings:testChangeLanguage
>>> Test not implemented!: Called fail().

>>> Test suite finished.
>>> 0 passed, 1 failed, 0 skipped.
>>> Simulator run finished in: 0 minutes 15 seconds.
>>> Done (0m17.20)

You’ll notice a warning about the “simulation-run” job being shadowed. Since we’re doing that on purpose, we can
silence this warning by adding the top-level key “config-warnings” to config.json:

"config-warnings" :
{

"job-shadowing" : ["simulation-run"]
},

Test development

Let’s replace that stub with something useful now: We want Selenium to use the Twitter application’s preferences
window to change the language. But first, we should set Selenium’s execution speed (the delay after each command
is excuted) to a value that will allow us to actually see what’s going on, say one second. To do so, replace the
this.fail line:

testChangeLanguage : function()
{

this.getQxSelenium().setSpeed(1000);
}

The first real action of the test will be to click the “Preferences” button. This leads us to one of the main challenges
when developing Selenium tests: How to locate the right element.

Locator strategies Elements can be located using several different strategies, generic as well as as qooxdoo-specific
ones. See the manual for an overview:

Simulator: Locating elements

46 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

In this tutorial, we’ll focus on the qxhv locator. Just like qxh, it traverses the application’s widget hierarchy, using a
syntax similar to XPath to match the widgets it finds to criteria defined by the user.

Note: The Selenium IDE Firefox add-on and the qooxdoo Inspector can be very helpful tools for finding locators and
debugging Selenium tests.

The qxhv locator allows us to find any widget with a given “label” property value:

qxhv=*/[@label=Preferences]

A word about locales As you’ll be aware if you’ve completed the Translation tutorial, the Twitter application is
localized and will automatically switch the display language if the locale of the browser it’s opened in matches one
of the supported languages (German, English, French and Romanian). This means that depending on the locale of the
browser you’re using to run the test suite, you may have to adjust the target value of the Preferences label locator step,
e.g. qxhv=*/[@label=Einstellungen] for a German language browser.

Executing commands To simulate a user clicking on the target identified by the locator, we need to combine it with
the qxClick command:

// Click the Preferences button
var preferencesButtonLocator = "qxhv=*/[@label=Preferences]";

this.getQxSelenium().qxClick(preferencesButtonLocator);

This should open the Preferences window. To make sure the command worked, we can employ the
isElementPresent command, then use an assertion so the test will fail if the window didn’t open:

// Check if the Preferences window opened
var settingsWindowLocator = "qxhv=[@classname=twitter.SettingsWindow]";
var settingsWindowPresent = this.getQxSelenium().isElementPresent(settingsWindowLocator);
this.assertTrue(settingsWindowPresent);

If the settings window was a qx.ui.window.Window, we could simply use the class name as the loca-
tor step. But that only works with classes from the qx.* name space. For a custom widget class like
twitter.SettingsWindow, we need to search by classname, a plain JavaScript attribute supported by all
qooxdoo objects. The @propertyName=value locator step covers these as well.

All right, time to execute the test again (don’t forget to run simulation-build again first). Assuming all
went well and the test passed, the next step is to select one of the language options from the Preferences window.
qx.ui.form.RadioButton also has a label property (inherited from qx.ui.basic.Atom), so we’ll use
that:

// Click the radio button for Romanian
var romanianLabelLocator = "qxhv=[@classname=twitter.SettingsWindow]/*/[@label=Romanian]";
this.getQxSelenium().qxClick(romanianLabelLocator);

Obviously, if your browser’s locale is Romanian, this option will already be selected so you should choose a different
one.

Following that, we want to close the Preferences window. The close button doesn’t have a label, but we can find it by
looking for the file name of its icon:

// Click the window’s close button
var windowCloseButtonLocator = "qxhv=[@classname=twitter.SettingsWindow]/qx.ui.container.Composite/[@icon=close\.gif]";
this.getQxSelenium().qxClick(windowCloseButtonLocator);

We don’t need to use the full resource ID of the icon since the [@property=value] step treats the value as a
regular expression.

2.4. Tutorials 47

http://demo.qooxdoo.org/current/apiviewer/#qx.core.Assert

qooxdoo Documentation, Release 1.6

Again, we’ll use isElementPresent to check the result:

// Check if the window was closed
settingsWindowPresent = this.getQxSelenium().isElementPresent(settingsWindowLocator);
this.assertFalse(settingsWindowPresent);

This would be a good time to re-generate and run the test to make sure everything works as expected.

Verifying the language change For the final step of this tutorial, we’ll check if the language change was cor-
rectly applied to the twitter application. The first approach might be to use isElementPresent to check for
the Preferences button with the translated label value (e.g. “Preferinte” for Romanian). That won’t work, however,
since the value of the “label” property is a qx.locale.LocalizedString object, so the [@property=value] loca-
tor step will try to call toString on it. This will return the original, untranslated label so the check will fail.
To get the visible, translated string, we need to call the LocalizedString’s translate() method. That’s where
QxSelenium.getRunInContext comes in: It takes a locator and a snippet of JavaScript code which it uses as
the body of a new function. This function will then be called in the context of the widget identified by the locator,
i.e. “this” will reference the widget instance. The function’s return value is then serialized as JSON and returned by
getRunInContext. We can use this to compare the translated label value to what we’re expecting:

// Get the translated string for the Preferences button label
var translatedLabel = this.getQxSelenium().getRunInContext(preferencesButtonLocator,
"return this.getLabel().translate().toString()");
// Check if the label was translated
this.assertEquals("Preferinte", translatedLabel);

And that’s it for this introduction to the Simulator. If you have further questions or encounter any problems getting the
tutorial code to run, please contact us on the qooxdoo-devel mailing list.

Tutorial Part 4.4: Unit Testing

In this tutorial, we’ll be taking a closer look at qooxdoo’s integrated unit testing framework. Armed with this new
knowledge, we’ll then define a few unit tests for the twitter application created in previous tutorials, generate the test
runner application, and watch the tests in action. As usual, the code can be found on GitHub.

Background

qooxdoo’s unit testing framework is similar to JSUnit but self-contained, so no external libraries are necessary. It
consists of two main components:

The classes in the qx.dev.unit namespace provide the interface against which tests are written and the infrastructure
needed to run them. The Testrunner component (located in the qooxdoo SDK’s component/testrunner directory)
provides a GUI to select and run tests and visualize the results.

Test class structure

The actual test code is contained in classes living within the namespace of the tested application, located in the
source/class/<$APPLICATION>/test directory by default. A fresh qooxdoo application skeleton (GUI,
Inline or Native flavor) contains a simple test class named DemoTest:

qx.Class.define("twitter.test.DemoTest",
{

extend : qx.dev.unit.TestCase,

48 Chapter 2. Getting Started

http://demo.qooxdoo.org/current/apiviewer/#qx.locale.LocalizedString
http://qooxdoo.org/community/mailing_lists/
https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/step4.4
http://www.jsunit.net/
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit

qooxdoo Documentation, Release 1.6

members :
{
/*

TESTS

*/

/**
* Here are some simple tests

*/
testSimple : function()
{

this.assertEquals(4, 3+1, "This should never fail!");
this.assertFalse(false, "Can false be true?!");

},

/**
* Here are some more advanced tests

*/
testAdvanced: function ()
{

var a = 3;
var b = a;
this.assertIdentical(a, b, "A rose by any other name is still a rose");
this.assertInRange(3, 1, 10, "You must be kidding, 3 can never be outside [1,10]!");

}
}

});

All test classes share the same basic structure:

• They must inherit from qx.dev.unit.TestCase

• Individual tests must be defined as member functions with names beginning with test. Apart from that, they
can contain other member functions, properties and so on. Usually, test functions instantiate classes of the tested
application, invoke their methods and compare the results with expected values.

• Exceptions are used to communicate the test results back to the Testrunner. No exception means the test went
fine, throwing any exception from the test method signals a failure. Return values from the test methods are not
evaluated.

qx.dev.unit.TestCase includes the assertion functions from qx.core.Assert. These can be used to check values, e.g.
by comparing a tested method’s return value to an expected value. If the assertion fails, a qx.core.AssertionError is
thrown.

Building and running the test application

In the top-level directory of the twitter tutorial application, run generate.py test. This command builds both a
stand-alone application containing the test classes (the AUT, or “application under test”) and the Testrunner GUI which
loads the AUT in an Iframe and visualizes the results. Load the Testrunner by opening the file test/index.html
in your favorite browser and click the “Run Tests” button.

Note: Some browsers, such as Google Chrome, severely restrict scripts from loading resources from the file system.
In this case, the Testrunner should be loaded from a web server.

2.4. Tutorials 49

http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.TestCase
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Assert
http://demo.qooxdoo.org/current/apiviewer/#qx.core.AssertionError

qooxdoo Documentation, Release 1.6

Creating a new test class

Now that we’ve got the basics covered, let’s create some more meaningful tests for our Twitter application, start-
ing with the twitter.TweetView class. As you’ll remember from the previous tutorials, it’s responsible for display-
ing a single Tweet along with the user’s icon. To this end, it has a property named icon with an apply method
that sets the source property on the TweetView’s icon child control. Our test will check if the icon property
value is correctly applied to the icon widget. First of all, create a corresponding class twitter.test.TweetView in the
source/class/twitter/test directory. (We won’t be needing the DemoTest class any more, so feel free to
delete it.)

/* **
#asset(twitter/test.png)

** */
qx.Class.define("twitter.test.TweetView",
{

extend : qx.dev.unit.TestCase,

members :
{
setUp : function()
{

this.__tweetView = new twitter.TweetView();
},

tearDown : function()
{

this.__tweetView.dispose();
this.__tweetView = null;

50 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

},

testSetIcon : function()
{

var expectedSource = qx.util.ResourceManager.getInstance().toUri("test.png");
this.__tweetView.setIcon(expectedSource);
var foundSource = this.__tweetView.getChildControl("icon").getSource();
this.assertEquals(expectedSource, foundSource, "Icon source was not set correctly!");

}
}

});

Setting up and tearing down

Note the setUp and tearDown methods. Each test class can contain either or both (or none). setUp is called before
each individual test function and is used to perform common initializations. Similarly, tearDown is called after each
test method (even if the test failed), e.g. to dispose objects created by setUp or the test itself. Together, they can be
used to make sure each test method runs in a “clean” environment: In this case, we create a new instance of the tested
class for each test and dispose it afterwards, which is a very common pattern in unit testing.

The tearDown logic is actually quite an important part of developing unit tests since tests that don’t clean up after
themselves can lead to nasty dependencies where test B will pass when run individually but fail when run after test
A. Singletons are particularly vulnerable since their state carries over between tests. So if, for example, test A checks
how a class reacts to a locale change by calling qx.locale.Manager.getInstance().setLocale while
test B relies on the locale still being the application’s default, B would fail whenever A ran first.

For cases where the generic class-wide tearDown isn’t enough, methods using the naming convention
tearDown<TestName> can be defined. A method named e.g. tearDownTestFoo would be called after
testFoo and the generic tearDown of the class were executed.

The test function

We need the URI of a valid image for this test, so we add an #asset hint to the class header that will cause the
Generator to add the file source/class/twitter/resource/test.png to the AUT’s resources. In the test
function, we first ask qooxdoo’s resource manager to resolve the resource ID into a valid URI. This is the expected
value for the icon child control’s source property. Next, we apply this value to the TweetView’s icon property, then
get the child control’s source property and compare the two values using assertEquals.

OK, time to build the AUT again. This time, run generate.py test-source instead of test. As you might
expect, this will generate a source version of the AUT, which, like the source version of the actual application, is far
better suited for development. Open the file test/index-source.html to load the Testrunner with the source
tests.

Asynchronous Tests

As with many GUI applications, the various components of the twitter app use events to communicate. The
twitter.TweetService class, for example, has a method fetchTweets that causes a changeTweets event
to fire once the data store has finished (re)loading. We can’t know in advance just how long this takes, so we need
some way to instruct the test to wait until the event fires. This is where asynchronous testing comes in.

Once again, create a new test class named twitter.test.TwitterService. The setUp and tearDown methods are
mostly identical to the ones from twitter.test.TweetView, except of course they initialize/destroy an instance of twit-
ter.TwitterService instead. Here’s the actual test function:

2.4. Tutorials 51

http://demo.qooxdoo.org/current/apiviewer/#qx.core.Assert~assertEquals

qooxdoo Documentation, Release 1.6

testFetchTweets : function()
{

this.__twitterService.addListener("changeTweets", function()
{
this.resume();

}, this);

this.__twitterService.fetchTweets();

this.wait(5000);
}

First, we register a listener for the changeTweets event. The callback function invokes the resume method, which
informs the Testrunner that the asynchronous test has finished. We could pass a function parameter to resume if, for
example, we wanted to check the data associated with the changeTweets event, but for now we just want to verify
that it fires at all.

Next, we invoke the fetchTweets method which should cause the event to fire.

Finally, the wait method informs the Testrunner that it should wait for a resume call. The first argument is the amount
of time to wait (in milliseconds) before the test is marked as failed. Note that wait must always be the last call in an
asynchronous test function. Any code that follows it will never be executed.

Now, if you run this test a couple times in quick succession, there’s a good chance it will at some point fail with
the error message “Error in asynchronous test: resume() called before wait()”. This is because due to the browser
caching the result of the Twitter API request sent by TweetService, the changeTweets listener callback is executed
immediately after calling fetchTweets. This is a common problem in asynchronous tests, encountered whenever the
tested code’s behavior can be synchronous or asynchronous depending on external factors. Luckily, there’s a simple
fix for it: We just wrap the problematic method call in a timeout to make sure it’s executed after wait():

qx.event.Timer.once(function() {
this.__twitterService.fetchTweets();

}, this, 100);

While we could use a simple window.setTimeout for this, it’s preferable to use Timer.once since it uses qooxdoo’s
global error handling to catch and log any exceptions that might be thrown in the callback code. Otherwise, these would
just land on the browser console.

Requirements

Finally, let’s take a quick look at test requirements. This is a way to define preconditions that must be satisfied before
a test can be run. If a requirement isn’t met, the test will be skipped (and marked as such in the Testrunner GUI).
Common requirements are:

• The test checks browser-specific behavior, so it should only be run in selected browsers

• The tested class performs secure backend communication, so the test should only execute if the AUT was loaded
over HTTPS

In order to use requirements, you need to include the Mixin qx.dev.unit.MRequirements in your test class. Require-
ments are defined by calling the require method with an array of requirement ID strings as the only parameter. Usually,
this will be the first call in either a test function or the setUp method. Requirement IDs are evaluated by looking for
a method name beginning with “has” followed by the requirement ID (starting with a capital letter) on the current test
class and its ancestors. The method is called and its return value is checked: true means the requirement is met and
the test can proceed, false means the test won’t be executed and the Testrunner GUI will list it as “skipped”.

While qx.dev.unit.MRequirements contains a number of “has” methods for common scenarios, requirements are often
application-specific and so test developers will implement their own checks in the test class itself, a common base

52 Chapter 2. Getting Started

http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.TestCase~resume
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.TestCase~wait
http://demo.qooxdoo.org/current/apiviewer/#qx.event.Timer~once
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.MRequirements
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.MRequirements~require

qooxdoo Documentation, Release 1.6

class or a mixin.

And that’s it for a first look at unit testing for qooxdoo applications. Note that qooxdoo comes with a wrapper for the
powerful Sinon.js testing framework, which offers spies, stubs and mock objects that allow testing the very internals
of a class, such as if and how many times a specific method was invoked. But that’s a topic for a separate tutorial.

Tutorial Part 4.5: Virtual List

This time we will have a look at the virtual widget stuff. The plan is to remove the normal List and use the virtual List.
Using the virtual list has a big advantage when we have to render a huge count of items. The virtual list only creates
widgets for visible items. This saves memory and execution time. As a base we use the already known twitter client
we built in the former tutorials.

2.4. Tutorials 53

http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.MMock
http://sinonjs.org/
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.List
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.list.List

qooxdoo Documentation, Release 1.6

Change the instantiation

First, we have to use the virtual List instead. Open the twitter.MainWindow class and search for the list instan-
tiation:

// list
this.__list = new qx.ui.form.List();
this.add(this.__list, {row: 1, column: 0, colSpan: 2});

And create a virtual List instead:

// list
this.__list = new qx.ui.list.List();
this.add(this.__list, {row: 1, column: 0, colSpan: 2});

Now we use the virtual List instead of the non virtual List. But before we can use the twitter application with the
virtual List we have to configure the usage with a delegate.

Configure the virtual List

The current implementation uses the list controller to bind the tweets with the list. This makes it easy to reuse the del-
egation implementation, because the delegation interface from the virtual List has the same methods for bindItem,
createItem, configureItem and filter. We only need to remove the controller stuff and use the virtual list
instead. The controller is not needed anymore, because the virtual list has its own controller implementation. Open
the twitter.Application and search for the controller instantiation:

// create the controller
var controller = new qx.data.controller.List(null, main.getList());
controller.setDelegate({

createItem : function() {
return new twitter.TweetView();

},
...

});

Instead of the controller use the virtual List:

// setup list binding
var list = main.getList();
list.setItemHeight(68);
list.setDelegate({

createItem : function() {
return new twitter.TweetView();

},
...

});

Now we have replaced the controller with the virtual List and reused the delegate implementation. We have only added
one line to configure the default item hight. This is necessary, because the virtual List has no auto sizing for the item
height. This is due to the huge count of model items.

Update list binding

Finally, we have to adapt the binding between the twitter service and the virtual list. The virtual list always needs a
model instance so we need to adapt the current binding:

54 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.list.core.IListDelegate

qooxdoo Documentation, Release 1.6

service.bind("tweets", controller, "model");

We only use a converter which returns an empty model when the service returns null:

service.bind("tweets", list, "model", {
converter : function(value) {
return value || new qx.data.Array();

}
});

Now we only need to run the generator to resolve the new dependencies:

The virtual List supports some more features like grouping, for additional details have a look at the virtual demos. As
always, the code of the tutorial is on github.

2.4.2 Mobile Apps

• Tutorial: Creating a Twitter Client with qooxdoo mobile

2.4.3 Tooling

• Tutorial: Basic Tool Chain Usage

2.4.4 Video Tutorials

You can find some community made tutorial videos on vimeo.

2.5 SDK

2.5.1 Introduction to the SDK

Or “Everything is a library.”

While the Hello World tutorial is geared towards getting you started with your own project, this page walks you
through the basic structure of the qooxdoo SDK itself.

2.5. SDK 55

http://demo.qooxdoo.org/1.6/demobrowser/#virtual~List.html
https://github.com/qooxdoo/qooxdoo/tree/master/qooxdoo/component/tutorials/twitter/
http://vimeo.com/channels/qooxdoo

qooxdoo Documentation, Release 1.6

There is a page that gives you an overview of the physical structure of the SDK. As you can see there the SDK has four
main components represented through the subdirectories application, component, framework and tool. Three of them,
application, component and framework contain (either directly or in further subdirectories) qooxdoo applications or
libraries that follow the general scheme for a qooxdoo application. In each you will find a Manifest.json file which
signifies the adherance to the skeleton scheme. They also all contain a generate.py script which offers all or a subset
of the standard qooxdoo jobs that you can run on a library, like source, build, test or api.

The fourth component, tool, comprises the tool chain and its various parts. You shouldn’t need to worry about that since
you interact with the tool chain through the generate.py script or one of the tool/bin scripts like create-application.py.

In the SDK’s root directory there is - besides readme.txt and license.txt - an index.html that gives you an overview over
and access to most of the SDK’s applications and components. Just be aware (as mentioned on that page) that all of
them need a generate.py build first in their respective directories. Only the Apiviewer for the framework is
shipped pre-built with the SDK currently and can be invoked immediately.

2.5.2 Framework Structure

When exploring the framework source, the following overview will give you an idea about the file structure of qoox-
doo:

application - sample applications (for end users)

• demobrowser - for browsing a large number of demos (online)

• feedreader - a sample rich internet application (online)

• portal - a showcase for low-level features, i.e. without widgets (online)

• playground - an interactive playground without the need to install qooxdoo (online)

• featureconfigeditor – a tool to create configurations for browser-specific builds (online)

component - helper applications (used internally)

• apiviewer - API reference (for generate.py api) (online)

• skeleton - blue print for custom applications (for create-application.py)

• testrunner - unit testing framework (for generate.py test / test-source) (online)

• simulator - GUI testing framework (for generate.py simulation-build /
simulation-run)

• library - common components used by multiple applications

framework - main frontend part of the framework

• source

– class - JavaScript classes

– resource

* qx - resources need to be namespaced, here it is qx

· decoration - images for the decorations, Modern and Classic

· icon - icon themes that come with qooxdoo, Oxygen and Tango

· static - other common resources like blank.gif

* source - contains original resources

– translation - language-specific data as po files

tool - tool chain of the framework

56 Chapter 2. Getting Started

http://demo.qooxdoo.org/1.6/demobrowser
http://demo.qooxdoo.org/1.6/feedreader
http://demo.qooxdoo.org/1.6/portal
http://demo.qooxdoo.org/1.6/playground
http://demo.qooxdoo.org/1.6/featureconfigeditor
http://api.qooxdoo.org
http://demo.qooxdoo.org/1.6/testrunner

qooxdoo Documentation, Release 1.6

• bin - various scripts are located here, most importantly generator.py

• data - lots of data to be used by different tools, e.g. for localization, migration, etc.

• pylib - Python modules used by the platform-independent tool chain

2.5.3 Application Structure

Structural Overview

A qooxdoo application has a well-organized file structure. For an application named custom, everything is located
within the application folder custom. Indentation denotes file system nesting:

• source - this folder always exists, as it contains the development version of your app

– index.html - usually the only HTML file a qooxdoo application needs. Typically it hardly includes any
markup, as the entire qooxdoo application is available as an external JavaScript file

– class - all JavaScript classes

* custom - this is the top-level namespace of your classes, often identical to the application name

– resource - any static resources like images, etc. belong into this folder

* custom - resource handling requires all files to be organized in folders that correspond to names-
paces. Typically, the resources of your app are stored in a folder of the same name as the top-level
namespace of your application classes

· test.png - sample resource

– script - this folder is created and/or updated for each development version of your app when executing
generate.py source (or generate.py source-all)

* custom.js - this JavaScript file is included from index.html. In the source version it is a
loader script that includes all required files individually.

– translation - if you choose to develop your app for multiple languages, put your translation files into
this directory

* en.po - and the other .po files for the languages your app supports. The respective locale is used as
a file name, e.g. it.po, pt_BR.po, ...

• build - this folder is created and/or updated for each deployment version of your app using generate.py
build

– index.html - identical to the one of the source version

– script - contains the generated JavaScript code of your application

* custom.js - this JavaScript file is included from index.html. In the build version this single
file contains all the JavaScript code your application requires, in a compressed and optimized form.
If you are developing a large-scale application, you can split it into so-called parts that can be loaded
on-demand.

– resource - if your application classes contain appropriate #asset()meta information, those resources
are automatically copied to this target folder. Your application is then self-contained and may be transferred
to an external hosting environment.

• api - contains a searchable API viewer specific to your application, simply created by generate.py api.
As it is self-consistent, it may be copied anywhere and be run offline

• test - a standalone Test runner for unit tests you may create for your app, created by generate.py test

2.5. SDK 57

qooxdoo Documentation, Release 1.6

• Manifest.json - every qooxdoo app has such a Manifest file for some meta information

• config.json - configuration file for the build process and all other integrated developer tools

• generate.py - you use this platform-independent script for all kinds of tasks and tools, most importantly to
generate the development as well as the deployment version of your app

In Other Words

Here is a bit more prose regarding this structure. Of the basic structure, every application/library must contain a
config.json and a Manifest.json file in its top-level directory (In theory, you can deviate from this rule, but it’s much
easier to stick with it). From this directory, a source/class subdirectory is expected, which contains a name space
subdirectory and some class files therein. All other subdirectories in the top directory are then created during generator
runs (‘build’, ‘api’, ‘test’, ...).

The most important of these sudirectories is of course source since it contains your source code. Aside from the
class/<name space> subdirectory it has to have a resource subdir (for icons, style files, flash files, etc.) and a
translation subdir (for string translation files). All these are mandatory, but might be empty. During a ‘generate.py
source’ a source/script directory is created which contains the generator output (basically a Javascript file that refer-
ences all necessary class files, icons, etc.). This one has to be referenced from the application’s index.html (usually
source/index.html).

The build dir (created with ‘generate.py build’) has a very similar structure as the source dir, with script, and resource
subdirs. The main difference is that everything that is necessary for your application to run is copied under this
common root, and that the generator output script in build/script contains the actual class definitions, not just references
to their source files. The build dir is therefore self-contained, and doesn’t have references that point outside of it.

Create some vanilla skeleton apps with create-application.py located in tool/bin and look at their initial file structure, to
get a feel for it. Tailor the source/class/<namespace>/Application.js as the main application class, add further classes
to your needs, and let the tool chain take care of the rest. You will have to run generate.py source initially
and whenever you use further classes in your code. You can try out your app by opening source/index.html directly in
your browser. You simply reload to see changes in the code. If you are comfortable with that, run a generate.py
build and open build/index.html in your browser. If that is fine, copy the whole build tree to your web server.

2.5.4 Manifest.json

Manifest files serve to provide meta information for a library in a structured way. Their syntax is in JSON. They
have a more “informal” part (keyed info), which is more interesting for human readers, and a technical part (named
provides) that is used in the processing of generator configurations. Here is a brief sample with all the possible
keys:

{
"info" :
{
"name" : "Custom Application",

"summary" : "Custom Application",
"description" : "This is a skeleton for a custom application with qooxdoo.",

"keywords" : ["custom"],
"homepage" : "http://some.homepage.url/",

"license" : "SomeLicense",
"authors" :
[

{

58 Chapter 2. Getting Started

http://en.wikipedia.org/wiki/Manifest_file

qooxdoo Documentation, Release 1.6

"name" : "First Author (uid)",
"email" : "first.author@some.domain"

}
],

"version" : "trunk",
"qooxdoo-versions": ["trunk"]

},

"provides" :
{
"namespace" : "custom",
"encoding" : "utf-8",
"class" : "source/class",
"resource" : "source/resource",
"translation" : "source/translation",
"type" : "application"

}
}

The file paths of the class, resource and translation keys are taken to be relative to the directory of the
Manifest file. To build applications, manifests are linked in the corresponding config.json (in the library key), to
identify the library they describe.

2.5.5 Code Structure

Guidelines

This is how a single source file should look like. Ahead of the detailed listing some general rules to follow when you
write your own classes:

• Define one class per file.

• The base class name (like “Application” in “custom.Application”) has to match the file name (e.g. “Applica-
tion.js”).

• The class name space (like “custom” in “custom.Application”) has to match the directory path of the file
under the source/class root (like e.g. “custom/Application.js”).

– This applies recursively for sub-directories. E.g. a class in the file “custom/foo/Bar.js” has to be named
“custom.foo.Bar”.

Details

• UTF-8 encoding : All source files should be encoded in UTF-8.

• Header (optional) : A comment holding author, copyrights, etc.

• Compiler Hints (optional) : Enclosed in a block comment you can have any number of the following lines
(leading white space is ignored):

– #use(classname) : Other class that has to be added to the application; a “run” dependency that has to be
available when the current class is actually used (instantiation, method invocation). (There is one special
symbol, which is reserved for internal use and shouldn’t be used in normal application code:

* feature-checks : Use all known feature checks. This will add all known feature check classes as run
time dependencies to the current class.)

2.5. SDK 59

qooxdoo Documentation, Release 1.6

– #require(classname) : Other class that has to be added to the application before this class; a “load”
dependency that has to be available when the current class is loaded into the browser (i.e. its code is
being evaluated). (There is one special symbol, which is reserved for internal use and shouldn’t be used in
normal application code:

* feature-checks : Require all known feature checks. This will add all known feature check classes as
load time dependencies to the current class.)

– #ignore(symbol) : Unknown global symbol (like a class name) that the compiler should not care about (i.e.
you know it will be available in the running application). Ignored symbols will not be added to either the
run or load dependencies of the class, and will not be warned about. Besides proper identifiers there are
two special symbols you can use:

* auto-require : Ignore all require dependencies detected by the automatic analysis; they will not be
added to the class’ load dependencies

* auto-use : Ignore all use dependencies detected by the automatic analysis; they will not be added to
the class’ run dependencies

– #asset(resourcepattern) : Resources that are used by this class (required if the class uses resources such as
icons)

– #cldr : Indicates that this class requires CLDR data at runtime

• Single Definition : One call to a define() method, such as qx.(Class|Theme|Interface|Mixin|...).define().

Example:

/* **

Copyright:

License:

Authors:

** */

/* **

#require(qx.core.Assert)
#use(qx.log.Logger)
#asset(custom/*)
#ignore(foo)

** */

qx.Class.define("custom.Application",
{

...
});

2.5.6 Architecture

UI Architecture

The following diagram tries to show the main aspects of qooxdoo and how they are organized in general. Please keep
in mind that this diagram does not inlcude all features of qooxdoo. You can see the four main areas for which qooxdoo
can be used and what layers are useful in that dedicated scenario.

60 Chapter 2. Getting Started

qooxdoo Documentation, Release 1.6

2.5. SDK 61

qooxdoo Documentation, Release 1.6

62 Chapter 2. Getting Started

CHAPTER

THREE

CORE FRAMEWORK

3.1 Object Orientation

3.1.1 Introduction to Object Orientation

qooxdoo allows you to easily leverage many key concepts of object-oriented programming without bothering about
limited native support in JavaScript.

The main actors of qooxdoo OO are:

• Classes

• Interfaces

• Mixins

When trying to get a grip of the framework code, you should probably understand all those three concepts. As a regular
application developer you often get by with ignoring interfaces and mixins when starting and just getting familiar with
classes.

Classes

A “class” is a central concept in most object-oriented languages, and as a programmer you are certainly familiar
with it. qooxdoo supports a “closed form” of class declaration, i.e. the entire declaration is provided within a
qx.Class.define(name, config) statement, where name is the fully-qualified class name, and config
is a configuration map with various keys (or “sections”).

There are several types of classes available, which are specified by the type key within the config map:

• regular class: May contain class variables/methods (in a statics section) and instance variables/methods (in
a members section). An instance of the class can be created using the new keyword, so a constructor needs to
be given in construct.

• static class: Only contains class variables and class methods. Often a helper or utility class. Use type :
"static".

• abstract class: Does not allow an instance to be created. Typically classes derive from it and provide concrete
implementations. type is abstract.

• singleton: Not more than a single instance of the class may exists at any time. A static method
getInstance() returns the instance. Use type : "singleton".

63

qooxdoo Documentation, Release 1.6

Interfaces

qooxdoo’s interfaces are similar to the ones in Java. Similar to the declaration of class they are created by
qx.Interface.define(name, config). They specify an “interface” (typically a set of empty methods),
that classes must implement.

Mixins

Mixins are a very practical concept that not all programming languages provide. Unlike interfaces, which require a
class to provide concrete implementations to fulfill the interface contract, mixins do include code. This code needs to
be generic, if it is “mixed into” different existing classes. Mixins usually cover only a single aspect of functionality
and therefore tend to be small. They are declared by qx.Mixin.define(name, config).

Inheritance

Like most programming languages qooxdoo only supports single-inheritance for classes, not multiple-inheritance, i.e.
a class can only derive directly from a single super class. This is easily modeled by the extend key in the class
declaration map.

Since a class may implement/include one or many interfaces/mixins, which themselves can extend others, some ad-
vanced forms of multiple-inheritance can still be realized.

qooxdoo OO standalone

If you want to use qooxdoo OO layer standalone, take a look at the qxoo-build generator job of the framework.

3.1.2 Features of Object Orientation

Class definition

A class is defined by providing its name as a string:

qx.Class.define("my.cool.Class");

This example only creates a trivial class my.cool.Class. A typical class declaration contains OO features like
constructor, instance members, static members, etc. This additional information is provided as a second parameter in
form of a map. Since the entire class definition is given in qx.Class.define(), it is called a “closed form” of
class declaration:

qx.Class.define("my.cool.Class", {
// declare constructor, members, ...

});

A regular (non-static) class can simply be instantiated using the new keyword:

var myClass = new my.cool.Class;

Inheritance

In order to derive the current class from another class, the reference to the super class is provided by the key extend:

64 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

qx.Class.define("my.great.SuperClass", {
// I’m the super class

});

qx.Class.define("my.cool.Class", {
extend : my.great.SuperClass

});

Constructor

The constructor of a regular class is provided as a function declaration in key construct:

qx.Class.define("my.cool.Class",
{

extend : my.great.SuperClass,
construct : function() {
...

}
});

Static members

Static members (often called “class” members) are also part of the class definition and declared in a map to the
statics key. Static methods are given by providing a function declaration, while all other values declare static
attributes. Typically they are given in uppercase to distinguish them from instance members:

qx.Class.define("my.cool.Class",
{

statics :
{
FOO : VALUE,
BAR : function() { ... }

}
});

Static members, both methods and attributes, can be accessed by using the fully-qualified class name:

my.cool.Class.FOO = 3.141;
my.cool.Class.BAR();

Note: You can use static members as constants, but the value can be changed in the run time!!

Instance Members

Similar to static members, instance members are also part of the class definition. For them the members key is used:

qx.Class.define("my.cool.Class",
{

members:
{
foo : VALUE,
bar : function() { ... }

}
});

3.1. Object Orientation 65

qooxdoo Documentation, Release 1.6

The instance members can be accessed by using an actual instance of a class:

var myClass1 = new my.cool.Class;
myClass1.foo = 3.141;
myClass1.bar();

Accessing Static Members

Generic form. Requires no updates if class name changes. This code can optionally be optimized for performance in
build versions.

qx.Class.define("my.cool.Class",
{

statics : {
PI : 3.141

}
members : {
circumference : function(radius) {

return 2 * this.self(arguments).PI * radius;
}

}
});

Note: For this.self to be available, the class must have as a direct or indirect base class qx.core.Object.

Note: Static members aren’t inherited. For calling a superclass static method, use this.superclass, like in this
example:

qx.Class.define(’A’, {
statics: {

f: function() {}
}

});

qx.Class.define(’B’), {
extend: A,
members: {

e: function() {
this.superclass.self(arguments).f();

}
}

});

Static functions can access other static functions directly through the this keyword.

Calling the Superclass Constructor

Generic form. Requires no updates if super class (name) changes. This code can optionally be optimized for perfor-
mance in build versions.

qx.Class.define("my.cool.Class",
{

extend : my.great.SuperClass,
construct : function(x) {

66 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

this.base(arguments, x);
}

});

Calling the Overridden Superclass Method

Generic form without using prototype. Requires no updates if super class (name) changes. This code can optionally
be optimized for performance in build versions.

qx.Class.define("my.cool.Class",
{

extend : my.great.SuperClass,
...
members : {
foo : function(x) {

this.base(arguments, x);
}

}
});

Destructor

As a logical match to any existing constructor given by the key construct, a destructor is explicitly given by the
destruct key:

qx.Class.define("my.cool.Class",
{

extend : my.great.SuperClass,
construct : function() {
...

}
destruct : function() {
...

}
});

Properties

qooxdoo comes with a very powerful feature called dynamic properties. A concise declaration of an age property
may look like the following:

qx.Class.define(
...
properties : {

age: { init: 10, check: "Integer" }
}
...

This declaration generates not only a corresponding accessor method getAge() and a mutator method setAge(),
but would allow for many more features.

Interfaces

A leading uppercase I is used as a naming convention for interfaces.

3.1. Object Orientation 67

qooxdoo Documentation, Release 1.6

qx.Interface.define("my.cool.IInterface");

Mixins

Leading uppercase M as a naming convention. A mixin can have all the things a class can have, like properties,
constructor, destructor and members.

qx.Mixin.define("my.cool.MMixin");

Attaching mixins to a class

The include key contains either a reference to an single mixin, or an array of multiple mixins:

qx.Class.define("my.cool.Class",
{

include : [my.cool.MMixin, my.other.cool.MMixin]
...

});

Attaching mixins to an already defined class

qx.Class.include(qx.ui.core.Widget, qx.MWidgetExtensions);

Access

By the following naming convention. Goal is to be as consistent as possible. During the build process private members
can optionally be renamed to random names in order to ensure that they cannot be called from outside the class.

publicMember
_protectedMember
__privateMember

Static classes

Explicit declaration allows for useful checks during development. For example. construct or members are not
allowed for such a purely static class.

qx.Class.define("my.cool.Class", {
type : "static"

});

Abstract classes

Declaration allows for useful checks during development and does not require explicit code.

qx.Class.define("my.cool.Class", {
type : "abstract"

});

68 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Singletons

Declaration allows for useful checks during development and does not require explicit code. A method
getInstance() is added to such a singleton class.

qx.Class.define("my.cool.Class",
{

type : "singleton",
extend : my.great.SuperClass

});

Immediate access to previously defined members

The closed form of the class definition does not allow immediate access to other members, as they are part of the
configuration data structure themselves. While it is typically not a feature used very often, it nonetheless needs to be
supported by the new class declaration. Instead of some trailing code outside the closed form of the class declaration,
an optional defer method is called after the other parts of the class definition have been finished. It allows access to
all previously declared statics, members and dynamic properties.

Note: If the feature of accessing previously defined members is not absolutely necessary, defer should not be used
in the class definition. It is missing some important capabilities compared to the regular members definition and it
cannot take advantage of many crucial features of the build process (documentation, optimization, etc.).

qx.Class.define("my.cool.Class",
{

statics:
{
driveLetter : "C"

},
defer: function(statics, members, properties)
{
statics.drive = statics.driveLetter + ":\\";
members.whatsTheDrive = function() {

return "Drive is " + statics.drive;
};

}
});

Browser specific methods

To maintain the closed form, browser switches on method level is done using environment settings. Since the generator
knows about environment settings it is (optionally) possible to only keep the code for each specific browser and remove
the implementation for all other browsers from the code and thus generate highly-optimized browser-specific builds.
It is possible to use an logical “or” directly inside a environment key. If none of the keys matches the variant, the
“default” key is used:

members:
{

foo: qx.core.Environment.select("engine.name",
{
"mshtml|opera": function() {

// Internet Explorer or Opera
},
"default": function() {

3.1. Object Orientation 69

qooxdoo Documentation, Release 1.6

// All other browsers
}

})
}

Events

qooxdoo’s class definition has a special events key. The value of the key is a map, which maps each distinct event
name to the name of the event class whose instances are passed to the event listeners. The event system can now
(optionally) check whether an event type is supported by the class and issue a warning if an event type is unknown.
This ensures that each supported event must be listed in the event map.

qx.Class.define("my.eventful.Class",
{

extend: qx.core.Target,

events :
{
/** Fired when the widget is clicked. */
"click": "qx.event.type.MouseEvent"

}
...

})

3.1.3 Classes

qooxdoo’s class definition is a concise and compact way to define new classes. Due to its closed form the JavaScript
code that handles the actual class definition already “knows” all parts of the class at definition time. This allows for
many useful checks during development as well as clever optimizations during the build process.

Declaration

Here is the most basic definition of a regular, non-static class qx.test.Cat. It has a constructor so that instances
can be created. It also needs to extend some existing class, here we take the root class of all qooxdoo classes:

qx.Class.define("qx.test.Cat", {
extend: qx.core.Object,
construct : function() { /* ... */ }

});

As you can see, the define() method takes two arguments, the fully-qualified name of the new class, and a config-
uration map that contains a varying number of predefined keys and their values.

An instance of this class is created and its constructor is called by the usual statement:

var kitty = new qx.test.Cat;

Members

Members of a class come in two flavors:

• Class members (also called “static” members) are attached to the class itself, not to individual instances

• Instance members are attached to each individual instance of a class

70 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Class Members

A static member of a class can be one of the following:

• Class Variable

• Class Method

In the Cat class we may attach a class variable LEGS (where uppercase notation is a common coding convention) and
a class method makeSound(), both in a statics section of the class declaration:

qx.Class.define("qx.test.Cat", {
/* ... */
statics : {
LEGS: 4,
makeSound : function() { /* ... */ }

}
});

Accessing those class members involves the fully-qualified class name:

var foo = qx.test.Cat.LEGS;
alert(qx.test.Cat.makeSound());

Instance Members

An instance member of a class can be one of the following:

• Instance Variable

• Instance Method

They may be defined in the members section of the class declaration:

qx.Class.define("qx.test.Cat", {
...
members: {
name : "Kitty",
getName: function() { return this.name }

}
});

Accessing those members involves an instance of the class:

var kitty = new qx.test.Cat;
kitty.name = "Sweetie";
alert(kitty.getName());

Primitive Types vs. Reference Types There is a fundamental JavaScript language feature that could lead to prob-
lems, if not properly understood. It centers around the different behavior in the assignment of JavaScript’s two data
types (primitive types vs. reference types).

Note: Please make sure you understand the following explanation to avoid possible future coding errors.

Primitive types include Boolean, Number, String, null and the rather unusual undefined. If such a primitive
type is assigned to an instance variable in the class declaration, it behaves as if each instance had a copy of that value.
They are never shared among instances.

3.1. Object Orientation 71

qooxdoo Documentation, Release 1.6

Reference types include all other types, e.g. Array, Function, RegExp and the generic Object. As their
name suggests, those reference types merely point to the corresponding data value, which is represented by a more
complex data structure than the primitive types. If such a reference type is assigned to an instance variable in the class
declaration, it behaves as if each instance just pointed to the complex data structure. All instances share the same
value, unless the corresponding instance variable is assigned a different value.

Example: If an instance variable was assigned an array in the class declaration, any instance of the class could
(knowingly or unknowingly) manipulate this array in such a way that each instance would be affected by the changes.
Such a manipulation could be pushing a new item into the array or changing the value of a certain array item. All
instances would share the array.

You have to be careful when using complex data types in the class declaration, because they are shared by default:

members:
{

foo: [1, 2, 4] // all instances would start to share this data structure
}

If you do not want that instances share the same data, you should defer the actual initialization into the constructor:

construct: function()
{

this.foo = [1, 2, 4]; // each instance would get assigned its own data structure
},
members:
{

foo: null // to be initialized in the constructor
}

Access

In many object-oriented classes a concept exists that is referred to as “access” or “visibility” of members (well, or
even classes, etc.). Based on the well-known access modifiers of Java, the following three types exist for qooxdoo
members:

• public: To be accessed from any class/instance

• protected: To be accessed only from derived classes or their instances

• private: To be accessed only from the defining class/instance

Unfortunately, JavaScript is very limited in enforcing those protection mechanisms. Therefore, the following coding
convention is to be used to declare the access type of members:

• public: members may not start with an underscore

• protected: members start with a single underscore _

• private: members start with a double underscore __

There are some possibilities to enforce or at least check the various degrees of accessibility:

• automatic renaming of private members in the build version could trigger errors when testing the final app

• checking instance of this in protected methods

• ...

72 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Special Types of Classes

Besides a “regular” class there is built-in support for the following special types:

Static Classes A static class is not instantiated and only contains static members. Setting its type to static makes
sure only such static members, no constructor and so on are given in the class definition. Otherwise error messages
are presented to the developer:

qx.Class.define("qx.test.Cat", {
type : "static"
...

});

Abstract Classes An abstract class may not be instantiated. It merely serves as a superclass that needs to be derived
from. Concrete classes (or concrete members of such derived classes) contain the actual implementation of the abstract
members. If an abstract class is to be instantiated, an error message is presented to the developer.

qx.Class.define("qx.test.Cat", {
type : "abstract"
...

});

Singletons The singleton design pattern makes sure, only a single instance of a class may be created. Every time
an instance is requested, either the already created instance is returned or, if no instance is available yet, a new one
is created and returned. Requesting the instance of such a singleton class is done by using the getInstance()
method.

qx.Class.define("qx.test.Cat", {
type : "singleton"
...

});

Inheritance

Single Inheritance

JavaScript supports the concept of single inheritance. It does not support (true) multiple inheritance like C++. Most
people agree on the fact that such a concept tends to be very complex and error-prone. There are other ways to shoot
you in the foot. qooxdoo only allows for single inheritance as well:

qx.Class.define("qx.test.Cat", {
extend: qx.test.Animal

});

Multiple Inheritance

Not supported. There are more practical and less error-prone solutions that allow for typical features of multiple
inheritance: Interfaces and Mixins (see below).

3.1. Object Orientation 73

qooxdoo Documentation, Release 1.6

Polymorphism (Overriding)

qooxdoo does, of course, allow for polymorphism, that is most easily seen in the ability to override methods in derived
classes.

Calling the Superclass Constructor It is hard to come up with an appealing syntax and efficient implementation
for calling the superclass constructor from the constructor of a derived class. You simply cannot top Java’s super()
here. At least there is some generic way that does not involve to use the superclass name explicitly:

qx.Class.define("qx.test.Cat", {
extend: qx.test.Animal,
construct: function(x) {
this.base(arguments, x);

}
});

Unfortunately, to mimic a super() call the special variable arguments is needed, which in JavaScript allows a
context-independent access to the actual function. Don’t get confused by its name, you would list your own arguments
just afterwards (like the x in the example above).

this.base(arguments, x) is internally mapped to arguments.callee.base.call(this, x) (The
.base property is maintained for every method through qooxdoo’s class system). The latter form can be handled by
JavaScript natively, which means it is quite efficient. As an optimization during the build process such a rewrite is
done automatically for your deployable application.

Calling an Overridden Method Calling an overridden superclass method from within the overriding method (i.e.
both methods have the same name) is similar to calling the superclass constructor:

qx.Class.define("qx.test.Cat", {
extend: qx.test.Animal,
members: {
makeSound : function() {
this.base(arguments);

}
}

});

Calling the Superclass Method or Constructor with all parameters This variant allows to pass all the parameters
(unmodified):

qx.Class.define("qx.test.Animal", {
members: {
makeSound : function(howManyTimes) {

....
}

}
});

qx.Class.define("qx.test.Cat", {
extend: qx.test.Animal,
members: {
makeSound : function() {

this.debug("I’m a cat");
/* howManyTimes or any other parameter are passed. We don’t need to know how many parameters are used. */
arguments.callee.base.apply(this, arguments);

74 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

}
}

});

Calling another Static Method Here is an example for calling a static member without using a fully-qualified class
name (compare to this.base(arguments) above):

qx.Class.define("qx.test.Cat", {
extend: qx.test.Animal,
statics : {
someStaticMethod : function(x) {

...
}

},
members: {
makeSound : function(x) {
this.constructor.someStaticMethod(x);

}
}

});

The syntax for accessing static variables simply is this.constructor.someStaticVar. Please note, for
this.constructor to be available, the class must be a derived class of qx.core.Object, which is usually the
case for regular, non-static classes.

Instead of this.constructor you can also use the alternative syntax this.self(arguments).

In purely static classes for calling a static method from another static method, you can directly use the this keyword,
e.g. this.someStaticMethod(x).

Usage of Interfaces and Mixins

Implementing an Interface

The class system supports Interfaces. The implementation is based on the feature set of Java interfaces. Most relevant
features of Java-like interfaces are supported. A class can define which interface or multiple interfaces it implements
by using the implement key:

qx.Class.define("qx.test.Cat", {
implement : [qx.test.IPet, qx.test.IFoo]

});

Including a Mixin

Unlike interfaces, Mixins do contain concrete implementations of methods. They borrow some ideas from Ruby and
similar scripting languages.

Features:

• Add mixins to the definition of a class: All members of the mixin are added to the class definition.

• Add a mixin to a class after the class is defined. Enhances the functionality but is not allowed to overwrite
existing members.

• Patch existing classes. Change the implementation of existing methods. Should normally be avoided but, as
some projects may need to patch qooxdoo, we better define a clean way to do so.

3.1. Object Orientation 75

qooxdoo Documentation, Release 1.6

The concrete implementations of mixins are used in a class through the key include:

qx.Class.define("qx.test.Cat", {
include : [qx.test.MPet, qx.test.MSleep]

});

Summary

Configuration

Key Type Description
type String Type of the class. Valid types are abstract, static and singleton. If unset it

defaults to a regular non-static class.
extend Class The super class the current class inherits from.
imple-
ment

Interface |
Interface[]

Single interface or array of interfaces the class implements.

include Mixin |
Mixin[]

Single mixin or array of mixins, which will be merged into the class.

con-
struct

Function The constructor of the class.

statics Map Map of static members of the class.
proper-
ties

Map Map of property definitions. For a description of the format of a property definition
see qx.core.Property.

mem-
bers

Map Map of instance members of the class.

envi-
ron-
ment

Map Map of settings for this class. For a description of the format of a setting see
qx.core.Environment.

events Map Map of events the class fires. The keys are the names of the events and the values are
the corresponding event type class names.

defer Function Function that is called at the end of processing the class declaration. It allows access
to the declared statics, members and properties.

destruct Function The destructor of the class.

References

• Class Declaration Quick Ref - a quick syntax overview

• API Documentation for Class

3.1.4 Interfaces

qooxdoo supports Java like interfaces.

Interface definitions look very similar to normal class definitions.

Example:

qx.Interface.define("qx.test.ISample",
{
extend: [SuperInterfaces],

properties: {"color": {}, "name": {} },

76 Chapter 3. Core Framework

http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.Property
http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.Environment
http://demo.qooxdoo.org/1.6/apiviewer/#qx.Class

qooxdoo Documentation, Release 1.6

members:
{

meth1: function() {},
meth2: function(a, b) {

this.assertArgumentsCount(arguments, 2, 2);
},
meth3: function(c) {

this.assertInterface(c, qx.some.IInterface);
}

},

statics:
{

PI : 3.14
},

events :
{

keydown : "qx.event.type.KeyEvent"
}

});

Definition

Interfaces are declared using qx.Interface.define. Interface names start by convention with an I (uppercase
“i”). They can inherit from other interfaces using the extend key. Multiple inheritance of interfaces is supported.

Properties

Properties in interfaces state that each class implementing this interface must have a property of the given name. The
property definition is not evaluated and may be empty.

Members

The member section of the interface lists all member functions which must be implemented. The function body is used
as a precondition of the implementation. By implementing an interface the qooxdoo class definition automatically
wraps all methods required by the interface. Before the actual implementation is called, the precondition of the
interface is called with the same arguments. The precondition should raise an exception if the arguments are don’t
meet the expectations. Usually the methods defined in qx.core.MAssert are used to check the incoming parameters.

Statics

Statics behave exactly like statics defined in mixins and qooxdoo classes, with the different that only constants are
allowed. They are accessible through their fully-qualified name. For example, the static varaiable PI could be used
like this:

var a = 2 * qx.test.ISample.PI * (r*r);

3.1. Object Orientation 77

http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.MAssert

qooxdoo Documentation, Release 1.6

Events

Each event defined in the interface must be declared in the implementing classes. The syntax matches the events
key of the class declaration.

Implementation

With implement key of the class declaration, a list of interfaces can be listed, which the class implements. The
class must implement all properties, members and events declared in the interfaces. Otherwise a runtime error will be
thrown.

Example:

qx.Class.define("qx.test.Sample",
{
implement: [qx.test.ISample],

properties: {
"color": { check: "color"},
"name": { check: "String"}

},

members:
{

meth1: function() { return 42; },
meth2: function(a, b) { return a+b },
meth3: function(c) { c.foo() }

}

events :
{

keydown : "qx.event.type.KeyEvent"
}

});

Validation

qx.Class contains several static methods to check, whether a class or an object implements an interface:

• qx.Class.hasInterface(): Whether a given class or any of its superclasses includes a given interface.

• qx.Class.implementsInterface(): Checks whether all methods defined in the interface are imple-
mented in the class. The class does not need to implement the interface explicitly.

It is further possible to use interfaces as property checks.

78 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Summary

Configuration

Key Type Description
extend Interface |

Interface[]
Single interface or array of interfaces this interface inherits from.

mem-
bers

Map Map of members of the interface.

statics Map Map of statics of the interface. The statics will not get copied into the target class. This
is the same behavior as statics in mixins.

prop-
erties

Map Map of properties and their definitions.

events Map Map of event names and the corresponding event class name.

References

• Interfaces Quick Ref - a syntax quick reference for interfaces

• API Documentation for Interface

3.1.5 Mixins

Mixins are collections of code and variables, which can be merged into other classes. They are similar to classes but
can not be instantiated. Unlike interfaces they do contain implementation code. Typically they are made up of only a
few members that allow for a generic implementation of some very specific functionality.

Mixins are used to share functionality without using inheritance and to extend/patch the functionality of existing
classes.

Definition

Example:

qx.Mixin.define("name",
{

include: [SuperMixins],

properties: {
"tabIndex": {check: "Number", init: -1}

},

members:
{
prop1: "foo",
meth1: function() {},
meth2: function() {}

}
});

Usage

Here a short example to see, how to use mixins (MMixinA, MMixinB) with a class (ClassC).

3.1. Object Orientation 79

http://demo.qooxdoo.org/1.6/apiviewer/#qx.Interface

qooxdoo Documentation, Release 1.6

The first mixin:

qx.Mixin.define("demo.MMixinA",
{

properties: {
"propertyA":
{

check: "String",
init: "Hello, I’m property A!\n"

}
},

members:
{
methodA: function() {
return "Hello, I’m method A!\n";

}
}

});

The second mixin:

qx.Mixin.define("demo.MMixinB",
{

properties: {
"propertyB":
{

check: "String",
init: "Hello, I’m property B!\n"

}
},

members:
{
methodB: function() {
return "Hello, I’m method B!\n";

}
}

});

The usage in the class:

qx.Class.define("demo.ClassC",
{

extend : qx.core.Object,

include : [demo1.MMixinA, demo1.MMixinB],

members :
{
methodC : function() {
return this.getPropertyA() + this.methodA()

+ this.getPropertyB() + this.methodB()
+ "Nice to meet you. Thanks for your help!";

}
}

});

The result is when calling the method methodC() of ClassC:

80 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

var classC = new demo.ClassC;
var result = classC .methodC();
/*
* Result:

* Hello, I’m property A!

* Hello, I’m method A!

* Hello, I’m property B!

* Hello, I’m method B!

* Nice to meet you. Thanks for your help!

*/

Summary

Configuration

Key Type Description
in-
clude

Mixin or
Mixin[]

Single mixin or array of mixins, which will be merged into the mixin.

con-
struct

Function An optional mixin constructor. It is called when instantiating a class that includes this mixin.

de-
struct

Function An optional mixin destructor.

stat-
ics

Map Map of static members of the mixin. The statics will not get copied into the target class.
They remain accessible from the mixin. This is the same behaviour as for statics in interfaces

mem-
bers

Map Map of members of the mixin.

prop-
erties

Map Map of property definitions.

events Map Map of events the mixin fires. The keys are the names of the events and the values are the
corresponding event type classes.

References

• Mixin Quick Ref - a quick syntax reference for mixins

• API Documentation for Mixin

3.2 Properties

3.2.1 Introduction to Properties

qooxdoo comes with its own convenient and sophisticated property management system. In order to understand its
power we will first take a look at the ordinary property handling in plain JavaScript first.

Ordinary Property Handling

Let’s say we have a property width for an object obj.

As is a good practice in regular high-level programming languages you should not access object properties directly:

3.2. Properties 81

http://demo.qooxdoo.org/1.6/apiviewer/#qx.Mixin

qooxdoo Documentation, Release 1.6

// NOT RECOMMENDED: direct access to properties
obj.width = 200; // setting a value
var w = obj.width; // getting the current value

Instead you should work with properties only through so-called accessor methods (“getters”) and mutator methods
(“setters”):

// direct access is no good practice
obj.setWidth(200); // setting a value
var w = obj.getWidth(); // getting the current value

Of course, directly accessing properties may be faster because no indirection by a function call is needed. Nonetheless,
in practice this does not outweight the disadvantages. Direct access to properties does not hide internal implementation
details and is a less maintainable solution (Well, you don’t program web applications in assembler code, do you?).

A typical implementation of the accessor and mutator methods would look like the following, where those instance
methods are declared in the members section of the class definition:

// ordinary example #1
members:
{

getWidth : function() {
return this._width;

},

setWidth : function(width)
{
this._width = width;
return width;

}
}

Something that is very familiar to the typical programmer of Java or any other comparable language. Still, it is not
very convenient. Even this trivial implementation of only the basic feature requires a lot of keystrokes. More advanced
features like type checks, performance optimizations, firing events for value changes, etc. need to be coded by hand.
An improved version of the setter could read:

// ordinary example #2
members:
{

setWidth : function(width)
{
if (typeof width != "number") {
// Type check: Make sure it is a valid number
throw new Error("Invalid value: Need a valid integer value: " + width);

};

if (this._width != width)
{

// Optimization: Only set value, if different from the existing value
this._width = width;

// User code that should be run for the new value
this.setStyleProperty("width", width+ "px");

};

return width;
}

}

82 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Large part of the code found here is for managing the validation and storage of the incoming data. The property-
specific user code is rather short.

qooxdoo Property Handling

Let’s see how the above example can be written using qooxdoo’s property implementation. The property itself is
declared in the properties section of the class definition. Only if some property-specific code needs to be run in
the setter, an additional apply method has to be given:

// qooxdoo version of ordinary example #2
properties : {

width : { check : "Number", apply : "applyWidth" }
}

members :
{

applyWidth : function(value) {
this.setStyleProperty("width", value + "px");

}
}

Compare that to the lengthy code of the ordinary code example above! Much shorter and nicer, also by objective
means. And it almost only contains the “real code”.

The apply method may optionally be defined for each property you add to your class. As soon as you define a key
“apply” in your property declaration map the method gets automatically called on each property modification (but not
during initial initialization). If you do not define an apply method, the property just handles the fundamental storage
of your data and its disposal.

Despite needing much less explicit code (keep in mind, for every property), it actually contains at least as many
features as the hand-tuned code: The type of the property is checked automatically (Number in the example above).
Moreover, new values are only stored (and the optional apply method called) if different from the existing values. A
tiny but important optimization.

Change Events

qooxdoo supports full-featured event-based programming throughout the framework. So-called change events are a
good example for this powerful concept.

Each property may optionally behave as an observable. This means it can send out an event at any time the property
value changes. Such a change event (an instance of qx.event.type.Data) is declared by providing a custom
name in the event key of the property definition. While you are free to choose any event name you like, the qooxdoo
framework tries to consistently use the naming convention "change + Propertyname", e.g. "changeWidth"
for a change of property width. In order to get notified of any value changes, you simply attach an event listener to
the object instance containing the property in question.

For example, if you would like the element property of a Widget instance widget to fire an event named
"changeElement" any time the value changes.

properties : {
element: { event: "changeElement" }

}

If this happens, you would like to set the DOM element’s content:

3.2. Properties 83

qooxdoo Documentation, Release 1.6

widget.addEventListener("changeElement", function(e) {
e.getValue().innerHTML = "Hello World";

});

The anonymous function acts as an event handler that receives the event object as variable e. Calling the predefined
method getValue() returns the new value of property element.

Available Methods

qooxdoo’s dynamic properties not only make sure that all properties behave in a consistent way, but also guarantee
that the API to access and manipulate properties are identical. The user is only confronted with a single interface,
where the method names are easy to understand. Each property creates (at least) the following set of methods:

• setPropertyName(): Mutator method (“setter”) to set a new property value.

• getPropertyName(): Accessor method (“getter”) that returns the current value.

Additionally, all properties of boolean type (declared by check: "Boolean") provide the following convenience
methods:

• isPropertyName(): Identical to getPropertyName().

• togglePropertyName(): Toggles between true and false.

Property Groups

Property groups is a layer above the property system explained in the last paragraphs. They make it possible to set
multiple values in one step using one set call. qx.ui.core.Widget supports the property group padding.
padding simply sets the paddingLeft, paddingRight, paddingTop and paddingBottom property.

widget.setPadding(10, 20, 30, 40);

The result is identical to:

widget.setPaddingTop(10);
widget.setPaddingRight(20);
widget.setPaddingBottom(30);
widget.setPaddingLeft(40);

As you can see the property groups are a nice really convenient feature.

Shorthand support

One more thing. The property group handling also supports some CSS like magic like the shorthand mode for example.
This means that you can define only some edges in one call and the others get filled automatically:

// four arguments
widget.setPadding(top, right, bottom, left);

// three arguments
widget.setPadding(top, right+left, bottom);

// two arguments
widget.setPadding(top+bottom, right+left);

// one argument
widget.setPadding(top+right+bottom+left);

84 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

As you can see this can also reduce the code base and make it more userfriendly.

BTW: The values of a property group can also be given an array as first argument e.g. these two lines work identically:

// arguments list
widget.setPadding(10, 20, 30, 40);

// first argument as array
widget.setPadding([10, 20, 30, 40]);

Note: For more information regarding declaration, usage and internal functionality please see the the developer
documentation.

3.2.2 Properties in more detail

Note: Please take a look at Property features summarized first to get an compact overview of the available features.

Declaration

The following code creates a property myProperty and the corresponding functions like setMyProperty() and
getMyProperty().

qx.Class.define(
...
properties : {

myProperty : { nullable : true }
}
...

You should define at least one of the attributes init, nullable or inheritable. Otherwise, the first call to the
getter would stop with an exception because the computed value is not (yet) defined.

Note: As an alternative to the init key you could set the init value of the property by calling an initializing function
this.initMyProperty(value) in the constructor. See below for details.

Please also have a look at the Quick Reference.

Handling changes of property values

You have multiple possibilities to react on each property change. With change the modification of a property is meant,
where the old and the new values differ from each other.

As a class developer the easiest solution with the best performance is to define an apply method. As a user of a class
(the one who creates instances) it is the best to simply attach an event listener to the instance, if such an corresponding
event is provided in the property declaration.

Defining an apply method

To attach an apply method you must add a key apply to your configuration which points to a name of a function
which needs to be available in your members section. As the apply method normally should not be called directly, it

3.2. Properties 85

qooxdoo Documentation, Release 1.6

is always a good idea to make the method at least protected by prefixing the name with an underscore _.

The return value of the apply method is ignored. The first argument is the actual value, the second one is the former
or old value. The last argument is the name of the property which can come very handy if you use one apply mehtod
for more than one property. The second and third arguments are optional and may be left out.

Example
properties : {

width : { apply : "_applyWidth" }
},

members :
{

_applyWidth : function(value, old, name) {
// do something...

}
}

The applying method is only called when the value has changed.

Note: When using reference data types like Object or Array the apply method is always called, since these are
different objects and indeed different values. This is JavaScript functionality and not qooxdoo specific.

For a more technical description, take a look at the API documentation of qx.core.Property

Providing an event interface

For the users of a class it is in many cases a nice idea to also support an event to react on property changes. The event
is defined using the event key where the value is the name of the event which should be fired.

qooxdoo fires a qx.event.type.Data which supports the methods getData() and getOldData() to allow
easy access to the new and old property value, respectively.

Note: Events are only useful for public properties. Events for protected and private properties are usually not a good
idea.

Example
properties : {

label : { event : "changeLabel" }
}
...
// later in your application code:
obj.addListener("changeLabel", function(e) {
alert(e.getData());

});

Init values

Init values are supported by all properties. These values are stored separately by the property engine. This way it is
possible to fallback to the init value when property values are being reset.

86 Chapter 3. Core Framework

http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.Property

qooxdoo Documentation, Release 1.6

Defining an init value

There are two ways to set an init value of a property.

Init value in declaration The preferred way for regular init values is to simply declare them by an init key
in the property configuration map. You can use this key standalone or in combination with nullable and/or
inheritable.

properties : {
myProperty : { init : "hello" }

}

Init value in constructor Alternatively, you could set the init value of the property in the constructor of the class.
This is only recommended for cases where a declaration of an init value as explained above is not sufficient.

Using an initializing function this.initMyProperty(value) in the constructor would allow you to assign
complex non-primitive types (so-called “reference types” like Array, Object) that should not be shared among
instances, but be unique on instance level.

Another scenario would be to use a localizable init value when internationalizing your application: Because
this.tr() cannot be used in the property definition, you may either use the static qx.locale.Manager.tr()
there instead, or use this.tr() in the call of the initializing function in the constructor.

Note: You need to add a deferredInit:true to the property configuration to allow for a deferred initialization
for reference types as mentioned above.

qx.Class.define("qx.MyClass", {
construct: function() {
this.initMyProperty([1, 2, 4, 8]);

},
properties : {
myProperty : { deferredInit : true}

}
};

Applying an init value

It is possible to apply the init value using an user-defined apply method. To do this call the init method
this.initMyProperty(value) somewhere in your constructor - this “change” will than trigger calling the
apply method. Of course, this only makes sense in cases where you have at least an apply or event entry in the
property definition.

If you do not use the init method you must be sure that the instances created from the classes are in a consistent state.
The getter will return the init value even if not initialized. This may be acceptable in some cases, e.g. for properties
without apply or event. But there are other cases, where the developer needs to be carefully and call the init method
because otherwise the getter returns wrong information about the internal state (due to an inconsistency between init
and applied value).

Like calling the this.initMyProperty(value) method itself, you could call the setter and use the defined init
value as parameter. This will call the apply method, not like in the usual cases when setting the same value which is
aready set.

3.2. Properties 87

qooxdoo Documentation, Release 1.6

construct : function()
{

this.base(arguments);

this.setColor("black"); // apply will be invoked
this.setColor("black"); // apply will NOT be invoked

},

properties :
{

color :
{
init : "black",
apply : "_applyColor"

}
},

members :
{

_applyColor : function(value, old) {
// do something...

}
}

This example illustrates how the behavior differs from the default behavior of the property system due to the already
mentioned inconsistency between init and applied value.

construct : function()
{

this.base(arguments);

// Initialize color with predefined value
this.initColor();

// Initialize store with empty array
this.initStore([]);

},

properties :
{

color :
{
init : "black",
apply : "_applyColor"

},

store : {
apply : "_applyStore"

}
},

members :
{

_applyColor : function(value, old) {
// do something...

},

_applyStore : function(value, old) {

88 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

// do something...
}

}

In the above example you can see the different usage possibilities regarding properties and their init values. If you
do not want to share “reference types” (like Array, Object) between instances, the init values of these have to be
declared in the constructor and not in the property definition.

If an init value is given in the property declaration, the init method does not accept any parameters. The init methods
always use the predefined init values. In cases where there is no init value given in the property declaration, it is
possible to call the init method with one parameter, which represents the init value. This may be useful to apply
reference types to each instance. Thus they would not be shared between instances.

Note: Please remember that init values are not for incoming user values. Please use init only for class defined
things, not for user values. Otherwise you torpedo the multi-value idea behind the dynamic properties.

Refining init values

Derived classes can refine the init value of a property defined by their super class. This is however the only modification
which is allowed through inheritance. To refine a property just define two keys inside the property (re-)definition:
init and refine. refine is a simple boolean flag which must be configured to true.

Normally properties could not be overridden. This is the reason for the refine flag . The flag informs the imple-
mentation that the developer is aware of the feature and the modification which should be applied.

properties : {
width : { refine : true, init : 100 }

}

This will change the default value at definition time. refine is a better solution than a simple set call inside the
constructor because it the initial value is stored in a separate namespace as the user value and so it is possible for the
user to fall back to the default value suggested by the developer of a class.

Checking incoming values

You can check incoming values by adding a check key to the corresponding property definition. But keep in mind
that these checks only apply in the development (source) version of the application. Due to performance optimization,
we strip these checks for the build version. If you want a property validation, take a look at the validation section.

Predefined types

You can check against one of these predefined types:

• Boolean, String, Number, Integer, Float, Double

• Object, Array, Map

• Class, Mixin, Interface, Theme

• Error, RegExp, Function, Date, Node, Element, Document, Window, Event

Due to the fact that JavaScript only supports the Number data type, Float and Double are handled identically to
Number. Both are still useful, though, as they are supported by the Javadoc-like comments and the API viewer.

3.2. Properties 89

qooxdoo Documentation, Release 1.6

properties : {
width : { init : 0, check: "Integer" }

}

Possible values

One can define an explicit list of possible values:

properties : {
color: { init : "black", check : ["red", "blue", "orange"] }

}

Note: Providing a list of possible values only works with primitive types (like strings and numbers), but not with
reference types (like objects, functions, etc.).

Instance checks

It is also possible to only allow for instances of a class. This is not an explicit class name check, but rather an
instanceof check. This means also instances of any class derived from the given class will be accepted. The class
is defined using a string, thereby to not influencing the load time dependencies of a class.

properties : {
logger : { nullable : true, check : "qx.log.Logger" }

}

Interface checks

The incoming value can be checked against an interface, i.e. the value (typically an instance of a class) must implement
the given interface. The interface is defined using a string, thereby not influencing the load time dependencies of a
class.

properties : {
application : { check : "qx.application.IApplication" }

}

Implementing custom checks

Custom checks are possible as well, using a custom function defined inside the property definition. This is useful for
all complex checks which could not be solved with the built-in possibilities documented above.

properties :
{

progress :
{
init : 0,
check : function(value) {

return !isNaN(value) && value >= 0 && value <= 100;
}

}
}

90 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

This example demonstrates how to handle numeric values which only accept a given range of numbers (here 0 .. 100).
The possibilities for custom checks are only limited by the developer’s imagination. ;-)

Alternative solution As an alternative to the custom check function, you may also define a string which will directly
be incorporated into the setters and used in a very efficient way. The above example could be coded like this:

properties :
{

progress :
{
init : 0,
check : "!isNaN(value) && value >= 0 && value <= 100"

}
}

This is more efficient, particularly for checks involving rather small tests, as it omits the function call that would be
needed in the variant above.

Transforming incoming values

You can transform incoming values before they are stored by using the transform key to the corresponding property
definition. The transform method occurs before the check and apply functions and can also throw an error if the value
passed to it is invalid. This method is useful if you wish accept different formats or value types for a property.

Example

Here we define both a check and transform method for the width property. Though the check method requires that the
property be a integer, we can use the transform method to accept a string and transform it into an integer. Note that we
can still rely on the check method to catch any other incorrect values, such as if the user mistakenly assigned a Widget
to the property.

properties :
{

width :
{

init : 0,
transform: "_transformWidth",
check: "Integer"

}
},

members :
{

_transformWidth : function(value)
{

if (qx.lang.Type.isString(value))
{

value = parseInt(value, 10);
}

return value;
}

}

3.2. Properties 91

qooxdoo Documentation, Release 1.6

Validation of incoming values

Validation of a property can prevent the property from being set if it is not valid. In that case, a validation error should
be thrown by the validator function. Otherwise, the validator can just do nothing.

Using a predefined validator

If you use predefined validators, they will throw a validation error for you. You can find a set of predefined validators
in qx.util.Validate. The following example shows the usage of a range validator.

properties : {
application : { validate : qx.util.Validate.range(0, 100) }

}

Using a custom validator

If the predefined validators are not enough for you validation, you can specify your own validator.

properties : {
application : { validate : function(value) {

if (value > 10) {
throw new qx.core.ValidationError(
"Validation Error: ", value + " is greater than 10."

);
}

}
}

}

Validation method as member

You can define a validation method as a member of the class containing the property. If you have such a member
validator, you can just specify the method name as a sting

properties : {
application : { validate : "_validateApplication" }

}

Enabling theme support

The property system supports multiple values per property as explained in the paragraph about the init values. The
theme value is another possible value that can be stored in a property. It has a lower priority than the user value and a
higher priority than the init value. The setThemed and resetThemed methods are part of qooxdoo’s theme layer
and should not be invoked by the user directly.

setter value resetter

setProperty(value) ^ user | resetProperty()
| |

setThemedProperty(value) Priority theme Fallback resetThemedProperty()
| |

initProperty([value]) | init v n.a.

92 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

To enable theme support it is sufficient to add a themeable key to the property definition and set its value to true.

properties : {
width : { themeable : true, init : 100, check : "Number" }

}

Note: themeable should only be enabled for truely theme-relevant properties like color and decorator, but not for
functional properties like enabled, tabIndex, etc.

Working with inheritance

Another great feature of the new property system is inheritance. This is primarily meant for widgets, but should be
usable in independent parent-children architectures, too.

Inheritance quickly becomes nothing short of vital for the property system, if you consider that it can reduce redun-
dancy dramatically. It is advantageous both in terms of coding size and storage space, because a value only needs to
be declared once for multiple objects inside an hierarchy. Beyond declaring such an inheritable property once, only
intended exceptions to the inherited values need to be given to locally override those values.

The inheritance as supported by qooxdoo’s properties is comparable to the inheritance known from CSS. This means,
for example, that all otherwise undefined values of inheritable properties automatically fall back to the corresponding
parent’s value.

Each property may also have an explicit user value of string "inherit". The inherited value, which is normally
only used as a fallback value, can thus be emphasized by setting "inherit" explicitly. The user may set a property
to "inherit" in order to enforce lookup by inheritance, and thereby ignoring init and appearance values.

To mark a property as inheritable simply add the key inheritable and set it to true:

properties : {
color : { inheritable : true, nullable : true }

}

Optionally, you can configure an init value of inherit. This is especially a good idea if the property should not be
nullable:

properties : {
color : { inheritable : true, init: "inherit" }

}

Inheritable CSS properties

To give you an idea for what kind of custom properties inheritance is particularly useful, the following list of prominent
CSS properties which support inheritance may be a good orientation:

• color

• cursor

• font, font-family, ...

• line-height

• list-style

• text-align

3.2. Properties 93

qooxdoo Documentation, Release 1.6

Note: This list of CSS properties is only meant for orientation and does not reflect any of qooxdoo widget properties.

Internal methods

The property documentation in the user manual explains the public, non-internal methods for each property. However,
there are some more, which are not meant for public use:

• this.resetProperty(value) : For properties which are inheritable. Used by the inheritance system to
transfer values from parent to child widgets.

• this.setThemedProperty(value) : For properties with appearance enabled. Used to store a sepa-
rate value for the appearance of this property. Used by the appearance layer.

• this.resetThemedProperty(value) : For properties with appearance enabled. Used to reset the
separately stored appearance value of this property. Used by the appearance layer.

Defining property groups

Property groups is a convenient feature as it automatically generates setters and resetters (but no getters) for a group
of properties. A definition of such a group reads:

properties : {
location : { group : ["left", "top"] }

}

As you can see, property groups are defined in the same map as “regular” properties. From a user perspective the API
with setters and resetters is equivalent to the API of regular properties:

obj.setLocation(50, 100);

// instead of
// obj.setLeft(50);
// obj.setTop(100);

Shorthand support

Additionaly, you may also provide a mode which modifies the incoming data before calling the setter of each group
members. Currently, the only available modifier is shorthand, which emulates the well-known CSS shorthand
support for qooxdoo properties. For more information regarding this feature, please have a look at the user manual.
The definition of such a property group reads:

properties :
{

padding :
{
group : ["paddingTop", "paddingRight", "paddingBottom", "paddingLeft"],
mode : "shorthand"

}
}

For example, this would allow to set the property in the following way:

94 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

obj.setPadding(10, 20);

// instead of
// obj.setPaddingTop(10);
// obj.setPaddingRight(20);
// obj.setPaddingBottom(10);
// obj.setPaddingLeft(20);
}

.. _pages/defining_properties#when_to_use_properties:

When to use properties?

Since properties in qooxdoo support advanced features like validation, events and so on, they might not be quite as
lean and fast as an ordinarily coded property that only supports a setter and getter. If you do not need these advanced
features or the variable you want to store is extremely time critical, it might be better not to use qooxdoo’s dynamic
properties in those cases. You might instead want to create your own setters and getters (if needed) and store the value
just as a hidden private variable (e.g. __varName) inside your object.

3.2.3 Initialization Behavior

This document summarizes some thoughts about the behavior of the initialization of properties.

The Problem

Imagine a class containing a property named a with an init value, like the following:

qx.Class.define("A", {
extend : qx.core.Object,
properties : {
a : {
init : "b",
event : "changeA"

}
}

});

As you can see, the property a has an init value, b. Now, if you access a with its getter, you get the init value in return:

var a = new A();
a.getA(); // returns "b"

If you now set something different than the initial value, you get a change event, because the content of the property
changed.

a.setA("x"); // changeA fired

As far, everything behaves as desired. But if set the init value instead of a new value, the change event will be also
fired. The following code shows the problem:

var a = new A();
a.setA(a.getA()); // changeA fired (first set)
a.setA(a.getA()); // changeA NOT fired (every other set)

3.2. Properties 95

qooxdoo Documentation, Release 1.6

Why not just change this behaviour?

It’s always hard to change a behavior like that because there is no deprecation strategy for it. If we change it, it is
changed and every line of code relying on that behavior will fail. Even worse, the only thing we could use as a check
for the wrong used behavior is to search for all properties having an init value and either an apply function or an event.
Now you have to check if one of these properties could be set with the init value, before any other value has been
set. If it is possible that the init value is set as first value, check if the attached apply is required to run or any listener
registered to the change event of that property. A good example in the framework where we rely on the behavior is the
Spinner:

// ...
construct : function(min, value, max) {

// ...
if (value !== undefined) {

this.setValue(value);
} else {

this.initValue();
}

// ...
_applyValue: function(value, old)

// ...
this._updateButtons();

// ...

The example shows the constructor and the apply of the value property. The problem begins in this case with the
constructor parameter named value, which is optional. So we have three cases to consider.

1. The value argument is undefined: The initValue method is called, which invokes the apply function for the
property with the init value as value.

2. A value is given different as the init value: So the value is not undefined and the setter for the value property
will be called, which invokes the apply function.

3. A value is given and its exactly the init value: In this case, the setter will be called with the init value. The apply
method is called and invokes the _updateButtons method. This method checks the given value and enables
/ disabled the buttons for increasing / decreasing the spinner. So it is necessary that the apply method is at least
called once that the buttons have the proper states.

The problem with a possible change of this behavior is obvious. In the third case, the apply method is not called and
the buttons enabled states could be wrong without throwing an error. And they are only wrong, if the value is exactly
the init value and one of the minimum or maxiumum values is the same. Because only in that scenario, one of the
buttons need to be disabled.

When can it be changed?

Currently we don’t plan to change it because it can have some hard to track side effects as seen in the example above
and we don’t have any deprecation strategy. Maybe it can be change on a major version like 2.0 but currently there are
no plans to do so.

3.2.4 Property features summarized

Note: The chapter gives you an compact but extensive overview of the features offered by qooxdoo’s property system.
Please refer to Properties in more detail for an explanation of how to define and use properties.

96 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Value checks

• Built-in types for most common things

• Runtime checks (development version only)

• Instance checks by simply define the classname of the class to check for (always use an instanceof operation - a
real classname is not available anymore)

• Custom check method by simply attaching a function to the declaration

• Custom check defined by a string which will be compiled into the resulting setters (faster than the above variant)

• Define multiple possible (primitive) values using an array

Validation

• Validation in both development and build version

• Predefined validators for default validation

• Throws a special validation error

Advanced value handling

• Multi value support. Support to store different values for init, inheritance, style and user including a automatic
fallback mechanism between them.

• Inheritance support. Inheritance of properties defined by a parent widget e.g. inherit enabled from a groupbox
to all form elements. Uses the inheritance if the computed value would be undefined or explicitly set to
"inherit". The getter simply returns "inherit" for inheritable properties which are otherwise unset.

• Blocks unintentionally undefined values in all setters with an exception. To reset a value one must use the
reset or unstyle method which are available too.

• Overriding of a value by setting a property explicitly to null

• Properties must be explicitly configured as "nullable" (like in .Net). The default is false which means
that incoming null values will result in an exception.

• Accessing nullable properties with undefined values will result in a normalization to null.

Convenience

• Convenient toggle method for boolean properties

Notification

• Support for a custom apply rountine

• Event firing with a custom named event

3.2. Properties 97

qooxdoo Documentation, Release 1.6

Initialization

qooxdoo automatically correctly initializes properties. This is true for both, properties which have defined an init
value and also for the other properties which are nullable. This means that after you have created an instance the
properties correctly reflect the applied value. Default values assigned by init also execute the configured apply
methods and dispatch configured events to inform already added listeners.

Initialization Behavior

Performance

Automatic optimization of all setters to the optimal highly-tuned result code. Impressive tailor made high performance
setters are the result.

Please note that after the definition point of a property the setters are not yet available. Wrappers for them will be
created with the first instance and the final code will be generated with the first use of such a setter. This first use will
also automatically unwrap the property setter to directly use the generated one.

Memory managment

Automatic memory management. This means all so-configured properties which contain complex data objects get
automatically disposed with the object disposal. The affected built-in types are already auto-configured this way. Also
all properties which need an instance of a class, defined by using a classname as check are automatically handled.

Note: Note that this does not actually call dispose() on the object but just removes the property value etc i.e. derefer-
ences the object. You still need to call dispose() if necessary.

For all other properties which contain complex data the developer must add a dispose key with a value of true to
the property declaration. For example if there is no check defined or the check definition points to a function.

Note: This is not needed for primitive types like strings and numbers.

3.3 Environment

3.3.1 Environment

Introduction

The environment of an application is a set of values that can be queried through a well-defined interface. Values
are referenced through unique keys. You can think of this set as a global key:value store for the application. Values
are write-once, read-many, but there are also read-only values. If a value for a certain key can be set, it can be set in
various ways, e.g. by code, through build configuration, etc., usually during startup of the application, and not changed
later. Other environment values are automatically discovered when they are queried at run time, such as the name of
the current browser, or the number of allowed server connections. This way, the environment API also implements
browser feature detection, and these values cannot be arbitrarily set.

Environment settings are also used in the framework, among other things to add debug code in the form of additional
tests and logging, to provide browser-specific implementations of certain methods, asf. Certain settable environment
keys are pre-defined by qooxdoo, the values of which can be overridden by the application. Applications are also free
to define their own environment keys and query their values at run time.

98 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

So for the application developer, the environment represents a set of global values that mirrors the general parameters
under which the application runs. It can be used to both detect (e.g. browser features) as well as inject such parameters
(e.g. through build configuration). For global values that are not derived from the outside world in some way, just use
e.g. a static application class.

Motivation

Environment settings address various needs around JavaScript applications:

• Control initial settings of the framework, before the custom classes are loaded.

• Pass values from outside to the application.

• Trigger the creation of multiple build files.

• Query features of the platform at run time (browser engine, HTML5 support, etc.)

• Create builds optimized for a specific target environment, i.e. feature-based builds.

As there are a number of pre-defined settings in the framework, you can make use of them right away by querying
their values in your application code. The next section deals with that. Afterwards, you learn how to override default
values or define your own environment settings.

Querying Environment Settings

In general, there are two different kinds of settings, synchronous and asynchronous. The asynchronous settings are
especially for feature checks where the check itself is asynchronous, like checking for data: URL support. Both kinds
have two query methods at the qx.core.Environment class, .get() and select() for synchronous, and .getAsync() and
.selectAsync() for asynchronous settings.

Synchronous

Let’s first take a look at the synchronous API and the two possibilities of accessing the data:

qx.core.Environment.get("myapp.key");

The get method is likely the most important one. It returns the value for the given key, myapp.key in this example.

qx.core.Environment.select("myapp.key", {
"value1" : resvalue1,
"value2" : resvalue2,
"default" : catchAllValue

}

The select method is a way to select a value from a given map. This offers a convenient way to select an expression
for a given key value. It also allows you to specify the special map key “default”, that will be used if the current value
of the environment key does not match any of the other map keys. This is very handy when only one of the expected
values needs a special case treatment. In the example above, the resvalue(s) could be a function or any other
valid JavaScript expression.

Asynchronous

The asynchronous methods are a direct mapping of their synchronous counterparts.

3.3. Environment 99

qooxdoo Documentation, Release 1.6

qx.core.Environment.getAsync("myapp.key", function(result) {
// callback

}, context);

As the .getAsync does not return a result immediately, you have to specify a callback method which will be executed as
soon as the value for the environment key is available. Your callback will be passed this value as the single argument,
and the callback is responsible to integrate the result with your application.

This principle carries over to the corresponding select call:

qx.core.Environment.selectAsync("myapp.key", {
"value" : function(result) {
// callback value 1

},
"default" : function(result) {
// catch all callback

}
}, context)

In case of an asynchronous select the type of the values has to be a function, which will be called as soon as the key
value is available. Again, you can provide a “default” case. As with the callbacks used for .getAsync, the callbacks
used with .selectAsync will also get the key value as parameter, which might come handy especially in the “default”
case.

Caching

It sure happens in the live cycle of an application that some key get queried quite often, like the engine name. The
environment system caches every value to ensure the best possible performance on expensive feature tests. But in
some edge cases, it might happen that you want to redo the test. For such use cases you can invalidate the cache for a
given key, to force a re-calculation on the next query:

qx.core.Environment.invalidateCacheKey("myapp.key"}

This example would clear a previously calculated value for myapp.key.

Removal of Code

Usually, function calls like qx.core.Environment.get() are executed at run time and return the given value of the envi-
ronment key. This is useful if such value is determined only at run time, or can change between runs. But if you want
to pre-determine the value, you can set it in the generator config. The generator can then anticipate the outcome of a
query and remove code that wouldn’t be used at run time.

For example,

function foo(a, b) {
if (qx.core.Environment.get("qx.debug") == true) {
if ((arguments.length != 2) || (typeof a != "string")) {
throw new Error("Bad arguments!");

}
}
return 3;

}

will be reduced in the case qx.debug is false to

100 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

function foo(a, b) {
return 3;

}

In the case of a select call,

qx.core.Environment.select("myapp.key", {
"value1" : resvalue1,
"value2" : resvalue2

}

will reduce if myapp.key has the value value2 to just

resvalue2

The generator documentation has more details on optimization of qx.core.Environment calls.

Pre-defined Environment Keys

qooxdoo comes with a set of pre-defined environment settings. You can divide those into two big groups. One is a set
of feature tests which cover browser features like support for certain CSS or HTML features. The second group are
simple settings for the qooxdoo framework which drive the inner workings of the framework.

For a complete list of predefined environment keys, take a look at the API documentation of the qx.core.Environment
class.

Defining New Environment Settings

Now to actually setting new or overriding existing environment settings. The value of an environment key can take one
of two forms, as a concrete literal value, or as a function that returns a value at run time. The former can be achieve in
various ways (see further), the latter only through application code. (An environment key with its current value is also
referred to as an environment setting). We go through both ways now.

As Literal Values

As already mentioned, there are various possibilities to assign a literal value, like "foo", 3 or true, to an environ-
ment key. You can define the setting

• in the class map

• in method code

• through inline <script> code in the index.html

• in the generator configuration

• via URL parameter

The list is sorted in ascending precedence, i.e. if a key is defined multiple times, mechanisms further down the list
take higher precedence. Those possibilities are explained in the following sections.

In the Class Map You can define a key and its value through the environment key of the map defining a qooxdoo
class:

3.3. Environment 101

http://demo.qooxdoo.org/1.6/apiviewer#qx.core.Environment
http://demo.qooxdoo.org/1.6/apiviewer#qx.core.Environment

qooxdoo Documentation, Release 1.6

qx.Class.define("myapp.ClassA",
{

[...]

environment : {
"myapp.key" : value

}
});

In Application Code You can define a key and its value in a class method using the qx.core.Environment.add
method:

qx.core.Environment.add("key", "value");

In the Loading index.html In the web page loading your qooxdoo application, and before the <script>
tag loading the initial qooxdoo file, add another <script> tag with code that assigns a map to
window.qx.$$environment, containing your environment settings.

<script>
window.qx =
{
$$environment : {

"myapp.key" : value
}

}
</script>

In the Generator Config You can define a key and its value in the environment key of the job with which you build
the script files of your application (e.g. source-script, build-script):

"myjob" :
{

[...]

"environment" : {
"myapp.key" : value

}
}

Using the generator config adds a special meaning to the provided environment settings. Specifying a list of values for
a key triggers the creation of multiple output files by the generator. E.g. replacing value with [value1, value2] in the
above example, the generator will create two output files. See the environment key for more information on multiple
output generation.

Via URL parameter Before using URL parameter to define environment settings, you have to specify another
environment setting in the generator configuration which is named qx.allowUrlSettings. If the application is
generated with this config setting in place, you can then use URL parameter to add further key:value pairs.

http://my.server.com/path/to/app/index.html?qxenv:myapp.key:value

The pattern in the URL parameter is easy. It has three parts separated by colons. The first part is the constant qxenv,
the second part is the key of the environment setting and the last part is the value of the setting.

So much for setting simple key:value pairs. Now for providing a check function as the value of an environment key.

102 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

As a Check Function

As mentioned before, providing a function in place of a value can only be done in application code, so these environ-
ment settings are done at run time. The framework settings defined at run time are usually feature checks like checking
for dedicated CSS or HTML features. The check function is executed and is responsible for returning a proper value
when the environment key is queried later. These checks can be synchronous or asynchronous, and this corresponds
to how they are queried. Synchronous checks are queried with the .get() and .select() methods, asynchronous checks
with .getAsync() and .selectAsync() (see Querying Environment Settings).

Synchronous To add a synchronous check function, the standard .add() call is used:

qx.core.Environment.add("group.feature", function() {
return !!window.feature;

});

This example shows the same API used for adding a key:value setting. The only difference is that you add a function
as second parameter and not a simple value. This function is responsible for determining and returning the value for
the given environment key. In this example, if window.feature is defined, the check will return true.

Asynchronous To add an asynchronous check, use .addAsync():

qx.core.Environment.addAsync("group.feature", function(callback) {
window.setTimeout(function() {
callback.call(null, true);

}, 1000);
});

This example shows how to add a asynchronous feature check. A timeout is used to get the asynchronous behavior in
this simple example. That can be more complicated of course but the timeout is good enough to showcase the API. As
you can see in the check function we are adding, it has one parameter called callback which is the callback passed
by .getAsync() or .selectAsync() asynchronous queries. As before, the check function is responsible for computing the
value of the environment key. But rather than just returning the value (as in the synchronous case), it calls the callback
function and passes the value. The callback function is then responsible to integrate the result value with the querying
layer. In this simple example, the check waits a second and calls the callback with the result true.

3.4 Data Binding

3.4.1 Data Binding

Data Binding

Introduction

Data binding is a functionality that allows to connect data from a source to a target. The entire topic can be divided
into a low-level part, called “single value binding”, and some higher-level concepts involving stores and controllers.

The main idea The main idea of qooxdoo’s data binding component is best summarized by the following diagram.

3.4. Data Binding 103

qooxdoo Documentation, Release 1.6

As you can see data binding includes five major components, which will be described in more detail in the following
sections.

Data The data part is where the raw data is stored and can be retrieved from. This can be a plain local file, a regular
web server or even a web service. There are all sources of data possible depending on the implementation of the actual
store.

Store The store component is responsible for fetching the data from its source and for including it into a data model
of an application. For more info about the available store components see the stores section below.

Model The model is the centerpiece of data binding. It holds the data and acts as an integration point for the store
and for the controller. The stores provide a smart way to automatically the models classes during runtime. Take a look
at the models for details.

Controller The main task of the controller components is to connect the data in the model to the view components.
Details are available in the controller section. The base layer of all controllers, the Single Value Binding is explained
later.

View The views for data binding can be almost any widget out of qooxdoo’s rich set of widgets, depending on the
type of controller. qooxdoo’s data binding is not limited to some predefined data bound widgets. Please note that one
of the most prominent data centric widgets, the virtual Table, currently still has its own model based layer and is not
covered by the new data binding layer. The new infrastructure for virtual widgets is expected to nicely integrate the
upcoming data binding layer, though.

Demos, API and CheatSheet

You should now have a basic idea of qooxdoo’s data binding, so to see it in action, take a look at the online de-
mos and the API reference. If you want to start programming, maybe the CheatSheet can help you during your
programming.

Single Value Binding

The purpose of single value binding is to connect one property to another by tying them together. The connection
is always in one direction only. If the reverse direction is needed, another binding needs to be created. The binding
will be achieved by an event handler which assigns the data given by the event to the target property. Therefore it is
necessary for the source event to fire a change event or some other kind of data event. The single value binding is
mostly a basis for the higher concepts of the data binding.

104 Chapter 3. Core Framework

http://demo.qooxdoo.org/1.6/demobrowser/index.html#data
http://demo.qooxdoo.org/1.6/demobrowser/index.html#data
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.data

qooxdoo Documentation, Release 1.6

Binding a single property to another property

The simplest form of single value binding is to bind one property to another. Technically the source property needs
to fire a change event. Without that no binding is possible. But if this requirement is met, the binding itself is quite
simple. You can see this in the following code snippet, which binds two properties of the label value together:

var label1 = new qx.ui.basic.Label();
var label2 = new qx.ui.basic.Label();

label1.bind("value", label2, "value");

label1 is the source object to bind, with the following three arguments to that call:

1. The name of the property which should be the source of the binding.

2. The target object which has the target property.

3. The name of the property as the endpoint of the binding.

With that code every change of the value property of label1 will automatically synchronize the value property of
label2.

Binding a data event to property

In some cases in the framework, there is only a change event and no property. For that case, you can bind a data event
to a property. One common case is the TextField widget, which does not have a property containing the value of
the TextField. Therefor you can use the input event and bind that to a target property as you can see in the example
snippet. The API is almost the same as in the property binding case.

var textField = new qx.ui.form.TextField();
var label = new qx.ui.basic.Label();

textField.bind("input", label, "value");

As you can see, the same method has been used. The difference is, that the first argument is a data event name and not
a property name.

Bind a property chain to another property

A more advanced feature of the single value binding is to bind a hierarchy of properties to a target property. To
understand what that means take a look at the following code. For using that code a qooxdoo class is needed which is
named Node and does have a child and a name property, both firing change events.

// create the object hierarchy
var a = new Node("a"); // set the name to „a“
var b = new Node("b"); // set the name to „b“
a.setChild(b);

// bind the property to a labels value
a.bind("child.name", label, "value");

Now every change of the name of b will change the labels value. But also a change of the child property of a to
another Node with another name will change the value of the label to the new name. With that mechanism a even
deeper binding in a hierarchy is possible. Just separate every property with a dot. But always keep in mind that every
property needs to fire a change event to work with the property binding.

3.4. Data Binding 105

qooxdoo Documentation, Release 1.6

Bind an array to a property

The next step in binding would be the ability to bind a value of an array. That’s possible but the array needs to be a
special data array because the binding component needs to know when the array changes one of its values. Such an
array is the qx.data.Array class. It wraps the native array and adds the change event to every change in the array.
The following code example shows what a binding of an array could look like. As a precondition there is an object a
having a property of the qx.data.Array type and that array containing strings.

// bind the first array element to a label’s value
a.bind("array[0]", labelFirst, "value");

// bind the last array element to a label’s value
a.bind("array[last]", labelFirst, "value");

You can use any numeric value in the brackets or the string value last which maps to length - 1. That way you
can easily map the top of a stack to something else. For binding of an array the same method will be used as for the
binding of chains. So there is also the possibility to combine these two things and use arrays in such property chains.

Options: Conversion and Validation

The method for binding introduced so far has the same set of arguments. The first three arguments are mostly the same. There is a forth argument called options. This should be a map containing the options itself. In that you can specify three things currently:

• converter: A own converter which is a function with four arguments returning the converted value. (See
the API for more details)

• onSetOk: A key in the options map under which you can add a method. This method will be called on a
validation case if the validation was successful.

• onSetFail: The counterpart to onSetOk which will be called if the validation fails.

In addition there is a built in default conversion which takes care of the default conversion cases automatically. Default
cases are, for example, string to number conversion. To get that working it is necessary to know the desired target
type. This information is taken from the check key in the property definition of the target property.

Managing bindings

If you want to manage the bindings, there are some ways to get that. First aspect of managing is showing the existing
bindings. You can find all these function on the static qx.data.SingleValueBinding class or parts of it on
every object.

• getAllBindingsForObject is a function which is in the data binding class and returns all bindings for the given
object. The object needs to be the source object.

• getAllBindings returns all bindings in a special map for all objects.

Another way of managing is removing. There are three ways to remove bindings.

• removeBindingFromObject removes the given binding from the given source object. As an id you should use
exactly the id returned during the creation of the binding.

• removeAllBindingsForObject removes all binding from the source object. After that, the object is not syn-
chronized anymore.

• removeAllBindings removes all single value bindings in the whole application. Be careful to use that function.
Perhaps other parts of the application use the bindings and also that will be removed!

106 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

Debugging

Working with bindings is in most cases some magic and it just works. But the worse part of that magic
is, if it does not work. For that the data binding component offers two methods for debugging on the static
qx.data.SingleValueBinding class.

• showBindingInLog shows the given binding in the qooxdoo logger as a string. The result could look something
like this: Binding from ‘qx.ui.form.TextField[1t]’ (name) to the object ‘qx.ui.form.TextField[1y]’ (name). That
shows the source object and property and the target object and property.

• showAllBindingsInLog shows all bindings in the way the first method shows the bindings.

Tech notes

For everyone who is interested on how that whole thing works, here are some small notes on the inside of the data
binding. Every binding function maps to the event binding function. This is where the heart of the data binding lies.
In that function a listener will be added to the source object listening to the change event. The key part of the listener
is the following code part.

targetObject["set" + qx.lang.String.firstUp(targetProperty)](data);

In that line the listener sets the data given by the data event to the target property.

Controller

The general idea of controllers is connecting a view component to a set of data stored in a model. The kind of controller
you need depends on the view component. Currently there are four types of controller available:

• Object Controller

• List Controller

• Tree Controller

• Form Controller

You may miss the table controller. The currently available table will not be changed and therefore will not implement
data binding features. The new virtual table, which is currently under development, will be considered for data binding.

In the following section, the selection will be discussed because it’s a common feature of the list and tree controller.
The delegation mechanism is another common feature of those two controllers and will also be described. After that,
each of the available controllers will be discussed in detail.

Selection

Usually the selection of view components like the tree or the list handle their selection with tree folder or list items. As
a user of data binding, you don‘t want to convert the view widgets to the model widgets. Therefore, the controller does
that mapping for you. There is a selection array available on the controller containing the currently selected model
items. When using the selection of the controller, there is no need to deal with view widgets like ListItems. It is also
possible to change the array in place and add / remove something from the selection. As it is a data array, you can use
all methods defined by that array to manipulate the selection of the corresponding controller.

3.4. Data Binding 107

qooxdoo Documentation, Release 1.6

Delegate

The list and tree controller are responsible for creating and binding the child widgets of the views. But what if you
want to use something different in the list or bind not just the label and the icon. For that purpose, the delegation offers
the possibility to enhance the controller code without having to subclass it.

In total, there are three methods which relate to the topic of creating and binding the child view widgets.

configureItem The configureItem function is the function which you can use if you just want to modify the
created default widgets. This gives you the opportunity to set the labels to rich for example or modify anything else in
the child widget. But this is not the place where you want to change / add the binding behavior.

bindItem That place is the bindItem method. But you don’t want to use the single value binding all on your own
and bind the stuff. Therefore, the controller offers you a method called bindProperty, which takes the source path
to the data, the target property name and the options for the single value binding. The other two parameters will just
mapped through. But keep in mind that if you use this function, the default binding of the label and the icon is gone
and the properties used for those bindings do not work anymore. If you still want to have the default binding, use the
bindDefaultPropertiesmethod and pass the two given parameters through. But keep in mind that the bindings
set up with these two methods are unidirectional, from the model to the view. If you want to have b binding from the
view to the model, use the bindPropertyReverse which takes the same arguments as the bindProperty
method.

createItem The last method named createItem gives the user the chance to add something different as child
widgets to the view. In that method you just create the widget you want to see in the view and return the new item. But
keep in mind that the default bindings may not work on those widgets and the code will fail. So it is always a good
idea to also define its own bindings with the bindItem method.

The following code shows how such a delegate could look like.

var delegate = {
configureItem : function(item) {
item.setPadding(3);

},
createItem : function() {
return new qx.ui.form.CheckBox();

},
bindItem : function(controller, item, id) {
controller.bindProperty("name", "label", null, item, id);
controller.bindProperty("online", "checked", null, item, id);

}
};

The delegate defines, that CheckBox‘‘es should be used as child view items. As the
‘‘CheckBox‘‘es don’t have an icon, the ‘‘bindItem function needs to re-specify the bindings.
It binds the name and the online property of the model to the label and checked property of the CheckBox.

Object Controller

The most simple and lightweight controller is the object controller. It connects a model object with one or more
views. The data in the model can be anything a property can hold, i.e. a primitive data type like String or Number,
or a reference type like a map. With that you can for instance bind views like textfields, sliders and other widgets
visualizing primitive JavaScript types. But you can not only use views as targets. A target can be anything that has a
property with the proper type. Take a look at the following code example to see the object controller in action:

108 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

// create two sliders
var slider1 = new qx.ui.form.Slider();
var slider2 = new qx.ui.form.Slider();
// create a controller and use the first slider as a model
var controller = new qx.data.controller.Object(slider1);
// add the second slider as a target
controller.addTarget(slider2, "value", "value");

This code snippet ensures that every value set by slider1 will automatically be set as value of slider two. As you can
see, the object controller only wraps the fundamental single-value binding, trying to make its usage a little bit easier.

List Controller

A list controller could - as the name suggests - be used for list-like widgets. The supported list-like widgets in qooxdoo
are List, SelectBox and ComboBox, all in the qx.ui.form package. The controller expects a data array as a data model,
that contains the model objects. These objects are displayed in the list and can either have some primitive type or be
real qooxdoo objects. The following code snippet shows how to bind an array of strings to a list widget:

// create the model
var model = new qx.data.Array(["a", "b", "c", "d", "e"]);
// create a list widget
var list = new qx.ui.form.List();
// create the controller
var listController = new qx.data.controller.List(model, list);

Now every change in the model array will invoke a change in the list widget.

As a unique feature of the list controller a filtering method is included. You can assign a filter function to the controller
and the results will be filtered using your given function.

Tree Controller

Of course, also the tree does have its own controller. With that controller the Tree widget can automatically be filled
with data from qooxdoo objects containing the data. As model nodes for the tree, only qooxdoo objects are allowed
containing at least two properties, one for holding its own children in a data array and a second one holding the name
of the node which should be showed as the label of the tree folder widgets. Imagine that a model class called Node
(inheriting from qx.core.Object) is available containing the two already mentioned properties called ch for the children
and n for the name. The following code will bind a data model containing Node objects to a tree widget:

// create the model
var rootNode = new Node();
rootNode.setN("root");
var childNode = new Node();
childNode.setN("child");
rootNode.getCh().push(childNode);
// create the tree view
var tree = new qx.ui.tree.Tree();
// create the controller
var treeController = new qx.data.controller.Tree(rootNode, tree, "ch", "n");

After that code snippet, every change in the name or of the children will be automatically mapped into the tree view.
Selecting one of the tree folders will put the corresponding Node object into the selection array of the controller.

3.4. Data Binding 109

qooxdoo Documentation, Release 1.6

Form Controller

Also forms do have a special controller. The form controller uses a qx.ui.form.Form as target and a Object
controller for the bidirectional bindings. The usage equals to the usage of all other controllers. The main properties
of it are the model and target property. Given both, the controller connects the model and the target. An additional
feature of the form controller is the possibility to create the model for a given form. See the following code to get an
idea of using it.

// a form is available as ’form’
// create the controller
var formController = new qx.data.controller.Form(null, form);
// create the model
var model = formController.createModel();

If you nee additional information on forms, see form handling documentation. After executing this code, the controller
and the model variable do have the model available and therefore, the controller can set up the bindings.

Combining Controller

As a more advanced example we connect the selection of a tree to a list. Therefore we extend the code sample of the
tree controller section.

// create a list widget
var list = new qx.ui.form.List();
// create the controller
var listController = new qx.data.controller.List(null, list, "n");
// bind the selection of the tree to the list
treeController.bind("selection", listController, "model");

The example shows how the controller can work pretty well together with the single value binding. The trick is not
to set the model of the list controller at creation time. The model will be set by the single value binding from the tree
controllers selection. This works because the selection will be provided as data array.

Stores

The main purpose of the store components is to load data from a source and convert that data into a model. The task
of loading data and converting the data into a model has been split up. The store itself takes care of loading the data
but delegates the creation of model classes and instances to a marshaler. More information about the marsahling and
the models itself can be found in the models section.

JSON Store

The JSON store takes an URL, fetches the given data from that URL and converts the data using the JSON marshaler
to qooxdoo model instances, which will be available in the model property after loading. The state of the loading
process is mapped to a state property. For the loading of the data, a qx.io.request.Xhr will be used in the store.

The following code shows how to use the JSON data store.

var url = "json/data.json";
var store = new qx.data.store.Json(url);

After setting the URL during the creation process, the loading will begin immediately. As soon as the data is loaded
and converted, you can access the model with the following code.

110 Chapter 3. Core Framework

qooxdoo Documentation, Release 1.6

store.getModel();

JSONP Store

The JSONP store is based on the JSON store but uses a script tag for loading the data. Therefore, a parameter name
for the callback and an URL must be specified.

The following code shows how to use the JSONP data store.

var url = "json/data.json";
var store = new qx.data.store.Jsonp(url, null, "CallbackParamName");

After setting the URL and the callback parameter name during the creation process, the loading will begin immediately.

YQL Store

YQL is the Yahoo! Query Language. Yahoo! describes it as “[...] an expressive SQL-like language that lets you
query, filter, and join data across Web services.” Based on the JSONP store, qooxdoo offers a YQL store, where you
can specify the YQL queries and qooxdoo handles the rest.

The following code demonstrates how to fetch some twitter messages.

var query = "select * from twitter.user.timeline where id=’wittemann’";
var store = new qx.data.store.Yql(query);

Offline Store

The Offline store uses HTML local or session storage to store the data on the client. That can be used for offline
storage as well as for other storage purposes on the client. You should use the environment checks to make sure that
the used storage technologie is supported by the environment you want to run your code in.

The following code demonstrates how to initialize the data store.

var store = new qx.data.store.Offline("my-test-key");
if (store.getModel() == null) {

// initialize model ...
}

Combining with controllers

As described in the section above, you can access the model in the property after loading. The best solution is to use
the model with a controller and then bind the the model properties with Single Value Binding together. The code for
this could look something like this.

store.bind("model", controller, "model");

Using the Single Value Binding, the binding handles all the stuff related with the loading of the model data. That
means that the data will be available in the controller as soon as its available in the store.

3.4. Data Binding 111

http://ajaxian.com/archives/jsonp-json-with-padding
http://developer.yahoo.com/yql/

qooxdoo Documentation, Release 1.6

Models

The model is the centerpiece of data binding. It holds the data and acts as an integration point for the stores and for the
controller. Almost all models are plain qooxdoo classes holding the data in simple properties, which are configured
to fire events on every change. These change events are the most important part of the models and the reason, why
plain JavaScript objects are not enough as models. The same is true for native JavaScript arrays. Since they do not fire
events when items are changed as well, a complementary array is added for data binding purposes. More details about
that in the data array section.

Still, there is no need to manually write own model classes for every data source you want to work with. The marshalers
provide a smart way to automatically create these classes during runtime. Take a look at the JSON marshaler for details.

In the following sections, we first take a look at the models basics and how they work. After that, we dig into the role
of arrays and how that is solved. As a last section, we check out how the model creation is done in qooxdoo, because
you don’t need to write all the simple models yourself.

Structure

As already mentioned in the introduction of this chapter, models are plain qooxdoo objects. The main idea of such a
model is to hold all data in properties, which fire change events as soon as new data is available. Lets take a look at a
simple example in which we use JSON data to demonstrate how models look. The data in the example looks like this:

{
s: "string",
b: true,
a: []

}

A corresponding model should now be an object, which class defines three properties, named s, b and a. Lets take a
look at the following qooxdoo code, in which we assume that we have a fitting model:

var model = new ExampleModel(); // this returns a fitting model
model.getS(); // return the value of the property ’s’ which is "string"
model.setB(false); // will fire a change event for the property ’b’

I guess it’s clear now, how models are structured. There is not much code or magic about them, but they are the most
important part in the whole binding scenario.

Data Array

If we take a second look at the example we used above, we also added an array as value of property a. This ar-
ray should not be an plain JavaScript array, instead it should be a qooxdoo data array, which Class is located in
qx.data.Array. The reason for that should be quite obvious right now, the binding needs to get an event as soon
as some data changed to do all the necessary updates. As regular arrays can’t offer such notifications, we added our
own array implementation to the data binding layer. The data array is as close as possible to the native array but in
some core things, we needed to change the API. The major difference is the accessing of items in the array. The
following sample code, based on the sample above, shows the differences:

var array = model.getA();
array.setItem(0, "content"); // equals ’array[0] = "content"’ and fires a change event
array.getItem(0); // equals ’array[0]’ and returns "content"
array.lenght; // like the native API and returns ’1’

You see, the read and write access needs to be done with the designated methods to ensure the firing of the events. But
all the other API, like push, pop or splice is all the same and also capable of the events. Just take a look at the
API-Documentation of the array for more information.

112 Chapter 3. Core Framework

http://demo.qooxdoo.org/current/apiviewer/#qx.data.Array

qooxdoo Documentation, Release 1.6

Importance of events

The two sections above explained how models look and why. The most mentioned reason is the need for change events,
which gives them also an important role in the data binding. They are responsible for notifying every connected view
(which can be more than one) to update their representation of the data stored in the model. You can see the events as
a nervous system for your data bound app.

Disposing

Those of you familiar with qooxdoo and its objects should know, that disposing is necessary. This is also true for
model objects and data arrays. The model objects do have one special thing, the do a deep disposing, when created
with the marshaler, which we get to know in the following section.

JSON Marshaler

The marshaler takes care of converting JavaScript Objects into qooxdoo classes and instances. You can initiate each
of the two jobs with a method.

toClass This method converts a given JavaScript object into model classes. Every class will be stored and available
in the qx.data.model namespace. The name of the class will be generated automatically depending on the data
which should be stored in it. As an optional parameter you can enable the inclusion of bubbling events for every
change of a property. If a model class is already created for the given data object, no new class will be created.

toModel The method requires that the classes for the models are available. So be sure to call the toClass method
before calling this method. The main purpose of this method is to create instances of the created model classes and
return the model corresponding to the given data object.

createModel (static) This method is static and can be used to invoke both methods at once. By that, you can create
models for a given JavaScript objects with one line of code:

var model = qx.data.marshal.Json.createModel({a: {b: {c: "test"}}});

How to get my own code into the model?

What if you want to to bring your own code to the generated model classes or if you even want to use your own model
classes? Thats possible by adding and implementing a delegate to the data store. You can either

• Add your code by supporting a superclass for the created model classes.

• Add your code as a mixin to the created model classes.

• Use your own class instead of the created model classes.

Take a look at the API-Documentation of the qx.data.store.IStoreDelegate to see the available methods and how to
implement them.

3.4. Data Binding 113

http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.data.store.IStoreDelegate

qooxdoo Documentation, Release 1.6

114 Chapter 3. Core Framework

CHAPTER

FOUR

LOW LEVEL FRAMEWORK

4.1 General

4.1.1 Overview

Level Library Overview

Note: This is work in progress

This page is an overview of qooxdoo’s low-level capabilities. It does collect the existing documentation and tries to
show the big picture.

CSS Selector Support

If you are familiar with jQuery you can check out the comparison article of qooxdoo’s Collection class and jQuery
implementation.

Scenarios

Depending on your needs you can either use a pre-build low-level library or use a low-level application class.

4.2 Tutorials

4.2.1 Setting up a low-level library

A low-level library is interesting for all those who like to use the low-level APIs of qooxdoo. Such a library consists of
a pre-build javascript file that contains only the low-level classes of qooxdoo. For instance, no GUI toolkit (widgets,
layouts, theming) is included.

Create a low-level skeleton

To create your low-level application skeleton you can let do the tool-chain the heavy lifting and use the
create-application.py script to generate the skeleton.

115

http://demo.qooxdoo.org/1.6/apiviewer/#qx.bom.Collection

qooxdoo Documentation, Release 1.6

$QOOXDOO_PATH/tool/bin/create-application.py -n appName -t bom -o $OUTPUT-DIR

The t parameter is the important one to define the application as a bom type application. To show all available options
of this mighty script just type

$QOOXDOO_PATH/tool/bin/create-application.py ?

Generate qooxdoo build

Looking at the output of your generated low-level library skeleton you first realize that no source folder exists. The
simple reason for this is, that you can easily use the low-level APIs without creating your own application classes.
Instead you add your logic directly into the given index.html or in whatever HTML file you like to.

Before you can descend to the low-levels you have to generate a javascript file containing the qooxdoo low-level
classes.

./generate.py build

This pre-defined job is all you have to execute to start right away.

Note: The generated build script is a compilation of low-level classes, but it does not provide all classes of the
qx.bom or qx.dom namespace. Please take a look at the provide config.json file to determine which file is included.
The low-level wrapper of the XmlHttpRequest object (qx.bom.Request) is not provided by default.

Ready to code

As already mentioned implementing your logic is a no-brainer. Just grab the existing index.html file and start right
away.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.2//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<script src="qx-bom.js" type="text/javascript" charset="utf-8"></script>
<script type="text/javascript">
// get informed about startup
qx.event.Registration.addListener(window, "ready", onReady);

function onReady(e)
{

<!-- your application code resides here -->
}

</script>
</head>
<body>

<!-- more HTML -->
</body>
</html>

4.2.2 Low-Level APIs

This document describes the functionality of the low-level API classes in:

• qx.bom

116 Chapter 4. Low Level Framework

http://api.qooxdoo.org/#qx.bom

qooxdoo Documentation, Release 1.6

• qx.dom

• qx.xml

qx.bom - Browser Object Model

The classes contained in the qx.bom namespace provide a cross-browser abstraction layer for object classes of the
browser JavaScript runtime.

Note: This layer is heavily used by higher-level classes but can also be used stand-alone for low-level manipulations.

The BOM classes mainly consists of the following three parts:

• DOM element manipulation

• wrappers for native layers/objects

• powerful low-level helper classes

See the API reference of qx.bom for more details.

DOM element manipulation

The qx.bom.element package allows you to manipulate DOM elements in almost any way you can think of. Each
class is offering several static methods that take a DOM element as their first argument. Since those BOM classes
are static, no instances need to be created in order to manipulate a DOM element in the document.

The following manipulations are offered by the qx.bom.element package:

• Dimension and location

• Box-sizing - supports the modes content-box (W3C model) and border-box (Microsoft model)

• Scroll and overflow

• Style querying and modification

• CSS class name support - supports multiple class names for each element

• Scroll elements into view

• powerful low-level decoration support

• cross-browser support for opacity - optimized for animations

• CSS3 transforms and animations

• Attribute/Property handling

• Background images and support for the clip property

• Cursor property

Wrapper for native layers/objects

These classes are offer an unique and powerful way to deal with native layers and objects. Wrappers exist for:

• the current document

• DOM elements to be connected to qooxdoo’s event system

4.2. Tutorials 117

http://api.qooxdoo.org/#qx.dom
http://api.qooxdoo.org/#qx.xml
http://api.qooxdoo.org/#qx.bom

qooxdoo Documentation, Release 1.6

• native event management

• flash embedding

• CSS font styles

• several native controls like iframe, form elements, label and image elements

As every object or layer is abstracted by a corresponding qooxdoo class you can use these BOM classes to interact
without worrying about the underlying browser used.

Additional classes

These additional classes help in developing low-level, cross-browser applications.

Features include:

• unified XMLHttp transport implementation

• powerful client detection classes

• low-level Range and Selection API

• helper class for browser history

• wrapper for working with CSS stylesheets

• string utility class

• helper class for the client’s viewport

• helper class for VML

qx.dom - Cross-browser DOM manipulation

The Document Object Model (DOM) is a tree model that represents the document in a browser. The classes provided
by this packages allow you to query, to manipulate (i.e. add, remove, change order or replace) and to check the nodes
contained in the DOM.

Currently the qx.dom package consists of three classes:

• Element: manages children structures, inserts, removes and replaces nodes

• Hierarchy: for querying nodes

• Node: basic node creation and type detection

See the API reference of qx.dom for more details.

qx.xml - XML handling

This package is all about working with XML documents in a cross-browser way. Its three classes are:

• Document: creating an XML document

• Element: API to select, query and serialize XML elements

• String: escaping and unescaping of XML strings

See the API reference of qx.xml for more details.

118 Chapter 4. Low Level Framework

http://api.qooxdoo.org/#qx.dom
http://api.qooxdoo.org/#qx.xml

qooxdoo Documentation, Release 1.6

4.2.3 Back-Button and Bookmark Support

Overview

Many Ajax applications break the browser back button and bookmarking support. Since the main page is never
reloaded, the URL of the application never changes and no new entries are added to the browser history.

Fortunately it is possible to restore the expected behavior with a JavaScript history manager like the one included with
qooxdoo (qx.bom.History).

Adding History support to an Application

To add history support to an application four basic steps are required:

• identify application states

• retrieve initial application state

• add event listener to history changes

• update history on application state changes

Identify Application States

The first step to add history support to an Ajax application is to identify the application states, which should be added
to the history. This state must be encoded into a string, which will be set as the fragment identifier of the URL (the
part after the ‘#’ sign).

What exactly the application state is depends on the application. It can range from coarse grained states for basic
application navigation to fine grained undo/redo steps. The API viewer uses e.g. the currently displayed class as its
state.

Retrieve Initial Application State

At application startup the initial state should be read from the history manager. This enables book-
marks to specific states of the application, since the state is encoded into the URL. The URL
http://api.qooxdoo.org#qx.bom.History would for example open the API viewer with the initial state
of qx.client.History.

This is the code to read the initial state (getState API documentation):

var state = qx.bom.History.getInstance().getState();

Add Event Listener to History Changes

Each time the history changes by hitting the browser’s back or forward button, the history manager dispatches a
request event. The event object holds information about the new state. The application must add an event listener
to this event and update the application state (request API documentation):

// ’this’ is a reference to your application instance
qx.bom.History.getInstance().addListener("request", function(e)
{

var state = e.getData();

// application specific state update (= application code)

4.2. Tutorials 119

http://demo.qooxdoo.org/1.6/apiviewer/#qx.bom.History
http://api.qooxdoo.org/#qx.bom.History~getState
http://demo.qooxdoo.org/1.6/apiviewer/#qx.bom.History~request

qooxdoo Documentation, Release 1.6

this.setApplicationState(state);
}, this);

Update History on Application State Changes

Every time the application state changes, the history manager must be informed about the new state. A state change
in the API viewer would for example occur if the user selects another class (addToHistory API documentation).

qx.bom.History.getInstance().addToHistory(state, title);

The first parameter is the state encoded as a string, which will be set as the URL fragment identifier. The second
parameter is optional and may contain a string, which is set as the title of the browser window for this state.

4.2.4 Low-level tutorial for web developers

Introduction

Developing web applications demands more and more skills, and, as they try to match the desktop apps or even outrun
them, the HTML, CSS and JavaScript code gets more and more complex. Many libraries and frameworks come to the
rescue. In this tutorial we will show how a web developer can benefit from using qooxdoo in his day to day work. We
will cover several use cases that many of us encounter on a daily basis from simple to more complex, and we will show
how it can be achieved in both ways , using plain HTML, CSS and JavaScript, and using qooxdoo. The use cases will
cover the creation of a menu that opens when a button is clicked.

The HTML

Let’s start with a piece of HTML that will host both the classical and the qooxdoo solution.

<body>
<div id="container">

<div id="qooxdoo">
<div id="qx1">get the position of it</div>

</div>
<div id="classic">

<div id="ex1">get the position of it</div>
</div>
<div class="clearer"></div>

</div>
</body>

As you can see, inside the #container DIV we have two further DIVs that will hold the experiments for the
qooxdoo version and the classic way. Inside each of them we have a button, made of a DIV too, surrounded by a 2
pixel wide red border. The CSS is presented in the <HEAD> section of the HTML file so you can play with it.

<head>
<style type="text/css">
body {
padding: 0px;
margin: 0px;

}
#container {
margin: 12px auto;
padding: 4px 2px;
width: 90%;

120 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/1.6/apiviewer/#qx.bom.History~addToHistory

qooxdoo Documentation, Release 1.6

}
#qooxdoo {
float: left;
width: 45%;
background-color: #e1e1e1;
height: 750px;
margin: 0px 10px;

}
#classic {
float: left;
width: 45%;
background-color: #e1e1e1;
height: 750px;
margin: 0px 10px;

}
.clearer {

clear: left;
}
#qx1 {

border: solid 2px #ff0000;
}
#ex1 {

border: solid 2px #ff0000;
}
</style>

</head>

qooxdoo initial step

For qooxdoo we will start with creating the low-level skeleton application. This procedure will create a minimal ap-
plication environment and JS file that contains the low-level qooxdoo library. The benefits are small for this particular
demo but when you want to create a larger application, this comes in handy. You can find more details about this
operation in the Setting up a low-level library section. We create the application with the following command:

$QOOXDOO_PATH/tool/bin/create-application.py -n $APPNAME -t bom -o $OUTPUT_DIR

$QOOXDOO_PATH is the path to your qooxdoo SDK, $APPNAME specifies your chosen name for the application and
$OUTPUT_DIR is the directory where you want the root folder of the application to be located. The -o bom option
specifies the low-level application type.

Change to the application folder and you will find a Python script that builds our application:

./generate.py build

This can easily be automated, or integrated into your development environment. Now we have a qx-bom.js file in
the current directory that we can use in the subsequent steps. You will also find a index.html file that you can use
to paste the above HTML and CSS elements into.

The JavaScript code

Now we will dive into events, positioning and location, and then creation and showing of an element.

4.2. Tutorials 121

qooxdoo Documentation, Release 1.6

Events

After creating the button, we must attach a click event to it, in order to know when to show the menu. It sounds
easy to add the click event to the button, but even here there are differences between the browsers. IE has the method
attachEvent() (IE9 supports the W3C standard, though) while the other browsers support the standard W3C
method addEventListener(). Also, the handler function of the event treats the this variable as the global
window in IE and as the target element of the event in other browsers. First we fetch the HTML element into a JS
variable:

var positionedDiv = document.getElementById(’ex1’);

Now we attach the click event. The first version shows how to achieve this in the classical style:

if(!window.addEventListener){
positionedDiv.attachEvent(’onclick’, function(evt){
// processing code here
});

}
else {

positionedDiv.addEventListener(’click’, function(evt){
// processing code here
}, false);

}

Here is the qooxdoo version:

var positionedDiv = document.getElementById(’qx1’);

qx.bom.Element.addListener(positionedDiv,’click’,function(){
// processing code here

},positionedDiv,false);

You don’t have to worry about the browsers differences now, and it is a one-liner. qooxdoo is well namespaced, so you
can safely use it in your webpage, it won’t affect other libraries or the global objects, like Array, String For the
low-level things we present here, there are three packages of interest: qx.bom, qx.dom and qx.html. The above
method used for adding the click-event listener on a DIV is a static method of the Element class, so one can use it
right away without instantiating objects. Most methods in these three namespaces are static.

Getting the position of a DIV

Next, we need to get offsetTop and offsetLeft properties of the DIV node, in order to find out where we must
position the menu. The qooxdoo version is simple, so we will write it first to get it out of the way:

var location = qx.bom.element.Location.get(positionedDiv);

We call the get() static method on the Location class in the qx.bom.element namespace. You should browse
the docs for these three namespaces to find your way when you need something. Calling get() will provide us with
an object that has 4 properties, left, top, right and bottom. Now we do the following:

var offsetTop = location.top;
var offsetLeft = location.left;

We will use these variable later.

The classic way is a bit more messy. In this case, the problem is not in the JavaScript differences, but in the CSS
and layout. We use the offsetTop and offsetLeft element properties which are present in all major browsers.
Computing the absolute top and left distance from the upper-left corner of the document is done in the event listener:

122 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/1.6/apiviewer
http://demo.qooxdoo.org/1.6/apiviewer

qooxdoo Documentation, Release 1.6

var el = evt.srcElement;
var height = el.offsetHeight;
var offsetTop = 0;

var offsetLeft = 0;
while(el.tagName.toLowerCase()!=’body’){

offsetTop+=el.offsetTop;
offsetLeft+=el.offsetLeft;
el=el.offsetParent;

}

The problem is, when running this code it gives different results on IE and FF. On IE , the border dimension is not
taken into account when computing the position. So for IE we must have something like this below:

var el = evt.srcElement;
var height = el.offsetHeight;
var offsetTop = 0;
var offsetLeft = 0;
while(el.tagName.toLowerCase()!=’body’){

var borderTopWidth = parseInt(el.currentStyle.borderTopWidth);
var borderLeftWidth = parseInt(el.currentStyle.borderLeftWidth);
offsetTop+=el.offsetTop+(isNaN(borderTopWidth) ? 0 : borderTopWidth);
offsetLeft+=el.offsetLeft+(isNaN(borderLeftWidth) ? 0 : borderLeftWidth);
el=el.offsetParent;

}

Now we get the same result. This is not a difference in the JavaScript and DOM API as was the case for the event part,
it is about the way CSS and layout are handled. This is internal to the two browser classes, both of which are unified
in qooxdoo and the programmer is relieved of them.

Creating and showing the menu.

A class is already in place for the menu DIV , so all we are left to do is to create the element, position it at the right
coordinates and show it. We will show it right below the button, and left-aligned with it.

The classic way:

To get the bottom coordinate we will add to offsetTop variable in the click handler the button’s offsetHeight
value before calling the showMenu function.

showMenu(offsetTop+height,offsetLeft);

where height variable is obtained earlier in the code fragments above. Now we are set to create and show the menu.

var menuDiv = document.createElement(’div’);
menuDiv.className = ’menu’;
menuDiv.style.top=top+’px’;
menuDiv.style.left=left+’px’;
menuDiv.innerHTML = ’menu1

menu2’;
document.body.appendChild(menuDiv);

The qooxdoo way:

To get the bottom coordinate we will use location.bottom computed earlier.

var menuDiv = qx.bom.Element.create(’div’,{’class’: ’menu’});
qx.bom.element.Style.setStyles(menuDiv,{

’top’: location.bottom+’px’,
’left’: location.left+’px’

});

4.2. Tutorials 123

qooxdoo Documentation, Release 1.6

menuDiv.innerHTML = ’menu1

menu2’;
qx.dom.Element.insertEnd(menuDiv,document.body);

Creating an element comes along with specifying attributes, too, in a good JS manner by having the second argument
as a object literal with attribute names and values. The same style is for the method qx.bom.element.Style.setStyles(),
where we specify in a single call all the styles we want for the element.

The menu gets hidden when we move the mouse out of it. Adding a mouseout event is similar to the click event, so
we don’t repeat it here because there aren’t many differences between browsers.

This concludes the low-level tutorial, where we hoped to show some of the benefits you get when using qooxdoo in
low-level applications.

4.3 Technical Topics

4.3.1 HTML Element Handling

This document describes the ideas and concepts behind the classes in the qx.html namespace (API). qooxdoo also
comes with a basic low-level abstraction API for DOM manipulation. For details about this API please have a look at
the corresponding documentation.

Idea

The classes in qx.html are wrapper for native DOM elements, which basically were created to solve one major
issue:

Automatically keeping care of DOM manipulation and creation while dealing with large number of elements.

In details this means:

• Automatic performance: Programmatically constructing DOM hierarchies is hard to get fast because the order
in which elements are nested can heavily influence the runtime performance. What qx.html.Element does
is trying to keep the number of element instances to the minimum actually needed (DOM nodes are expensive,
both performance and memory aside) and to insert the DOM nodes in an efficient manner. Further all changes
to the DOM are cached and applied in batch mode, which improves the performance even more.

• Normalized API: Working with HTML DOM elements usually involves many browser switches. Especially
when it comes to reading and setting of attributes or styles. For each style one has to remember whether a
normalization method should be called or if the value can be set directly. qx.html.Element does this kind
of normalization transparently. The browser normalization is based on the existing low-level APIs.

• Convenience methods: These elements have additional convenience API, which is not available on pure
DOM elements. They have e.g. the functionality to manage children with methods like addBefore() or
moveAfter().

Typical Use Cases

• Building a widget system on top

• Massively building DOM elements from data structures

It may be used for smaller things as well, but brings in quite some overhead. The size of the API, additional to a
basic low-level package of qooxdoo is about 20 KB (5 KB gzipped). Also it consumes a bit more memory when all
underlying DOM elements are created. Keep in mind that the instances are around all the time. Even when all jobs for
a instance are done at the moment.

124 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/1.6/apiviewer/#qx.bom.element.Style~setStyles
http://api.qooxdoo.org/#qx.html

qooxdoo Documentation, Release 1.6

Features

• Automatic DOM insertion and element management

• Full cross-browser support through usage of low-level APIs e.g. setStyle(), getAttribute(), ...

• Advanced children handling with a lot of convenience methods e.g. addAfter(), ...

• Reuse existing markup as a base of any element via useMarkup()

• Reuse an existing DOM node via useElement()

• Powerful visibility handling to include() or exclude() specific sub trees

• Support for scrolling and scroll into view (scrollTo(), scrollIntoView(), ...)

• Integration of text selection APIs (setSelection(), getSelection(), ...)

• Automatic interaction with event managers (addListener(), removeListener(), ...)

• Connection to focus/activation handler

Specific HTML Elements

Roots

A root is one essential element type when dealing with the API. Every user of qx.html.Element needs at least
one instance of qx.html.Root to insert children to it. The root is always marked as being visible and is typically
the body DOM element or any other directly inserted element. This element can be assigned to be used by the root
using the method useElement().

Labels

Used for all types of text content. Supports text or HTML content togglable using the setRich() method. When
using the text mode ellipsis is supports in all browsers to show an indication when the text is larger than the available
space. Highly depends on the API of qx.bom.Label.

Images

An element pre-configured as a IMG tag. Supports scaled and unscaled images. Supports image clipping (without
scaling) to more efficiently deal with a lot of images. Depends on the API brought in by qx.bom.element.Decoration.
Input —–=

This element is used for all types of input fields. The type can be given using a constructor parameter. It allows
configuration of the value and the text wrapping (requires type textarea). Depends on the API brought in by
qx.bom.Input.

Iframe

This element is used to create iframes to embed content from other sources to the DOM. It wraps the features of
qx.bom.Iframe. Supports to configure the source of the iframe as well as its name. Comes with accessors to the
document or window object of the iframe.

4.3. Technical Topics 125

http://api.qooxdoo.org#qx.bom.Label
http://api.qooxdoo.org#qx.bom.element.Decoration
http://api.qooxdoo.org#qx.bom.Input
http://api.qooxdoo.org#qx.bom.Iframe

qooxdoo Documentation, Release 1.6

Canvas

Renders a HTML5 Canvas to the DOM. Has methods to access the render context as well to configure the dimensions
of the Canvas.

The Queue

Internally most actions applied to the instances of qx.html.Element are applied lazily to the DOM. All style or
attribute changes are queued for example to set them at once. This is especially useful to allow to bump out changes
at once to the browser even when these happens in multi places and more important on more than one element.

Even things like focus handling or scrolling may be queued. It depends on if the element is currently visibible etc.
whether these are queued. focus makes often more sense when it is directly executed as the following code may
make assumptions that the changes are applied already. Generally qooxdoo allows it to apply most changes without
the queue as well using a direct flag which is part of most setters offered by qx.html.Element.

4.3.2 Image Handling

This document tries to give some insights into the low-level features for image handling. This includes the functionality
of these classes:

• qx.bom.element.Background (API)

• qx.bom.element.Decoration (API)

Generally there are two common ways to show images in a browser: normal image elements and background images.
The Decoration class supports both of them and automatically selects the type to use for a specific requirement.
The Background class is a simple wrapper around the support for background images. It is mainly some cross-
browser magic to fix a few quirks of some of the supported engines.

4.3.3 The Event Layer

The class qx.event.Manager provides a per-document wrapper for cross-browser DOM event handling. The imple-
mentation of the event layer is inside the qx.event namespace.

The following features work in all supported browsers:

• Canceling events: stopPropagation()

• Skipping the browser’s default behavior: preventDefault()

• Unified event objects matching the W3C DOM 2 event interface

• Cross-browser event bubbling and capturing phase, even in Internet Explorer

• Mouse event capturing

• Port of the unified qooxdoo 0.7 key event handler to the 1.2 low-level layer. For a full list of available key
identifiers see the getKeyIdentifier() method documentation of the qx.event.type.KeySequence class.

• Unified mouse events

– Normalized double click event sequence mousedown -> mouseup -> click -> mousedown ->
mouseup -> click -> doubleclick in Internet Explorer

– Normalized right click sequence mousedown -> mouseup -> contextmenu in Safari 3 and Opera.

– Always fire click events if the mouseup happens on a different target than the corresponding
mousedown event. Natively only Internet Explorer behaves like that.

126 Chapter 4. Low Level Framework

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://api.qooxdoo.org#qx.bom.element.Background
http://api.qooxdoo.org#qx.bom.element.Decoration
http://demo.qooxdoo.org/1.6/apiviewer/#qx.event.Manager
http://demo.qooxdoo.org/1.6/apiviewer/#qx.event
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-interface
http://msdn2.microsoft.com/en-us/library/ms537630.aspx
http://qooxdoo.org/documentation/0.7/keyboard_events
http://demo.qooxdoo.org/1.6/apiviewer/#qx.event.type.KeySequence~getKeyIdentifier

qooxdoo Documentation, Release 1.6

UML Class Diagram

4.3.4 The Focus Layer

History

This document is meant to talk about some internals of the focus system in qooxdoo since 1.2. This is a technol-
ogy documentation targeted to interested developers. There is no need to understand these details as a user of the
framework.

In previous versions of the focus handling we forced the application to our own implementation instead of working
together with the browser. This was quite straightforward because the topic itself is quite complex and the differ-
ences between the browsers are huge. So just ignoring all these differences and implementing an own layer is highly
attractive.

However this came with quite some costs. For example it’s quite hard to catch all the edge cases when a input field
loses the focus nor is it possible to recover the focus correctly when the browser does something after switching the
window (send back/bring to front etc.). To listen on the browser might improve some types of out-of-sync problems
in the previous versions. We caught most things correctly though, but it is quite hard to get 100% accuracy.

Focus Support

With 1.2 the focus system was reimplemented using the new low level event stack. Compared to the old focus system
this basically means that the whole focus support is implemented low-level without any dependencies on the widget
system. It directly uses the new event infrastructure and integrates fine with the other event handlers.

4.3. Technical Topics 127

qooxdoo Documentation, Release 1.6

The new system tries to connect with all available native events which could help with detecting were the browser’s
focus is moving to. The implementation makes use of native events like activate or focusin where available.
It uses a lot of browser behavior which is not explicitly documented or valid when reading the specifications, just to
solve the issue of detecting where the focus currently is or is moved to.

It supports the events focusin, focus, focusout and blur on DOM nodes. It also supports focus and blur
events on the window. There is support for activate and deactivate events on DOM nodes to track keyboard
activation. It has the properties focus and active to ask for the currently focused or activated DOM node.

Activation Support

The activation, as part of the focus system, is also done by this manager. The keyboard handler for example asks
the focus system which DOM element is the active one to start the bubble sequences for all keyboard events on this
element. As the keyboard layer sits on top of the DOM and implements the event phases on its own there is no need
to inform the browser about the active DOM node as it is simply not relevant when using this layer. It is also quite
important as in every browser tested the methods to activate a DOM node (if available at all) might also influence the
focus which creates some problems.

Window Focus/Blur

The handler also manages the focus state of the top-level window. It fires the blur and focus events on the window
object one can listen to. Natively, these events are fired all over just by clicking somewhere in the document. The issue
is to detect the real focus/blur events. This is implemented through some type of internal state representation.

Text Selection

Focus handling in qooxdoo also solves a lot of related issues. For example the whole support for unelectable text is
done with the focus handler as well. Normally all text content on a page is selectable (with some exceptions like native
form buttons etc.). In a typical GUI or during drag&drop sessions it is highly needed to stop the user from being able
to select any text.

The only thing needed for the focus handler here is to add an attribute qxSelectable with the value off to the
node which should not be selectable. I don’t know about a way which is easier to solve this need.

Behind the scenes qooxdoo dynamically applies styles like user-select or attributes like unselectable. There
are a lot of bugs in the browser when keeping these attributes or styles statically applied to the nodes so they are applied
as needed dynamically which works surprisingly well. In Internet Explorer the handler stops the event selectstart
for the affected elements.

Prevent Defaults

One thing we needed especially for the widget system, which is built on top, was support for preventing a widget or
in this case a DOM node from being able to get the focus. This sounds simpler at first than it is. The major issue is to
also keep the focus where it is while clicking somewhere else.

This is especially interesting when working with a text selection. Unfortunately in a browser the selection could only
be where the focus is. This is a major issue when trying to apply any change to the currently selected text like needed
for most kinds of editors (like a rich text editor used by a mail application for example). The type of fix we apply
in qooxdoo is not to allow the browser to focus a specific DOM node e.g. the “Bold” button of the text editor. This
makes it easy to add listeners to the button which work with the still existing selection of the editor field. The feature
could be applied easily to a DOM node like such a button just through an attribute qxKeepFocus with the value on.
It affects all children of the element as well, as long as these do not define anything else.

128 Chapter 4. Low Level Framework

qooxdoo Documentation, Release 1.6

A similar goal is to keep the activation where it is when the user clicks at a specific section of the document. This is
mainly used to keep the keyboard processing where it is e.g. when clicking the opened list of a SelectBox widget.
This feature could be used for other scenarios like this as well. Like in the previous block it can be enabled simply by
setting the attribute qxKeepActive to on for the relevant DOM node. Internally, to stop the activation also means
to stop the focus. It was not solvable in another way because the browser otherwise sends activation events to the
focused DOM node which is contra productive in this case.

Another unwanted side effect of some browsers is the possibility to drag around specific types of content. There is
some type of native drag&drop support in most of today’s browsers, but this is quite useless with the current quality
of implementation. Still, the major issue remains: It is possible to drag around images for example which is often not
wanted in a GUI toolkit. These native features compromise the behavior implemented by the application developer on
top of them. To stop this, qooxdoo applies styles like user-drag on browsers that support it, or prevents the native
draggesture event where available.

Other then this, most of these prevention is implemented internally through a preventDefault call on the global
mousedown event when a specific target is detected. This has some side effects though. When preventing such a core
event it means that most browsers also stop any type of selection happening through the mouse. This also stops them
from focusing the DOM node natively. The qooxdoo code uses some explicit focus calls on the DOM nodes to fix
this.

Please note that some settings may have side effects on other things. For example, to make a text region selectable
but not activate able is not possible with the current implementation. This has not really a relevance in real-world
applications, but may be still interesting to know about.

Finally

Finally, the whole implementation differs nearly completely for the supported browsers. Hopefully you get an impres-
sion of the complexity of the topic. May the browser with you.

4.3.5 qooxdoo Animation

qooxdoo Animation is a low level animation layer which comes with several effects to animate DOM elements. An
effect changes one or more attributes of a DOM element from a start to an end value in the given time either linear or
using a transition function. Effects can be stacked in a queue and orderd by assigning a startup delay.

• API documentation

• Demos

• Issues

Usage

To create an effect instance the desired effect and pass the DOM element, which should be used for the animation, as
parameter. The effect can be configured by changing the properties like from, to, duration and more. Once the
effect is set up, it can be started by calling the start() method of the effect.

var element = document.getElementById("dlAmount");
var attention = new qx.fx.effect.core.Highlight(element);

function update(amount)
{

element.innerHTML = parseInt(amount);
attention.start();

}

4.3. Technical Topics 129

http://demo.qooxdoo.org/1.6/apiviewer/#qx.fx
http://demo.qooxdoo.org/1.6/demobrowser/#animation~Login.html
http://bugzilla.qooxdoo.org/buglist.cgi?query_format=advanced&short_desc_type=allwordssubstr&short_desc=&product=framework&component=fx&long_desc_type=substring&long_desc=&bug_file_loc_type=allwordssubstr&bug_file_loc=&bug_status=NEW&bug_status=ASSIGNED&bug_status=REOPENED&emailassigned_to1=1&emailtype1=substring&email1=&emailassigned_to2=1&emailreporter2=1&emailqa_contact2=1&emailcc2=1&emailtype2=substring&email2=&bugidtype=include&bug_id=&votes=&chfieldfrom=&chfieldto=Now&chfieldvalue=&cmdtype=doit&order=Reuse+same+sort+as+last+time&field0-0-0=noop&type0-0-0=noop&value0-0-0=

qooxdoo Documentation, Release 1.6

Queueing effecs

Every effect has a delay property which can be set to the amount of seconds the effect should wait before it should
be executed after calling the start() method on it. You can use this property to arrange effects in the order you
want them to be executed.

var el = button1.getContainerElement().getDomElement();

var psEffect = new qx.fx.effect.combination.Pulsate(el);

// The pulsate effect will take two seconds to execute
psEffect.seDuration(2);

var mvEffect = new qx.fx.effect.core.Move(el);
mvEffect.set({

x : 100,
y : 200,
delay : 2 // Wait two seconds to execute

});

// Start both effects at the same time
psEffect.start();
mvEffect.start();

Writing own effects

To create own effects, create a new class and extend from qx.fx.Base and overwrite the update() methode. You
can access the DOM element of the effect by calling this._getElement().

qx.Class.define("fxdemo.flickerBackground",
{

extend : qx.fx.Base,

members :
{
update : function(value)
{

var element = this._getElement();

// Value is a floating-point number between the start and end property.
value +=""; // Convert it to a string.
value = parseInt(value[value.length-1], 10); // Read the last digit and parse it to integer
element.style.backgroundColor = "’" + (value % 2 == 0) ? "red" : "blue" + "’";

}
}

});

List of effects

The qx.fx.effect package contains 14 effects:

• ColorFlow Changes the background color of an element to a given initial. After that the effects waits a given
amount of time before it modifies to background color back to the initial value.

• Drop Moves the element to the given direction while fading it out.

130 Chapter 4. Low Level Framework

qooxdoo Documentation, Release 1.6

• Fade Fades in the specified element: it changes to opacity from a given value to another. If target value is 0, it
will hide the element, if value is 1, it will show it using the “display” property.

• Fold Shrinks the element in width and height until it gets invisible.

• Grow Resizes the element from initial dimensions to final dimensions.

• Highlight Cycles the background color of the element from initial to final color.

• Move Moves to element to the given coordinates.

• Puff Resizes the element from zero to the original size of the elment and fades it in at the same time.

• Pulsate Fades the element in and out several times.

• Scale This effect scales the specified element (and its content, optionally) by given percentages.

• Scroll Scrolls to specified coordinates on given element.

• Shake Moves the element forwards and backwards several times.

• Shrink Resizes the element from initial to given dimensions.

• Switch Flickers the element one time and then folds it in.

4.3.6 Transforms and Animations (CSS3)

One of the big pieces in the whole new CSS3 world are animations and transforms with all the hype about 3D, hardware
acceleration and the combinations of both of them. But as always, browser vendors introduce these new features not
at the same time, not with the same amount of features and not via the same CSS keys.

In order to address that two classes have been added, one for transfoms (API) and one for animations (API). We kept
the API close to the CSS spec, thus all of you familiar with it will recognize it quickly. For all of you who have no
idea about all that new CSS stuff yet, when you get in touch with the qooxdoo API, you also learn pieces of the spec!

Transforms

Transforms are basically defined by their transform function and are only good for transforming elements. They are
not responsible for any dynamic movement of elements. The basic transform function will give you an idea what is
possible with transforms: Scale, Translate, Rotate, Skew.

But lets take a look at the transforms applied in the demo above.

var box = document.getElementById("scale");
qx.bom.element.Transform.scale(box, 0.8);

box = document.getElementById("translate");
qx.bom.element.Transform.translate(box, ["10px", "10px"]);

box = document.getElementById("rotate");

4.3. Technical Topics 131

http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-3d-transforms/
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.bom.element.Transform
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.bom.element.Animation

qooxdoo Documentation, Release 1.6

qx.bom.element.Transform.rotate(box, "45deg");

box = document.getElementById("skew");
qx.bom.element.Transform.skew(box, "25deg");

There is a lot of other stuff you can do with the new Transform class. A demo shows all the possibilities the native
Trasform API can offer and with that, also what the qooxdoo wrapper can offer. For the best result, take a webkit-based
browser like Safari or Chrome to view the demo.

Animations

Only with animations the dynamic behavior comes into the application. As you can expect, animations define a change
of something over a given amount of time. That’s the key feature of animations. But what can be changed and how can
we define that? The first questions is easy to answer, we can change CSS properties. To answer the second question
see the following code:

var desc = {duration: 1000, timing: "ease-out", keyFrames : {
0 : {"width" : "30px"},
70 : {"width" : "100px"},
100 : {"width": "30px"}

}};
var box = document.getElementById("box");
qx.bom.element.Animation.animate(box, desc);

The main part of this code is the key frames map, here with three entries. The first one defined by 0 specifies the
animations at the beginning of the animation. The next one defined by 70 holds the CSS properties at 70% of the
animation time. The last one specifies the animations state at 100% animation time. That is an easy animation which
only takes simple CSS properties into account. But you can also animate transforms, which brings both technologies
together.

Take a look at demo showing a 3D rotation which you can try yourself. It shows the best results if you use a webkit-
based browser like Safari or Chrome.

4.3.7 From jQuery to qooxdoo

Note: Please note that the features described here are still experimental, so the API may change in the future.

This article may be a good transition guide for experienced jQuery developers to work with qooxdoo. qooxdoo 0.8.2
and beyond supports a selector engine and an experimental collection handling, which is comparable to the feature set
of jQuery 1.3.2 and after.

For more info also see the following information:

• Selector demo

• Selector API

• Collection API

jQuery’s $() Method

jQuery’s main method $() behaves different depending on the parameters supplied:

• Converting a DOM node into a collection

132 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/1.6/demobrowser/demo/bom/Transform.html
http://demo.qooxdoo.org/1.6/demobrowser/demo/bom/Animation.html
http://jquery.com
http://demo.qooxdoo.org/devel/demobrowser/index.html#bom~Selector.html
http://demo.qooxdoo.org/devel/apiviewer/#qx.bom.Selector
http://demo.qooxdoo.org/devel/apiviewer/#qx.bom.Collection

qooxdoo Documentation, Release 1.6

• Selecting a set of elements via CSS expression

• Processing HTML code and wrapping it into a collection

• Registering functions for being executed at document load

$(domNode).doSomething();
$("expression").doSomething();
$("HTML string");
$(initFunction);

The resulting jQuery object is an instance of qx.bom.Collection (or short a “collection”) on the qooxdoo side.
In general qooxdoo is intentionally a bit more verbose in terms of API, since it often is disadvantageous to use all too
much implicit magic (a lesson learned from early qooxdoo).

1. Wrapping DOM Elements

You create a collection in qooxdoo by invoking the static method qx.bom.Collection.create with an existing
DOM node:

var coll = qx.bom.Collection.create(li); // qooxdoo

This is basically the same as the following jQuery code:

var coll = $(li); // jQuery

Like jQuery, qooxdoo’s collection supports an array as first argument, where each element of the array is an existing
DOM node:

var coll = qx.bom.Collection.create([li1, li2, li3]); // qooxdoo

2. CSS Selector Engine

It is also possible to select DOM elements by a CSS selector. qooxdoo uses exactly the same powerful Sizzle engine
as jQuery. So the feature set is almost identical.

In jQuery you may select all h2 and h3 headers by doing this:

var headers = $("h2,h3"); // jQuery

In qooxdoo you use the static method qx.bom.Collection.query, which expects a CSS like selector. This is
how the code in qooxdoo to query the document for h2 and h3 headers looks like:

var headers = qx.bom.Collection.query("h2,h3"); // qooxdoo

3. HTML Parser

In jQuery it is possible to reuse existing HTML. The result may be further processed by the methods on the jQuery
object.

var obj = $("Some HTML"); // jQuery

In qooxdoo the same is achieved by having the collection parse HTML:

var obj = qx.bom.Collection.create("Some HTML"); // qooxdoo

4.3. Technical Topics 133

http://sizzlejs.org

qooxdoo Documentation, Release 1.6

A more explicit way to parse HTML is to use the static method qx.bom.Collection.html, so you could also
say:

var obj = qx.bom.Collection.html("Some HTML"); // qooxdoo

Internally, create uses html when the first parameter is a valid HTML string.

4. Load Event Registration

To attach load events simply use qooxdoo’s regular event registration. There is no convenience handling for this on
the selector or collection classes. First the code for jQuery:

// jQuery (Variant 1)
$(function() {

alert("executed at load");
});

As this is also a shorthand in jQuery, here the same code when using the classical variant:

// jQuery (Variant 2)
$(window).ready(function() {
alert("executed at load");

});

In qooxdoo you do it the familiar way:

// qooxdoo
qx.event.Registration.addListener(window, "ready", function() {

alert("executed at load");
});

Collection Features

// Every listed qooxdoo method is a method of qx.bom.Collection
// Look below for some short examples
var allDivElements = qx.bom.Collection.query("div");
var howMany = allDivElements.length;
var indexOfElement = allDivElements.indexOf(aDivElement);

Basics

Description jQuery qooxdoo
Detect the length of a collection size() / length length
Get an element by index get(0) [0]
Get elements as array get() toArray()
Iterate over items each(callback) forEach(callback, context)
Get the index of an element index(elem) indexOf(elem)

• qooxdoo uses native methods if possible. Current browsers implement them with a performance superior to
the handwritten code. The names forEach(), indexOf() and others, are also the names of these methods
on native Arrays. This reduces the learning curve for new JavaScript developers as only one API has to be
understood.

• forEach() comes with the arguments callback and obj, where callback is the method to execute
and obj is the context in which it should be executed. In jQuery the method is called each() and has only

134 Chapter 4. Low Level Framework

qooxdoo Documentation, Release 1.6

a callback argument, not allowing to define the context in which the method is executed. Actually it is
executed in the context of the current item. So this is always the “current” element, whereas in qooxdoo this is
the first argument sent to the callback function.

• get() jquery function can get the last element with a negative argument passed to it: get(-1), while in qooxdoo
indexOf() method has a fromIndex as second argument making it more suited in case of large collections.

Attributes

General

Description jQuery qooxdoo
Read an attribute attr(name) getAttribute(name)
Set an attribute attr(name, value) setAttribute(name, value)
Set an attribute to a computed value attr(name, function) Not supported
Set attributes attr(map) setAttributes(map)
Remove an attribute removeAttr(name) resetAttribute(name)

• qooxdoo distinguishes between setters and getters. In jQuery these two variants are usually melted into a single
function, which decides about the action from the arguments given. This may be a problem when unintentionally
undefined values are passed to these methods as these do not throw an error in this case.

• Each getter on a qooxdoo collection only returns the value of the first element of the collection. This is the same
as in jQuery, except for the text() method, which concats the text content of all elements in the collection
into one large string.

HTML

Description jQuery qooxdoo
Get the HTML content html() getAttribute(“html”)
Set the HTML content html(value) setAttribute(“html”, value)

Text

Description jQuery qooxdoo
Get the textual content text() getAttribute(“text”)
Set the textual content text(value) setAttribute(“text”, value)

Class

Description jQuery qooxdoo
Add a class addClass(classname) addClass(classname)
Check for a class hasClass(classname) hasClass(classname)
Remove class removeClass(classname) removeClass(classname)
Toggle class toggleClass(classname) toggleClass(classname)
Toggle class based on switch toggleClass(classname, toggle) toggleClass(classname, toggle)

• jQuery’s hasClass() checks if at least one class in the collection matches the given class name, whereas in
qooxdoo (consistent with the way all getters work), only queries the first element. Both return Boolean values.
As an alternative to jQuery’s method you may call the method is() instead, which exists in both frameworks
with a comparable implementation.

4.3. Technical Topics 135

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.html.Element~setAttributes
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~resetAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setAttribute
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~addClass
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~hasClass
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~removeClass
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~toggleClass
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~toggleClass

qooxdoo Documentation, Release 1.6

Value

Description jQuery qooxdoo
Read a value val() getValue()
Set a value val(value) setValue(value)

CSS

Style

Description jQuery qooxdoo
Reading a style css(name) getStyle(name)
Setting a style css(name, value) setStyle(name, value)
Setting styles css(map) setStyles(map)

Position

Description jQuery qooxdoo
Get absolute position to document offset() getOffset()
Get the offset parent offsetParent() getOffsetParent()
Get position in relation to offset parent position() getPosition()
Get vertical scroll position scrollTop() getScrollTop()
Set vertical scroll position scrollTop(value) setScrollTop(value)
Get horizontal scroll position scrollLeft() getScrollLeft()
Set horizontal scroll position scrollLeft(value) setScrollLeft(value)

Dimension

Description jQuery qooxdoo
Returns the rendered width width() getContentWidth()
Configures the width width(value) setStyle(“width”, value+”px”)
Returns the rendered height height() getContentHeight()
Configures the height height(value) setStyle(“height”, value+”px”)
Returns the inner width innerWidth() see notes
Returns the inner width innerHeight() see notes
Returns the outer width outerWidth() getWidth()
Returns the inner width outerHeight() getHeight()

• There are a few differences between the APIs of qooxdoo and jQuery here. The width() method of jQuery
returns the content width, qooxdoo’s getWidth() returns the box width instead (think of the “user-visible”
width). The content width in qooxdoo is available from the method getContentWidth(). The box width
in jQuery is available via outerWidth().

• jQuery has a few more convenience methods, but they are typically used less often. The inner width in jQuery
is basically the content width plus left and right padding. The outer width in jQuery also supports an op-
tional flag to respect the margin as well (margin box). You can calculate both dimensions quite easily using
qx.bom.element.Style.get().

136 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getValue
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setValue
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getStyle
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setStyle
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setStyles
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getOffset
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getOffsetParent
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.element.Location~getPosition
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getScrollTop
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setScrollTop
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~getScrollLeft
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setScrollLeft
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.element.Dimension~getContentWidth
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setStyle
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.element.Dimension~getContentHeight
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~setStyle
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.element.Dimension~getWidth
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.element.Dimension~getHeight

qooxdoo Documentation, Release 1.6

Traversing

Collection modifiers are available to extend or filter the current collection and to create a new collection to be returned.
The method end() exits the last extension or filter and returns the previous collection. This is especially useful when
working with chaining.

Filtering

Description jQuery qooxdoo
Filter by index eq(index) eq(index)
Filter by selector filter(selector) filter(selector)
Filter by function filter(function) filter(function)
Whether content matches expression is(selector) is(selector)
Translate one collection into another map(function) map(function, context?)
Remove elements matching the expression not(selector) not(selector)
Select a subset of the collection slice(start, end) slice(start, end)

• In qooxdoo the methods map() and slice() are implemented by the native Array methods and this way
guarantee an optimal performance. There are a lot more functions available in qooxdoo, as most Arraymethods
are simply inherited, e.g. splice(), sort(), etc.

• For the method hasClass() please have a look at the “Attributes” section above. Be aware that the qooxdoo
implementation only works on the first element and this way is not equivalent to jQuery’s implementation.

Finding

Description jQuery qooxdoo
Add elements add(selector) add(selector)
Get children matching the selector children(selector) children(selector)
Closest parent that matches closest(selector) closest(selector)
Get all child nodes (non-recursive) contents() contents()
Replace with matched children find(selector) find(selector)
Replace with matched children find(function) Not supported
Get next element next(selector) next(selector)
Get all next elements nextAll(selector) nextAll(selector)
Get all next elements up to a limit nextUntil(selector) Not supported
Get parent element parent(selector) parent(selector)
Get all parent elements parents(selector) parents(selector)
Get all parent elements up to a limit parentsUntil(selector) Not supported
Get previous element prev(selector) prev(selector)
Get all previous elements prevAll(selector) prevAll(selector)
Get all previous elements up to a limit prevUntil(selector) Not supported
Get siblings siblings(selector) siblings(selector)

Chaining

Description jQuery qooxdoo
Goto previous collection end() end()
Merge current and previous collection andSelf() andSelf()

4.3. Technical Topics 137

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~eq
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~filter
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~filter
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~is
http://demo.qooxdoo.org/current/apiviewer/#qx.type.BaseArray~map
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~not
http://demo.qooxdoo.org/current/apiviewer/#qx.type.BaseArray~slice
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~add
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~children
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~closest
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~contents
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~find
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~next
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~nextAll
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~parent
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~parents
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~prev
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~prevAll
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~siblings
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~end
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~andSelf

qooxdoo Documentation, Release 1.6

Content Manipulation

Inserting

Description jQuery qooxdoo
Append content to the inside append(content) append(content)
Prepend content to the inside prepend(content) prepend(content)
Append collection to given selector appendTo(selector) appendTo(selector)
Prepend collection to given selector prependTo(selector) prependTo(selector)

• Please note that qooxdoo does not support adding tr elements directly to a table element as jQuery does.
This reduces implementation overhead and it can easily be overcome if you use a tbody element as the parent
and then append() or prepend() the tr elements.

Attaching

Description jQuery qooxdoo
Insert content after after(content) after(content)
Insert content before before(content) before(content)
Insert collection after selector insertAfter(selector) insertAfter(selector)
Insert collection before selector insertBefore(selector) insertBefore(selector)

Wrapping

Description jQuery qooxdoo
Wrap content around selected elements wrap(content) wrap(content)
Combine and wrap selected elements wrapAll(content) wrapAll(content)
Wrap inner of each element wrapInner(content) wrapInner(content)
Replace selected elements’ parents within the document unwrap() Not supported

Replacing

Description jQuery qooxdoo
Replace collection with given content replaceWith(content) replaceWith(content)
Replace given selector result with collection replaceAll(selector) replaceAll(selector)

Removing

Description jQuery qooxdoo
Remove collection from parent node(s) detach(selector) remove(selector)
Destroy collection from parent node(s) remove(selector) destroy(selector)
Clear content of collection empty() empty()

Copying

Description jQuery qooxdoo
Clone collection (and DOM nodes) clone() clone()

138 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~append
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~prepend
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~appendTo
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~prependTo
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~after
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~before
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~insertAfter
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~insertBefore
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~wrap
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~wrapAll
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~wrapInner
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~replaceWith
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~replaceAll
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~remove
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~destroy
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~empty
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~clone

qooxdoo Documentation, Release 1.6

Effects

The effects module in jQuery and qooxdoo are not so similar, so a comparison method for method is not the best way
to describe them. The main function in jQuery to handle effects is animate(). Here are the arguments that you can pass
to it:

• a map of properties and their values. ex: {width: 100,height: ’200%’,left:
’+=100’,opacity: 0.9}. you can give absolute values {width: 100}, and if the property
is already at that value the effect does not run for that property, or you can give a relative value {left:
’+=100’}.

• a duration how long the effect will be running

• easing : the name of the function that will tell the effect how it will progress

• complete : the function that will be called when the effect is done

• step : a function that will be called on every step of the transition

• queue : a flag that will indicate if the effect will be added in the effect queue or will start immediately

• specialEasing : defines special easing function for each property in effect.

In qooxdoo, we have qx.fx.Base class which all effects extend, and if you want something custom, this is the one to
build upon. Both have handy functions/classes for widely used effects: hide(), show(), toggle(), fadeIn(),
fadeOut(), fadeTo()

An easy translation between the 2 fx modules is listed below:

• the map of properties in jQuery does not have a similar map in qooxdoo. The properties are specified in each
effect class as considered fit for the effect. qx.fx.effect.core.Style works on a single property passed as argu-
ment in the constructor, qx.fx.effect.core.Scale works on top,left,width,height and fontSize properties declared
internally.

• duration is a property in qx.fx.Base so it can be set with setDuration() method.

• easing is transition in qooxdoo and can be set with setTransition() in qx.fx.Base

• complete is finish in qooxdoo and it is an event. you specify the jquery complete handler function like this:
qx.fx.Base.addListener(‘finish’,Func);

• step is update in qooxdoo and it is an event.

• in addition to these 2 events, qooxdoo has setup event, and you can handle it when the effect starts.

• queue. if you want to queue an effect in qooxdoo you would use qx.fx.queue.Queue class, and add the effect
there. jQuery has some functions to handle the queue like queue() to get the effects left to run, dequeue() to
execute the next effect in the queue, clearqueue() to remove all effects left in the queue. These functions are not
found in qooxdoo’s Queue class.

• specialEasing. not needed per se, as we define the transition function for each effect we create.

jQuery has a way to terminate all animations by setting jQuery.fx.off = true, also it has a way to specify the speed of
the animations by jQuery.fx.interval, which unfortunately is a global one - the corresponding property in qooxdoo is
fps and can be set per effect.

stop() is the jQuery function to terminate animation, end() is the method for qooxdoo. You can get all elements
being animated by using :animated selector in jQuery only. qooxdoo has no such selector, one would have to manually
keep a collection of these elements.

4.3. Technical Topics 139

qooxdoo Documentation, Release 1.6

Utilities

Both libraries have some useful functions that come in handy.

jQuery.support has some properties to check for the existence of some browser featues/bugs. This was added in
1.3 replacing properties like jQuery.boxModel with jQuery.support.boxModel

• qx.core.Environment.get("css.boxmodel") in qooxdoo. Many of these properties do not exist in
qooxdoo, where each method hides this stuff from the user and takes care of browser inconsistencies on its own,
without relying on such global properties. Here are some of them:

• jQuery.support.changeBubbles - change event bubbles up the DOM tree

• jQuery.support.cssFloat - name of the property containing the CSS float value is .cssFloat

• jQuery.support.hrefNormalized - .getAttribute() method retrieves the href attribute of elements un-
changed or full URI

• jQuery.support.htmlSerialize - browser is able to serialize/insert <link> elements using the .inner-
HTML

There is also a browser property named jQuery.browser which can be replaced by qooydoos environment class.

Type utilities

Description jQuery qooxdoo
Checks if the object is Array jQuery.isArray() qx.lang.Type.isArray()
Checks if object has no keys jQuery.isEmptyObject()qx.lang.Object.isEmpty()
Checks if the object is a Function jQuery.isFunction() qx.lang.Type.isFunction()
Cheks if the Object is a pure js object [ex: {}] jQuery.isPlainObject()qx.lang.Type.isObject()
Checks to see if the argument is a window jQuery.isWindow() Not supported
Checks to see if a DOM node is within an XML document (or is an
XML document)

jQuery.isXMLDoc() Not supported

Checks to see if the object is a Boolean Not supported qx.lang.Type.isBoolean()
Checks to see if the object is a Date Not supported qx.lang.Type.isDate()
Checks to see if the object is an Error Not supported qx.lang.Type.isError()
Checks to see if the object is a Number Not supported qx.lang.Type.isNumber()
Checks to see if the object is a String Not supported qx.lang.Type.isString()
Checks to see if the object is a RegExp Not supported qx.lang.Type.isRegExp()

Other utilities

Description jQuery qooxdoo
Checks if a node is within another node jQuery.contains() qx.dom.Hierarchy.contains
Merge 2 objects into the first jQuery.extend() qx.lang.Object.merge
Merge 2 arrays into the first jQuery.merge() qx.lang.Array.append
Execute some JavaScript code globally jQuery.globalEval() Not supported
Filters an array jQuery.grep() qx.type.BaseArray.filter
Converts an array-like object to a true JS array jQuery.makeArray() qx.lang.Array.toArray
Translate all items of an array to another array of items jQuery.map() qx.type.BaseArray.map
Serializes an array/object into a query string jQuery.param() qx.util.Serializer.toUriParameter
Parses a JSON object jQuery.parseJSON() qx.lang.Json.parse()
Removes duplicates from array jQuery.unique() qx.lang.Array.unique()
Trims a string jQuery.trim() qx.lang.String.trim
Returns the internal JavaScript Class of an object jQuery.type() qx.lang.Type.getClass()

140 Chapter 4. Low Level Framework

http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isArray
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Object~isEmpty
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isFunction
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isObject
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isBoolean
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isDate
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isError
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isNumber
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isString
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~isRegExp
http://demo.qooxdoo.org/current/apiviewer/#qx.dom.Hierarchy~contains
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Object~merge
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Array~append
http://demo.qooxdoo.org/current/apiviewer/#qx.type.BaseArray~filter
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Array~toArray
http://demo.qooxdoo.org/current/apiviewer/#qx.type.BaseArray~map
http://demo.qooxdoo.org/current/apiviewer/#qx.util.Serializer~toUriParameter
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Json~parse
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Array~unique
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.String~trim
http://demo.qooxdoo.org/current/apiviewer/#qx.lang.Type~getClass

qooxdoo Documentation, Release 1.6

In jQuery there are 2 functions to serialize form data: .serialize(), which makes a string suited for submission out of
the elements and their values, and .serializeArray() which makes an array out of them. The equivalent in qooxdoo is
the model of the qx.data.controller.Form.

Last 2 functions in utilities are noop() - the function that does nothing and sub() which duplicates jQuery global
variable in order to extend it without affecting the original jQuery object. No qooxdoo equivalent for these 2.

Events

Event module in the 2 libraries are similar, with few differences shown below: * in jQuery there is a concept of adding
an event to a collection in a “live” fashion - that means if the collection adds more elements to itself they automatically
get the event handlers, no need for a new call to bind(). this is represented by live(), die() functions.

• in jQuery you can delegate an event to be caught and handled in a root of a set of elements with delegate().
In qooxdoo this is default for certain events.

• jQuery.proxy() returns a function that will always have a particular context and this is used as event
handlers so that you can be sure what this stands for. In qooxdoo proxy() function is not needed as the
context is an argument for the addListener method and at that time you pass it.

• jquery has shortcuts for common events: blur(), click() have addListener(’blur’,handler)
and addListener(’click’.handler) in qooxdoo as possible counterparts. Also, hover() and
toggle() shortcuts get 2 handlers as arguments so that they can handle in & out states or hover and alternate
clicks for toggle. Just handy shortcuts, nothing more.

• in jQuert there is support for stopImmediatePropagation with
event.isImmediatePropagationStopped() and event.stopImmediatePropagation().

Description jQuery qooxdoo
Attaches a handler for an event jQuery.bind() addListener
Fires an event jQuery.trigger() qx.event.Registration.fireEvent
Fires an event without fireing the native event jQuery.triggerlHandler() Not supported
Attaches a handler once, then removes itself .one() addListenerOnce()
Removes a handler .unbind() removeListener()
Namespace of the event when it was fired event.namespace can be obtained through the context(this)
Data to add to an event event.data Not supported
Time when the event was fired event.timeStamp qx.event.type.Event.getTimeStamp()
Global error handler .error() qx.event.GlobalError.setErrorHandler

Data

jQuery has 2 method data() and removeData() to handle storage of arbitrary data associated with the matched
elements. As of jQuery 1.4.3 HTML 5 data - attributes will be automatically pulled in to jQuery’s data object that acts
as the storage. no qooxdoo API for it yet.

4.3. Technical Topics 141

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~addListener
http://demo.qooxdoo.org/current/apiviewer/#qx.event.Registration~fireEvent
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Object~addListenerOnce
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Collection~removeListener
http://demo.qooxdoo.org/current/apiviewer/#qx.event.type.Event~getTimeStamp
http://demo.qooxdoo.org/current/apiviewer/#qx.event.GlobalError~setErrorHandler

qooxdoo Documentation, Release 1.6

142 Chapter 4. Low Level Framework

CHAPTER

FIVE

GUI TOOLKIT

5.1 Overview

5.1.1 Widgets

Widgets are the basic building blocks of graphical user interfaces (GUIs) in qooxdoo. Each GUI component, such as a
button, label or window, is a widget and can be placed within an existing user interface. Each particular type of widget
is provided by a corresponding subclass of Widget, which is itself a subclass of LayoutItem.

Widget can be subclassed with minimal effort to create custom widgets. The entire layout handling and children
handling in this class is only available as “protected”. It is possible to add some public API as needed.

Another framework class which extends LayoutItem is Spacer. A spacer is an empty area, which may be used as a
temporary placeholder that is to be replaced later, or explicitly as a flexible part in certain dynamic UI designs.

To structure an interface it is common to insert widgets into each other. Each child is displayed within the screen area
occupied by its parent. The hierarchical structure is also used to hide or show specific areas. This means for instance,
that hiding a parent hides its children as well. Another example would be when a widget is being disposed, all the
child widgets it contains are automatically being disposed as well.

5.1.2 Composites

As mentioned a few sentences above the normal Widget does not have public methods to manage the children. This
is to allow the normal Widget to be used for inheritance. To allow the creation of structures in applications, the
Composite was created.

Composite extends Widget and publishes the whole children and layout management of the Widget to the pub-
lic. Typically it is used as a container for other widgets. Children can be managed through the methods add(),
remove(), etc. In application code Composites are used to structure the interface.

5.1.3 Roots

A special category of widgets are the root widgets. These basically do the connection between the classic DOM and
the qooxdoo widget system. There are different types of roots, each individually tuned for the requirements in the
covered use case.

First of all every application developer needs to decide if an application should be standalone e.g. working with a
minimal set of classic HTML or will be integrated into an maybe full-blown web page. Developers of an standalone
application normally have no problem to give the control to the toolkit (maybe even enjoy it to give away this respon-
sibility), but this would not work for integrating qooxdoo into an existing web page layout.

143

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Spacer
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.container.Composite

qooxdoo Documentation, Release 1.6

A standalone application normally only uses a really slimmed down set of HTML (in fact the file only functions as a
wrapper to load the application code). It normally does not include any CSS files and often comes with an empty body
element. In fact even simpler elements like headers, footers etc. are created using widgets (so they may benefit from
typical qooxdoo features like internationalisation, theming etc.).

• Application: Build full-blown application from scratch. Target audience are developers of a completely qooxdoo
based application.

• Page: Build applications as isles into existing content. Ideal for the more classic web developer. Needs to bring
in know how of HTML & CSS for non-qooxdoo content.

Both roots are attached directly to the document. The Application is automatically stretched to the full size of the
window and this way allows to position elements in relation to the right or bottom edge etc. This is not possible using
the Page root.

The instantiation of the required root widget is normally nothing the developer has to do. It is done by the application
class the developer chooses to extend. The next chapter will explain the concept behind applications in detail.

As even the Page root is attached to the document it would be still not possible to place children into a specific existing
column or box into the existing layout. However the developer of the web page may use any number of optional isles
to insert content into an existing layout (built with classic HTML markup). The isles are named Inline. They need an
existing DOM element to do their work (maybe using some type of getElementById). The reason for the overall
need, even when working with these isles, for the Page root is that all dynamically floating elements like tooltips,
menus, windows etc. are automatically placed into this root. This makes positioning of such elements a lot easier.

5.1.4 Applications

The application is the starting point of every qooxdoo application. Every qooxdoo application should also come with a
custom application class. The application is automatically initialized at the boot phase of qooxdoo (to be exact: when
all required JavaScript packages are loaded).

The first method each developer needs to get used to is the main method. It is automatically executed after the
initialization of the class. Normally the method is used to initialize the GUI and to load the data the application needs.

There are different applications which could be used as a starting point for a custom application:

• Standalone: Uses the Application root to build full blown standalone qooxdoo applications

• Inline: Uses the Page root to build traditional web page based application which are embedded into isles in the
classic HTML page.

• Native: This class is for applications that do not involve qooxdoo’s GUI toolkit. Typically they make only use
of the IO (“Ajax”) and BOM functionality (e.g. to manipulate the existing DOM).

5.2 Widgets Introduction

5.2.1 Widget

This is the base class for all widgets.

Features

• Integration with event system

• Focus handling

144 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.root.Application
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.root.Page
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.root.Inline
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.IApplication~main
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Standalone
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Inline
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Native

qooxdoo Documentation, Release 1.6

• Drag and drop

• Auto sizing

• Theming

• Tool tips

• Context menus

• Visibility handling

• Sub widget management

Description

The widget is the base class for all qooxdoo widgets. It contains the widget system’s core functionality.

Diagram

A widget consists of at least three HTML elements. The container element, which is added to the parent wid-
get, has two child Elements: The “decoration” element and the “content” element. The decoration element has
a lower z-Index and contains markup to render the widget’s background and border using an implementation of
qx.ui.decoration.IDecorator. The content element is positioned inside the “container” element to respect
paddings and contains the “real” widget element.

Demos

There are no explicit widget demos since the widget is typically sub classed.

API

Here is a link to the API of the Widget:
qx.ui.core.Widget

5.2. Widgets Introduction 145

http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.core.Widget

qooxdoo Documentation, Release 1.6

5.2.2 Basic Widgets

Note: This chapter introduces some of the widgets found in qooxdoo. For a full list of widgets, please refer to the
Widget Reference.

Labels

Labels are one of the basic building blocks in applications. The qooxdoo Label supports two modes: One which
combines simple single line text content with the possibility to automatically render an ellipsis in cases where not
enough room is available. This is often the best choice for all types of simple labels and is the default mode in
qooxdoo. Through technical restrictions it is not possible to insert HTML in a so-configured instance. The other mode
allows rich content (HTML) and adds the option for multi-line content together with an advanced mechanism called
Height4Width which automatically re-wraps content based on the available width. This mode however cannot handle
automatic ellipsis (which makes less sense in multiline labels, but is also not technologically possible).

More details: Label

Images

The second building block of applications. The image class in qooxdoo is quite sophisticated. PNG transparency is
available in all browsers. Image data (e.g. format and dimension) is automatically pre-cached by the build system and
distributed to the application for optional performance (avoiding page reflow during application startup for example).

This data also makes it possible to allow semi-automatic image sprites, a feature which becomes more important in
larger applications. Image sprites combine multiple images (perhaps even with multiple states) in a single image
instance. Only the relevant part is shown, all other states or images are cropped. This has positive effects on the
latency (e.g. number of HTTP requests needed) and also improves the runtime performance (switching a state in an
image sprite is much faster than replacing the source of an image instance). Image sprites can be introduced in any
application at any time without changing the application code. The original image path is automatically interpreted as
a clipped image source with the needed offsets. Please note that this feature largely depends on qooxdoo’s tool chain
which is required to generate the image data for the client.

A major restriction of this technology is that the options to resize images on the client side are crippled (the normal
image is rendered through a background-image definition and allows no stretching at all). The alternate mode renders
the image using a normal image element. This is a good alternative whenever a part of the application depends on this
scaling feature but should not be used unless necessary.

More details: Image

Atoms

Atoms have been in qooxdoo for quite some time now. Basically, this widget combines an Image with a Label
and allows some alignment options for them. Both content types are optional and toggle-able. The Atom supports
shrinking like the Label while keeping the image intact. Atoms are used by many higher level widgets like Buttons (in
Tab Views, Toolbars, ...) or List Items etc.

More details: Atom

Buttons

The Button is basically an Atom with some additional events. All relevant rendering features are already provided by
the Atom. Several variants of the Button are available: Repeat, Radio or Toggle Button.

146 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

The Button can be connected to a Command (a class to work with key bindings etc.) and fires an execute event when
clicked (or activated via the keyboard). The Repeat Button fires the execute event in an interval while being pressed.
The Toggle Button (which toggles between checked and unchecked) is an exception to this and fires a change event
on each transition of the checked property.

More details: Button

Text Fields

The Text Field is one of the most commonly used form elements. It fires two events: The input event is fired on
every keystroke or other type of text modification. This event fires “live”, i.e. whenever a modification is made. If
the application does not need this level of detailed information, it should use the change event which fires after the
modification is done, typically after the field has lost focus.

The Text Field supports basic label alignment to left, center or right. Preventing user inputs is possible
through the property enabled or readOnly. Disabling a widget greys it out and makes it unresponsive for all
types of interaction while readOnly only prevents the modification of the value and normally has no special visual
indication when enabled.

More details: TextField

Popups

Popups and Tooltips are comparable in some way. Both are rendered above other content (while tooltips are even
above Popups). Both widgets are automatically inserted into the application root widget (can be overridden when
needed).

Popups may be used for notification panels or a type of modal sub dialog. Basically they are just a container (with a
configurable layout) which lays above normal content.

By default, popups are automatically hidden if the user interacts with some other part of the application. This behavior
is controllable through the autoHide property. Popups are automatically moved back inside the viewport. In fact, it
is not possible to place Popups outside the viewport (not even partly). This behavior makes sense in almost every case
and improves the usability of popups in general.

With bringToFront and sendToBack the popups’ zIndex can be controlled in relation to other visible popups.

More details: PopUp

Tooltips

Tooltips are basically Popups with an Atom in them. But Tooltips improve on many of the features of the normal
Popup. The automatic positioning support as mentioned for the Popups supports offsets as well and automatically
moves the Tooltip to the best possible side in relation to the mouse cursor’s position.

Although it’s generally not necessary, every popup can be configured with an individual timeout. This is useful when
building different type of tooltips e.g. to display system notifications etc.

More details: ToolTip

5.2.3 Interaction

Register listeners

To register listeners to a widget or other qooxdoo object just call addListener() with the given event type and
callback method on them. The method will be executed every time the event occurs. Some types of events will bubble

5.2. Widgets Introduction 147

qooxdoo Documentation, Release 1.6

up the parent widget chain (such as mouse events, ...) while others are only fired on the original object (e.g. property
changes, ...). A typical registration might look like this:

obj.addListener("changeColor", this._onChangeColor, this);

The first parameter is the name of the event. The events supported by an object are listed in the API documentation
of each class in the “Events” section. The second argument is a pointer to a function to call. The function can also be
defined inline (in a closure). The third argument defines the context in which the function is executed. This argument
is optional and defaults to the object which is listened to, e.g. a listener on a button will call a function on the button.

The method is called with the event object as the first and only argument. The event object contains all information
about the target and state of the event and also contains some other useful data: Mouse events may contain mouse
coordinates while focus events may contain the focused element. Data events typically contain the current value of the
data field listened to.

Please note that event objects are automatically pooled after their dispatch. This is mainly for performance reasons;
event objects are reused during the application runtime. That’s why keeping references to event instances is not a good
idea! If some of the data is needed later during the application runtime it is best to store the actual data and not the
event object, e.g. store the coordinates instead of the mouse event object.

Event Phases

In the browser most user input events like mouse or keyboard events are propagated from the target element up to
the document root. In qooxdoo these events bubble up the widget hierarchy. This event propagation happens in two
phases, the capturing and the bubbling event phase. The last parameter of the addListener(type, listener,
context, capture) method defines whether the listener should be attached to the capturing (true) or bubbling
(false) phase.

In the capturing phase, the event is dispatched on the root widget first. Then it is dispatched on all widgets down
the widget tree until the event target is reached. Now the event enters the bubbling phase. In this phase the event is
dispatched in the opposite direction starting from the event target up to the root widget.

Most of the time only the bubbling phase is used but sometimes the capturing phase can be very useful. For example
a capturing listener for “mousedown” events on the root widget is guaranteed to receive every “mousedown” event
even if the target widget calls stopPropagation() on the event. Further it can be used to block events from sub
widgets.

Mouse Events

qooxdoo supports all the typical mouse events: mousedown, mouseup, click and dblclick as well as
mouseover and mouseout. For most action-related widgets execute is the better choice than click (see the
section about basic widgets). All these events behave identically in all supported browsers, even the sequence in which
they are fired is identical. All of them come with a usable target and sometimes even with a relatedTarget for
mouseover and mouseout events.

Every mouse event propagates the screen (e.g. getScreenLeft()), document (e.g. getDocumentLeft())
or viewport (e.g. getViewportLeft()) coordinates through the available getters. The getWheelDelta()
delta method provides information about the scroll amount of a mousewheel event. Some widgets like Spinners or
SelectBoxes make use of this event already.

During every mouse event it is possible to check the status of modifier keys through the methods
isCtrlPressed(), isAltPressed() or isShiftPressed(). The pressed button can be detected by call-
ing one of the methods isLeftPressed(), isMiddlePressed() or isRightPressed() on the mouse
event.

See the API documentation of the MouseEvent for a full list of all available methods.

148 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.event.type.Mouse

qooxdoo Documentation, Release 1.6

Event Capturing

Usually only the widget underneath the mouse cursor will receive mouse events. This can be a problem in drag
operations where the mouse cursor can easily leave the dragged widget. This issue can be resolved in qooxdoo by
declaring this widget a capturing widget using the widget’s capture() method.

If a widget is a capturing widget, all mouse events will be dispatched on this widget, regardless of the mouse cursor’s
position. Mouse capturing is active until either a different widget is set to capture mouse events, the browser loses
focus or the user clicks the left mouse button. If a widget loses its capture state a losecapture event is dispatched
on the widget.

Internally, qooxdoo uses mouse capturing in menus, split panes or sliders for example.

Keyboard Support

DOM3-like event handling was the prototype for qooxdoo’s key event support. This means that key identifiers can be
used (instead of un-unified key codes) which is much more comfortable than what is known from most web application
frameworks. Basically each key on the keyboard has a name like Ctrl, Shift, F3 or Enter. A complete list of all
supported keys is available in the API documentation.

All the typical key sequence events keyup, keydown and keypress support the key identifier. The keypress
event is repeated during the time the key is pressed. That’s why keypress is the best candidate for most action
related keyboard events. Only use keyup and keydown when you really depend on the status of the key.

To handle character inputs e.g. on text boxes, there is a special keyinput event which has nice unified accessors,
getChar() and getCharCode(), to detect the pressed character. This even automatically respects the effects
modifier keys have, supporting e.g. German umlauts. The API lists all available methods of the KeyInput event.

Working with Commands

Commands (API) are used to bundle a command to be used by multiple buttons. They can also be used to define a
global shortcut to be used for this action.

Creating new commands is as easy as it can be. A shortcut can simply be defined through the constructor, e.g.:

var find = new qx.event.Command("Ctrl+F");
find.addListener("execute", this._onFind, this);

The command can easily be attached to many types of Buttons etc. Some of them, like the MenuButtons, automat-
ically display the configured shortcut as well. As seen above, the Commands also make use of the key identifiers.

Focus Handling

Good keyboard support also means good focus support. One major feature is the seamless integration between DOM
focus handling and qooxdoo’s focus handling. Both system communicate with each other. This makes it possible to
integrate qooxdoo into normal web pages while still supporting the advanced focus features qooxdoo has to offer in
qooxdoo-powered isles.

Focus handling in qooxdoo also means sophisticated support for the Tab key. While qooxdoo can also use the
functionality provided by the browser, it adds its own layer for tab focus handling by default. This layer supports
focus roots: A focus root is basically a widget which manages its own tab sequence. This is frequently used for
many types of windows inside complex applications: Instead of leaving the window when reaching the last of its child
widgets, the focus is moved back to the first child widget. The tab handling in qooxdoo is based on coordinates of
each widget on the screen. It follows the visible structure and not the internal application (or even markup) structure.
This is often seen as a huge benefit as it improves the usability of such applications out-of-the-box. It is also possible

5.2. Widgets Introduction 149

http://demo.qooxdoo.org/1.6/apiviewer/#qx.event.type.KeySequence~getKeyIdentifier
http://demo.qooxdoo.org/1.6/apiviewer/#qx.event.type.KeyInput
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Command

qooxdoo Documentation, Release 1.6

to define a tabIndex on widgets which should be reachable in a static hard-coded way. It is not advisable to use
this feature too much. The automatic handling works quite well out of the box without hard-wiring every widget to a
specific tab position.

To make a widget focusable just enable the property focusable (API) on it. For most widgets, this will also
means that the widget is reachable using the Tab key, but this depends on the widget’s implementation of the method
isTabable().

Every widget can function as a focus root. To register a widget as a focus root just call the method addRoot() of
the FocusHandler like this:

qx.ui.core.FocusHandler.getInstance().addRoot(myWidget);

Activation is related to focus. While focus is limited to widgets which are marked as focusable, any widget can
be activated. Usually, the activation moves around while clicking on widgets (during the mouseup event). The
focus is applied to the next focusable parent while the activation directly happens on the widget that was clicked on.
Activation is mainly used for keyboard support (key events start bubbling from the active widget). Compared to the
focus, there is no visual highlighting for this state. To change the currently focused or active widget just call focus()
or activate():

myInputField.focus();

The properties keepFocus and keepActive are targeted more towards advanced users and developers of custom
widgets. Both prevent the focus or active state from moving away (from the widget that currently has it) to the
widget which has the specified property disabled. This is appropriate for complex widgets like a ComboBox where
the activation should be kept on the ComboBox itself when selecting items from the dropdown list.

5.2.4 Resources

Resources comprise images, icons, style sheets, Flash files, helper HTML files, and so forth. The framework itself
provides many icons and some other useful resources you can use right away in your application without any cus-
tomization. This article however explains how to specify and use custom resources for your application.

Technical overview

Resources live in the source/resource/<namespace> subtree of each library. You explicitly reference a re-
source in your application code by just naming the path of the corresponding file under this root (This is also referred
to as the resource id).

So if there is a resource in your “myapp” application under the path
myapp/source/resource/myapp/icons/tray.png you would refer to it in your application code
with myapp/icons/tray.png.

To find the corresponding file during a build, qooxdoo searches all those paths of all the libraries your application is
using. The first hit will be regarded as the resource you want to use. (During the generation of a build version of
your app, these resource files will be copied to the build folder, so your build version will be self-contained).

The libraries are searched in the order they are declared in your config.json file. This usually means that your own re-
source folder comes first, then the framework’s resource folder, and then the resource folders of all further libraries you
have included. This way, you can shadow resources of like names, e.g. by adding a file qx/static/blank.gif
under your source/resource folder you will shadow the file of the same resource id in the framework.

Declaring resources in the code

You have to declare the resources you wish to use in your application code in an #asset compiler hint near the top
of your source file.

150 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget~focusable

qooxdoo Documentation, Release 1.6

/* ***

#asset(myapp/icons/16/folder-open.png)

*/

This is essential, since these hints are evaluated during the compile step, which searches for the corresponding files,
generates appropriate URIs to them and copies them to the build folder.

Instead of adding meta information for each individual resource, you may as well use simple (shell) wildcards to
specify a whole set of resources:

/* ***

#asset(myapp/icons/16/*)

*/

This is all you need to configure if your application code uses any of the icons in the given folder.

Using resources with widgets

Once you’ve declared the resource in your code, you can equip any compatible widget with it.

Here’s an example:

var button = new qx.ui.form.Button("Button B", "myapp/icons/16/folder-open.png");

Using qooxdoo icons with widgets

If you want to use some of the icons as resources that are part of the icon themes that come with qooxdoo, there are
the following three ways to do so:

1. Copy the icons you are interested in from the original location in the qooxdoo framework to the local resource
folder of your application. You are now independent of the qooxdoo icon theme folders and can manage these
icons as you would any other custom images.

2. Use a fully-qualified path that points to the qooxdoo resource folder. This solution would contain the icon
theme’s name explicitly.

3. Use a macro to get the icons from the current theme. This would allow for a later change of icon themes at
the config file level, without the need to adjust any resource URIs in your application code. The Generator
documentation explains how to declare these macros.

/*
#asset(myapp/icons/16/utilities-dictionary.png)
#asset(qx/icon/Oxygen/16/apps/utilities-dictionary.png)
#asset(qx/icon/${qx.icontheme}/16/apps/utilities-dictionary.png)

*/

...

var button1 = new qx.ui.form.Button("First Button", "myapp/icons/16/utilities-dictionary.png");
var button2 = new qx.ui.form.Button("Second Button", "qx/icon/Oxygen/16/apps/utilities-dictionary.png");
var button3 = new qx.ui.form.Button("Third Button", "icon/16/apps/utilities-dictionary.png");

When you use the third method above and you do not use the Modern theme, you must edit config.json in order
to have the meta theme’s icons and the explicitly given icon theme in sync:

5.2. Widgets Introduction 151

qooxdoo Documentation, Release 1.6

{
"name" : "myapp",

...

"let" :
{
"APPLICATION" : "myapp",
...
"QXTHEME" : "qx.theme.Classic",
"QXICONTHEME" : ["Oxygen"],
...
"ROOT" : "."

}
}

Obtaining the URL for a resource

To obtain a URL for a resource, use the ResourceManager:

var iframe = new
qx.ui.embed.Iframe(qx.util.ResourceManager.getInstance().toUri("myapp/html/FAQ.htm"));

5.2.5 Selection Handling

The framework contains several widgets which support selection handling. These are divided into widgets that support
Single Selection and others that support Multi Selection. A widget which supports multi selection also
supports single selection.

Here is a list of widgets which support single and/or multi selection:

• Multi Selection:

– Tree (API)

– List (API)

• Single Selection:

– SelectBox (API)

– RadioGroup (API)

– TabView (API)

– Stack (API)

152 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.util.ResourceManager
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Tree.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tree.Tree
http://demo.qooxdoo.org/1.6/demobrowser/#widget~List.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.List
http://demo.qooxdoo.org/1.6/demobrowser/#widget~SelectBox.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.SelectBox
http://demo.qooxdoo.org/1.6/demobrowser/#widget~RadioButton.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.RadioGroup
http://demo.qooxdoo.org/1.6/demobrowser/#widget~TabView.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tabview.TabView
http://demo.qooxdoo.org/1.6/demobrowser/#widget~StackContainer.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.container.Stack

qooxdoo Documentation, Release 1.6

Selection Interfaces

Event

Both selections fire a changeSelection event if the selection has changed. Listeners can register with the event
to be notified about the changes. The event contains an array with the newly selected widgets. If the array is empty,
that means no widgets are selected.

list.addListener("changeSelection", function(e)
{

var selection = e.getData();
for (var i = 0; i < selection.lenght; i++) {
this.debug("Selected item: " + selection[i]);

}
}, this);

Selection Methods

The ISingleSelection interface specifies the methods for single selection handling. Since the methods of the
single selection interface are re-used, the IMultiSelection only extends the interface with methods for multi
selection handling.

Re-using the methods requires a uniform handling for setting and getting the current selection. This has been achieved
by using an array for the selection handling, see setSelection and getSelection.

Single Selection

The listed single selection widgets above implement the ISingleSelection. To implement the behavior they use
the MSingleSelectionHandling mixin. This mixin offers the methods for selection handling and also initializes the
manager for selection management.

The widget itself configures the mixin to allowing an empty selection or not. Dependent on the configuration,
resetSelection clears the current selection (empty array) or selects the first selectable element.

User interactions (mouse and keyboard) are managed from the widget, which only calls the selection methods if the
user interaction has an effect on the selection. So the selection management and the user interaction handling are
separated. This is one thing that has changed with the new selection API.

Multi Selection

The multi selection implementation has hardly changed at all. The widgets supporting multi selection, also listed
above, have already used a mixin called MSelectionHandling for selection handling. Like the mixin for the single

5.2. Widgets Introduction 153

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.MSingleSelectionHandling
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.MSelectionHandling

qooxdoo Documentation, Release 1.6

selection, it offers the selection methods and initializes the selection manager. The mixin has only been changed to
conform to the new IMultiSelection interface.

Selection Modes

Due to the small changes the configuration for the selection mode hasn’t changed. The widgets also support the
property selectionMode with these different modes:

• single: Only one element or none at all can be selected.

• one: Exactly one item is selected if possible. The first selectable item is selected per default.

• multi: Multiple items can be selected by using the modifier keys together with mouse or keyboard actions. This
type also allows empty selections.

• adaptive: Easy Web-2.0 selection mode: multiple items can be selected without modifier keys. Empty selec-
tions are possible.

Note: Multi and Adaptive selections dealing with selection ranges, Single and One dealing with one selected item.

list.setSelectionMode("multi");

Selection Options

These options change the way a selection is created or modified. By default, items can be selected by holding down the
mouse button and hovering them or by holding down the modifier key and pressing the arrow keys to traverse them.

• Quick: One item can be selected by hovering it (no need to click on it or hit keys) Only possible for the modes
single and one.

• Drag: Multiselection of items through dragging the mouse in pressed states. Only possible for the modes multi
and additive.

list.setDragSelection(true);

How to use the selection API

Single Selection

The example below shows how to use the single selection API. This example uses the SelectBox widget:

// creates the SelectBox
var selectBox = new qx.ui.form.SelectBox();
this.getRoot().add(selectBox, {top: 20, left: 20});

// registers the listener
selectBox.addListener("changeSelection", function(event) {

this.debug("Selected (event): " + event.getData()[0].getLabel());
}, this);

// creates the items and select one of them
for (var i = 0; i < 10; i++)
{

var item = new qx.ui.form.ListItem("ListItem" + i);

154 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.SelectBox

qooxdoo Documentation, Release 1.6

selectBox.add(item);

if (i == 5) {
selectBox.setSelection([item]);

}
}

this.debug("Selected (selectBox): " + selectBox.getSelection()[0].getLabel());

The output should be:

(1) Selected (event): ListItem0
(2) Selected (event): ListItem5
(3) Selected (selectBox): ListItem5

The SelectBox’s implementation doesn’t allow empty selections, so if the first item is added to the SelectBox it will
be selected (1). (2) occurs due to the selection and (3) from getSelection.

Multi Selection

The next example uses the List widget:

// creates the List and sets the selection mode
var list = new qx.ui.form.List();
list.setSelectionMode("multi");
this.getRoot().add(list, {top: 20, left: 20});

// registers the listener
list.addListener("changeSelection", function(event) {

this.debug("Selection (event): " + event.getData());
}, this);

// creates the items
for (var i = 0; i < 10; i++)
{

var item = new qx.ui.form.ListItem("ListItem" + i);
list.add(item);

}

// sets selection
list.setSelection([list.getChildren()[1], list.getChildren()[4]]);

this.debug("Selection (list): " + list.getSelection());

The output should look like this:

(1) Selection (event): qx.ui.form.ListItem[1p],qx.ui.form.ListItem[2a]
(2) Selection (list): qx.ui.form.ListItem[1p],qx.ui.form.ListItem[2a]

5.2.6 Drag & Drop

Drag & Drop is one of the essential technologies in today’s applications. An operation must have a starting point (e.g.
where the mouse was clicked), may have any number of intermediate steps (widgets that the mouse moves over during
a drag), and must either have an end point (the widget above which the mouse button was released), or be canceled.

5.2. Widgets Introduction 155

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.List

qooxdoo Documentation, Release 1.6

qooxdoo comes with a powerful event-based layer which supports drag&drop with full data exchange capabilities.
Every widget can be configured to cooperate with drag&drop be it as sender (draggable), receiver (droppable) or both.
A sender (drag target) can send data to any receiver (drop target).

You may like to see an example first:

• Drag&Drop for Lists

Basics

To enable Drag & Drop the properties draggable and droppable must be enabled on the specific widgets. For list type
sources or targets it’s often enough to make the top-level widget drag- or droppable e.g. the list instead of the list
items.

var dragTarget = new qx.ui.form.List;
dragTarget.setDraggable(true);

var dropTarget = new qx.ui.form.List;
dropTarget.setDroppable(true);

The basic drag&drop should start working with these properties enabled, but it will show the no-drop cursor over all
potential targets. To fix this one needs to register actions (and optionally data types) supported by the drag target. This
can be done during the dragstart event which is fired on the drag target:

dragTarget.addListener("dragstart", function(e) {
e.addAction("move");

});

The drop target can then add a listener to react for the drop event.

dropTarget.addListener("drop", function(e) {
alert(e.getRelatedTarget());

});

The listener now shows an alert box which should present the identification ID (classname + hash code) of the drag
target. Theoretically this could already be used to transfer data from A to B.

Data Handling

qooxdoo also supports advanced data handling in drag&drop sessions. The basic idea is to register the supported drag
data types and then let the drop target choose which one to handle (if any at all).

To register some types write a listener for dragstart:

source.addListener("dragstart", function(e)
{

e.addAction("move");

e.addType("qx/list-items");
e.addType("html/list");

});

This is basically only the registration for the types which could theoretically be delivered to the target. The IDs used
are just strings. They have no special meaning. They could be identical to typical mime-types like text/plain but
there is no need for this.

156 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/demobrowser/#ui~DragDrop.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget~draggable
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget~droppable

qooxdoo Documentation, Release 1.6

The preparation of the data (if not directly available) is done lazily by the droprequest event which will explained
later. The next step is to let the target work with the incoming data. The following code block appends all the dropped
children to the end of the list.

target.addListener("drop", function(e)
{

var items = e.getData("qx/list-items");
for (var i=0, l=items.length; i<l; i++) {
this.add(items[i]);

}
});

The last step needed to get the thing to fly is to prepare the data for being dragged around. This might look like the
following example:

source.addListener("droprequest", function(e)
{

var type = e.getCurrentType();

if (type == "qx/list-items")
{
var items = this.getSelection();

// Add data to manager
e.addData(type, items);

}
else if (type == "html/list")
{
// TODO: support for HTML markup

}
});

Support Multiple Actions

One thing one might consider is to add support for multiple actions. In the above example it would be imaginable to
copy or move the items around. To make this possible one could add all supported actions during the drag event.
This might look like the following:

source.addListener("dragstart", function(e)
{

// Register supported actions
e.addAction("copy");
e.addAction("move");

// Register supported types
e.addType("qx/list-items");
e.addType("html/list");

});

The action to use is modifiable by the user through pressing of modifier keys during the drag&drop process.
The preparation of the data is done through the droprequest as well. Here one can use the action (call
e.getCurrentAction() to get the selected action) to apply different modifications on the original data. A
modified version of the code listed above might look like the following:

source.addListener("droprequest", function(e)
{

var action = e.getCurrentAction();

5.2. Widgets Introduction 157

qooxdoo Documentation, Release 1.6

var type = e.getCurrentType();
var result;

if (type === "qx/list-items")
{
result = this.getSelection();

if (action == "copy")
{

var copy = [];
for (var i=0, l=result.length; i<l; i++) {
copy[i] = result[i].clone();

}
result = copy;

}
}
else if (case == "html/list")
{
// TODO: support for HTML markup

}

// Remove selected items on move
if (action == "move")
{
var selection = this.getSelection();
for (var i=0, l=selection.length; i<l; i++) {

this.remove(selection[i]);
}

}

// Add data to manager
e.addData(type, result);

});

As known from major operating systems, exactly three actions are supported:

• move

• copy

• alias

which could be combined in any way the developer likes. qooxdoo renders a matching cursor depending on the
currently selected action during the drag&drop sequence. The event dragchange is fired on the source widget on
every change of the currently selected action.

Runtime checks

There are a few other pleasantries. For example it is possible for droppable widgets to ignore a specific incoming
data type. This can be done by preventing the default action on the incoming dragover event:

target.addListener("dragover", function(e)
{

if (someRunTimeCheck()) {
e.preventDefault();

}
});

158 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

This could be used to dynamically accept or disallow specific types of drop events depending on the application status
or any other given condition. The user then gets a nodrop cursor to signal that the hovered target does not accept the
data. To query the source object for supported types or actions one would call the methods supportsAction or
supportsType on the incoming event object.

Something comparable is possible during the dragstart event:

source.addListener("dragstart", function(e)
{

if (someRunTimeCheck()) {
e.preventDefault();

}
});

This prevents the dragging of data from the source widget when some runtime condition is not solved. This is espe-
cially useful to call some external functionality to check whether a desired action is possible. In this case it might also
depend on the other properties of the source widget e.g. in a mail program it is possible to drag the selection of the
tree to another folder, with one exception: the inbox. This could easily be solved with such a feature.

Drag Session

During the drag session the drag event is fired for every move of the mouse. This event may be used to “attach” an
image or widget to the mouse cursor to indicate the type of data or object dragged around. It may also be used to render
a line during a reordering drag&drop session (see next paragraph). It supports the methods getDocumentLeft and
getDocumentTop known from the mousemove event. This data may be used for the positioning of a cursor.

When hovering a widget the dragover event is fired on the “interim” target. When leaving the widget the
dragleave event is fired. The dragover is cancelable and has information about the related target (the source
widget) through getRelatedTarget on the incoming event object.

Another quite useful event is the dragend event which is fired at every end of the drag session. This event is fired in
both cases, when the transaction has modified anything or not. It is fired when pressing Escape or stopping the session
any other way as well.

A typical sequence of events could look like this:

• dragstart on source (once)

• drag on source (mouse move)

• dragover on target (mouse over)

• dragchange on source (action change)

• dragleave on target (mouse out)

• drop on target (once)

• droprequest on source (normally once)

• dragend on source (once)

Reordering items

Items may also be reordered inside one widget using the drag&drop API. This action is normally not directly data
related and may be used without adding any types to the drag&drop session.

reorder.addListener("dragstart", function(e) {
e.addAction("move");

});

5.2. Widgets Introduction 159

qooxdoo Documentation, Release 1.6

reorder.addListener("drop", function(e)
{

// Using the selection sorted by the original index in the list
var sel = this.getSortedSelection();

// This is the original target hovered
var orig = e.getOriginalTarget();

for (var i=0, l=sel.length; i<l; i++)
{
// Insert before the marker
this.addBefore(sel[i], orig);

// Recover selection as it gets lost during child move
this.addToSelection(sel[i]);

}
});

5.2.7 Inline Widgets

This page describes how you can use qooxdoo widgets inside HTML-dominated pages. This use case is different from
creating a regular, “standalone” qooxdoo application.

Target Audience

Integrating qooxdoo widgets into existing HTML pages could be interesting to all users who already have (many)
existing pages, often some kind of “portal”, and therefore don’t want to transform these into a standalone rich Internet
application (RIA).

Online Demos

Take a look at the online demos to see the use of inline widgets in action.

• Absolute positioning demo

• Page flow using Inline

• Dynamic resize for Inline

• Inline window

Set Up An Inline Application

An inline application is set up by using the create-application script described in the Hello World section.
You just have to add the additional option -t with the value inline and you’re done.

/opt/qooxdoo-sdk/tool/bin/create_application.py -n myapp -t inline

Once executed you get a skeleton application which is ready-to-use to develop an inline application. The skeleton also
demostrates the different integration approaches which are described in the next section.

160 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/demobrowser/demo/root/Page.html
http://demo.qooxdoo.org/1.6/demobrowser/demo/root/Inline.html
http://demo.qooxdoo.org/1.6/demobrowser/demo/root/Inline_Dynamic_Resize.html
http://demo.qooxdoo.org/1.6/demobrowser/demo/root/Inline_Window.html

qooxdoo Documentation, Release 1.6

Ways of Integration

There are basically two ways to integrate a qooxdoo widget into an existing HTML-dominated page:

• positioning a widget with absolute coordinates (maybe overlaying existing content)

• adding the widget within the page flow by using an existing DOM node as an isle

Which way you should choose depends on what you wish to achieve. Technically both share the same foundation.

Instead of using qx.application.Standalone as a base application class you need to extend from
qx.application.Inline as a starting point. So basically your (empty) application looks like this:

qx.Class.define("myPortal.Application",
{

extend : qx.application.Inline,

members :
{
main: function()
{

this.base(arguments);

// your code follows here
}

}
});

Absolute Positioning

Adding a widget to the page without regarding the page flow is a no-brainer. Just create the desired widget and add it
to the application root. As the application root is an instance of qx.ui.layout.Basic you can only use left and top
coordinates to position your widgets.

Note: Absolute positioning requires no existing DOM node in the target document.

qx.Class.define("myPortal.Application",
{

extend : qx.application.Inline,

members :
{
main: function()
{

this.base(arguments);

// add a date chooser widget
var dateChooser = new qx.ui.control.DateChooser();

// add the date chooser widget to the page
this.getRoot().add(dateChooser, { left : 100, top : 100 });

}
}

});

5.2. Widgets Introduction 161

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Basic

qooxdoo Documentation, Release 1.6

Page Flow

However, the former solution won’t fit for e.g. a portal where the page is divided into several parts. In this case you
won’t have any absolute coordinates you could work with reliably.

To add widgets at certain locations inside the page you can create or reuse DOM nodes which act as islands where the
qooxdoo widgets live in regard to the page flow.

Note: You need to define specific DOM nodes in your document which act as islands for the qooxdoo widgets.

Additionally if you use the dynamic mode (automatic resizing) it is important that the used DOM node is not styled
using CSS rules concerning the width and height attribute. Instead style your DOM node with inline styles, otherwise
the dynamic resizing won’t work correctly.

qx.Class.define("myPortal.Application",
{

extend : qx.application.Inline,

members :
{
main: function()
{

this.base(arguments);

// create the island by connecting it to the existing
// "dateChooser" DOM element of your HTML page.
// Typically this is a DIV as in <div id="dateChooser"></div>
var dateChooserIsle = new qx.ui.root.Inline(document.getElementById("dateChooser"));

// create the date chooser widget and add it to the inline widget (=island)
var dateChooser = new qx.ui.control.DateChooser();
dateChooserIsle.add(dateChooser);

}
}

});

5.2.8 Custom Widgets

Most widgets are built using a combination of pre-existing, more basic widgets. This is also true for custom widgets
made for a specific application or as an extension to the existing feature set of qooxdoo.

Inheritance Structure

A more complex widget usually extends the base class qx.ui.core.Widget. A widget can manage children using
a set of protected methods. Extending from a richer widget often has the side effect that the final class contains APIs
which do not make sense in the derived class anymore. Also be sure not to extend from Composite or a widget based
on this class. This is mainly because it has public methods for the normally internal layout and children handling and
would propagate all the internal information to the outside when children are added or the layout is modified by the
derived class.

A good example: Most rich text editors implemented in JavaScript make use of an iframe. One could imagine using
the Iframe class as a base to build such a component. The problem is that most of the methods and properties like
setSource or reload do not make a lot of sense on an editor component. It’s better to embed the needed widgets
into the outer widget to hide their functionality in the custom class.

162 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

The qooxdoo Spinner for example extends the Widget as well and adds a TextField and two RepeatButton
instances. The layout is done by a Grid layout. All the children and the chosen layout are hidden from the outside.
There are no public accessors for the layout or the children. This makes sense as no one is interested in the children of
a Spinner widget. These methods would also mean a lot of bloat added to the API of such an widget.

Setup Content

The following methods may be used to manage children:

• _getChildren

• _add, _addAt, _addBefore, _addAfter

• _remove, _removeAt, _removeAll

It is possible to use any layout available. To set up the layout just use _setLayout. To access it afterwards use
_getLayout.

For details refer to the API documentation of qx.ui.core.Widget.

Child Controls

qooxdoo supports a mechanism called child controls. A child control is a widget as part of another widget. Child
controls were introduced to have a common way of accessing these controls and to make it easy to refine them when a
class should be extended. Each child control is accessible using an identifier which is basically a string. By convention
these strings are all lower-case und use dashes to structure complex identifiers. Typical identifiers are button, icon
or arrow-up. Never slashes / as this might conflict with the appearance system.

Instances for the supported child controls are created dynamically as needed. A widget developer just needs to override
the method _createChildControlImpl, let the method work on the customized controls, and just call the super
class method when the incoming ID is not supported. For example, such a method might look like:

_createChildControlImpl : function(id)
{

var control;

switch(id)
{
case "icon":

control = new qx.ui.basic.Image;
this._add(control);
break;

}

return control || this.base(arguments, id);
}

Each child control should directly add itself to the parent. As mentioned before child controls are automatically created
as needed. This basically means that if nobody asks for a specific child control it is never created or added. This is
an important feature for dynamic widgets as it reduces the initial memory and CPU usage. A child control is always
created when some code asks for it. This can happen through different methods:

• getChildControl(id, notcreate): Returns the child control with the given ID. May return null if
the second argument is true. This is basically used to check if the child control has already been created and
then apply something to it. In some more complex scenarios this makes sense, but it can be ignored for the
moment.

5.2. Widgets Introduction 163

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget

qooxdoo Documentation, Release 1.6

• _showChildControl(id): Executes show() on the child control. This method also creates the control if
that hasn’t happened yet. It also returns the control so other properties can be applied to it.

• _excludeChildControl(id): Excludes the widget using exclude(). When the control is not yet
created the function does nothing. The method has no return value.

• _isChildControlVisible(id): Returns true if the child control with the given ID is created and
visible.

• hasChildControl(id): Returns true if the child control with the given ID has been created.

Styling

Child controls are automatically supported by the appearance system. For every child control a selector is generated
which starts with the first widget which is not a child control itself. Typical selectors look like:

• spinner/up-button

• groupbox/legend

• tree-item/icon

As a container for child controls may be a child control for another container as well, even more complex selectors are
possible:

• list/scrollbar-x/slider

• splitbutton/button/icon

This means that even the deepest child control can be easily accessed by theme authors. Widget authors should
define the styling of a widget in the appearance theme and not in the widget itself. The widget and the
_createChildControlImpl method should only apply functional properties like zIndex or tabIndex, but
no decorations, colors or fonts for example.

As mentioned, a key always starts with the appearance of the first widget which is not itself a child control. Appearance
values of the inner widgets are ignored as long as they are used as a child control. Instead, the ID of the child control
is used. The / is used to separate the child controls. All widgets added through user code start with their own
appearance. For example, the items of the List widget have the appearance list-item. Their appearance key is
also list-item and not list/item.

For details about styling please refer to the theming article.

HTML Elements

A normal qooxdoo widget consists of at least two HTML Elements (API). The first one is the container element which
is the outer frame of each widget. The inner one is the content element which is the target for children added to the
widget. The content element is also used for the iframe element of the Iframe widget and the image element of the
Image widget. This means it may contain children or may be used by a native DOM element which does not allow
any children.

There might be some other elements depending on the configuration:

• shadow: Placed into the container with negative offsets to be visible behind the original widget.

• decorator: Placed into the container with the same size as the container. Used to render all kinds of decorators.

• protector: Helper to fix certain hover issues when changing decorators during event sequences, e.g. hover
effects.

164 Chapter 5. GUI Toolkit

http://api.qooxdoo.org/#qx.html.Element

qooxdoo Documentation, Release 1.6

For widget authors, the content element is normally the most important, followed by the container element. The other
elements are quite uninteresting. It is good to know that they are there, but one typically has little to do with them.

Both elements are instances of qx.html.Element so they come with a cross-browser fixed API to apply styles
and attributes to the DOM nodes. All of these things can be done without the DOM element needing to be created or
inserted. For details on qx.html.Element please have a look at the technical documentation.

The elements are accessible through the functions getContentElement() and getContainerElement(),
respectively. The elements are stored privately in each widget instance and are only accessible through these methods
in derived classes.

Custom Elements

qooxdoo normally generates a bunch of styled div elements. Some widgets like iframes or images need other
elements, though. Normally the only element which is replaced is the content element. To achieve this, the
method _createContentElement needs to be overwritten. The overwritten method should create an instance
of qx.html.Element (or a derived class), configure it with some static attributes or styles, and finally return it. For
most natively supported types there exists a class which can be used already. In special cases the widget author also
needs to write a special low-level class which is derived from qx.html.Element.

Working with Events

Events can be added to the HTML elements as well as to the child controls. The names of the methods assigned should
follow the following names for convention.

• For the HTML elements use: _onContentXXX or _onContainerXXX

• For the child controls use: _onIconXXX or _onFieldXXX etc.

Where XXX stands for the name of the event or of the change that happens. This will result in names like
_onIframeLoad or _onContentInput.

Anonymous Widgets

Anonymous widgets are ignored in the event hierarchy. This is useful for combined widgets where the internal struc-
ture does not have a custom appearance with a different styling from the enclosing element. This is especially true
for widgets like checkboxes or buttons where the text or icon are handled synchronously for state changes to the outer
widget.

A good example is the SelectBox widget where the mouseover event should affect the entire widget at once and
not the different child controls of which it consists. So setting the child controls (in this case an atom and an image
widget) to anonymous keeps these child control widgets from receiving any events and the event handling is done
completely by the parent widget (the SelectBox itself).

5.2.9 Form Handling

The qx.ui.form package contains several classes for the construction of forms. Some widgets – like Button,
List or TextField – may look familiar if you have worked with HTML before, but this package also contains more
complex widgets that you may know from your operating system and/or native desktop applications (e.g. Spinner,
Slider or DateField).

5.2. Widgets Introduction 165

qooxdoo Documentation, Release 1.6

Idea

The idea of the form API is to make handling of form widgets as simple as possible, but also as generic as possible
within the entire framework. There has been a thorough discussion on what would be the best solution and how to
design a solid API. This is what we ended up with.

Demos

If you like to see some of qooxdoo’s form management in action, take a look at the following samples in the demo
browser:

Widgets

• All form widgets

• All form widgets with invalid states

Validation and Resetting

• Synchronous and asynchronous form validation

• Validation on different pages

Rendering

• Single column form

• Double column form

• Single column form using placeholders

• Custom form layout

Data Binding

• Manual form binding

• Form Controller

Interfaces

The entire form API is defined by a couple of interfaces. These interfaces contain the most important methods and
events for the form widgets. The following listing shows the interfaces, their purpose and how you can benefit from
them.

Form

The interface qx.ui.form.IForm defines a set of methods and events for every visible form widget. It contains
the listed events and methods.

166 Chapter 5. GUI Toolkit

http://bugzilla.qooxdoo.org/show_bug.cgi?id=2099
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~FormInvalids.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~FormValidator.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~MultiPageForm.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~FormRenderer.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~FormRendererDouble.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~FormRendererPlaceholder.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~FormRendererCustom.html
http://demo.qooxdoo.org/1.6/demobrowser/#data~Form.html
http://demo.qooxdoo.org/1.6/demobrowser/#data~FormController.html

qooxdoo Documentation, Release 1.6

As you can see, the interface defines accessors for four different properties.

• The enabled property is usually inherited from the widget class and is used to deactivate a form element.

• The required property is just a boolean flag signaling that the form widget is required. This can be used by some
kind of form manager or parent widget to display the status of the widget.

• The valid property is a boolean flag containing true if the content of the widget is valid, but the form widgets
do not have any kind of code to set this property. It needs to be set from outside. If it is set to false, the
appearance will change automatically to properly signal the invalid state.

• The invalidMessage property should contain a message which will be shown in a tooltip if the valid flag is set
to false. If no message is given, no tooltip will appear.

Executable

The qx.ui.form.IExecutable interface defines the essential components for all executable widgets. The best
example for an executable widget is a button. It defines the following events and methods.

As you can see, the interface defines accessors for only one property.

• The command property can take a qx.event.Command. The execute method executes the given command.

Range

The qx.ui.form.IRange interface defines the essential components for all widgets dealing with ranges. It defines
the following methods.

5.2. Widgets Introduction 167

qooxdoo Documentation, Release 1.6

As you can see, the interface defines accessors for four properties.

• The minimum value of the range is defined by the Minimum property.

• The maximum value of the range is defined by the Maximum property.

• Each range has a single step value which is defined by the SingleStep property.

• Like the single step, there is a page step for every range which is defined by the PageStep property.

Number / String / Color / Date / Boolean

Each of the listed interfaces define the same methods and events. The only difference in the interfaces is - as the name
says - the type of the data processed by the implementing widget. With that solution, we have the same API for every
form widget but can still determinate which type of value the widget expects by checking for the different interfaces.

Interfaces

• Number : qx.ui.form.INumberForm

• String : qx.ui.form.IStringForm

• Color : qx.ui.form.IColorForm

• Date : qx.ui.form.IDateForm

• Boolean : qx.ui.form.IBooleanForm

The color interface takes a string which has to be formatted like the common colors in qooxdoo.

168 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.util.ColorUtil

qooxdoo Documentation, Release 1.6

As you can see, the interface can be implemented with only one property.

• The value property takes the value of the widget. This is for example a boolean in a checkbox widget or a string
in a text field widget.

Model / ModelSelection

Most of the form items handling a selection had a value property in the old API. We replaced that with a model property
since the the value property is used for user input values. The methods for accessing the model data are defined in an
interface called qx.ui.form.IModel.

The model property can be used to store additional data which is represented by the widget. The data does not need to
be a string like in the old value property. You can store references to objects, numbers, strings and so on. Accessing
the model is very easy. Every widget containing a widget implementing the qx.ui.form.IModel interface has its
own interface to access the current selected model.

As you can see in the diagram, you can get the currently selected model and also set the selection using the models.

5.2. Widgets Introduction 169

qooxdoo Documentation, Release 1.6

Widgets

The following listing shows the form widgets and their corresponding interfaces. To see more details about a widget,
take a look at the widgets documentation.

Sample Usage

The first example is a simple one, showing how to use two widgets implementing the IStringForm interface:

// create and add a textfield
var textfield = new qx.ui.form.TextField();
this.getRoot().add(textfield, {left: 10, top: 10});

// create and add a label
var label = new qx.ui.basic.Label();
this.getRoot().add(label, {left: 10, top: 40});

// set the text of both widgets
textfield.setValue("Text");
label.setValue("Text");

The second example shows how to react on a change in a widget implementing the INumberForm interface. The
value of the slider will be shown as a label:

// create and add a slider
var slider = new qx.ui.form.Slider();
slider.setWidth(200);
this.getRoot().add(slider, {left: 10, top: 10});

// create and add a label
var label = new qx.ui.basic.Label();
this.getRoot().add(label, {left: 220, top: 10});

// add the listener
slider.addListener("changeValue", function(e) {
// convert the number to a string
label.setValue(e.getData() + "");

}, this);

The last example shows how to use the IForm interface and how to mark a widget as invalid:

// create and add a slider
var slider = new qx.ui.form.Slider();
slider.setWidth(200);
slider.setValue(100);
this.getRoot().add(slider, {left: 10, top: 10});
// set the invalid message
slider.setInvalidMessage("Please use a number above 50.");

// add the validation
slider.addListener("changeValue", function(e) {

if (e.getData() > 50) {
slider.setValid(true);

} else {
slider.setValid(false);

}
}, this);

170 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

All examples work in the Playground application.

Validation

Form validation is essential in most of the common use cases of forms. Thats why qooxdoo supports the application
developer with a validation component named qx.ui.form.validation.Manager. This manager is respon-
sible for managing the form items which need to be validated. We tried to keep the API as minimal as possible but
simultaneously as flexible as possible. The following class diagram shows the user API of the component.

The events, properties and methods can be divided into three groups:

• Validation

– getValid()

– isValid()

– validate()

– validator - property

– complete - event

– changeValid - event

• Form Item Management

– add(formItem, validator)

– reset()

• Invalid Messages

– getInvalidMessages()

– invalidMessage - property

The first part with which the application developer gets in contact is the add method. It takes form items and a validator.
But what are form items?

Requirements

Form items need two things. First of all, a given form item must be able to handle an invalid state and must have an
invalid message. This is guaranteed by the IForm interface already introduced. But that’s not all: The manager needs
to access the value of the form item. Therefore, the form item needs to specify a value property. This value property is

5.2. Widgets Introduction 171

qooxdoo Documentation, Release 1.6

defined in the data specific form interfaces also introduced above. So all widgets implementing the IForm interface
and one of the value defining interfaces can be used by the validation. For a list of widgets and the interfaces they
implement, take a look at the widgets section in this document.

Now that we know what the manager can validate, it’s time to learn how to validate. In general, there are two different
approaches in validation. The first approach is client side validation, which is commonly synchronous. On the other
hand, server side validation is asynchronous in most cases. We will cover both possibilities in the following sections.

Synchronous

The following subsections cover some common scenarios of synchronous validation. See this code snippet as basis
for all the examples shown in the subsections.

var manager = new qx.ui.form.validation.Manager();
var textField = new qx.ui.form.TextField();
var checkBox = new qx.ui.form.CheckBox();

Required Form Fields One of the most obvious validations is a check for a non-empty field. This can be seen in
common forms as required fields, which are easy to define in qooxdoo. Just define the specific widget as required and
add it to the validation manager without any validator.

textField.setRequired(true);
manager.add(textField);

The validation manager will take all the necessary steps to mark the field as invalid as soon as the validate method is
invoked if the text field is empty.

Default Validator Another common use case of validation is to check for specific input types like email addresses,
URLs or similar. For those common checks, qooxdoo offers a set of predefined validators in qx.util.Validate.
The example here shows the usage of a predefined email validator.

manager.add(textField, qx.util.Validate.email());

Custom Validator Sometimes, the predefined validators are not enough and you need to create an application-
specific validator. That’s also no problem because the synchronous validator is just a JavaScript function.
In this function, you can either return a boolean which signals the validation result or you can throw a
qx.core.ValidationError containing the message to be displayed as an invalid message. The validation
manager can handle both kinds of validators. The example here checks if the value of the text field has a length of at
least 3.

manager.add(textField, function(value) {
return value.length >= 3;

});

Validation in the context of the form All shown validation rules validate each form item in its own context. But it
might be necessary to include more than one form item in the validation. For such scenarios, the manager itself can
have a validator too. The example here demonstrates how to ensure that the text field is not empty if the checkbox is
checked.

manager.setValidator(function(items) {
if (checkBox.getValue()) {
var value = textField.getValue();
if (!value || value.length == 0) {

172 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

textField.setValid(false);
return false;

}
}
textField.setValid(true);
return true;

});

Asynchronous

Imagine a scenario where you want to check if a username is already taken during a registration process or you want
to verify a credit card number. This type of validation can only be done by a server and not in the client. But you
don’t want the user to wait for the server to process your request and send the answer back. So you need some kind of
asynchronous validation.

For all asynchronous validation cases, we need a wrapper for the validator, the
qx.ui.form.validation.AsyncValidator. But that does not mean a lot work for the application
developer. Just take a look at the following example to see the AsyncValidator in action.

manager.add(textField, new qx.ui.form.validation.AsyncValidator(
function(validator, value) {
// here comes the async call
qx.event.Timer.once(function() {

// callback for the async validation
validator.setValid(false);

}, this, 1000);
}

));

The only difference to the synchronous case, at least from the application developer’s point of view, is the wrapping
of the validator function. Take a look at the following sequence diagram to get an insight on how the asynchronous
validation is handled.

The asynchronous validation can not only be used for form items. Also, the manager itself can handle instances of the
AsyncValidator as validator.

5.2. Widgets Introduction 173

qooxdoo Documentation, Release 1.6

Serialization

Entering data into a form is one part of the process. But usually, that entered data needs to be sent to the server. So
serialization is a major topic when it comes to forms. We decided not to integrate this in one form manager which
would be responsible for both validation and serialization.

Idea

The main idea behind this was to ensure that it cooperates nicely with features like the form widgets and the corre-
sponding data binding components. So we decided to split the problem into two different parts. The first part is storing
the data held in the view components as a model. The second part takes that model and serializes its data. Sounds like
data binding? It is data binding!

But you don’t have to connect all these widgets yourself. qooxdoo offers an object controller which can take care
of most of the work. But where do you get the model? Writing a specific qooxdoo class for every form sounds like
a bit of overkill. But qooxdoo has a solution for that, too. The creation of classes and model instances is already a
part of the data binding components and can also be used here. Sounds wierd? Take a look at the following common
scenarios to see how it works.

Common Scenarios

The most common scenario is to serialize a number of form items without any special additions. Just get the values of
the entire form and serialize them.

// create the ui
var name = new qx.ui.form.TextField();
var password = new qx.ui.form.PasswordField();

// create the model
var model = qx.data.marshal.Json.createModel({name: "a", password: "b"});

// create the controller and connect the form items
var controller = new qx.data.controller.Object(model);
controller.addTarget(name, "value", "name", true);
controller.addTarget(password, "value", "password", true);

// serialize
qx.util.Serializer.toUriParameter(model);

174 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

The result will be name=a&password=b because the initial values of the model are a and b.

This way, the serialization is separated from the form itself. So hidden form fields are as easy as it could be. Just add
another property to the model.

var model = qx.data.marshal.Json.createModel(
{name: "a", password: "b", c: "i am hidden"}

);

Keep in mind that you’re creating a model with that and you can access every property you created using the default
getters and setters.

You might be asking yourself “What if i want to convert the values for serialization? My server needs some different
values...”. That brings us to the topic of conversion. But as we have seen before, the mapping from the view to
the model is handled by the data binding layer which already includes conversion. Take a look at the data binding
documentation for more information on conversion.

Need something special? In some cases, you might want to have something really special like serializing one value
only if another value has a special value or something similar. In that case, you can write your own serializer which
handles serialization the way you need it.

Resetting

A third useful feature of a form besides validation and serialization is resetting the entire form with one call. Doesn’t
sound complicated enough that a separate class is needed. But we decided to do it anyway for good reasons:

• The validation manager is not the right place for resetting because it handles only the validation.

• The form widget, responsible for layouting forms, is a good place, but we don’t want to force developers to use
it if they just want the reset feature.

So we decided to create a standalone implementation for resetting called qx.ui.form.Resetter.

Like the task of resetting itself, the API is not too complicated. We have one method for adding items, and another
one for resetting all added items.

How It Works

Technically, it’s not really a challenge thanks to the new form API. You can add any items either having a value
property defined by one of the data specific form interfaces or implementimg the selection API of qooxdoo. On every
addition, the resetter grabs the current value and stores it. On a reset all stored values are set.

Sample Usage

The following sample shows how to use the resetter with three input fields: A textfield, a checkbox and a list.

// create a textfield
var textField = new qx.ui.form.TextField("acb");
this.getRoot().add(textField, {left: 10, top: 10});

5.2. Widgets Introduction 175

qooxdoo Documentation, Release 1.6

// create a checkbox
var checkBox = new qx.ui.form.CheckBox("box");
this.getRoot().add(checkBox, {left: 10, top: 40});

// create a list
var list = new qx.ui.form.List();
list.add(new qx.ui.form.ListItem("a"));
list.add(new qx.ui.form.ListItem("b"));
list.setSelection([list.getSelectables()[0]]);
this.getRoot().add(list, {left: 10, top: 70});

// create the resetter
var resetter = new qx.ui.form.Resetter();
// add the form items
resetter.add(textField);
resetter.add(checkBox);
resetter.add(list);

// add a reset button
var resetButton = new qx.ui.form.Button("Reset");
resetButton.addListener("execute", function() {

resetter.reset();
});
this.getRoot().add(resetButton, {left: 120, top: 10});

Form Object

We’ve already covered most parts of form handling. But one thing we’ve left out completely until now is layouting
the form items. Thats where the qx.ui.form.Form widget comes into play.

What is it?

The qooxdoo form is an object which includes three main parts.

• Validation using the qx.ui.form.validation.Manager class

• Resetting using the qx.ui.form.Resetter class

• Handling the layout of the form

As we have already talked about the first two items, I’ll cover the last item in a more detailed way.

In most cases, a form’s layout is specific to the application. It depends on the space available in the application
and many other factors. Thats why qooxdoo has this flexible form layouting tool, which includes a set of de-
fault options to layout a form. On of the main requirements of the solution was extensibility so that anyone could
have the layout their application requires. To achieve this, we applied a pattern used widely across the qoox-
doo framework, which moves all UI related code to renderer classes. These renderers are as lightweight as pos-
sible to make it easy for developers to write their own custom renderer, as you can see in this UML diagram:

176 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Renderer

As the diagram shows, qooxdoo provides an interface for FormRenderer, the IFormRenderer interface. It defines
two methods, one for adding a group of form items and one for adding buttons.

• addItems(items : qx.ui.form.IForm[], names : String[], title : String) : void

• addButton(button : qx.ui.form.Button) : void

Surely you’ve recognized the difference to the API of the form itself. Widgets are added to the form individually, but
the renderer always gets a group of widgets at once. This gives the renderer additional information which it may need
to render the form based on the number of groups rather then on the number of widgets.

You may ask yourself why we didn’t use the layouts we usually use in such scenarios if we ant to render widgets on
the screen. It may be necessary for a renderer to contain even more than one widget. Imagine a wizard or a form
spread out over multiple tabs. That wouldn’t be possible using layouts instead of renderer widgets.

The following sections show the renderers included in qooxdoo, which can be used out of the box.

Default (Single Column) If you don’t specify a renderer, the default is used, which is a single column renderer.

5.2. Widgets Introduction 177

qooxdoo Documentation, Release 1.6

As you can see in the picture, the renderer adds an asterisk to every required field, adds a colon at the end of every
label and defines the vertical layout.

Double Column The double column renderer has the same features as the previously introduced single column
renderer but renders the fields in two columns, as you can see in the following picture.

Single Column with Placeholer This renderer is more a of demo showing how easy it can be to implement your
own renderer. It has a limitation in that it can only render input fields which have the placeholder property. But the
result is pretty nice:

178 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Sample Usage

After we’ve seen how it should look, here come some examples showing how it works. In this example, we want to
create a form for an address management tool. So we divide our input fields into two groups. The first group contains
two text fields, one for the first name and one for the last name. The second group contains some contact data like
email, phone number and company name. Finally, we want to add two buttons to the form, one for saving the data if
it is valid and another for resetting the form. So here we go...

First, we need a form object.

// create the form
var form = new qx.ui.form.Form();

After that, we can create the first two input fields. As these two fields are required, we should mark them as such.

// create the first two input fields
var firstname = new qx.ui.form.TextField();
firstname.setRequired(true);
var lastname = new qx.ui.form.TextField();
lastname.setRequired(true);

As you can see, the input fields are text fields as described above. Next, we can add those input fields to the form.

// add the first group
form.addGroupHeader("Name");
form.add(firstname, "Firstname");
form.add(lastname, "Lastname");

First, we added a group header to create a headline above the two input fields. After that, we added them with a name
but without a validator. The required flag we set earlier is enough. We need to add another group of input fields for
the contact data.

// add the second group
form.addGroupHeader("Contact");
form.add(new qx.ui.form.TextField(), "Email", qx.util.Validate.email());
form.add(new qx.ui.form.TextField(), "Phone");

After adding the second group header, you’ll see the text field for the email address, which uses a predefined email
validator from the framework. The phone number does not get any validator at all. The last missing thing are the
buttons. First, add the save button.

// add a save button
var savebutton = new qx.ui.form.Button("Save");

5.2. Widgets Introduction 179

qooxdoo Documentation, Release 1.6

savebutton.addListener("execute", function() {
if (form.validate()) {
alert("You can save now...");

}
});
form.addButton(savebutton);

The save button gets an execute listener which first validates the form and, if the form is valid, alerts the user. The
reset button is analogous.

// add a reset button
var resetbutton = new qx.ui.form.Button("Reset");
resetbutton.addListener("execute", function() {
form.reset();

});
form.addButton(resetbutton);

Now the form is complete and we can use the default renderer to render the form and add it to the document.

// create the view and add it
this.getRoot().add(new qx.ui.form.renderer.Single(form), {left: 10, top: 10});

Running this code will create a form as described above which will look like this:

If you want to get a different look and feel, you can create a different renderer.

// create the view and add it
this.getRoot().add(
new qx.ui.form.renderer.SinglePlaceholder(form),
{left: 10, top: 10}

);

Just give it a try in the playground.

Form Controller

Data binding for a form certainly is a handy feature. Using a model to access data in the form brings form handling to
another level of abstraction. That’s exactly what the form controller offers.

The form controller is fully covered in the data binding documentation.

Sample Usage

The following example shows how to use the controller with a simple form, which contains three text fields: One for
salutation, one for first name and one for last name.

180 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/playground/#%7B%22code%22%3A%20%22%252F%252F%2520create%2520the%2520form%250Avar%2520form%2520%253D%2520new%2520qx.ui.form.Form()%253B%250A%250A%252F%252F%2520create%2520the%2520first%2520two%2520input%2520fields%250Avar%2520firstname%2520%253D%2520new%2520qx.ui.form.TextField()%253B%250Afirstname.setRequired(true)%253B%250Avar%2520lastname%2520%253D%2520new%2520qx.ui.form.TextField()%253B%250Alastname.setRequired(true)%253B%250A%250A%252F%252F%2520add%2520the%2520first%2520group%250Aform.addGroupHeader(%2522Name%2522)%253B%250Aform.add(firstname%252C%2520%2522Firstname%2522)%253B%250Aform.add(lastname%252C%2520%2522Lastname%2522)%253B%250A%250A%252F%252F%2520add%2520the%2520second%2520group%250Aform.addGroupHeader(%2522Contact%2522)%253B%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Email%2522%252C%2520qx.util.Validate.email())%253B%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Phone%2522)%253B%250A%250A%252F%252F%2520add%2520a%2520save%2520button%250Avar%2520savebutton%2520%253D%2520new%2520qx.ui.form.Button(%2522Save%2522)%253B%250Asavebutton.addListener(%2522execute%2522%252C%2520function()%2520%257B%250A%2520%2520if%2520(form.validate())%2520%257B%250A%2520%2520%2520%2520alert(%2522You%2520can%2520save%2520now...%2522)%253B%250A%2520%2520%257D%250A%257D)%253B%250Aform.addButton(savebutton)%253B%250A%250A%252F%252F%2520add%2520a%2520reset%2520button%250Avar%2520resetbutton%2520%253D%2520new%2520qx.ui.form.Button(%2522Reset%2522)%253B%250Aresetbutton.addListener(%2522execute%2522%252C%2520function()%2520%257B%250A%2520%2520form.reset()%253B%250A%257D)%253B%250Aform.addButton(resetbutton)%253B%250A%250A%252F%252F%2520create%2520the%2520view%2520and%2520add%2520it%250Athis.getRoot().add(new%2520qx.ui.form.renderer.Single(form)%252C%2520%257Bleft%253A%252010%252C%2520top%253A%252010%257D)%253B%22%7D

qooxdoo Documentation, Release 1.6

First, we create the form:

// create the form
var form = new qx.ui.form.Form();

In a second step we add the three text fields. The important thing here is that if no name is given - as in the first two
cases - each label will also be used as a name. For that, all spaces in the label are removed.

// add the first TextField ("Salutation" will be the property name)
form.add(new qx.ui.form.TextField(), "Salutation");
// add the second TextField ("FirstName" will be the property name)
form.add(new qx.ui.form.TextField(), "First Name");
// add the third TextField ("last" will be the property name)
form.add(new qx.ui.form.TextField(), "Last Name", null, "last");

After we add the text fields, we can add the view to the application root.

// add the form to the root
this.getRoot().add(new qx.ui.form.renderer.Single(form));

Now that the form has been created, we can take care of the data binding controller. We simply supply the form
instance as an argument to the constructor. But we don’t have a model yet, so we just pass null for the model.

// create the controller with the form
var controller = new qx.data.controller.Form(null, form);

The final step for data binding is to create the actual model.

// create the model
var model = controller.createModel();

Take a look at the following sequence diagram to see how it works internally.

Now we have managed to set up a form and a model connected by bidirectional bindings. So we can simply use the
model to set values in the form.

// set some values in the form
model.setSalutation("Mr.");

5.2. Widgets Introduction 181

qooxdoo Documentation, Release 1.6

model.setFirstName("Martin");
model.setLast("Wittemann");

As you can see here, the properties (and therefore setters) are defined according to the names we gave the text fields
when adding them.

See the code in action in the playground.

Still to come...

• A way to create a form out from a JSON definition

5.2.10 Menu Handling

Menus are well-established user interface elements in GUIs. They are popup-like controls that provide simple or
cascading lists of buttons. Typical uses show menus opening off from buttons in tool bars, or popping up as context
menus on mouse right-clicks e.g. on a tree element.

Here are a few examples:

The Demobrowser provides further examples.

182 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/playground/#%7B%22code%22%3A%20%22%252F%252F%2520create%2520the%2520form%250Avar%2520form%2520%253D%2520new%2520qx.ui.form.Form()%253B%250A%250A%252F%252F%2520add%2520the%2520first%2520TextField%2520(Salutation%2520will%2520be%2520the%2520property%2520name)%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Salutation%2522)%253B%250A%252F%252F%2520add%2520the%2520second%2520TextField%2520(FirstName%2520will%2520be%2520the%2520property%2520name)%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522First%2520Name%2522)%253B%250A%252F%252F%2520add%2520the%2520third%2520TextField%2520(last%2520will%2520be%2520the%2520property%2520name)%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Last%2520Name%2522%252C%2520null%252C%2520%2522last%2522)%253B%250A%250A%252F%252F%2520add%2520the%2520form%2520to%2520the%2520root%250Athis.getRoot().add(new%2520qx.ui.form.renderer.Single(form))%253B%250A%250A%252F%252F%2520create%2520the%2520controller%2520with%2520the%2520form%250Avar%2520controller%2520%253D%2520new%2520qx.data.controller.Form(null%252C%2520form)%253B%250A%252F%252F%2520create%2520the%2520model%250Avar%2520model%2520%253D%2520controller.createModel()%253B%250A%250A%252F%252F%2520set%2520some%2520values%2520in%2520the%2520form%250Amodel.setSalutation(%2522Mr.%2522)%253B%250Amodel.setFirstName(%2522Martin%2522)%253B%250Amodel.setLast(%2522Wittemann%2522)%253B%250A%22%7D
http://bugzilla.qooxdoo.org/show_bug.cgi?id=2685
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Menu.html

qooxdoo Documentation, Release 1.6

Menus can be constructed in a qooxdoo application using widgets from the qx.ui.menu name space. The main class
from this package is Menu. Other classes allow you to tailor the appearance and the behaviour of the menu you create.
You can even use checkboxes and radiobuttons inside your menus.

Simple Example

Here is a simple menu example:

// Create the menu
var menu = new qx.ui.menu.Menu();

// Creates the command
var command = new qx.event.Command("Control+O");
command.addListener("execute", function() {

this.debug("Open action");
},this);

// Add some content
var openButton = new qx.ui.menu.Button("Open", "icon/16/actions/document-open.png", command);
var closeButton = new qx.ui.menu.Button("Close");

menu.add(openButton);
menu.add(closeButton);

// Add behaviour
closeButton.addListener("execute", function() {
this.debug("Close action");

}, this);

// Create a button that will hold the menu
var button = new qx.ui.form.MenuButton("Menu", null, menu);

There are a couple of things to note here:

• The main widget is the menu of type qx.ui.menu.Menu.

• Menu buttons are of type qx.ui.menu.Button and are created individually.

• They are then added to the menu. The buttons will appear in the menu in the order they are added.

• The closeButton is created with the minimal set of parameters, namely just the string for the button label.
For a more advanced solution, see the openButton: you can optionally specify a button icon, and a command
qx.event.Command that is invoked if the button or the shortcut is pressed/selected.

• You can supply missing or updated features after the widget’s creation; e.g. the callback function for the
closeButton is provided in a separate method call to addListener().

• The canonical event for the selection of a menu button is the execute event. (This is in line with other button
flavors throughout the qooxdoo framework, e.g. the regular qx.ui.form.Button).

Complex Menu Sample

This example should show how to create a menu structure with submenu and how to handle with groups.

Qooxdoo has some widgets that need a menu to handle user interaction. For this sample we will chose the
qx.ui.toolbar.ToolBar to create the menu structure. To see a overview, witch widgets uses a menu, take
a look in the Menu.

This code snippet show how to create a “ToolBar” with to menu items “File” and “View”:

5.2. Widgets Introduction 183

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menu

qooxdoo Documentation, Release 1.6

// Create the toolbar and add to the DOM
var toolBar = new qx.ui.toolbar.ToolBar();
this.getRoot().add(toolBar, {
left: 20,
top: 20,
right: 20

});

// Create "File" menu
var fileButton = new qx.ui.toolbar.MenuButton("File");
toolBar.add(fileButton);

var fileMenu = new qx.ui.menu.Menu();
fileMenu.add(new qx.ui.menu.Button("New", null, null, this.__getNewMenu()));
fileMenu.add(new qx.ui.menu.Button("Open...", "icon/16/actions/document-open.png"));
fileMenu.add(new qx.ui.menu.Separator());
fileMenu.add(new qx.ui.menu.Button("Save", "icon/16/actions/document-save.png"));
fileMenu.add(new qx.ui.menu.Button("Save As...", "icon/16/actions/document-save-as.png"));
fileMenu.add(new qx.ui.menu.Separator());
fileMenu.add(new qx.ui.menu.Button("Exit", "icon/16/actions/application-exit.png"));
fileButton.setMenu(fileMenu);

// Create "View" menu
var viewButton = new qx.ui.toolbar.MenuButton("View");
toolBar.add(viewButton);
var viewMenu = new qx.ui.menu.Menu();
viewMenu.add(new qx.ui.menu.Button("Panes", null, null, this.__getPanesMenu()));
viewMenu.add(new qx.ui.menu.Button("Syntax", null, null, this.__getSyntaxMenu()));
viewMenu.add(new qx.ui.menu.Separator()); // First kind to add a separator
viewMenu.add(new qx.ui.menu.CheckBox("Show ruler"));
viewMenu.add(new qx.ui.menu.CheckBox("Show line numbers"));
viewMenu.addSeparator(); // A other kind to add a separator
viewMenu.add(new qx.ui.menu.Button("ASCII table..."));
viewButton.setMenu(viewMenu);

There are a couple of things to note here:

• The qx.ui.menu.Menu could get some different children (Button, Seperator, CheckBox, ...)

• The fourth parameter in qx.ui.menu.Button is also a menu. So it is possible to create submenus.

• There are tow kinds to add a separator to a menu. The first kind is to create a Separator instance and
add this to the menu. Or the other kind is to call the addSeparator method from the Menu instance.

The next code snipped should explain how to create a menu, which contain RadioButtons, but only one could be
selected:

__getSyntaxMenu : function()
{

var syntaxMenu = new qx.ui.menu.Menu();

var cDialectMenu = new qx.ui.menu.Menu();
cDialectMenu.add(new qx.ui.menu.RadioButton("C"));
cDialectMenu.add(new qx.ui.menu.RadioButton("C Sharp"));
cDialectMenu.add(new qx.ui.menu.RadioButton("C Plus Plus"));

var htmlButton = new qx.ui.menu.RadioButton("HTML");
var jsButton = new qx.ui.menu.RadioButton("JavaScript");
var cdialectButton = new qx.ui.menu.Button("C Dialect", null, null, cDialectMenu);
var pythonButton = new qx.ui.menu.RadioButton("Python");

184 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

syntaxMenu.add(htmlButton);
syntaxMenu.add(jsButton);
syntaxMenu.add(cdialectButton);
syntaxMenu.add(pythonButton);

// Configure and fill radio group
var langGroup = new qx.ui.form.RadioGroup();
langGroup.add(htmlButton, jsButton, pythonButton);
langGroup.add.apply(langGroup, cdialectButton.getMenu().getChildren());

return syntaxMenu;
}

You can see, that the menu contains RadioButton and all RadioButton should grouped in one RadioGroup,
but the RadioButton in the submenu “C Dialect” should also be considered in the RadioGroup.

To add a RadioButton to the RadioGroup call the add() method from the RadioGroup. The param-
eter from add() is a variable number of items which should be added. You can see that the code calls a
langGroup.add.apply() method to add the RadioButton from the “C Dialect” submenu. This is no qoox-
doo construction, the apply() method is a construction from JavaScript and it is not important to know how thus the
method works.

Additional Menu Topics

Menu positioning

Qooxdoo will go a long way to position a menu sensibly and with regard to the enclosing container, so that menu
buttons are always fully visible if the menu is opened.

The Placement demo shows how the menus are positioned.

5.2.11 Window Management

Window is a widget used to show dialogs or to realize a MDI (Multiple Document Interface) applications.
Windows can only be added to qx.ui.window.Desktop widgets, or to widgets which implement the
qx.ui.window.IDesktop interface.

Each Desktop widget must have a qx.ui.window.Manager. If none is provided, the default window manager
(qx.ui.window.Window#DEFAULT_MANAGER_CLASS) is used. The desktop uses the manager to handle the
contained windows.

The manager takes care of windows z-index order. Windows can be normal (default), always on top or modal. Always
on top windows stay on top of normal windows and modal windows appear in front of all other windows. If there are
a bunch of windows open and we close one, the manager will activate the window that is higher in the z-index order
stack.

Let’s see this in action. We’ll create a tabview with one page, create a desktop widget for the page, and add different
types of windows. You can see how the opened windows stack on each other and when you close one, the highest
z-index order window will get activated.

var root = this.getRoot();
var tabView = new qx.ui.tabview.TabView();
var page = new qx.ui.tabview.Page("Desktop");
var windowManager = new qx.ui.window.Manager();
var desktop = new qx.ui.window.Desktop(windowManager);

5.2. Widgets Introduction 185

http://demo.qooxdoo.org/1.6/demobrowser/#ui~Placement.html

qooxdoo Documentation, Release 1.6

var aWindow = null;

page.setLayout(new qx.ui.layout.Grow());
page.add(desktop);
tabView.add(page);
root.add(tabView, {edge: 0});

//create 3 normal windows and add them to the page’s desktop
for (var i=0; i<3; i++)
{

aWindow = new qx.ui.window.Window("Normal Window #" +i).set({
width:300

});
desktop.add(aWindow);
aWindow.open();

}

//create 3 alwaysOnTop windows and add them to the page’s desktop
for (var i=0; i<3; i++)
{

aWindow = new qx.ui.window.Window("AlwaysOnTop Window #" +i).set({
width:300

});
aWindow.setAlwaysOnTop(true);
desktop.add(aWindow);
aWindow.open();

}

//create a modal window and add it to the page’s desktop
aWindow = new qx.ui.window.Window("Modal Window #" +i).set({
width:300

});
aWindow.setModal(true);
desktop.add(aWindow);
aWindow.open();

Like I said, windows can be added to widgets which implement the IDesktop interface. This interface is implemented
by qx.ui.window.MDesktop mixin. You can use this mixin to make a custom widget behave like a Desktop.
This is exactly what the superclass of all root widgets (qx.ui.root.Abstract) does. This is why we can add
windows to a root widget.

var win = new qx.ui.window.Window("First Window");
var root = this.getRoot();
root.add(win);
win.open();

Related documentation

Window widget

Demos and API

To find out more, you can check the desktop demo and the API reference.

186 Chapter 5. GUI Toolkit

http://manual.qooxdoo.org/1.6/pages/widget/window.html
http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget~Desktop.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.window

qooxdoo Documentation, Release 1.6

5.2.12 HTML Editing

HtmlArea is a html editing widget which is part of the framework. This widget is available as low-level and UI-
level implementation. The first targets traditional webpages / single-page applications and the latter Rich Internet
Applications (RIA) as preferred usecase.

Here you can find some interesting technical info.

Note: Please keep in mind that the HtmlArea component provides basic HTML editing functionality. It is not a
full-blown HTML editor and will not be developed towards it.

Demo

Setup

One important step is necessary to get the HtmlArea up and running.

Note: If you setup the component without handing the source parameter you have to place a blank.html file next to
your applications index.html.

This is necessary due the Same-Origin Policy implemented by most browsers.

Features

Feature List

This page aims to describe the features of the HtmlArea component. Aims because there are for sure features which
are missing or considered as must-have to not enter the feature list as own entry.

5.2. Widgets Introduction 187

http://demo.qooxdoo.org/1.6/apiviewer/#qx.bom.htmlarea.HtmlArea
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.embed.HtmlArea
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.embed.HtmlArea
http://demo.qooxdoo.org/1.6/demobrowser/#widget~HtmlArea.html
http://en.wikipedia.org/wiki/Same_origin_policy

qooxdoo Documentation, Release 1.6

This page should get you a good overview of what you can expect from this HTML editing component.

End-User Features

Text Formatting

• Bold

• Italic

• Underline

• Strikethrough

• Text Color

• Background Color

• Font Size

• Font Family

Alignment

• Left

• Center

• Right

• Justify

Lists

• Unordered lists

• Ordered lists

Inserting

• Tables

• Images

• Horizontal rulers

• Hyperlink

• HTML code

Document Wide Formatting

• Background Image

• Background Color

188 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Additional Features

• Removing format

• Select the whole content

• Indent / Outdent

• Undo / Redo

Developer Features

Events

• Load / LoadingError and Ready

• Current cursor context

• Contextmenu

• Focus / Focus out

Content Manipulation

• Content as HTML output

• Post-process HTML output

• Current selected HTML

• Reset content

• Context Information of current focused node (e.g. to update a toolbar widget)

Advanced Paragraph-Handling

• Keeps formatting across multiple paragraphs

• Type of line-break adjustable (new paragraph or new line)

• Support for Shift+Enter and Ctrl+Enter to insert single line-break

Additional Features

• Hotkey Support

• Set own CSS for content at startup

• Access to content document and content body

• Access to editable iframe element

Technical Feature List

In comparison to the Feature List of the HtmlArea this page describes some technical insights of the component. If
you plan to get to know some details of how to develop a WYSIWYG component and want to learn the pitfalls of the
different browser implementations this is good place to start.

5.2. Widgets Introduction 189

qooxdoo Documentation, Release 1.6

Startup The HtmlArea relies on a editable iframe. To take control over this iframe the component has to ensure that
the iframe’s document is fully loaded and accessible. For every browser the load event of the iframe object is used.
Only for IE it is necessary to poll the document if it’s not immediately available after the load event. The result of
the startup phase is the ready event which informs the application developer that the startup was successful.

Content Wrapping Since the application developer only sets the content of the HtmlArea and not the whole doc-
ument the component needs to setup the rest of the content (DOCTYPE, HTML and BODY elements). The difficult
exercise here is to set the right style attribute at the right element for each browser.

The toughest thing is to get the right behaviour for native scrollbars. In IE for example the overflow handling with
overflow-x and overflow-y does not work correctly. When both style attributes are set IE does mix them up
by overwriting one with the others value.

Anyway, the correct content wrap is important for

• document is taking the whole space of the iframe

• no margins and paddings are set

• scrollbars are only shown if the user enters more content than space is available

Editable Document Another pitfall is how to set the document of the iframe object editable. There are two properties
which can be be applied for an editable document: designMode and editable.

The designMode property is applied for all browsers and works at the document node of the iframe.

Setting the editable property is only needed for gecko browsers. And only if the HtmlArea was hidden and shown
again. The editable property is applied to the body element.

Internet Explorer For IE it is important to set the document design mode before the content is rendered. Once the
document is editable it does not loose this status even if the whole component is hidden and shown again.

Gecko, Webkit and Opera All three need to have rendered content to set the document design mode correctly.

Focus Management At least IE has problems whenever a native command (execCommand method) does manipulate
the content of the editable iframe and the iframe document does not have the focus. If an application developer want
to use a toolbar to offer the user an interface to manipulate the content he has to make sure that each of these buttons
need a special setup. Otherwise the button would steal the focus from the editing component whenever clicked.

Luckily qooxdoo does offer this customization out-of-the-box. The application developer only has to set the properties
keepFocus to true and focusable to false.

button.set({
focusable: false,
keepFocus: true

});

Advanced Key Events One major feature is to track the user input. To use the powerful key event handler in
qooxdoo the HtmlArea does listen to all key events at the body element and handles various actions depending on the
user’s input. This way it is possible to work with a keyIdentifier instead of the keyCode or charCode.

190 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Integration Guide

Integrate the HtmlArea into your application

Note: This explanations mainly do address the 0.8+ based HtmlArea component.

This page does explain what you should consider when integrating the HtmlArea component in your application.
However, it does not explain how to setup the component itself, it’s rather an integration guide to avoid pitfalls.

Use Public API This one should be self-explaining. Do not use any internal API to get things done even it’s the easy
way to go. If it’s hidden from the application developer then by purpose, but if you need access to specific parts of the
component which is not offered don’t hesitate to file a bug report.

Use Events The component does offer various events to work with e.g. the ready event to get informed of the
finished loading.

The bottom line is the same as for the public API: use these events to interact with the component. If an event is
missing feel free to file a bug report.

Lazy Initialization The HtmlArea widget is using a low-level editing component to offer a WYSIWYG editor
solution. The widget does initialize this editing component after the first appear of the widget. So if you use e.g. a
stack container which hides the HtmlArea keep in mind that the widget is only fully usable after it is shown.

Toolbar Details The HtmlArea does only offer the plain editing widget so if you do not use the HtmlEditor contri-
bution and instead create your own toolbar you have to consider some specialities concerning the focus management
of qooxdoo.

Since the HtmlArea relies on that the focus is not lost to another widget (e.g. a toolbar button) during the execution
of a command you have to set two focus-specific properties on each widget which runs commands at the HtmlArea
component.

The two properties keepFocus and focusable have to be used together to get the correct behaviour. The more
important property is keepFocus which certainly ensures that the given widget never get the focus - even if this
widget is clicked. This will leave the focus at the HtmlArea component solving many focus-related issues successfully
(especially for IE browsers).

Example code snippet

button = new qx.ui.toolbar.Button(null, iconURL);
button.set({ focusable : false, keepFocus : true });

No Own Focus Management As already mentioned the focus management is important for HTML editing widgets
and there are special solutions necessary for the component already. Implementing an own focus management on
top in your application code can cause problems for your users. So if you encounter any issues that the component
e.g. does not perform a certain command even a button is clicked it’s probably a focus-related issue. As always: the
component is far from perfect, don’t hesitate to file a bug report for issues you encounter.

Keyboard Shortcuts Since you can use keyboard shortcuts to manipulate the content you should not implement
shortcuts with the same key bindings. A possibility to disable the shortcuts completely will soon be available. See
Bug #1193 for details.

5.2. Widgets Introduction 191

http://qooxdoo.org/contrib/project#htmleditor
http://bugzilla.qooxdoo.org/show_bug.cgi?id=1193

qooxdoo Documentation, Release 1.6

Available Keyboard Shortcuts

The result of using the shortcuts Control + Enter and Shift + Enter are explained at the Paragraph Han-
dling page.

The following keyboard shortcuts are implemented at the moment:

• Ctrl + A - Select the whole content

• Ctrl + B - Toggle the current selection to Bold / Normal text

• Ctrl + I and Ctrl + K - Toggle the current selection to Italic / Normal text

• Ctrl + U - Toggle the current selection to Underline / Normal text

If the Undo / Redo functionality is enabled the following shortcuts are additionally available:

• Ctrl + Z - Undo the last change

• Ctrl + Y - Redo the last undo step

• Ctrl + Shift + Z - Redo the last undo step

Recommendations

This page should help developers using the HtmlArea to stick with some recommendations to avoid known issues or
to call attention how to use a specific feature.

Common Font Families Since the HtmlArea “only” is a editing component it does not offer a complete toolbar or
other features which an full-blown Html Editor might offer. So if you setup an own toolbar and decide to offer the
user a possibility to change the default font family you should be careful not to use a font family which is not widely
available. If the client computer does not has the listed font family installed it will certainly fall back to the systems
default. The user will be irritated by different choices which end up with the same result if he applies them to his
written content.

To avoid this problem you should play safe and offer the following font families:

• Arial

• Arial Black

• Verdana

• Courier New

• Courier

• Georgia

• Impact

• Comic Sans MS

• Tahoma

• Lucida Console

A nice list of the most common font families is listed at CodeStyle.org

192 Chapter 5. GUI Toolkit

http://www.codestyle.org/css/font-family/sampler-CombinedResults.shtml

qooxdoo Documentation, Release 1.6

InsertHtml Command This command lets you insert you HTML code directly into the component’s document. It
is powerful and can be an easy way to accomplish your goals, but you should keep in mind that this method should
only be used if there is no other possibility offered.

If you e.g. want to insert an image into the document use the dedicated insertImage command instead of putting
your HTML code together.

Avoid DIV elements with fixed width or height The problem with DIV elements which have width or height set
with CSS styles is that IE offers for those DIV elements resize/move handles. This is in the most cases not desired. So
better use margin, padding or top|left|right|bottom to position your DIV element.

Additionally if you set a width of 600px to a DIV element users with a small resolution (like 800 x 600) might end
up with horizontal scrollbars.

Technical Background

HTML Editing In General

External Information

General infos

• Rich HTML editing - Part 1

Browsers

Mozilla (“Midas”)

• Midas specification

• Demo

• Migrationguide IE -> Gecko

• Documentation

• Source code (see list under MidasCommand in nsHTMLDocument.cpp)

• DOM Client Object Cross-Reference

IE (“HTML Edit”)

• MSDN Overview and tutorials

• Documentation

• Overview of Command Identifiers

• A Note about the DHTML Editing Control in IE7+

Opera

• Opera Browser Wiki

5.2. Widgets Introduction 193

http://dev.opera.com/articles/view/rich-html-editing-in-the-browser-part-1/
http://www.mozilla.org/editor/midas-spec.html
http://www.mozilla.org/editor/midasdemo/
http://www.mozilla.org/editor/ie2midas.html
http://lxr.mozilla.org/seamonkey/source/editor/docs/midas-spec.html
http://lxr.mozilla.org/seamonkey/ident?i=MidasCommand
http://developer.mozilla.org/en/docs/DOM_Client_Object_Cross-Reference
http://msdn2.microsoft.com/en-us/library/aa770039(VS.85).aspx
http://msdn.microsoft.com/workshop/author/editing/tutorials/html_editor.asp
http://msdn.microsoft.com/workshop/author/dhtml/reference/commandids.asp
http://blogs.msdn.com/ie/archive/2006/06/27/648850.aspx
http://operawiki.info/TextAreaEditor/

qooxdoo Documentation, Release 1.6

Safari

• WebKit: HTML Editing

• Quietly, Safari Finally Gains WYSIWYG Editing Powers

• execCommand list

Compatibility

• The Mozile project contains code which adapts Internet Explorer’s Selection object to an interface like Mozilla’s.

• Converting your app from IE to Midas

• execCommand compatibility

General

• htmlarea.com

• cmsreview.com

• geniisoft.com

• Web-Based Rich Text Editors Compared

Overview of existing WYSIWYG editors Here is an overview table:

Editor License Pro/Con
YUI
RTE

BSD Pro: works with all well-known browsers (IE / Gecko / Opera / Safari / Konquerer);
Con: Still in Beta (although the final release version should be out soon).

Xinha HTMLArea
(BSD based)

RTE Creative
Commons

RTEF MIT Pro: works with all well-known browsers (IE / Gecko / Opera / Safari / Konquerer);
Con: no user-feedback e.g. which font or size is currently used.

WYMEd-
itor

MIT/GPL Pro: produces XHTML, uses CSS; Con: currently only available for IE and Gecko.

dojo BSD
TinyMCE LGPL
FCKEdit GPL, LGPL

and MPL
Solme-
tra

GPL

FreeRTE Creative
Commons

CM-
Simple

AGPL

XStan-
dard
lite

Freeware

Loki GPL
Whizzy-
wig

194 Chapter 5. GUI Toolkit

http://webkit.org/projects/editing/index.html
http://www.musingsfrommars.org/2007/03/quietly-safaris-rendering-engine-gains-wysiwyg-editing-powers.html
http://lists.apple.com/archives/Webcore-dev/2005/May/msg00013.html
http://mozile.mozdev.org/0.8/doc/jsdoc/
http://www.mozilla.org/editor/ie2midas.html
http://www.quirksmode.org/dom/execCommand.html
http://www.htmlarea.com
http://www.cmsreview.com/WYSIWYG/OpenSource/directory.html
http://www.geniisoft.com/showcase.nsf/WebEditors
http://bulletproofbox.com/web-based-rich-text-editors-compared
http://developer.yahoo.com/yui/editor/
http://developer.yahoo.com/yui/editor/
http://xinha.org/
http://www.kevinroth.com/rte/
http://www.rtef.info/
http://www.wymeditor.org/en/
http://www.wymeditor.org/en/
http://dojotoolkit.org/reference-guide/dijit/Editor.html
http://tinymce.moxiecode.com/
http://www.fckeditor.net/demo/default.html
http://www.solmetra.com/en/
http://www.solmetra.com/en/
http://www.freerichtexteditor.com/
http://www.cmsimple.dk/
http://www.cmsimple.dk/
http://www.xstandard.com
http://www.xstandard.com
http://www.xstandard.com
http://apps.carleton.edu/opensource/loki/
http://www.unverse.net/
http://www.unverse.net/

qooxdoo Documentation, Release 1.6

command Mozilla IE Opera Safari
Bold x x x x
Italic x x x x
Underline x x x x
Strikethrough x x x x

Color
BackColor x x x x
ForeColor x x x x
HiliteColor x x

Font Handling
FontName x x x x
FontSize x x x x
IncreaseFontSize x x
DecreaseFontSize x x
Subscript x x x x
Superscript x x x x

Formatting and CSS
ContentReadOnly x x
StyleWidthCSS x
UseCSS x x
RemoveFormat x x x x

User actions
Copy x x x
Paste x x x
Cut x x x x
Delete x x x x
Undo x x x
Redo x x x
Print x x
SaveAs x

Alignment
JustifyLeft x x x x
JustifyCenter x x x x
JustifyRight x x x x
JustifyFull x x x
Indent x x x
Outdent x x x

Hyperlinks
CreateLink x x x x
Unlink x x x x

Lists
InsertOrderedList x x x x
InsertUnorderedList x x x x

Basic (formatting) elements
Continued on next page

5.2. Widgets Introduction 195

qooxdoo Documentation, Release 1.6

Table 5.1 – continued from previous page
FormatBlock x x x x
Heading x
InsertParagraph x x x x
InsertImage x x x x
InsertButton x
InsertFieldset x
InsertHorizontalRule x x x
InsertHTML x x x
InsertIFrame x

Form elements
InsertInputButton x
InsertInputCheckbox x
InsertInputFileUpload x
InsertInputHidden x
InsertInputImage x
InsertInputPassword x
InsertInputRadio x
InsertInputReset x
InsertInputSubmit x
InsertInputText x
InsertSelectDropdown x
InsertSelectListbox x
InsertTextArea x
InsertMarquee x

Bookmarking
CreateBookmark x
UnBookmark x

Selection and status handling
SelectAll x x x x
Unselect x x x
MultipleSelection x
Overwrite x
Refresh x

Misc
2D-Position x
AbsolutePosition x
LiveResize x
gethtml x
contentReadOnly x
insertBrOnReturn x
enableObjectResizing x
enableInlineTableEditing x

Browser-specific overview of “execCommand”

196 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Copy and Paste

For a HTML editor component it is important to get along with external content which is inserted with a Copy and
Paste operation. This is especially important if any filter for the external content should be applied before the content
is actually inserted in the editor.

However it is quite difficult to implement this across all major browsers. This short article should give a short overview
about the existing events in the different browsers.

To get the detailed overview on this topic check out the section at quirksmode.org

IE This browser offers the most events. Besides onpaste and oncopy there are also events like beforepaste,
beforecopy and beforecut. Additionally all events are stoppable and are bubbling up the DOM hierarchy.

Safari Follows almost the implementation of IE and goes partly beyond it. Safari offers a wide range of events to
detect a Copy and Paste operation, but has currently no implementation at image elements.

Gecko In Firefox 2 there is no support for any event to detect a Copy and Paste operation directly. One can
detect the pressed shortcuts, but if the user paste some text via the menu/contextmenu there is possibility to catch
that. With the upcoming release of Firefox 3 this situation will improve. This version will have some support for such
events like onpaste or oncopy

Opera Same situation as Firefox 2: no working implementation for copy or paste events.

Text align

The text align of a selction can be modified using the following exec commands: JustifyLeft, JustifyCenter,
JustifyRight and JustifyFull.

Browsers

• IE: Text align is applied on the paragraph which contains the selection.

• Gecko and Opera: Text align is applied on selection only. The selection gets surrounded by a <div> tag
containing a text-align style attribute.

• Webkit: Applies text-align style attribute on every <div> element that is (partly) selected.

Problems

• If
 tags are used for line breaks, the textalign will be applied on the <p> tag in IE, even if only a part of
this <p> has been selected!

• If <p> tags are used for line breaks, all style settings set will be “lost” after entering an other <p> tag in FF. It
is necessary to “save” these settings manually and apply them on the new paragraph.

Browser Bugs

Gecko

5.2. Widgets Introduction 197

http://www.quirksmode.org/dom/events/cutcopypaste.html
http://developer.mozilla.org/en/docs/DOM:element.onpaste
http://developer.mozilla.org/en/docs/DOM:element.oncopy

qooxdoo Documentation, Release 1.6

• Gecko 1.8 needs a
 tag inside an element with contenteditable="true", even if the ele-
ment is empty! If no such element existes, Gecko automatically adds it. These elements can be recog-
nized by the proprietary attribute _moz_editor_bogus_node: <br _moz_editor_bogus_node="TRUE"
_moz_dirty=""/>

• Gecko 1.9 will always insert this
 tag, if contenteditable="true" is set. Even if the el-
ement contains content! This
 tag is removed, as soon as any input is entered by the user:
https://bugzilla.mozilla.org/attachment.cgi?id=119342

• Undo/Redo : it could happen that 2 content changes occuring right after another leading Gecko to remove both
of these 2 changes in one undo step. This is especially important for the undo/redo stacks of the HtmlArea.

Internet Explorer

• If you want to use the pasteHTML() function, you have to select the textrange first using select().

Webkit/Safari

• Setting a background color for text on collapsed selection is not working like in Gecko or IE. Instead of setting
the background color and allowing the user to type ahead in the new background color (like in Gecko/IE)
nothing happens. The current solution in the HtmlArea is to select the word currently under the caret and to set
the background color on this selection. Working on a user-selection works as expected.

• Deleting a block element (e.g. an <p> tag) can cause an element to contain two text nodes:

This wrong behavior can cause problems with selections.

Default Paragraph Handling

This section describes how browsers and other applications react on different keys to enter line breaks or paragraphs.

P = paragraph (<p> tag)

LB = line break (
 tag)

Browsers

Firefox MSIE Opera Webkit
<enter> LB P LB <div>
<shift> + <enter> LB LB LB <div>
<strg> + <enter> — — — —

198 Chapter 5. GUI Toolkit

https://bugzilla.mozilla.org/attachment.cgi?id=119342

qooxdoo Documentation, Release 1.6

Word processors / E-mail clients

MS Word OO Writer Outlook Thunderbird
<enter> P P P LB
<shift> + <enter> LB LB LB LB
<strg> + <enter> Page break P — LB

Implementation Details

Undo and Redo

Limitations The implementation of undo/redo in the HtmlArea has some limitations you should be aware of. It is
possible to undo all of your steps but redo is only possible when no other action occured between the undo and the
redo action. If you undo several steps and e.g. enter some text you can not execute redo anymore.

Note: If you use the Undo/Redo functionality you have to make sure you are not manipulating the content of the
HtmlArea by using the innerHTML property of an element.

This will break Undo/Redo functionality!

Implementation: Description on a high-level The implementation is split up into two different approaches.

For Internet Explorer the execCommand approach can’t be used anymore. The internal undo / redo stack gets broken
on every DOM manipulation. So, if any qooxdoo decorator is used this approach is a dead end. Instead an own
implementation using innerHTML is used for IE browsers.

For all other browsers the base of the Undo/Redo functionality is to use the execCommand method to manipulate
the content whenever possible. Each change which is performed with a call of execCommand is easy to undo/redo.
For any manipulation which cannot be achieved using the built-in execCommand a special implementation for each
browser is necessary (e.g. changing the background color of the whole document).

Using the Decorator Pattern To easily integrate the undo/redo management with the commands of the HtmlArea
the UndoManager class is a decorator of the CommandManager class. It takes the method calls from the HtmlArea
class, collects the info for undo the action and calls the decorated commandManager class to actually perform the
requested action. This keeps both implementations clean and separated.

Tracking changes using stacks Two stacks keep track of the changes which are done to the content: an undo stack
and the corresponding redo stack. Currently each stack holds four different types of changes:

• Command

• Content-block

• Custom

• Internal

Each entry in the stacks is represented by an object which holds additional info (the type above is among this info).

Command Every change which is performed with the execCommand method is equipped with this type. These
changes are the easiest to track and to undo/redo.

Content-block Each keypress event is observed to determine changes in the content and to mark a set of content
changes as an own block which is capable for an undo/redo step. For example IE and Gecko do both recognize text
changes as a content block if the text changes occured between two calls of execCommand.

5.2. Widgets Introduction 199

qooxdoo Documentation, Release 1.6

Custom These changes are the ones which cannot be handled with the built-in execCommandmethod. For example
changing the background color of the whole document is a custom undo/redo step which needs to be handled in a
special way by each browser.

Internal These steps are included to keep the stacks intact if the user e.g. resizes an images with the handles provided
by the browsers. It is possible to undo/redo these internal changes with the common execCommand method. The
primary task here is to record these changes and add them to the stack(s).

Paragraph Handling

The aim of the component is to facade all the browser differences concerning the behaviour when the user hits the
Enter, the Shift+Enter or the Control+Enter combination. And this is by far not an easy task since the
differences between the browsers are enormous.

Formatting across multiple paragraphs Every formatting infos like underline, bold, text color, text size etc. are
transferred to the new paragraph. It is likely that the user expects to write on with the same configuration/modifications
he applied to the former paragraph.

Alignment A paragraph in always aligned completely - the way a word processor also work. This can be irritating
at the first time of use if e.g. a paragraph contains multiple lines of text each separated by normal line-breaks, but
concerning alignment the paragraph is treated only as whole. So every line of the paragraph (=the whole paragraph)
is aligned and not only the line the cursor is currently located.

Customization The HtmlArea offers you two properties to customize the paragraph handling globally and thus
customize the behaviour of the component.

insertParagraphOnLinebreak The default value of this property is true. It controls whether a new paragraph or
a normal line-break is inserted when hitting the Enter key. Since the default behaviour of all word processors is to
insert a new paragraph it is recommended to leave this property value with its default.

Note: As every word processor the HtmlArea also supports inserting a normal line-break by using the key combination
Shift+Enter

insertLinebreakOnCtrlEnter This property also has a default value of true. Since some users are familiar with
the key combination Control+Enter to insert a normal line-break the HtmlArea component does support this. So
in the default setup Control+Enter and Shift+Enter will end up with the same result.

Technical Background

Paragraph-Handling in Firefox

Browser control Currently the HtmlArea does only take control and manage the paragraphs on its own if

• SHIFT and CTRL keys are not pressed

• caret is not within a word

• focus node is not an element (current line is not empty)

200 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

• the focus is inside a list

HtmlArea control If the HtmlArea with its paragraph handling takes control, the following actions are taken.

Phase 1: Collecting styles

• computed styles of the focus node are collected

• these styles are grouped in the correct order (e.g. special handling for text-decoration because the text-decoration
is linked to the elements color value)

Phase 2: Style string creation

• a style attribute based on the computed styles is generated for the paragraph element -> only margin,
padding and text-align can be applied at paragraph-level. All other styles need to be applied at span
elements (=child elements)

• a string with nested span / font element string is created. This element string is applied to the paragraph
element. The nested structure is necessary because some styles need to be applied in the right order

Phase 3: Nodes creation The following string is applied with the “insertHtml” command

• an empty span element with an ID

• a p element with the paragraph style

• the nested span / font string to reflect the formatting which can’t be applied at paragraph level

Phase 4: Cleanup

• Gecko inserts a p element on his own even if we intercept. This element gets removed afterwards by selecting
this paragragph and inserting an empty DIV element at the selection

• the ID of the empty span is removed (Gecko will remove an empty span then automatically)

• if an empty paragraph is detected it will be removed to avoid rendering problems

Reasons for own paragraph handling

• support to keep formatting across multiple paragraphs or lists

• keep the caret always inside a p element

• keep control of the kind of line-breaking which is inserted

• normalize line-breaking

• act like MS Word

Issues

• DOM manipulations can break Undo/Redo since Gecko is expecting a DOM node which does not exist anymore

• edge cases can occur which are not targeted yet

• future browser implementation can change and mess up the current implementation

• MS Word behaviour can not be achieved in a browser, yet

5.2. Widgets Introduction 201

qooxdoo Documentation, Release 1.6

List Handling

The component offers ordered and unordered lists to group content.

If the user inserts a new list

• Enter on a non-empty item: inserts a new list item

• Enter on an empty item: stops the editing of list

• Shift+Enter: inserts a new line within the current list item

These actions/key bindings are reflecting the default behaviour of word processors.

5.2.13 Table Styling

Ever wanted to style the table widget and missed an overview what can by styled exactly? If so, then read on and learn
how to style the different parts of the table widget and which steps can be applied to customize the appearance of this
widget.

By default (talking about the Modern theme) the table looks like this:

This tutorial takes a look at the several visible parts of the table such as

• Table widget itself

• Header

• Header cells

• Column visibility button

• Pane

• Row and column styling

• Cell styling

• Selection

• Focus Indicator

• Statusbar

202 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

• Scrollbar

• Editable Cells (controls like Textfield, SelectBox and ComboBox)

This tutorial assumes you’re implementing all styling changes of the table widget in your own application theme
classes. If you’re new to the theming layer of qooxdoo it’s a good idea to recap the manual section for the theming
layer.

If you’re familiar with the theming layer we can dive right into the first topic.

Note: Some of the examples are using CSS3 features, so they’re not applicable to all browsers. If you need to
achieve a styling which is almost completely identical (a pixel-perfect result is impossible) you have to use graphic
files whenver CSS3 features are not present.

Table Widget

Since this widget is the container of all sub-components the styling possibilities are naturally limited. However, limited
possibilites does not result in low importance. You can e.g. change the border of the widget which can have a great
visual impact. Since the border is a decorator you can use all possibilities like different kind of borders, shadows and
the like.

Sample of a table widget using a decorator with shadow:

To achieve this you can re-define the table decorator in your application theme as following:

"table" :
{

// the decorator ’MBoxShadow’ is only supported by modern browsers
// Firefox 3.5+, IE9+, Safari 3.0+, Opera 10.5+ and Chrome 4.0+
decorator: [
qx.ui.decoration.MSingleBorder,
qx.ui.decoration.MBoxShadow

],

style :
{
width : 1,
color : "table-border-main",

shadowBlurRadius : 5,
shadowLength : 4,
// color is ’#999999’
shadowColor : "table-shadow"

}
},

5.2. Widgets Introduction 203

qooxdoo Documentation, Release 1.6

Note: To get this example working you additionally have to define the colors table-border-main and
table-shadow in your color theme. It’s considered as best practice to define all colors as named color in your
color theme. This way you can use these named colors all over your application.

Header

Header styling

The header widget is a simple widget containing the header cells and the column visibility button. However, if you
want to change the e.g. the background of the whole header you’re here in the right place, since the container does the
styling of the background and not the header cells themselves.

// change the whole background of the header by changing the decorator
"table-scroller-header-css" :
{

decorator : [
qx.ui.decoration.MSingleBorder,
qx.ui.decoration.MBackgroundColor

],

style :
{
// color is ’#00AA00’
backgroundColor: "table-header-background",

widthBottom : 1,
colorBottom : "border-main"

}
}

Note: Make sure the color table-header-background is part of your color theme.

This code snippet will result in the following:

Additionally you can change the height of the whole header by using the headerCellHeight property. Changing
this property might make sense if you also want to customize the appearance of the header cells (e.g. using a larger
font).

Removing the header

You want to get rid off the whole header? That’s also possible by setting two additional themeable properties. So you
only have to drop those two line in your appearance theme and you’re done:

"table" :
{

alias : "widget",

204 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

style : function(states)
{
return {

decorator : "table",
headerCellsVisible : false,
columnVisibilityButtonVisible : false

};
}

},

to get the following result

Header Cells

Customizing the appearance of the header cells can be divided into the following parts:

• Decorator for hover effects

• Padding

• Alignment

• Using a different sort icon

• Using a custom font

Beside the settings for alignment and paddings all other appearance customizations are directly applied to the header
cell appearance. If you want to e.g. change the hover effect for the header cell you can easily change the decorator
(and the padding if necessary) to get an custom styling. Exchanging the sort icon is also supported. The sort icons are
shown whenever the user does click at one header cell the very first time.

The default appearance for each header cell looks like this:

"table-header-cell" :
{
alias : "atom",
style : function(states)
{

return {
minWidth : 13,
minHeight : 20,
padding : states.hovered ? [3, 4, 2, 4] : [3, 4],
decorator : states.hovered ? "table-header-cell-hovered" : "table-header-cell",
sortIcon : states.sorted ?

(states.sortedAscending ? "decoration/table/ascending.png" : "decoration/table/descending.png")
: undefined

};
}

},

5.2. Widgets Introduction 205

qooxdoo Documentation, Release 1.6

The default decorator for the hover effect does show a 1 pixel border at the bottom of the hovered header cell. If you
only want to change this color you can go ahead and add the table-header-hovered color in the color theme of
your application

"table-header-hovered" : "orange",

to get a result like this

A bigger change of the header cells might be to change the background color at hovering. To do so you can simply
modify the existing table-header-cell-hovered decorator like

"table-header-cell-hovered" :
{

decorator : qx.ui.decoration.Background,

style :
{
backgroundColor : "orange"

}
},

and you’re done!

Additionally, you can change the styling of the different child controls (label, icon and sort icon) of the header cells.
So if you want to change the font you can simply customize the label child control of the header cell to change the
alignment, existing padding and the like.

The default appearance of the child controls are defined as

"table-header-cell/label" :
{

style : function(states)
{
return {

minWidth : 0,
alignY : "middle",
paddingRight : 5,
paddingLeft: 5,

// change of the default font setting
font : "bold"

206 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

};
}

},

"table-header-cell/sort-icon" :
{

style : function(states)
{
return {

alignY : "middle",
alignX : "right"

};
}

},

"table-header-cell/icon" :
{

style : function(states)
{
return {

minWidth : 0,
alignY : "middle",
paddingRight : 5

};
}

},

With the minor change above to the decorator and a font setting of the label you can achieve the following:

Pane

Pane Background

The pane itself is only styled using a background color and it is recommended to only change the background color in
order to harmonize the color with the used row colors. The pane widget gets only visible if there is more open space
left than occupied by the rows to show or at the very end of the table pane whenever scrollbars are necessary.

One picture says more than thousand words :) The pane with red background color to demonstrate:

5.2. Widgets Introduction 207

qooxdoo Documentation, Release 1.6

The corresponding code in the color theme of your application is a simple one-liner:

"table-pane" : "red",

Row And Column Styling

Removing The Grid Lines If you take a second look at the picture above you can already recognize a customization
of the row and column styling: the removal of the row and column lines.

Basically you can choose between two solutions:

• Setting the colors for the row and column line

• Writing your own cellrenderer and rowrenderer

The first solution path is the quick one which is done by customize color of the color theme and no
additional coding. However, you have also limited possibilities to customize. The second solution is
the coding one. Start right away and extend the classes qx.ui.table.rowrenderer.Default and
qx.ui.table.cellrenderer.Abstract, implement the necessary interfaces and create your very own ap-
perance by putting together the necessary CSS styles.

Since the latter solution is a more complex one, I’ll only explain the first solution which helps you in styling the table
rows and columns in a quick way.

// these two lines have to inserted in your application color theme
// to remove the grid lines
"table-row-line" : "transparent",
"table-column-line" : "transparent",

Okay, we’re cheating here a bit by hiding and not removing them, but anyway the goal is achieved and this in a very
quick manner, right?

208 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Note: The use of transparent as a named color is not working for the IE6. If you want to support this browser
you have to write your own cellrenderer.

Text And Background Colors What about changing more than the grid lines of the cells? Like changing the colors
of the row background and so. I’m glad you ask this :)

Customizing these colors is as easy as hiding the grid lines. You can adapt the styling of the rows and columns by just
setting different colors. These colors are available and can be overwritten in your application color theme:

• table-pane - background color of the pane when less entries are used than avaialable space

• table-row - text color of the cells

• table-row-background-even - background color of even rows

• table-row-background-odd - background color of odd rows

By changing one or more of these colors you can e.g. achieve this:

by defining these colors:

"table-row-background-even" : "#CD661D",
"table-row-background-odd" : "#EEAD0E",
"table-row" : "#EEE9E9",

"table-row-line" : "transparent",
"table-column-line" : "transparent",

Selection If you customized the colors like above this is only the first part of it. Now the colors for the selection join
the game. If you don’t adapt these colors the result will for sure not satisfy you. So let’s dive into this topic.

• table-row-selected - text color for cells are selected but not focused

• table-row-background-selected - cells are selected but not focused

• table-row-background-focused-selected - cells are selected and focused

• table-row-background-focused - cells are focused but not selected

To better visualize this the following example does use colors which are easy to distinguish:

"table-row-selected" : "blue",
"table-row-background-selected" : "orange",
"table-row-background-focused-selected" : "green",
"table-row-background-focused" : "red",

5.2. Widgets Introduction 209

qooxdoo Documentation, Release 1.6

This shows an active selection:

The same with an inactive selection:

Cell Styling This section is rather for the sake of completness. If you want to have full control over the cell styling
you can create your own cellrenderer classes and apply them for each column of your table. This topic is more a
programmatic one and it does not fit in this scope of this article. However, a short introduction and a beginners guide
will fit in here :)

A list of existing cell renderer is available at the API Viewer. If one of these is suitable for you all you have to do to
use it is

var tcm = table.getTableColumnModel();

// Display a checkbox in column 3
tcm.setDataCellRenderer(3, new qx.ui.table.cellrenderer.Boolean());

to e.g. display a checkbox for the fourth column. This assumes the cell renderer fits with the provided data.

If that’s still no a solution for you, because you really need some extras for the cell rendering the solution has to be an
own cell renderer. To get into it it’s recommended to take a look at the existing cell renderers and the base class. So
basically you should study the implementation of the qx.ui.table.cellrenderer.Abstract class and as
first start the implementation of qx.ui.table.cellrenderer.Default to give a good overview of this topic.
Depending on your needs you can start right away by copying the default renderer and play around a bit to get a
impression of how to customize it.

Focus Indicator

This widget in default visible whenever a selection is present. There are two ways of customzing this widget:

210 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.table.cellrenderer

qooxdoo Documentation, Release 1.6

• change the decorator and the colors of this widget

• hide this indicator completely

The first possibility is the fast way for customization if you decided to keep the focus indicator visible. The available
decorator is a simple 2 pixel border one and the color table-focus-indicator is defining this border color of
the decorator. So either replacing the decorator by an own one or just changing the color has a direct effect. So let’s
look at an example where the decorator is changed:

"table-scroller-focus-indicator" :
{

decorator : qx.ui.decoration.Double,

style :
{
style : "dashed",

// color value is ’orange’
color : "table-focus-indicator",
width: 2,

innerColor : "yellow",
innerWidth : 2

}
},

Look’s really weird, but for demonstration purpose is quite good enough :)

Note: It’s better to stick with decorators which are only affecting the border for the focus indicator. A background-
related decorator won’t have any impact because of the background color stying of the cells.

If you want to hide the focus indicator itself this is a one-liner

table.setShowCellFocusIndicator(false);

Resize Line

This is a minor topic, since it only can be customized by its color. You may ask: what is the resize line all about? Point
your mouse cursor to a column border and start the resizing of the column by clicking at the border. The vertical line
which gets visible is the resize line. So a table with a green resize line would like this:

"table-scroller/resize-line" :
{
style : function(states)
{

5.2. Widgets Introduction 211

qooxdoo Documentation, Release 1.6

return {
backgroundColor : "green",
width : 2

};
}

},

Statusbar

You might guessed it already: yes, the statusbar can also be hidden or customized by changing a decorator in your
decorator theme of your application. This kind of repetition is quite nice, because if you do understand those basic
things you can take a look at the Modern appearance or decorator theme and you quickly know what to include in
your own theme in order to change the styling of a component.

Hiding the statusbar is again an one-liner:

table.setStatusBarVisible(false);

And the default implementation of the corresponding decorator looks like

"table-statusbar" :
{

decorator : qx.ui.decoration.Single,

style :
{
widthTop : 1,
colorTop : "border-main",
style : "solid"

}
},

As you can see there is no additional background and no other fancy stuff. If you like to change this e.g. setting an
own background gradient you can use the following

"table-statusbar" :
{
decorator : [

qx.ui.decoration.MLinearBackgroundGradient,
qx.ui.decoration.MSingleBorder

],

style :
{

widthTop : 1,
colorTop : "orange",

212 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

style : "solid",

gradientStart : ["orange", 10],
gradientEnd : ["red", 80]

}
},

The result of this little demo looks like:

Editable Cells

The table widget (respectively the cell renderer) do support inline editing of values. These widgets which are displayed
for the inline editing can also be cutomized using the theming layer of qooxdoo. The following appearances are pre-
defined:

• table-editor-textfield

• table-editor-selectbox

• table-editor-combobox

Basically those appearances do include the corresponding widget appearance and only modify single properties. In
the Modern appearance theme this looks like this:

"table-editor-textfield" :
{

include : "textfield",

style : function(states)
{
return {

decorator : undefined,
padding : [2, 2],
backgroundColor : "background-light"

};
}

},

"table-editor-selectbox" :
{

include : "selectbox",
alias : "selectbox",

style : function(states)
{
return {

padding : [0, 2],
backgroundColor : "background-light"

};
}

5.2. Widgets Introduction 213

qooxdoo Documentation, Release 1.6

},

"table-editor-combobox" :
{

include : "combobox",
alias : "combobox",

style : function(states)
{
return {

decorator : undefined,
backgroundColor : "background-light"

};
}

As you can see: only minor changes to the existing appearances. And that’s also the hint for your customizations: start
with the existing appearances and only modify single properties by overwriting or adding them.

Here’s a litte example with an editable textfield with orange background color:

Scrollbars

Each widget which uses the scrolling capabilities (as the table pane scroller does) can use themed scrollbars. By using
them you can also style them, since they are rendered by decorators which are now quite common to you, right? So
this section won’t dive too deep into styling scrollbars and just gives hints at which appearance you have to get your
hands on. The default appearance of the scrollbars for the table is

"table-scroller/scrollbar-x": "scrollbar",
"table-scroller/scrollbar-y": "scrollbar",

so the scrollbars of the table-scroller widget integrates the scrollbars as child controls and does use the
same decorators as the default scrollbars. If you want to theme those scrollbars you should take a look at the
scrollbar appearance and all other child controls of this widget. As first step you can copy this definitions
and modify it to suit your needs. Instead of using the default scrollbars for the table you have to point the
table-scroller/scrollbar-x and table-scroller/scrollbar-y to your own appearance entries
and you’re done.

Here’s a quick reminder how the table does look like with themed scrollbars:

214 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

5.2.14 Widget Reference

• Widget reference

5.3 Layouts

5.3.1 Layouting

Introduction

A Layout manager defines the strategy of how to position the child widgets of a parent widget. They compute the
position and size of each child by taking the size hints and layout properties of the children and the size hint of the
parent into account.

Whenever the size of one widget changes, the layout engine will ask the layout manager of each affected widget to
recompute its children’s positions and sizes. Layout managers are only visible through the effects they have on the
widgets they are responsible for.

It is possible to place and size all children directly to static positions using setUserBounds as well, but this is quite
uncommon and only used in very special cases. It is almost always better to position children using a layout manager.

The layout manager can be configured on any widget, but most classes only have the protected methods to control the
layout. In fact it doesn’t make sense to control the layout manager of a Spinner, ComboBox, etc. from outside. So
this scenario is quite common. Some widgets however publish the layout API. One of them is the above mentioned
Composite widget. It exposes the layout system and the whole children API.

The nature of layout managers is that each one has specialized options for its children. For example, one layout allows
specifying a left position of a child in the canvas while another one works with rows and cells instead. Given this fact,
the best place to handle these options is the layout itself. Every LayoutItem has the methods setLayoutProperties
and getLayoutProperties. Through this API the layout properties can be configured independendly from the layout.

5.3. Layouts 215

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~setUserBounds
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~setLayoutProperties
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~getLayoutProperties

qooxdoo Documentation, Release 1.6

The validation of properties is lazy (compared to the classic qooxdoo properties). At the moment where a child with
layout properties is inserted into a parent widget with a layout, these properties are checked against the rules of the
layout. This validation is not possible earlier, e.g. at the definition of the wrong property, as at this moment the child
may not have a parent yet.

To make layout properties available in a convenient fashion each add() has an optional second parameter: A map with
all layout properties to configure. A basic example:

var canvas = new qx.ui.container.Composite(new qx.ui.layout.Canvas);
canvas.add(new qx.ui.form.Button("Say Hello"), {
left : 20,
top: 20

});

This example places a button at the position 20x20 of the composite created. As you can see, the Composite widget
has a convenient way – using the constructor – to define the layout it uses.

Panes

Some widgets extend the Composite widget above. Typical examples here are:

• TabView Page

• Popup

These have the same API like the composite. A slightly other type are so-called composite-like widgets. These widgets
offer the same type of children management and layout management to the outside, but they redirect these properties
to an inner pane.

Typical widgets in this category are:

• Window

• GroupBox

Sensible defaults

By default, widgets are intelligently auto-sized. This means that most of the time you can create a widget and it will
look nice. If you need greater control, you can override the defaults. Every property defined initially is also recon-
figurable during the runtime of an application. When using layout managers any computed sizes are automatically
refreshed and the arrangement of children is updated.

Every automatically detected size can be overridden. Common settings of a widget (or spacers) are configured through
the widget itself. This for example includes properties like width or height. All these sizes are pixel values. Percent
and other complex values are only supported by a few layout managers so these are implemented as layout properties
(explained in detail later).

Automatic size detection means, that limits are detected as well. Any widget in qooxdoo knows how much it can
shrink and how much it can grow without interfering the functionality. The application developer can override these
min/max sizes as well. This is no problem as long as the new value is tougher than the automatically detected values
(e.g. lower limit of maximum width). When overriding the automatic sizes to reduce the limits layout problems may
occur. It is highly suggested to keep an eye on this to omit such scenarios.

One thing to keep in mind is that the width cannot override the minWidth or the maxWidth. Limitation properties
may be overridden by the property itself, but not by the normal size property. The minWidth can override the
minimal automatically detected size, but the width cannot. This decision makes the layout system more stable as
unintended overrides of the limitations are omitted in most cases.

216 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.container.Composite~add
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tabview.Page
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.popup.Popup
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.window.Window
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.groupbox.GroupBox
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~width
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~height

qooxdoo Documentation, Release 1.6

Often width and height are described as preferred sizes as the given size may not have an influence on the actual
rendered size of the widget. Even if the width is configured by the user, this does not mean that the widget always
get the desired width.

Growing & Shrinking

Dynamic GUIs often must work equally well in cases where not enough (or too much) room is available to render
the GUI in the way meant by the developer. This may include simple cases where the size of tabs is reduced in order
to handle the display of all open tabs without scrolling. More advanced cases are text which wraps to multiple lines
depending on the available width (and this way influences the position of following children).

In the first case we often see that an application reduces the size of the label and uses an ellipsis symbol to show
that the label was too long. This feature is built-in into both commonly used widgets: Label and Atom. When the
underlaying layout ask to reduce the width (or the developer using the width property) the widget tries to solve the
requirement dynamically. This certainly works for the height as well.

var label = new qx.ui.basic.Label().set({
value: "A long label text which has not enough room.",
width: 60

});

The second case is handled by the height for width support. Longly name but basically a really strong feature which is
required quite often. It means that the height may depend on the actual width available. This especially makes sense
for multi-line text where the wrapping may be influenced by the available width. The Label widget includes support
for this feature when using the rich output mode (HTML content).

var label = new qx.ui.basic.Label().set({
value: "A long label text with auto-wrapping. This also may
contain <b style=’color:red’>rich HTML markup.",

rich : true,
width: 120

});

Finally this means that every widget can grow and shrink depending on the limitations given for the respective axis.
Two easy accessors which disable growing or shrinking respectively are allowGrowX and allowShrinkX. When the
growing is disabled the configured or automatically detected maximum size is ignored and configured to the preferred
size. When the shrinking is disabled the configured or automatically detected minimum size is ignored and configured
to the preferred size. Two convenient methods to controlling these features without knowing of the exact dimensions.

Overflow Handling

This leads to the next question: how to handle scenarios where the content needs more room than provided by the
parent but should not shrink. This is a common case for data widgets like Lists or Trees. Both extend the Ab-
stractScrollArea to provide scrollbars to handle overflowing content.

The ScrollArea itself renders scrollbars in a custom way. It does not use the native scrollbars nor the native
overflowing capabilities of the browser. Benefits of this decision are:

• Scroll bars can be themed.

• Optimal integration into layout system.

• Own implementation overrides browser quirks

The scrollbars are controlable in a way that is comparable to CSS. It is possible to have both scrollbars marked as
auto to automatically detect the needs of the content. Or any other combination where a scrollbar may be statically
hidden or visible. Each bar can be controlled separately. It is possible to enable one scrollbar statically and make the
other one auto-displayed and vice-versa.

5.3. Layouts 217

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Label
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Atom
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~_getHeightForWidth
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Label
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Label~rich
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~allowGrowX
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~allowShrinkX
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.List
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tree.Tree
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.scroll.AbstractScrollArea
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.scroll.AbstractScrollArea
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.scroll.AbstractScrollArea~scrollbarX

qooxdoo Documentation, Release 1.6

var big = new qx.ui.form.TextArea;
big.setWidth(600);
big.setHeight(600);

var area = new qx.ui.container.Scroll;
area.setWidth(200);
area.setHeight(200);
area.add(big);

The ScrollArea provides all typically needed methods like scrollToX to scroll to an absolute position or scrollByX
to scroll by the given amount. The widget also supports the scrolling of any child into the viewport. This feature is
provided through the method scrollItemIntoView. It just needs any child of the widget (at any depth).

var list = new qx.ui.form.List();
var item;
for (var i=0; i<20; i++)
{

item = new qx.ui.form.ListItem("Item #" + i);
list.add(item);

if (i == 12) {
list.select(item);

}
}

One really interesting aspect of these scrolling features is, that they work all the time, even if the widget is not yet
rendered. It is possible to scroll any ScrollArea before even rendered. It is even possible to scroll any child into
view without the whole parent being visible. This is quite useful for selection handling (selected items should be
visible). Selections of a list for example can be modified during the normal application runtime and are automatically
applied and scrolled correctly after the first appearance on the screen.

Layout Properties

While there are a few core layout features which are normally respected by most layouts like the margin and alignment
properties (have a look to the LayoutItem for these), there are layout specific properties which only makes sense in
conjunction with the specified layout as well. These properties are called layout properties in qooxdoo.

These properties are normally defined with the addition to the parent widget. The children handling normally allows a
second optional parameter options. The layout properties are given through a simple map e.g.

parent.add(child, {left:20, top: 100});

This is still good readble and directly defines the properties where the children is added to the parent (and the parent’s
layout). While this is the common use pattern of layout properties in qooxdoo applications, it is still possible to define
layout properties afterwards using setLayoutProperties. The first parameter is like the second parameter in add and
accepts a map of layout properties.

Units of Layout Properties

Pixel

Usually all position and size values are defined as pixel values. For example the left and top layout properties of
the Basic layout are defined as pixel values.

218 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.scroll.AbstractScrollArea~scrollToX
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.scroll.AbstractScrollArea~scrollByX
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget~scrollChildIntoView
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.MChildrenHandling
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~setLayoutProperties

qooxdoo Documentation, Release 1.6

Flex

The flex value indicates the flexibility of the item, which implies how an item’s container distributes remaining empty
space among its children. Flexible elements grow and shrink to fit their given space. Elements with larger flex values
will be sized larger than elements with lower flex values, at the ratio determined by the two elements. The actual
flex value is not relevant unless there are other flexible elements within the same container. Once the default sizes of
elements in a box are calculated, the remaining space in the box is divided among the flexible elements, according to
their flex ratios. Specifying a flex value of 0 has the same effect as leaving the flex attribute out entirely.

The easiest use case is to make exactly one child consuming the remaining space. This is often seen in modern
application. For example the location field in common browsers are automatically configured to behave like this. To
do this add a flex value of 1 to the child. In order to make more children behave like this, one could make them flexible
the same way. The available space is automatically allocated between all of them. As flex allows integer values it
is also possible to define weighted values. A flex value of 2 means double importance over 1. The result is that from
100 pixel remaining space and two flexible children the one with 2 gets about 66 pixel and the other one 33 pixel.

Please note that in shrinking mode flex has an analogous effect. As a flex value of 2 means doubled importance
compared to 1 the child with 2 is shrunken less than the child with 1.

In contrast to qooxdoo 0.7 flex values are supplemental to the normal size values of a widget. First all children are
positioned using their regular size hints. If after this step the combined size of the children is larger or smaller than the
available size the flex value defines by how much each widget is stretched or shrunken.

The flex property is supported by both Box Layouts, the Dock Layout and the Grid (for columns and rows).

In some way the SplitPane supports flex as well, but it behaves a bit different there as it is regarded as an alternative to
the preferred size.

Percent

With the above mentioned flex feature the use of percents is quite uncommon in most qooxdoo applications. Still,
there are some cases where it might be interesting to define percent locations or dimensions.

The Canvas Layout for example allows a child’s position to contain a percent value (e.g. the layout property left
could be configured to 20%). When there are 1000 pixel available the so-configured child is placed at a left coordinate
of 200 pixel. The final coordinate is automatically updated when the outer dimensions are modified.

The LayoutItem‘s dimension properties only support integer values. To use percentage dimensions some qooxdoo
layout managers allow to define width and height using layout properties. This dimensions are then higher priori-
tized than the width and height configured in the child using the normal properties. The limitations defined through
minWidth etc. are still respected by the layout manager. Percentage dimensions are useful to allocate a specific part
of the available space to a given widget without being dependent on the configuration of the other children.

It is possible to combine flex with percent dimensions. This is good because it allows to define approximations like
3 times 33% instead of being forced to fill the 100% completely. With flex enabled the layout manager automatically
arranges the children to fill the remaining pixels.

The effects of percentage dimensions in box layouts are comparable to the result of flex in a SplitPane. The resulting
size is computed from the available space less all statically configured gaps like spacings or margins. Layout managers
with support for percentage dimensions are the already mentioned Box Layouts, but also the Canvas Layout as well as
the Dock Layout.

Pre-configured Widgets

There are a few containers in qooxdoo which use a predefined immutable layout for rendering their children. Currently
these containers are included:

5.3. Layouts 219

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.HBox
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Dock
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Grid
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.splitpane
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Canvas
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.splitpane
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.VBox
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Canvas
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Dock

qooxdoo Documentation, Release 1.6

• Scroll: Provides auto-matic scrollbars for larger content. Does not influence the size of the content which is
rendered at the preferred size. Allows scrolling of the content. Supports advanced features like offset calculation
and scroll into view.

• Stack: Scales every widget to the available space and put one over another. Allows selection of which child
should be visible. Used internally by TabView etc.

• SlideBar: Comparable to the Scroll Container but only provides automatic forward and backward arrows. Sup-
ports only one axis per instance: horizontal or vertical. Buttons are automatically displayed as needed. Supports
automatic shrinking of the children (other than the Scroll Container).

• SplitPane: Divides the available space into two areas and provides a possibility to resize the panes for the user.
Automatically respects the limitations of each child.

Visibility Handling

Every widget can be hidden and shown at any time during the application runtime. In qooxdoo each widget’s visibility
might have three values: visible, hidden or excluded. While hidden and excluded both makes a widget
invisible there is still a difference: excluded ignores the widget in during the layout process while hidden simply
hides the widget and keeps the room for the widget during the layout process.

The visibility property is not commonly used in qooxdoo applications.There are a few nice accessor methods
for each widget:

• To check the status of a widget: isVisible(), isHidden() and isExcluded()

• To modify the visibility: show(), hide() and exclude()

Please note that for performance reasons invisible widgets are not rendered or updated to the DOM which means that
especially initially invisible parts could improve the startup of a qooxdoo application e.g. alternate Tab Pages, closed
Window instances, Menus, etc.

To work with multiple layers like in a Tab View it is suggested to use a Stack Container instead of doing the visibility
management on the own.

5.4 Themes

5.4.1 Theming

qooxdoo includes three themes:

• Modern - a graphically rich theme, showcasing many UI capabilities of qooxdoo 1.6

• Classic - MS Windows oriented theme

• Simple - a lightweight theme, which looks more like a website.

Here some screenshots:

220 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

While those three themes run out-of-the-box, it is easy to create your own themes. Those custom themes can either be
created by extending existing ones or they can be created from scratch.

A complete theme (a so-called meta theme) consists of several special themes, each designed to play a dedicated role
and to setup the different parts of the whole theming. These special themes are described at the subsequent sections
followed by a description of how to create own themes.

Meta Theme

A meta theme describes the whole theme itself by defining the specific parts. Each meta theme consists of five keys

• appearance

• color

5.4. Themes 221

qooxdoo Documentation, Release 1.6

• decoration

• font

• icon

each of them referencing to a specialized theme. So you can think of a meta theme as of collection whose parts can
easily be changed.

Sample of a meta theme:

qx.Theme.define("qx.theme.Modern",
{

meta :
{
color : qx.theme.modern.Color,
decoration : qx.theme.modern.Decoration,
font : qx.theme.modern.Font,
appearance : qx.theme.modern.Appearance,
icon : qx.theme.icon.Tango

}
}

This section describes the different types of themes which are used for theming a whole application.

Color Theme

A color theme defines all colors used by the framework. Each color is defined by an unique name and a value which
can be written as hex, rgb or named color. This defined name is usable throughout the whole framework and your
application.

Note: The best way to organize your color names is to use semantic ones like background, text-input or
text-disabled. This way it is easier to use one color for multiple widgets.

Part of a sample color theme:

/**
* sample color theme

*/
qx.Theme.define("myApplication.theme.sample.Color",
{

colors :
{
/*
--

SAMPLE COLORS
--

*/

// color as hex value
"background-application" : "#DFDFDF",

// color as rgb array
"background-pane" : [128, 128, 128],

// color as named color
"background-light" : "gray",

222 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

}
});

Following names are recognized as named colors: black, white, silver, gray, maroon, red, purple,
fuchsia, green, lime, olive, yellow, navy, blue, teal, aqua, orange, brown.

The color values are set in the class qx.util.ColorUtil

Decoration Theme

Each widget can be equipped with an independent decoration which can be used to set a background-color or -
image, define a border, add a shadow and much more. In a decoration theme you can use several different decorators
depending on the results you wish to achieve. Please take a look at the decorator article to get more information.

Note: It is recommend to define the decorations inside the theme instead of creating manually decorator instances
inside your application code. This way the created decorators can be used by multiple widgets.

What a decoration theme can look like:

/* ***

#asset(sample/decoration/myDecorationTheme/*)

**/

/**
* sample decoration theme.

*/
qx.Theme.define("myApplication.theme.sample.Decoration",
{

aliases : {
decoration : "myApplication/decoration/sample"

},

decorations :
{
"single" :
{

decorator: qx.ui.decoration.Single,

style :
{

width : 1,

color : "red",
colorLeft : "black",
colorRight : "white",

style : "solid"
}

},

"grid" :
{

decorator : qx.ui.decoration.Grid,

5.4. Themes 223

http://demo.qooxdoo.org/1.6/apiviewer/#qx.util.ColorUtil

qooxdoo Documentation, Release 1.6

style :
{

baseImage : "decoration/pane/grid.png"
}

},

"combined" :
{

decorator : [
qx.ui.decoration.MBackgroundColor,
qx.ui.decoration.MBorderRadius

],

style :
{

backgroundColor : "button",
radius : 3

}
}

});

Noted the #asset at the top and the aliases key inside the theme declaration? This is needed to for the images
used within the theme. A description of how to work with resources is available here.

Note: The aliases key is especially important when defining an own decorator theme. This entry does add
a new alias at the AliasManager class and verifies that your images for the decoration theme are found by the
ResourceManager which is working with the resolve URLs of the AliasManager class.

Font Theme

This theme is all about the information of the fonts used throughout your application. As the number of types/variants
of fonts used with application isn’t that big the font theme is normally a compact one. Web fonts are also defined here.
See the article on web fonts for details.

Note: It is always a good idea to limit the number of types or variants of fonts to create a homogenous look.

To demonstrate how compact and powerful a font theme can look like, take a look at the example font theme:

/**
* The modern font theme.

*/
qx.Theme.define("qx.theme.modern.Font",
{

fonts :
{
"default" :
{

size : 11,
lineHeight : 1.4,
family : ["Tahoma", "Liberation Sans", "Arial"]

},

"bold" :

224 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

{
size : 12,
lineHeight : 1.4,
family : ["Lucida Grande"],
bold : true

}
}

});

It is important to note that you can only specify values available as property on qx.bom.Font or
qx.bom.webfonts.WebFont.

Icon Theme

This theme is to define which icon set is used and normally consists only of 2 main keys (title and aliases).

The important one is the aliases key which points the generator to the location of the icon set. The icon alias,
which is used to reference icons in qooxdoo applications, is set to the value of this key. As qooxdoo uses the free
available Tango and Oxygen icon sets it is not necessary to extend these.

Complete code for the tango icon theme:

/**
* Tango icons

*/
qx.Theme.define("qx.theme.icon.Tango",
{

aliases : {
"icon" : "qx/icon/Tango"

}
});

Appearance Theme

The appearance theme is by far the biggest theme. Its task is to describe every themable widget and their child controls.
Since the widgets are styled using decorators, colors, fonts and icons the appearance theme uses the definitions of all
the other themes namely the decoration, color, font and icon theme. You can think of the appearance theme as the
central meeting point where the other themes (decorator, color, font and icon) get together.

To discover the power of the appearance theme please take a look at the corresponding article which should let you
get an idea of the whole picture.

Applying Themes

Typically, your application will have a certain, pre-defined theme known at build-time. The best way to associate such
a default outlook with your application is to use the config.json variable QXTHEME inside the “let” section. Setting
this variable to a fully-qualified meta theme class lets the build process handle the proper inclusion and linkage of the
theme classes automatically. E.g.:
...
QXTHEME : my.theme.Cool,
...

It is also possible to set a certain appearance at runtime:

5.4. Themes 225

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Font
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.webfonts.WebFont
http://tango.freedesktop.org/Tango_Desktop_Project
http://www.oxygen-icons.org

qooxdoo Documentation, Release 1.6

qx.theme.manager.Meta.getInstance().setTheme(my.theme.Cool);

For appearance, color, border, icon and widget themes, you can use similar classes in the qx.theme.manager package.

5.4.2 Appearance

What is it?

An appearance theme is the main part of the theme. It contains all appearance definitions which are responsible for
holding all styling informations for the wigets. Usually the apperance theme is the biggest theme and uses all other
theme classes like the Decorator- or Font-theme.

Theme Structure

A theme normally consists of a set of entries. Each entry has a key which is basically some kind of selector which
matches to a specific widget. Missing selectors are presented as a warning when developing with debug code enabled.

qx.Theme.define("qx.theme.modern.Appearance",
{

appearances :
{
selector : entry,
[...]

}
});

Selectors

In the most basic form each selector is identical to an appearance ID. This appearance ID is the value stored in the
appearance property (API) of each widget.

The child control system ignores this appearance entry for widgets which function as a child control of another widget.
In these cases the selector is the combination of the appearance ID of the parent widget plus the ID of the child control.

In a classic Button there is a child control icon for example. The appearance selector for the image element which
represents the icon is button/icon. As you can see the divider between the appearance ID and the child control is
a simple slash (/).

It is also possible that a widget, which is a child control itself, uses another child control. Generally the mechanism
prepends the ID of each parent which is also a child control to the front of the selector. For example:

- pane
- level1
- level2

- level3

the generated selector would be pane/level1/level2/level3. For pane which is not a child control of any
other widget the appearance ID is used. For all others the child control ID is used. Again pane is not managed by any
other widget so it is basically added by the developer of the application to another widget while level1 to level3
are managed by some type of combined widget and are added to each other without the work of the application
developer.

A classic example for this is the Spinner widget. A Spinner is basically a Grid layout with a TextField and
two RepeatButtons. The three internal widgets are available under the sub control IDs textfield, upbutton
and downbutton. The selectors for these kind of child controls are then:

226 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/current/apiviewer/#qx.theme.manager
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.Widget~appearance

qooxdoo Documentation, Release 1.6

• spinner/textfield

• spinner/upbutton

• spinner/downbutton

Each of these selectors must be defined by the selected appearance. Otherwise a warning about missing selectors is
displayed.

Aliases

A entry can be defined with two different values, a string or a map. The first option is named “alias”, it is basically a
string, redirecting to another selector. In the Spinner example from above we may just want to use aliases for the
buttons. See the example:

qx.Theme.define("qx.theme.modern.Appearance",
{

appearances :
{
[...],

"spinner/upbutton" : "button",
"spinner/downbutton" : "button",

[...]
}

});

So we have mastered one essential part for appearance themes. It is basically the easiest part, but seen quite often.
Compared to CSS you always have a full control about the styling of such an child control. There is no type of implicit
inheritance. This may also be seen negatively, but most developers tend to like it more.

Such an alias also redirects all child controls of the left hand selector to the right hand selector. This means that the
icon inside the button is automatically redirected as well. Internally this mapping looks like this:

"spinner/upbutton" => "button"
"spinner/upbutton/icon" => "button/icon"
"spinner/upbutton/label" => "button/label"

This is super convenient for simple cases and additionally it is still possible to selectively override definitions for
specific child controls.

qx.Theme.define("qx.theme.modern.Appearance",
{

appearances :
{
[...],

"myimage" : [...],

"spinner/upbutton" : "button",
"spinner/upbutton/icon" : "myimage",

[...]
}

});

Internally the above results into the following remapping:

5.4. Themes 227

qooxdoo Documentation, Release 1.6

"spinner/upbutton" => "button"
"spinner/upbutton/icon" => "myimage"
"spinner/upbutton/label" => "button/label"

Entries

The more complex full entry is a map with several sub entries where all are optional:

qx.Theme.define("qx.theme.modern.Appearance",
{

appearances :
{
[...],

"spinner/textfield" :
{

base : true/false,
include : String,
alias : String,

style : function(states, styles)
{

return {
property : states.hovered ? value1 : value2,
[...]

};
}

},

[...]
}

});

Style Method

Let’s start with the style sub entry. The value under this key should be a function which returns a set of properties to
apply to the target widget. The first parameter of the function is named states. This is a map containing keys with
boolean values which signalize which states are switched on. The data could be used to react on specific states like
hovered, focused, selected, etc. The second parameter styles is only avaliable if a include key is given.
If so, the styles parameter contains the styles of the included appearance. This may be very handy if you just want
to add some padding and don’t want to change it completely. In any case, you don’t need to return the given styles.
The returned styles and the styles argument will be merged by the appearance manager with a higher priority for
the local (returned) styles.

It is required that all properties applied in one state are applied in all other states. Something like this is seen as bad
style and may result in wrong styling:

style : function(states)
{

var result = {};

if (states.hovered) {
result.backgroundColor = "red";

}
// BAD: backgroundColor missing when widget isn’t hovered!

228 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

return result;
}

Instead, you should always define the else case:

style : function(states)
{

var result = {};

if (states.hovered) {
result.backgroundColor = "red";

} else {
// GOOD: there should be a setting for all possible states
result.backgroundColor = undefined;

}

return result;
}

Note: The undefined value means that no value should be applied. When qooxdoo runs through the returned map
it calls the reset method for properties with a value of undefined. In most cases it would be also perfectly valid
to use null instead of undefined, but keep in mind that null is stored using the setter (explicit null) and this way
it overrides values given through the inheritance or through the init values. In short this means that undefined is
the better choice in almost all cases.

One thing we have also seen in the example is that it is perfectly possible to create the return map using standard
JavaScript and fill in keys during the runtime of the style method. This allows to use more complex statements to
solve the requirements of today’s themes were a lot of states or dependencies between states can have great impact on
the result map.

Includes

Includes are used to reuse the result of another key and merge it with the local data. Includes may also used standalone
without the style key but this is merly the same like an alias. An alias is the faster and better choice in this case.

The results of the include block are merged with lower priority than the local data so it just gets added to the map.
To remove a key from the included map just define the key locally as well (using the style method) and set it to
undefined.

Includes do nothing to child controls. They just include exactly the given selector into the current selector.

Child Control Aliases

Child control aliases are compared to the normal aliases mentioned above, just define aliases for the child controls.
They do not redirect the local selector to the selector defined by the alias. An example to make this more clear:

qx.Theme.define("qx.theme.modern.Appearance",
{

appearances :
{
[...],

"spinner/upbutton" :
{

5.4. Themes 229

qooxdoo Documentation, Release 1.6

alias : "button",

style : function(states) {
return {
padding : 2,
icon : "decoration/arrows/up.gif"

}
}

},

[...]
}

});

The result mapping would look like the following:

"spinner/upbutton" => "spinner/upbutton"
"spinner/upbutton/icon" => "button/image"
"spinner/upbutton/label" => "button/label"

As you can see the spinner/upbutton is kept in its original state. This allows one to just refine a specific outer
part of a complex widget instead of the whole widget. It is also possible to include the orignal part of the button into
the spinner/upbutton as well. This is useful to just override a few properties like seen in the following example:

qx.Theme.define("qx.theme.modern.Appearance",
{

appearances :
{
[...],

"spinner/upbutton" :
{

alias : "button",
include : "button",

style : function(states)
{

return {
padding : 2,
icon : "decoration/arrows/up.gif"

}
}

},

[...]
}

});

When alias and include are identically pointing to the same selector the result is identical to the real alias

Base Calls

When extending themes the so-named base flag can be enabled to include the result of this selector of the derived
theme into the local selector. This is quite comparable to the this.base(arguments, ...) call in member
functions of typical qooxdoo classes. It does all the things the super class has done plus the local things. Please note
that all local defintions have higher priority than the inheritance. See next paragraph for details.

230 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

Priorities

Priority is quite an important topic when dealing with so many sources to fill a selector with styles. Logically the
definitions of the style function are the ones with the highest priority followed by the include block. The least
priority has the base flag for enabling the base calls in inherited themes.

States

A state is used for every visual state a widget may have. Every state has flag character. It could only be enabled or
disabled via the API addState or removeState.

Performance

qooxdoo has a lot of impressive caching ideas behind the whole appearance handling. As one could easily imagine all
these features are quite expensive when they are made on every widget instance and more important, each time a state
is modified.

Appearance Queue

First of all we have the appearance queue. Widgets which are visible and inserted into a visible parent are automatically
processed by this queue when changes happen or on the initial display of the widget. Otherwise the change is delayed
until the widget gets visible (again).

The queue also minimizes the effect of multiple state changes when they happen at once. All changes are combined
into one lookup to the theme e.g. changing hovered and focused directly after each other would only result into
one update instead of two. In a modern GUI typically each click influence a few widgets at once and in these widgets
a few states at once so this optimization really pays of.

Selector Caching

Each widget comes with an appearance or was created as a child control of another widget. Because the detection of
the selector is quite complex with iterations up to the parent chain, the resulting selector of each widget is cached. The
system benefits from the idea that child controls are never moved outside the parent they belong to. So a child controls
which is cached once keeps the selector for lifetime. The only thing which could invalidate the selectors of a widget
and all of its child controls is the change of the property appearance in the parent of the child control.

Alias Caching

The support for aliases is resolved once per application load. So after a while all aliases are resolved to their final
destination. This process is lazy and fills the redirection map with selector usage. This means that the relatively
complex process of resolving all aliases is only done once.

The list of resolved aliases can be seen when printing out the map under
qx.theme.manager.Appearance.getInstance().__aliasMap to the log console. It just contains the
fully resolved alias (aliases may redirect to each other as well).

5.4. Themes 231

qooxdoo Documentation, Release 1.6

Result Caching

Further the result of each selector for a specific set of states is cached as well. This is maybe the most massive source
of performance tweaks in the system. With the first usage, qooxdoo caches for example the result of button with the
states hovered and focused. The result is used for any further request for such an appearance with the identical
set of states. This caching is by the way the most evident reason why the appearance has no access to the individual
widget. This would torpedate the caching in some way.

This last caching also reduces the overhead of include and base statements which are quite intensive tasks because
of the map merge character with which they have been implemented.

5.4.3 Custom Themes

There are certain circumstances when the built-in themes are no more sufficient for your application and your needs.
You need to create a custom theme because you have either self-written widgets you wish to style or you like to change
the theming of your application overall.

Basically you have two choices to create a custom theme depending on your needs and the amount you want to change.
The next two sections describe both briefly.

Extending Themes

If you want to stick with an existing theme and only like to add or modify some appearances, change colors or fonts
the best way to go is to extend a theme and to create an own meta theme which sets your extended theme.

For example you like to add some appearances (of your own widgets) to the Modern theme you can simply extend the
appearance theme of the Modern theme.

qx.Theme.define("myApplication.theme.Appearance",
{

extend : qx.theme.modern.Appearance,
title : "my appearance theme",

appearances :
{
"my-widget" :
{

alias : "atom",

style : function(states)
{

return {
width : 250,
decorator : "main"

};
}

}
}

});

To enable your own appearance theme you also have to extend the Meta theme and set your appearance theme.

qx.Theme.define("myApplication.theme.Theme",
{

title : "my meta theme",

232 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

meta :
{
color : qx.theme.modern.Color,
decoration : qx.theme.modern.Decoration,
font : qx.theme.modern.Font,
icon : qx.theme.icon.Tango,
appearance : myApplication.theme.Appearance

}
});

At last you have to tell the generator to actually use your meta theme. Therefore you have to edit your config.json
file and add/edit the key QXTHEME in the let block.

"let" :
{
"APPLICATION" : "myApplication",
...
"QXTHEME" : "myApplication.theme.Theme"
...

},

After editing your config.json the very last step is to generate your application sources and you’re done. Now
you can adjust and extend your appearance theme to suit your needs.

Note: These steps are also applicable for the other themes.

Define Custom Themes

A custom theme is an own meta theme and the corresponding themes build from scratch. The main part of this work
is mainly the appearance theme and the content of the other themes is mostly defined by the appearance theme, since
this theme is the one who uses fonts, icons, decorators and colors.

Creating the meta theme is a no-brainer and when creating the several themes you only have to consider some rules:

• every theme has its own root key which also defines its type. colors for a color theme, appearances for
an appearance theme and so on

• every widget has to be equipped with an appearance, otherwise you’ll get a warning at application startup

• every used color, decorator or font has to be defined, otherwise you’ll get an error at application startup. So be
sure to define all used colors, fonts and decorators and to test your application always in the source version to
get the error messages

• be sure to include every image you use in your appearance theme by defining corresponding #asset directives.

• Be sure to check all build in widgets with all states. A Widget may have a different looks and feel when disabled
or invalid.

• Its a good idea to copy a existing appearance theme and edit all the stuff you need. That way, you can be sure
that you have all the appearance keys included the framework needs.

5.4. Themes 233

qooxdoo Documentation, Release 1.6

5.4.4 Decorators

Introduction

Decorations are used to style widgets. The idea is to have an independent layer around the widget content that can
be freely styled. This way you can have separate decorators that define all kinds of decoration (colors, background
image, corners, ...), and apply them to existing widgets, without interfering with the widget code itself.

Decorations are used for both, the shadow and the decorator property. They could be applied separately or
together. There is no dependency between them.

Using Decorators

Generally all decorators used should be part of the selected decorator theme. The convention is that each decorator
instance is stored under a semantic name. To use names which describe the appearance of the decorator is bad because
it may make themes less compatible to each other.

It is also regarded as bad style to make use of so-named inline decorators which are created by hand as part of a
function call. The reason for this is that generally decorators defined by the theme may be used in multiple places.
This means that widgets and application code should not directly deal with decorator instances.

Decoration Theme

As mentioned above, it is common to define the decorators in a decorator theme. This is really easy because you have
to specify only a few details about the decorator.

"main" :
{

decorator: qx.ui.decoration.Uniform,

style :
{
width : 1,
color : "background-selected"

}
},

The first thing you see is the name of the decorator, in this case, main. The specified decorator is available using
that name in the whole application code, especially in the appearance theme. The next thing you see in the map is
the decorator key, that defines the decorator to use. The last thing is the styles map which contains values for the
properties of the given decorator.

This is the way using prebuild decorators. You can also use the decorator mixins in the theme:

"scroll-knob" :
{

decorator : [
qx.ui.decoration.MBorderRadius,
qx.ui.decoration.MSingleBorder,
qx.ui.decoration.MBackgroundColor

],

style :
{
radius : 3,
width : 1,

234 Chapter 5. GUI Toolkit

qooxdoo Documentation, Release 1.6

color : "button-border",
backgroundColor : "scrollbar-bright"

}
},

The main difference here is that not a reference to a prebuild decorator is given. Instead, an array containing mixins
implementing single features are used. The theming system combines those mixins in a decorator. The styles map
should now containg values for properties defined by the mixins.

Sometimes it is very handy to change change only little details about the decorator. Imagine a special decorator for
hovered buttons. Inheritance comes in very handy in such a case.

"scroll-knob-pressed" :
{

include : "scroll-knob",

style :
{
backgroundColor : "scrollbar-dark"

}
},

As you can see here, we include the previously defined decorator and override the backgroundColor property. Thats
all you need to do!

Custom Decorators

Custom decorators are created by extending the decorator theme and adding new ones or overwriting existing ones.
Each decorator class comes with a set of properties for configuration of the instance. Following a short description of
the available decorators:

• Background: Renders a background image or color

• Uniform: Like Background, but adds support for a uniform border which is identical for all edges.

• Single: Like Background, but adds support for separate borders for each edge.

• Double: Like Single but with the option to add two separate border to each edge.

• Beveled: Pseudo (lightweight) rounded border with support for inner glow. May contain a background image /
gradient.

• HBox: Uses three images in a row with a center image which is stretched horizontally. Useful for widgets with
a fixed height, which can be stretched horizontally.

• VBox: Uses three images in a column with a center image which is stretched vertically. Useful for widgets with
a fixed width, which can be stretched vertically.

• Grid: Complex decorator based on nine images. Allows very customized styles (rounded borders, alpha trans-
parency, gradients, ...). Optionally make use of image sprites to reduce image number.

Each entry of the theme is automatically made available using the setDecorator/setShadow functions of the
widget class. The instances needed are automatically created when required initially. This mechanism keeps instance
numbers down and basically ignores decorators which are defined but never used.

Additionall to these explicit decorators, qooxdoo supplies a set of Mixins which supply separate features for decorators.
These mixins can be used to build a decorator on runtime by the theming system. All feature mixins can be used in
combination to get an individual decorator. The mixins also include some features not available in the standalone
decorators.

• MBackgroundColor: for drawing a background color

5.4. Themes 235

qooxdoo Documentation, Release 1.6

• MBackgroundImage: for drawing a background image

• MDoubleBorder: for drawing two borders around a widget

• MSingleBorder: for drawing a single border

• MBorderRadius: for adding a CSS radius to the corners

• MBoxShadow: for adding a CSS box shado to the widget (does not use the shadow property)

• MLinearBackgroundGradient: for drawing a linear gradient in the background

As you may have guessed, the last three mixins do not work cross browser due to the fact that they rely on CSS
propertes not available in all browsers. If you want more details, take a look at the API documentations of the mixins.

Writing Decorators

It is easily possible to write custom decorators. The interface is quite trivial to implement. There are only five methods
which needs to be implemented:

• getInsets: Returns a map of insets (space the decorator needs) e.g. the border width

• getMarkup: Returns the initial markup needed to build the decorator. This is executed by each widget using
the decorator. This method may not be used by some decorators and this way is defined as an empty method.

• init: Normally used to initialize the given element using getMarkup. Only executed once per element (read
per widget).

• resize: Resizes the given element to the given dimensions. Directly works on the DOM to manipulate the
content of the element.

• tint: Applies the given background color or resets it to the (optionally) locally defined background color. This
method may not be used by some decorators and this way is defined as an empty method.

One thing to additionally respect is that resize and tint should be as fast as possible. They should be as minimal
as possible as they are executed on every switch to the decorator (e.g. hover effects). All things which are possible to
do once, in getMarkup or init methods, should be done there for performance reasons. Decorators are regarded
as imutable. Once they are used somewhere there is no need to be able to change them anymore.

Each decorator configuration means exactly one decorator instance (created with the first usage). Even when dozens
of widgets use the decorator only one instance is used. To cache the markup is a good way to improve the initial time
to create new element instances. These configured elements are reused e.g. a hover effect which moves from “Button
1” to “Button 2” uses the same DOM element when reaching “Button 2” as it has used in “Button 1”. This way the
number of DOM elements needed is reduced dramatically. Generally each decorator instance may be used to create
dozens of these elements, but after some time enough elements may have been created to fulfill all further needs for
the same styling.

Writing Decorator Mixins

If you want to use your custom decorator with some build in decorator mixins, you can write you decorator as mixin
and use it in combination with all the other mixins. Its comparable to writing a standalone decorator. You are able to
implement the following methods:

• _style<yourName>: This method has a styles map as parameter which should be manipulated directly. That
way, you can just append your styles and thats it.

• _resize<yourName>: The resize method is a bit differnet than the resize of the standalone decorators. It
should return a map containing the desired position and dimension after the resize. The theme system then
calculates the new position for the combination of the mixins and appies it to the element.

236 Chapter 5. GUI Toolkit

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.decoration
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.decoration.IDecorator

qooxdoo Documentation, Release 1.6

• _tint<yourName>: The tint method is an easy one which will be called if available. It could be the same as
in the standalone case.

• _getDefaultInsetsFor<yourName>: This method should return the desired insets for this feaure.
Again, the system takes care of calculating the propper insets for the combination of the mixins.

• _generateMarkup: Is used to crate the markup as HTML string.

As you can see, every mixin can define its own methods for getMarkup, resize, tint and the insets. The
theme system combines all the methods given by the separate widgets to one big working method. A single special cas
is the _generateMarkup method, which can only be there once for the whole decorator. For example, the double
border Mixin already implements that because it needs to handle the generation itself.

5.4.5 Web Fonts

qooxdoo’s web fonts implementation is based on the @font-face CSS syntax. It attempts to abstract away cross-
browser issues as far as possible, but due to the browser differences in web font support, it’s up to the application
developer to provide fonts in the appropriate formats. Tools like FontForge or services like FontSquirrel’s font-face
generator can be used to convert fonts.

Theme Definition

Like any font that should be used in a qooxdoo application, web fonts are defined in the Font theme. They simply use
an additional sources key:

/* **
#asset(custom/fonts/*)

** */

qx.Theme.define("custom.theme.Font",
{

fonts :
{
"fancy" :
{

size : 11,
lineHeight : 1.4,
family : ["Tahoma", "Liberation Sans", "Arial"],
sources:
[

{
family : "YanoneKaffeesatzRegular",
source:
[

"custom/fonts/yanonekaffeesatz-regular-webfont.eot",
"custom/fonts/yanonekaffeesatz-regular-webfont.ttf",
"custom/fonts/yanonekaffeesatz-regular-webfont.woff",
"custom/fonts/yanonekaffeesatz-regular-webfont.svg#YanoneKaffeesatzRegular"

]
}

]
}

}
});

There are a few things to note here:

5.4. Themes 237

http://webfonts.info/wiki/index.php?title=%40font-face_browser_support
http://www.fontsquirrel.com/fontface/generator
http://www.fontsquirrel.com/fontface/generator

qooxdoo Documentation, Release 1.6

• The value of sources is an Array. As with regular CSS font-family definitions, the first font in the list that is
available at runtime (meaning in this case it has been successfully downloaded) will be applied to widgets using
the “fancy” font.

• The value of the family key will also be added to the font-family style property of the widget’s content element
so there is a defined fallback path even if no web font at all could be loaded.

• Between one and four different formats of the same font can be provided depending on which browsers should
be supported. For SVG, it is necessary to add the font’s ID. This can be found by looking for the path
svg/defs/font/@id in the XML definition, or copied from the CSS template created by the FontSquirrel gen-
erator.

• Each source entry can be either a URI or a qooxdoo resource ID. The latter is generally preferable since font
files will then be copied to the output directory for the build version just like any other application resource.
Also, this prevents issues in Firefox which applies Same-Origin Policy restrictions to web fonts.

Once configured, web fonts are applied like any other font, either by referencing them in the Appearance theme, e.g.:

"window/title" :
{

style : function(states)
{
return {

cursor : "default",
font : "fancy",
marginRight : 20,
alignY: "middle"

};
}

}

or by calling a widget instance’s setFont method:

var label = new qx.ui.basic.Label("A web font label");
label.setFont("fancy");

Asynchronous loading considerations

As web fonts are loaded over HTTP, there can be a noticeable delay between adding the CSS rule to the document and
the font style being applied to DOM elements. This means text will be rendered in the first available fallback font, then
once the web font has finished downloading, affected widgets will recalculate their content size and trigger a layout
update, which can cause a visible “jump” in the GUI. While this effect is far less pronounced (if at all noticeable)
once the fonts are cached, it is still advisable to use web fonts sparingly. Of course, using no more than two or three
font-faces in an application is also good advice from a design point of view.

5.4.6 Using themes of contributions in your application

Note: This tutorial assumes you are using the latest GUI skeleton template which contains pre-defined theme classes.

Contributions are a powerful and easy way to enhance your application with e.g. widgets that had not (yet) found the
way into the qooxdoo core framework. Nevertheless it is a no-brainer to use them in your application.

But if a contribution is providing its own theme (in most cases its own appearance theme) you have to manage this
manually.

238 Chapter 5. GUI Toolkit

mailto:svg/defs/font/@id

qooxdoo Documentation, Release 1.6

Note: A bug report to make this step superfluous is already filed (see #1591), but in the meantime you can stick with
this little tutorial to get things done.

For an easiser understanding this tutorial explains the necessary setup at the example of the TileView widget.

Adjust your configuration

The interesting part of the config.json looks like this:
...
"jobs" :

{
"libraries" :
{

"library" :
[

{
"manifest" : "contrib://TileView/trunk/Manifest.json"

},
// as the tileView uses internally the FlowLayout you have
// to add this to set it up correctly
{

"manifest" : "contrib://FlowLayout/trunk/Manifest.json"
}

]
}

}
...

Include appearance theme

If you use the latest GUI skeleton template you will get an own appearance theme class (among all other theme classes)
already setup for you. All you need to do is to include the appearance class provided by the TileView widget into
your own appearance class.

Include the TileView appearance:

qx.Theme.define("yourApp.theme.Appearance",
{

extend : qx.theme.modern.Appearance,

// this include key does the magic
include : tileview.theme.Appearance,

// overwrite the appearances to customize the look of the modern theme
// usually not needed
appearances :
{
}

});

So all you need to add is this little include key with the corresponding appearance class to include it into your
application.

5.4. Themes 239

http://bugzilla.qooxdoo.org/show_bug.cgi?id=1591
http://qooxdoo.org/contrib/project#tileview

qooxdoo Documentation, Release 1.6

Known issues

The following code which could reside in your Application class won’t work:

qx.Theme.include(qx.theme.modern.Appearance, tileview.theme.Appearance);

The reason is that this include above will be resolved at runtime which does not work anymore. The first solution is
resolved at loading time, so the include is already performed at startup. This issue is already filed under #1604.

240 Chapter 5. GUI Toolkit

http://bugzilla.qooxdoo.org/show_bug.cgi?id=1604

CHAPTER

SIX

MOBILE FRAMEWORK

6.1 Introduction

6.1.1 Overview

Note: This is an experimental feature. You should use the trunk version of qooxdoo mobile and this documentation.

This is an introduction into qooxdoo’s experimental mobile framework. qooxdoo mobile provides a optimized widget
set to build applications for mobile devices.

Supported Mobile Operating Systems

qooxdoo mobile was tested with the native browsers of the following operating systems:

• iOS

• Android 1.6+

Supported Desktop Browsers

qooxdoo mobile was tested with the following desktop browsers:

• Safari 5

• Chrome 10+

Features

• Mobile widget set

• Theming via CSS

• iOS theme

• Android theme

• Touch events: touchstart, touchmove, touchend, touchcancel

• Gesture events: swipe, tap

• Animations between pages

241

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile

qooxdoo Documentation, Release 1.6

• Touch event emulation for debugging in desktop browsers

• Fixed toolbars and momentum scrolling via iScroll

• Basic PhoneGap support

API Documentation

• qx.application.Mobile: The mobile application.

• qx.ui.mobile: This package contains all mobile widgets. See the API documentation for more information.

Create a Mobile Application

To create a mobile application mobileapp in your home directory with your shell, change to your home directory
(just cd). With a qooxdoo SDK available at /opt/qooxdoo-1.6-sdk, call the script as follows:

/opt/qooxdoo-1.6-sdk/tool/bin/create-application.py --type=mobile --name=mobileapp --out=.

Have a look into the API documentation of qx.ui.mobile.page.Page to understand the basic concepts of qooxdoo
mobile.

To learn how to develop a basic mobile application, you should try the mobile Twitter client tutorial.

If you are new to qooxdoo, make sure you have read the getting started tutorial to understand the basics of qooxdoo.

Environment Keys

The following environment keys are available:

• qx.mobile.emulatetouch: true|false - Enables desktop browser touch emulation. Enable this
option if you want to debug the application in your desktop browser.

• qx.mobile.nativescroll: true|false - Whether to use native scrolling or iScroll for scrolling.

Differences between Desktop Widgets

The qooxdoo mobile widget set is optimized for the use on mobile devices. In fact, the qooxdoo mobile widget set is
up to six times faster than the desktop widget set on mobile devices. We have tried to keep the differences of the API
as low as possible, so that a qooxdoo developer will have his first qooxdoo mobile application running within minutes.
Of course, respecting the speed advantage, not all features of the desktop widget set could be retained. There are some
differences, listed below:

• Theming: The theming is done via CSS files. Have a look into the existing themes, to see how the styling is done.
You can find the themes under framework/source/resource/qx/mobile/css/. To change the
theme, just change the included CSS file in the index.html and change the loaded assets in your mobile appli-
cation. There is a index.html file for the build version as well. You can find it in the source/resource/
folder of your application.

• No layout item: Only a few, essential, styles are provided by a widget. You should set all other styles of a widget
via CSS, using the addCssClass method of a widget.

• No queues: Elements are created directly. There is no element, layout, display queue. Keep this in mind when
you create and add widgets.

• Layouts: Layouts are done vis CSS(3). HBox / VBox layouts are implemented using the flexible box layout

242 Chapter 6. Mobile Framework

http://cubiq.org/iscroll
http://www.phonegap.com/
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Mobile
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile.page.Page
http://cubiq.org/iscroll
http://www.w3.org/TR/css3-flexbox/

qooxdoo Documentation, Release 1.6

• qx.ui.mobile.page.Page: A page is a widget which provides a screen with which users can interact in order to do
something. Most times a page provides a single task or a group of related tasks. A qooxdoo mobile application
is usually composed of one or more loosely bound pages. Typically there is one page that presents the “main”
view.

Demo Applications

To see qooxdoo mobile applications in action or to see how to implement an application, you can have a look on the
following demo applications:

• Mobile Showcase - see all mobile widgets in action

• Mobile Feedreader - the feedreader as a mobile app. Using the same logic and models as the feedreader for
desktop browsers does.

All applications can be found in the application folder of your qooxdoo checkout.

How to contribute?

You can contribute in different ways:

• Testing: Test qooxdoo mobile on your mobile device and give us feedback.

• Theming: You can optimize the current CSS files or even create your own theme.

• Widgets: Widget / Feature missing? Create an widget an post it back to us.

• Bugs: If you have found a bug, or when you have fixed it already, please open a bug report in the qooxdoo
Bugzilla with the core-mobile component.

• Devices: If you have an old smartphone (Android, iPhone, Blackberry, Windows Phone, WebOS, etc.) that you
don’t need anymore, you could donate it to qooxdoo. We would be happy to test qooxdoo mobile on it.

• Discussion/Feedback: Please post questions to our mailing list.

6.1.2 Tutorial: Creating a Twitter Client with qooxdoo mobile

In this tutorial you will learn how to create a simple Twitter client with the new qooxdoo mobile widgets. The client
should display all tweets of a certain user. When a tweet is selected, the details of the tweet should be shown. You can
find the tutorial code here.

Requirements

Although this should be a basic tutorial, you should be at least familiar with the tool chain and the basic object oriented
principles of qooxdoo. A working qooxdoo environment is mandatory. As qooxdoo is based on web technologies, you
will need a running instance of Google Chrome or Apple Safari browser on your system to run the application (see
qooxdoo mobile requirements). An iOS or Android device is not necessarily required.

Getting Started

Lets start with our new application. The first step is to create a mobile skeleton, by calling the
create-applicaton.py script from the command line. Navigate to the qooxdoo folder and execute the fol-
lowing command:

6.1. Introduction 243

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile.page.Page
http://demo.qooxdoo.org/1.6/mobileshowcase
http://demo.qooxdoo.org/1.6/feedreader-mobile
http://bugzilla.qooxdoo.org/
http://lists.sourceforge.net/lists/listinfo/qooxdoo-devel
http://twitter.com/
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile
https://github.com/qooxdoo/qooxdoo/tree/master/component/tutorials/mobiletweets
http://manual.qooxdoo.org/1.6/pages/tool.html
http://manual.qooxdoo.org/1.6/pages/core.html
http://manual.qooxdoo.org/1.6/pages/getting_started/requirements.html
http://www.google.com/chrome/
http://www.apple.com/safari/
http://manual.qooxdoo.org/1.6/pages/mobile/mobile_overview.html

qooxdoo Documentation, Release 1.6

./tool/bin/create-application.py --type=mobile --name=mobiletweets --out=..

A new folder “mobiletweets” will be created next to the qooxdoo folder, containing the mobile skeleton application.
Right now the application is pretty useless, until we create the source version of it. Navigate to the created folder
and call the qooxdoo generator with the following command:

./generate.py

After a few seconds the generator has analyzed all class dependencies and created a source version of the application.
You can test the application by opening the source/index.html file in your Chrome / Safari browser. You should
see a page “Page 1” with a button “Next Page”. When you click on the button, the next page “Page 2”, with a “Back”
button in the upper left corner, is displayed.

Congratulations, you have just created your first qooxdoo mobile application!

Creating your first Page

In this section we will create two pages, one page for entering the username whose tweets should be shown and another
page for displaying the tweets.

But first of all we have to define what a page is:

A page is a widget which provides a screen with which users can interact in order to do something. Most
times a page provides a single task or a group of related tasks. A qooxdoo mobile application is usually
composed of one or more loosely bound pages. Typically there is one page that presents the “main” view.

Open the “mobiletweets” folder in your favorite IDE, so that you can edit all the files. Navigate to the
“source/class/mobiletweets” folder, were all of the application class files are located. Now you are ready to create
the application.

First we have to create a new page class. In order to do so, create a new folder “page” under
“source/class/mobiletweets”, representing a new “namespace” mobiletweets.page. In this folder create a new
JavaScript file named “Input.js”. This file will contain the “mobiletweets.page.Input” class. Define the class like this:

qx.Class.define("mobiletweets.page.Input",
{

extend : qx.ui.mobile.page.NavigationPage,

construct : function() {
this.base(arguments);
this.setTitle("Twitter Client");

}
});

The “Input” class inherits from qx.ui.mobile.page.NavigationPage, a specialized page that consists of a
qx.ui.mobile.navigationbar.NavigationBar with the a title, back and action buttons, and a scrollable
content area. In the constructor of the class we set the title of the page to “Twitter Client”.

To show the “Input” page, we have to create an instance of the class and to call the show method of the page instance.
Open the “source/class/mobiletweets/Application.js” class file. You will find a comment in the main method “Below
is your actual application code. . . ” with example code below. As we don’t need this example code, we can safely
replace it with the following lines of code:

var inputPage = new mobiletweets.page.Input();
inputPage.show();

As we have changed the dependencies of our application, recreate the source version by calling the generator “source”
target as above.

244 Chapter 6. Mobile Framework

qooxdoo Documentation, Release 1.6

Refresh the index.html in your browser. You will see a page with a navigation bar and a title “Twitter Client”. That is
all you have to do when you want to display a page.

Navigation between Pages

qooxdoo mobile comes with different animations for page transitions. Showing a second page is as easy as showing
one page. Just call the show method of the second page and qooxdoo will do the rest. To navigate back to the first
page you have to call, you have guessed it, the show method of the first page again. To play the animation of the page
transition “reversed”, call the show method with an object literal {reverse:true} as an argument. To change an
animation, just add an animation key to the passed object literal, e.g. {animation:fade}:

page.show(); // show the page; "slide" is the default animation
//or
page.show({reverse:true}); // show the page and reverse the animation of the transition
//or
page.show({animation : "cube", reverse:true}); // show the page and reverse the "cube" animation

Page Lifecycle: A page has predefined lifecycle methods that get called by the page manager when a page gets shown.
Each time another page is requested to be shown the currently shown page is stopped. The other page, if shown
for the first time, will be initialized and started afterwards. For all called lifecylce methods an event is fired.

Calling the “show” method triggers the following lifecycle methods:

• initialize: Initializes the page to show

• start: Starts the page that should be shown

• stop: Stops the current shown page

IMPORTANT: Define all child widgets of a page when the “initialize” lifecycle method is called, either by listening
to the “initialize” event or overriding the _initialize method. This is because a page can be instantiated during
application startup and would then decrease performance if the widgets would be added during constructor call. The
initialize event and the _initialize lifecycle method are only called when the page is shown for the first time.

Lets try it! Create another page class “Tweets” in the “source/class/mobiletweets/page” folder:

qx.Class.define("mobiletweets.page.Tweets",
{

extend : qx.ui.mobile.page.NavigationPage,

construct : function() {
this.base(arguments);
this.set({

title : "", // will be replaced by username
showBackButton : true,
backButtonText : "Back"

});
}

});

In the constructor we show the back button and set the text to “Back” . The title will be replaced later by the given
username.

Now we need a button on the “Input” page, so that we can navigate between the two pages. Create a new instance of a
qx.ui.mobile.form.Button in the “Input” class and add it to the content of the page. By listening to the tap
event of the button, the application can handle when the user taps on the button. Add a new member section to the
class definition and override the protected lifecycle method _initialize to do that:

6.1. Introduction 245

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile.page.manager.Animation

qooxdoo Documentation, Release 1.6

members : {

// overridden
_initialize : function() {
this.base(arguments);
// Create a new button instance and set the title of the button to "Show"
var button = new qx.ui.mobile.form.Button("Show");
// Add the "tap" listener to the button
button.addListener("tap", this._onTap, this);
// Add the button the content of the page
this.getContent().add(button);

}
}

As you can see, the tap listener has the _onTap method as a handler. This method has to be implemented in the
member section as well:

_onTap : function(evt)
{

this.fireDataEvent("requestTweet", null); // Fire a data event. Later we will send the entered "username" as a data.
}

In the _onTap method we fire a data event “requestTweet”. The empty data will be replaced later with the username.
The only thing which is missing now is to define the event itself. Add a new events section to the “Input” class:

events : {
"requestTweet" : "qx.event.type.Data" // Define the event

}

In the “Application” class add the following code below the code we have just added:

// New instance of the Tweets page
var tweetsPage = new mobiletweets.page.Tweets();

// Show the tweets page, when the button is pressed
inputPage.addListener("requestTweet", function(evt) {
tweetsPage.show();

}, this);

// Return to the Input page when the back button is pressed
tweetsPage.addListener("back", function(evt) {

inputPage.show({reverse:true});
}, this);

After creating a new instance of our new “Tweets” class we listen to the requestTweet event of the “Input” page
instance. In the event handler we call the show method of the tweetsPage page object to display the page. In the
back event handler of the tweetsPage, the “Input” page will be shown with a reversed animation.

New classes mean new dependencies which means we have to generate the source code again. Refresh the application
in the browser and navigate between the pages by clicking on the “Show” and on the “Back” button. Nice!

We need Data, lots of Data!

Ok, here we are. You have learned how to create two pages and to wire them by reacting on defined events. That is
pretty cool, but without data to display our app is worthless. To display the tweets of a user we will use the public
Tweet service of Twitter. Data binding is a powerful concept of qooxdoo which you can leverage off in your mobile
applications as well. Extend the members section of the “Application” class by the following code:

246 Chapter 6. Mobile Framework

http://manual.qooxdoo.org/1.6/pages/core.html#data-binding

qooxdoo Documentation, Release 1.6

__loadTweets : function() {
// Public Twitter Tweets API
var url = "http://twitter.com/statuses/user_timeline/" + this.getUsername() + ".json";
// Create a new JSONP store instance with the given url
var store = new qx.data.store.Jsonp(url);
// Use data binding to bind the "model" property of the store to the "tweets" property
store.bind("model", this, "tweets");
store.addListener("error", function(evt) {
// you can add error handling here, e.g. display a dialog or navigate back to the input page

}, this);
}

In the __loadTweets method we create a new JSONP store which will automatically retrieve the data from the
given URL. By binding the model property to the tweets property, the tweets property will be automatically
updated whenever the model property of the store is updated.

As you might have noticed the __loadTweets method uses two properties, username and tweets, that are not
defined yet. We will define those properties now. Define a new section properties in the “Application” class and
add the following two properties:

properties :
{

tweets :
{

check : "qx.data.Array",
nullable : true,
init : null,
event : "changeTweets",
apply : "_applyTweets" // just for logging the data

},

username :
{

check : "String",
nullable : false,
init : null,
event : "changeUsername",
apply : "_applyUsername" // this method is called when the username property is set

}
}

In the apply method _applyUsername of the username property we will call the __loadTweets method. So
every time the username is set the tweets for this username are loaded. To see which data is set for the tweets
property, we will print the data in the debugging console. To do so, we call this.debug with the stringified value
in the apply method _applyTweets. Add the following code to the member section of the “Application” class:

// property apply
_applyUsername : function(value, old) {
this.__loadTweets();

},

_applyTweets : function(value, old) {
// print the loaded data in the console
this.debug("Tweets: ", qx.lang.Json.stringify(value));

}

Now the username has to be retrieved from the user input. To do so, we have to create an input form. The usage of
the form classes should be familiar to you when you have used the RIA widget set. Open the “Input” class again and
place the following code, before the button instance in the _initialize method:

6.1. Introduction 247

http://demo.qooxdoo.org/1.6/apiviewer/#qx.data.store.Jsonp

qooxdoo Documentation, Release 1.6

var title = new qx.ui.mobile.form.Title("Please enter a Twitter username");
this.getContent().add(title);

var form = this.__form = new qx.ui.mobile.form.Form();

var input = this.__input = new qx.ui.mobile.form.TextField();
input.setPlaceholder("Username");
input.setRequired(true);
form.add(input, "Username");

// Add the form to the content of the page, using the SinglePlaceholder to render
// the form.
this.getContent().add(new qx.ui.mobile.form.renderer.SinglePlaceholder(form));

First we add an instance of qx.ui.mobile.form.Title to the content of the page. To an instance of
qx.ui.mobile.form.Form, a qx.ui.mobile.form.TextField instance input is added. Both instances
are assigned to member variables as well, for further reuse. A text is set for the placeholder property of the
textfield. By setting the property required to true we indicate that the textfield requires an input. Finally we add the
form instance to the page content, by using a ‘‘ qx.ui.mobile.form.renderer.SinglePlaceholder‘‘ renderer. The renderer
is responsible for the look and feel of the form. In this case only the input fields with their placeholders are displayed.

In the _onTap method we have to retrieve now the value of the input field. Replace the code in the function body by
the following code:

// validate the form
if (this.__form.validate()) {

var username = this.__input.getValue();
this.fireDataEvent("requestTweet", username);

}

After successfully validating the form, we retrieve the value of the textfield from the member variable and pass it as
the data to the event.

As you surely remember we listen to the requestTweet event in the “Application” class. Open the Application
class and add the following line to the event listener:

this.setUsername(evt.getData());

We’ve come full circle. By setting the username the data will be loaded and we can proceed to display the data.
Rebuild the application and refresh it in the browser. Type in a valid twitter username (e.g. “qooxdoo”) and click the
“Show” button. Press the F7 key to display the qooxdoo logging window or use the console of the browser developer
tools. You will see the loaded tweets of the user.

248 Chapter 6. Mobile Framework

qooxdoo Documentation, Release 1.6

Displaying the tweets

Now that we have the tweets for a certain user, it’s gonna be pretty easy to display them. All we need for that is a
qx.ui.mobile.list.List and to set up some data binding. Lets proceed with the tutorial.

First we have to add the following _initialize method to the members section of the “Tweets” page.

members : {
__list : null,

_initialize : function() {
this.base(arguments);

// Create a new list instance
var list = this.__list = new qx.ui.mobile.list.List();
var dateFormat = new qx.util.format.DateFormat();
// Use a delegate to configure each single list item
list.setDelegate({

configureItem : function(item, value, row) {
// set the data of the model
item.setTitle(value.getText());
// we use the dataFormat instance to format the data value of the twitter API
item.setSubTitle(value.getUser().getName() + ", " + dateFormat.format(new Date(value.getCreated_at())));
item.setImage(value.getUser().getProfile_image_url());
// we have more data to display, show an arrow
item.setShowArrow(true);

}
});
// bind the "tweets" property to the "model" property of the list instance
this.bind("tweets", list, "model");
// add the list to the content of the page
this.getContent().add(list);

}
}

The created list instance (we store it in a member variable for further usage) will use a delegate to configure each
single list item. The delegate is set by the setDelegate method as a literal object. The configureItem method
is responsible for configuring the list items. It has three parameters:

• item: The list item renderer instance. Use this parameter to set the title, subtitle or icon of the list item.

• value: The value of the row. Entry of the model for the current row index.

• row: The row index.

In this case the list item renderer is the qx.ui.mobile.list.renderer.Default. This renderer has a
title, subTitle and a icon property, which can be set individually per row. In addition to those properties,
the showArrow property shows an arrow on the left corner of the row, indicating that we have more data to display.

Finally the model of the list instance is bound to the tweets property, which we will add to the “Tweets” class right
above the member section:

properties : {
tweets : {

check : "qx.data.Array",
nullable : true,
init : null,
event : "changeTweets"

}
}

6.1. Introduction 249

qooxdoo Documentation, Release 1.6

There are only two tasks left:

1. Bind the tweets property form the “Application” to the tweets property of the “Tweets” page instance.

2. Bind the username property form the “Application” to the title property of the “Tweets” page instance.

Open the “Application” class file and add under the instantiation of the “Tweets” page tweetsPage the following
code:

this.bind("tweets", tweetsPage, "tweets");
this.bind("username", tweetsPage, "title");

Generate the source code again and refresh you browser tab. Try the username “qooxdoo” and push the “Show” button.
It is magic!

Details of a tweet

Great, you have made it so far! In the last section we will display a tweet on a new page when the user selects a certain
tweet. Sometimes it can happen that a tweet is too long for a list entry. Ellipses are then shown at the end of the tweet.
That is why we want to give the user a chance to display the whole tweet. Lets create a simple “Tweet” page that only
shows a qx.ui.mobile.basic.Label with the selected tweet text. To do so, we bind the text property of the
tweet to the label value property. Create the page, like you have done before, in the “source/class/mobiletweets/page”
folder. The code of the page shouldn’t be something new for you:

qx.Class.define("mobiletweets.page.Tweet",
{

extend : qx.ui.mobile.page.NavigationPage,

construct : function() {
this.base(arguments);
this.set({

title : "Details",
showBackButton : true,
backButtonText : "Back"

});
},

properties:
{
tweet :
{

250 Chapter 6. Mobile Framework

qooxdoo Documentation, Release 1.6

check : "Object",
nullable : true,
init : null,
event : "changeTweet"

}
},

members :
{
_initialize : function()
{

this.base(arguments);
// Create a new label instance
var label = new qx.ui.mobile.basic.Label();
this.getContent().add(label);
// bind the "tweet.getText" property to the "value" of the label
this.bind("tweet.text", label, "value");

}
}

});

Now create the instance of the “Tweet” page in the Application main method and return to the “Tweets” page, when
the back listener is called.

var tweetPage = new mobiletweets.page.Tweet();
// Return to the Tweets Page
tweetPage.addListener("back", function(evt) {
tweetsPage.show({reverse:true});

}, this);

Until now we will never see the “Tweet” page as its show method is never called. First we have to react in the
“Tweets” page on a selection change event of the list, by registering the changeSelection event on the list in the
_initialize method:

list.addListener("changeSelection", this.__onChangeSelection, this);

The __onChangeSelection method looks like this:

__onChangeSelection : function(evt)
{

// retrieve the index of the selected row
var index = evt.getData();
this.fireDataEvent("showTweet", index);

}

As you can see, a showTweet data event is fired here. This data event has to be defined in the events section of
the “Tweets” class:

events : {
showTweet : "qx.event.type.Data"

}

All we need to do now is to listen to the showTweet event in the “Application” class main method, retrieve the index
from the data event and to get the corresponding tweet from the data. Finally we show our “Tweet” page.

// Show the selected tweet
tweetsPage.addListener("showTweet", function(evt) {

var index = evt.getData();
tweetPage.setTweet(this.getTweets().getItem(index));

6.1. Introduction 251

qooxdoo Documentation, Release 1.6

tweetPage.show();
}, this);

Rebuild the source code (or the ./generate.py build version), refresh the application in your browser and
enjoy your application! We are done here.

Now you are ready to develop your own applications. . .

After you have finished this tutorial, you have learned the basics of qooxdoo mobile. You have seen how easy it is to
develop qooxdoo mobile applications when you are familiar with qooxdoo. There are only some new concepts (e.g.
Pages) to learn and you are good to go. All qooxdoo mobile applications work on Android and iOS devices. Just
have a look on the great PhoneGap project, which will enable you to deploy native applications, that run the qooxdoo
mobile JavaScript code in an wrapped native browser, in the App Stores or directly on your mobile device.

252 Chapter 6. Mobile Framework

http://www.phonegap.com/

CHAPTER

SEVEN

SERVER FRAMEWORK

7.1 Server Overview

This page is an overview of qooxdoo’s server capabilities. It shows which parts of qooxdoo can be used in a server en-
vironment or comparable scenario. It also serves as an introduction to all interessted in using qooxdoo on a JavaScript
server environment.

7.1.1 How to get it?

There are three ways of working with qooxdoo in a server environment.

Download

The first and easiest way is to simply download the qxoo package either in the optimized or unoptimized version.

npm

npm is the node package manager and therefore a comfortable and convinient way to install qooxdoo if you are
working with node.js:

npm install qooxdoo

This will install the qooxdoo package (which carries the same content as the qxoo archive) into your current folder
from where you can include it easily into your application. More details how to use it in the Basic Example.

Skeleton

The skeleton is the way qooxdoo apps are usually build. This offers the support of the toolchain which includes a lot
of handy features like dependency detection, optimization, API doc generation and so on.

7.1.2 Included Features

This listing shows the core features of the qxoo package. If you build your own package with the skeleton way of
using qooxdoo, the feature set might be extended depending on your application code.

• Object Orientation

– Classes

253

http://demo.qooxdoo.org/devel/
http://demo.qooxdoo.org/devel/framework/qx-oo.js
http://demo.qooxdoo.org/devel/framework/qx-oo-noopt.js
http://npmjs.org/

qooxdoo Documentation, Release 1.6

– Mixins

– Interfaces

– Properties

• Events

• Single Value Binding

Most of the features can be found in qooxdoo’s core layer and should be familiar to qooxdoo developers.

7.1.3 Supported Runtimes

We currently support two types of runtimes:

• node.js

• Rhino

7.1.4 Basic Example

The following example shows how to use the qxoo package in a node environment having the package installed via
npm.

var qx = require(’qooxdoo’);

// create anmial class
qx.Class.define("my.Animal", {

extend : qx.core.Object,
properties : {
legs : {init: 4}

}
});

// create dog class
qx.Class.define("my.Dog", {

extend : my.Animal,
members : {
bark : function() {

console.log("WAU! I have " + this.getLegs() + " legs!");
}

}
});

var dog = new my.Dog();
dog.bark();

The only line which is specific to the server environment is the first one, where you include the qooxdoo package. The
rest of the code is plain qooxdoo JavaScript which can be run in a browser, too. For more on that take a look at the
documentation about Object Orientation.

7.1.5 Additional Scenarios

The qxoo package does not have any server dependend code in it so it can also be used in a browser e.g. to have the
features described above without the need to use the rest of qooxdoo. Another interessting scenario might be to use
the package in a web worker which is also a DOM-less environment.

254 Chapter 7. Server Framework

http://nodejs.org/
http://www.mozilla.org/rhino/
https://developer.mozilla.org/en/Using_web_workers

CHAPTER

EIGHT

COMMUNICATION

Sending HTTP requests and receiving responses is an important feature of almost every application running in the
browser. Most commonly, the technique used is termed Ajax. qooxdoo’s communication stack offers many ways to
facilitate HTTP communication at different levels of abstraction.

8.1 Low-level requests

At the very core, HTTP requests from the browser are made by interfacing with the HTTP client API or by
adding a script tag to the document. Classes dealing with those low-level transport methods can be found in the
qx.bom.request namespace. Usually they are not instantiated directly by the user.

Xhr is a wrapper of the HTTP client API offered by the browser. It’s purpose is to hide inconsistencies and to work
around bugs found in popular implementations. The interface of qx.bom.request.Xhr is similar to XMLHttpRe-
quest, the HTTP client API specified by the W3C.

Script is a script loader. Internally, the class deals with adding and removing script tags to the document and keeping
track of the load status. Just like qx.bom.request.Xhr, the interface is modeled based on XMLHttpRequest.

Jsonp builds on the script loader and adds functionality needed to receive JSONP responses. JSONP stands for
JSON with padding and is a technique to safely receive remote data. It’s main advantage compared to to Xhr is that
cross-origin requests are supported in all browsers.

8.2 Higher-level requests

Classes found in qx.io.request build on the groundwork laid by qx.bom.request. Properties allow to con-
veniently setup a request and fine-grained events facilitate handling changes of the request’s status or response.

8.2.1 Higher-level requests

Choosing an appropriate transport

qooxdoo ships with two transport methods, interfaced by qx.io.request.Xhr and qx.io.request.Jsonp.

• Choose Xhr whenever you can. Xhr offers true HTTP client functionality and exposes metadata associated
with HTTP requests. It is agnostic of the data interchange format and does not make any specific demands on
the backend.

255

http://www.w3.org/TR/XMLHttpRequest2/
http://www.w3.org/TR/XMLHttpRequest2/

qooxdoo Documentation, Release 1.6

• If you are making cross-origin requests and need to support all popular browsers and/or the target server is
not configured to accept cross-origin request (Access-Control-Allow-Origin header), you will need
to use Jsonp. Only JSON is supported as data interchange format and the server needs to to wrap responses in
a JavaScript function call.

Xhr and Jsonp share a common interface. AbstractRequest defines the lowest common denominator of both
transport methods.

Basic Setup

Before a request can be send, it must be configured. Configuration is accomplished by setting properties. The most
commonly used properties include:

• url: The HTTP resource to request

• method: The HTTP method, sometimes also referred to as HTTP verb. Script only accepts the GET method.

• requestData: Data to be send as part of the request.

• requestHeaders: Headers to send with the request

For a complete list of properties, please refer to the API Documentation of qx.io.request:

// Instantiate request
var req = new qx.io.request.Xhr();

// Set URL (mandatory)
req.setUrl("/books");

// Set method (defaults to GET)
req.setMethod("POST");

// Alternative notation
// var req = new qx.io.request.Xhr("/books", "POST");

// Set request data. Accepts String, Map
// or qooxdoo Object.
req.setRequestData({"title": "The title"});

// Send request
req.send();

256 Chapter 8. Communication

http://demo.qooxdoo.org/1.6/apiviewer/#qx.io.request

qooxdoo Documentation, Release 1.6

Events and states

Once a request is sent using the send() method, it traverses various states. There are two ways to query the current
state of the request.

• getReadyState(): An integer (0-4) representing UNSENT, OPENED, HEADERS_RECEIVED, LOADING and
DONE.

• getPhase(): Symbolic state mapping to deterministic events (success, abort, timeout, statusError) and interme-
diate readyStates.

Events are fired when the request is progressing from one state to the other. The most important events in the lifecycle
of a request include:

• load: Request completed successfully.

• success: Request completed successfully (like load) and the response can be expected to contain the kind of
data requested. For Xhr this means the HTTP status of the response indicates success (e.g. 200). For Jsonp,
the script received executed the expected callback.

• statusError: Request completed successfully (like load) but the additional requirements for success are
not met. For Xhr this event is typically fired when the server reports that an erroneous or unknown resource
was requested (e.g. 500 or 404). For Jsonp, this event is associated with an invalid response for whatever
reasons.

• fail: Any kind of error occurred. Catches distinct events error, statusError and timeout.

For a complete list of events, please refer to the API Documentation of qx.io.request:

req.addListener("success", function(e) {
var req = e.getTarget();
var response = req.getResponse();
this.doSomething(response);

8.2. Higher-level requests 257

http://demo.qooxdoo.org/1.6/apiviewer/#qx.io.request

qooxdoo Documentation, Release 1.6

}, this);

// Send request
req.send();

Response

Once the request completed, a range of getters return details about the response.

• getResponse(): Response processed according to parser settings or content type (Xhr). Always JSON for
(Jsonp).

• getStatus(): The numerical status of the response. For Xhr the status is the HTTP status. Jsonp only knows
200 (when callback was executed) and 500 (when it was not).

Authentication

There are two ways to handle authentication. The lower-level approach is to manually set the adequate request headers.
The high-level, recommended way is to assign the authentication property an instance of a class that implements
the IAuthentication interface. This class defines the necessary request headers and can handle the authentication
logic. Basic implements the most basic kind of authentication (HTTP Basic) and serves as an example for more
advanced authentication methods.

Data binding

The request’s response can be bound to a widget, model or any other object using data binding. This feature is provided
by the changeResponse event, fired on change of the (parsed) response.

// Bind response to value of a label
//
// req is an instance of qx.io.request.*,
// label an instance of qx.ui.basic.Label
req.bind("response", label, "value");

Debugging

If you encounter odd behavior, it might help to enable debugging of the IO classes. Debugging is controlled with the
qx.debug.io setting. Provided you have allowed URL settings (allowUrlSetting), you can simply append
?qxenv:qx.debug.io:true to the URL of your application.

Specific to XHR

Features specific to Xhr.

Parsing

By default, response is populated with the response parsed according to the response content type. For the built-in
parsers, parsing always results in a JavaScript object.

The content type is read from Content-Type response header. If the response content type is unrecognized, no
parsing is done and response equals responseText. Parsers associated to a content type are:

258 Chapter 8. Communication

qooxdoo Documentation, Release 1.6

• JSON: application/json

• XML: application/xml

The parser can be explicitly set with setParser(). This can be useful if the content type returned from the server
is wrong or the response needs special parsing. The setter accepts either a symbolic string ("json" or "xml") or a
function. If a function is given, this function is called once the request completes. It receives the raw response as first
argument. The return value determines the response.

Response

• getResponseText(): Raw, unprocessed response

• getResponseHeader(header)

• getAllResponseHeaders()

Accepting

Some servers send distinct representations of the same resource depending on the content type accepted. For instance,
a server may respond with either a JSON, XML or a HTML representation while requesting the same URL. By default,
requests accept every content type. In effect, the server will respond with it’s default representation. If the server has
no default representation, it may respond with the status code 406 (Not Acceptable).

In order to choose a representation, set the accepted response content type with setAccept(). It is a good practice
to always set the preferred representation to guard against possible changes of the server’s default behavior.

For more details, see Accept header in the HTTP 1.1 specification.

Caching

Usually, one or more caches sit between the browser sending the request and the server answering the request. The
most important cache is arguably the browser cache, which is enabled by default in all modern browsers. Other caches
include various kinds of proxy servers. Understanding caches is vital to reduce latency and save bandwidth. However,
a detailed introduction of HTTP caching is beyond the scope of this section. For more information, refer to the Caching
tutorial.

To control the behavior of caches on the client-side, a number of HTTP Cache-Control directives can be sent as part
of the request by setting the cache property. To circumvent caching, a common trick is to add a random string to the
URL’s query part. This is accomplished by setting cache to false.

Specific to JSON

Features specific to Jsonp.

Callback

Callback handling is done behind the scenes but can be customized. If the service only accepts a special callback
parameter to read the desired callback function name from, this parameter can be set with setCallbackParam().
Some services do not allow custom callback names at all. In this case, setCallbackName() wires the request to
the fixed callback name.

8.2. Higher-level requests 259

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.mnot.net/cache_docs/
http://www.mnot.net/cache_docs/

qooxdoo Documentation, Release 1.6

Caching

No Cache-Control directives can be set, but caching can be disabled by setting cache to false. Works by adding a
random string to the URL’s query part.

Note that historically, qooxdoo comes with two transport layers. The old transport layer is described below.

8.2.2 AJAX

Note: qx.io.remote.Request will be deprecated in a future release. Use qx.io.request.Xhr instead.

This system is (as everything else in qooxdoo) completely event based. It currently supports communication by
XMLHttp, Iframes or Script. The system wraps most of the differences between the implementations and unifies
them for the user/developer.

For all your communication needs you need to create a new instance of Request:

var req = new qx.io.remote.Request(url, "GET", "text/plain");

Constructor arguments of Request:

1. URL: Any valid http/https/file URL

2. Method: You can choose between POST and GET.

3. Response mimetype: What mimetype do you await as response

Mimetypes supported

• application/xml

• text/plain

• text/html

• text/javascript

• application/json

Note: text/javascript and application/json will be directly evaluated. As content you will get the
return value.

If you use the iframe transport implementation the functionality of the type is more dependent on the server side
response than for the XMLHttp case. For example the text/html mimetypes really need the response in HTML and
can’t convert it. This also depends greatly on the mimetype sent out by the server.

Request data

• setRequestHeader(key, value): Setup a request header to send.

• getRequestHeader(key): Returns the configured value of the request header.

• setParameter(key, value): Add a parameter to send with your request.

• getParameter(key): Returns the value of the given parameter.

• setData(value): Sets the data which should be sent with the request (only useful for POST)

260 Chapter 8. Communication

qooxdoo Documentation, Release 1.6

• getData(): Returns the data currently set for the request

Note: Parameters are always sent as part of the URL, even if you select POST. If you select POST, use the setData
method to set the data for the request body.

Request configuration (properties)

• asynchronous: Should the request be asynchronous? This is true by default. Otherwise it will stop the
script execution until the response was received.

• data: Data to send with the request. Only used for POST requests. This is the actual post data. Generally this
is a string of url-encoded key-value pairs.

• username: The user name to authorize for the server. Configure this to enable authentication.

• password: The password to authenticate for the server.

• timeout: Configure the timeout in milliseconds of each request. After this timeout the request will be auto-
matically canceled.

• prohibitCaching: Add a random numeric key-value pair to the url to securely prohibit caching in IE.
Enabled by default.

• crossDomain: Enable/disable cross-domain transfers. This is false by default. If you need to acquire data
from a server of a different domain you would need to setup this as true. (Caution: this would switch to
“script” transport, which is a security risk as you evaluate code from an external source. Please understand the
security issues involved.)

• fileUpload: Indicate that the request will be used for a file upload. The request will be used for
a file upload. This switches the concrete implementation that is used for sending the request from
qx.io.remote.transport.XmlHttp to qx.io.remote.IFrameTransport, because only the
latter can handle file uploads.

Available events

• sending: Request was configured and is sending data to the server.

• receiving: The client receives the response of the server.

• completed: The request was executed successfully.

• failed: The request failed through some reason.

• timeout: The request has got a timeout event.

• aborted: The request was aborted.

The last four events give you a qx.event.type.Data as the first parameter of the event handler. As always for
qx.event.type.Data you can access the stored data using getData(). The return value of this function is an
instance of qx.io.remote.Response.

Response object

The response object qx.io.remote.Response stores all the returning data of a qx.io.remote.Request.
This object comes with the following methods:

• getContent: Returns the content data of the response. This should be the type of content you acquired using
the request.

8.2. Higher-level requests 261

qooxdoo Documentation, Release 1.6

• getResponseHeader: Returns the content of the given header entry.

• getResponseHeaders: Return all available response headers. This is a hash-map using typical key-values
pairs.

• getStatusCode: Returns the HTTP status code.

Note: Response headers and status code information are not supported for iframe based communication!

Simple example

// get text from the server
req = new qx.io.remote.Request(val.getLabel(), "GET", "text/plain");
// request a javascript file from the server
// req = new qx.io.remote.Request(val.getLabel(), "GET", "text/javascript");

// Switching to POST
// req.setMethod("POST");
// req.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

// Adding parameters - will be added to the URL
// req.setParameter("test1", "value1");
// req.setParameter("test2", "value2");

// Adding data to the request body
// req.setData("foobar");

// Force to testing iframe implementation
// req.setCrossDomain(true);

req.addListener("completed", function(e) {
alert(e.getContent());
// use the following for qooxdoo versions <= 0.6.7:
// alert(e.getData().getContent());

});

// Sending
req.send();

Please post questions to our mailinglist.

8.3 REST

qx.io.rest.Resource is a client-side wrapper of a REST resource.

8.3.1 REST (Representational State Transfer)

Note: This is an experimental feature.

qx.io.rest.Resource allows to encapsulate the specifics of a REST interface. Rather than requesting URLs
with a specific HTTP method manually, a resource representing the remote resource is instantiated and actions are
invoked on this resource. A resource with its actions can be configured declaratively or programatically.

262 Chapter 8. Communication

http://lists.sourceforge.net/lists/listinfo/qooxdoo-devel

qooxdoo Documentation, Release 1.6

Configuring actions

Given a REST-like interface with URLs that comply to the following pattern.

GET /photo/{id}
PUT /photo/{id}
DELETE /photo/{id}

GET /photos
POST /photos

Note {id} stands for a placeholder.

This interface comprises of two resources: photo and photos.

To declare the specifics of the REST interface declaratively, pass a description to the constructor.

// Singular resource
var photo = new qx.io.rest.Resource({
// Retrieve photo
get: {
method: "GET",
url: "/photo/{id}"
},

// Update photo
put: {
method: "POST",
url: "/photo/{id}"

},

// Delete photo
del: {
method: "DELETE",
url: "/photo/{id}"

}
});

// Plural resource
var photos = new qx.io.rest.Resource({
// Retrieve list of photos
get: {
method: "GET",
url: "/photos"
},

// Create photo
post: {
method: "POST",
url: "/photos"

}
});

Or programmatically, for each action.

var photo = new qx.io.rest.Resource();
photo.map("get", "GET", "/photo/{id}");

8.3. REST 263

qooxdoo Documentation, Release 1.6

Invoking actions

Once configured, actions can be invoked. They are invoked by calling a method that is dynamically added to the
resource on configuration of the action.

photo.get({id: 1});
// Alternatively: photo.invoke("get", {id: 1});
// --> GET /photo/1

photos.get();
// Alternatively: photos.invoke("get");
// --> GET /photos

When an action is invoked, an appropriate request is configured and send automatically.

Parameters

If the URL contains parameters, the position where the parameters should be inserted can be specified by using URI
templates. Parameters are optional unless a check is defined. A default value can be provided.

var photo = new qx.io.rest.Resource();
photo.map("get", "GET", "/photo/{id}/{size=medium}", {id: qx.io.rest.Resource.REQUIRED});

photo.get({id: 1, size: "large"});
// --> GET /photo/1/large

photo.get({id: 1});
// --> GET /photo/1/medium

photo.get();
// --> Error: Missing parameter ’id’

Events

Events are fired by the resource when the request was successful or any kind of error occurred. There are general
resource events and action specific events. Handlers receive a qx.event.type.Rest event that, among other
properties, includes the response.

photo.get({id: 1});
photo.put({id: 1});

// "success" is fired when any request associated to resource receives a response
photos.addListener("success", function(e) {

e.getAction();
// --> "get" or "put"

});

// "getSuccess" is fired when the request associated to the get action receives a response
photos.addListener("getSuccess", function(e) {
e.getAction();
// --> "get"

});

If the same action should be invoked multiple times and the events fired for each request be handled differently, it is
possible to remember the id of the action’s invocation. The Rest event includes this id.

264 Chapter 8. Communication

http://tools.ietf.org/html/draft-gregorio-uritemplate-07
http://tools.ietf.org/html/draft-gregorio-uritemplate-07

qooxdoo Documentation, Release 1.6

var getPhotoId = photo.get({id: 1});
var getLargePhotoId = photo.get({id: 1, size: "large"});
photo.addListener("getSuccess", function(e) {
if (e.getId() === getLargePhotoId) {
// Handle large photo

}
});

Helpers

Helpers make it easy to accomplish common tasks when working with requests.

• refresh(action) Resend request associated to action. Uses parameters given before.

• poll(action, params) Periodically invoke action.

• longPoll(action) Use Ajax long-polling to update whenever new data is available.

Data binding

A qx.data.store.Rest store can be attached to an action. Whenever a response is received, the model property
of the store is updated with the marshaled response.

var store = new qx.data.store.Rest(photos, "get");
var list = new qx.ui.form.List();
var controller = new qx.data.controller.List(null, list);
store.bind("model", controller, "model");
photos.longPoll("get");

8.4 Remote Procedure Calls (RPC)

8.4.1 RPC (Remote Procedure Call)

qooxdoo includes an advanced RPC mechanism for direct calls to server-side methods. It allows you to write
true client/server applications without having to worry about the communication details.

The qooxdoo RPC is based on JSON-RPC as the serialization and method call protocol, and qooxdoo provides server
backends for Java, PHP, and Perl projects. A Python backend library is also provided by a third party. All parameters
and return values are automatically converted between JavaScript and the server-side language.

JSON-RPC Protocol

According to JSON-RPC (Wikipedia) “[JSON-RPC] is a very simple protocol (and very similar to XML-RPC), defin-
ing only a handful of data types and commands. In contrast to XML-RPC or SOAP, it allows for bidirectional com-
munication between the service and the client, treating each more like peers and allowing peers to call one another
or send notifications to one another. It also allows multiple calls to be sent to a peer which may be answered out of
order.” The current servers do not yet support bi-directional communication.

8.4. Remote Procedure Calls (RPC) 265

http://json-rpc.org/
http://en.wikipedia.org/wiki/JSON-RPC

qooxdoo Documentation, Release 1.6

Setup

To make use of the RPC, you need to set up a server backend first.

Configuration of each server backend needs slightly different treatment. Please see the backend relevant to you.

Your favorite language is missing? Feel free to write your own qooxdoo RPC server, consult the RPC Server Writer
Guide for details.

Making remote calls

Basic call syntax

To make remote calls, you need to create an instance of the Rpc class:

var rpc = new qx.io.remote.Rpc(
"http://localhost:8080/qooxdoo/.qxrpc",
"qooxdoo.test"

);

The first parameter is the URL of the backend (in this example a Java backend on localhost). The second is the name
of the service you’d like to call. In Java, this is the fully qualified name of a class. (The Java backend includes the
qooxdoo.test service used in the example. The class name is lowercase to keep it in sync with the PHP examples
- in Java-only projects, you would of course use standard Java naming conventions.)

When you have the Rpc instance, you can make synchronous and asynchronous calls:

// synchronous call
try {

var result = rpc.callSync("echo", "Test");
alert("Result of sync call: " + result);

} catch (exc) {
alert("Exception during sync call: " + exc);

}

// asynchronous call
var handler = function(result, exc) {

if (exc == null) {
alert("Result of async call: " + result);

} else {
alert("Exception during async call: " + exc);

}
};
rpc.callAsync(handler, "echo", "Test");

For synchronous calls, the first parameter is the method name. After that, one or more parameters for this method may
follow (in this case, a single string). Please note that synchronous calls typically block the browser UI until the result
arrives, so they should only be used sparingly (if at all)!

Asynchronous calls work similarly. The only difference is an additional first parameter that specifies a handler func-
tion. This function is called when the result of the method call is available or when an exception occurred.

You can also use qooxdoo event listeners for asynchronous calls - just use callAsyncListeners instead of
callAsync. More details can be found in the API documentation.

One difference between the qooxdoo RPC and other RPC implementations are client stubs. These are small wrapper
classes that provide the same methods as the corresponding server classes, so they can be called like ordinary JavaScript
methods. In qooxdoo, there are no such stubs by default, so you have to provide the method name as a string. The
advantage is that there’s no additional build step for generating stubs, and it’s also not necessary to “register” your

266 Chapter 8. Communication

http://qooxdoo.org/contrib/project#backend
http://api.qooxdoo.org/#qx.io.Remote.Rpc

qooxdoo Documentation, Release 1.6

server classes at runtime (which would be a prerequisite for dynamic stub generation). If you really want or need client
stubs, you currently have to write the stubs (or a generator for them) yourself. Future qooxdoo versions may include
such a generator.

Parameter and result conversion

All method parameters and result values are automatically converted to and from the backend language. Using the Java
backend, you can even have overloaded methods, and the correct one will be picked based on the provided parameters.

The following table lists the data types supported by the Java backend and the corresponding JavaScript types:

Java type JavaScript type
int, long, double, Integer, Long, Double number
boolean, Boolean boolean
String String
java.util.Date Date
Array (of any of the supported types) Array
java.util.Map Object
JavaBean Object

The first few cases are quite simple, but the last two need some more explanation. If a Java method expects a
java.util.Map, you can send any JavaScript object to it. All properties of the object are converted to Java and
become members of the Java Map. When a Map is used as a return value, it’s converted to a JavaScript object in a
similar way: A new object is created, and then all key/value pairs in the map are converted themselves and then added
as properties to this object. (Please note that “properties” is used here in the native JavaScript sense, not in the sense
of qooxdoo properties.)

JavaBeans are converted in a similar way. The properties of the JavaBean become JavaScript properties and vice versa.
If a JavaScript object contains properties for which no corresponding setters exist in the JavaBean, they are ignored.

For performance reasons, recursive conversion of JavaBeans and Maps is performed without checking for cycles! If
there’s a reference cycle somewhere, you end up with a StackOverflowException. The same is true when you try to
send a JavaScript object to the server: If it (indirectly) references itself, you get a recursion error in the browser.

Besides the fully-automatic conversions, there’s also a class hinting mechanism. You can use it in case you need to
send a specific sub-class to the server (see below for details). However, it can’t be used to instantiate classes without a
default constructor yet. Future qooxdoo versions may provide more extensive class hinting support.

Aborting a call

You can abort an asynchronous call while it’s still being performed:

// Rpc instantiation and handler function left out for brevity

var callref = rpc.callAsync(handler, "echo", "Test");

// ...

rpc.abort(callref);
// the handler will be called with an abort exception

Error handling

When you make a synchronous call, you can catch an exception to handle errors. In its rpcdetails property, the
exception contains an object that describes the error in more detail. The same details are also available in the second

8.4. Remote Procedure Calls (RPC) 267

qooxdoo Documentation, Release 1.6

parameter in an asynchronous handler function, as well as in the events fired by callAsyncListeners.

The following example shows how errors can be handled:

// creation of the Rpc instance left out for brevity

var showDetails = function(details) {
alert(

"origin: " + details.origin +
"; code: " + details.code +
"; message: " + details.message

);
};

// error handling for sync calls
try {

var result = rpc.callSync("echo", "Test");
} catch (exc) {

showDetails(exc.rpcdetails);
}

// error handling for async calls
var handler = function(result, exc) {

if (exc != null) {
showDetails(exc);

}
};
rpc.callAsync(handler, "echo", "Test");

The following origin‘s are defined:

Constant Meaning
qx.io.remote.Rpc.origin.serverThe error occurred on the server (e.g. when a non-existing method is called).
qx.io.remote.Rpc.origin.applicationThe error occurred inside the server application (i.e. during a method call in non-qooxdoo

code).
qx.io.remote.Rpc.origin.transportThe error occurred in the communication layer (e.g. when the Rpc instance was constructed

with an URL where no backend is deployed, resulting in an HTTP 404 error).
qx.io.remote.Rpc.origin.localThe error occurred locally (when the call timed out or when it was aborted).

The code depends on the origin. For the server and application origins, the possible codes are defined by the backend
implementation. For transport errors, it’s the HTTP status code. For local errors, the following codes are defined:

Constant Meaning
qx.io.remote.Rpc.localError.timeout A timeout occurred.
qx.io.remote.Rpc.localError.abort The call was aborted.

Cross-domain calls

Using the qooxdoo RPC implementation, you can also make calls across domain boundaries. On the client side, all
you have to do is specify the correct destination URL in the Rpc constructor and set the crossDomain property to
true:

var rpc = new qx.io.remote.Rpc("http://targetdomain.com/appname/.qxrpc");
rpc.setCrossDomain(true);

On the server side, you need to configure the backend to accept cross-domain calls (see the documentation comments
in the various backend implementations).

268 Chapter 8. Communication

qooxdoo Documentation, Release 1.6

Writing your own services

Java

Writing your own remotely callable methods is very easy. Just create a class like this:

package my.package;

import net.sf.qooxdoo.rpc.RemoteService;
import net.sf.qooxdoo.rpc.RemoteServiceException;

public class MyService implements RemoteService {

public int add(int a, int b) throws RemoteServiceException {
return a + b;

}

}

All you need to do is include this class in your webapp (together with the qooxdoo backend classes), and it will be
available for calls from JavaScript! You don’t need to write or modify any configuration files, and you don’t need to
register this class anywhere. The only requirements are:

1. The class has to implement the RemoteService interface. This is a so-called tagging interface, i.e. it has no
methods.

2. All methods that should be remotely available must be declared to throw a RemoteServiceException.

Both requirements are there to protect arbitrary Java code from being called.

Accessing the session There is one instance of a service class per session. To get access to the current session, you
can provide an injection method called setQooxdooEnvironment:

package my.package;

import javax.servlet.http.HttpSession;

import net.sf.qooxdoo.rpc.Environment;
import net.sf.qooxdoo.rpc.RemoteService;
import net.sf.qooxdoo.rpc.RemoteServiceException;

public class MyService implements RemoteService {

private Environment _env;

public void setQooxdooEnvironment(Environment env) {
_env = env;

}

public void someRemoteMethod() throws RemoteServiceException {
HttpSession session = _env.getRequest().getSession();

}

}

The environment provides access to the current request (via getRequest) and the RpcServlet instance that is han-
dling the current call (via getRpcServlet).

8.4. Remote Procedure Calls (RPC) 269

qooxdoo Documentation, Release 1.6

Debugging Backends

In order to debug your service methods on the backend independently of the client application, use the RpcConsole
contribution.

Creating mockup data

The RpcConsole also contains a mixin class for qx.io.remote.Rpc which allows to prepare code relying on a json-
rpc backend to work with static mockup data independently of the server. This allows to develop client and server
independently and to create static demos. For more information, see the documentation of the RpcConsole (project)
contribution.

qooxdoo JSON-RPC specification

In order to qualify as a qooxdoo json-rpc backend, a server must comply with the qooxdoo JSON-RPC server specifi-
cations. See the RPC Server Writer Guide for more details.

Adding to the standard

If you think that the standard is missing a feature that should be implemented in all backends, please add it as a bug,
marking it as a “core feature request”.

Extending the standard

If a server extends the standard with a certain optional behavior, please add a detailed description to it on the JSON-
RPC Extensions page, with information which server implements this behavior. Please also add a bug, marked as a
“extension” so that other server maintainers can discuss the pros and cons of adding the extension to their own servers.

8.4.2 RPC Servers

RPC Server Writer Guide

Writing a new JSON-RPC server for use with qooxdoo is fairly easy. If you follow these rules, you should end up with
a conformant implementation. See also the other available qooxdoo RPC servers.

JSON

With the exception of the formatting of Javascript Date objects, all communication between client and server is
formated as JSON, as described and documented at http://json.org.

Date Objects Date objects are a problem in standard JSON encoding, because there is no “literal” syntax for a date
in Javascript. In Javascript, nearly everthing can be represented in literal form: objects by { ... }; arrays by [
...]; etc. The only native type which can not be represented as a literal is a Date. For this reason, a format for
passing Dates in JSON is defined here so that all conforming servers can parse the data received from clients.

Date objects are sent as the following ‘tokens’.

• The string new Date(Date.UTC(

• The year, integer, e.g. 2006

270 Chapter 8. Communication

http://qooxdoo.org/contrib/project#rpcconsole
http://qooxdoo.org/contrib/project/rpcconsole
http://bugzilla.qooxdoo.org/enter_bug.cgi?product=contrib&component=RpcExample
http://qooxdoo.org/documentation/general/rpc/jsonrpc_extensions
http://qooxdoo.org/documentation/general/rpc/jsonrpc_extensions
http://bugzilla.qooxdoo.org/enter_bug.cgi?product=contrib&component=RpcExample
http://qooxdoo.org/contrib/project#backend
http://json.org

qooxdoo Documentation, Release 1.6

• A comma

• The month, 0-relative integer, e.g. 5 is June

• A comma

• The day of the month, integer, range: 1-31

• A comma

• The hour of the day on a 24-hour clock, integer, range: 0-23

• A comma

• The minute of the hour, integer, range: 0-59

• A comma

• The second within the minute, integer, range: 0-59

• A comma

• The milliseconds within the second, integer, range: 0-999

• The string))

A resulting Date representation might therefore be:

new Date(Date.UTC(2006,5,20,22,18,42,223))

Whitespace

• when generating these date strings, implementations SHOULD NOT add white space before/after/between any
of the fields within the date string

• when parsing these date strings, implementations SHOULD allow white space before/after/between any of the
fields within the date string

Numbers

• when generating these date strings, implementations MUST NOT add leading zeros to the numeric values in the
date string. Doing so will cause them to be parsed as octal values. Numbers MUST be passed in decimal (base
10) notation without leading zeros.

• when parsing these date strings, implementations MUST take the integer value of numeric portions of the string
as base 10 values, even if leading zeros appear in the string representation of the numbers..

Within the JSON protocol and in JSON messages between peers, Date objects are always passed as UTC.

RPC

Remote procedure calls are issued using JSON seralization. The basis for the objects used to send requests and re-
sponses are described and defined at http://json-rpc.org, specifically http://json-rpc.org/wiki/specification. This docu-
ment introduces a number of differences to that specification, based on real-life implementation discoveries and needs.
This portion of this document is an edited version of the JSON-RPC specification.

8.4. Remote Procedure Calls (RPC) 271

http://json-rpc.org
http://json-rpc.org/wiki/specification

qooxdoo Documentation, Release 1.6

request (method invocation) A remote method is invoked by sending a request to a remote service. The request is
a single object serialized using JSON.

It has four properties:

• service - A String containing the name of the service. The server may use this to locate a set of related
methods, all contained within the specified service. The format of the supported service strings is up to the
server implementation.

• method - A String containing the name of the method to be invoked. The method must exist within the specified
service. The format of the method string is up to the server implementation.

• params - An Array of objects to pass as arguments to the method.

• id - The request id. This can be of any type. It is used to match the response with the request that it is replying
to. (qooxdoo always sends an integer value for id.)

response When the method invocation completes, the service must reply with a response. The response is a single
object serialized using JSON.

It has three properties:

• result - The Object that was returned by the invoked method. This must be null in case there was an error
invoking the method.

• error - An Error Object if there was an error invoking the method. It must be null if there was no error.
Note that determination of whether an error occurred is based on this property being null, not on result being
null. It is perfectly legal for both to be null, indicating a valid result with value null.

• id - This must be the same id as the request it is responding to.

The Error Object

An error object contains two properties, origin and code:

origin origin - An error can be originated in four locations, during the process of initiating and processing a
remote procedure call. Each possible origin is assigned an integer value, assigned to this property, as follows:

• 1 = the server can return errors to the client

• 2 = methods invoked by the server can return errors

• 3 = Transport (e.g. HTTP) errors can occur

• 4 = the client determined that an error occurred, e.g. timeout

A conforming server implementation MUST send value 1 or 2 and MAY NOT send any other value, for origin. A
client may detect Transport or locally-ascertained errors, but a server will never return those.

code code - An integer error code. The value of code is hierarchically linked to origin; e.g. the same code represents
different errors depending on the value of origin.

One of these values of code SHALL be sent if origin = 1, i.e. if the server detected the error.

• Error code, value 1: Illegal Service The service name contains illegal characters or is otherwise deemed unac-
ceptable to the JSON-RPC server.

• Error code, value 2: Service Not Found The requested service does not exist at the JSON-RPC server.

272 Chapter 8. Communication

qooxdoo Documentation, Release 1.6

• Error code, value 3: Class Not Found If the JSON-RPC server divides service methods into subsets (classes),
this indicates that the specified class was not found. This is slightly more detailed than “Method Not Found”,
but that error would always also be legal (and true) whenever this one is returned.

• Error code, value 4: Method Not Found The method specified in the request is not found in the requested
service.

• Error code, value 5: Parameter Mismatch If a method discovers that the parameters (arguments) provided to it
do not match the requisite types for the method’s parameters, it should return this error code to indicate so to the
caller.

• Error code, value 6: Permission Denied A JSON-RPC service provider can require authentication, and that
authentication can be implemented such the method takes authentication parameters, or such that a method or
class of methods requires prior authentication. If the caller has not properly authenticated to use the requested
method, this error code is returned.

If origin = 2, i.e. the application (invoked method) detected the error, the value of the code property is entirely by
agreement between the invoking client and the and invoked method.

message message - A free-form textual message describing the error.

Other Errors

Errors detected by the server which indicate that the received data is not a JSON-RPC request SHOULD be simple text
strings returned to the invoker, describing the error. A web browser user who accidentally hits the URL of a JSON-
RPC server should receive a textual, not Error Object, response, indicating that the server is expecting a JSON-RPC
request.

Transport

There are exactly two standard transport facilities potentially used by qooxdoo’s qx.io.remote.Rpc class:

• XmlHTTPRequest : The parameters of the remote procedure call are passed to the server using XmlHTTPRe-
quest. The request will be issued using the POST method with Content Type: application/json.
The data provided by the client will be the JSON-serialized request object. The JSON-serialized result object
MUST be returned with Content Type: application/json. This transport will be used unless the
request is issued as cross-domain.

• Script : If the client application invokes a cross-domain request, the request will be issued by URL-encoding the
request object and wrapping it in a <script> tag. The request uses the GET method with Content Type:
text/javascript. The response to a request received via this method MUST be a call to the static method
qx.io.remote.transport.Script._requestFinished with parameters of the script id (a copy of
the value of the incoming parameter _ScriptTransport_id) and the JSON-serialized result object.

A server SHOULD issue an Other Error (textual reply) if it detects a method / content type pair other than the
two supported ones.

Testing A New Server

To validate that your new server is operating properly, the following test methods may be created at your server:

• echo - Echo the one and only parameter back to the client, in the form: Client said: [<parameter>
] where all text is literal except for <parameter>.

8.4. Remote Procedure Calls (RPC) 273

qooxdoo Documentation, Release 1.6

• sink - Sink all data and never return. (“Never” is a long time, so it may be simulated by sleeping for 240
seconds.

• sleep - Sleep for the number of seconds provided as the first parameter, and then return that parameter.

• getInteger - Return the integer value 1

• getFloat - Return the floating point value 1/3

• getString - Return the string "Hello world"

• getArrayInteger - Return an array containing the four integers [1, 2, 3, 4] in that order.

• getArrayString - Return an array containing the four strings ["one", "two", "three",
"four"] in that order

• getObject - Return some arbitrary object

• getTrue - Return the binary value true

• getFalse - Return the binary value false

• getNull - Return the value null

• isInteger - Return true if the first parameter is an integer; false otherwise

• isFloat - Return true if the first parameter is a float; false otherwise

• isString - Return true if the first parameter is a string; false otherwise

• isBoolean - Return true if the first parameter is either one of the boolean values true or false; return
false otherwise.

• isArray - Return true if the first parameter is an array; false otherwise

• isObject - Return true if the first parameter is an object; false otherwise

• isNull - Return true if the first parameter is the value null; false otherwise.

• getParams - Echo all parameters back to the client, in received order

• getParam - Echo the first parameter back to the client. This is a synonym for the echo method.

• getCurrentTimestamp - Return an object which has two properties:

– now: An integer representing the current time in a native format, e.g. as a number of seconds or millisec-
onds since midnight on 1 Jan 1970.

– json: A Date object representing that same point in time

A test of all of the primitive RPC operations is available in the qooxdoo-contrib project RpcExample. The third tab
provides a test of the operations using synchronous requests, and the fourth tab tests the operations using asyncronous
requests. Note that the results are displayed in the debug log (in Firebug or in the debug console enabled by pressing
F7). You can look for true as a result of each request.

A future test will validate that all returned values are as expected, and display a single “passed/fail” indication.

8.5 Specific Widget Communication

8.5.1 Using the remote table model

The remote table should be used whenever you want to display a large amount of data in a performant way.

274 Chapter 8. Communication

qooxdoo Documentation, Release 1.6

As this table model loads its data on-demand from a backend, only those rows are loaded that are near the area the
user is currently viewing. If the user scrolls, the rows that will be displayed soon are loaded asynchronously in the
background. All loaded data is managed in a cache that automatically removes the last recently used rows when it gets
full.

To get this model up and running you have to implement the actual loading of the row data by yourself in a subclass.

Implement your subclass

To correctly implement the remote table model you have to define/overwrite two methods _loadRowCount and
_loadRowData. Both are automatically called by the table widget.

qx.Class.define("myApplication.table.RemoteDataModel",
{

extend : qx.ui.table.model.Remote,

members :
{

// overloaded - called whenever the table requests the row count
_loadRowCount : function()
{

// Call the backend service (example) - using XmlHttp
var url = "http://localhost/services/getTableCount.php";
var req = new qx.io.remote.Request(url, "GET", "application/json");

// Add listener
req.addListener("completed", this._onRowCountCompleted, this);

// send request
req.send();

},

// Listener for request of "_loadRowCount" method
_onRowCountCompleted : function(response)
{

var result = response.getContent();
if (result != null)
{

// Apply it to the model - the method "_onRowCountLoaded" has to be called
this._onRowCountLoaded(result);

}
},

// overloaded - called whenever the table requests new data
_loadRowData : function(firstRow, lastRow)
{

// Call the backend service (example) - using XmlHttp
var baseUrl = "http://localhost/services/getTableRowData.php";
var parameters = "?from=" + firstRow + "&to=" + lastRow;
var url = baseUrl + parameters;
var req = new qx.io.remote.Request(url, "GET", "application/json");

// Add listener
req.addListener("completed", this._onLoadRowDataCompleted, this);

// send request
req.send();

},

8.5. Specific Widget Communication 275

qooxdoo Documentation, Release 1.6

// Listener for request of "_loadRowData" method
_onLoadRowDataCompleted : function(response)
{

var result = response.getContent();
if (result != null)
{

// Apply it to the model - the method "_onRowDataLoaded" has to be called
this._onRowDataLoaded(result);

}
}

}
});

Using your remote model

Now that you’ve set up the remote table model the table component can use it.

var remoteTableModelInstance = new myApplication.table.RemoteDataModel();
yourTableInstance.setTableModel(remoteTableModelInstance);

That’s all you need to ensure your table is using your remote model.

Sorting your data

The table component offers sortable columns to let users sort the data the way they like. You can enable this sorting
ability for each column. Since you have to pull the data into the table yourself you have to update the table data
once the user changes the sorting criteria. You have to enhance the _loadRowData method with this information to
inform your backend how to sort the data.

// "_loadRowData" with sorting support
_loadRowData : function(firstRow, lastRow)
{

// Call the backend service (example) - using XmlHttp
var baseUrl = "http://localhost/services/getTableRowData.php";
var parameters = "?from=" + firstRow + "&to=" + lastRow;

// get the column index to sort and the order
var sortIndex = this.getSortColumnIndex();
var sortOrder = this.isSortAscending() ? "asc" : "desc";

// setting the sort parameters - assuming the backend knows these
parameters += "&sortOrder=" + sortOrder + "&sortIndex=" + sortIndex;

var url = baseUrl + parameters;
var req = new qx.io.remote.Request(url, "GET", "application/json");

// Add listener
req.addListener("completed", this._onLoadRowDataCompleted, this);

// send request
req.send();

}

276 Chapter 8. Communication

qooxdoo Documentation, Release 1.6

Backend

The backend has to deliver the requested data in a JSON data structure in order to display the data correctly. The data
structure has to use the same IDs as the remote table model instance at the client-side.

For example

var remoteModel = new myApplication.table.RemoteDataModel();

// first param: displayed names, second param: IDs
remoteModel.setColumns(["First name", "Last name"], ["first", "last"]);

Then the data delivered by the backend should have the following structure:

result = {[
{ "first" : "John", "last" : "Doe" },
{ "first" : "Homer", "last" : "Simpson" },
{ "first" : "Charlie", "last" : "Brown" },
...

]};

Moreover, the backend has to deliver the row count, i. e. the number of rows the ta-
ble contains. This is what the _loadRowCount function of your subclass expects to get.
Please make sure that the URLs http://localhost/services/getTableCount.php and
http://localhost/services/getTableRowData.php of your subclass point to the right location.

Summary

This short and very basic example is far from complete and in your application you will have to implement some more
features like error-handling, but it should give you a short overview of how to implement the remote table model in
qooxdoo.

Another basic implementation which uses the PHP RPC backend is available in qooxdoo-contrib. Take a look at the
RPCExample and setup the necessary RPC PHP backend.

8.5. Specific Widget Communication 277

http://qooxdoo.org/contrib/project#rpcexample
http://qooxdoo.org/contrib/project#rpcphp

qooxdoo Documentation, Release 1.6

278 Chapter 8. Communication

CHAPTER

NINE

DEVELOPMENT

9.1 Application Creation

9.1.1 Application Skeletons

qooxdoo comes with several different application templates or skeletons. Each is meant for a specific usage scenario
and includes a different subset of the qooxdoo framework (see the architecture diagram for reference).

When creating a new application using create-application.py, the -t or –type parameter specifies the type of skeleton
to be used, e.g.

qooxdoo-1.6-sdk/tool/bin/create-application.py --name=custom --type=mobile

The following skeletons are available:

Gui

For a GUI application that looks & feels like a native desktop application (often called “RIA” – Rich Internet Appli-
cation).

Such a stand-alone application typically creates and updates all content dynamically. Often it is called a “single-page
application”, since the document itself is never reloaded or changed.

This is the default choice if the –type parameter is not specified.

Inherits from qx.application.Standalone

Included layers

• Core

• Runtime Abstraction

• Low-Level

• GUI Toolkit

Inline

For a GUI application on a traditional, HTML-dominated web page.

279

http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Standalone

qooxdoo Documentation, Release 1.6

The ideal environment for typical portal sites which use just a few qooxdoo widgets, embedded into the page’s existing
HTML content.

Inherits from qx.application.Inline

Included layers

• Core

• Runtime Abstraction

• Low-Level

• GUI Toolit

Mobile

For a mobile application running in a WebKit-based browser on iOS or Android (and also on desktop machines).
Supports the mobile widget set.

Inherits from qx.application.Mobile

Included layers

• Core

• Runtime Abstraction

• Mobile UI

Native

For applications using custom HTML/CSS-based GUIs instead of qooxdoo’s widget layer.

Inherits from qx.application.Native

Included layers

• Core

• Runtime Abstraction

• Low-Level

Bom

Pre-configured low-level library.

Included layers

• Runtime Abstraction (partially)

• Low-Level (partially)

280 Chapter 9. Development

http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Inline
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.mobile
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Mobile
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Native

qooxdoo Documentation, Release 1.6

Basic

For applications running in “browserless” or server-side environments such as node.js and Rhino.

Inherits from qx.application.Basic

Included layers

• Core

Contribution

For a qooxdoo-contrib application, component or library. Enables integration with the Contribution Demo Browser.

9.2 Debugging

9.2.1 Logging System

The logging API allows for a definition of what is logged and where it is logged, while trying to keep usage as simple
as possible.

Writing Log Messages

Every qooxdoo object has four logging methods debug(), info(), warn() and error(). Each method takes
an arbitrary number of parameters which can be of any JavaScript data type: The logging system will create text
representations of non-string parameters.

The name of the method defines the log level your log message will get. If you want to log a message that is interesting
for debugging, then use debug(). If you want to log some general information, use info(). If you want to log a
warning, use warn(). Errors should be logged with error().

So to write a log message just call:

this.debug("Hello world");

All of qx.core.Object log methods delegates to qx.log.Logger. If you want to get into more details, you can check their
API.

Now that we know how to log a message, let’s see where it’s written.

Log Appenders

Log appenders tells the logging system where to write log messages. When you create a brand new qooxdoo applica-
tion, you may stumble upon this piece of code in Application.js file.

// Enable logging in debug variant
if (qx.core.Environment.get("qx.debug")) {

qx.log.appender.Native;
qx.log.appender.Console;

}

9.2. Debugging 281

http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Basic
http://qooxdoo.org/contrib/
http://demo.qooxdoo.org/contrib/demobrowser/
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Object
http://demo.qooxdoo.org/current/apiviewer/#qx.log.Logger

qooxdoo Documentation, Release 1.6

By default, every qooxdoo application comes with 2 activated log appenders, Native and Console.

The Native appender logs messages to the browser’s console. For Firefox, that native console might be Firebug
Console, while for Chrome or Safari is the Developer Tools’ Console. The Console appender is a cross-browser
solution, logging messages to a top-left absolute positioned window that can be opened by pressing F7.

Here’s the complete list of appenders that qooxdoo provides by default:

• qx.log.appender.Native

• qx.log.appender.Console

• qx.log.appender.Element

• qx.log.appender.PhoneGap

• qx.log.appender.RhinoConsole

if none of the default appenders are right for you, you can also create a custom log appender.

Writing Custom Log Appenders

Writing your own appenders is easy. Here’s a blueprint to get you started.

qx.Class.define("qx.log.appender.MyCustomAppender", {
statics : {
init : function() {

// register to log engine
qx.log.Logger.register(this);

},

process : function(entry) {
//handle the entry map

}
}

});

As you can see, an appender is just a static class that implements a “process” method, and register itself to the logging
system.

The process method will be called by the logger with an “entry” map as the only parameter. Log appenders that need
only a text representation of the logged item(s) can pass this map to qx.log.appender.Util.toText. For
other use cases, this is what an entry map consists of:

Log Entry Map

• items Array of maps containing information about the logged items, see below

• time When the message was logged appender is a static class with at (JavaScript Date)

• level The level of the log message

• object qx object registry hash of the object the log method was called on

• win The application’s DOM window (necessary for cross-frame logging)

• offset Time in milliseconds since application startup

282 Chapter 9. Development

http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.Native
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.Console
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.Element
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.PhoneGap
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.RhinoConsole

qooxdoo Documentation, Release 1.6

Logged Item Map

• text Text representation of the logged item. If the logged item is an array, the value of text is an array containing
text representations of each of the logged array’s entries. For maps, the value is an array of maps with the
following fields:

• key The map key’s name

• text Representation of the corresponding value

• trace Stack trace (if the logged item is an Error object)

• type One of “undefined”, “null”, “boolean”, “number”, “string”, “function”, “array”, “error”, “map”, “class”,
“instance”, “node”, “stringify”, “unknown” “stringify”

9.2.2 Debugging Applications

You have several options at hand when it comes to debugging a qooxdoo application.

Introspection

• qx.io.Json.stringify()

• qx.dev.Debug()

Included in the latter is qx.dev.Debug.debugObject() which will print out a complete recursive hierarchy (or up to
some max level) of an object.

This is taken from a firebug interactive session:

>>> var myTest = {a:1, b:[2,3], c:4}
>>> qx.dev.Debug.debugObject(myTest)
1665905: Object, count=3:
--
a: 1
b: Array
0: 2
1: 3

c: 4
==================================

Memory leaks

• Setting qx.disposerDebugLevel

AJAX

• Setting qx.ioRemoteDebug

• Setting qx.ioRemoteDebugData

Debugging Tools

Some browser-specific tools allow for a powerful and often convenient way of debugging applications.

9.2. Debugging 283

http://qooxdoo.org/documentation/general/debugging_tools

qooxdoo Documentation, Release 1.6

Code Instrumentation Idioms

These are helpful idioms you might want to include in your code, i.e. you use them at programming time.

this.debug()

With this.debug() you can print out any string you want to see in the console during execution of your application.
Of course you might want to interpolate variable values in the output. If you pass an entire object reference, the whole
object will by stringyfied and printed. So beware: for big objects you get the entire instantiation in code printed out!

Example:

this.debug("I found this value for myVar: "+myVar);

console.log()

In contrast to this.debug(), if you pass an object reference to console.log() Firebug will provide you with a nice
hyperlink to the live object which you can follow to inspect the object in a structured way. This is much easier to
navigate than to skim through pages of source output.

var b = new qx.ui.form.Button();
console.log(b);

this.trace()

Will log the current stack trace using the defined logger. This can be useful to inspect from which method the current
function was called.

this.trace()

Getting at your Objects

This section shows you how to access objects of your application at run time, i.e. while it executes. Access to those
objects is possible through JavaScript, either in the form of another piece of JavaScript code, or - especially interesting
for debugging - from an interactive shell, like Firebug or Venkman, that allows for interactive input and execution of
JavaScript commands.

qx.core.Init.getApplication()

In your running app, the singlton Init object provides you with the getApplication() method, to access the
root object of your application. All members and sub-members that you have attached to your application class in
your code are accessible this way.

qx.core.Init.getApplication();

284 Chapter 9. Development

qooxdoo Documentation, Release 1.6

Firebug Usage Idioms

“Inspect”

Getting at your application objects fast is a common requirement when debugging. A useful idiom (or usage pattern)
with Firebug is to press the “Inspect” button and select the visible page element you are interested in. This will take
Firebug to its HTML tab in a split-pane view. The left side holds the HTML code underlying your selection (which
is probably not very enlightening). The right side though has a “DOM” tab, among others. Selecting this will show a
display of the underlying DOM node, which features a qx_Widget attribute. This attribute is added to the outermost
HTML tag representing a qooxdoo widget. For complex widgets that are made up of nested HTML elements, make
sure to select the outermost container node that actually has this attribute qx_Widget. It takes you straight to the
qooxdoo object associated with the selected DOM node.

Inspect -> Web page element -> HTML tab -> right side -> DOM tab -> qx_Widget link

9.3 Performance

9.3.1 Memory Management

Introduction

Generally, qooxdoo’s runtime will take care of most of the issues around object disposal, so you don’t have to be too
anxious if you get those ‘missing destruct declaration’ messages from a verbose disposer run.

To destruct existing objects at the end of your application is an important feature in the ever growing area of web
applications. Widgets and models are normally handling a few storage fields on each instance. These fields need the
dispose process to work without memory leaks.

Normally, JavaScript automatically cleans up. There is a built-in garbage collector in all engines. But these engines are
more or less buggy. One problematic issue is that browsers differentiate between DOM and JavaScript and use different
garbage collection systems for each (This does not affect all browsers, though). Problems arise when objects create
links between the two systems. Another issue are circular references which could not be easily resolved, especially by
engines which rely on a reference counter.

To help the buggy engines to collect the memory correctly it is helpful to dereference complex objects from each other,
e.g. instances from maps, arrays and other instances. You don’t need to delete primitive types like strings, booleans
and numbers.

qooxdoo has solved this issue from the beginning using the included “dispose” methods which could be overridden
and extended by each class. qooxdoo 0.7 introduced a new class declaration. This class declaration supports real
“destructors” as known from other languages. These destructors are part of the class declaration. The new style makes
it easier to write custom destructor/disposer methods because there are many new helper methods and the whole
process has been streamlined to a great extend.

Disposing an application

You can dispose any qooxdoo based application by simply calling qx.core.ObjectRegistry.shutdown().
The simplest possibility is to use the command line included in Firebug. Another possibility is to add a HTML link or
a button to your application which executes this command.

You can look at the dispose behaviour of your app if you set the disposer into a verbose mode and then invoke it
deliberately while your app is running. This will usually render your app unusable, but you will get all those messages

9.3. Performance 285

http://qooxdoo.org/documentation/0.7/class_declaration

qooxdoo Documentation, Release 1.6

hinting you at object properties that might need to be looked after. How-To instructions can be found here. But mind
that the disposer output contains only hints, that still need human interpretation.

Example destructor

destruct : function()
{

this._data = this._moreData = null;
this._disposeObjects("_buttonOk", "_buttonCancel");
this._disposeArray("_children");
this._disposeMap("_registry");

}

• _disposeObjects: Supports multiple arguments. Dispose the objects (qooxdoo objects) under each key
and finally delete the key from the instance.

• _disposeArray: Disposes the array under the given key, but disposes all entries in this array first. It must
contain instances of qx.core.Object only.

• _disposeMap: Disposes the map under the given key, but disposes all entries in this map first. It must contain
instances of qx.core.Object only.

How to test the destructor

The destructor code allows you an in-depth analysis of the destructors and finds fields which may leak etc. The DOM
tree gets also queried for back-references to qooxdoo instances. These checks are not enabled by default because of
the time they need on each unload of a typical qooxdoo based application.

To enable these checks you need to select a variant and configure a setting.

The environment setting qx.debug must be true. The setting qx.disposerDebugLevel must be at least at 1
to show not disposed qooxdoo objects if they need to be deleted. A setting of 2 will additionally show non qooxdoo
objects. Higher values mean more output. Don’t be alarmed if some qooxdoo internal showing up. Usually there is
no need to delete all references. Garbage collection can do much for you here. For a general analysis 1 should be
enough, a value of 2 should be used to be sure you did not miss anything. You can use the following code to adapt
your config.json:

{
"jobs" :
{
// existing jobs ...
"source-disposerDebug" :
{

"desc" : "source version with ’qx.disposerDebugLevel’ for destruct support",

"extend" : ["source"],

"environment" :
{

"qx.disposerDebugLevel" : "2"
}

}
}

}

This snippet is also available at the Support for finding potential memory leaks .

Log output from these settings could look something like this:

286 Chapter 9. Development

http://bugzilla.qooxdoo.org/show_bug.cgi?id=3411#c2
http://qooxdoo.org/documentation/general/snippets#support_for_finding_potential_memory_leaks

qooxdoo Documentation, Release 1.6

35443 DEBUG: testgui.Report[1004]: Disposing: [object testgui.Report]FireBug.js (line 75)
Missing destruct definition for ’_scroller’ in qx.ui.table.pane.FocusIndicator[1111]: [object qx.ui.table.pane.Scroller]Log.js (line 557)
Missing destruct definition for ’_lastMouseDownCell’ in qx.ui.table.pane.Scroller[1083]: [object Object]Log.js (line 557)
036394 DEBUG: testgui.Form[3306]: Disposing: [object testgui.Form]FireBug.js (line 75)
Missing destruct definition for ’_dateFormat’ in qx.ui.component.DateChooserButton[3579]: [object qx.util.format.DateFormat]Log.js (line 557)
Missing destruct definition for ’_dateFormat’ in qx.ui.component.DateChooserButton[3666]: [object qx.util.format.DateFormat]Log.js (line 557)

The nice thing here is that the log messages already indicate which dispose method to use: Every “Missing destruct...”
line contains a hint to the type of member that is not being disposed properly, in the “[object ...]” part of the line. As
a rule of thumb

• native Javascript types (Number, String, Object, ...) usualy don’t need to be disposed.

• for qooxdoo objects (e.g. qx.util.format.DateFormat, testgui.Report, ...) use _disposeObjects

• for arrays or maps of qooxdoo objects use _disposeArray or _disposeMap.

• be sure to cut all references to the DOM because garbage collection can not dispose object still connected to the
DOM. This is also true for event listeners for example.

Finding memory leaks

qooxdoo contains a built-in dispose profiling feature that finds undisposed objects. This is useful mainly for applica-
tions that create and destroy objects as needed during their lifetime (instead of creating them once and re-using them).
It cannot be used to find undisposed objects left over after the application was shut down.

Dispose profiling works by disabling a feature in qooxdoo’s Object Registry where the hash codes used to identify
objects are reused. That way, it is possible to iterate over all objects created between two specified points in the
application’s lifecycle and check if they’re disposed. Since hash reusing is a performance feature, dispose profiling
should only be activated for the development version of an application. It is activated by enabling the qx.debug.dispose
environment setting for a compile job, e.g. source-script:

"source-script" :
{

"environment" :
{
"qx.debug.dispose" : true

}
}

After building the application, the dispose debugging workflow is as follows:

• Call qx.dev.Debug.startDisposeProfiling before the code you wish to debug is executed. This effectively sets a
marker saying “ignore any objects created before this point in time”.

• Execute the code to be debugged, e.g. create a view component, then destroy it.

• Call qx.dev.Debug.stopDisposeProfiling. It will return a list of maps containing references to the undisposed
objects as well as stack traces taken at the time the objects were registered, which makes it easy to find where in
the code they were instantiated. Go through the list and add destroy and/or dispose calls to the application
as needed.

9.3.2 Profiling Applications

qooxdoo has built-in a cross-browser, pure JavaScript profiler. If the profiler is enabled, each call of a method defined
by qooxdoo’s class declaration can be measured. The profiler is able to compute both the total own time and the call
count of any method.

9.3. Performance 287

http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.Debug~startDisposeProfiling
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.Debug~stopDisposeProfiling

qooxdoo Documentation, Release 1.6

Since the profiler is implemented in pure JavaScript, it is totally cross-browser and works on any supported browser.

How to enable the Profiler

Basically set the environment setting qx.aspects to true and be sure to include the class qx.dev.Profile. The class
should be included before other classes. The easiest way to achieve that is to extend the profiling helper job in a
job that creates your application. For example, to enable profiling in the source version of your app, go to the "jobs"
section of your config.json, and add

"source-script" : {
"extend" : ["profiling"]

}

How to use the Profiler

The profiler can be controlled either hard-wired in the application code, or interactively using a JavaScript shell like
FireBug for Firefox or DebugBar for IE.

Profiling a certain action:

• Open the application in your browser

• At the JavaScript console type qx.dev.Profile.stop() to clear the current profiling data gathered during
startup

• Start profiling using qx.dev.Profile.start()

• Perform the action you want to profile

• Stop profiling using qx.dev.Profile.stop()

• Open the profiler output window: qx.dev.Profile.showResults(50). The parameter speci-
fies how many items to display. Default value is set to 100. The output will be sorted by the to-
tal own time of each method. Alternatively you can work with the raw profiling data returned by
qx.dev.Profile.getProfileData().

Limitations

In order to interpret the results correctly it is important to know the limitations of this profiling approach. The most
significant limitation is due to the fact that the profiler itself is written in JavaScript and runs in the same context as
the application:

• The profiler adds some overhead to each function call. The profiler takes this overhead into account in the
calculation of the own time but there can still be a small inaccuracy.

• The result of new Date(), which is used for timing, has a granularity of about 10ms on many patforms, so it
is hard to measure especially small functions accurately.

• The application is slowed down because profiling is done by wrapping each function. Profiling should always
be turned off in production code before deployment.

Summary

The output of the profiler can be of great value to find hot spots and time-consuming code. The timing data should be
interpreted rather qualitatively than quantitatively, though, due to constraints of this approach.

288 Chapter 9. Development

http://api.qooxdoo.org/#qx.dev.Profile

qooxdoo Documentation, Release 1.6

Note: The application is slowed down because profiling is done by wrapping each function. Profiling should always
be turned off in production code before deployment.

9.4 Testing

9.4.1 Unit Testing

qooxdoo comes with its own, nicely integrated unit testing environment and the corresponding application called
Testrunner. While being similar to JSUnit, the solution that ships with the qooxdoo SDK does not require any addi-
tional software.

If you look at the component section of a qooxdoo distribution, you will find the Test Runner tailored to test the
functionality of the qooxdoo framework. It provides a convenient interface to test classes that have been written to that
end. You can run single tests, or a whole suite of them at once.

But the Test Runner framework can be deployed for your own application. It provides a GUI, a layer of infrastructure
and a certain interface for arbitrary test classes. You can write your own test classes and take advantage of the Test
Runner environment.

• Test Tools – an overview over test tools and approaches

• The qooxdoo Test Runner – how to deploy the Testrunner component for your own application

9.4.2 The qooxdoo Test Runner

“Test Runner” is a unit testing framework that fully supports testing qooxdoo classes. It is similar to but does not
require JSUnit or any other JavaScript unit testing framework. If you look at the component section of a qooxdoo
distribution under component/testrunner/, you will find the Test Runner sources, together with a mockup test
class. In the framework/ section you can create a Test Runner instance with all test classes from the qooxdoo
framework by running:

./generate.py test

Test Runner provides a convenient interface to test classes that have been written to that end. You can run single tests,
or run a whole suite of them at once.

9.4. Testing 289

http://demo.qooxdoo.org/1.6/testrunner
http://qooxdoo.org/documentation/general/test_tools
http://en.wikipedia.org/wiki/Unit_test

qooxdoo Documentation, Release 1.6

Note: See the Test Runner in action in the online demo.

The Test Runner framework can also be deployed for your own application. It provides a GUI, a layer of infrastructure
and a certain interface for arbitrary test classes. So now you can write your own test classes and take advantage of the
Test Runner environment.

How to deploy Test Runner for your own development

This section assumes that your qooxdoo application bears on the structure of the qooxdoo skeleton application. Then
this is what you have to do:

Writing Test Classes

• You have to code test classes that perform the individual tests. These test classes have to comply to the following
constraints:

– They have to be within the name space of your application.

– They have to be derived from qx.dev.unit.TestCase.

– They have to define member functions with names starting with test*. These methods will be available
as individual tests.

– Apart from that you are free to add other member functions, properties etc., and to instantiate other classes
to your own content. But you will usually want to instantiate classes of your current application and invoke
their methods in the test functions.

290 Chapter 9. Development

http://demo.qooxdoo.org/1.6/testrunner/

qooxdoo Documentation, Release 1.6

– In order to communicate the test results back to the Test Runner framework exceptions are used. No
exception means the test went fine, throwing an exception from the test method signals a failure. Return
values from the test methods are not evaluated.

– To model your test method behaviour, you can use the methods inherited from
qx.dev.unit.TestCase which encapsulate exceptions in the form of assertions:

* assert, assertFalse, assertEquals, assertNumber, ... - These functions take values
which are compared (either among each other or to some predefined value) and a message string, and
raise an exception if the comparison fails.

* A similar list of methods of the form assert*DebugOn is available, which are only evaluated if
the debug environment setting qx.debug is on (see Environment).

* See the documentation for the qx.dev.unit.TestCase class for more information on the available asser-
tions.

Generic setUp and tearDown Test classes can optionally define a setUpmethod. This is used to initialize common
objects needed by some or all of the tests in the class. Since setUp is executed before each test, it helps to ensure that
each test function runs in a “clean” environment. Similarly, a method named tearDown will be executed after each
test, e.g. to dispose any objects created by setUp or the test itself.

Specific tearDown For cases where the generic class-wide tearDown isn’t enough, methods using the naming
convention tearDown<TestFunctionName> can be defined. A method named e.g. tearDownTestFoowould
be called after testFoo and the generic tearDown of the class were executed.

Asynchronous Tests Asynchronous tests enable testing for methods that aren’t called directly, such as event han-
dlers:

• Test classes inheriting from qx.dev.unit.TestCase have a wait()method that stops the test’s execution
and sets a timeout. wait() should always be the last function to be called in a test since any code following
it is ignored. wait() has two optional arguments: The amount of time to wait in milliseconds (defaults to
5000) and a function to be executed when the timeout is reached. If no function is specified, reaching the
timeout will cause an exception to be thrown and the test to fail.

• The resume() method is used to (surprise!) resume a waiting test. It takes two arguments, a function to be
executed when the test is resumed, typically containing assertions, and the object context it should be executed
in.

Here’s an example: In our test, we want to send an AJAX request to the local web server, then assert if the response is
what we expect it to be.

testAjaxRequest : function()
{

var request = new qx.io.request.Xhr("/index.html");
request.addListener("success", function (e) {
this.resume(function() {

this.assertEquals(200, request.getStatus());
}, this);

}, this);
request.send();

this.wait(10000);
}

9.4. Testing 291

http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.TestCase

qooxdoo Documentation, Release 1.6

Defining Test Requirements Requirements are conditions that must be met before a test can be run. For example,
a test might rely on the application having been loaded over HTTPS and would give false results otherwise. Require-
ments are defined for individual tests; if one or more aren’t satisfied, the test code won’t be executed and the test will
be marked as “skipped” in the Test Runner’s results list.

Using Requirements To make use of the requirements feature, test classes must include the MRequirements mixin.
The mixin defines a method require that takes an array of strings: The requirement IDs. This method is either
called from the setUp method or from a test function before the actual logic of the test, e.g.:

testBackendRequest : function()
{

this.require(["backend"]);
// test code goes here

}

require then searches the current test instance for a method that verifies the listed requirements: The naming
convention is “has” + the requirement ID with the first letter capitalized, e.g. hasBackend. This method is the
called with the requirement ID as the only parameter. If it returns true, the test code will be executed. Otherwise a
RequirementError is thrown. The Test Runner will catch these and mark the test as “skipped” in the results list. Any
test code after the require call will not be executed.

If no “has” method for a given feature is found, qx.core.Environment will be checked for a key that matches the feature
name. This way, any Environment key that has a boolean value can be used as a test requirement, e.g.:

this.require(["event.touch", "css.textoverflow"]);

Note that only Environment keys with synchronous checks are supported.

Spies, stubs and mocks Spies are test functions that records details for all its calls. Stubs are spies with pre-
programmed behavior. Mocks are fake methods are like spies and stubs, but also come with pre-programmed expec-
tations. Generally speaking, spies, stubs and mocks are fakes that allow fine-grained unit testing. They constitute
important tools for test driven development.

In order to use fakes in your tests, test classes must include the MMock mixin. Here are some example tests that
demonstrate the usage of spies and stubs.

"test: spy": function() {
var spy = this.spy();
spy();
this.assertCalled(spy);

},

"test: stub": function() {
var whoami = this.stub();
whoami.returns("Affe");
this.assertEquals("Affe", whoami());

}

MMock also provides custom assertions tailored to work with fakes. Whenever possible, custom assertions should be
used instead of lower level assertions because they provide more detailed error messages.

"test: assert called": function() {
var spy = this.sinon.spy();

// Fail test deliberately
// spy();

292 Chapter 9. Development

http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MRequirements
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.RequirementError
http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.Environment
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MMock
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MMock

qooxdoo Documentation, Release 1.6

// Recommended
this.assertCalledOnce(spy);
// --> expected spy to have been called once but was called 0 times

// Lower level assertion
this.assertTrue(spy.called);
this.assertEquals(1, spy.callCount);
// --> Called assertTrue with ’false’
// --> Expected ’1’ but found ’0’!

}

Mocks are different from spies and stubs. They have pre-programmed expectations, meaning that unexpected calls fail
your tests. Mocks allow to enforce implementation details without explicit assertions.

"test: mock": function() {
var obj = {method: function() {}};
var mock = this.sinon.mock(obj);
mock.expects("method").once();

obj.method();
// Would fail test (Unexpected second call)
// obj.method();
mock.verify();

},

For more details, please refer to the API documentation of MMock. Additional examples can be found in
qx.test.dev.unit.Sinon.

MMock is based on Sinon.JS. The original sinon object can be retrieved by calling
qx.dev.unit.Sinon.getSinon().

Sandboxing Stubs can override original behavior. To prevent tests from leaking, it is recommended to restore fakes
on tear down. Every fake (including stubs) created by MMock is contained within a sandbox. Here is how to restore
all fakes recorded in the sandbox.

tearDown: function() {
this.getSandbox().restore();

}

Faking XMLHttpRequest To replace the native implementation of XMLHttpRequest (XHR), call
useFakeXMLHttpRequest(). The fake implementation behaves just like the original implementation only that
no HTTP backend is required. Additional methods allow to simulate HTTP interaction. For example, the following
test demonstrates the basic functionality of XHR.

"test: GET with XMLHttpRequest": function() {
// Replace XMLHttpRequest host object with fake implementation
this.useFakeXMLHttpRequest();

var readyStates = [];
var req = new XMLHttpRequest();

req.open("GET", "/");
req.onreadystatechange = this.spy(function() {
readyStates.push(req.readyState);

});

req.send();

9.4. Testing 293

http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MMock
http://sinonjs.org/
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MMock

qooxdoo Documentation, Release 1.6

// Fake server response
// - Fires "readystatechange" event
// - Updates status, responseText properties
req.respond(200, {}, "Response");

this.assertCalled(req.onreadystatechange);
this.assertArrayEquals([1,2,3,4], readyStates);
this.assertEquals(200, req.status);
this.assertEquals("Response", req.responseText);

}

Usually, the unit under test does not directly expose requests. Rather, some other part of the programm calls the
XMLHttpRequest constructor. Whenever the request is not directly available within the test (or complicated to access),
each request created by the fake implementation can be retrieved with getRequests().

"test: GET with qx.io.request.Xhr": function() {
this.useFakeXMLHttpRequest();
var req = new qx.io.request.Xhr("GET", "/");
var fakeReq = this.getRequests()[0];

// qx.io.request.Xhr indirectly uses an instance of XMLHttpRequest.
// The test should not be concerned with the implementation detail
// about how to retrieve the instance. Instead, getRequests()
// above provides an implementation indepent way to retrieve the
// used object.
//
// this.assertEquals(fakeReq, req.getTransport().getRequest());

req.send();

this.assertEventFired(req, "statusError", function() {
fakeReq.respond(500, {}, "Error");

});
this.assertEquals(500, req.getStatus());

}

Create the Test Application

• Run generate.py test from the top-level directory of your application. This will generate the appropriate
test application for you, which will be available in the subfolder test as test/index.html. Open this file
in your browser and run your tests.

• Equally, you can invoke generate.py test-source. This will generate the test application, but allows
you to use the source version of your application to run the tests on. In doing so the test application links directly
into the source tree of your application. This allows for test-driven development where you simultaneously
develop your source classes, the test classes and run the tests. All you need to do is to change the URL of
the “test backend application” (the textfield in the upper middle of the Test Runner frame) from tests.html
(which is the default) to tests-source.html. (Caveat: If generate.py test-source is the first
thing you do, you might get an error when Test Runner starts, since the default tests.html has not been built; just
change the URL and continue). For example, the resulting URL will look something like this:

html/tests-source.html?testclass=<your_app_name>

After that, you just reload the backend application by hitting the reload button to the right to see and test your
changes in the Test Runner.

294 Chapter 9. Development

http://en.wikipedia.org/wiki/Test-driven_development

qooxdoo Documentation, Release 1.6

• If you’re working on an application based on qx.application.Native or qx.application.Inline (e.g. by starting
with an Inline skeleton), you can run generate.py test-native or generate.py test-inline
to create a test application of the same type as your actual application. The Test Runner’s index file will be
called index-native.html or index-inline.html, respectively.

Test Runner Views

The Test Runner architecture is split between the logic that executes tests and the view that displays the results and
allows the user to select which tests to run. Views are selected by overriding the TESTRUNNER_VIEW configuration
macro, specifying the desired view class. For example, to build the Test Runner using the HTML view, use the
following shell command:

./generate.py test -m TESTRUNNER_VIEW:testrunner.view.Console

Several views are included with the Test Runner:

Widget This is the default view used for the GUI, Native and Inline skeletons’ test and test-source jobs. It is the
most fully-featured and convenient to use, making heavy use of data binding to list available tests in a Virtual Tree and
to visualize the results. The downside is that can it feel sluggish in environments with poor JavaScript performance.

HTML As the name indicates, this view uses plain (D)HTML instead of qooxdoo’s UI layer. It is intended for usage
scenarios where speed is more important than good looks.

9.4. Testing 295

qooxdoo Documentation, Release 1.6

Console Even more bare-bones than the HTML view, the Console view features no visual elements other than the
Iframe containing the test application. Tests are started using the browser’s JavaScript console. This is mostly intended
as a base for specialized views.

296 Chapter 9. Development

qooxdoo Documentation, Release 1.6

Performance This view visualizes the results of performance tests using the qx.test.performance.MMeasure mixin.
Take a look at the tests in the qx.test.performance namespace and the test-performance job in frame-
work/config.json to see how you can implement performance tests measuring JavaScript execution and HTML render-
ing time for your application.

Reporter The Reporter is a specialized view used for automated unit test runs. Based on the Console view, it features
(almost) no GUI. The test suite is automatically started as soon as it’s ready. A method that returns a map of failed
tests is its only means of interaction:

qx.core.Init.getApplication().runner.view.getFailedResults()

URI parameters

The following URI parameters can be used to modify the Test Runner’s behavior:

• testclass Restrict the tests to be loaded. Takes a fully qualified class name or namespace that is a subset of the
classes included in the test application, e.g. custom.test.gui or custom.test.gui.PreferencesDialog

• autorun Automatically execute all selected tests as soon as the suite is loaded. Takes any parameter, e.g. 1.

Portable Test Runner

A stand-alone version of the qooxdoo’s unit testing sub-system, requiring no compile step and with no external
dependencies. It comes in the form of a single .js file that can simply be added to an HTML page along with the code
to be tested and unit test definitions (as inline JavaScript).

Its main purpose is to provide a comprehensive unit testing framework including Assertions, Sinon, Requirements and
a Test Runner GUI to developers working on non-qooxdoo JavaScript applications.

Example

The fictional non-qooxdoo JavaScript library foo.js provides a Bar class, with a constructor that takes a string
parameter. This test checks if the getName method returns that string:

<!DOCTYPE html>
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Test Runner</title>
<script type="text/javascript" src="http://localhost/testrunner-portable.js"></script>
<script type="text/javascript" src="http://localhost/foo.js"></script>
<script type="text/javascript">
testrunner.define({
__bar : null,

setUp : function() {
this.__bar = new foo.Bar("baz");

},

testName : function() {
this.assertEquals("baz", this.__bar.getName());

}
});
</script>

</head>

9.4. Testing 297

http://demo.qooxdoo.org/1.6/apiviewer/#qx.test.performance.MMeasure
http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.Assert
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MMock

qooxdoo Documentation, Release 1.6

<body>
</body>
</html>

The important thing to note here is the map argument for testrunner.define: It’s equivalent to the members
section of a class extending qx.dev.unit.TestCase and including qx.dev.unit.MMock and qx.dev.unit.MRequirements,
allowing full access to these APIs. Multiple test classes can be defined by additional calls to testrunner.define.

The Portable Test Runner can be downloaded from the Demo section of the qooxdoo website, or generated from within
the SDK:

cd component/testrunner
python generate.py -c portable.json build

9.4.3 Simulator

Overview

The purpose of the Simulator component is to help developers rapidly develop and run a suite of simulated user
interaction tests for their application with a minimum amount of configuration and using familiar technologies, e.g.
qooxdoo-style JavaScript. To do so it uses a combination of qooxdoo’s own toolchain, Mozilla’s Rhino JavaScript
engine and Selenium Remote Control.

Feature Highlights

The Simulator enables developers to:

• Define Selenium test cases by writing qooxdoo classes

• Use the JUnit-style setUp, test*, tearDown pattern

• Define test jobs using the qooxdoo toolchain’s configuration system

• Utilize the standard Selenium API as well as qooxdoo-specific user extensions to locate and interact with qoox-
doo widgets

• Capture and log uncaught exceptions thrown in the tested application

• Use Selenium Server to run tests in many different browser/platform combinations

• Write custom log appenders using qooxdoo’s flexible logging system

How it works

Similar to unit tests, Simulator test cases are defined as qooxdoo classes living in the application’s source directory.
As such they support qooxdoo’s OO features such as inheritance and nested namespaces. The setUp, testSomething,
tearDown pattern is supported, as well as all assertion functions defined by qx.core.MAssert.

The main API that is used to define the test logic is QxSelenium, which means the DefaultSelenium API plus the
Locator strategies and commands from the qooxdoo user extensions for Selenium.

As with qooxdoo’s unit testing framework, the Generator is used to create a test runner application (the Simulator).
User-defined test classes are included into this application, which extends qx.application.Native and uses a simplified
loader so it can run in Rhino.

A separate Generator job is used to start Rhino and instruct it to load the Simulator application, which uses Selenium’s
Java API to send test commands to a Selenium server (over HTTP, so the server can run on a separate machine). The

298 Chapter 9. Development

http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.TestCase
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MMock
http://demo.qooxdoo.org/1.6/apiviewer/#qx.dev.unit.MRequirements
http://www.mozilla.org/rhino/
http://seleniumhq.org/projects/remote-control/
http://seleniumhq.org/about/platforms.html#browsers
http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.MAssert
http://jarvana.com/jarvana/view/org/seleniumhq/selenium/selenium-rc-documentation/1.0/selenium-rc-documentation-1.0-doc.zip!/java/com/thoughtworks/selenium/DefaultSelenium.html
http://qooxdoo.org/contrib/project/simulator#selenium_user_extension_for_qooxdoo
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Native

qooxdoo Documentation, Release 1.6

Server then launches the selected browser, loads the qooxdoo application to be tested and executes the commands
specified in the test case.

Setting up the test environment

The following sections describe the steps necessary to set up Simulator tests for an application based on qooxdoo’s
GUI or Inline skeleton.

Required Libraries

The Simulator needs the following external resources to run:

• Java Runtime Environment: Version 1.6 is known to work.

• Selenium Server and Java Client Driver: Version 1.0.3 or later. Later versions should generally be OK as long
as the Selenium API remains stable.

• Mozilla Rhino: Version 1.7R1 or later.

The Java archives for the Selenium client driver and Rhino must be located on the same machine as the application
to be tested. For Rhino, this means js.jar. Older versions of Selenium provide a single archive (selenium-java-client-
driver.jar), while newer ones are split up into the actual driver (selenium-java-<x.y.z>.jar) and several external libraries
found in the “libs” folder of the ZIP archive.

The Selenium Server (selenium-server.jar, or selenium-server-standalone.jar for newer releases) can optionally run on
a physically separate host (see the Selenium RC documentation for details). The qooxdoo user extensions must be
located on the same machine as the server (see below).

Generator Configuration

Unlike other framework components, the Simulator isn’t ready to run out of the box: The application developer needs
to specify the location of the required external libraries (Selenium’s Java bindings and Mozilla Rhino). This is easily
accomplished by redefining the SIMULATOR_CLASSPATH macro (in the applicaton’s config.json file; be sure to heed
the general information about paths in config files):

"let" :
{

"SIMULATOR_CLASSPATH" :
[
"../selenium/selenium-java-2.4.0.jar",
"../selenium/libs/*",
"../rhino/js.jar"

]
}

The “environment” section of the “simulation-run” job configures where the AUT is located and how to reach the Sele-
nium server that will launch the test browser and run the test commands. The following example shows the minimum
configuration needed to launch a Simulator application that will test the source version of the current application in
Firefox 3 using a Selenium server instance running on the same machine (localhost):

"simulation-run" :
{

"let" :
{
"SIMULATOR_CLASSPATH" :
[

9.4. Testing 299

http://seleniumhq.org/download
http://www.mozilla.org/rhino/download.html

qooxdoo Documentation, Release 1.6

"../selenium/selenium-java-2.4.0.jar",
"../selenium/libs/*",
"../rhino/js.jar"

]
},

"environment" :
{
"simulator.testBrowser" : "*firefox3",
"simulator.selServer" : "localhost",
"simulator.selPort" : 4444,
"simulator.autHost" : "http://localhost",
"simulator.autPath" : "/${APPLICATION}/source/index.html"

}
}

See the job reference for a listing of all supported settings and their default values. Additional runtime options are
available, although their default settings should be fine for most cases. See the simulate job key reference for details.

Writing Test Cases

As mentioned above, Simulator test cases are qooxdoo classes living (at least by default) in the application’s
simulation name space. They inherit from simulator.unit.TestCase, which includes the assertion functions from
qx.core.MAssert. Simulator tests look very similar to qooxdoo unit tests as they follow the same pattern of setUp,
testSomething, tearDown. Typically, each test* method will use the QxSelenium API to interact with some part of
the AUT, then use assertions to check if the AUT’s state has changed as expected, e.g. by querying the value of a
qooxdoo property.

Locating Elements

In order to simulate interaction with a qooxdoo widget, Selenium needs to locate it first. This is accomplished by using
one or more of the locator strategies described on this page:

• Locating elements

Simulating Interaction

In addition to Selenium’s built-in commands, a number of qooxdoo-specific methods are available in the simula-
tor.QxSelenium and simulator.Simulation classes. Run generate.py api in the component/simulator directory of the
qooxdoo SDK to create an API Viewer for these classes.

Test Development Tools

Selenium IDE

This Firefox plugin allows test developers to run Selenium commands against a web application, making it a very
useful to debug locators and check if commands produce the expected results. In order to use Selenium IDE with the
qooxdoo-specific locators and commands, open the Options menu and enter the path to the qooxdoo extensions for
Selenium in the field labeled Selenium Core extensions, e.g.:

C:\workspace\qooxdoo-1.4-sdk\component\simulator\tool\user-extensions\user-extensions.js

300 Chapter 9. Development

qooxdoo Documentation, Release 1.6

Inspector

qooxdoo’s Inspector component can provide assistance to test developers by automatically determining locators for
widgets.

Generating the Simulator

The “simulation-build” job explained above is used to generate the Simulator application (in the AUT’s root directory):

generate.py simulation-build

Note that the Simulator application contains the test classes. This means that it must be re-generated whenever existing
tests are modified or new ones are added.

Starting the Selenium server

The Selenium server must be started with the -userExtensions command line option pointing to the qooxdoo user
extenions for Selenium mentioned above:

java -jar selenium-server-standalone.jar -userExtensions <QOOXDOO-TRUNK>/component/simulator/tool/user-extensions/user-extensions.js

Running the Tests

Once the Simulator application is configured and compiled and the Selenium server is running, the test suite can be
executed using the “simulation-run” job:

generate.py simulation-run

The Simulator’s default logger writes the result of each test to the shell as it’s executed. The full output looks something
like this:

==
EXECUTING: SIMULATION-RUN

==
>>> Initializing cache...
>>> Running Simulation...
>>> Load runtime: 360ms
>>> Simulator run on Thu, 02 Dec 2010 15:57:30 GMT
>>> Application under test: http://localhost/~dwagner/workspace/myApplication/source/index.html
>>> Platform: Linux
>>> User agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12
>>> PASS myapplication.simulation.DemoSimulation:testButtonPresent
>>> PASS myapplication.simulation.DemoSimulation:testButtonClick
>>> Main runtime: 11476ms
>>> Finalize runtime: 0ms
>>> Done

Testing multiple browser/OS combinations

General

Since the Simulator uses Selenium RC to start the browser and run tests, the relevant sections from the Selenium
documentation apply. Due to the special nature of qooxdoo applications, however, some browsers require additional
configuration steps before they can be tested.

9.4. Testing 301

http://seleniumhq.org/docs/05_selenium_rc.html
http://seleniumhq.org/docs/05_selenium_rc.html

qooxdoo Documentation, Release 1.6

Firefox

The 3.x line of Mozilla Firefox is usually the most reliable option for Simulator tests. Firefox 3.0, 3.5 and 3.6 are all
known to work on Windows XP and 7 as well as Linux and OS X.

Firefox 4 is not supported by Selenium 1.0.3 out of the box, but it can be used for testing by starting it with a custom
profile. These are the necessary steps:

• Start Firefox 4 with the -P option to bring up the Profile Manager

• Create a new profile, naming it e.g. “FF4-selenium”

• Under Options -> Advanced -> Network -> Settings, select Manual Proxy Configuration and enter the host name
or IP address and port number of your Selenium server

• In your application’s config.json, use the *custom browser launcher followed by the full path to the Firefox
executable and the name of the profile:

"simulation-run" :
{

"environment" :
{
"simulator.testBrowser" : "*custom C:/Program Files/Mozilla Firefox/firefox.exe -P FF4-selenium",
[...]

}
}

Internet Explorer 6, 7, 8 and 9

Starting the server When testing with IE, the Selenium server must be started with the -singleWindow option so
the AUT will be loaded in an iframe. This is deactivated by default so two separate windows are opened for Selenium
and the AUT. IE restricts cross-window JavaScript object access, causing the tests to fail.

java -jar selenium-server-standalone.jar -singleWindow -userExtension [...]

Launching the browser To launch IE, the *iexploreproxy launcher should be used. The *iexplore launcher starts
the embedded version of IE which in some ways behaves differently from the full-blown browser.

"simulation-run" :
{

"environment" :
{
"simulator.testBrowser" : "*iexploreproxy",
[...]

}
}

9.4.4 Simulator: Locating elements

Selenium locators

Selenium offers several built-in locator strategies.

• Identifier locators are very fast and reliable, but IDs must be assigned manually by the application developer,
e.g.:

302 Chapter 9. Development

http://seleniumhq.org/docs/02_selenium_ide.html#locating-elements
http://seleniumhq.org/docs/02_selenium_ide.html#locating-by-identifier

qooxdoo Documentation, Release 1.6

firstButton.getContainerElement().getDomElement().id = "firstButton";

• XPath locators are not well suited for qooxdoo applications which usually consist of a great number of DOM
elements that can take quite a while to traverse, especially when using wildcards. More importantly, the DOM
is likely to change during the application’s runtime, making XPath locators unreliable.

• The same caveat applies to DOM locators

qooxdoo-specific locators

These are custom locator strategies designed specifically for qooxdoo applications.

qxh Locator: Search the qooxdoo widget hierarchy

This strategy locates elements within the application’s widget hierarchy by following relations between JavaScript
objects. In order to achieve this, it uses a syntax that is very similar to XPath, but also differs in significant ways.

A qxh locator is a sequence of one or more location steps, separated by /. No leading or trailing / is allowed. All
searches are anchored to the root object (which is either the Application object or the application root widget, see
further down). During the search each location step selects an object which will be used as the root for the rest of the
search. The following possibilities exist to specify a location step:

• <string> A simple string that cannot be resolved otherwise is taken to be the literal identifier of a JavaScript
property of the current object. So a locator step of mytoolbar will signify a JavaScript property named
mytoolbar on the current object.

qxh=mytoolbar

• qx. ... A string starting with qx. is taken to be a qooxdoo classname, e.g. qx.ui.basic.Label. It signifies a child
which is an instance of the given class.

qxh=qx.ui.form.Button

• child[N] Signifies the Nth child of the object returned by the previous step.

qxh=child[3]

• [@attrib{=value}] Selects a child that has a property attrib which has a value of value. The specification of a
value is optional. “Property” here covers both qooxdoo as well as generic JavaScript properties.

qxh=[@label=".*Label$"]

As for the values, only string comparisons are possible, but you can specify a RegExp as value as the comparisons will
be RegExp matches.

• The special token * is a wildcard operator. It covers the semantics of XPath’s // and descendant-or-self con-
structs. The wildcard can span zero to multiple levels of the object hierarchy. This saves you from always
specifying absolute locators, e.g.

qxh=*/[@label="My Button"]

This will recursively search from the first level below the search root for an object with a label property that matches
the string “My Button”. As you might expect, these recursive searches take more time than other searches, so it is
good advice to be as specific in your locator as possible. To that end, you can use mutliple wildcards in the same
locator, like

9.4. Testing 303

http://seleniumhq.org/docs/02_selenium_ide.html#locating-by-xpath
http://seleniumhq.org/docs/02_selenium_ide.html#locating-by-dom

qooxdoo Documentation, Release 1.6

qxh=*/[@label="Section 3"]/[@page]/*/[@label="First Button"]

This will search recursively from the root for an object with label “Section 3” and then, assuming it is a Button-
View which has a page property, navigate to the corresponding page, where it again searches recursively for an item
with label “First Button”. This is much more effective than searching the entire object space with “*/[@label=“First
Button”]”.

• app: Three special operators at the beginning of a locator specify which object space you want to search:

– app: signifies the object space down from qx.core.Init.getInstance().getApplication()

– inline: signifies the object space down from the root widget of a “qooxdoo isle” in an inline application.
See this article for details.

– doc: (or anything else for that matter, including nothing) signifies the object space down from the applica-
tion’s root widget, i.e. qx.core.Init.getApplication().getRoot().

As with all Selenium locators, there are no set-valued results (as with generic XPath), and each locator has to come
up with at most one result element. Therefore, for each location step, the first match wins, i.e. if there are multiple
children that match the current specification, the first child is taken as the root for the rest of the search. Backtracking
is only done for wildcard (*) searches.

qxhv Locator: Search visible widgets only

The qxhv= locator works just like qxh=, except that for each step, only qooxdoo widgets with the “visibility”
property set to “visible” are considered. This means that no descendants of invisible container widgets will be found.
In some cases, this can lead to unexpected results. For example, in many qooxdoo applications, the root folder of a
qx.ui.tree.Tree is set to be invisible. In that case, the qxhv locator would never find the root node’s descendants, even
though they are visible in the GUI.

qxidv Locator: Search visible widgets using HTML IDs

The qxidv= locator searches for an HTML element with the given ID and looks at the qooxdoo widget it belongs to.
Only if the widget is visible is the element returned, otherwise the locator will fail.

qxhybrid locator: Combine locator strategies

The qxhybrid= locator allows you to combine different locator strategies. It consists of multiple sub-locators
separated by double ampersands (&&), each of which is applied to the DOM element returned by the previous locator.
The first sub-locator can be of any supported type (qx* or any of Selenium’s built-in locator types) while the following
steps can be either qx* or XPath locators.

The primary use case for this strategy is testing applications where HTML IDs have been assigned to container widgets
but not to child widgets such as e.g. list items (that may be generated during the application’s runtime).

An example: Suppose an application contains a list widget (qx.ui.form.List) with the HTML ID “options”.
This is easy to find using Selenium’s default ID locator:

options

Now in order to find a list item which has the label text “Foo”, the following hybrid locator could be used:

qxhybrid=options&&qxh=[@label=Foo]

304 Chapter 9. Development

http://qooxdoo.org/contrib/project/simulator/qooxdoo-tests-with-selenium#testing_inline_applications

qooxdoo Documentation, Release 1.6

9.5 Parts

9.5.1 Parts and Packages Overview

Note: This is still an experimental feature.

Motivation

Packages are a concept that allows you to partition your application physically. The idea is to spread the entire
application over multiple JavaScript files, in order to optimize download and startup behaviour. On page load only the
essential first part of the application is loaded (commonly called the boot part), while others remain on the server and
will only be loaded on demand. As a consequence, the initial code part is smaller, so it’s faster to download, consumes
less bandwidth and starts up faster in the browser. Other parts are then loaded on demand during the user session. This
incures a bit of latency when the user enters a certain application path for the first time and the correpsonding part has
to be loaded. On the other side, parts that pertain to a certain application path (e.g. an options dialogue) never have to
be downloaded if this application path is not entered during the running session.

Development Model

In order to realize this concept, you have the option to specify parts of your application, while the build process takes
care of mapping these (logical) parts to physical packages that are eventually written to disk. At run time of your
application, the inital package will contain loader logic that knows about the other parts.

There are two different but related terms here: You as the developer define parts of your application. These are logical
or visual related elements, like all elemens that make up a complex dialogue, or the contents of an interactive tab
pane. The build process then figures out all the dependencies of these parts and collects them into packages, which
eventually map to physical files on disk. Since some parts might have overlapping dependencies, these are optimized
so that they are not included twice in different packages. Also, you might want to specify which parts should be
collapsed into as few packages as possible, how small a package might be, and so forth. So you define the logical
partitioning of your application and specify some further constraints, and the build process will take care of the rest,
producing the best physical split of the entire app under the given constraints.

Loading Parts

In your application code, you then load the defined parts at suitable situations, e.g. when the user opens a dialogue
defined as a part, using qooxdoo’s PartLoader API. The PartLoader keeps track of which parts have already been
loaded, and provides some further housekeeping. But it is your responsibility to “draw in” a given part at the right
moment.

Consequently, the configuration of your application allows you to specify those logical parts of your application, by
giving a suitable name to each and listing the top-level classes or class patterns for each. You are using these part
names with the PartLoader in your application code. Further config keys allow you tailor more specifics, as mentioned
above. See the packages key reference section for the config key nitty-gritty.

9.5. Parts 305

http://demo.qooxdoo.org/1.6/apiviewer/#qx.io.PartLoader

qooxdoo Documentation, Release 1.6

9.5.2 Using Parts

Basic Usage

Parts allow you partition your application into multiple Javascript files.There is an initial part, the boot part, that is
loaded at application start-up. All other parts have to be loaded explicitly in your application code.

To use parts in your application, you have to do two things:

• declare the parts in your application’s config.json configuration file

• load each part other than the boot part explicitly at suitable situations in your application code

Here is an example:

Suppose you have a settings dialog in your application that is only needed occasionally. You want to save the memory
footprint of the involved classes, and only load the dialog on demand when the user hits an “Open Settings Dialog”
button during a session. If the user doesn’t invoke the dialog, the necessary classes are not loaded and the application
uses less memory in the browser. In all cases, application start-up is faster since less code has to be loaded initially.

Add Parts to your Config

In your configuration file, add the following job entries (assuming you are using a standard GUI application with a
name space of custom):

"my-parts-config":
{

"packages" :
{
"parts" :
{

"boot" :
{

"include" : ["${QXTHEME}", "custom.Application"]
},
"settings" :
{

"include" : ["custom.Settings"]
}

}
}

},

"source" :
{

"extend" : ["my-parts-config"]
},

"build" :
{

"extend" : ["my-parts-config"]
}

This will inject your part configuration into the standard build jobs (source and build), instructing the generator to
generate JS files for the “boot” and the additional “settings” part (a single part may be made up of multiple JS files,
depending on cross class dependencies with other parts). In the boot part, you are repeating the main include list of
class patterns for you application (the example above mirrors this list of a standard GUI app). In the part you want

306 Chapter 9. Development

qooxdoo Documentation, Release 1.6

to separate from the initial boot part, like settings above, you carve out some top-level classes or name spaces that
constitute the part you want to specify. In our example, this is just the name of the top-level dialog class.

Add Part Loading to your Class Code

Next, you have to add code to your application to load any part other than the boot part. Carrying on with our example,
at a suitable spot in your application code, you have to load the settings part, e.g. when some “Open Settings Dialog”
button is pressed which is available from your main application class. We put the loading action in the click event
listener of the button:

var settingsButton = new qx.ui.toolbar.Button("Open Settings Dialog");

settingsButton.addListener("execute", function(e)
{

qx.io.PartLoader.require(["settings"], function()
{
// if the window is not created
if (!this.__settingsWindow)
{

// create it
this.__settingsWindow = new custom.Settings();
this.getRoot().add(this.__settingsWindow);

}

// open the window
this.__settingsWindow.center();
this.__settingsWindow.open();

}, this);

}, this);

The main thing to note here is that upon pressing the “Open Settings Dialog” button qx.io.PartLoader.require is invoked
to make sure the settings part will be loaded (It doesn’t hurt to invoke this method multiple times, as the PartLoader
knows which parts have been loaded already).

The first argument to the require method is a list containing the parts you want to be loaded (just “settings” in our
example). The second argument specifies the code that should be run once the part is successfully loaded. As you can
see, the custom.Settings class which is loaded with this part is being instantiated.

This section also shows that you cannot run the same application with and without parts. In order to use parts, you
have to “instrument” your application code with calls to qx.io.PartLoader.require, and currently there is no way these
calls can fail gracefully. You have to make a decision.

These are the essential ingredients to set up and use parts in your application. For full details on the packages configu-
ration key, see the configuration reference. For some additional usage information relating to this key, see this article.
For a complete application that uses parts, check the Feedreader sources.

In Depth: Configuring the “include” Key of your Parts

The most crucial and at the same time most difficult aspect of using parts is configuring the parts in your config.json.
More specifically, the definition of the include key for each part requires thought and consideration to get right. This
section tries to give you a set of technical guidelines to help you with that.

“include” lists must be free of overlap Don’t list classes in the include list of one part which also appear in another.
This becomes less obvious when you use wildcards in your include lists: ["foo.bar.*"] overlaps with
["foo.bar.baz"], and with ["foo.*"]! So think of what these expressions will expand to. The
generator will complain should two include lists overlap.

9.5. Parts 307

http://qooxdoo.svn.sourceforge.net/viewvc/qooxdoo/tags/release_1_4/qooxdoo/application/feedreader/

qooxdoo Documentation, Release 1.6

Don’t put load dependencies of one part in the “include” list of another This is even less obvious. The base line
is that you must not have classes in the include list of one part that are needed by classes of another part at load
time. (Mind that this is not only referring to the include list of the other part, but to all its classes!). A good
criterion to follow is: Stick to classes that are only used in some member method of another class. Then you
are ususally on the safe side, and are only using classes for your part definition that are required by others at run
time, not load time. (Counter examples would be classes that are used as super classes by others (they show up
in their extend entry), or are used in the defer section of another class, or are used to directly initialize a map
entry, like an attribute, of another class definition). The generator will complain if load dependencies of one part
are listed in the definition of another.

Don’t group classes “physically” That means: Don’t think about how classes are organized in terms of libraries
or name spaces. This is not a good defining principle for parts. Try to think in terms of logical or visual
components, and let the generator figure out which classes from which libraries and name spaces need to go into
that part. Visual or logical components usually map to execution paths in your running app. A dialog, a window,
a certain tab view that are only reached when the user makes some specific interactions with your application,
thus following a specific execution path in your code, those are good candidates for defining a part. Of course,
e.g. when you are using a library or contribution in your application which exhibits one class as its published
API and which you instantiate at one specific point in your application, this might also make for a good part, but
would be merely coincidential.

Don’t define parts with framework classes This is just a concrete example of the previous point, but happens so
often that it merrits its own mentioning. It is generally a bad idea to use framework classes to define a part.
Framework classes should be free to be added where they are needed by your classes’ dependencies. And
although there are high-level widgets in the framework, like the DateChooser or the HtmlArea, you always have
application code wrapped around them. Then it’s good practice to forge this code into its own custom class, and
make this class the entry point for a part.

Advanced Usage: Part Collapsing

This section reflects part collapsing as it is realized in qooxdoo version 0.8.3 and above.

Motivation and Background

You as the application developer define parts to partition your application. qooxdoo’s build system then partitions
each part into packages, so that each part is made up of some of the set of all packages. Each package contains class
code, and maybe some more information that pertains to it. So the classes making up a part are spread over a set of
packages. Several parts can share one or more packages. This way you obtain maximum flexibility for loading parts
in your application code. Whenever a part is requested through the PartLoader it checks which packages have already
been loaded with earlier parts, and loads the remaining to make the part complete. No class is loaded twice, and no
unnecessary classes are loaded with each part.

But there are situations where you might want to give up on this optimal distribution of classes across packages:

• when packages become too small; sometimes packages derived with the basic procedure turn out to be too small,
and the benefit of loading no unnecessary classes is outweight by the fact that you have to make an additional
net request to retrieve them.

• when you know the order in which parts are loaded during run time in advance; then it makes sense to be
“greedy” in retrieving as many classes as possible in a single package, as other parts needing the same classes
of the (now bigger) package, but are known to load later, can rely on those classes being loaded already, without
being affected by the extra classes that get loaded.

These are situations where part collapsing is usefull, where packages are merged into one another. This is discussed
in the next sections.

308 Chapter 9. Development

qooxdoo Documentation, Release 1.6

How Packages are Merged

(This is a more theoretical section, but it is kept here for the time being; if you are only looking for how-to information,
you can skip this section).

During what we call part collapsing, some packages are merged into others. That means the classes that are contained
a source package are added to a target package, and the source package is deleted from all parts referencing it.

Obviously, it is crucial that the target package is referenced in all those parts where the source package was referenced
originally, so that a part is not loosing the classes of the source package. This is taken care of by the selection process
that for any given source package picks an appropriate target package. (Target packages are searched for in the set of
already defined packages, and there are no new packages being constructed during the collapsing process).

After the source package has been merged into the target package, and has been removed from all parts, there are two
cases:

• For parts that referenced both (source and target) package initially, there is no difference. The same set of classes
is delivered, with the only difference that they come in one, as opposed to two, packages.

• Parts that only reference the target package now reference more classes then they really need. But this should
be acceptable, as either negligible (in the case of merging packages by size), since the additional weight is
marginal; or as without negative effect (in the case of merging by load order), since the “overladen” package is
supposed to be loaded earlier with some other part, and will already be available when this part is loaded.

Collapsing By Package Size

Collapsing by package size is straight forward. You can specify a minimal package size (in KB) that applies to all
packages of your application. If a package’s size, and it is its compiled size that matteres here, is beneath this threshold
the package will be merged into another. This avoids the problem of too much fragmentation of classes over packages,
and trades optimally distributing the classes (to always load only necessary classes) for minimizing net requests (when
loading packages for a part).

Collapsing by size is disabled by default. You enable it by specifying size attributes in your parts configuration:

"packages" :
{

"sizes" :
{
"min-package" : 20,
"min-package-unshared" : 10

},
...

}

The min-package setting defines a general lower bound for package sizes, the min-package-unshared, which defaults
to min-package if not given, allows you to refine this value specifically for those packages which pertain to only one
part.

Collapsing By Load Order

Collapsing by load order is always useful when you know in advance the order of at least some of your parts, as they
are loaded during the app’s run time. This is e.g. the case when you have a part that uses other parts to do its work (a
big dialogue that has sub-controls like a tabview). The enclosing part is always loaded before its sub-parts can be used.
Or there is a part that is only accessible after it has been enabled in another part. These situations can be captured by
assigning a load order to (some of) your parts in your configuration.

9.5. Parts 309

qooxdoo Documentation, Release 1.6

"packages" :
{

"parts" :
{
"boot" :
{

"include" : ["${QXTHEME}", "app.Application"]
},
"some-part" :
{

"include" : ["app.Class1", "app.Class2"],
"expected-load-order" : 1

},
"other-part" :
{

"include" : ["app.Class3", "app.Class4"],
"expected-load-order" : 2

},
...

},
...

}

The boot part has always the load index 0, as it is always loaded first. The other parts that have a load index (1 and
2 in the example) will be collapsed with the expectation that they are loaded in this order. Parts that don’t have an
expected-load-order setting are not optimized by part collapsing, and there are no assumptions made as to when they
are loaded during run time.

The important thing to note here is that the load order you define is not destructive. That means that parts are still
self-contained and will continue to function even if the expected load order is changed during run time. In such cases,
you only pay a penalty that classes are loaded with a part that are actually not used by it. But the overall functionality
of your application is not negatively affected.

9.5.3 Further Resources

• Generator Configuration

• qooxdoo API

9.6 Internationalization

9.6.1 Internationalization

We define internationalization (a.k.a. “I18N”) as composed of two distinct areas:

Localization Adapting software to suit regional customs regarding date, time and number formatting, names for time
units, countries, languages and so forth.

Translation Translating user-visible strings in software, like labels on buttons, pop-up messages, headings, help texts,
and so forth.

Localization largely relies on approved standards that are in use in any given regional and/or cultural area, and can
therefore take advantage of standardized data and information. Translation is much more application-specific, and the
relevant strings of an application have to be translated in any target language individually.

310 Chapter 9. Development

http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.io.PartLoader

qooxdoo Documentation, Release 1.6

Localization

Localization is the effort of displaying data in a way that conforms to regional and/or cultural habits. This mostly
affects data of everyday life: monetary currencies, names and display formats used in dates and time, number formats
and naming conventions in general (e.g. names of countries and languages in the world), to list the most common use
cases. Writing a date as 01/31/1970 rather than 1970/01/31, or starting the week with Sunday rather than Monday fall
in this category.

A coherent set of these conventions taken together is usually referred to as a locale, and they are signified by a country
code or some derivative thereof. en, en_US and en_UK for example signify three distinct locales that are used in
English speaking countries. The understanding is that there is a sort of inheritance relation between more general and
more specific locales, so that e.g. en_US only needs to specify the items in which it deviates from the more general
en locale, and relies on the en settings for all other on which they agree. For historical reasons there is a common
“ancestor” to all locales which is called C. If not specified all locale settings fall back to those given in C (which is
mostly a copy of en). qooxdoo supports this fall-back chain of locale settings by looking up a specific item e.g first in
en_US (if that were the current locale), then en and then in C.

To support such regional settings, qooxdoo uses data from the CLDR project, the “Common Locale Data Repository”,
which collects data for known locales in a set of XML files. See the project’s home page and terms of use.

Translation

While translating a sentence from one human language into another is still a task mostly done by humans, qooxoo tries
to provide tools to help in managing this process. This section describes how to translate either a new or an existing
qooxdoo-based application. It shows how to prepare the application, extract the messages that shall be translated, and
finally update and run the translated application.

Prepare the Application

To translate an application, all translatable strings must be marked using one of the following functions:

• this.tr(): translate a message

• this.trn(): translate a message that supports a plural form

• this.trc(): translate a message and providing a comment

• this.marktr(): mark a string for translation, but do not perform any translation

You can use these methods right away for your own classes if they are derived from qx.ui.core.Widget
or qx.application.AbstractGui. If that’s not the case you have to include the mixin
qx.locale.MTranslation manually:

qx.Class.define("custom.MyClass",
{

extend : qx.core.Object,
include : [qx.locale.MTranslation],
...

});

Example Change original code like this:

var button = new qx.ui.form.Button("Hello World");

to:

9.6. Internationalization 311

http://en.wikipedia.org/wiki/Locale
http://cldr.unicode.org
http://www.unicode.org/copyright.html

qooxdoo Documentation, Release 1.6

var button = new qx.ui.form.Button(this.tr("Hello World"));

Following, the four methods are explained in more detail:

tr Example:

var button = new qx.ui.form.Button(this.tr("Hello World"));

tr marks the string "Hello World" for translation (This string is often referred to as the message id, as it serves
as the lookup key for any provided translation). This means that the string itself will be extracted when the ap-
propriate generator job is run (see further). During application run time, tr returns the translation of the given
string under the current locale. That means, the actual string you get at this point in time depends on the locale
in effect. If, on the other hand, the environment setting qx.dynlocale is set to “true”, tr returns an instance of
qx.locale.LocalizedString. The toString() method of the returned object performs the actual trans-
lation based on the current locale. This has the advantage that later changes to the locale (see further) are immediately
reflected in the widgets using this object, as most know how to handle and re-evaluate LocalizedString’s. But you only
need that setting if you plan to support locale switching during run time.

If the string given to tr does not have a translation under the current locale, the string itself will be returned.

There is one exception to the simple rule that all strings can just be replaced by wrapping them in an appropriate
this.tr() function call: If init values of dynamic properties are meant to be localizable, the init value has either
to be set in the class constructor using this.tr(), or qx.locale.Manager.tr() has to be used inside the
property declaration. See documentation on Defining an init value for details.

trn Example:

var n = 2;
var label = new qx.ui.basic.Label(this.trn("Copied one file.", "Copied %1 files.", n, n));

Like tr, translates a message but takes differences between singular and plural forms into account. The first argument
represents the singular form while the second argument represents the plural form. If the third argument is 1 the
singular form is chosen, if it is bigger than 1 the plural form is chosen. All remaining parameters are the inputs for the
format string.

trc Example:

var label = new qx.ui.basic.Label(this.trc("Helpful comment for the translator", "Hello World"));

Translates the message as the tr method, but provides an additional comment which can be used to add some contextual
information for the translator. This meaningful comment should help the translator to find the correct translation for
the given string.

marktr Sometimes it is necessary to mark a string for translation but not yet perform the translation. Example:

var s = this.marktr("Hello");

Marks the string Hello for translation and returns the string unmodified.

Format Strings Since sentences in different languages can have different structures, it is always better to prefer a
format string over string concatenation to compose messages. This is why the methods above all support format strings
like Copied %1 files as messages and a variable number of additional arguments. The additional arguments are
converted to strings and inserted into the original message. % is used as an escape character and the number following
% references the corresponding additional argument.

312 Chapter 9. Development

qooxdoo Documentation, Release 1.6

Extract the Messages

After the source code has been prepared, the desired languages of the application may be specified in config.json,
in the LOCALES macro within the global let section, for example

"let" :
{
// ...
"LOCALES" : ["de", "fr"]

},

This would add a German and a French translation to the project. For a more exhaustive list of available locales see
here.

A run of

generate.py translation

will generate a .po file for each configured locale, with all translatable strings of the application (These files are
usually stored in the source/translation folder of the application).

If a specified translation does not yet exist, a new translation file will be created. In this example two files,
source/translation/de.po and source/translation/fr.po, would be created.

If such a file already exists, the newly extracted strings will be merged with this file, retaining all existing transla-
tions. Therefore, you can re-run generate.py translation as often as you want. You should re-run it at least
whenever you introduced new translatable strings into the source code, so they will be added to the .po files (see
further).

Translate the Messages

These .po files are the actual files you - or your translator ;-) - would have to edit. Since qooxdoo internally uses
well-established tools and formats for internationalization (GNU gettext via polib), any “po”-aware editor or even a
simple text editor can be used.

Some of the programs that support manipulation of .po files are:

• Poedit (Windows, Mac OS X, Linux)

• LocFactory Editor (Mac OS X)

• Lokalize (Linux)

• Gtranslator (Linux)

Update the Application

After editing and saving the .po files, the next generate.py source run integrates the translations into your
application’s source version. To get the effect of the new translations it can simply be reloaded in your browser.

If the source code changes, e.g. by adding, removing or changing translatable strings, it can be merged with the existing
translation files just by calling generate.py translation again. Moreover, each generate.py source -
or generate.py build if you are about to deploy your application - will pick up all current translatable strings
from the source files and will merge them on the fly with the information from the .po files, using the result for the
corresponding build job. This way, the generated application always contains all current translatable strings (But of
course only those from the .po files can have actual translations with them).

9.6. Internationalization 313

http://unicode.org/cldr/apps/survey
http://en.wikipedia.org/wiki/GNU_gettext
http://pypi.python.org/pypi/polib
http://www.poedit.net/
http://www.triplespin.com/en/products/locfactoryeditor.html
http://l10n.kde.org/tools/
http://projects.gnome.org/gtranslator/

qooxdoo Documentation, Release 1.6

Run the translated Application

By default qooxdoo tries to use the browser’s default language as its locale. You can change the language of the
application by using qx.locale.Manager. For example, the following sets the language of the application to
French:

qx.locale.Manager.getInstance().setLocale("fr");

The qooxdoo widgets are supposed to update their contents on a locale change. Custom widgets may have to be
modified to allow for an update on locale change. To inform the application of a language change, qooxdoo fires a
changeLocale event.

A widget that needs custom update logic may listen to this event:

qx.locale.Manager.getInstance().addListener("changeLocale", this._update, this);

9.7 Miscellaneous

9.7.1 Image clipping and combining

qooxdoo integrates the support for clipping and combining images in the framework and both features are heavily used
within the framework mainly in the different themes like appearance or decoration theme.

Setup

Note: To be able to use image clipping and combining you need an installed ImageMagick package.

To use the two features you have to create a config file which can be used by the generator to clip or combine images.
Altough it is possible to integrate the jobs for clipping and combining in your config.json file of your applica-
tion, the better way is to create an own config file for the image manipuations to separate it from the application
configuration.

Note: It is recommended to use the same file name for the config file as in the core framework to better reflect its
purpose: image.json

At the first look the configuration file for the image jobs is basically the same as a normal application configuration
file.

{
"jobs" :
{
"common" :
{

"let" :
{

"RESPATH" : "./source/resource/APPLICATION_NAME"
},

"cache" :
{

"compile" : "../../cache"
}

314 Chapter 9. Development

qooxdoo Documentation, Release 1.6

}
}

}

The described common is used to setup the basic settings which are used by the specific jobs image-clipping
and image-combine which are described at the following sections.

Image clipping

Clipping images is needed whenever you have a base image, e.g. a complete image for your button with rounded
borders, to strip them into several parts.

Note: Mainly, the clipping is needed to prepare the source image for the use as a baseImage for the grid decorator.
All clipped images of the core framework are used as baseImages for grid decorators.

"image-clipping" :
{

"extend" : ["common"],

"slice-images" :
{

"images" :
{

"${RESPATH}/image/source/groupBox.png" :
{

"prefix" : "../../clipped/groupBox",
"border-width" : 4

}
}

}
}

Each entry in the images block represents one source image to clip.

• value of the key has to be the path to this image

• the prefix entry will set the filename for all of your splitted images. The resulting images will follow the rule
prefix+imagepart where imagepart will be e.g. tl or br (for top-left and bottom-right)

• the entry border-width is to define the part of the image which the rounded border occupies. If you look
at your baseImage you can determine the “border-width” by select a rectangle (which your graphic tool) which
occupies the rounded border completely

For the case border-width: One image says more than thousand words :)

9.7. Miscellaneous 315

qooxdoo Documentation, Release 1.6

The selection rectangle has the size of 4 x 4 pixels, thus the border-width value of 4. Differing border width values
for each of the four sides are also supported. In that case, the value for border-width must be an array containing the
four values in this order: top, right, bottom, left.

Note: For more information see the slice-image section.

Image combining

Opposite to image clipping the image combining takes multiple images as source and generates one combined image
out of them.

"image-combine" :
{

"extend" : ["common"],

"combine-images" :
{

"images" :
{

"${RESPATH}/image-combined/combined.png":
{

"prefix" : ["${RESPATH}"],
"layout" : "vertical",
"input" :
[
{
"prefix" : ["${RESPATH}"],
"files" : ["${RESPATH}/image/clipped/groupBox*.png"]

}
]

}
}

}
}

Basically the structure is the same as for the image-clipping jobs. Let’s take a look at the details.

• value of the key has to the path of the combined image to create

• files is an array which takes the several images to combine as arguments - the use of wildcards like * or
[tb] are allowed

• the layout key takes the two possible values horizontal or vertical and determines the alignment of
the source images inside the combined images

Note: The layout depends on the sizes of the source images. Best suited for combining are always images with the
same sizes. For most cases the horizontal layout is the better choice

Note: For more information take a look at the combine-images section.

316 Chapter 9. Development

qooxdoo Documentation, Release 1.6

Run image jobs

If you are finished with the definition of your images to clip and/or to combine you can use the generator to actually
let them created for you.

./generate.py -c image.json image-clipping

./generate.py -c image.json image-combine

If you include the following job in your image.json jobs list

"images" :
{

"run" : ["image-clipping", "image-combine"]
},

the execution of

./generate.py -c image.json images

will run both jobs at once.

Benefits

There are several benefits for setting the image clipping and combining up

• less HTTP requests meaning better performance when using combined images

• widgets using the grid decorator are easier to use. If you do not use clipping you have to slice the baseImage
and name the parts manually

• state changes are faster with combined images as the browser does not have to change the source if the displayed
image. Instead he only changes the value of the CSS property background-position to display the desired
part of the combined image

9.7.2 Writing API Documentation

For documenting the qooxdoo API special comments in the source code (so-called “doc comments”) are used. The doc
comments in qooxdoo are similar to JSDoc comments or Javadoc comments. To account for some qooxdoo specific
needs there are certain differences to the two systems mentioned above.

The structure of a documentation comment

A doc comment appears right before the structure (class, property, method or constant) it describes. It begins with
/** and ends with */. The rows in between start with a * followed by the text of the particular row. Within this
frame there is a description text at the beginning. Afterwards attributes may follow, describing more aspects.

Description texts may also include HTML tags for a better structuring.

An example:

/**
* Shows a message to the user.

*
* @param text {string} the message to show.

*/
showMessage : function(text) {

9.7. Miscellaneous 317

http://code.google.com/p/jsdoc-toolkit/
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/javadoc.html

qooxdoo Documentation, Release 1.6

...
}

This comment describes the method showMessage. At the beginning there is a short text, describing the method
itself. A @param attribute follows, describing the parameter text.

The docgenerator recognizes the following structures:

/** Class definitions (resp. constructors). */
qx.Class.define("mypackage.MyClass",
{

extend : blubb.MySuperClass,

construct : function() {
...

}
});

/** Property definitions. */
properties :
{

"myProperty" :
{

check : "Number",
init : 0

}
},

/** Method definitions. */
members :
{

myMethod : function(bla, blubb)
{
...

}
},

/** Static method definitions. */
statics :
{

myStaticMethod : function(bla, blubb)
{
...

},

MY_CONSTANT : 100
},

The class description is taken as the first comment in the file which starts with /**. Therefore if you have a comment
at the start of the file which has a first line of /**********, that will be taken as the class description, overriding
any comment above the class itself. Therefore use /* ********* or /* ========== etc.

Inline Markup

Running text can be formatted using inline markup which uses special characters around the target text:

• *strong* (will render as strong)

• __emphasis__ (will render as emphasis)

318 Chapter 9. Development

qooxdoo Documentation, Release 1.6

There is no escape character, so in order to e.g. enter a literal “@” into the text, use the HTML entity equivalent
(“@” in this case).

Supported attributes

Within a doc comment the following attributes are supported:

@param (only for methods and constructors):

Describes a parameter. @param is followed by the name of the parameter. Following that is the type in curly brackets
(Example: {Integer}), followed by the description text. Types are described more in detail in the next section.

When the parameter is optional, the curly brackets include the default value in addition to the type. The default value
implies the value that has to be passed in, in order to get the same effect as when omitting the parameter. Example:
{Boolean ? true}

You can also define multiple possible types. Example: {Boolean | Integer ? 0}

@return (only for methods):

Describes the return value. After the @return comes the type in curly brackets followed by the description text.

@throws (only for methods and constructors):

Describes in which cases an exception is thrown.

@see:

Adds a cross reference to another structure (class, property, method or constant). The text is structured as follows: At
first comes the full name of the class to link to. If you want to link to a property, method or constant, then a # comes,
followed by the name of the property, method or constant.

If you refer to a structure within the same class, then the class name may be omitted. If you refer to a class in the
same package, then the package name before the class may be omitted. In all other cases you have to specify the fully
qualified class name (e.g. qx.ui.table.Table).

Some examples:

• qx.ui.form.Button refers to the class Button in the package qx.ui.form.

• qx.constant.Type#NUMBER links to the constant NUMBER of the class qx.constant.Type.

• qx.core.Init#defineMain refers to the method defineMain in the class qx.core.Init

After this target description an alternative text may follow. If missing the target description is shown.

@link:

The @link attribute is similar to the @see attribute, but it is used for linking to other structures within description
texts. Unlike the other attributes, the @link attribute is not standalone, but in curly brackets and within the main
description text or a description text of another attribute.

9.7. Miscellaneous 319

qooxdoo Documentation, Release 1.6

@signature:

sometimes the API documentation generator is not able to extract the method signature from the source code. This is
for example the case, when the method is defined using environment of if the method is assigned from a method
constant like qx.lang.Function.returnTrue.

In these cases the method signature can be declared inside the documentation comment using the @signature attribute.

Example:

members :
{
/**
* Always returns true

*
* @return {Boolean} returns true

* @signature function()

*/
sayTrue: qx.lang.Function.returnTrue;

}

Example

Example for a fully extended doc comment:

/**
* Handles a drop.

*
* @param dragSource {qx.bla.DragSource} the drag source that was dropped.

* @param targetElement {Element} the target element the drop aims to.

* @param dropType {Integer ? null} the drop type. This is the same type as used in

* {@link qx.bla.DragEvent}.

* @return {Boolean} whether the event was handled.

* @throws if the targetElement is no child of this drop target.

*
* @see #getDragEvent(dragSource, elem, x, y)

* @see com.ptvag.webcomponent.ui.dnd.DragEvent

*/
handleDrop : function(dragSource, targetElement, dropType) {
...

};

This comment is shown in the API viewer like this:

320 Chapter 9. Development

qooxdoo Documentation, Release 1.6

Handling of data types

Because JavaScript has no strong typing, the types of the parameters accepted by a method may not be read from the
method’s definition. For showing the accepted types in the API documentation the data type may be specified in the
doc attributes @param and @return.

The following types are accepted:

• Primitive: var, “void”, “undefined”

• Builtin classes: Object, Boolean, String, Number, Integer, Float, Double, Regexp, Function,
Error, Map, Date and Element

• Other classes: Here the full qualified name is specified (e.g. qx.ui.core.Widget). If the referenced class
is in the same package as the currently documented class, the plain class name is sufficient (e.g. Widget).

Arrays are specified by appending one or more [] to the type. E.g.: String[] or Integer[][].

__init__.js Files

While using doc comments in class files where they are interleaved with the class code is straight forward, this is not
so trivial if you want to provide documentation for a package, i.e. a collection of classes under a common name space
(like qx.ui.core, qx.util, etc.).

In order to fill this gap you can add a __init.js__ file to a package. This file should only contain a single doc comment
that describes the package as a whole. These files are then scanned during a generate.py api run and the
documentation is inserted at the package nodes of the resulting documentation tree.

9.7.3 Reporting Bugs

Note: Please see the general document on How to report bugs

9.7.4 An Aspect Template Class

Here is a code template which you may copy to your application namespace and adapt it to implement aspects in your
qooxdoo application. For a far more advanced sample look at qx.dev.Profile.

/**
* AspectTemplate.js -- template class to use qooxdoo aspects

*
* This is a minimal class template to show how to deploy aspects in qooxdoo

* applications. For more information on the aspect infrastructure see the API

* documentation for qx.core.Aspect.

*
* You should copy this template to your application namespace and adapt it to

* your needs. See the comments in the code for further hints.

*
* To enable the use of your aspect class, some extra settings need to be done

* in your configuration file.

* * Add a require of your aspects class to qx.Class

* * Set the environment setting qx.aspects to true

* * Set the environment setting qx.enableAspect to true

*
*/

9.7. Miscellaneous 321

http://qooxdoo.org/community/bugs

qooxdoo Documentation, Release 1.6

/* **

#require(qx.core.Aspect)
#ignore(auto-require)

** */

/** Adapt the name of the class */
qx.Bootstrap.define("your.namespace.YourAspectClass", {

/** The class definition may only contain a ’statics’ and a ’defer’ member */
statics :
{

__counter : 0, // Static vars are possible

/**
* This function will be called before each function call.

*
* @param fullname {String} Full name of the function including the class name.

* @param fcn {Function} Wrapped function.

* @param type {String} The type of the wrapped function (static, member, ...)

* @param args {Arguments} The arguments passed to the wrapped function.

*/
atEnter: function(fullName, fcn, type, args)
{

console.log("Entering "+fullName); // Adapt this to your needs
},

/**
* This function will be called after each function call.

*
* @param fullname {String} Full name of the function including the class name.

* @param fcn {Function} Wrapped function.

* @param type {String} The type of the wrapped function (static, member, ...)

* @param args {Arguments} The arguments passed to the wrapped function.

* @param returnValue {var} return value of the wrapped function.

*/
atExit: function(fullName, fcn, type, args, returnValue)
{

console.log("Leaving "+fullName); // Adapt this to your needs
}

},

defer : function(statics)
{
/**
* Registering your static functions with the aspect registry. For more

* information see the API documentation for qx.core.Aspect.

*
* @param fcn {Function} Function from this class to be called.

* @param position {String} Where to inject the aspect ("before" or "after").

* @param type {String} Which types to wrap (“member”, “static”, “constructor”,

* “destructor”, “property” or ”*”).

* @param name {RegExp} Name(pattern) of the functions to wrap.

*/
qx.core.Aspect.addAdvice(statics.atEnter, "before", "*", "your.namespace.*");

322 Chapter 9. Development

qooxdoo Documentation, Release 1.6

qx.core.Aspect.addAdvice(statics.atExit, "after", "*", "your.namespace.*");
}

});

A job in your configuration could look something like this:

"source" :
{

"require" :
{
"qx.Class" : ["aspects.Aop"]

},

"environment" :
{
"qx.aspects" : true,
"qx.enableAspect" : true

}
}

If you need some more information on configuring the generator, take a look at the Generator Config Keys.

9.7.5 Internet Explorer specific settings

This page describes all settings which are used/implemented by qooxdoo to workaround/solve IE-specific issues.

Document Mode in IE8

qooxdoo uses Internet Explorer 8 standard mode as the default for all generated applications. This is achieved by
setting a XHTML 1.2 Doctype to all index.html files provided by the framework.

Using alpha-transparent PNGs

IE7 and IE8 have built-in support for loading alpha-transparent PNGs. qooxdoo however does use the AlphaIm-
ageLoader for all IE versions whenever a PNG image has to be loaded. This has several reasons:

• Performance issues in IE8 - native alpha PNG support is slower when running IE8 standards mode

• Rendering bug in IE - reported at Bug #1287

URL-Rewriting under HTTPS

Every IE version does show a Mixed Content warning whenever a resource (image, script, etc.) is loaded with a
regular HTTP request when the containing page runs under HTTPS. However, this useful warning is also appearing
in situations it is not acceptable, e.g. for relative paths like ./path/to/my/resource. In order to solve these issues every
URL of a resource managed by qooxdoo is rewritten in IE under HTTPS to an absolute URL to prevent the warning.
See Bug #2427 for more details.

9.7. Miscellaneous 323

http://bugzilla.qooxdoo.org/show_bug.cgi?id=1287
http://bugzilla.qooxdoo.org/show_bug.cgi?id=2427

qooxdoo Documentation, Release 1.6

324 Chapter 9. Development

CHAPTER

TEN

TOOLING

10.1 Generator

10.1.1 Introduction

Generator Overview

This is a high-level overview of some important generator features.

Quick links:

• Generator Usage

• Configuration file details

Configuration

• Load project configuration from JSON data file

• Each configuration can define multiple so named jobs

• Each job defines one action with all configuration

• A job can extend any other job and finetune the configuration

• Each execution of the generator can execute multiple of these jobs

Cache Support

• Advanced multi-level caching system which dramatically reduces the runtime in repeated calls.

• The cache stores all data on the disk using the cpickle Python module.

• Invalidation of cache files happens through a comparision of modification dates.

• Cache filenames are generated through SHA1 (hex) to keep them short and unique.

• There is memory-only caching as well. It is used for dependencies and meta data.

• The system supports caching for:

– extracted meta data

– syntax tokens

325

qooxdoo Documentation, Release 1.6

– syntax trees

– class dependencies

– compiler results

– api data

– localizable strings

Class Selection

• Use include/exclude lists to define the classes to use.

• Has support for simple expressions inside each include or exclude definition e.g. qx.*.

• The smart mode (default) includes/excludes the defined classes and their dependencies. This mode also excludes
all classes only required by the excluded classes.

• The other mode is toggled using a = prefix. This switches to a mode where exactly the classes mentioned are
included/excluded.

• As a fallback all known classes will be added when no includes are defined.

Variants

• It is possible to generate multiple variant combinations. This means that a single job execution can create mul-
tiple files at once using different so-named variant sets. Variants are combinable and all possible combinations
are automatically created. For example: gecko+debug, mshtml+debug, gecko+nodebug, mshtml+nodebug

• The system supports placeholders in the filename to create filenames based on variant selection [TBD].

API Data

• Creation of split API data which loads incrementally as needed.

• Creation of API index containing all relevant names of the API (e.g. classes, properties, functions, events, ...)

Internationalisation

• Creation and update of “po” files based on the classes of any namespace.

• Generation of JavaScript data to be included into application

• Dynamic creation of localization data based on the standardized informations available at unicode.org. The
“main” package of CLDR which is used, is locally mirrored in the SDK.

Parts

• Each part can be seen as a logical or visual group of the application.

• Each part may result into multiple packages (script output files).

• The number of packages could be exponential to the number of parts (but through the optimization this is often
not the case).

326 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

• It is possible to automatically collapse any number parts (e.g. merging the packages used by a part). Such
an important part may be the one which contains the initial application class (application layout frame) or the
splashscreen. Collapsing reduces the number of packages (script files) for the defined parts. However collapsing
badly influences the fine-grained nature of the package system and should be ommitted for non-initial parts
normally.

• Further optimization includes support for auto-merging small packages. The relevant size to decide if a package
is too small, is the minimum compiled size which is defined by the author of the job. The system calculates the
size of each package and tries to merge packages automatically.

• The parts can be used in combination with the include/exclude system. Includes can be used to select the classes
to use.

• By default all classes mentioned in the parts are added to the include list. It is possible to override this list.

• All global excludes listed are also respected for the parts.

Generator Usage

The generator is a command-line utility which serves as the single entry point front-end for all qooxdoo tool chain
functions (nearly; there are a few functions that are available through other programs, but these really serve special-
case purposes).

The generator is started to execute various jobs. Those jobs represent the feature set of the tool chain. This page is
about how to invoke the generator.

Files and Folder Structure

The qooxdoo SDK has a dedicated tool folder that contains all elements that make up the tool chain. The general
structure is like this:

tool
|- app -- helper apps
|- bin -- stand-alone programs and scripts
|- data -- various data files
|- pylib -- Python modules

The generator is actually the program under tool/bin/generator.py.

generate.py

To make it easier to invoke the generator, each library in the SDK (framework, applications, components) contains a
generate.py script that is really just a proxy for the generator itself. It is also part of each project structure created
by the create-application.py wizard. The aim is to hide the actual path to the generator program.

Command-line Options

Since the generator is nearly complete driven by its config files, there are very few command-line options:

shell> generator.py -h
Usage: generator.py [options] job,...

Arguments:
job,... a list of jobs (like ’source’ or ’copy-files’,

10.1. Generator 327

qooxdoo Documentation, Release 1.6

without the quotes) to run
x use ’x’ (or some undefined job name) to get a

list of all available jobs from the configuration file

Options:
-h, --help show this help message and exit
-c CFGFILE, --config=CFGFILE

path to configuration file containing job definitions
(default: config.json)

-q, --quiet quiet output mode (extra quiet)
-v, --verbose verbose output mode (extra verbose)
-w, --config-verbose verbose output mode of configuration processing
-l FILENAME, --logfile=FILENAME

log file
-s, --stacktrace enable stack traces on fatal exceptions
-m KEY:VAL, --macro=KEY:VAL

define/overwrite a global ’let’ macro KEY with value
VAL

The most important options are the path of the config file to use (-c option), and the list of jobs to execute. The -m
option allows Json-type values, scalars like strings and numbers, but also maps {...} and lists [...].

Configuration Files

The singe most-important way to control the actions of the generator is through specialized config files. These files
have a JSON syntax and contain the definitions for the various jobs the generator is supposed to execute. There is a
whole section in this manual dedicated to these config files.

Usage Patterns

As a few quick hints at how you would invoke the generator, here are the most common use cases. All these examples
name a single job to run, and rely on the availability of the default config file config.json in the current directory:

• generate.py source – when you just started to create your application and every time you have added
new classes to it.

• generate.py build – when you have completed your application and/or want to create an optimized,
deployable version of it.

• generate.py api – when your application is getting complex and/or you want to have a local version of
the standard Apiviewer application that includes the documentation of all of your application classes.

• generate.py test – when you have created unit test classes for your application and want to run them in
the Testrunner frame application.

The Hello World tutorial will give the complete steps how to start a project and get going.

Default Jobs

Arguments like source or api, as shown in the previous section, are so called jobs in qooxdoo lingo. If you are
working on a skeleton-based application you automatically get a whole list of such pre-defined jobs to work with. For
a quick overview, invoke the generator script with an undefined job argument, like

generate.py X

328 Chapter 10. Tooling

http://www.json.org
http://api.qooxdoo.org
http://demo.qooxdoo.org/1.6/testrunner

qooxdoo Documentation, Release 1.6

This gives you a list of all jobs available through your current config file, many of them with a few words of explanation
about what they do:

- api -- create api doc for the current library
- build -- create build version of current application
- clean -- remove local cache and generated .js files (source/build)
- distclean -- remove the cache and all generated artefacts of this library (source, build, ...)
- fix -- normalize whitespace in .js files of the current library (tabs, eol, ...)
- inspector -- (since 0.8.2) create an inspector instance in the current library
- lint -- check the source code of the .js files of the current library
- migration -- migrate the .js files of the current library to the current qooxdoo version
- pretty -- pretty-formatting of the source code of the current library
- profiling -- includer job, to activate profiling
- source -- create source version of current application
- source-all -- create source version of current application, with all classes
- test -- create a test runner app for unit tests of the current library
- test-source -- create a test runner app for unit tests (source version) of the current library
- translation -- create .po files for current library

For an exhaustive reference of these default jobs, see the default jobs page.

Generator Script Optimizations

When creating the JavaScript output for an application, the generator supports several optimizations. These opti-
mizations can be enabled in the generator configuration using the optimize key. Each of them is described here in
detail.

basecalls

Calls to this.base(), which invoke the corresponding superclass method, are inlined, i.e. the superclass method call is
inserted in place of the this.base() call.

comments

The comments optimization is automatically included in any of the other optimizations, so really only makes a differ-
ence when given as the only optimization key for the given build. In that case, comments are stripped from the source
code, and the resulting text is passed to the script output, also retaining (most of the) white space of the source version.
What you get is a near-source code version in the running application that allows you to focus on the code, and is
lighter in terms of transfer size.

privates

This is less an optimization in space or time, but rather a way to enforce privates. Private members of a class (those
beginning with “__”) are replaced with generated names, and are substituted throughout the class. If some other class
is accessing those privates, these references are not updated and will eventually fail when the access happens. This
will lead to a runtime error.

There is a caveat with privates optimization: Apart from identifier references to the private, also string references in
the class code will be replaced. That means if a string literal contains of the exact sequence of characters as the private
key, the contents of the string will also be replace. This only affects complete matches, not partly matches in a larger
string.

10.1. Generator 329

qooxdoo Documentation, Release 1.6

__foo : function () {
this.debug("__foo");
this.debug("__foo called");

}

If __foo is replaced by, say, __a by the private optimization, the code will look like this after the optimization:

__a : function () {
this.debug("__a");
this.debug("__foo called");

}

The reason for this behaviour is that members, including private members, of a class are sometimes referenced by their
name string, particularly in definitions of properties, and as arguments to dispose methods, as used in the destruct
member of a class. Here is a longer code fragment to show where name references to members can be used:

properties : {
myprop : {
apply : "__myapply",
validate : "__myvalidate"

}

},
members : {

__foo : ...,
__myapply : function () {...},
__myvalidate : function () {...}

}
...
destruct : function () {

this._disposeObjects("__foo");
}

For more details where string references can occur, see e.g. the class and property quick refs.

strings

With the string optimization, strings are extracted from the class definition and put into lexical variables. The oc-
currences of the strings in the class definition is then replaced by the variable name. This mainly benefits IE6 and
repetitive references to the same string literal.

variables

Long variable names are made short. Lexical variables (those declared with a var statement) are replaced by generated
names that are much shorter (1-2 characters on average). Dependending on the original code, this can result in
significant space savings.

variants

With giving the variants optimization key, code will be pruned from the application script that is not relevant for this
build. The decision about relevance is based on the settings given in the job configuration’s environment key. Often,
these settings will be queried in class code to select a certain code branch. If the value of the setting is known at
compile time, the correct branch can be selected right away, and all other branches be removed. This allows to omit
code that wouldn’t be executed at run time anyway (also known as “dead code removal”).

330 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

The way environment settings are queried in class code is through certain APIs of the qx.core.Environment class.
These API calls are searched for, and depending on context safe optimizations are applied. Here are the different calls
and how they are treated.

.get() qx.core.Environment.get() refences the environment key as its first parameter. If this parameter is a literal,
i.e. a string, representing a known environment key, the call can be replaced by the environment key’s value. This is
applied in all situations, and saves the method call at run time:

var a = qx.core.Environment.get("myapp.foo");

If the value of the environment key is "bar", the expression is thus reduced to a simple assignment, where a is
assigned the value "bar":

var a = "bar";

If the call happens inside the condition of an if statement, and the call is the only expression, it is evaluated and the
whole if statement is replaced by either its then or its else branch, depending on the truth value of the environment
key.

if (qx.core.Environment.get("myapp.foo")) {
// some code if mayapp.foo evaluates to true

} else {
// some code if myapp.foo evalutates to false

}

The same holds true if the call to qx.core.Environment.get() is not the only expression in the if condition, but is part of
a simple compare where

• the condition operator is one of ==, ===, !=, !===

• the other operand is a literal value (like "foo", 3, or true)

if (qx.core.Environment.get("myapp.foo") == "bar") {
...

} else {
...

}

Again, the branch of the if statement is chosen according to the outcome of the comparison. If the condition evaluates
to false and there is no else branch, the if statement is removed.

.select() With qx.core.Environment.select() you can choose an expression from a set of expressions according to the
current value of an environment key. The first parameter to the call is again the environment key, the second is a map
that maps possible values to arbitrary expressions.

Again, if the key is a literal string and can be found in the environment settings known to the generator, the whole
qx.core.Environment.select() expression is replaced by the corresponding expression from the map parameter.

var a = qx.core.Environment.select("myapp.foo", {
"bar" : function (x) { return x+3;},
"baz" : 24

}

Depending on the value of myapp.foo, the variable a will be asigned a function, or the number literal 24.

You can include the special key “default” in the map parameter to .select(). Its expression will be chosen if the value
of the environment key does not match any of the other concrete map keys. If the generator comes across a .select()
call where the environment value does not match any of the map keys and there is no “default” key, it will raise an
exception.

10.1. Generator 331

http://demo.qooxdoo.org/1.6/apiviewer#qx.core.Environment
http://demo.qooxdoo.org/1.6/apiviewer#qx.core.Environment~get
http://demo.qooxdoo.org/1.6/apiviewer#qx.core.Environment~select

qooxdoo Documentation, Release 1.6

Tutorial: Basic Tool Chain Usage

In various introductions and tutorials you were using the qooxdoo tool chain casually along the way. Now it’s about
time to take a more systematical look. The main interface to invoke the tool chain is the generate.py script that is
part of every skeleton, often colloquially referred to as “the generator”. In each qooxdoo library or application, it sits
next to the library’s Manifest.json and the default configuration file, config.json. The Manifest.json file is the main
declaration file for any qooxdoo app, it’s constitutional document if you will. config.json is the configuration file that
steers the generator and its actions. When invoked, the generator looks for a file of this name in the current directory
for default instructions, but you can supply an alternative configuration file with a command line option. Invoking

generate.py -h |--help

gives you a complete list of those options.

In the simplest case the generator takes the name of a job to perform as its sole argument. Supplying a non-existing
job name will result in the generator providing a list of known jobs which it can perform. You can try this by using a
made-up job name like “x”:

generate.py x

The ensuing list can be daunting at first, but we will pick out the most important jobs here.

332 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Generating a Runnable App

The most important job of the generator is to create a version of your application that you can run in the browser. This
is surprising for many people at first. Why do I need to “generate” a working application, when I have written my
JavaScript and have an index.html handy? Why not just load the app right away? The answer is that qooxdoo is not a
prefabricated JS library that you just <script>-include in your HTML page. For each application exactly those classes
are selected that are necessary to run it. This avoids any overhead of carrying unnecessary code with your app. To
achieve this, an individual piece of JavaScript code is generated, the so-called loader. For any qooxdoo application,
this loader is the first file to be loaded and evaluated in the browser, and it makes sure all necessary component of the
application get loaded after it as well. Besides many other benefits that can be achieved, this is the central reason to
have a generation step before a qooxdoo app can be run.

Use the Source, Luke

The tool chain is able to generate your application in various flavors. This is reflected by the available generation jobs,
“source”, “hybrid”, “source-all” and “build”. The most important for starting and building up your app, are the source
jobs. Running

generate.py

will generate the so-called “source version” of your application in the default variant.

In general, the source version of an app is tailored towards development activities. It makes it easy to write code, run
the application, test, debug and inspect the application code, fix issues, add enhancements, and repeat.

In the source job, all the classes of the app are in their original source form, and loaded from their original file paths
on the file system. If you inspect your application in a JavaScript debugger like Firebug or Chrome Developer Tools,

10.1. Generator 333

qooxdoo Documentation, Release 1.6

you can identify each of your custom files individually, read its code and comments, set breakpoints, inspect variables
and so forth. This job is particular interesting when you want to debug classes outside your custom application, e.g. if
you are debugging another library along the way.

You only have to re-run this generator job when you introduce new dependencies, e.g. by instantiating a class you
haven’t used before. This changes the set of necessary classes for your application, and the generator has to re-create
the corresponding loader.

In the source-hybrid version, the generator will concatenate class files into a bunch of script files, except for your
application classes, which are loaded directly from their original path on the file system. This allows for a reasonable
loading speed of your application in the browser, while still providing convenient debug access to your own class files.

With source-all all existing classes will be included, be they part of your application, the qooxdoo framework, or any
other qooxdoo library or contribution you might be using. All those classes are included in the build, whether they are
currently required or not. This allows you develop your code even more freely as you don’t have to re-generate the
application when introducing new dependencies. All classes are already there, after all. The down-side is that due to
the number of classes your app loads slower in the browser, so it’s a trade-off between development speed and loading
speed.

So if you are just getting started with qooxdoo development, use the source-all version, which is the most convenient
if you are not too impatient. If you are concerned about loading speed during development, but don’t mind hitting the
up and return keys in your shell window once in a while, go with the default source-hybrid job. If your emphasis on
the other hand is on inspection, and you want to see exactly which class files get loaded into your app and which code
they provide, the source version might be your preference.

A Deployment Build

On the other end of the spectrum there is the build version of you app. The “build” version is what you want to
create at the end of a development cycle, when your app is stable and you want to deploy it into production. Running

generate.py build

will create a highly optimized version of your app. All necessary code is stripped, squeezed and compressed, and
put into as few JS files as possible. Everything is geared towards small size, fast transport, fast loading and minimal
memory footprint. Along with the code, all other required resources, such as icons and images, are collected together
under a common root directory, usually named build. The good thing here is that this makes the contents of this
directory self-contained so you can copy it to the document tree of a web server, zip it up and send it by mail, and
so forth. All necessary content will come along, and the app will just run when the contained index.hmtl is loaded.
For an example let’s suppose you have an application myapp and a web server instance running on a machine called
fooserv. Then, given suitable network connection and setup, the following command will copy your build version
to the web server:

scp -r build bar@fooserv:~/public_html/myapp

and you can load it in the browser with

http://fooserv/~bar/myapp/

Non-App-Generating Jobs

So now you know about the basic jobs to create a runnable application using the generator. There is a whole bunch of
jobs that is not concerned with creating a runnable version of your app, but do other things. One of those is addressed
in the Twitter tutorial which is concerned with internationalization of an application. The generator job in this context
is translation, and extracts translatable strings from your JavaScript source files into .po files. Here is a quick
topical overview of those kinds of jobs:

334 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Internationalization:

• translation – extract translatable strings into .po files

Source Code:

• lint – check source code for potential issues

• fix – fix white space in source code

• pretty – re-format source code

Development:

• api – create an application-specific instance of the Apiviewer

• test – create an application-specific instance of the Testrunner

• inspector – create an application-specific instance of the Inspector

• simulation-build – create a GUI testing application (to be used with Selenium)

Files:

• clean – clean up generated files for this app

• distclean – clean up generated files for this app, and delete the generator cache

As mentioned before, for a full list of available jobs with short descriptions run generate.py x, or see the the list
of default jobs.

Tweaking Jobs

For most people the jobs that come with qooxdoo are good enough to get all necessary work done. But not for all.
Sometimes you want the output file be named differently; or the index.html that loads your qooxdoo app lives in some
other part of your web space; or you want to get rid of a specific optimization in your build version. Fortunately, the
tool chain of qooxdoo is very flexible and highly configurable. There is a set of built-in functionality that can be drawn
upon by job definitions, and jobs can be freely defined or altered. The system is in fact so configurable that we have
thought of means of limiting its flexibility, for the sake of an easier user interface. If you feel you want to change the
way in which the generator works, try the following three levels which go from simple (but less powerful) to advanced
(but more challenging):

1. Macros The first and simplest level to tweak the generator are configuration macros. These are simple strings
that can have a value, and that are used in job definitions where they are eventually replaced by their value.

2. Overriding Existing Jobs The next level would be to take an existing job (one that comes predefined with
qooxdoo), and change some of its settings so it better suits your needs. This is achieved by overriding or
“shadowing” an existing job in your own config.json.

3. Custom Jobs You can of course define entirely new jobs from scratch. This is the most challenging approach,
and requires you to understand a bit about how the generator works internally, and what settings you have to
specify in your job definition to make everything work out.

We will look at each of these levels in turn.

Macros

Macros are simple named placeholders that are used in generator configuration files. They make it easy to define
values that are used in multiple jobs in a single place (e.g. the application name), or expose a value in a specific job so
this value can be customized (e.g. a list of packages to ignore when building an application-specific Apiviewer). One

10.1. Generator 335

qooxdoo Documentation, Release 1.6

way to change a macro is to edit the config.json file of your application. Start your favourite text editor and load the
configuration file.

Let’s suppose you want to add support for additional locales to your application. Then locate the "let" entry in the
configuration map. The let key lets you define macros. Locate the macro named “LOCALES”, and add two more
locales so the value looks something like this: [“en”, “fr”, “de”]. With the next run of generate.py translation files
fr.po and de.po will be added to your source/translation directory.

There is also the possibility to pass a macro definition on the command line when you invoke the generator:

generate.py source --macro CACHE:/tmp/cache

This tells the generator to use the path /tmp/cache for its caching. Passing macros in this manner allows you to change
a macro on a per-invocation basis. The command-line value will take precedence over a potential existing definition
in config.json.

336 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Overriding Existing Jobs

The second approach that goes beyond just modifying a macro is to override an existing job. The default config.json
comes with a commented-out sample for this. Let’s suppose you want to get rid of the extra newlines that are sprinkled
throughout the build version of your app. In the “jobs” section of the config you find a job entry named “build-script”.
It has a sub-key compile-options/code/format (the “/” indicates nesting in the Json maps) which is set to false (the
default is true). Just uncomment this job and run generate.py build again, and you’ll find all newlines gone from the
generated code. This illustrates the general principle:

1. Identify the job you are not contempt with. This might require that you look at the generator output, or consult
the basic configuration file, tool/data/config/base.json, as some jobs which you can invoke with the generator
are broken down in sub-jobs.

2. Add an entry of the same name in your config.json. The generator, once you run it the next time, will indicate
this by issuing a hint in the console output that the respective job has been shadowed.

3. Add those keys to the job entry that you want to change, with suitable values. Use the default job’s definition
to find out which config key you need to tweak. To achieve this you can look at the job’s definition, e.g. in
base.json, or run the generator with the -w command line flag; this will print the full job definition before
the job is run.

As mentioned above, on the next time you run the generator it will indicate that you have successfully overridden a
predefined job. The message will be something like this:

- Warning: ! Shadowing job "build-script" with local one

(This is also helpful to prevent you from accidentially overriding an existing job with a custom job that is supposed to
be new).

Custom Jobs

Custom jobs are jobs that you freely define in your config.json. You add them to the “jobs” section just as in the
previous step, but making sure you are not using an existing name for them (check the generator console output when
you run the job to make sure). The challenge with a custom job is that you have to build it up from scratch, and
it might take you through some trial-and-error until you come up with a job definition that is fully functional. To
help you with that, many basic configuration entries that almost any job would need are available in dedicated job
definitions of their own (like "cache" or "libraries"), and we recommend using them. (This gives you another
hint at the configuration system of the tool chain: Jobs need not do anything useful; they can also just be containers for
configuration snippets that can be included in other jobs to make their definition more modular or compliant). Here is
a simple custom job that just copies two files to the build path of the application:

"myjob" :
{

"extend" : ["cache"],
"copy-files" :
{
"files" : ["foo1.txt", "foo2.txt"],
"source" : "/home/myhome/tmp",
"target" : "./build"

}
}

Don’t forget to add the entry “myjob” in your config’s "export" list, so it is available on the command line.

10.1. Generator 337

qooxdoo Documentation, Release 1.6

Further Resources

• If you want to embark on the effort of creating custom jobs you’re well-advised to make yourself familiar with
the general generator configuration overview, and the

• the reference of configuration keys that can be used.

• Also, there is an example configuration file in tool/data/config/example.json to look at.

• The basic configuration file, tool/data/config/base.json, and the configuration files for

• the Testrunner (component/testrunner/testrunner.json)

• and Apiviewer (component/apiviewer/api.json) also provide good examples to learn from.

10.1.2 Configuration

Generator Configuration File

Overview

The configuration file that drives the generator adheres to the JSON specification. It has the following general structure:

{
"jobs" :
{
"job1" : { ... },
"job2" : { ... },
...
"jobN" : { ... }

}
}

The job names job1, ..., jobN are freely chooseable names but must form a valid key. JavaScript-style comments
(/.../ and %//%...) are permissible but only in rather robust places, like after a comma or directly after opening or before
closing parentheses, but e.g. not between a key and its value.

Quick links:

• Generator Config Keys

• Generator Config Macros

• Configuration Detail Articles

• Implementation Background Information

Example

Here is an example of a minimal config file that defines a single job to create the source version of an application:

{
"jobs" :
{
"source" :
{

"let" :
{

338 Chapter 10. Tooling

http://json.org/

qooxdoo Documentation, Release 1.6

"QOOXDOO_PATH" : "../..",
"APPLICATION" : "custom"

],

"library" :
[

{
"manifest" : "${QOOXDOO_PATH}/framework/Manifest.json"

},
{
"manifest" : "./Manifest.json"

}
],

"compile-options" :
{

"paths" :
{
"file" : "./source/script/${APPLICATION}.js"

}
},

"compile" : { "type" : "source" },

"require" :
{

"qx.log.Logger" : ["qx.log.appender.Native"]
},

"environment" :
{

"qx.application" : "${APPLICATION}.Application"
},

"cache" :
{

"compile" : "../../cache2"
}

}
}

}

Syntax

Apart from the general Json rules, you can place ‘=’ in front of job and key names, to indicate that this feature should
prevail as specified when configs get merged. See here for more details on that. The config system also allows the use
of macros, details of which can be found here. If you use keys outside those listed here in your configuration, you will
be warned about them, and they will be ignored in the processing.

Valid Job Keys

The value of each job is a map where the keys are not freely chooseable, but are predefined.

Keys can be grouped into several categories:

10.1. Generator 339

qooxdoo Documentation, Release 1.6

• structure-changing - Keys that influence the configuration itself, e.g. the contents or structure of jobs,
the job queue, or the config file as a whole (e.g. extend, include (top-level), run).

• actions - Keys that if present trigger a certain action in the generator, which usually results in some output
(e.g. compile, api, localize).

• input/output-setting - Keys that specify input (e.g. classes or ranges of classes to deal with) and output
(e.g. packaging, variants) options (e.g. library, require, include).

• runtime-settings - Keys pertaining to the working needs of the generator (e.g. cache).

• miscellaneous - Keys that don’t fall in any of the other categories (e.g. desc).

First, here is an overview table, to list all possible keys in a job (if the key has a different context, this is explicitly
noted). Below that, you’ll find a structured listing of all possible configuration keys in their respective context, with
links to further information for each.

Action Keys Description
api Triggers the generation of a custom Apiviewer application.
clean-files Delete files and directories from the file system.
collect-environment-info Prints various infos about the qooxdoo environment (version etc.)
combine-images Triggers creation of a combined image file that contains various images.
compile Triggers the generation of a source or build version of the app.
copy-files Triggers files/directories to be copied.
copy-resources Triggers the copying of resources.
fix-files Fix white space in source files.
lint-check Check source code with a lint-like utility.
migrate-files Migrate source code to the current qooxdoo version.
pretty-print Format source files.
provider Collects classes, resources and dependency info in a directory tree.
shell Triggers the execution of one or more external command(s).
simulate Triggers the execution of a suite of integration tests.
slice-images Triggers cutting images into regions.
translate Triggers updating of .po files.

Structure-changing Keys Description
default-job (top-level) Default job to be run.
export (top-level) List of jobs to be exported to other config files.
extend Extend the current job with other jobs.
include (top-level) Include external config files.
jobs (top-level) Define jobs.
let Define macros.
let (top-level) Define default macros.
run Define a list of jobs to run.

Input/Output-setting Keys Description
add-script Includes aritrary URIs to be loaded by the app.
asset-let Defines macros that will be replaced in #asset hints.
compile-options Various options that taylor the compile action.
dependencies Fine-tune dependency processing.
exclude Exclude classes from processing of the job.
include Include classes to be processed in the job.
library Define libraries to be taken into account for this job.
packages Define packages for this app.
require Define prerequisite classes (load time).
environment Define key:value pairs for the app.

Continued on next page

340 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Table 10.1 – continued from previous page
use Define prerequisite classes (run time).

Runtime-setting Keys Description
cache Define the path to the cache directory.
config-warnings (experimental) Suppress warnings relating to configuration.
log Tailor log output options.

Miscellaneous Keys Description
desc A descriptive string for the job.
name (top-level) A descriptive string for the configuration file.

Listing of Keys in Context

This shows the complete possible contents of the top-level configuration map. Further information is linked from the
respective keys.

• name A name or descriptive text for the configuration file.

• include Include external config files. Takes a list of maps, where each map specifies an external configuration
file, and options how to include it. (See special section on the include key)

• let Define default macros. Takes a map (see the description of the job-level ‘let’ further down). This let map is
included automatically into every job run. There is no explicit reference to it, so be aware of side effects.

• export List of jobs to be exported if this config file is included by another.

• default-job The name of a job to be run as default, i.e. when invoking the generator without job arguments.

• config-warnings (experimental) Suppress warnings from configuration aspects which you know are ok.

• jobs Map of jobs. Each key is the name of a job.

– <jobname> Each job’s value is a map describing the job. The describing map can have any number of the
following keys:

* add-script A list of URIs that will be loaded first thing when the app starts.

* api Triggers the generation of a custom Apiviewer application.

* asset-let Defines macros that will be replaced in #asset hints in source files. (See special section on
the “asset-let” key).

* cache Define the path to cache directories, most importantly to the compile cache. (See special section
on the “cache” Key key).

* clean-files Triggers clean-up of files and directories within a project and the framework, e.g. deletion
of generated files, cache contents, etc.

* collect-environment-info Collects various information about the qooxdoo environment (like version,
cache, etc.) and prints it to the console.

* combine-images Triggers creation of a combined image file that contains various images.

* compile Triggers the generation of a source or build version of the application.

* compile-options Define various options that influence compile runs (both source and build version).

* config-warnings (experimental) Suppress warnings from configuration aspects which you know are
ok.

* copy-files Triggers files/directories to be copied, usually between source and build version.

10.1. Generator 341

qooxdoo Documentation, Release 1.6

* copy-resources Triggers the copying of resources, usually between source and build version.

* dependencies Fine-tune the processing of class dependencies.

* desc A string describing the job.

* environment Define key:value pairs for the application, covering settings, variants and features.

* exclude List classes to be excluded from the job. Takes an array of class specifiers.

* extend Extend the current job with other jobs. Takes an array of job names. The information of these
jobs are merged into the current job description, so the current job sort of “inherits” their settings.
(See the special section on “extend” semantics).

* fix-files Fix white space in source files.

* include List classes to be processed in the job. Takes an array of class specifiers.

* let Define macros. Takes a map where each key defines a macro and the value its expansion. (See the
special section on macros).

* library Define libraries to be taken into account for this job. Takes an array of maps, each map
specifying one library to consider. The most important part therein is the “manifest” specification.
(See special section on Manifest files).

* lint-check Check source code with a lint-like utility.

* log Tailor log output of job.

* migrate-files Migrate source code to the current qooxdoo version.

* packages Define packages for the application. (See special section on packages).

* pretty-print Triggers code beautification of source class files (in-place-editing). An empty map value
triggers default formatting, but further keys can tailor the output.

* provider Collects classes, resources and dependency information and puts them in a specific directory
structure under the provider root.

* require Define prerequisite classes needed at load time. Takes a map, where the keys are class names
and the values lists of prerequisite classes.

* run Define a list of jobs to run in place of the current job. (See the special section on “run” semantics).

* shell Triggers the execution of one or more external command(s).

* simulate Triggers the execution of a GUI test (simulated interaction) suite.

* slice-images Triggers cutting images into regions.

* translate Re-)generate .po files from source classes.

* use Define prerequisite classes needed at run time. Takes a map, where the keys are class names and
the values lists of prerequisite classes.

Generator Configuration Articles

This page contains various articles related to the generator JSON configuration.

342 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Path Names

A lot of entries in a config file take path names as their values (top-level “include”, “manifest” keys of a library entry,
output path of compile keys, asf.). Quite a few of them, like the top-level include paths, are interpreted relative to the
config file in which they appear, and this relation is retained no matter from where you reference the config file.

This might not hold true in each and every case, though. For some keys you might have to take care of relative paths
yourself. The authoritative reference is always the corresponding documentation of the individual config keys. If a key
takes a path value it will state if and how these values are interpreted. Please check there.

A good help when dealing with paths is also to use macros, if you need to abstract away from a value appearing
multiple times. E.g.

"let" : {"MyRoot": ".", "BUILD_PATH" : "build"}
"myjob" : { ... "build_dir" : "${MyRoot}/${BUILD_PATH}" ... }

This should make it more intuitive to maintain a config file.

Paths with Spaces Most file systems allow spaces in directory and file names these days, a notorious example of this
being the C:\\Documents and Settings path on Windows. To enter such paths safely in your configuration
Json structure, you need to escape the spaces with back-slash (\). As the back-slash is also a meta-character in Json, it
needs to be escaped as well. So a path with spaces would look like this in your config: ".../foo/dir\\ with\\
spaces/bar/file\\ with\\ spaces.html".

Nota bene: As the configuration files are processed by Python, and Python is allowing forward-slash on Windows, the
initial example can more easily be given as "c:/Documents\\ and \\Settings" (rather than the canonical
"C:\\\\Documents\\ and\\ Settings").

Note: To Implementors:

The configuration handler (generator/config/Config.py) handles relative paths in the obvious cases, like
for the manifest entries in the library key, or in the top-level include key. But it cannot handle all possible
cases, because it doesn’t know beforehand which particular key represents a path, and which doesn’t. In a config entry
like "foo" : "bar" it is hard to tell whether bar represents a relative file or directory. Therefore, part of the
responsibility for relative paths is offloaded to the action implementations that make use of the particular keys.

Since each config key, particularly action keys, interpret their corresponding config entries, they know which
entries represent paths. To handle those paths correctly, the Config module provides a utility method
Config.absPath(self, path) which will calculate the absolute path from the given path relative to the config
file’s location.

File Globs

Some config keys take file paths as their attributes. Where specified, file globs are allowed, as supported by the
underlying Python module. File globs are file paths containing simple metacharacters, which are similar to but not
quite identical with metacharacters from regular expressions. Here are the legal metacharacters and their meanings:

Metacharac-
ter

Meaning

* matches any string of zero or more characters (regexp: .*)
? matches any single character (regexp: .)
[] matches any of the enclosed characters; character ranges are possible using a hyphen, e.g. [a-z]

(regexp: <same>)

10.1. Generator 343

qooxdoo Documentation, Release 1.6

Examples Given a set of files like file9.js, file10.js, file11.js, here are some file globs and their
resolution:

File Glob Resolution
file* file9.js, file10.js and file11.js
file?.js file9.js
file1[01].js file10.js and file11.js

Class Data

Besides code a qooxdoo application maintains a certain amount of data that represents some sort of resources. This
might be negligible for small to medium size applications, but becomes significant for large apps. The resources fall
roughly into two categories,

• Internationalization (I18N) Data This comprises two kinds of data:

– translated strings

– locale information (also CLDR data, such as currency, date and time formats, asf.)

• File Resources

– static files like PNG and GIF graphics, but also HTML and CSS files, sound and multimedia files, asf.

Many of these resources need an internal representation in the qooxdoo app. E.g. translated strings are stored as
key:value pairs of maps, and images are stored with their size and location. All this data requires space that shows up
in sizes of application files, as they are transfered from server to browser.

The build system allows you to tailor where those resources are stored, so you can optimize on your network con-
sumption and memory footprint. Here is an overview:

• source version: - without dedicated I18N parts:all class data is allocated in the loader - with dedicated I18N
parts:class data is in dedicated I18N packages

• build version: - without dedicated I18N parts: class data is allocated in each individual package, corresponding
to the contained class code that needs it - with dedicated I18N parts: class data is in dedicated I18N packages

The term “dedicated I18N parts” refers to the possibility to split translated strings and CLDR data out in separate
parts, one for each language (see packages/i18n-with-boot). Like with other parts, those parts have to be actively
loaded by the application (using qx.io.PartLoader.require).

In the build version without dedicated I18N parts (case 2.1), those class data is stored as is needed by the code of the
package. This may mean that the same data is stored in multiple packages, as e.g. two packages might use the same
image or translated string. This is to ensure optimal independence of packages among each other so they can be loaded
independently, and is resolved at the browser (ie. resource data is stored uniquely in memory).

“cache” Key

Compile cache The main payload of the cache key is to point to the directory for the compile cache. It is very
recommendable to have a system-wide compile cache directory so cache contents can be shared among different
projects and libraries. Otherwise, the cache has to be rebuilt in each enviornment anew, costing extra time and space.

The default for the cache directory is beneath the system TMP directory. To find out where this actually is either run
generate.py info, or run a build job with the -v command line flag and look for the cache key in the expanded
job definition, or use this snippet.

The compile cache directory can become very large in terms of contained files, and a count of a couple of thousand files
is not unusual. You should take care that your file system is equipped to comply with these demands. Additionally,
disk I/O is regularly high on this directory so a fast, local disk is recommendable. Don’t use a network drive :-) .

344 Chapter 10. Tooling

http://demo.qooxdoo.org/1.6/apiviewer/#qx.io.PartLoader
http://qooxdoo.org/documentation/general/snippets#finding_your_system-wide_tmp_directory

qooxdoo Documentation, Release 1.6

“let” Key

Config files let you define simple macros with the let key. The value of a macro can be a string or another JSON-
permissible value (map, array, ...). You refer to a macro value in a job definition by using ${<macro_name>}.

"let": {"MyApp" : "demobrowser"}
...
"myjob" : { "environment" : {"qx.application" : "${MyApp}.Application"}}

If the value of the macro is a string you can use a reference to it in other strings, and the macro reference will be
replaced by its value. You can have multiple macro references in one string. Usually, these macro references will
show up in map values or array elements, but can also be used in map keys.

"myjob" : {"${MyApp}.resourceUri" : "resource"}

If the value of the macro is something other than a string, things are a bit more restrictive. References to those macros
can not be used in map keys (for obvious reasons). The reference has still to be in a string, but the macro reference has
to be the only contents of that string. The entire string will then be replaced by the value of the macro. That means,
you can do something like this:

"let" : {"MYLIST" : [1,2,3], ...},
"myjob" : { "joblist" : "${MYLIST}", ...}

and the “joblist” key will get the value [1,2,3].

A special situation arises if you are using a top-level let, i.e. a let section on the highest level in the config file, and
not in any job definition. This let map will be automatically applied to every job run, without any explicit reference
(so be aware of undesired side effects of bindings herein).

When assembling a job to run, the precedence of all the various let maps is

local job let < config-level let < ’extend’ job lets

With imported jobs top-level definitions will take precedence over any definitions from the external config file (as if
they were the ‘first’ let section in the chain).

OS Environment Variables as Configuration Macros (experimental)

On startup, the generator will read the operating system environment settings, and provide them as configuration
macros, as if you had defined them with let. This can be handy as an alterative to hard-coding macros in a configuration
file, or providing them on the generator command line (with the -m command-line option).

Here is an example. Suppose in your config.json you have section like this:

"jobs" : {
"myjob" : {
"environment" : {

"myapp.foosetting" : ${FOOVALUE}
}

}
}

then you can provide a value for FOOVALUE by just providing an environment setting for it. E.g. if you are using
bash to invoke the generator, you could something like this:

bash> env FOOVALUE=17 ./generate.py myjob

which will result in myapp.foosetting getting the value 17.

A few things are important to note in this respect:

10.1. Generator 345

qooxdoo Documentation, Release 1.6

• The generator includes all the environment settings that the operating system provides. There is no filtering of
any kind. This can lead to surprises when you are not aware which settings are available and which not. If
in doubt use your operating system’s facilities to list the environment settings in effect when you launch the
generator.

• In the parsing of config files and the expansion of generator jobs, the environment settings have high priority.
They will take precedence over all settings giving in the configuration files given with let keys. Only macro
settings passed through the generator command-line option -m will take higher precedence, and will override
environment keys.

“log” Key

Logging is an important part of any reasonably complex application. The Generator does a fair bit of logging to the
console by default, listing the jobs it performs, adding details of important processing steps and reporting on errors
and potential inconsistencies. The log key lets you specify further options and tailor the Generator console output to
your needs. You can e.g. add logging of unused classes in a particular library/name space.

“extend” Key

Job resolution extend and run keywords are currently the only keywords that reference other jobs. These refer-
ences have to be resolved, by looking them up (or “evaluating” the names) in some context. One thing to note here is
that job names are evaluated in the context of the current configuration. As you will see (see section on top-level
“include”s), a single configuration might eventually contain jobs from multiple config files, the local job definitions,
and zero to many imported job maps (from other config files), which again might contain imported configs. From
within any map, only those jobs are referenceable that are contained somewhere in this map. Unqualified names (like
“myjob”) are taken to refer to jobs on the same level as the current job, path-like names (containing “/”) are taken to
signify a job in some nested name space down from the current level. Particularly, this means you can never reference
a job in a map which is “parallel” to the current job map. It’s only jobs on the same level or deeper.

This is particularly important for imported configs (imported with a top-level “include” keyword, see further down).
Those configs get attached to the local “jobs” map under a dedicated key (their “name space” if you will). If in this
imported map there is a “run” job (see the next section) using unqualified job names, these job names will be resolved
using the imported map, not the top-level map. If the nested “run” job uses path-like job names, these jobs will be
searched for relative to the nested map. You get it?!

Extending jobs Now, how exactly is a job (let’s call this the primary job) treated that says to “extend” another job
(let’s call this the secondary job). Here is what happens:

• The primary job provides sort of the master definition for the resulting job. All its definitions take precedence.

• The secondary job is searched in the context of the current “jobs” map (see above).

• Keys of the secondary job that are not available in the primary job are just added to the job definition.

• Keys of the secondary job that are already present in the primary job and have a scalar value (string, number,
boolean) are discarded.

• Keys of the secondary job that are already present in the primary job and have a list or map value are merged.
The extending rules are applied on the element level recursively, i.e. scalar elements are blocked, new elements
are added, composed element are merged. That means, those keys accumulate all their inner keys over all jobs
in the transitive hull of all extend jobs of the primary job.

• There is a way of preventing this kind of merge behaviour: If you prefix a job key with an equal sign (=) no
subsequent merging will be done on this key. That means all following jobs that are merged into the current will
not be able to alter the value of this key any more.

346 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

• Obviously, each secondary job is extended itself before being processed in this way, so it brings in its own full
definition. As stated before it is important to note that this extending is done in the secondary job’s own context,
which is not necessarily the context of the primary job.

• If there are more than one job in the “extend” list, the process is re-applied iteratively with all the remaining
jobs in the list. This also means that the list of secondary jobs defines a precedence list: Settings in jobs earlier
in the list take precedence over those coming later, so order matters.

Important to note here: Macro evaluation takes place only after all extending has been done. That is, macros are
applied to the fully extended job, making all macro definitions available that have accumulated along the way, with a
‘left-to-right’ precedence (macro definitions in the primary job take precedence over definitions in secondary jobs, and
within the list of secondary jobs, earlier jobs win over subsequent). But in contrast to job names that also means that
macros are explicitly not evaluated in the original context of the job. This makes it possible to tweak a job definition
for a new environment, but can also lead to surprises if you wanted to have some substitution taking place in the
original config file, and realize it doesn’t.

Job Shadowing and Partial Overriding Additionally to the above described features, with the configuration system
you can

• create jobs in your local configuration with same names as those imported from another configuration file. The
local job will take precedence and “shadow” the imported job; the imported job gets automatically added to the
local job’s extend list.

• extend one job by another by only partially specifying job features. The extending job can specify only the
specific parts it wants to re-define. The jobs will then be merged as described above, giving precedence to local
definitions of simple data types and combining complex values (list and maps); in the case of maps this is a deep
merging process. Here is a sample of overriding an imported job (build-script), only specifying a single
setting, and relying on the rest to be provided by the imported job of same name:

"build-script" : {
"compile-options" : {

"code" : {
"format" : true

}
}

}

You can again use = to control the merging:

• selectively block merging of features by using = in front of the key name, like:
...
{

"=open-curly" : ...,
...

}
...

• override an imported job entirely by guarding the local job with = like:

"jobs" : {
"=build-script" : {...},
...

}

10.1. Generator 347

qooxdoo Documentation, Release 1.6

“run” Key

“run” jobs are jobs that bear the run keyword. Since these are kind of meta jobs and ment to invoke a sequence of
other jobs, they have special semantics. When a run keyword is encountered in a job, for each sub-job in the “run”
list a new job is generated (so called synthetic jobs, since they are not from the textual config files). For each of
those new jobs, a job name is auto-generated using the initial job’s name as a prefix. As for the contents, the initial
job’s definition is used as a template for the new job. The extend key is set to the name of the current sub-job (it
is assumed that the initial job has been expanded before), so the settings of the sub-job will eventually be included,
and the “run” key is removed. All other settings from the initial job remain unaffected. This means that all sub-jobs
“inherit” the settings of the initial job (This is significant when sub-jobs evaluate the same key, and maybe do so in a
different manner).

In the overall queue of jobs to be performed, the initial job is replaced by the list of new jobs just generated. This
process is repeated until there are no more “run” jobs in the job queue, and none with unresolved “extend”s.

“asset-let” Key

The asset-let key is basically a macro definition for #asset compiler hints, but with a special semantics. Keys
defined in the “asset-let” map will be looked for in #asset hints in source files. Like with macros, references have to
be in curly braces and prefixed with $. So a “asset-let” entry in the config might look like this:

"asset-let" :
{
"qx.icontheme" : ["Tango", "Oxygen"],
"mySizes" : ["16", "32"]

}

and a corresponding #asset hint might use it as:

#asset(qx/icon/${qx.icontheme}/${mySizes}/*)

The values of these macros are lists, and each reference will be expanded into all possible values with all possible
combinations. So the above asset declaration would essentially be expanded into:

#asset(qx/icon/Tango/16/*)
#asset(qx/icon/Tango/32/*)
#asset(qx/icon/Oxygen/16/*)
#asset(qx/icon/Oxygen/32/*)

“library” Key and Manifest Files

The library key of a configuration holds information about source locations that will be considered in a job (much like
the CLASSPATH in Java). Each element specifies one such library. The term “library” is meant here in the broadest
sense; everything that has a qooxdoo application structure with a Manifest.json file can be considered a library in this
context. This includes applications like the Showcase or the Feedreader, add-ins like the Testrunner or the Apiviewer,
contribs from the qooxdoo-contrib repository, or of course the qooxdoo framework library itself. The main purpose of
any library entry in the configuration is to provide the path to the library’s “Manifest” file.

Manifest files Manifest files serve to provide meta information for a library in a structured way. Their syntax is again
JSON, and part of them is read by the generator, particularly the provides section. See here for more information
about manifest files.

348 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Contrib libraries Contributions can be included in a configuration like any other libraries: You add an appropriate
entry in the library array of your configuration. Like other libraries, the contribution must provide a Manifest.json
file with appropriate contents.

If the contribution resides on your local file system, there is actually no difference to any other library. Specify the
relative path to its Manifest file and you’re basically set. The really new part comes when the contribution resides
online, in the qooxdoo-contrib repository. Then you use a special syntax to specify the location of the Manifest file. It
is URL-like with a contrib scheme and will usually look like this:

contrib://<ContributionName>/<Version>/<ManifestFile>

The contribution source tree will then be downloaded from the repository, the generator will adjust to the local path,
and the contribution is then used just like a local library. A consideration that comes into play here is where the files
are placed locally. The default location is a subdirectory from your cache path named downloads. You can modify
this through the downloads attribute of the cache key in your config.

So, for example an entry for the “trunk” version of the “Dialog” contribution would look like this:

{
"manifest" : "contrib://Dialog/trunk/Manifest.json"

}

You will rarely need to set the uri attribute of a library entry. This is only necessary if the relative path to the library
(which is automatically calculated) does not represent a valid URL path when running the source version of the final
app. (This can be the case if your try to run the source version from a web server that requires you to set up different
document roots). It is not relevant for the build version of your app, as here all resources from the various libraries are
collected under a common directory. For more on URI handling, see the next section.

“contrib://” URIs and Internet Access As contrib libraries are downloaded from an online repository, you need
Internet access to use them. Here are some tips on how to address offline usage and Internet proxies.

Avoiding Online Access If you need to work with a contrib offline, it is best to download it to your hard disk, and
then use it like any local qooxdoo library. Sourceforge offers the “ViewVC” online repository browser, so you can
browse the contrib online, e.g.

http://qooxdoo-contrib.svn.sourceforge.net/viewvc/qooxdoo-contrib/trunk/qooxdoo-contrib/Dialog/

Browse to the desired contrib version, like trunk, and hit the “Download GNU tarball” link. This will download
an archive of this part of the repository tree. Unpack it to a local directory, and enter the relative path to it in the
corresponding manifest config entry. Now you are using the contrib like a local library.

The only thing you are missing this way is the automatic online check for updates, where a newer version of the
contrib would be detected and downloaded. You need to do this by hand, re-checking the repository when you can,
and re-downloading a newer version if you find one.

Accessing Online from behind a Proxy If you are sitting behind a proxy, here is what you can do. The generator
uses the urllib module of Python to access web-based resources. This module honors proxies:

• It checks for a http_proxy environment variable in the shell running the generator. On Bash-like shells you can
set it like this:

http_proxy="http://www.someproxy.com:3128"; export http_proxy

• If there is no such shell setting on Windows, the registry is queried for the Internet Options.

• On MacOS, the Internet Config is queried in this case.

• See the module documentation for more details.

10.1. Generator 349

http://qooxdoo.org/contrib
http://docs.python.org/release/2.5.4/lib/module-urllib.html

qooxdoo Documentation, Release 1.6

URI handling URIs are used in a qooxdoo application to refer from one part to other parts like resources. There
are places within the generator configuration where you can specify uri parameters. What they mean and how this all
connects is explained in this section.

Where URIs are used The first important thing to note is:

Note: All URI handling within qooxdoo is related to libraries.

Within qooxdoo the library is a fundamental concept, and libraries in this sense contain all the things you are able to
include in the final Web application, such as class files (.js), graphics (.gif, .png, ...), static HTML pages (.htm, .html),
style sheets (.css), and translation files (.po).

But not all of the above resource types are actually referenced through URIs in the application. Among those that are
you find in the source version:

• references to class files

• references to graphics

• references to static HTML

• references to style sheet files

The build version uses a different approach, since it strives to be a self-contained Web application that has no outgoing
references. Therefore, all necessary resources are copied over to the build directory tree. Having said that, URIs are
still used in the build version, yet these are only references confined to the build directory tree:

• JS class code is put into the (probably various) output files of the generator run (what you typically find under
the build/script path). The bootstrap file references the others with relative URIs.

• Graphics and other resources are referenced with relative URIs from the compiled scripts. Those resources are
typically found under the build/resource path.

• Translation strings and CLDR information can be directly included in the generated files (where they need not
be referenced through URIs), or be put in separate files (where they have to be referenced).

So, in summary, in the build version some references might be resolved by directly including the specific information,
while the remaining references are usually confined to the build directory tree. That is why you can just pack it up and
copy it to your web server for deployment. The source version is normally used directly off of the file system, and
employs relative URIs to reference all necessary files. Only in cases where you e.g. need to include interaction with a
backend you will want to run the source version from a web server environment. For those cases the following details
will be especially interesting. Others might want to skip the remainder of this section for now.

Although the scope and relevance of URIs vary between source and build versions, the underlying mechanisms are
the same in both cases, with the special twist that when creating the build version there is only a single “library”
considered, the build tree itself, which suffices to get all the URIs out fine. These mechanisms are described next.

Construction of URIs through the Generator So how does the generator create all of those URIs in the final
application code? All those URIs are constructed through the following three components:

to_libraryroot [1] + library_internal_path [2] + resource_path [3]

So for example a graphics file in the qooxdoo framework might get referenced using the following components

• [1] ”../../qooxdoo-1.6-sdk/framework/”

• [2] “source/resource/”

• [3] “qx/static/blank.gif”

350 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

to produce the final URI ”../../qooxdoo-1.6-sdk/framework/source/resource/qx/static/ blank.gif”.

These general parts have the following meaning:

• [1] : URI path to the library root (as will be valid when running the app in the browser). If you specify the uri
parameter of the library’s entry in your config, this is what gets used here.

• [2] : Path segment within the specific library. This is taken from the library’s Manifest.json. The consumer of
the library has no influence on it.

• [3] : Path segment leading to the specific resource. This is the path of the resource as found under the library’s
resource directory.

Library base URIs in the Source version Part [1] is exactly what you specify with the uri subkey of an entry in the
library key list. All source jobs of the generator using this library will be using this URI prefix to reference resources
of that library. (This is usually fine, as long as you don’t have different autonomous parts in your application using the
same library from different directories; see also further down).

If you don’t specifying the uri key with your libraries (which is usually the case), the generator will calculate a value
for [1], using the following information:

applicationroot_to_configdir [1.1] + configdir_to_libraryroot [1.2]

The parts have the following meaning:

• [1.1] : Path from the Web application’s root to the configuration file’s directory; this information is derived from
the paths/app-root key of the compile-options config key.

• [1.2] : Path from the configuration file’s directory to the root directory of the library (the one containing the
Manifest.json file); this information is immediately available from the library’s manifest key.

For the build version, dedicated keys uris/script and uris/resource are available (as there is virtually only one “li-
brary”). The values of both keys cover the scope of components [1] + [2] in the first figure.

Since [1.2] is always known (otherwise the whole library would not be found), only [1.1] has to be given in the config.
The properties of this approach, compared to specifying just [1], are:

• The application root can be specified individually for each compile job. This means you could have more than
one application root in your project, e.g. when your main application offers an iframe, into which another
application from the same project is loaded; qooxdoo’s Demobrowser application takes advantage of exactly
this.

• Relative file system paths have to match with relative URIs in the running application. So this approach won’t
work if e.g the relative path from your config directory to the library makes no sense when the app is run from
a web server.

From the above discussion, there is one important point to take away, in order to create working URIs in your applica-
tion:

Note: The generator needs either the library’s uri parameter ([1]) or the URI-relevant keys in the compile keys ([1.1])
in the config.

While either are optional in their respective contexts, it is mandatory to have at least one of them for the URI generation
to work. Mind though, that qooxdoo provides sensible defaults for the URIs in compile keys.

Overriding the ‘uri’ settings of libraries Libraries you specify in your own config (with the library key) are in
your hand, and you can provide uri parameters as you see fit. If you want to tweak the uri setting of a library entry
that is added by including another config file (e.g. the default application.json), you simply re-define the library entry

10.1. Generator 351

http://demo.qooxdoo.org/1.6/demobrowser

qooxdoo Documentation, Release 1.6

of that particular library locally. The generator will realize that both entries refer to the same library, and your local
settings will take precedence.

Specifying a “library” key in your config.json You can specify library keys in your own config in these ways:

• You either define a local job which either shaddows or “extends” an imported job, and provide this local job
with a library key. Or,

• You define a local "libraries" job and provide it with a library key. This job will be used automatically
by most of the standard jobs (source, build, etc.), and thus your listed libraries will be used in multiple jobs (not
just one as above).

“packages” Key

For a general introduction to parts and packages see this separate document. Following here is more information on
the specifics of some sub-keys of the packages config key.

parts/<part_name>/include The way the part system is currently implemented has some caveats in the way
parts/*/include keys and the general include key interact:

1. The general include key provides the “master list” of classes for the given application. This master list is
extended with all their recursive dependencies. All classes given in a part’s include, including all their depen-
dencies, are checked against this list. If any of those classes is not in the master list, it will not be included in
the final app.

Therefore, you cannot include classes in parts that are not covered by the general include key. If you want to
use e.g. qx.bom.* in a part, you have to add "qx.bom.*" to the general include list. Otherwise, only classes
within qx.bom.* that actually derive from the general include key will be actually included, and the rest will be
discarded. Motto:

“The general include key is a filter for all classes in parts.”

2. Any class that is in the master list that is never listed in one of the parts, either directly or as dependency, will
not be included in the app. That means you have to actively make sure that all classes from the general include
get - directly or indirectly - referenced in one of the parts, or they will not be in the final app. Motto:

“The parts’ include keys are a filter for all classes in the general include key.”

Or, to put both aspects in a single statement: The classes in the final app are exactly those in the intersection
of the classes referenced through the general include key and all the classes referenced by the include keys of
the parts. Currently, the application developer has to make sure that they match, ie. that the classes specified
through the parts together sum up to the global class list!

There is another caveat that concerns the relation between include‘s of different parts:

3. Any class that is listed in a part’s include (file globs expanded) will not be included in another part. - But this
also means that if two parts list the same class, it won’t be included in either of them!

This is e.g. the case in a sample application, where the boot part lists qx.bom.client.Engine and the core part lists
qx.bom.* which also expands to qx.bom.client.Engine eventually. That’s the reason why qx.bom.client.Engine
would not be contained in either of those parts, and hence would not be contained in the final application at all.

i18n-as-parts Setting this sub-key to true will result in I18N information (translations, CLDR data, ...) being put in
their own separate parts. The utility of this is:

• The code packages get smaller, which allows for faster application startup.

352 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

• Data is not loaded for all configured locales when a package is loaded (which is usually not necessary, as you
are mostly interested in a single locale across all packages). Rather, you can handle I18N data more individually.

Here are the details:

• By default, I18N data, i.e. translations from the .po files and CLDR data, is integrated as Javascript data with
the application packages (either as part of the first .js file of a package, or in its own .js file). This package-
specific data will encompass the data for all configured locales needed in this package (Think: Data cumulated
by package).

• Setting packages/i18n-as-parts: true removes this data from the packages. Rather, data for each individual
locale (en, en_US, de, de_DE, ...) will be collated in a dedicated part, the part name being that of the respective
language code (Think: Data cumulated by locale). As usual, each part is made up of packages. In the case
of an I18N part, these are the corresponding data package plus fall-back packages for key lookup (e.g. [”C”,
“en”, “en_US”] for the part en_US). Each package is a normal qooxdoo package with only the data section, and
without the code section.

So far, so good. With the config key set to true, this is the point where the application developer has to take over.
The application will not load the I18N parts by itself. You have to do it using the usual part loading API (e.g.
qx.io.PartLoader.require(["en_US"])). You might want to do that early in the application run cycle,
e.g. during application start-up and before the first translatable string or localizable data is to be displayed. After
loading the part, the corresponding locale is ready to be used in the normal way in your application. The Feedreader
application uses this technique to load a different I18N part when the language is changed in its Preferences dialog.

“include” Key (top-level) - Adding Features

Within qooxdoo there are a couple of features that are not so much applications although they share a lot of the
classical application structure. The APIViewer and TestRunner are good examples for those. (In the recent repository
re-org, they have been filed under component correspondingly). They are applications but receive their actual meaning
from other applications: An APIViewer in the form of class documentation it presents, the TestRunner in the form of
providing an environment to other application’s test classes. On their own, both applications are “empty”, and the goal
is it to use them in the context of another, self-contained application. The old build system supported make targets like
‘api’ and ‘test’ to that end.

While you can always include other applications’ classes in your project (by adding an entry for them to the library
key of your config), you wouldn’t want to repeat all the necessary job entries to actually build this external app in your
environment. So the issue here is not to re-use classes, but jobs.

Re-using jobs So, the general issue we want to solve is to import entire job definitions in our local configuration.
The next step is then to make them work in the local environment (e.g. classes have to be compiled and resources be
copied to local folders). This concepts is fairly general and scales from small jobs (where you just keep their definition
centrally, in order to use them in multiple places) to really big jobs (like e.g. creating a customized build version of
the Apiviewer in your local project).

Practically, there are two steps involved in using external jobs:

1. You have to include the external configuration file that contains the relevant job definitions. Do so will result in
the external jobs being added to the list of jobs of your local configuration. E.g. you can use

generator.py ?

to get a list of all available jobs; the external jobs will be among this list.

2. There are now two way to utilize these jobs:

• You can either invoke them directly from the command line, passing them as arguments to the generator.

• Or you define local jobs that extend them.

10.1. Generator 353

http://demo.qooxdoo.org/1.6/feedreader

qooxdoo Documentation, Release 1.6

In the former case the only way to influence the behaviour of the external job is through macros: The external job
has to parameterize its workings with macro references, you have to know them and provide values for them that are
suitable for your environment (A typical example would be output paths that you need to customize). Your values will
take precendence over any values that might be defined in the external config. But this also means you will have to
know the job, know the macros it uses, provide values for them (e.g. in the global let of your config), resolve conflicts
if other jobs happen to use the same macros, and so forth.

In the latter case, you have more control over the settings of the external job that you are actually using. Here as well,
you can provide macro definitions that parameterize the behaviour of the job you are extending. But you can also
supply more job keys that will either shaddow the keys of the same name in the external job, or will be extended by
them. In any case you will have more control over the effects of the external job.

Add-ins use exactly these mechanisms to provide their functionality to other applications (in the sense as ‘make test’
or ‘make api’ did it in the old system). Consequently, to support this in the new system, the add-in applications (or
more precisely: their job configuration) have to expose certain keys and use certain macros that can both be overridden
by the using application. The next sections describe these build interfaces for the various add-in apps. But first more
practical detail about the outlined ...

Add-In Protocol In order to include an add-in feature in an existing app, you first have to include its job config.
On the top-level of the config map, e.g. specify to include the Apiviewer config:

"include" : [{"path": "../apiviewer/config.json"}]

The include key on this level takes an array of maps. Each map specifies one configuration file to include. The only
mandator key therein is the file path to the external config file (see here for all the gory details). A config can only
include what the external config is willing to export. Among those jobs the importing config can select (through the
import key) or reject (through the block key) certain jobs. The resulting list of external job definitions will be
added to the local jobs map.

If you want to fine-tune the behaviour of such an imported job, you define a local job that extends it. Imported jobs
are referenced like any job in the current config, either by their plain name (the default), or, if you specify the as
key in the include, by a composite name <as_value>::<original_name>. Suppose you used an "as" :
"apiconf" in your include, and you wanted to extend the Apiviewer’s build-script job, this could look like
this:

"myapi-script" :
{

"extend" : ["apiconf::build-script"]
...

}

As a third step, the local job will usually have to provide additional information for the external job to succeed. Which
exactly these are depends on the add-in (and should eventually be documented there). See the section specific to the
APIViewer for a concrete example.

API Viewer For brevity, let’s jump right in into a config fragment that has all necessary ingredients. These are
explained in more detail afterwards.

{
"include" : [{"as" : "apiconf", "path" : "../apiviewer/config.json"}],
"jobs" : {
"myapi" : {

"extend" : ["apiconf::build"],
"let" : {

"ROOT" : "../apiviewer",
"BUILD_PATH" : "./api",
"API_INCLUDE" : ["qx.*", "myapp.*"],

354 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

"API_EXCLUDE" : ["myapp.tests.*"]
},

"library" : { ... },
"environment" : {

"myapp.resourceUri" : "./resource"
}

}
}

}

The myapi job extends the build job of APIViewer’s job config. This “build” job is itself a run job, i.e. it will be
expanded in so many individual jobs as its run key lists. All those jobs will get the “myapi” job as a context into
which they are expanded, so all other settings in “myapi” will be effective in those jobs.

In the let key, the ROOT, BUILD_PATH, API_INCLUDE and API_EXCLUDE macros of the APIViewer config are
overridden. This ensures the APIViewer classes are found, can be processed, and the resulting script is put into a local
directory. Furthermore, the right classes are included in the documentation data.

The library key has to at least add the entry for the current application, since this is relevant for the generation of
the api documentation for the local classes.

So in short, the ROOT, BUILD_PATH, API_INCLUDE and API_EXCLUDE macros define the interface between the
apiviewer’s “run” job and the local config.

“optimize” Key

The optimize key is a subkey of the compile-options key. It allows you to tailor the forms of code optimization that
is applied to the Javascript code when the build version is created. The best way to set this key is by setting the
OPTIMIZE macro in your config’s global let section. The individual optimization categories are described in their
own manual section.

“environment” Key

Variant-specific Builds The environment configuration key allows you to create different variants from the same
code base. Variants enable the selection and removal of code from the build version. A variant is a concrete build
of your application with a specific set of environment values “wired in”. Code not covered by this set of values is
removed, so the resulting script code is leaner. We call this code variant-optimized. But as a consequence, such a
variant usually cannot handle situations where other values of the same environment keys are needed. The generated
code is variant-specific. The generator can create multiple variants in one go. Variants can be used to implement
feature-based builds, or to remove debugging code from the build version. It is comparable to conditional compilation
in C/C++.

For any generation process of a build version of an app, there is a certain set of environment settings in effect. If variant
optimization is turned on, code is variant-optimized by looking at certain calls to qx.core.Environment that reference
an environment key that has an existing setting. See the optimization section for details about that.

How to Create Multiple Variants in One Go The above section mentions the optimization for a single build
output, where for each environment key there is exactly one value. (This is also how the qooxdoo run time sees the
environment). The generator configuration has an additional feature attached to environment settings. If you specify
more than one value for an environment key (in a list), the generator will automatically generate multiple output
files. Each of the builds will be created with one of the values from the list in effect. Here is an example for such a
configuration:

10.1. Generator 355

http://demo.qooxdoo.org/1.6/apiviewer#qx.core.Environment

qooxdoo Documentation, Release 1.6

"environment" : {
"foo" : [13, 26],
"bar" : "hugo",
"baz" : true

}

The envrionment set for producing the first build output would be {foo:13, bar:"hugo", baz:true}, the
set for the second {foo:26, bar:"hugo", baz:true}.

For configurations with multiple keys with lists as values, the process is repeated for any possible combination of
values. E.g.

"environment" : {
"foo" : [13, 26],
"bar" : ["a", "b"],
"baz" : true

}

would result in 4 runs with the following environment sets in effect:

1. {foo:13, bar:"a", baz:true}

2. {foo:13, bar:"b", baz:true}

3. {foo:26, bar:"a", baz:true}

4. {foo:26, bar:"b", baz:true}

Caveat The special caveat when creating multiple build files in one go is that you need to adapt to this in the
configuration of the output file name. If you have just a single output file name, every generated build script will be
saved over the previous! I.e. the generator might produce multiple output files, but they are all stored under the same
name, so what you get eventually is just the last of those output file.

The cure is to hint to the generator to create different output files during processing. This is done by using a simple
macro that reflects the current value of an environment key in the output file name.

"build-script" :
{

"environment" : {
"myapp.foo" : ["bar", "baz"]

},
"compile-options" : {
"paths": {

"file" : "build/script/myapp_{myapp.foo}.js"
}

}
}

This will two output files in the build/script path, myapp_bar.js and myapp_baz.js.

Browser-specific Builds By predefining select environment keys, builds can be tailored towards specific clients. See
the Feature Configuration Editor article for instructions.

Generator Configuration Background Information

This page gives some background information about how the configuration system is deployed in the SDK. It is
interesting if you want to understand some of the inner workings and how things play together. It is not necessary to
know these details if you just want to use the configuration system.

356 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

Cascading Configurations

The configuration system of qooxdoo is fairly generic and versatile, and it allows you to write stand-alone configu-
ration files from scratch, with just the configuration documentation at hand. But since a lot of configuration options
are boilerplate, have to be re-used in various parts of a config, and are applicable to a broad range of applications and
libraries, a significant effort has been put into making configuration settings re-usable, and shipping common config-
uration settings with the SDK. The two major tools in this regard are including one config file from another (through
the top-level include key), and re-using jobs (through run and extend keys).

If you create a new application with create-application.py you’ll find a pre-configured config.json in the application
directory that is ready to run. When you look into it, you’ll find that it provides - besides a handful of macro definitions
- only an include key to the SDK’s central application configuration file, application.json.

application.json and base.json The configuration infrastructure of qooxdoo 1.6 is based on two main configuration
files, both in the tool/data/config folder, application.json and base.json.

base.json defines all the basic jobs that a normal application would want to deploy. Most significant are the source
and build jobs that create the source and build version of an application, respectively. Other jobs contained here are
concerned with cleaning up (clean and distclean), creating translation files (translate) or formatting the Javascript code
(pretty). It is also basic in the sense that it doesn’t rely on any other config file.

But there is a distinct class of jobs missing from base.json, those that create helper applications for the current project
and rely on additional libraries. Currently, this class is represented by the api and test jobs.

This is where application.json comes into play. application.json creates a superset of the jobs from base.json by
including it, so all of its jobs are available also through application.json. The added value of application.json is that
it also integrates the core configuration files of the Apiviewer and the Testrunner. These applications export jobs that
can be run in the context of other applications, in order to build customized Apiviewer and Testrunner applications,
within the respective project.

In order to achieve this, application.json tailors those component jobs to e.g. include the classes from the deploying
application. All applications including application.json in their config get access to all of these jobs.

Why splitting all those jobs into two configuration files? The answer is to disentangle the base jobs from the component
jobs. This way the components that provide jobs to application.json, and are therefore included with it, can still use
base.json for their own configuration, without worrying too much about cyclic inclusions. That’s it.

Naturally, all these standard jobs are tailored with some sensible defaults. These defaults should be fine for all but
a few custom applications. But of course the configuration system has to provide ways to deviate from the standard
settings, and without too much repetition. (These different needs of applications are even mirrored in the SDK itself,
where some applications are contempt with the default settings like the Feedreader, while others need more specific
settings, as is the case e.g. with the Demobrowser. See their configuration files for more details).

The Use of Macros

Within the configuration system, macros (defined with let keys) serve a couple of purposes:

• to keep the use of a specific value consistent within a configuration file (this is how macros are used in many
languages)

• to customize settings of imported jobs so they can be controlled by the importing configuration

• to pass parameters into jobs

The last usage is probably the most delicate. Jobs provided by external components or libraries to the deploying
application need to learn certain facts about this application, in order to do their job well. As a consequence some
components require dedicated macros to be set by the application, e.g the API_INCLUDE and API_EXCLUDE macros
that are required for the api job. This is a way of parameterizing jobs. Unfortunately, since every job winds up with a

10.1. Generator 357

qooxdoo Documentation, Release 1.6

flat set of macros that are available to it (you can think of it as a job having a “global name space” for macros), macros
have to be globally unique within the set of configuration files that is used for the particular application.

Application Startup

While this is not particularly a generator config topic, it has some implications on configuration issues just as well.

An “application” as seen from the qooxdoo point of view is just a set of classes that are run on top of what could be
called the qooxdoo runtime system. (In that respect qooxdoo is similar to other object-hosting frameworks, e.g. the
Perl Object Environment (POE) with the main difference being that POE can host multiple applications and switch
between them).

When the application is loaded, qooxdoo first establishes and starts a runtime environment. This comprises of things as
divers as defining a handful of global variables and data structures, to setting up its object system, to creating instances
of system classes e.g. for logging or event handling.

Once this is established, the qooxdoo runtime starts the main() method of the main application class (made known to
it through the qx.application setting). From there, the application classes take over and create the application, through
instantiating further classes (like IO classes or GUI widgets), setting properties and invoking methods on them.

Config Processing

This is an account of the principles that rule the processing of config files.

When the Config File is Read

• The Json data structure is parsed into an internal data structure; this is standard Json processing.

• If the config file contains a global let section these macros are expanded among themselves (for macros refer-
encing other macros) temporarily. This intermediate let map is then used for other top-level keys, to expand
potential macros and finalize their values. E.g. a global include key might use macros to encode paths to other
config files. Then these macros are resolved with the local knowledge to derive real paths. The jobs key and the
let key itself are explicitly not expanded, to allow for later (re-) evaluation in another config file.

• If there is a global include key, the listed config files are included (next section).

When another Config File is Included

• The external config file is processes like the original file (previous section); i.e. the initial parsing and including
process is applied recursively. The process is checked for cyclic references.

• Then, every job in the jobs key of the external config file is processed in the following manner.

• For each external job, a new job for the current config file is created. This is to apply a local let section, so it
can take preference over the external’s job let settings. This is done next.

• A potential global let section is included into the new job, as if this was a normal let key of the job.

• Then, the external job is merged into the new job (see next section).

• A reference to the external config is added to the new job; this way, the original context is retained. This can be
important to resolve references to other jobs in the right context.

• For the new job a job name is constructed: * If the external config is included without “as” parameter, the
original name is used. If it is included with “as” parameter, its value is prependend to the original name. * If
no job of the same name already exists in the config, nothing further is done. * If, on the other hand, a job of

358 Chapter 10. Tooling

http://en.wikipedia.org/wiki/Perl_Object_Environment

qooxdoo Documentation, Release 1.6

such name already exists, a new, conflict-free name is generated for the new job, and this name is added to the
conflicting job’s extend key, so the existing job will inherit the new job’s features.

• Finally, the new job is added to the current config’s list of jobs.

When Jobs are Merged

• When two jobs are merged, which happens during extend and run expansion, and config file inclusion, there is
a source job, which is merged into the target job, so there are distinct roles and a direction of the merging.

• The basic principle is that the target job takes preference over the settings in the source job, like with OO
inheritance where child classes can override parent features.

• If a key of the source job is missing in the target job, it is added to the target job.

• If a key of the source job is present in the target job, and has a “=” leading the key name, then the source key is
discarded, and is not taken into account for the merging.

• If a key of the source job is present in the target job, and is not protected by the “=” sigil, the following happens:

– If the key value is a scalar value (string, number, boolean), the target value takes precedence and the source
value is discarded.

– If the key value is a reference value (list or map) then

* in the case of a list, the elements of the source list are uniquely appended to the target list, i.e. dupli-
cates are omitted in the process.

* in the case of a map, the merge process is applied recursively.

The Job Expansion Process

• After all include files have been processes, the list of jobs in this config is final. At this stage it can be decided
whether the requested jobs (the jobs that are passed as arguments to the generator) are among them and can be
run.

• Each job in the list of requested jobs (the “agenda” if you will) is expanded in the following way.

• Then, a potential run key has to be processed: * For each job in the run a new job is created (“synthetic jobs”).
This is so they can inherit stuff. The definition of the original job is used - with the run key stripped - as the
template for all of these jobs, so they have all the original job features. * Each job from the original run key is
then added to the extend key of its corresponding synthetic job, so they inherit from their run jobs. * The list of
synthetic jobs is now added to the agenda in place of the original job that had the run key.

• A potential extend key has to be processed: * For each element in the extend key, the corresponding job is
searched (see special section below). * Each of those jobs are merged into the current one, in the order they
appear in the list. This also means that features of each job in the list take precedence over those of jobs that
come right to it.

• The last two steps are repeated until no more jobs are on the agenda that have unresolved extend or run keys.

• Now each job has found its final job definition, and is run by the Generator.

How Job References are Resolved

• extend and run keys in a job reference other jobs by name. These names have to be resolved to their actual job
definitions, in order to complete the expansion of the referencing job.

• When name resolution has to be done, there are two contexts in which the referenced name is looked for:

– the current config

10.1. Generator 359

qooxdoo Documentation, Release 1.6

– the config in which the job was originally defined; this may be different from the current config, since the
job might have been obtained by inclusion of an external configuration file.

• The last point is interesting since a job in the current config might be referencing a job “foo” which might not
be present in the current config, e.g. due to filtering this job during import (there are various ways to do this).
So the job has to be looked for in one of the external config files. The original config file is chosen since there
might be more the one imported config file, and each of those might be defining a “foo” job.

How to add a new Component

qooxdoo comes with a set of helper applications, so called “components”, that can be custom-build for any standard
application. Examples are the Apiviewer, Testrunner and Inspector. Suppose we had a new such component, how
would this be made available as a standard job to skeleton-based applications? This section provides an implementation
view to the more end-user oriented introduction here.

Basics Usually, you simply want to run a job already defined for the component, such as the build job that creates
an optimized version of it. But in virtually all cases such a component needs to be passed information about the
application that tries to build it. This ranges from simple things like the output path, where a script is stored, over the
information which class libraries the application uses (think of the application’s test classes for the Testrunner), up to
arbitrary modification of job settings (variants, compile options, ...). So, generally speaking, you need to pass some
information to, or parameterize, the component job. These kinds of modifications are discussed in this section.

The answer to the question how to pass information into a job is generally two-fold:

• Macros in global let sections

• Other Jobs

Macros in global let sections are included automatically into jobs within the current configuration file; they are directly
integrated into a job’s own let key. Jobs themselves can be related to each other, but for this you have to be aware of a
general property of jobs in the configuration system:

Note: Within the generator’s configuration system, there is only a single mechanism how two jobs can pass infor-
mation between - and thus influence - each other: Through Job Extending.

That means one job has to extend the other, either directly or indirectly (via intermediate “extend” jobs), in order to
share information between the jobs.

This also means that the question which job extends which (the extension order, if you will) is curcial, as the settings in
the extending job always take precedence over those of any extended job. The extending job also has some possibilties
to control which keys are being modified by the extended jobs. Within the “extend” list of jobs, those to the left take
precedence over those on the right.

Preparing the component On that basis we will look at concrete ways to apply this when invoking a component
job. The job of the component that is to be run is often referred to as the “remote job”, as it is defined remotely to the
invoking application, which will be referred to as the “invoking context”.

Using the basic principles outlined above, there are two practical ways how component jobs can receive information
from the invoking context:

• Macros

• Includer Jobs

In both cases, it is essential that both the invoking environment (custom application) and the providing component
agree on the way how information is passed. In clear terms this means, it has to be part of the documentation of the

360 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

component how it allows its job to be tailored. (This documentation for the existing component jobs of qooxdoo is
available from the list of default jobs).

Parameterizing a remote job through Macros Macros are a simple way to pass information around. The compo-
nent job uses a macro in a place that should be parameterized, e.g. a part in a path.

A typical example is the BUILD_PATH macro. The component job stores its output in a file like this:

"outfile" : "${BUILD_PATH}/job_output.js"

The component will usually provide a sensible default for the macro, e.g.

"BUILD_PATH" : "./script"

The invoking context can now tailor the output path by overriding the BUILD_PATH macro:

"BUILD_PATH" : "my/other/path"

and running the component job with this macro binding will cause the output be written in the alternate directory.
Of course you have to make sure the new macro binding is in effect when the component job is being run (see also
further down for this). In the simplest case you just put the macro definition in the global let section of the application
config.json. As these let bindings are included in every job of the config, also to the jobs that are imported from other
configs, these bindings apply to effectively every job that is accessible through this config. As it is applied very early,
the binding in this let section take precedence over bindings of the same macros defined in imported jobs. Thus it is
possible to pass the new binding into a job defined in another configuration file.

If you want a more fine-grained control over the scope of a specific macro, you can add a new job definition into your
config of the same name as the job you want to tweak (but mind any name spacing of names introduced through the
as key in include keys, see further). Through automatic inheritance the remote job will become a parent of the local
job. If you give the local job a let section with the required macro, this binding will only take effect for the named job
(and those extending it), but not for others.

Parameterizing a remote job through Includer Jobs A more powerful but also more complex way to taylor a
remote job is through an includer job, a job that is included by others to add additional configuration to them. Used to
parameterize another job includer jobs are akin to dependency injection in programming languages.

The component job would extend the includer job in its own definition:

"extend" : ["includer-job"]

Again, the component would usually provide an includer-job of its own, with sensible defaults.

The invoking context can then tailor the remote job by tailoring the includer job:

"includer-job" :
{

"library" : { ... },
"environment" : { ... },
"compile-options" : { ... },
...

}

Supplying a job with the name of the includer job will make the component’s worker job use this definition for its
own extend list (through job shadowing). As with macros, the invoking application and the component have to agree
about the name of the includer job. After that, you can essentially pass all kinds of job keys into the remote job. There
is virtually no limit, but usually you will only want to set a few significant keys (Again, this is part of the protocol
between application and component and should be stated clearly in the component’s documentation). You should also
bear in mind the general rules fo job extending, particularly that the main job’s settings (the component job in our

10.1. Generator 361

qooxdoo Documentation, Release 1.6

case) will take precedence over the settings of the includer job, and that the main job can choose to block certain keys
from being modified by included jobs.

Adding a new job So how would you typically use these mechanisms to a new default job for qooxdoo that will
build the new component in a custom application? Here is a list of the steps:

• Split the component’s config.json into two.This is usually helpful to keep config settings for the component
that are just necessary to develop the component itself, from the definitions that are interesing to other applica-
tions that want to run the “exported” job(s) of that component. See e.g. the Testrunner application, where the
configuration is split between the local config.json and the includeable testrunner.json.

• Include the export config of the component in application.json. This will usually be done with a dedicated name
space prefix, like

{
"path" : "path/to/component/component.json",
"as" : "comp" // something meaningful

}

• Create a new job in application.json.Choose a name as you would want it to appear to the end user when he
invokes generate.py x. Optionally, add a descriptive “desc” key that will appear next to the job’s name in
the listing.

• Make this job extend the component’s job you want to make available, e.g. like

"extend" : ["comp::build"] // "build" is the job you want in most cases

• Add further keys, like a let section with macros you want to override, or other job keys.

• If the component’s job honors an includer job, define such a job in application.json. You will usually also need
to prefix it with the component’s “as” prefix you used above:

"comp::<includer job name>" : { <includer job keys>... }

The component’s worker job will automatically include your includer job.

• Add the job to the export list in the skeletons that should support it.The skeletons’ config.json usually contain
an export key, to filter the list of jobs a user will see with generate.py x down to the interesting jobs. Adding the
new job name will make sure the users sees it.

10.1.3 Reference Material

• Generator Default Jobs

• Generator Config Keys

• Generator Config Macros

10.2 Further Tools

10.2.1 Source Code Validation

qooxdoo includes its own Javascript validator, Ecmalint, which application developers can use to check their source
files for errors. It is started by running the lint generator job in an application directory:

362 Chapter 10. Tooling

qooxdoo Documentation, Release 1.6

./generate.py lint

Critical Warnings

Use of undefined or global identifier

This warning indicates that an unknown global variable is used. This can be caused by:

• The variable is not declared as local variable using var

• The variable name is misspelled

• It is OK to use this global but EcmaLint does not know about it. This can be fixed by passing the variable name
as known variable to the EcmaLint call or by adding a @lint ignoreUndefined(VARIABLE_NAME)
doc comment to the method’s API doc comment

Unused identifier

Map key redefined

Data field has a reference value

Hint: If data fields are initialized in the members map with reference values like arrays or maps they will be shared
between all instances of the class. Usually it is better to set the value to ‘null’ and initialize it in the constructor

Use of deprecated identifier

Critical Warning (for framework)

Potentially non-local private data field

Hint: You should never do this.

Protected data field

Hint: Protected data fields are deprecated. Better use private fields in combination with getter and setter methods.

Comment: It appears that this isn’t an issue that is generically to be solved as the hint suggest. See the corresponding
bug report.

Undeclared private data field

Hint: You should list this field in the members section.

10.2. Further Tools 363

http://bugzilla.qooxdoo.org/show_bug.cgi?id=2095

qooxdoo Documentation, Release 1.6

Coding Style Warnings

The statement of loops and conditions must be enclosed by a block in braces

Multiply declared identifier

Explicitly ignoring messages

The following doc comments can be used to explicitly ignore specific lint messages:

@lint ignoreUnused(x, y)
@lint ignoreDeprecated(alert)
@lint ignoreUndefined(button1, foo)
@lint ignoreReferenceField(field)

Before lint prints a warning it walks up the AST and looks for the next enclosing API doc comment. Usually these
comments should be placed in method JsDoc comments or in the class comment.

Suppressing additional warnings is not supported because they are always an error (e.g. duplicate map keys) or are
very hard to implement (e.g. protected warnings).

364 Chapter 10. Tooling

CHAPTER

ELEVEN

STANDARD APPLICATIONS

11.1 Demo Applications

11.1.1 Demobrowser

Demobrowser is a runner frame application that hosts nearly 250 sample
applications. All those applications are full, stand-alone qooxdoo applications. They cover a wide range, from simple
layout test apps to more full-featured form applications. But the focus is usually to exercise a particular widget or
feature of the qooxdoo class library. So while they might be simple visually, they are good resources to see how a
specific feature can be used in an app. As they are generated in three variants, one for each of qooxdoo’s standard
themes, you can get an impression how the same application looks under the different themes.

To navigate these demo applications, the runner frame organizes them in a navigation tree that groups applications by
main feature (like data binding, layouts, events, etc.). It also allows you to search for demo titles and qooxdoo classes
used in the demos, so you can e.g. search for all demos that deploy qooxdoo’s List widget (qx.ui.form.List). For each
rendered app you can inspect the JavaScript source to see how it is done.

Contains many examples and tests for widgets, layouts and other framework functionality.

Online demo

365

http://demo.qooxdoo.org/1.6/demobrowser
http://demo.qooxdoo.org/1.6/demobrowser

qooxdoo Documentation, Release 1.6

11.1.2 Feedreader

Feedreader is a browser-based RSS feedreader. It allows you to read posts
of pre-defined feeds, but you can also add other feeds in a session. The indiviudal feeds are retrieved using YQL
queries. It also showcases switching the language for an application, offering seven languages to choose from. As
it uses internet access, internationalization and is organized in parts on the code level, it shows several features of
prototypical RIA applications.

A typical rich internet application (RIA) for displaying RSS feeds.

Online demo

11.1.3 Playground

The Playground application allows you to play with code in an edit pane, and see the result of running that
code in a preview pane. It comes with a set of pre-defined code samples, but many more are available
and can be saved in the playground. Code can also be bookmarked and the links saved and re-run, to re-
create the sample you were working on. This allows for easy sharing of running code samples with others.

366 Chapter 11. Standard Applications

http://demo.qooxdoo.org/1.6/feedreader
http://demo.qooxdoo.org/1.6/feedreader

qooxdoo Documentation, Release 1.6

The scope of the code you can enter in the edit pane is restricted to what you can do in the main() method of a
standard qooxdoo application class.

The app features two different modes, one for creating RIA apps and one for creating mobile apps (webkit browser
required).

Bookmarklet

Note: experimental

javascript:(function(s){try{s=document.selection.createRange().text}catch(e){s=window.getSelection().getRangeAt(0).toString()};s=s.replace(/\r?\n/g,"%250D");window.open("http://demo.qooxdoo.org/1.6/playground/#"+encodeURIComponent(’{"code":"’+encodeURIComponent(s)+’"}’))})()

Explore qooxdoo programming interactively: edit qooxdoo code in one pane, and see the result running
in another.

Online demo

11.1. Demo Applications 367

http://demo.qooxdoo.org/1.6/playground
http://demo.qooxdoo.org/1.6/playground

qooxdoo Documentation, Release 1.6

11.1.4 ToDo

The ToDo application is a simple but yet powerful demon-
stration on how qooxdoo can be used to write a website, based on HTML and CSS. The app uses data binding, the
offline store, a controller and templating to get the best out of the website specific features of qooxdoo.

A DOM-oriented application using data binding and CSS styling.

Online demo

11.1.5 Portal

Portal is a DOM-level application that doesn’t use any of qooxdoo’s GUI
widgets. It shows both what you can do using qooxdoo’s low-level API and how to build a rudimentary portal appli-
cation. The various portlets can be freely re-arranged by dragging them to new positions. They also indicate how they
can be resized.

A low-level, DOM-oriented application without any high-level qooxdoo widgets.

Online demo

368 Chapter 11. Standard Applications

http://demo.qooxdoo.org/1.6/todo
http://demo.qooxdoo.org/1.6/todo
http://demo.qooxdoo.org/1.6/portal
http://demo.qooxdoo.org/1.6/portal

qooxdoo Documentation, Release 1.6

11.1.6 Showcase

The Showcase application contains a number of feature “applets” that are
actually parts of a single qooxdoo application. A thumbnails bar allows you to switch between the different demo
apps. The topics covered include tabling, themes, internationalization and data binding. With each app there comes
instructions and background information, how to exercise them, links to further demos and documentation.

A page-style application embedding a number of small showcase applications to highlight specific topics
like tables, theming or internationalization.

Online demo

11.1.7 Widgetbrowser

The Widgetbrowser application shows the widgets and themes available in
qooxdoo. Apart from giving an overview of the widgets and themes available, the application is especially useful for
theme authors.

Features the widgets and themes available in qooxdoo.

Online demo

11.1. Demo Applications 369

http://demo.qooxdoo.org/1.6/showcase
http://demo.qooxdoo.org/1.6/showcase
http://demo.qooxdoo.org/1.6/widgetbrowser
http://demo.qooxdoo.org/1.6/widgetbrowser

qooxdoo Documentation, Release 1.6

11.2 Developer Tools

11.2.1 Apiviewer

The Apiviewer is an application to browse qooxdoo’s class API. The tree
view pane offers the typical class hierarchy, organized by name spaces. Each package (intermediate name space) has
an overview description and links to the sub-packages or classes it contains. Descriptions usually contain cross links
to relevant packages or classes. The entire reference is searchable through the search tab, where you can enter class
and method names.

The actual API descriptions are generated from JSDoc-style comments in the class code, and can be generated for
custom applications as well, so you can browse the API of your own classes in Apiviewer.

Searchable API reference of the qooxdoo framework.

Online demo

11.2.2 Testrunner

Testrunner is a runner frame application for unit tests. Unit tests can be
written using framework classes from the qx.dev.unit.* name space. They follow the general scheme of JSUnit.
Test class are then gathered into a dedicated test application (the “Application under Test”). This test application is
loaded into the runner frame, which discovers and displays the contained tests, and allows you to run them all or
individually. Results and log entries are displayed in dedicated panes.

The online Testrunner loads qooxdoo’s own framework unit tests (approx. 2,400 unit tests currently), but a custom
testrunner can be created for each custom application, to run that application’s unit tests.

See the dedicated page for more information:

The qooxdoo Test Runner

Integrated unit testing framework similar to (but not requiring) JSUnit.

Online demo

370 Chapter 11. Standard Applications

http://demo.qooxdoo.org/1.6/apiviewer
http://demo.qooxdoo.org/1.6/apiviewer
http://demo.qooxdoo.org/1.6/testrunner
http://www.jsunit.net/
http://demo.qooxdoo.org/1.6/testrunner

qooxdoo Documentation, Release 1.6

11.2.3 Inspector

qooxdoo Inspector is a powerful development tool perfectly suited for live debugging and modifying qooxdoo appli-
cations.

See it in action, debugging the qooxdoo feedreader demo application.

If you know the Firebug extension for Firefox, you will be familiar with most of Inspector’s capabilities. But it is
much more than that: Since it is a qooxdoo application itself, it runs in all major browsers, including IE, Firefox,
Opera, Safari and Chrome. And it allows for truly qooxdoo-specific debugging, including displaying the UI hierarchy
and modifying the properties of qooxdoo widgets.

Usage

There are two ways to use the inspector (explained in more detail below):

• The first way is to run a simple generator job to create a local inspector instance for your custom application.
(See: Running the inspector job)

• Generate the build version of the inspector and open it in a (local) web server. (See: Running inspector with an
HTTP server)

Individual inspector from file system

First of all, make sure you’ve created a source version of your application. Then create the inspector:

generate.py inspector

Once the job is finished, you can open the index.html file from the created inspector application. You will find the
file in the newly generated inspector folder (inspector\index.html).

Shared inspector over a web server

To generate the build version of the inspector, change to the inspector home directory (in the SDK in folder
SDK\component\inspector). Then run its build job:

generate.py build

Once the build job is finished you can access the inspector through your HTTP server to inspect different qooxdoo
applications. If you don’t already have an HTTP server like Apache installed or you don’t want to configure it, you
can startup a simple Python-based web server locally:

python -m CGIHTTPServer

11.2. Developer Tools 371

http://demo.qooxdoo.org/1.6/inspector/
http://demo.qooxdoo.org/current/inspector

qooxdoo Documentation, Release 1.6

Note: Make sure the qooxdoo SDK (inspector) and the custom applications to debug are accessible from the document
root! You can achieve this by starting up the Python command above from a directory that has both directories as
subdirectories.

Objects Window

The objects window lists all qooxdoo objects created by your app in a table. The inspector has full access to the
internal object registry of your application. Of course, the inspector’s objects are excluded from the display so they
won’t interfere with debugging your app. The objects can be sorted by hash, count or name and filtered by name. To
select an object listed in the table and to update the other views accordingly, simply click on its list entry.

Widgets Window

The widgets window displays the hierarchical structure of your application’s GUI as a tree. Each widget which was
added to the document (or into any deeper widget hierarchy) will be shown. Again, a simple click on a widget in the
tree selects it. Most of the widgets have a specific icon (corresponding to their type) in order to identify the widgets in
the tree faster. The name of the widget’s class and its hash value are shown as identifiers in the tree.

The widgets window has two display modes: By default, the application’s “public” widget hierarchy is displayed, i.e.
only those widgets that were explicitly added by the application developer using the parent widget’s “add” method.

372 Chapter 11. Standard Applications

qooxdoo Documentation, Release 1.6

Sub-widgets that are added by the parent widget itself (“child controls”) are hidden in this mode. That’s why it’s
possible to select a widget using the “Inspect widget” button or the Objects window without the Widgets tree displaying
it. In that case, use the button in the top right corner to switch to the internal widget hierarchy display mode and click
the “reload” button. After that, all sub-widgets including child controls will be displayed in the window.

Properties Window

The properties window is one of two windows whose main focus is on actually working with a previously selected
object. It shows all properties of the currently selected object. There are two different ways to sort the properties.

But it is not only about displaying properties, it also allows editing: To make this as convenient and least error-prone as
possible, form elements are chosen according to the property’s type. For instance, in many cases it is as easy as using
a checkbox (for a boolean value), a drop-down menu (for pre-defined values) or a color picker (for a color value). For
properties that support a wider range of values, regular text input fields are used.

If you want to know more about a certain property, select it and click the API button to open up the API documentation
for the selected property.

Console

The console is probably the most powerful Inspector window, as it allows viewing and modifying instances similar to
the properties window, but it also gives the developer a virtually unrestricted environment for debugging a qooxdoo
app.

One part of the console is a generic JavaScript console, familiar to most Firebug users. At the prompt you can enter
arbitrary JavaScript code which is executed after pressing enter. The keyword “this” refers to the currently selected
object. That way it is very easy to inspect and modify the currently selected widget instance. To make it even more
convenient, auto-completion while entering code is available. This allows you to select one of the suggested methods
that are available for a specific object. Hit the CRTL+Space keys to display a list of available instance members.

11.2. Developer Tools 373

qooxdoo Documentation, Release 1.6

Another part of the console window is a DOM browser, named as in Firebug. This browser allows you to inspect an
object interactively. You can “dive into” an object, down to arbitrary depth, following property values that refer to data
structures within the current object or pointing to ones within other objects.

Selenium Window

The Selenium window’s purpose is to help test developers in writing simulated interaction tests which will then be run
using the Selenium testing framework and qooxdoo’s Simulator component or the Simulator contribution it is based
on. Similar to the Selenium IDE Firefox plugin, it can be used to determine a locator string for any element (qooxdoo
widget in this case) and supports playback of test commands against the inspected application.

There is a dedicated page with extensive descriptions that demonstrates how to create a test case using the Selenium
window:

Using the Inspector to write Selenium tests

qooxdoo’s Inspector is not only a very useful tool for application developers, it can also help you write Selenium tests.

The Selenium window From qooxdoo 1.2 onward, the Inspector features a Selenium window that duplicates some
of the functionality of the Selenium IDE Firefox extension, with a qooxdoo twist. It can generate locator strings for
any qooxdoo widget and run Selenium commands against the inspected application. The result is a simple Selenium
test case that can be exported in the “Selenese” HTML format.

374 Chapter 11. Standard Applications

http://seleniumhq.org/
http://qooxdoo.org/contrib/project/simulator

qooxdoo Documentation, Release 1.6

Prerequisites The Selenium window needs to load Selenium Core (the JavaScript part of Selenium) This can be
downloaded as a zip archive from the Selenium website.

If the Inspector is loaded over HTTP, the required scripts can be loaded directly from their online repository as de-
scribed below.

Configuration Clicking the Options button (the only part of the Selenium window that is active initially) opens a
window where this setting can be defined. Enter the URI of a directory with the contents of the Selenium Core zip file.

The protocol used must be the same the Inspector is loaded over:

• If you’re loading the Inspector from your local file system, extract the archive locally and use a file system URI
(file:///...).

• If the Inspector is loaded from a web server, the Selenium Core directory must be accessed over HTTP. In this
case, Same Origin Policy restrictions do not apply, so the script directory needn’t be on the same server as the
Inspector itself. If it is, a relative path can be used.

In the latter case, you can simply click the Use default URI button. This will enter the URL of the Selenium
code repository in the text field.

Click “OK” after configuring the paths. The rest of the Selenium window’s GUI will be activated once the external
scripts are loaded. The configured URI is saved in a cookie so this step is only necessary once per browser.

Controls

Toolbar

Pressing the plus button will add a new line to the test case. This consists of a default command (qxClick) and a
qxh locator pointing to the widget currently selected in the Inspector.

11.2. Developer Tools 375

http://seleniumhq.org/download/

qooxdoo Documentation, Release 1.6

The minus button removes the currently selected lines from the test case.

The slider controls the delay between individual commands when playing back a test case. In some cases, e.g. clicking
a button that opens a new window, it will be necessary to set this to a higher value to make sure the application finishes
rendering before the next command executes.

The play button executes selected test commands. If no commands are selected, the will all be run.

While the record button is active, a new line will be added whenever a new widget is selected in the Inspector.

The import/export button opens a new window containing the current test case in Selenese format. To import a
Selenese test case, paste it into the text field and click Import.

The options button opens a dialog where external script paths can be configured.

Test Commands

The table underneath the toolbar lists the commands in the current test case. Select one or more rows to execute
their commands using the play button. Commands, locators and parameters can be edited by double clicking. Editing
commands will display a combo box listing all commands supported by Selenium Core.

Log The log area displays any messages generated by Selenium Core while running commands.

Selenese window

Opened by clicking the Import/Export button in the toolbar, the Selenese window displays the current test case in
Selenese format. This can be copied and pasted into a file, e.g. to be run by Selenium RC. Selenese import is also
supported by pasting the contents of a Selenese file in the text area and clicking Import. This will replace any
commands in the current test case with those from the pasted Selenese.

376 Chapter 11. Standard Applications

qooxdoo Documentation, Release 1.6

Tutorial To demonstrate the Selenium window, let’s write a small test case for the qooxdoo Feed Reader: We’ll
automate the procedure of adding a new user-defined feed.

For this we’ll need both the Feed Reader itself and the Inspector, of course: Generate both by running generate.py
source,inspector in the application/feedreader directory of your qooxdoo SDK or SVN checkout,
then open application/feedreader/inspector/index.html in your favorite browser.

Now configure the external scripts as described above.

Time to start automating: Click the Inspect Widget button in the Inspector’s toolbar, then click the Feed Reader’s
Add Feed button. qx.ui.toolbar.Button[xy] should now be listed as the inspected widget. If you clicked
the button’s icon or label, that’s fine too.

Click the plus button and a new line is added to the test case. Select that line and press play and the Add Feed window
should open. You might need to move some Inspector windows around to see it.

Now click the record button, select Inspect widget again and click the upper text field in the Add Feed window. The
new command will be added immediately. Select Inspect Widget again and click the second text field, then repeat the
process for the Add button. We’re done adding commands, so you can deactivate the record button and then close the
Add Feed window.

Of course we want to type in the text fields instead of clicking them, so we need to change the commands: Double
click the first column of the second row that currently says qxClick. Open the dropdown menu that appears and
select qxType. Now double click this command’s value cell and enter a title for the new feed to be added, e.g.
“Selenium Blogs”.

Repeat this step for the next row to define the new feed’s URL, e.g. “http://feeds.feedburner.com/Selenium”.

That’s all the steps we need, so let’s watch Selenium work. Set the slider to something around 1.5 seconds, select all
four commands in the table and press the play button. If all went according to plan, we can click the export button to
get a Selenese version of our test case to save.

A debugging tool to inspect a qooxdoo application, featuring an interactive console, an object and widget
finder, and a property editor.

Online demo

11.2.4 Simulator

Overview

The purpose of the Simulator component is to help developers rapidly develop and run a suite of simulated user
interaction tests for their application with a minimum amount of configuration and using familiar technologies, e.g.
qooxdoo-style JavaScript. To do so it uses a combination of qooxdoo’s own toolchain, Mozilla’s Rhino JavaScript
engine and Selenium Remote Control.

Feature Highlights

The Simulator enables developers to:

• Define Selenium test cases by writing qooxdoo classes

• Use the JUnit-style setUp, test*, tearDown pattern

• Define test jobs using the qooxdoo toolchain’s configuration system

• Utilize the standard Selenium API as well as qooxdoo-specific user extensions to locate and interact with qoox-
doo widgets

• Capture and log uncaught exceptions thrown in the tested application

11.2. Developer Tools 377

http://feeds.feedburner.com/Selenium
http://demo.qooxdoo.org/1.6/inspector
http://www.mozilla.org/rhino/
http://seleniumhq.org/projects/remote-control/

qooxdoo Documentation, Release 1.6

• Use Selenium Server to run tests in many different browser/platform combinations

• Write custom log appenders using qooxdoo’s flexible logging system

How it works

Similar to unit tests, Simulator test cases are defined as qooxdoo classes living in the application’s source directory.
As such they support qooxdoo’s OO features such as inheritance and nested namespaces. The setUp, testSomething,
tearDown pattern is supported, as well as all assertion functions defined by qx.core.MAssert.

The main API that is used to define the test logic is QxSelenium, which means the DefaultSelenium API plus the
Locator strategies and commands from the qooxdoo user extensions for Selenium.

As with qooxdoo’s unit testing framework, the Generator is used to create a test runner application (the Simulator).
User-defined test classes are included into this application, which extends qx.application.Native and uses a simplified
loader so it can run in Rhino.

A separate Generator job is used to start Rhino and instruct it to load the Simulator application, which uses Selenium’s
Java API to send test commands to a Selenium server (over HTTP, so the server can run on a separate machine). The
Server then launches the selected browser, loads the qooxdoo application to be tested and executes the commands
specified in the test case.

Setting up the test environment

The following sections describe the steps necessary to set up Simulator tests for an application based on qooxdoo’s
GUI or Inline skeleton.

Required Libraries

The Simulator needs the following external resources to run:

• Java Runtime Environment: Version 1.6 is known to work.

• Selenium Server and Java Client Driver: Version 1.0.3 or later. Later versions should generally be OK as long
as the Selenium API remains stable.

• Mozilla Rhino: Version 1.7R1 or later.

The Java archives for the Selenium client driver and Rhino must be located on the same machine as the application
to be tested. For Rhino, this means js.jar. Older versions of Selenium provide a single archive (selenium-java-client-
driver.jar), while newer ones are split up into the actual driver (selenium-java-<x.y.z>.jar) and several external libraries
found in the “libs” folder of the ZIP archive.

The Selenium Server (selenium-server.jar, or selenium-server-standalone.jar for newer releases) can optionally run on
a physically separate host (see the Selenium RC documentation for details). The qooxdoo user extensions must be
located on the same machine as the server (see below).

Generator Configuration

Unlike other framework components, the Simulator isn’t ready to run out of the box: The application developer needs
to specify the location of the required external libraries (Selenium’s Java bindings and Mozilla Rhino). This is easily
accomplished by redefining the SIMULATOR_CLASSPATH macro (in the applicaton’s config.json file; be sure to heed
the general information about paths in config files):

378 Chapter 11. Standard Applications

http://seleniumhq.org/about/platforms.html#browsers
http://demo.qooxdoo.org/1.6/apiviewer/#qx.core.MAssert
http://jarvana.com/jarvana/view/org/seleniumhq/selenium/selenium-rc-documentation/1.0/selenium-rc-documentation-1.0-doc.zip!/java/com/thoughtworks/selenium/DefaultSelenium.html
http://qooxdoo.org/contrib/project/simulator#selenium_user_extension_for_qooxdoo
http://demo.qooxdoo.org/1.6/apiviewer/#qx.application.Native
http://seleniumhq.org/download
http://www.mozilla.org/rhino/download.html

qooxdoo Documentation, Release 1.6

"let" :
{

"SIMULATOR_CLASSPATH" :
[
"../selenium/selenium-java-2.4.0.jar",
"../selenium/libs/*",
"../rhino/js.jar"

]
}

The “environment” section of the “simulation-run” job configures where the AUT is located and how to reach the Sele-
nium server that will launch the test browser and run the test commands. The following example shows the minimum
configuration needed to launch a Simulator application that will test the source version of the current application in
Firefox 3 using a Selenium server instance running on the same machine (localhost):

"simulation-run" :
{

"let" :
{
"SIMULATOR_CLASSPATH" :
[

"../selenium/selenium-java-2.4.0.jar",
"../selenium/libs/*",
"../rhino/js.jar"

]
},

"environment" :
{
"simulator.testBrowser" : "*firefox3",
"simulator.selServer" : "localhost",
"simulator.selPort" : 4444,
"simulator.autHost" : "http://localhost",
"simulator.autPath" : "/${APPLICATION}/source/index.html"

}
}

See the job reference for a listing of all supported settings and their default values. Additional runtime options are
available, although their default settings should be fine for most cases. See the simulate job key reference for details.

Writing Test Cases

As mentioned above, Simulator test cases are qooxdoo classes living (at least by default) in the application’s
simulation name space. They inherit from simulator.unit.TestCase, which includes the assertion functions from
qx.core.MAssert. Simulator tests look very similar to qooxdoo unit tests as they follow the same pattern of setUp,
testSomething, tearDown. Typically, each test* method will use the QxSelenium API to interact with some part of
the AUT, then use assertions to check if the AUT’s state has changed as expected, e.g. by querying the value of a
qooxdoo property.

Locating Elements

In order to simulate interaction with a qooxdoo widget, Selenium needs to locate it first. This is accomplished by using
one or more of the locator strategies described on this page:

• Locating elements

11.2. Developer Tools 379

qooxdoo Documentation, Release 1.6

Simulating Interaction

In addition to Selenium’s built-in commands, a number of qooxdoo-specific methods are available in the simula-
tor.QxSelenium and simulator.Simulation classes. Run generate.py api in the component/simulator directory of the
qooxdoo SDK to create an API Viewer for these classes.

Test Development Tools

Selenium IDE

This Firefox plugin allows test developers to run Selenium commands against a web application, making it a very
useful to debug locators and check if commands produce the expected results. In order to use Selenium IDE with the
qooxdoo-specific locators and commands, open the Options menu and enter the path to the qooxdoo extensions for
Selenium in the field labeled Selenium Core extensions, e.g.:

C:\workspace\qooxdoo-1.4-sdk\component\simulator\tool\user-extensions\user-extensions.js

Inspector

qooxdoo’s Inspector component can provide assistance to test developers by automatically determining locators for
widgets.

Generating the Simulator

The “simulation-build” job explained above is used to generate the Simulator application (in the AUT’s root directory):

generate.py simulation-build

Note that the Simulator application contains the test classes. This means that it must be re-generated whenever existing
tests are modified or new ones are added.

Starting the Selenium server

The Selenium server must be started with the -userExtensions command line option pointing to the qooxdoo user
extenions for Selenium mentioned above:

java -jar selenium-server-standalone.jar -userExtensions <QOOXDOO-TRUNK>/component/simulator/tool/user-extensions/user-extensions.js

Running the Tests

Once the Simulator application is configured and compiled and the Selenium server is running, the test suite can be
executed using the “simulation-run” job:

generate.py simulation-run

The Simulator’s default logger writes the result of each test to the shell as it’s executed. The full output looks something
like this:

==
EXECUTING: SIMULATION-RUN

==
>>> Initializing cache...

380 Chapter 11. Standard Applications

qooxdoo Documentation, Release 1.6

>>> Running Simulation...
>>> Load runtime: 360ms
>>> Simulator run on Thu, 02 Dec 2010 15:57:30 GMT
>>> Application under test: http://localhost/~dwagner/workspace/myApplication/source/index.html
>>> Platform: Linux
>>> User agent: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.12) Gecko/20101026 Firefox/3.6.12
>>> PASS myapplication.simulation.DemoSimulation:testButtonPresent
>>> PASS myapplication.simulation.DemoSimulation:testButtonClick
>>> Main runtime: 11476ms
>>> Finalize runtime: 0ms
>>> Done

Testing multiple browser/OS combinations

General

Since the Simulator uses Selenium RC to start the browser and run tests, the relevant sections from the Selenium
documentation apply. Due to the special nature of qooxdoo applications, however, some browsers require additional
configuration steps before they can be tested.

Firefox

The 3.x line of Mozilla Firefox is usually the most reliable option for Simulator tests. Firefox 3.0, 3.5 and 3.6 are all
known to work on Windows XP and 7 as well as Linux and OS X.

Firefox 4 is not supported by Selenium 1.0.3 out of the box, but it can be used for testing by starting it with a custom
profile. These are the necessary steps:

• Start Firefox 4 with the -P option to bring up the Profile Manager

• Create a new profile, naming it e.g. “FF4-selenium”

• Under Options -> Advanced -> Network -> Settings, select Manual Proxy Configuration and enter the host name
or IP address and port number of your Selenium server

• In your application’s config.json, use the *custom browser launcher followed by the full path to the Firefox
executable and the name of the profile:

"simulation-run" :
{

"environment" :
{
"simulator.testBrowser" : "*custom C:/Program Files/Mozilla Firefox/firefox.exe -P FF4-selenium",
[...]

}
}

Internet Explorer 6, 7, 8 and 9

Starting the server When testing with IE, the Selenium server must be started with the -singleWindow option so
the AUT will be loaded in an iframe. This is deactivated by default so two separate windows are opened for Selenium
and the AUT. IE restricts cross-window JavaScript object access, causing the tests to fail.

java -jar selenium-server-standalone.jar -singleWindow -userExtension [...]

11.2. Developer Tools 381

http://seleniumhq.org/docs/05_selenium_rc.html
http://seleniumhq.org/docs/05_selenium_rc.html

qooxdoo Documentation, Release 1.6

Launching the browser To launch IE, the *iexploreproxy launcher should be used. The *iexplore launcher starts
the embedded version of IE which in some ways behaves differently from the full-blown browser.

"simulation-run" :
{

"environment" :
{
"simulator.testBrowser" : "*iexploreproxy",
[...]

}
}

A framework to develop simulated interaction tests, using Selenium.

11.2.5 Feature Configuration Editor

A tool designed to help developers create config-
urations for browser-specific builds. Detected feature sets from multiple clients can be imported and compared to find
common values. The selected features are displayed in JSON format and can be pasted straight into the application’s
config.json.

Browser-specific builds

By predefining environment keys that correspond to certain browser-specific features, builds can be tailored towards
certain clients. For example, legacy Internet Explorer versions (6,7 and 8) have very similar sets of features that are
highly unlikely to change. Due to their comparatively poor JavaScript performance, they also particularly benefit from
cutting down the size of the code that needs to be evaluated and the number of runtime feature checks, making them
prime candidates for a custom build.

Generator configuration

Regardless of the usage scenario, developers need to make sure to carefully choose the environment settings to be
hard-wired so as not to accidentally remove code needed by one of the target clients. The Feature Configration Editor
was designed to facilitate this process by allowing developers to compare the feature sets of multiple browsers and
create an environment configuration for common features.

The following job config example shows how to create an application variant customized for IE 6, 7 and 8:

382 Chapter 11. Standard Applications

http://seleniumhq.org
http://demo.qooxdoo.org/1.6/featureconfigeditor

qooxdoo Documentation, Release 1.6

"build-script-legacyie" :
{

"extend" : ["build-script"],

"environment" :
{
"browser.name":"ie",
"css.borderradius":false,
"css.boxmodel":"content",
"css.boxshadow":false,
"css.gradients":false,
"css.placeholder":false,
"css.rgba":false,
"css.textoverflow":true,
"css.translate3d":false,
"ecmascript.objectcount":false,
"engine.name":"mshtml",
"event.pointer":false,
"event.touch":false,
"html.audio":false,
"html.canvas":false,
"html.classlist":false,
"html.filereader":false,
"html.geolocation":false,
"html.svg":false,
"html.video":false,
"html.vml":true,
"html.webworker":false,
"html.xpath":false,
"html.xul":false

},

"compile-options" :
{
"paths":
{

"file" : "build/script/${APPLICATION}_ie.js"
}

}
}

By also running the default build-script job, an additional generic version of the application that makes no
assumptions about client features can be generated whenever build is run:

"build" :
{

"run" :
[
"build-resources",
"build-script",
"build-script-legacyie",
"build-files"

]
}

11.2. Developer Tools 383

qooxdoo Documentation, Release 1.6

Loading a specific variant

Finally, the application’s index.html file must make sure the correct application variant is loaded based on the
browser, e.g. by performing a simple user agent check:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>customapp</title>
<script type="text/javascript">
var suffix = "";

if (/MSIE (6|7|8)\.0/.exec(navigator.userAgent)) {
suffix = "_ie";

}

var scriptPath = "script/customapp" + suffix + ".js";
document.write(’<script type="text\/javascript" src="’ + scriptPath + ’"><\/script>’);

</script>
</head>
<body></body>
</html>

Editing tool for environment configurations used for browser-specific builds.

Online demo

384 Chapter 11. Standard Applications

http://demo.qooxdoo.org/1.6/featureconfigeditor

CHAPTER

TWELVE

MIGRATION

12.1 Migration Guide

Migrating from a previous qooxdoo version to a current release often requires nothing more than just running the
migration job in your application. Yet, some changes between releases may involve manual modifications as
detailed in the migration guide of each individual release. The following guide cover both cases.

If you are migrating from a legacy verison of qooxdoo to 1.6, namely from a 0.8.2 or prior release, please do a two-step
migration to 1.6. Firstly, migrate to qooxdoo 0.8.3, following the instructions in the corresponding manual. You will
need a qooxdoo 0.8.3 SDK to go through the process, so fetch one from the download location. This is necessary
as there have been major changes in qooxdoo which require the infrastructure of the intermediate version to bridge.
Then, follow the remaining steps in this document.

• Backup

You might want to create a backup of your application files first. The migration process changes source files in
place, modifying your code base.

• Configuration

– Then, after you have unpacked the new qooxdoo SDK on your system, change references to it in
your config.json and possibly in generate.py to point to the new version (look for “QOOX-
DOO_PATH”). Make sure that the path ends in the root directory of the SDK (like .../qooxdoo-1.6-sdk).

– Check the current release notes and those of previous releases between your current version and 1.6 for
changes to the generator configuration, as they have to be done by hand. Make sure you apply them to
your config.json as far as they affect you. For example, with 0.8.1 the config.json macro QOOXDOO_PATH
does not include the trailing “framework” part anymore, so make sure to add that in references to the
qooxdoo class library. E.g. if you list the qooxdoo framework Manifest.json explicitly in your config
using QOOXDOO_PATH, it should read ${QOOXDOO_PATH}/framework/Manifest.json.

– Alternatively, particularly if you config.json is rather small, create a separate gui skeleton elsewhere and
copy its config.json over to your application, and port the config settings from your old configuration to
this file. This might be the simpler approach.

• Run Migration

Then change to your application’s top-level directory and invoke the command

generate.py migration

• Follow the instructions of the migration script, particularly allow the cache to be deleted. For more information
about this script, see the corresponding job description.

• Migration Log

385

http://qooxdoo.org/about/release_notes
http://qooxdoo.org/about/release_notes/0.8.3
http://qooxdoo.org/documentation/0.8#migration
https://sourceforge.net/projects/qooxdoo/files/
http://qooxdoo.org/about/release_notes/1.6#tooling
http://qooxdoo.org/about/release_notes

qooxdoo Documentation, Release 1.6

Check the migration.log which is created during the run of the migration script. Check all hints and
deprecation warnings in the log and apply them to your code.

• Test

You now have an up-to-date source tree in your application. Run

generate.py source

to check that the generation process goes through and test your application in the browser.

386 Chapter 12. Migration

CHAPTER

THIRTEEN

REFERENCES

13.1 Core

13.1.1 Class Declaration Quick Ref

This is a quick reference for the various features of a qooxdoo class declaration. It uses an EBNF-like syntax.

Properties, a particular part of the class declaration, have quite an extensive sub-spec, and are therefore factored out to
their own page.

class_decl := ’qx.Class.define’ ’(’ ’"’ <name.space.ClassName> ’"’ ’,’
’{’ { feature_spec ’,’ } ’}’

’)’

feature_spec :=
’type’ ’:’ type_spec |
’extend’ ’:’ extend_spec |
’implement’ ’:’ implement_spec |
’include’ ’:’ include_spec |
’construct’ ’:’ construct_spec |
’events’ ’:’ events_spec |
’statics’ ’:’ statics_spec |
’properties’ ’:’ properties_spec |
’members’ ’:’ members_spec |
’environment’ ’:’ environment_spec |
’destruct’ ’:’ destruct_spec |
’defer’ ’:’ defer_spec

type_spec := ’static’ | ’abstract’ | ’singleton’

extend_spec := <name.of.SuperClass>

implement_spec := <name.of.Interface> |
’[’ <name.of.Interface1> ’,’ <name.of.Interface2> ’,’

... ’]’

include_spec := <name.of.Mixin> |
’[’ <name.of.Mixin1> ’,’ <name.of.Mixin2> ’,’ ... ’]’

construct_spec := js_function_value

statics_spec := c_map

387

qooxdoo Documentation, Release 1.6

properties_spec := ? see separate properties quick ref ?

members_spec := c_map

environment_spec := ’{’
{ ’"’ <environment_name> ’"’ ’:’

(js_primitive_value | js_reference_value) ’,’ }
’}’

events_spec := ’{’
{ ’"’ <event_name> ’"’ ’:’ ’"’ qx_event_type ’"’ ’,’ }

’}’

defer_spec := js_function_value

destruct_spec := js_function_value

c_map := ’{’
{ <key> ’:’ (js_primitive_value |

js_reference_value |
js_function_value |
js_function_call) ’,’ }

’}’

js_function_value := ? Javascript anonymous function ’function (...)
{...}’ ?

js_function_call := ? Javascript function call ’foo(...)’ ?
js_primitive_value := ? any value from the Javascript primitive types ?
js_reference_value := ? any value from the Javascript reference types ?
qx_event_type := ? any qooxdoo event type class name, e.g.

’qx.event.type.DataEvent’ ?

13.1.2 Interfaces Quick Ref

This is a quick reference for the various features of a qooxdoo interface declaration. It uses an EBNF-like syntax.

It is much like a class declaration, with a more limited set of features. Properties are just names with empty map
values.

interface_decl := ’qx.Interface.define’ ’(’ ’"’ <name.space.InterfaceName> ’"’ ’,’
{ feature_spec ’,’ }

’)’

feature_spec := ’extend’ ’:’ extend_spec |
’statics’ ’:’ statics_spec |
’properties’ ’:’ properties_spec |
’members’ ’:’ members_spec |
’events’ ’:’ events_spec

extend_spec := <name.of.SuperInterface> |
’[’ <name.of.SuperInterface1> ’,’

<name.of.SuperInterface2> ’,’ ... ’]’

statics_spec := ’{’
{ ’"’ <upper_case_key> ’"’ ’:’ js_primitive_value ’,’ }
’}’

388 Chapter 13. References

qooxdoo Documentation, Release 1.6

properties_spec := ’{’
{ ’"’ <property_name> ’"’ ’:’ ’{}’ ’,’ }
’}’

members_spec := c_map

events_spec := ’{’
{ ’"’ <event_name> ’"’ ’:’ ’"’ qx_event_type ’"’ ’,’ }
’}’

c_map := ’{’
{ <key> ’:’ (js_primitive_value |

js_reference_value |
js_function_value |
js_function_call) ’,’ }

’}’

js_function_value := ? Javascript anonymous function ’function (...)
{...}’ ?

js_function_call := ? Javascript function call ’foo(...)’ ?
js_primitive_value := ? any value from the Javascript primitive types ?
js_reference_value := ? any value from the Javascript reference types ?
qx_event_type := ? any qooxdoo event type class name, e.g.

’qx.event.type.DataEvent’ ?

13.1.3 Mixin Quick Ref

This is a quick reference for the various features of a qooxdoo mixin declaration. It uses an EBNF-like syntax.

It is much like a class declaration, with a more limited set of features. Properties are documented on their own page.

mixin_decl := ’qx.Mixin.define’ ’(’ ’"’ <name.space.MixinName> ’"’ ’,’
{ feature_spec ’,’ }

’)’

feature_spec :=
’include’ ’:’ include_spec |
’construct’ ’:’ construct_spec |
’statics’ ’:’ statics_spec |
’properties’ ’:’ properties_spec |
’members’ ’:’ members_spec |
’events’ ’:’ events_spec |
’destruct’ ’:’ destruct_spec

include_spec := <name.of.Mixin> |
’[’ <name.of.Mixin1> ’,’ <name.of.Mixin2> ’,’ ... ’]’

construct_spec := js_function_value

statics_spec := c_map

properties_spec := ? see separate properties quick ref ?

members_spec := c_map

events_spec := ’{’
{ ’"’ <event_name> ’"’ ’:’ ’"’ qx_event_type ’"’ ’,’ }

13.1. Core 389

qooxdoo Documentation, Release 1.6

’}’

destruct_spec := ’{’
{ ’this._disposeFields’ ’(’ <fields_list> ’)’ ’;’ }
{ ’this._disposeObjects’ ’(’ <fields_list> ’)’ ’;’ }
{ ’this._disposeObjectDeep’ ’(’ <deep_field> ’)’ }
’}’

c_map := ’{’
{ <key> ’:’ (js_primitive_value |

js_reference_value |
js_function_value |
js_function_call) ’,’ }

’}’

js_function_value := ? Javascript anonymous function ’function (...)
{...}’ ?

js_function_call := ? Javascript function call ’foo(...)’ ?
js_primitive_value := ? any value from the Javascript primitive types ?
js_reference_value := ? any value from the Javascript reference types ?
qx_event_type := ? any qooxdoo event type class name, e.g.

’qx.event.type.DataEvent’ ?

13.1.4 Properties Quick Reference

This is a quick reference for the various property features available in qooxdoo.

Properties are declared in the constructor map of the class as a dedicated key-value pair (here called
properties_decl). This is the quick reference for properties_decl (expressed in an EBNF-ish way):

properties_decl := ’properties’ ’:’ properites_map

properties_map := ’{’ { prop_spec ’,’ } ’}’
prop_spec := ’"’ <property_name> ’"’ ’:’

’{’ { property_feature ’,’ } ’}’

property_feature := nullable_spec |
apply_spec |
event_spec |
init_spec |
refine_spec |
check_spec |
themeable_spec |
inheritable_spec |
group_spec |
mode_spec |
validate_spec |
dereference_spec

nullable_spec := ’nullable’ ’:’ bool_val
apply_spec := ’apply’ ’:’ ’"’ <FunctionName> ’"’
event_spec := ’event’ ’:’ ’"’ <EventName> ’"’
init_spec := ’init’ ’:’ <InitVal>
refine_spec := ’refine’ ’:’ bool_val

check_spec := ’check’ ’:’ ’"’ type_spec ’"’ |
’"’ <ClassName> ’"’ |

390 Chapter 13. References

qooxdoo Documentation, Release 1.6

’"’ <InterfaceName> ’"’ |
enum_spec |
inline_function |
’"’ bool_expression ’"’

validate_spec := ’validate’ ’:’ ’"’ <FunctionName> ’"’ |
’<Function>’

dereference_spec := ’dereference’ ’:’ bool_val

themeable_spec := ’themeable’ ’:’ bool_val
inheritable_spec := ’inheritable’ ’:’ bool_val
group_spec := ’group’ ’:’ enum_spec
mode_spec := ’mode’ ’:’ ’"’ ’shorthand’ ’"’

type_spec := ’Boolean’ | ’String’ | ’Number’ | ’Integer’ | ’Float’ |
’Double’ | ’Object’ | ’Array’ | ’Map’ | ’Class’ |
’Mixin’ | ’Interface’ | ’Theme’ | ’Error’ |
’RegExp’ | ’Function’ | ’Date’ | ’Node’ |
’Element’ | ’Document’ | ’Window’ | ’Event’

bool_val := ’true’ | ’false’
enum_spec := ’[’ <val1>’,’ <val2> ’,’ ... ’,’ <valN> ’]’
inline_function := ? JavaScript anonymous function ’function (..)

{ ... }’ ?
bool_expression := ? JavaScript expression evaluating to true/false ?

13.1.5 Array Reference

qooxdoo has a few classes that concern arrays. Some of them are special wrappers and others are extensions. Here is
a list of all classes which have something to do with arrays in qooxdoo.

Data binding specific array

• qx.data.Array: The data array is a special array used in the data binding context of qooxdoo. It does not extend
the native array of JavaScript but is a wrapper for it. All the native methods are included in the implementation
and it also fires events if the content or the length of the array changes in any way. Also the .length property is
available on the array.

Extension of the native array

• qx.type.BaseArray: This class is the common superclass for all array classes in qooxdoo. It supports all of the
shiny 1.6 JavaScript array features like forEach and map. This class may be instantiated instead of the native
Array if one wants to work with a feature-unified Array instead of the native one. This class uses native features
wherever possible but fills all missing implementations with custom code.

• qx.type.Array: An extended array class which adds a lot of often used convenience methods to the regular array
like remove or contains.

Utility methods

• qx.lang.Array: Provides static helper functions for arrays with a lot of often used convenience methods like
remove or contains.

13.1. Core 391

http://demo.qooxdoo.org/1.6/apiviewer/#qx.data.Array
http://demo.qooxdoo.org/1.6/apiviewer/#qx.type.BaseArray
http://demo.qooxdoo.org/1.6/apiviewer/#qx.type.Array
http://demo.qooxdoo.org/1.6/apiviewer/#qx.lang.Array

qooxdoo Documentation, Release 1.6

Extending the native array’s prototype

• qx.lang.Core: Adds some methods to array to lift every browser to the same level. The methods are:

– indexOf

– lastIndexOf

– forEach

– filter

– map

– some

– every

• qx.lang.Generics : Support string/array generics as introduced with JavaScript 1.6 for all browsers.

– join

– reverse

– sort

– push

– pop

– shift

– unshift

– splice

– concat

– slice

– indexOf

– lastIndexOf

– forEach

– map

– filter

– some

– every

13.1.6 Framework Generator Jobs

This page describes the jobs that are available in the framework. Mainly this is just a reference list with short descrip-
tions of what the jobs do. To find out more about predefined jobs for custom applications, see the Generator Default
Jobs.

Framework Jobs

These jobs can be invoked in the framework/ directory with the generator, as generate.py <jobname>.

392 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.lang.Core
http://demo.qooxdoo.org/1.6/apiviewer/#qx.lang.Generics
http://developer.mozilla.org/en/docs/New_in_JavaScript_1.6#Array_and_String_generics

qooxdoo Documentation, Release 1.6

api

Create api doc for the framework.

api-data

Create the api data for the framework. Can take individual class names as further arguments.

clean

Remove local cache and generated .js files.

distclean

Remove the cache and all generated artefacts of the framework (api, test, ...).

fix

Normalize whitespace in .js files of the framework (tabs, eol, ...).

images

Run the image clipping and combining of framework images.

lint

Check the source code of the frameworks .js files (except the tests).

lint-test

Check the source code of the test .js files of the framework.

qxoo-build

Creates a single file containing all the qooxdoo classes of the OO layer. This file can be used in non-browser environ-
ments.

qxoo-noopt

A non-optimized version of qxoo-build, for debugging.

test

Create a test runner app for unit tests of the framework.

13.1. Core 393

qooxdoo Documentation, Release 1.6

test-source

Create a test runner app for unit tests (source version) of the framework.

test-inline

Create an inline test runner app for unit tests of the framewrok.

translation

Create the .po files of the framework.

13.2 GUI Toolkit

13.2.1 Widget Reference

Core Widgets

Widget, Spacer, ScrollBar

Content Widgets

Label, Image, Atom, Tree, Table

Container Widgets

Composite, Scroll, Stack, SlideBar, Resizer

Building Blocks

Toolbar, TabView, SplitPane, GroupBox, MenuBar

Popups

PopUp, ToolTip, Menu, Window

Embed Widgets

Canvas, HTML Embed, Iframe, Flash

394 Chapter 13. References

qooxdoo Documentation, Release 1.6

Form Widgets

Button, ToggleButton, RepeatButton, HoverButton, SplitButton, MenuButton

TextField, PasswordField, Spinner, DateField, TextArea

ComboBox, SelectBox

CheckBox, List, Slider

Virtual Widgets

Virtual List, Virtual ComboBox, Virtual SelectBox, VirtualTree

Indicators

ProgressBar

Widget Reference List

Atom The Atom groups an image with a label with support for different alignments. It is a building block for many
other widgets like Buttons or Tooltips.

Preview Image

Features

• Configurable spacing between icon and label

• Toggle display of “image” “label” or “both”

• Configurable icon position

Demos Here are some links that demonstrate the usage of the widget:

• A simple Atom demo

API

Here is a link to the API of the Widget:
qx.ui.basic.Atom

Button A Button widget is used to display plain text and/or an icon. The button supports mouse and key events.

Preview Image

13.2. GUI Toolkit 395

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Atom.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Atom

qooxdoo Documentation, Release 1.6

Features

• Contain text and/or icon.

• Mouse and keyboard support.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

Description The button widget is a normal widget for a GUI. The button supports plain text and icon. Also it is
possible to handle user interactions with mouse and keyboard.

Demos Here are some links that demonstrate the usage of the widget:

• A button demo with differently configured buttons

• A window demo which using button

API

Here is a link to the API of the Widget:
qx.ui.form.Button

Canvas This widget embed the HTML canvas element.

Note: It does not work with Internet Explorer

Preview Image

Features Since this widget is embedding the HTML canvas element the core features of this widget are limited by
the canvas element itself respective by the implementation of the different browsers. However, the widget offers these
features on top:

• fires a redraw event whenever the dimensions of the canvas element has changed or the canvas element needs
an update

• update method for the canvas element

• width and height of the canvas element as properties

396 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Button.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Window.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.form.Button
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#the-canvas-element

qooxdoo Documentation, Release 1.6

• support for synronized widht and height coordinates

Description Taken from the WHATWG website: “The canvas element represents a resolution-dependent bitmap
canvas, which can be used for rendering graphs, game graphics, or other visual images on the fly.”

Demos Here are some links that demonstrate the usage of the widget:

• Canvas demo

API

Here is a link to the API of the Widget:
Canvas API

CheckBox A CheckBox widget for Boolean values.

Preview Image

Features

• Mouse and keyboard control.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

Description The CheckBox is a common widget found in many GUI applications. A CheckBox can be checked
or not checked, either by mouse or keyboard. When the tri-state mode is enabled, there is an additional third state.
The third state means that the CheckBox was neither checked nor unchecked, i.e. the state of the CheckBox is
undetermined.

The CheckBox supports an optional plain text.

Also it is possible to combine a CheckBox with a TreeItem to construct a complex widget.

Demos Here are some links that demonstrate the usage of the widget:

• CheckBoxes used in a GroupBox

• CheckBoxes used in a GroupBox to control a window

• A small dialog Demo

13.2. GUI Toolkit 397

http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget-Canvas.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.embed.Canvas
http://demo.qooxdoo.org/1.6/demobrowser/#widget~GroupBox.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Window.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Dialog.html

qooxdoo Documentation, Release 1.6

• ComboBox combined with a TreeItem

API

Here is a link to the API of the Widget:
qx.ui.form.CheckBox

ComboBox A ComboBox widget is used to select items from a list or allow customer input. The items in a Com-
boBox supports plain text and/or icons.

Preview Image

Features

• Mouse and keyboard support.

• Items with plain text and/or icons

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

Description A ComboBox is like a TextField with a drop down of predefined values. The main difference to the
SelectBox is that the user can enter individual values or choose from the predefined ones. The items in the predefined
list supports plain text and/or icons. The items which can be added to the list are qx.ui.form.ListItem items.

Please note that the ComboBox supports no auto- completion.

Demos Here are some links that demonstrate the usage of the widget:

• ComboBox demo

• Form demo

API

Here is a link to the API of the Widget:
qx.ui.form.ComboBox

398 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Tree_Columns.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.CheckBox
http://demo.qooxdoo.org/1.6/demobrowser/#widget~ComboBox.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.ComboBox

qooxdoo Documentation, Release 1.6

Composite The Composite is a generic container widget. It exposes all methods to set layouts and to manage child
widgets as public methods. Composites must be configured with a layout manager to define the way the widget’s
children are positioned.

Features

• Public methods to manage child widgets (add, remove, ...)

• Public setLayout method to define the Composite’s layout manager

Description Composites are used to manually compose widgets. They are always used in combination with a layout
manager. The general behavior of this widget is controlled by this layout manager.

Demos Any of the layout demos use Composites:

Here are some links that demonstrate the usage of the widget:

• The first layout demo. Any other layout demo uses Composites as well.

API

Here is a link to the API of the Widget:
qx.ui.container.Composite

DateField A DateField widget can be used for date input. The input can be done in to kinds. The first kind is to
chose a date from a date chose, which is a part of the DateField. The second kind is to write the date direct in the input
field. .. _pages/widget/datefield#preview_image:

Preview Image

Features

• Mouse and keyboard support.

• Own date format.

Description A DateField has a qx.util.format.DateFormat which is used to format the date to a string.
The formatted string is show in the input field. The input can be edit directly in the input filed or selecting a date with
the data chooser. The date chooser can be pop up by clicking the calender icon.

13.2. GUI Toolkit 399

http://demo.qooxdoo.org/1.6/demobrowser/#layout~Basic.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.container.Composite

qooxdoo Documentation, Release 1.6

Demos Here are some links that demonstrate the usage of the widget:

• DateField Demo

• Form demo

API

Here is a link to the API of the Widget:
qx.ui.form.DateField

GroupBox A Groupbox is a widget to group a set of form elements in a visual way.

Preview Image

Features

• Different legend types

• icon and text

• additional check boxes

• additional radio buttons

Description The GroupBox offers the possibility to visual group several form elements together. With the use of a
legend which supports both text and icon it is easy label the several group boxes to give the user a short description of
the form elements.

Additionally it is possible to use checkboxes or radio-buttons within the legend to enable or disable the connected
groupBox (and their child elements) completely. This feature is most important for complex forms with multiple
choices.

Demos Here are some links that demonstrate the usage of the widget:

• Demo showing all groupBox types

400 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~DateField.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.DateField
http://demo.qooxdoo.org/1.6/demobrowser/#widget~GroupBox.html

qooxdoo Documentation, Release 1.6

API

Here is a link to the API of the Widget:
qx.ui.groupbox.GroupBox

HoverButton The HoverButton is an Atom, which fires repeatedly execute events while the mouse is over the widget.

Preview Image

Features

• Contain text and/or icon.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

• Event interval is adjustable.

Description The HoverButton is an Atom, which fires repeatedly execute events while the mouse is over the widget.
The interval time for the HoverButton event can be configured by the developer.

Demos Here are some links that demonstrate the usage of the widget:

• Button demo with all supported buttons

• Form showcase demo

API

Here is a link to the API of the Widget:
qx.ui.form.HoverButton

HTML Embed The Html widget embeds plain HTML code into the application.

Preview Image

13.2. GUI Toolkit 401

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.groupbox
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Button.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.RepeatButton

qooxdoo Documentation, Release 1.6

Features

• displays any valid HTML code

• CSS class support

• control whether the content is focusable

• control whether the content is selectable

• overflow support

• data event changeHtml is dispatched whenever content changes

Description The HTML embed can display any valid HTML code and implements some useful features like focus-
and selection-control on top of it.

If you want to display a large amount of HTML code you can additionally use the overflow control to prevent the widget
from eating up too much space within your application. This makes the seamless integration as easy as possible.

If you want to manipulate the styling of the displayed HTML code you can easily set a CSS class name to have the
full control of the HTML.

Demos Here are some links that demonstrate the usage of the widget:

• HTML embed demo

API

Here is a link to the API of the Widget:
HTML Embed API

Iframe Container widget for internal frames (iframes). An iframe can display any HTML page inside the widget.

Preview Image

402 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget-HtmlEmbed.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.embed.Html

qooxdoo Documentation, Release 1.6

Features

• can display any HTML page

• fires a load event when the page fully loaded

• integrates a blocker element to prevents the iframe to handle key or mouse events

Description The iframe is a container widget for displaying any HTML page. It integrates seamlessly in your
application though it can be styled like any other qooxdoo widget and offers an load event to control the page that’s
loaded within the widget. And the built-in blocker element prevents the native iframe element to handle any key or
mouse event to ensure that e.g. the user navigates away by clicking a hyperlink.

Demos Here are some links that demonstrate the usage of the widget:

• Iframe demo

API

Here is a link to the API of the Widget:
API for Iframe

Flash Container widget for Flash.

Preview Image

13.2. GUI Toolkit 403

http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget-Iframe.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.embed.Iframe

qooxdoo Documentation, Release 1.6

Description A flash movie can be controlled in a certain extent directly from JavaScript with a number of commands.

These commands do not cover all Flash commands, so if you need more functionality you have to fuse an ActionScript
with the Flash movie and start using the ExternalInterface to communicate.

To be able to use the JavaScript commands, three conditions must be full-filled:

1. the flash object must have been loaded to the DOM tree

2. the flash object must have received an id

3. the flash movie or document must have been enough loaded

To implement this functionality in qooxdoo we have added three events: “loading”, “loaded” and “timeout”. When
the event “loading” is fired the three conditions have not been full-filled, and therefore the commands can’t be used.
If you wanna make sure the flash object is fully loaded and ready to be used listen to the “loaded” event. When the
“loaded” event is fired you can start communicating directly with the Flash object. A “timeout” event is fired when
the flash objects fails to load. You can also use the method isLoaded() in code to make sure that the Flash object is
actually loaded.

Here’s an example that shows how you can control changing to previous frame of a flash movie.

var flashWidget = new qx.ui.embed.Flash("/flash.swf");

flashWidget.addListener("loaded", function() {
var flashFE = flashWidget.getFlashElement();

var currentFrame = flashFE.CurrentFrame();
var totalFrames = flashFE.TotalFrames();

var newFrame = parseInt(currentFrame) - 1;

if(totalFrames > 0 && newFrame >= 0)
{
flashFE.GotoFrame(newFrame);

}
});

Demos Here are some links that demonstrate the usage of the widget:

• Embeded Flash in qooxdoo

API

Here is a link to the API of the Widget:
qx.ui.embed.Flash

Image As the name suggest, the Image widget is used to display image files.

Preview Image

404 Chapter 13. References

http://www.adobe.com/support/flash/publishexport/scriptingwithflash/scriptingwithflash_03.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Flash.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.embed.Flash

qooxdoo Documentation, Release 1.6

Features

• Scaling the image

• Image clipping (combine multiple images into one single image)

• Auto sizing

• Configurable second image for the disabled state

• Support for PNG files with alpha transparency in all browsers (including IE6)

• Support for a loading event (only available for images loaded externally)

Demos Here are some links that demonstrate the usage of the widget:

• Image demo

API

Here is a link to the API of the Widget:
qx.ui.basic.Image

Label The Label widget is used to display either plain text or rich text with HTML markup.

Preview Image

Features

• Auto sizing

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.
(Only in text mode)

• “height for width”: If the widget’s width is too small to display the text in one line the text is wrapped and a
new size hint is calculated. (Only in HTML mode)

• Configurable fonts, text colors and text alignment

13.2. GUI Toolkit 405

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Image.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.basic.Image

qooxdoo Documentation, Release 1.6

Description The Label supports two different modes. The text and the HTML mode. The mode can be set by using
the rich property. Which mode to use depends on the required features. If possible the text mode should be preferred
because in this mode the text size calculation is faster.

Demos Here are some links that demonstrate the usage of the widget:

• A label demo with differently configured labels

• Height for width demo

• Label reflow

API

Here is a link to the API of the Widget:
qx.ui.basic.Label

List A List widget has items with plain text and/or icon.

Preview Image

Features

• Horizontal and vertical orientation.

• Single selection.

• Multi selection.

• Additive selection.

• One selection.

• Drag selection.

406 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Label.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~HeightForWidth.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~Label_Reflow.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.basic.Label

qooxdoo Documentation, Release 1.6

• Quick selection.

• Items with plain text and/or icon.

• Context menu support.

Description A List widget can be used to show a list of items. These items could selected in different modes:

• single: Only one or none could be selected.

• multi: One, more or none could be selected.

• additive: The same selection like multi, but each item, which the user clicked on it is added or removed
to the selection.

• one: The same selection like single, but one must selected.

The item which are added to the list are ListItem. For more details see: ListItem.

Demos Here are some links that demonstrate the usage of the widget:

• List Demo

• Lists with Drag and Drop

• List with re-size support

API

Here is a link to the API of the Widget:
qx.ui.form.List

Menu The Menu is a widget that contains different widgets to create a classic menu structure. The menu is used
from different widget, that needs a menu structure e.q. MenuBar.

Preview Image

Features

• On demand scrolling if the menu doesn’t fit on the screen

• Menu items with text and/or icon.

• Each menu item can have a command for keyboard support.

• Menu items can have submenus.

The menu can contain different item types:

13.2. GUI Toolkit 407

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.ListItem
http://demo.qooxdoo.org/1.6/demobrowser/#widget~List.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~DragDrop.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Resizer.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.List

qooxdoo Documentation, Release 1.6

• Normal buttons

• CheckBox buttons

• RadioButtons

• Separators

Description The Menu widget is used in combination with other widgets. The other widgets has an instance from
the menu and it’s shown by user interactions. Each item in a menu can get an command key, that is used to get
keyboard support for the user.

Here a some widgets that use a menu for user interaction:

• MenuBar

• Toolbar

• MenuButton

• SplitButton

• List

The package qx.ui.menu has a collection of needed classes for creating a menu structure. The
qx.ui.menu.Menu class is the container class for the menu structure and has items as child. Here are some
item that can be used to create the structure:

• Button

• CheckBox

• RadioButton

• Separator

To create a submenu structure, each item (but not separator) can contain a menu to realize the submenu structure.

Diagram

Demos Here are some links that demonstrate the usage of the widget:

• Some different widgets that use the menu functionality

• Menus used in a MenuBar

API

Here is a link to the API of the Widget:
qx.ui.menu.Menu

MenuBar The MenuBar is a Widget to create a classic menu bar for an application.

408 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menu.Button
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menu.CheckBox
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menu.RadioButton
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menu.Separator
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Menu.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~MenuBar.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menu.Menu

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Buttons as menu items with label and/or icon.

Description The MenuBar contains items qx.ui.menubar.Button to open a submenu qx.ui.menu.Menu
that can handle user interactions. For more information about menus see Menu.

Demos Here are some links that demonstrate the usage of the widget:

• MenuBar with all features

API

Here is a link to the API of the Widget:
qx.ui.menubar.MenuBar

MenuButton The MenuButton looks like a normal button, but it opens a menu when clicking on it.

Preview Image

Features

• Contain text and/or icon.

• Mouse support.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

• Menu support.

13.2. GUI Toolkit 409

http://demo.qooxdoo.org/1.6/demobrowser/#widget~MenuBar.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.menubar.MenuBar

qooxdoo Documentation, Release 1.6

Description The MenuButton looks like a normal button, but it opens a menu when clicking on it.

For using a menu see: Menu

Demos Here are some links that demonstrate the usage of the widget:

• Menu demo that contains a MenuButton

• Form demo

API

Here is a link to the API of the Widget:
qx.ui.form.MenuButton

PasswordField The PasswordField widget is a special TextField witch show the input hidden.

Preview Image

Features

• Hide password

• Mouse and keyboard control.

• Set maximum input length.

• Read only support.

Description The PasswordField is a special TextField for password input. The PasswordField hide the text input.

The act is the same like the TextField, for more details see: TextField

Demos Here are some links that demonstrate the usage of the widget:

• Login dialog

• Show a form demo

API

Here is a link to the API of the Widget:
qx.ui.form.PasswordField

PopUp Popups are widgets, which can be placed on top of the application.

410 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Menu.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.MenuButton
http://demo.qooxdoo.org/1.6/demobrowser/#animation~Login.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.PasswordField

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Auto hide property

Description Popups are automatically added to the application root and are used to display menus, the lists of combo
or select boxes, tooltips, etc.

Demos Here are some links that demonstrate the usage of the widget:

• Simple example for the PopUp widget

API

Here is a link to the API of the Widget:
qx.ui.popup

ProgressBar The progress bar is an indicator widget.

Preview Image

Description The Progress bar is designed to simply display the current % complete for a process. It fires 2 events.
When the % changes or when the process is complete.

The Value is limited between 0 and Maximum value. It’s not allowed to set a Maximum value of 0. If you set a
Maximum value bigger than 0, but smaller than Value, it will be limited to Value.

Here’s an example. We create a default progress bar (value is 0, and the maximum value is 100). We then listen to
change event and complete event. The change event is fired every time the % complete is changed, so we can see the
new value. If the process is 100% complete the complete event is fired.

var pb = new qx.ui.indicator.ProgressBar();
this.getRoot().add(pb, { left : 20, top: 20});

pb.addListener("change", function(e) {
this.debug(e.getData()); // % complete
this.debug(pb.getValue()); // absolute value

});

pb.addListener("complete", function(e) {
this.debug("complete");

});

//set a value
pb.setValue(20);

13.2. GUI Toolkit 411

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Popup.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.popup

qooxdoo Documentation, Release 1.6

Demos Here are some links that demonstrate the usage of the widget:

• Simple example for the ProgressBar widget

API

Here is a link to the API of the widget:
qx.ui.indicator.ProgressBar

RepeatButton The RepeatButton is a special button, which fires an event, while the mouse button is pressed on the
button.

Preview Image

Features

• Contain text and/or icon.

• Mouse support.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

• Event interval is adjustable.

Description The RepeatButton is a special button, which fires an event, while the mouse button is pressed on the
button. The interval time for the RepeatButton event can be configured by the developer.

Demos Here are some links that demonstrate the usage of the widget:

• Button demo with all supported buttons

• Form showcase demo

API

Here is a link to the API of the Widget:
qx.ui.form.RepeatButton

Resizer The Resizer is a resizable container widget.

Preview Image

412 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~ProgressBar.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.indicator.ProgressBar
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Button.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.RepeatButton

qooxdoo Documentation, Release 1.6

Features

• Configurable whether all four edges are resizable or only the right and bottom edge

• Live resize or resizing using a resize frame (like in the screen shot)

• Sensitivity configurable i.e. The number of pixels on each side of a resize edge, where the resize cursor is shown.

Description The Resizer is a generic container just like a Composite, which can be resized by using the mouse.
Either all edges or only the right and bottom edge can be configured to be resizable.

Demos Here are some links that demonstrate the usage of the widget:

• Resizer demo

API

Here is a link to the API of the Widget:
qx.ui.container.Resizer

Scroll Scroll is a container, which allows vertical and horizontal scrolling if the content is larger than the con-
tainer.

Preview Image

Features

• Themeable scroll bars

• Scroll bar visibility can be set independently for the X- and Y-axis. Possible values are auto (default), on and
off

Description This widget can be used if the container’s content is larger than the container itself. In this case vertical
or horizontal scroll bars are displayed as needed.

Note that this class can only have one child widget and no configurable layout. The layout is fixed and cannot be
changed.

13.2. GUI Toolkit 413

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Resizer.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.container.Resizer

qooxdoo Documentation, Release 1.6

Demos Here are some links that demonstrate the usage of the widget:

• A simple scroll container demo

• After resize the content matches the size of the scroll container.

• Content and container size can be changed. Display of scroll bars configurable.

• Content and container size can be changed. Display of scroll bars configurable.

API

Here is a link to the API of the Widget:
qx.ui.container.Scroll

ScrollBar The scroll bar widget exists as a custom qooxdoo scroll bar and a native browser scroll bar widget.

Which one is used as default can be controlled by the qx.nativeScrollBars setting.

Scroll bars are used e.g. by the Scroll container. Usually a scroll bar is not used directly.

Preview Image

Features

• Fully themable scroll bar (qooxdoo scroll bar)

• Size of the scroll bar knob can be adjusted

Demos Here are some links that demonstrate the usage of the widget:

• Scroll bar demo

• A simple scroll container demo

API

Here is a link to the API of the Widget:
qx.ui.core.ScrollBar
qx.ui.core.NativeScrollBar

SelectBox The SelectBox has the same act like the ComboBox, but the SelectBox doesn’t allow user input only
selection is allowed.

414 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#ui~ScrollContainer.html
http://demo.qooxdoo.org/1.6/demobrowser/#test~ScrollContainer_ResizeMatch.html
http://demo.qooxdoo.org/1.6/demobrowser/#test~ScrollContainer_EdgeCaseWidth.html
http://demo.qooxdoo.org/1.6/demobrowser/#test~ScrollContainer_EdgeCaseHeight.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.container.Scroll
http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget~ScrollBar.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~ScrollContainer_Simple.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.core.scroll.ScrollBar
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.core.scroll.NativeScrollBar

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Mouse and keyboard support.

• Items with plane text and/or icons

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

Description The SelectBox has the same act like the ComboBox, but the SelectBox doesn’t allow user input only
selection is allowed.

For more details about ComboBox see: ComboBox

Demos Here are some links that demonstrate the usage of the widget:

• SelectBox demo

• Other SelectBox demo

• Form demo

API

Here is a link to the API of the Widget:
qx.ui.form.SelectBox

SlideBar The SlideBar is a container widget, which provides scrolling in one dimension (vertical or horizontal).

Preview Image

Features

• Supports vertical and horizontal orientation

• Hides the scroll buttons if the content fits into the scroll container

13.2. GUI Toolkit 415

http://demo.qooxdoo.org/1.6/demobrowser/#widget~SelectBox.html
http://demo.qooxdoo.org/1.6/demobrowser/#ui~SelectBox_EdgeCases.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.SelectBox

qooxdoo Documentation, Release 1.6

Description The SlideBar widget can be used as a replacement for a Scroll container if scrolling is only needed
in one direction. In contrast to the Scroll container the SlideBar uses RepeatButtons instead of scroll bars to do the
scrolling. It is used e.g. in tab views.

Demos Here are some links that demonstrate the usage of the widget:

• SlideBar demo

API

Here is a link to the API of the Widget:
qx.ui.container.SlideBar

Slider The Slider widget is the classic widget for controlling a bounded value.

Preview Image

Features

• Mouse support.

• Horizontal and vertical orientation.

• Configurable steps.

416 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget-SlideBar.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.container.SlideBar

qooxdoo Documentation, Release 1.6

Description The Slider widget is the classic widget for controlling a bounded value. It lets the user move a slider
handle along a horizontal or vertical groove and translates the handle’s position into an integer value within the defined
range.

Demos Here are some links that demonstrate the usage of the widget:

• Slider demo

• Form demo

API

Here is a link to the API of the Widget:
qx.ui.form.Slider

Spacer A Spacer is a “virtual” widget, which can be placed into any layout and takes the space a normal widget of
the same size would take.

Features

• Spacers are invisible and very light weight because they don’t require any DOM modifications

Demos Here are some links that demonstrate the usage of the widget:

• This demo shows how spacers can be used to configure vraiable spacing in a grid.

• This demo shows how spacers can be used to configure vraiable spacing in a box layout.

API

Here is a link to the API of the Widget:
qx.ui.core.Spacer

Spinner A Spinner widget is a control that allows you to adjust a numerical value, typically within an allowed range
e.g.: month of a year (range 1 – 12).

Preview Image

13.2. GUI Toolkit 417

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Slider.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.Slider
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Spacer_Grid.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Spacer_HBox.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.core.Spacer

qooxdoo Documentation, Release 1.6

Features

• Mouse support.

• Configurable steps.

• Supports number format.

Description A spinner widget has a field to display the current value and controls such as up and down buttons to
change that value. The current value can also be changed by editing the display field directly, or using mouse wheel
and cursor keys.

An optional NumberFormat allows you to control the format of how a value can be entered and will be displayed.

Demos Here are some links that demonstrate the usage of the widget:

• Spinner demo

• Form demo

API

Here is a link to the API of the Widget:
qx.ui.form.Spinner

SplitButton The SplitButton acts like a normal button, but it opens a menu when clicking on the arrow.

Preview Image

Features

• Contain text and/or icon.

• Mouse and keyboard support.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

• Menu support.

Description The SplitButton acts like a normal button, but it opens a menu when clicking on the arrow. The menu
could contain a history list or something similar.

For using a menu see: Menu

Demos Here are some links that demonstrate the usage of the widget:

• Menu demo that contains a SplitButton

• Form demo

418 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.util.format.NumberFormat
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Spinner.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.Spinner
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Menu.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html

qooxdoo Documentation, Release 1.6

API

Here is a link to the API of the Widget:
qx.ui.form.SplitButton

SplitPane A SplitPane is used to divide two Widgets. These widgets can be resized by clicking the splitter widget
and moving the slider. The orientation property states if the widgets should be aligned horizontally or vertically.

Preview Image

Features

• Orientation

– vertical

– horizontal

• Autosizing with static or flex values

Description The most important class (and the class you will use mainly) inside the qx.ui.splitpane package
is the Pane. One can add two widgets (of any type) to it. Besides these two widgets a Pane also contains a
Splitter between them. By clicking on it (and holding down the mouse button), a Slider will appear and
follow the mouse to indicate where the Splitter‘‘s will be placed when the mouse button
is released. Once the mouse button is released the available space inside the
‘‘Pane is redivided to both widgets according to the Splitter‘s new position.

Demos Here are some links that demonstrate the usage of the widget:

• SplitPane that can toggle its orientation and hide/show panes

API

Here is a link to the API of the Widget:
qx.ui.splitpane

Stack The stack container is a container widget, which puts its child widgets on top of each other and only the
topmost widget is visible.

13.2. GUI Toolkit 419

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.SplitButton
http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget-SplitPane.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.splitpane

qooxdoo Documentation, Release 1.6

Features

• Two size hint modes.

– dynamic:true: The stack’s size is the preferred size of the visible widget

– dynamic:false: The stack’s size height is the to the height of the tallest widget and the stack’s width
is set to the width of the widest widget

Description The stack is used if exactly one out of a collection of many widgets should be visible. This is used e.g.
in the tab view widget. Which widget is visible can be controlled by using the selected property.

Demos Here are some links that demonstrate the usage of the widget:

• Two stack containers. The first not dynamic, the second dynamic.

API

Here is a link to the API of the Widget:
qx.ui.container.Stack

Table The table package contains classes that allow you to build up virtual tables for showing data in a grid like
view.

Preview Image

Description A Table is a widget to show a set of data in a column based view. It is based on the idea of virtual
rendering. This means that only the visible rows will be rendered, which increases the performance of the widget and
makes the table capable of displaying thousands of rows. But it is important to know that the table has only virtual
rows, not columns. Having a huge number of columns can still decrease performance.

420 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~StackContainer.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.container.Stack

qooxdoo Documentation, Release 1.6

Features

Column Feature Description
Display grid data Takes an array containing an array for each row. The data in the row can be of almost any

type.
Set custom
header

Pre-built header renderer for icons and lables. Can be easily extended to supply a custom
header cell renderer.

Column sorting Built-in sorting accesable to the user by a click on the table header.
Reorganizing of
columns

Columns can be reorganized by the user via Drag&Drop.

Change the
visibility of
columns

A special column visibility menu is included. It offers the user a way to show / hide single
columns.

Contet menu
support

The table supports content menus for each cell.

Meta Columns You can define one or more column which have a separate scrolling if any. E.g. you could
have the first column always visible, while the other columns scroll out of view.

Resizable
columns

The user can resize each column individually.

Row Feature
Render for different
kinds of data types

Special renderer for boolean, dates, HTML content, numbers, passwords and strings.

Conditional rendering for
individual table cells

A conditional rendere is available which can render the data in different ways
dependent on the content, like applying a red text colors to negative numbers.

Row filtering Filtering for specific data can be done with a filter method.
Virtual rendering for
rows

Only the rows visible will be rendered which increases the speed of the table.

Highlight color for
hovered row

The currently hovered row can be highlighted.

General Feature
Capable of
remote data
gathering

A remote data model can fetch data from the server. It fetches only the current visible data
which means not the whole data needs to be transfered to the client on startup.

Different
selection modes

The table offers single and multi selection in different variants.

Editable cells The cells can be set to editable. Build in editors are CheckBox, ComboBox, PasswrodField,
SelectBox and TextField.

Focus indicator The currently selected cell can have a focus indicator.
Statusbar The table has a status bar to show the number of rows and/or custom text.

Examples

Simple The most simple table can be build in five lines of code, as you cen see in this example:

// table model
var tableModel = new qx.ui.table.model.Simple();
tableModel.setColumns(["ID", "A number"]);
tableModel.setData([[1, 12.23],[3, 849759438750],[2, -2]]);

// table
var table = new qx.ui.table.Table(tableModel);
this.getRoot().add(table);

One of the importat parts of the table is the table model. The first line creates a simple table model. In the second and
third line, we configure the table model with some column names and data. With that model, we can create a table and

13.2. GUI Toolkit 421

qooxdoo Documentation, Release 1.6

add it to our application, as the example shows in the last two lines.

Editable Column Making for example the second column of our simple example editable can be done in one line:

// make second column editable
tableModel.setColumnEditable(1, true);

The first parameter here is the column (column numbering starts with 0), and the second one is to change the editable
state.

Sorting Also adding a default sort order for the table is easy in one single line:

// sort the table on startup
tableModel.sortByColumn(0, true);

Again, the first argument is the column. The second argument is responsible for the sort order, true for ascending.

Conditional Cell Rendering As a last addition to our example we build something more complex. We want to
render all negative numbers in red and all positive numbers in green:

// conditional rendering
var newRenderer = new qx.ui.table.cellrenderer.Conditional();
newRenderer.addNumericCondition(">", 0, null, "green");
newRenderer.addNumericCondition("<", 0, null, "red");
table.getTableColumnModel().setDataCellRenderer(1, newRenderer);

For that purpose, qooxdoo has a built-in conditional renderer. In the first line, we create such a renderer. The second
and third line set up our conditional rules. The last line tells the table column model to use that renderere for the
column with the index 1.

UML Diagram This diagram shows how the table uses the different kinds of classes you can find in the table
namespace. The diagram is divided in two sides. The left side is interesting for the user if he wants to extend the table
or wants to use its custom cell renderer for example. The right side is usually a set of internal classes the tables uses
to get its general tasks done.

422 Chapter 13. References

qooxdoo Documentation, Release 1.6

Further resources

• Table demos in the online Demobrowser.

• API documentation for qx.ui.table in the online APIViewer.

TabView The tab view stacks several pages above each other and allows to switch between them by using a list of
buttons.

The buttons are positioned on one of the tab view’s edges.

Preview Image

Features

• Tab positions: * top * bottom * left * right

• Overflow handling for tabs

Description A TabView widget consists of two parts:

• a qx.ui.container.SlideBar which contains a tab for every Page and can be positioned on every side
of the TabView.

• a qx.ui.container.Stack which contains the Pages which can be added and removed at runtime.

A Page contains widgets to be shown in a TabView and usually has a label and icon to identify it.

Demos Here are some links that demonstrate the usage of the widget:

• Horizontal and vertical TabViews with a different amount of pages

API

Here is a link to the API of the Widget:
qx.ui.tabview

TextArea A TextArea some long text. The TextArea is classic GUI element.

13.2. GUI Toolkit 423

http://demo.qooxdoo.org/1.6/demobrowser/#table
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.table
http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget~TabView.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.tabview

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Mouse and keyboard control.

• Configurable fonts and text alignment.

• Read only support.

• Automatic wrap around.

Description The TextArea is like a TextField, but for longer text input. So the TextArea supports a automatic wrap
around which can be deactivated, when it is undesired.

Demos Here are some links that demonstrate the usage of the widget:

• Shows different TextArea demos

• Shows a dialog demo with an TextArea

• Show a form demo

API

Here is a link to the API of the Widget:
qx.ui.form.TextArea

TextField The TextField widget is a classic GUI widget to edit text in a TextField.

424 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~TextField.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Dialog.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.TextArea

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Mouse and keyboard control.

• Configurable fonts and text alignment.

• Set maximum input length.

• Read only support.

Description The TextField widget has properties to set an alignment for the orientation and a Font for styling. Also
is it possible to set the TextField read only and the maximum input length could be set.

Demos Here are some links that demonstrate the usage of the widget:

• Shows different TextField demos

• Shows a dialog demo with some TextFields

• Show a form demo

• Shows a browser demo

API

Here is a link to the API of the Widget:
qx.ui.form.TextField

ThemedIframe
Note: This widget is available since qooxdoo 0.8.3

Container widget for internal frames (iframes). An iframe can display any HTML page inside the widget.

Unlike qx.ui.embed.Iframe, which uses the browser’s native iframe, ThemedIframe (particularly its scrollbars)
can be visually modified according to the regular qooxdoo theming.

13.2. GUI Toolkit 425

http://demo.qooxdoo.org/1.6/demobrowser/#widget~TextField.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Dialog.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Browser.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.TextField

qooxdoo Documentation, Release 1.6

ToggleButton The ToggleButton widget is a classic GUI ToggleButton with to states: pressed or not pressed.

Preview Image

Features

• Contain text and/or icon.

• Mouse and keyboard support.

• Ellipsis: If the label does not fit into the widget bounds an ellipsis (”...”) is rendered at the end of the label.

Description The button is a classic GUI element, that supports two states: pressed and not pressed. The state is
changed by a mouse (click) or keyboard (enter or space) event. There is an additional third state when the tri-state
mode is enabled. The third state means that the widget was neither pressed nor unpressed, i.e. the state of the button
is undetermined.

Demos Here are some links that demonstrate the usage of the widget:

• Button demo with all supported buttons

• Form showcase demo

API

Here is a link to the API of the Widget:
qx.ui.form.ToggleButton

Toolbar The ToolBar widget is responsible for displaying a toolbar in the application. Therefore it is a container for
Buttons, RadioButtons, CheckBoxes and Separators.

Preview Image

Features

• Buttons

– Regular

– Radio

– Toggle

– Menu

• Icons and / or labels for all buttons

• Separation into parts

• Separator handles

426 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Button.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.ToggleButton

qooxdoo Documentation, Release 1.6

Description The qx.ui.toolbar package, which contains all stuff needed for the toolbar widget, has the main class
called ToolBar. The ToolBar class is the main container for the rest of the classes. If you want to group your buttons
in the toolbar, you can do this with parts. The parts class acts as a subelement of the toolbar with almost the same
functionality. To a part you can add buttons. There are some kinds of buttons in the toolbar package:

• Buttons

• Radio buttons

• CheckBox buttons

• MenuButtons

• SplitButtons

These buttons can also be added directly to the toolbar if no parts are needed. For further structuring in the toolbar, a
Separator is available in the package which can be added.

Diagram

Demos Here are some links that demonstrate the usage of the widget:

• Toolbar with all features

• Toolbar in a browser demo

• Toolbar with other menus

API

Here is a link to the API of the Widget:
qx.ui.toolbar

ToolTip A Tooltip provides additional information for widgets when the user hovers over a widget. This information
can consist in plain text, but also include an icon and complex HTML code.

Preview Image

13.2. GUI Toolkit 427

http://demo.qooxdoo.org/1.6/demobrowser/#widget~ToolBar.html
http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Browser.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Menu.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.toolbar

qooxdoo Documentation, Release 1.6

Features

• ToolTip can contain an icon

• ToolTip’s label can contain HTML

• Show/hide delay

Description A ToolTip can be attached to one ore more widgets be creating a ToolTip and calling the
setToolTip() method with the ToolTip as argument on the widget. The ToolTip will be shown as soon as the
mouse overs the widget. A ToolTip can be configured to contain an icon and label and to be shown/hidden after a
certain amount of time.

Demos Here are some links that demonstrate the usage of the widget:

• Demonstrates regular and shared ToolTips

API

Here is a link to the API of the Widget:
complete package and classname

Tree The tree package contains classes that allow you to build up visual trees, like the ones you are familiar with e.g.
for browsing your file system. Expanding and collapsing tree nodes is handled automatically by showing or hiding the
contained subtree structure.

Preview Image

Features

• Different open and selection modes

• Toggle-able tree root

428 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/index.html#widget-Tooltip.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.tooltip

qooxdoo Documentation, Release 1.6

Description A Tree contains items in an hierarchically structure. The first item inside a Tree is called the
root. A tree always contains one single TreeFolder as the root widget which itself can contain several other
items. A TreeFolder (which is also called node) can contain TreeFolder widgets or TreeFile widgets. The
TreeFile widget (also called leaf) consists of an icon and a label.

UML Diagram

Dependencies

Demos Here are some links that demonstrate the usage of the widget:

• Complex demo which shows many features of the tree

• A multi column tree

API

Here is a link to the API of the Widget:
qx.ui.tree

Virtual List The virtual List is a widget based on the framework’s virtual infrastructure.

13.2. GUI Toolkit 429

http://demo.qooxdoo.org/1.6/demobrowser/#widget~Tree.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Tree_Columns.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tree

qooxdoo Documentation, Release 1.6

Preview Image

Description The qx.ui.list.List is based on the virtual infrastructure and supports filtering, sorting, group-
ing, single selection, multi selection, data binding and custom rendering.

Using the virtual infrastructure has considerable advantages when there is a huge amount of model items to render:
Widgets are created only for visible items and reused. This saves both creation time and memory.

With the qx.ui.list.core.IListDelegate interface, it is possible to configure the list’s behavior (item and group renderer
configuration, filtering, sorting, grouping, etc.).

Note: At the moment we only support widget based rendering for list and group items, but we are planning to also
support HTML based rendering in a future release.

Code Example Here’s an example. We create a simple list example with 2500 items, sort the items (ascending),
select the 20th item and log each selection change.

//create the model data
var rawData = [];
for (var i = 0; i < 2500; i++) {
rawData[i] = "Item No " + i;

}
var model = qx.data.marshal.Json.createModel(rawData);

//create the list
var list = new qx.ui.list.List(model);

//configure the lists’s behavior
var delegate = {
sorter : function(a, b) {
return a > b ? 1 : a < b ? -1 : 0;

}
};
list.setDelegate(delegate);

//Pre-Select "Item No 20"
list.getSelection().push(model.getItem(20));

//log selection changes
list.getSelection().addListener("change", function(e) {

430 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.list.core.IListDelegate

qooxdoo Documentation, Release 1.6

this.debug("Selection: " + list.getSelection().getItem(0));
}, this);

Demos Here are some links that demonstrate the usage of the widget:

• Example for the virtual List widget

• Example showing the filtering feature

• Example showing the custom rendering

• Example showing the grouping feature

API

Here is a link to the API of the widget:
qx.ui.list.List

Virtual ComboBox The virtual ComboBox acts like the regular ComboBox, but is based on the framework’s virtual
infrastructure.

Preview Image

Features

• Mouse and keyboard support.

• Items with plain text and/or icons

• Ellipsis: If the label does not fit into the widget’s bounds an ellipsis (”...”) is rendered at the end of the label.

• Supports filtering, sorting, grouping, data binding and custom rendering like the Virtual List.

Mouse and keyboard behavior:

13.2. GUI Toolkit 431

http://demo.qooxdoo.org/1.6/demobrowser/#virtual~List.html
http://demo.qooxdoo.org/1.6/demobrowser/#virtual~ListWithFilter.html
http://demo.qooxdoo.org/1.6/demobrowser/#virtual~ExtendedList.html
http://demo.qooxdoo.org/1.6/demobrowser/#virtual~GroupedList.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.list.List

qooxdoo Documentation, Release 1.6

keyboard open drop-down key down; key up;
close drop-down esc; enter

mouse open drop-down click on arrow button
close drop-down click on item; click outside drop-down

drop-down closed keyboard select next not possible
select previous not possible
select first not possible
select last not possible

mouse select next not possible
select previous not possible

drop-down open keyboard select next key down then enter
select previous key up then enter
select first page up then enter
select last page down then enter

mouse select next click on item
select previous click on item
wrap in list no
preselect mouse over; key up; key down
select drop-down item on open yes, first item in the list which begins with value

Description The qx.ui.form.VirtualComboBox is based on the virtual infrastructure. The virtual SelectBox
has both a TextField and a Virtual List drop-down. The drop-down can be used to predefine values which the user can
select.

Using the virtual infrastructure has considerable advantages when there is a huge amount of model items to render:
Widgets are created only for visible items and reused. This saves both creation time and memory.

The virtual ComboBox uses the same qx.ui.list.core.IListDelegate interface as the Virtual List to configure the Com-
boBox’s behavior (item and group renderer configuration, filtering, sorting, grouping, etc.).

Note: At the moment we only support widget based rendering for list and group items, but we are planning to also
support HTML based rendering in a future release.

Code Example Here’s an example. We create a simple ComboBox example with 2500 items, sorting the items
(ascending) and log each value change.

//create the model data
var rawData = [];
for (var i = 0; i < 2500; i++) {
rawData[i] = "Item No " + i;

}
var model = qx.data.marshal.Json.createModel(rawData);

//create the SelectBox
var comboBox = new qx.ui.form.VirtualComboBox(model);

//configure the ComboBox’s behavior
var delegate = {
sorter : function(a, b) {
return a > b ? 1 : a < b ? -1 : 0;

}
};
comboBox.setDelegate(delegate);

432 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.list.core.IListDelegate

qooxdoo Documentation, Release 1.6

//log value changes
comboBox.addListener("changeValue", function(e) {

this.debug("Value: " + e.getData());
}, this);

Demos Here are some links that demonstrate the usage of the widget:

• ComboBox demo

API

Here is a link to the API of the widget:
qx.ui.form.VirtualComboBox

Virtual SelectBox The virtual SelectBox acts like the SelectBox, but is based on the framework’s virtual infrastruc-
ture.

Preview Image

Features

• Mouse and keyboard support.

• Items with plain text and/or icons

• Ellipsis: If the label does not fit into the widget’s bounds an ellipsis (”...”) is rendered at the end of the label.

• Supports filtering, sorting, grouping, data binding and custom rendering like the Virtual List.

Mouse and keyboard behavior:

13.2. GUI Toolkit 433

http://demo.qooxdoo.org/1.6/demobrowser/#virtual~ComboBox.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.VirtualComboBox

qooxdoo Documentation, Release 1.6

keyboard open drop-down key down; key up; space; enter
close drop-down esc; enter

mouse open drop-down click on widget
close drop-down click on item; click outside drop-down

drop-down closed keyboard select next not possible
select previous not possible
select first not possible
select last not possible

mouse select next not possible
select previous not possible

drop-down open keyboard select next key down then enter
select previous key up then enter
select first page up then enter
select last page down then enter

mouse select next click on item
select previous click on item
wrap in list no
preselect mouse over; key up; key down
select drop-down item on open yes

Description The qx.ui.form.VirtualSelectBox is based on the virtual infrastructure. It can be used to
select one item and uses the Virtual List as a drop-down.

Using the virtual infrastructure has considerable advantages when there is a huge amount of model items to render:
Widgets are created only for visible items and reused. This saves both creation time and memory.

The virtual SelectBox uses the same qx.ui.list.core.IListDelegate interface as the Virtual List to configure the Select-
Box’s behavior (item and group renderer configuration, filtering, sorting, grouping, etc.).

Note: At the moment we only support widget based rendering for list and group items, but we are planning to also
support HTML based rendering in a future release.

Code Example Here’s an example. We create a simple SelectBox example with 2500 items, sort the items (ascend-
ing), select the 20th item and log each selection change.

//create the model data
var rawData = [];
for (var i = 0; i < 2500; i++) {
rawData[i] = "Item No " + i;

}
var model = qx.data.marshal.Json.createModel(rawData);

//create the SelectBox
var selectBox = new qx.ui.form.VirtualSelectBox(model);

//configure the SelectBox’s behavior
var delegate = {
sorter : function(a, b) {
return a > b ? 1 : a < b ? -1 : 0;

}
};
selectBox.setDelegate(delegate);

434 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.list.core.IListDelegate

qooxdoo Documentation, Release 1.6

//Pre-Select "Item No 20"
selectBox.getSelection().push(model.getItem(20));

//log selection changes
selectBox.getSelection().addListener("change", function(e) {
this.debug("Selection: " + selectBox.getSelection().getItem(0));

}, this);

Demos Here are some links that demonstrate the usage of the widget:

• SelectBox demo

API

Here is a link to the API of the widget:
qx.ui.form.VirtualSelectBox

VirtualTree The VirtualTree is a widget based on the framework’s virtual infrastructure.

Preview Image

Description The qx.ui.tree.VirtualTree is based on the virtual infrastructure and supports single selec-
tion, multi selection, data binding and custom rendering.

Using the virtual infrastructure has considerable advantages when there is a huge amount of model items to render:
Widgets are created only for visible items and reused. This saves both creation time and memory.

13.2. GUI Toolkit 435

http://demo.qooxdoo.org/1.6/demobrowser/#virtual~SelectBox.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.form.VirtualSelectBox

qooxdoo Documentation, Release 1.6

With the qx.ui.tree.core.IVirtualTreeDelegate interface it is possible to configure the tree’s behavior (item renderer
configuration, etc.).

Note: At the moment we only support widget based rendering for tree items, but we are planning to also support
HTML based rendering in a future release.

Code Example Here’s an example. We create a simple tree example with 2500 items and log each selection change.

//create the model data
var nodes = [];
for (var i = 0; i < 2500; i++)
{

nodes[i] = {name : "Item " + i};

// if its not the root node
if (i !== 0)
{
// add the children in some random order
var node = nodes[parseInt(Math.random() * i)];

if(node.children == null) {
node.children = [];

}
node.children.push(nodes[i]);

}
}
// converts the raw nodes to qooxdoo objects
nodes = qx.data.marshal.Json.createModel(nodes, true);

// creates the tree
var tree = new qx.ui.tree.VirtualTree(nodes.getItem(0), "name", "children").set({
width : 200,
height : 400

});

//log selection changes
tree.getSelection().addListener("change", function(e) {

this.debug("Selection: " + tree.getSelection().getItem(0).getName());
}, this);

Demos Here are some links that demonstrate the usage of the widget:

• Example for the VirtualTree widget

• Example with custom items as columns

• Example which loads items dynamically when a nodes is opened

API

Here is a link to the API of the widget:
qx.ui.tree.VirtualTree

Window The window widget is similar to Windows’ MDI child windows.

436 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tree.core.IVirtualTreeDelegate
http://demo.qooxdoo.org/1.6/demobrowser/#virtual~Tree.html
http://demo.qooxdoo.org/1.6/demobrowser/#virtual~Tree_Columns.html
http://demo.qooxdoo.org/1.6/demobrowser/#virtual~Tree_Dynamic.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.tree.VirtualTree

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Title support text and/or icon

• Support modal window

• Status bar support

• Minimize and maximize a window

• Open and close a window

• Resize a window

Description The window widget can be used to show dialogs or to realize a MDI (Multiple Document Interface)
Application.

The widgets implements all known metaphors from a window:

• minimize

• maximize

• open

• close

• and so on

The package qx.ui.window contains two other classes that can be used to create a MDI Application:

• The Desktop can act as container for windows. It can be used to define a clipping region for internal windows.

• The Manager handle the z-order and modality blocking of windows managed the connected desktop.

Demos Here are some links that demonstrate the usage of the widget:

• Demonstrate different window types

• Windows with using a Desktop

• A window containing a table demo

13.2. GUI Toolkit 437

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.window.Desktop
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.window.Manager
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Window.html
http://demo.qooxdoo.org/1.6/demobrowser/#widget~Desktop.html
http://demo.qooxdoo.org/1.6/demobrowser/#table~Table.html

qooxdoo Documentation, Release 1.6

• A calculator demo

API

Here is a link to the API of the Widget:
qx.ui.window.Window

13.2.2 Layout Reference

qooxdoo comes with some of the most common layout managers. The following layout managers are supported by
qooxdoo:

The Basic layout is used to position the children at absolute top/left coordinates.

Basic

The Basic is used to position the children at absolute top/left coordinates.

Preview Image

Features

• Basic positioning using left and top layout properties

• Respects minimum and maximum dimensions without skrinking/growing

• Margins for top and left side (including negative margins)

• Respects right and bottom margins in the size hint

• Auto-sizing

438 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#showcase~Calculator.html
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.window.Window

qooxdoo Documentation, Release 1.6

Description

The basic layout positions each child at the coordinate given by the left and top layout properties.

The size hint of a widget configured with a Basic layout is determined such that each child can be positioned at the
specified location and can have its preferred size and margin.

Margins for left and top will shift the widget position by this amount (negative values are possible). Margins for right
and bottom are only respected while computing the size hint.

Layout properties

• left: The left coordinate in pixel (defaults to 0)

• top: The top coordinate in pixel (defaults to 0)

Alternative Names

• AbsoluteLayout (ExtJS)

Demos

Here are some links that demonstrate the usage of the layout:

• A demo of the Basic layout

API

Here is a link to the API of the layout manager:
qx.ui.layout.Basic

The Canvas layout is an extended Basic layout. It is possible to position a widget relative to the right or bottom edge
of the available space. The Canvas layout furthermore supports dimension and location measures in percent.

Canvas

The Canvas is an extended Basic layout. It is possible to position a widget relative to the right or bottom edge of the
available space. The Canvas layout further has support for percent dimensions and locations.

13.2. GUI Toolkit 439

http://extjs.com/deploy/dev/docs/?class=Ext.layout.AbsoluteLayout
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Basic.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.Basic

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Pixel dimensions and locations

• Percent dimensions and locations

• Stretching between left+right and top+bottom

• Minimum and maximum dimensions

• Children are automatically shrunk to their minimum dimensions if not enough space is available

• Auto sizing (ignoring percent values)

• Margins (also negative ones)

Description

In addition to the Basic layout the Canvas layout adds support for right and bottom layout properties. These allows
to position a child in distance from the right or bottom edge of the available space. The canvas also adds support for
percent locations and dimensions (layout properties width and height). Percents are defined as a string value
(otherwise using the same layout property) with a “%” postfix.

It is possible to stretch a between the left and right edge by specifying layout properties for both left and right.
The same is of cause true for top and bottom. To define a distance which is identially to each edge e.g. stretch a
child to between all sides there is the edge property. This property accepts the same values are supported by the other
location properties (including percents). Please keep in mind that often a Grow Layout might be the better choice
when edge was planned to use in conjunction with a Canvas Layout.

440 Chapter 13. References

qooxdoo Documentation, Release 1.6

The size hint of a widget configured with a Canvas layout is determined such that each child can be positioned at the
specified location and can have its preferred size and margin. For this computation the layout ignores all widgets,
which have a percent size or position, because These sizes depend on the actual rendered size and are not known
upfront.

Layout properties

• left (Integer|String): The left coordinate in pixel or as a percent string e.g. 20 or 30%.

• top (Integer|String): The top coordinate in pixel or as a percent string e.g. 20 or 30%.

• right (Integer|String): The right coordinate in pixel or as a percent string e.g. 20 or 30%.

• bottom (Integer|String): The bottom coordinate in pixel or as a percent string e.g. 20 or 30%.

• width (String): A percent width e.g. 40%.

• height (String): A percent height e.g. 60%.

Demos

Here are some links that demonstrate the usage of the layout:

• Canvas with pixel positions

• Canvas with percent positions and dimensions

• Canvas showing left and right attachment of children

• Canvas with children having minimum and maximum dimensions

API

Here is a link to the API of the layout manager:
qx.ui.layout.Canvas

The Box layouts arranges their children back-to-back. The horizontal box layout arranges widgets in a horizontal row,
from left to right, while the vertical box layout arranges widgets in a vertical column, from top to bottom.

HBox/VBox

The box layouts lay out their children one after the other. The horizontal box layout lays out widgets in a horizontal
row, from left to right, while the vertical box layout lays out widgets in a vertical column, from top to bottom.

13.2. GUI Toolkit 441

http://demo.qooxdoo.org/1.6/demobrowser/#layout~Canvas_Fixed.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Canvas_Percent.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Canvas_LeftRight.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Canvas_MinMaxSizes.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.Canvas

qooxdoo Documentation, Release 1.6

Preview Image

Features

• Respects Minimum and maximum dimensions

• Priorized growing/shrinking (flex)

• Margins with horizontal (HBox) resp. vertical (VBox) collapsing)

• Auto sizing (ignoring percent values)

• Percent widths (not size hint relevant)

• Alignment (Children property {@link qx.ui.core.LayoutItem#alignX} is ignored)

• Horizontal (HBox) resp. vertical (VBox) spacing (collapsed with margins)

• Property to reverse children ordering (starting from last to first)

• Vertical (HBox) resp. horizontal (VBox) children stretching (respecting size hints)

Description

Both box layouts lay out their children one after the other. This description will discuss the horizontal box layout.
Everything said about the horizontal box layout applies equally to the vertical box layout just with a vertical orientation.

In addition to the child widget’s own preferred width the width of a child can also be defined as percent values. The
percent value is relative to the inner width of the parent widget without any spacings. This means a horizontal box
layout with two children of width 50% and with a spacing will fit exactly in the parent.

The horizontal box layout tries to stretch all children vertically to the height of the box layout. This can be supressed
by setting the child property allowGrowY to false. If a child is smaller than the layout and cannot be stretched it will
be aligned according to its alignY value. The alignX property of the layout itself defines the horizontal alignment of
all the children as a whole.

The horizontal spacing can be defined using the property spacing. In addition to the spacing property each widget
can define left and a right margin. Margins and the spacing are always collapsed to the largest single value. It for
example the layout has a spacing of 10 pixel and two consecutive child widgets A and B - A with a right margin of 15
and B with a left margin of 5 - than the spacing between these widgets would be 15, the maximum of these values.

The preferred height of an horizontal box layout is determined by the highest child widged. The preferred with is the
sum of the widths of each child plus the spacing resulting from margins and the spacing property.

442 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~setAllowGrowY
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.core.LayoutItem~setAlignY
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.HBox~setAlignX
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.HBox~setSpacing

qooxdoo Documentation, Release 1.6

Layout properties

• flex (Integer): Defines the flexibility (stretching factor) of the child (defaults to 0)

• width (String): Defines a percent width for the item. The percent width, when specified, is used instead of the
width defined by the size hint. The minimum and maximum width still takes care of the elements limitations. It
has no influence on the layout’s size hint. Percents are mainly useful for widgets which are sized by the outer
hierarchy.

Alternative Names

• QVBoxLayout (Qt)

• StackPanel (XAML)

• RowLayout (SWT)

Demos

Here are some links that demonstrate the usage of the layout:

• Simple HBox usage

• HBox with flex widths

• HBox with child margins

• HBox with percent widths

• HBox with switchable ‘’reversed” property

• HBox with separators

• HBox with vertical shrinking

• Simple VBox usage

• VBox with flex heights

• VBox with child margins

• VBox with percent heights

• VBox with switchable ‘’reversed” property

• VBox with separators

• VBox with horizontal shrinking

API

Here is a link to the API of the layout manager:

qx.ui.layout.HBox
qx.ui.layout.VBox

13.2. GUI Toolkit 443

http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox_Flex.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox_Margin.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox_Percent.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox_Reversed.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox_Separator.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~HBox_ShrinkY.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox_Flex.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox_Margin.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox_Percent.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox_Reversed.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox_Separator.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~VBox_ShrinkX.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.HBox
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.VBox

qooxdoo Documentation, Release 1.6

The Flow layout places widget next to each other from left to right. If the available width is not sufficient an automatic
line break is inserted.

Flow

Note: This layout manager is available since qooxdoo 0.8.3.

A basic layout, which supports positioning of child widgets in a ‘flowing’ manner, starting at the container’s top/left
position, placing children left to right (like a HBox) until the there’s no remaining room for the next child. When out
of room on the current line of elements, a new line is started, cleared below the tallest child of the preceeding line – a
bit like using ‘float’ in CSS, except that a new line wraps all the way back to the left.

Preview Image

This image shows a gallery implemented using a Flow layout.

Features

• Reversing children order

• Manual line breaks

• Horizontal alignment of lines

• Vertical alignment of individual widgets within a line

• Margins with horizontal margin collapsing

• Horizontal and vertical spacing

• Height for width calculations

• Auto-sizing

Description

The Flow layout imitates the way text is rendered. Each child is placed horizontally next to each other. If the remaining
space is too small a new line is created and the child is placed at the start of the new line.

444 Chapter 13. References

qooxdoo Documentation, Release 1.6

It is possible to specify a horizontal alignment for all children. This is equivalent to center, left or right
alignment of text blocks. Further it is possible to specify the vertical alignment of each child in a line.

This layout supports height for width, which means that given a fixed width it can calculate the required height.

Layout properties

• lineBreak (Boolean): If set to true a forced line break will happen after this child widget.

Demos

Here are some links that demonstrate the usage of the layout:

• Flow layout demo

API

Here is a link to the API of the layout manager:
qx.ui.layout.Flow

A Dock layout attaches the children to the edges of the available space.

Dock

Docks children to one of the edges.

Preview Image

Features

• Percent width for left/right/center attached children

• Percent height for top/bottom/center attached children

• Minimum and maximum dimensions

• Prioritized growing/shrinking (flex)

• Auto sizing

• Margins and Spacings

13.2. GUI Toolkit 445

http://demo.qooxdoo.org/1.6/demobrowser/#layout~Flow.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.Flow

qooxdoo Documentation, Release 1.6

• Alignment in orthogonal axis (e.g. alignX of north attached)

• Different sort options for children

Description

The Dock layout attaches the children to the edges of the availble space. The space distribution respects the child
order and starts with the first child. Every added child reduces the available space of the other ones. This is important
because for example a left attached child reduces the available width for top attached children and vice-versa. This
layout is mainly used for the basic application layout structure.

Layout properties

• edge (String): The edge where the layout item should be docked. This may be one of north, east, south,
west or center. (Required)

• width (String): Defines a percent width for the item. The percent width, when specified, is used instead of
the width defined by the size hint. This is only supported for children added to the north or south edge or
are centered in the middle of the layout. The minimum and maximum width still takes care of the elements
limitations. It has no influence on the layout’s size hint. Percents are mainly useful for widgets which are sized
by the outer hierarchy.

• height (String): Defines a percent height for the item. The percent height, when specified, is used instead of the
height defined by the size hint. This is only supported for children added to the west or east edge or are centered
in the middle of the layout. The minimum and maximum height still takes care of the elements limitations. It
has no influence on the layout’s size hint. Percents are mainly useful for widgets which are sized by the outer
hierarchy.

Alternative Names

• BorderLayout (Qt)

• DockPanel (XAML)

• BorderLayout (Java)

• BorderLayout (ExtJS)

Demos

Here are some links that demonstrate the usage of the layout:

• Simple docks

• Docks with auto sizing and spacings

• Docks with flex sizes (growing)

• Docks with flex sizes (shrinking)

• Docks with child margins

• Docks with percent sizes

• Docks with separators

446 Chapter 13. References

http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock_AutoSize.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock_FlexGrowing.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock_FlexShrinking.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock_Margin.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock_PercentSize.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Dock_Separator.html

qooxdoo Documentation, Release 1.6

API

Here is a link to the API of the layout manager:
qx.ui.layout.Dock

The Grid layout arranges items in a two dimensional grid. Widgets can be placed into the grid’s cells and may span
multiple rows and columns.

Grid

The grid layout manager arranges the items in a two dimensional grid. Widgets can be placed into the grid’s cells and
may span multiple rows and columns.

Preview Image

This image show two nested grids with column and row spans.

Features

• Flex values for rows and columns

• Minimal and maximal column and row sizes

• Manually setting of column and row sizes

• Horizontal and vertical alignment

• Horizontal and vertical spacing

• Column and row spans

• Auto-sizing

13.2. GUI Toolkit 447

http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.Dock

qooxdoo Documentation, Release 1.6

Description

The grid arranges the child widgets in a two dimensional grid. Each child is associated with a grid column and row.
Widgets can span multiple cells by setting the colSpan and rowSpan layout properties. However each grid cell can
only contain one widget. Thus child widgets can never overlap.

The grid computes the preferred with/height of each column/row based on the preferred size of the child widgets. The
computed column widths and row heights can be overridden by explicitly setting them using setColumnWidth and
setRowHeight. Minimum and maximum sizes for columns/rows can be set as well.

By default no column or row is stretched if the available space is larger/smaller than the needed space. To allow certain
rows/columns to be stretched each row/column can have a flex value.

Layout properties

• row (Integer): The row of the cell the widget should occupy. Each cell can only contain one widget. This layout
property is mandatory.

• column (Integer): The column of the cell the widget should occupy. Each cell can only contain one widget.
This layout property is mandatory.

• rowSpan (Integer): The number of rows, the widget should span, starting from the row specified in the row
property. The cells in the spanned rows must be empty as well. (defaults to 1)

• colSpan (Integer): The number of columns, the widget should span, starting from the column specified in the
column property. The cells in the spanned columns must be empty as well. (defaults to 1)

Alternative Names

• QGridLayout (Qt)

• Grid (XAML)

• TableLayout (ExtJS)

Demos

Here are some links that demonstrate the usage of the layout:

• Simple grids

• Complex grids

• A grid with different cell alignments

• An animated grid

API

Here is a link to the API of the layout manager:
qx.ui.layout.Grid

The Grow layout stretches all children to the full available size but still respects limits configured by min/max values.

448 Chapter 13. References

http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Grid~setColumnWidth
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Grid~setRowHeight
http://doc.trolltech.com/4.3/qgridlayout.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Grid_Simple.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Grid_Complex.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Grid_Alignment.html
http://demo.qooxdoo.org/1.6/demobrowser/#layout~Grid_Animated.html
http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.Grid

qooxdoo Documentation, Release 1.6

Grow

The grow layout stretches all children to the full available size but still respects limits configured by min/max values.

Features

• Auto-sizing

• Respects minimum and maximum child dimensions

Description

The Grow layout is the simplest layout in qooxdoo. It scales every child to the full available width and height (still
respecting limitations of each child). It will place all children over each other with the top and left coordinates set to
0. This layout is usually used with only one child in scenarios where exactly one child should fill the whole content
(e.g. adding a TabView to a Window). This layout performs a lot better in these cases than for example a canvas layout
with edge=0.

Layout properties

The Grow layout does not have any layout properties.

Alternative Names

• FitLayout (ExtJS)

API

Here is a link to the API of the layout manager:
qx.ui.layout.Grow

There are a few more layouts bundled with the default qooxdoo distribution but those are mostly intended for use by
a specific component. For example the Atom uses the Atom Layout, the SplitPane uses the two split layouts HLayout
and VLayout.

Through the simple API it should be quite easy to write custom layouts if the included ones do not meet demands.
Simply derive from the Abstract layout and start with a refined version of the method renderLayout().

13.3 Tooling

13.3.1 Generator Default Jobs

This page describes the jobs that are automatically available to all skeleton-based applications (particularly, applica-
tions with config.json files that include the framework’s application.json config file). Mainly this is just a reference
list with short descriptions of what the jobs do. But in some cases, there is comprehensive documentation about the in-
terface of this job and how it can be parametrized (This would usually require changing your config.json configuration
file).

13.3. Tooling 449

http://demo.qooxdoo.org/1.6/apiviewer/index.html#qx.ui.layout.Grow
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Atom
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.splitpane.HLayout
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.splitpane.VLayout
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Abstract
http://demo.qooxdoo.org/1.6/apiviewer/#qx.ui.layout.Abstract~renderLayout

qooxdoo Documentation, Release 1.6

Action Jobs

These jobs can be invoked with the generator, e.g. as generate.py <jobname>.

api

Create api doc for the current library. Use the following macros to tailor the scope of classes that are going to show up
in the customized apiviewer application:

"API_INCLUDE" = ["<class_patt1>", "<class_patt2>", ...]
"API_EXCLUDE" = ["<class_patt1>", "<class_patt2>", ...]

The syntax for the class pattern is like those for the include config key.

Classes, which are not covered by API_INCLUDE, are nevertheless included in the api data with their full class
description if they are required for inheritance relationships (e.g. a class that is included derives from a class which is
not). If such a required class is explicitly excluded with API_EXCLUDE, a stub entry for it will be included in the api
data to just show the inheritance relationship.

api-data

Create the api data for the current library. This is included in the api job, but allows you to re-generate the api data
.json files for the classes without re-generating the Apiviewer application as well. Moreover, you can supply class
names as command line arguments to only re-generate the api data for those:

sh> generate.py api-data my.own.ClassA ...

Beware though that in such a case the tree information provided to the Apiviewer (i.e. what you see in the Apiviewer’s
tree view on the left) is also restricted to those classes (augmented by stubs for their ancestors for hierarchy resolution).
But this should be fine for developing API documenation for specific classes.

build

Create build version of current application.

clean

Remove local cache and generated .js files (source/build).

distclean

Remove the cache and all generated artefacts of this library (source, build, ...).

fix

Normalize whitespace in .js files of the current library (tabs, eol, ...).

450 Chapter 13. References

qooxdoo Documentation, Release 1.6

info

Running this job will print out various information about your setup on the console. Information includes your qoox-
doo and Python version, whether source and/or build version of your app has been built, stats on the cache, asf.

inspector

Create an instance of the Inspector in the current application. The inspector is a debugging tool that allows you to
inspect your custom application while running. You need to run the source job first, the run the inspector job. You will
then be able to open the file source/inspector.html in your browser. The source version of your application
will be loaded into the inspector automatically.

lint

Check the source code of the .js files of the current library.

migration

Migrate the .js files of the current library to the current qooxdoo version.

Running the migration job Here is a sample run of the migration job:

./generate.py migration

NOTE: To apply only the necessary changes to your project, we
need to know the qooxdoo version it currently works with.

Please enter your current qooxdoo version [1.0] :

Enter your qooxdoo version or just hit return if you are using the version given in square brackets.

MIGRATION SUMMARY:

Current qooxdoo version: 1.0
Upgrade path: 1.0.1 -> 1.1 -> 1.2

Affected Classes:
feedreader.view.Header
feedreader.view.Article
feedreader.view.Tree
feedreader.PreferenceWindow
feedreader.view.ToolBar
feedreader.FeedParser
feedreader.view.Table
feedreader.Application
feedreader.test.DemoTest

NOTE: It is advised to do a ’generate.py distclean’ before migrating any files.
If you choose ’yes’, a subprocess will be invoked to run distclean,
and after completion you will be prompted if you want to
continue with the migration. If you choose ’no’, the distclean
step will be skipped (which might result in potentially unnecessary
files being migrated).

13.3. Tooling 451

qooxdoo Documentation, Release 1.6

Do you want to run ’distclean’ now? [yes] :

Enter “yes”.

WARNING: The migration process will update the files in place. Please make
sure, you have a backup of your project. The complete output of the
migration process will be logged to ’migration.log’.

Do you want to start the migration now? [no] :

Enter “yes”.

Check migration.log for messages that contain foo.js has been modified. Storing modifications ... to verify
changes to class code.

simulation-build

Creates a runner application (the Simulator) for Selenium-based GUI interaction tests of the current library.

simulation-run

Starts Rhino and executes a Simulator test application generated by simulation-build. The Simulator is config-
ured using the “environment” key of this job. The following settings are supported:

• simulator.testBrowser (String, default: *firefox3)

– A browser launcher as supported by Selenium RC (see the Selenium documentation for details).

• simulator.autHost (String, default: http://localhost)

– Protocol and host name that Selenium should use to access the application to be tested

• simulator.autPath (String, default: /<applicationName>/source/index.html)

– Server path of the tested application.

• simulator.selServer (String, default: localhost)

– Host name of the machine running the Selenium RC server instance to be used for the test.

• simulator.selPort (Integer, default: 4444)

– Number of the port the Selenium RC server is listening on

• simulator.globalErrorLogging (Boolean, default: false)

– Log uncaught exceptions in the AUT.

• simulator.testEvents (Boolean, default: false)

– Activate AUT event testing support.

• simulator.applicationLog (Boolean, default: false)

– Capture the AUT’s log output.

Additional runtime settings are configured using the “simulate” key.

pretty

Pretty-formatting of the source code of the current library.

452 Chapter 13. References

qooxdoo Documentation, Release 1.6

source

Create a source version of the application, using the original file path for each class.

The source version of an application is tailored towards development activities. It makes it easy to write code, run the
application, test, debug and inspect the application code, fix issues, add enhancements, and repeat.

With the source job all the classes of the application are in their original source form, and their files are directly loaded
from their original paths on the file system. If you inspect your application in a JavaScript debugger like Firebug or
Chrome Developer Tools, you can identify each file individually, read its code and comments, set breakpoints, inspect
variables and so forth.

If you find yourself in a situation where you want to inspect more than your current application’s class files in the
debugger (e.g. because you are debugging another library along the way), this job is preferable.

You have to re-run this job when you introduce new dependencies, e.g. by instantiating a class you haven’t used before.
This changes the set of necessary classes for your application, and the generator has to re-create the corresponding
loader.

There are two variants of the source job available which you might find interesting. One is called source-all and
will include all available classes of all involved libraries, the other is source-hybrid which improves loading speed by
concatenating some of the class code. See their respective entries.

source-all

Create a source version of the application, with all classes.

source-all will include all known classes, be they part of your application, the qooxdoo framework, or any other qoox-
doo library or contribution you might be using. All those classes are included in the build, whether they are currently
required or not. This allows you develop your code more freely as you don’t have to re-generate the application when
introducing new dependencies to existing classes. All classes are already there. You only have to re-run this job when
you add an entirely new class that you want to use.

The downside of this job is that due to the number of classes your application is larger and loads slower in the browser,
so it is a trade-off between development speed and loading speed.

source-hybrid

Create a source version of the application, concatenating some of the class code.

The source-hybrid job concatenates the contents of the classes that make up the application into a few files, only
leaving your own application classes separate. Having the other class files (framework, libraries, contribs) chunked
together you get the loading speed of nearly the build version, while at the same time retaining the accessibility of your
own application files for debugging. This makes this job ideal for fast and focussed development of the application-
specific classes.

Only the classes that are actually needed for the application are included, so you have to re-run this job when you
introduce new dependencies.

To review the three different source jobs, if you are just getting started with qooxdoo development, use the source-all
version, which is the most convenient if you are not too impatient. If you are concerned about loading speed during
development, but don’t mind hitting the up and return keys in your shell window once in a while, go with the default
source-hybrid job. If your emphasis on the other hand is on inspection, and you want to see exactly which class files
get loaded into your application and which code they provide, the source version will be your choice.

13.3. Tooling 453

qooxdoo Documentation, Release 1.6

test

Create a test runner app for unit tests of the current library.

• Use the following macro to tailor the scope of classes in which unit test classes are searched for:

"TEST_INCLUDE" = ["<class_patt1>", "<class_patt2>", ...]

The syntax for the class pattern is like those for the include config key.

• The libraries from the libraries job will be included when building the test application (the application containing
your unit tests is a separate application which is loaded into the runner application).

• If you want to break out from the reliance on the libraries job altogether, or have very specific settings that must
be applied to the test application, you can provide a custom includer job common-tests which may contain a
custom library key and other keys. But then you have to make sure it contains the Testrunner library as well.

"common-tests" :
{
"extend" : ["libraries"],

"let" : { "LOCALES" : ["de", "de_DE", "fr", "fr_FR"] },

"library" :
[

{ "manifest" : "${QOOXDOO_PATH}/framework/Manifest.json" },
{ "manifest" : "${TESTRUNNER_ROOT}/Manifest.json" }

],

"include" : ["testrunner.TestLoader", "${TEST_INCLUDE}", "${QXTHEME}"],

"environment" :
{

"qx.theme" : "${QXTHEME}",
"qx.globalErrorHandling" : true

},

"cache" :
{

"compile" : "${CACHE}"
}

}

This allows you to tailor most of the parameters that influence the creation of the test application.

test-source

Create a test runner app for unit tests (source version) of the current library.

The same customization interface applies as for the default test job.

test-inline

Create an inline test runner app for unit tests of the current library.

The same customization interface applies as for the default test job.

454 Chapter 13. References

qooxdoo Documentation, Release 1.6

test-native

Create a native test runner app for unit tests of the current library.

The same customization interface applies as for the default test job.

translation

Create .po files for current library.

Includer Jobs

These jobs don’t do anything sensible on their own, so it is no use to invoke them with the generator. But they can be
used in the application’s config.json, to modify the behaviour of other jobs, as they pick up their definitions.

common

Common includer job for many default jobs, mostly used internally. You should usually not need to use it; if you do,
use with care.

libraries

This job should take a single key, library. The libraries job is filled by default with your application and the qooxdoo
framework library, plus any additional libraries you specify in a custom libraries job you added to your application’s
config.json. Here, you can add additional libraries and/or contributions you want to use in your application. See the
linked reference for more information on the library key. Various other jobs will evaluate the libraries job (like api,
test), to work on a common set of libraries.

"libraries" :
{

"library" : [{ "manifest" : "some/other/lib/Manifest.json" }]
}

profiling

Includer job, to activate profiling.

log-parts

Includer job, to activate verbose logging of part generation; use with the -v command line switch.

log-dependencies

Includer job, to activate verbose logging of class dependencies; use with the -v command line switch.

13.3. Tooling 455

qooxdoo Documentation, Release 1.6

13.3.2 Generator Config Keys

This page contains the complete list of configuration keys and their sub-structures.

Mandatory keys in a context are marked ‘(required)’, all other keys can be considered optional (most have default
values). Special note boxes starting with ‘peer-keys’ indicate interactions of the current key with other configuration
keys that should be present in the job for the current key to function properly. E.g. the key compile will use the peer-
key cache in the job definition for its workings. Again, in many cases fall-back defaults will be in place, but relying
on them might lead to sub-optimal results.

add-css

Add CSS files to the application. Takes a list.

"add-css" :
[

{
"uri" : "<css-uri>"

}
]

Note: peer-keys: compile

• uri (required) : URI with which the css file will be loaded, relative to the index.html.

add-script

Add pre-fabricated JS files to the application. Takes a list.

"add-script" :
[

{
"uri" : "<script-uri>"

}
]

Note: peer-keys: compile

• uri (required) : URI with which the script will be loaded, relative to the index.html.

api

Triggers the generation of a custom Apiviewer application. Takes a map.

"api" :
{

"path" : "<path>",
"verify" : ["links"]

}

Note: peer-keys: cache, include, library

456 Chapter 13. References

qooxdoo Documentation, Release 1.6

• path (required) : Path where the Apiviewer application is to be stored, relative to the current directory.

• verify : Things to check during generation of API data.

– links : Check internal documentation links (@link{...}) for consistency.

asset-let

Defines macros that will be replaced in #asset hints. Takes a map.

"asset-let" :
{

"<macro_name>" : ["foo", "bar", "baz"]
}

Each entry is

• <macro_name> : [<list of replacement strings>] Like with macros, references (through ‘${macro_name}’) to
these keys in #asset hints in source files will be replaced. Unlike macros, each listed value will be used, and the
result is the list of all ensuing expressions, so that all resulting assets will be honored.

Special section

cache

Define the paths to cache directories, particularly to the compile cache. Takes a map.

"cache" :
{

"compile" : "<path>",
"downloads" : "<path>",
"invalidate-on-tool-change" : (true|false)

}

Possible keys are

• compile : path to the “main” cache, the directory where compile results are cached, relative to the current
(default: “${CACHE}”)

• downloads : directory where to put downloads (e.g. contrib://* libraries), relative to the current (default:
“${CACHE}/downloads”)

• invalidate-on-tool-change : when true, the compile cache (but not the downloads) will be cleared whenever the
tool chain is newer (relevant mainly for trunk users; default: true)

Special section

clean-files

Triggers clean-up of files and directories within a project and the framework, e.g. deletion of generated files, cache
contents, etc. Takes a map.

"clean-files" :
{

"<doc_string>" :
[
"<path>",
"<path>"

13.3. Tooling 457

qooxdoo Documentation, Release 1.6

]
}

Note: peer-keys: cache

Each key is a doc string that will be used in logging when deleting the corresponding files.

• <doc_string> : arbitrary string

• <path> : file/path to be deleted; may be relative to config file location; file globs allowed

collect-environment-info

Triggers the collection of information about the qooxdoo environment, and prints it to the console. Takes a map.

"collect-environment-info" : {}

Note: peer-keys: cache

This key currently takes no subkeys, but you still have to provide an empty map. The information collected includes
the qooxdoo version, the Python version, the path to the cache, stats about the cache contents, whether the current
application has been built, asf.

combine-images

Triggers the creation of combined image files that contain various other images. Takes a map.

"combine-images" :
{

"images" :
{
"<output_image>" :
{

"prefix": ["<string>", "<altstring>"],
"layout": ("horizontal"|"vertical"),
"input" :
[

{
"prefix" : ["<string>", "<altstring>"],
"files" : ["<path>", "<path>"]

}
]

}
}

}

Note: peer-keys: cache

Note: Unless you are generating a base64 combined image, this key requires an external program (ImageMagic) to
run successfully.

• images : map with combine entries

458 Chapter 13. References

qooxdoo Documentation, Release 1.6

– <output_image> : path of output file; may be relative to the config file location; the file ending determins
the file format; use .png, .gif, etc. for binary formats, or .b64.json for base64 combined image

* prefix (required): takes a list; the first element is a prefix of the path given in <output_image>, leading
up to, but not including, the library name space of the output image; this prefix will be stripped from
the ouput path, and will be replaced by an optional second element of this setting, to eventually obtain
the image id of the output image;

* layout : either “horizontal” or “vertical”; defines the layout of images within the combined image
(default: “horizontal”)

* input (required): list of groups of input files, each group sharing the same prefix; each group consists
of:

· prefix (required): takes a list; analogous to the prefix attribute of the ouput image, the first element
of the setting will be stripped from the path of each input file, and replaced by an optional second
element, to obtain the corresponding image id

· files : the list of input image files (file globs allowed); may be relative to config file location

The image id’s of both the input and output files will be collected in an accompanying <output_name>.meta file,
for later processing by the generator when creating source and build versions of the app. You may move these files
around after creation, but you’ll have to keep the combined image and its .meta file together in the same directory. At
generation time, the generator will look for an accompanying .meta file for every image file it finds in a library. The
combined image’s image id will be refreshed from its current location relative to the library’s resource path. But the
clipped images (the images inside the combined image) will be registered under the image id’s given in the .meta file
(and for browser that don’t support combined images, they’ll have to be available on disk under this exact image id).

compile

Triggers the generation of a source or build version of the app. Takes a map.

"compile" :
{

"type" : "(source|build|hybrid)"
}

Note: peer-keys: compile-options, cache, include, library

Generate Javascript file(s) for the application that can be loaded in the browser. This includes an inital file that acts as
the loader and needs to be included by e.g. the hosting index.html page, and possibly other JS files with class code,
I18N files, asf. All necessary settings for the compile run are given in the compile-options key, so make sure this one
is properly filled.

Possible keys are

• type : which build type of the application should be generated (default: source); the types are:

– source : all class code and other resources (images etc.) required for the application are referenced in their
original source files on disk (e.g. application classes, framework classes, contrib/library classes, etc.); this
is optimal for development and debugging (per-file error messages, setting break-points, additional checks
and logging are enabled, etc.) but loads slower due to the many individual files; it is also less amenable to
loading the application through a web server, and should usually be run directly from the disk (using the
file:// protocol)

– hybrid : is also a development build type and combines some of the advantages of the build version with
the source version; as with the source build type, a selected set of classes are loaded directly from their
source files (as specified in compile-options/code/except); the other classes required by the application are

13.3. Tooling 459

qooxdoo Documentation, Release 1.6

compiled together in common .js files; this allows for faster load times while retaining good debuggability
of the selected classes

– build : is the deployment build type; all classes are compiled into a set of common .js files, to minimize
load requests; the class code is optionally compressed and optimized (cf. compile-options/code/optimize);
resource files from all involved libraries are copied to the build directoy, so that it is fully functional and
self-contained, and can be copied to e.g. a web server; this build type is unsuitable for development
activities, as the code is hard to read and certain development features are optimized away, so it should
only be used for production deployment of the application

compile-options

Specify various options for compile (and other) keys. Takes a map.

"compile-options" :
{

"paths" :
{
"file" : "<path>",
"app-root" : "<path>",
"gzip" : (true|false),
"loader-template" : "<path>",
"scripts-add-hash": (true|false)

},
"uris" :
{
"script" : "script",
"resource" : "resource",
"add-nocache-param" : (true|false)

},
"code" :
{
"format" : (true|false),
"locales" : ["de", "en"],
"optimize" : ["basecalls", "comments", "privates", "strings", "variables", "variants"],
"decode-uris-plug" : "<path>",
"except" : ["myapp.classA", "myapp.util.*"]

}
}

The compile-options key informs all compile actions of the generator. Settings of this key are used e.g. by the jobs that
create the source and the build version of an application, though in varying degrees (e.g. the source job only utilizes a
few of the settings in this key, and ignores the others). Output Javascript file(s) are generated into the directory of the
paths/file value, with path/file itself being the primary output file. If paths/file is not given, the APPLICATION macro
has to be set in the global let section with a proper name, in order to determine a default output file name. For further
information see the individual key descriptions to find out which build type utilizes it (in the descriptions, (<type>)
refers to the compile/type, e.g. source or build)

Possible keys are

• paths : paths for the generated output

– file : the path to the compile output file; can be relative to the config’s directory (default:
<type>/script/<appname>.js)

– app-root : (source) relative (in the above sense) path to the directory containing the app’s HTML page
(default: ./source)

460 Chapter 13. References

qooxdoo Documentation, Release 1.6

– loader-template : path to a JS file that will be used as an alternative loader template; for possible macros
and structure see the default (default: ${QOOXDOO_PATH}/tool/data/generator/loader.tmpl.js)

– gzip : whether to gzip output file(s) (default: false)

– scripts-add-hash : whether the file name of generated script files should contain the script’s hash code;
the primary compile output file (see above) is exempted even if set to true (default: false)

• uris : URIs used to reference code and resources

– script : (build) URI from application root to code directory (default: “script”)

– resource : (build) URI from application root to resource directory (default: “resource”)

– add-nocache-param : (source) whether to add a ?nocache=<random_number> parameter to the
URI, to overrule browser caching when loading the application (default: true)

• code : code options

– format : (build) whether to apply simple output formatting (it adds some sensible line breaks to the output
code) (default: false)

– locales : (build) a list of locales to include (default: [”C”])

– optimize : list of dimensions for optimization, max. [”basecalls”, “comments”, “privates”, “strings”,
“variables”, “variants”] (default: []) special section

– decode-uris-plug : path to a file containing JS code, which will be plugged into the loader script, into the
qx.$$loader.decodeUris() method. This allows you to post-process script URIs, e.g. through
pattern matching. The current produced script URI is available and can be modified in the variable euri.

– except : (hybrid) exclude the classes specified in the class pattern list from compilation when creating a
hybrid version of the application

config-warnings

(experimental)

Taylor configuration warnings. This key can appear both at the config top-level, or at the job-level. Takes a map.

"config-warnings" :
{

"job-shadowing" : ["source-script"],
"tl-unknown-keys" : ["baz", "bar"],
"job-unknown-keys" : ["foo", "bar"],
"<config_key>" : ["*"]

}

Turn off warnings printed by the generator to the console for specific configuration issues. The key is honored both at
the top level of the configuration map, and within individual jobs, but some of the sub-keys are only sensible if used
at the top-level (This is indicated with the individual key in the list below). Warnings are on by default (equivalent to
assigning e.g. [”*”] to the corresponding key). Like with the global let, a top-level config-warnings key is inherited by
every job in the config, so its settings are like job defaults. If a given key is not applicable in its context, it is ignored.
To turn off all warnings for a single generator run (independent of settings given in this key) use the generator -q
command line option.

• job-shadowing (top-level) : Job names listed here are not warned about if the current config has a job of this
name, and shadows another job of the same name from an included configuration.

• tl-unknown-keys (top-level) : List of config keys on the top-level configuration map which are unknown to the
generator, but should not be warned about.

13.3. Tooling 461

qooxdoo Documentation, Release 1.6

• job-unknown-keys : List of config keys within a job which are unknown to the generator, but should not be
warned about.

• <config_key> : This is a generic form, where <config_key> has to be a legal job-level configuration key (Un-
known keys, as stated above, are silently skipped). Currently supported keys are exclude, but more keys (like
“let”, “packages”, ...) might follow. The usual value is a list, where the empty list [] means that config warnings
for this key are generally on (none exempted), and [”*”] means they are generally off (all exempted). The
interpretation of the value is key dependent.

– exclude : [] List of class patterns in the exclude key that the generator should not warn about.

– environment : [] This key has specific sub-keys:

* non-literal-keys : Don’t warn if calls to qx.core.Environment use non-literal keys (e.g.
“qx.core.Environment.get(foo)” where foo is a variable).

copy-files

Triggers files/directories to be copied. Takes a map.

"copy-files" :
{

"files" : ["<path>", "<path>"],
"source" : "<path>",
"target" : "<path>"

}

Note: peer-keys: cache

Possible keys are

• files (required) : an array of files/directories to copy; entries will be interpreted relative to the source key
value

• source : root directory to copy from; may be relative to config file location (default: “source”)

• target : root directory to copy to; may be relative to config file location (default: “build”)

copy-resources

Triggers the copying of resources. Takes a map.

"copy-resources" :
{

"target" : "<path>"
}

Note: peer-keys: cache, include, library

Possible keys are

• target : root target directory to copy resources to; may be relative to the config file location (default: “build”)

Unlike copy-files, copy-resources does not take either a “source” key, nor a “files” key. Rather, a bit of implicit
knowledge is applied. Resources will be copied from the involved libraries’ source/resource directories (this
obviates a “source” key). The list of needed resources is derived from the class files (e.g. from #asset hints - this
obviates the “files” key), and then the libraries are searched for in order. From the first library that provides a certain

462 Chapter 13. References

qooxdoo Documentation, Release 1.6

resource, this resource is copied to the target folder. This way you can use most resources from a standard library
(like the qooxdoo framework library), but still “shadow” a few of them by resources of the same path from a different
library, just by tweaking the order in which these libraries are listed in the library key.

default-job

Default job to be run. Takes a string.

"default-job" : "source"

If this key is present in a configuration file, the named job will be run by default when no job argument is passed to
the generator on the command line.

dependencies

Allows you to influence the way class dependencies are processed by the generator. Takes a map.

"dependencies" :
{

"follow-static-initializers" : (true|false),
"sort-topological" : (true|false)

}

• follow-static-initializers (experimental!): Try to resolve dependencies introduced in class definitions when
calling static methods to initialize map keys (default: false).

• sort-topological (experimental!): Sort the classes using a topological sorting of the load-time dependency graph
(default: false).

desc

Provides some descriptive text for the job.

"desc" : "Some text."

The descriptive string provided here will be used when listing jobs on the command line. (Be aware since this is a
normal job key it will be passed on through job inheritance, so when you look at a specific job in the job listing you
might see the job description of some ancestor job).

environment

Define global key-value mappings for the application. Takes a map.

"environment" :
{

"<key>" : (value | [<value>, ...])
}

The “environment” of a qooxdoo application can be viewed as a global, write-once key-value store. The environment
key in a configuration allows you to pre-define values for such keys. All key-value pairs are available at run time
through qx.core.Environment. There are pre-defined keys that are established by qooxdoo, and you can add user-
defined keys. Both are handled the same.

Possible keys are

13.3. Tooling 463

http://api.qooxdoo.org/1.6/#qx.core.Environment

qooxdoo Documentation, Release 1.6

• <key> : a global key; keys are just strings; see qx.core.Environment for a list of pre-defined keys; if you provide
a user-defined key, make sure it starts with a name space and a dot (e.g. “myapp.keyA”); the entry’s value is
either a scalar value, or a list of such values.

As soon as you specify more than one element in the list value for a key, the generator will generate different builds
for each element. If the current job has more than one key defined with multiple elements in the value, the generator
will generate a dedicated build for each possible combination of the given keys. See special section.

Special section

exclude

Exclude classes from processing in the job. Takes an array of class specifiers.

"exclude" : ["qx.util.*"]

Classes specified through the exclude key are excluded from the job processing, e.g. from the generated build output.
The class specifiers can include simple wildcards like “qx.util.*” denoting class id’s matching this pattern, including
those from sub-name spaces.

export

List of jobs to be exported if this config file is included by another, or to the generator if it is an argument.

"export" : ["job1", "job2", "job3"]

Only exported jobs will be seen by importing config files. If the current configuration file is used as an argument to
the generator (either implicitly or explicitly with -c), these are the jobs the generator will list with generate.py x, and
only these jobs will be runnable with generate.py <jobname>.

extend

Extend the current job with other jobs. Takes an array of job names.

"extend" : ["job1", "job2", "job3"]

The information of these (previously defined) jobs are merged into the current job description. Keys and their values
missing in the current description are added, existing keys take precedence and are retained (with some keys that are
merged).

Special section

fix-files

Fix white space in Javascript class files. Takes a map.

"fix-files" :
{

"eol-style" : "(LF|CR|CRLF)",
"tab-width" : 2

}

Note: peer-keys: library

464 Chapter 13. References

http://api.qooxdoo.org/1.6/#qx.core.Environment

qooxdoo Documentation, Release 1.6

fix-files will normalize white space in source code, by converting tabs to spaces, removing trailing white space in lines,
and unifying the line end character sequence.

Possible keys are

• eol-style : determines which line end character sequence to use (default: LF)

• tab-width : the number of spaces to replace tabs with (default: 2)

include

Include classes to be processed in the job. Takes an array of class specifiers.

"include" : ["qx.util.*"]

The class specifiers can include simple wildcards like ‘qx.util.*’ denoting all classes starting with the ‘qx.util’ name
space. A leading ‘=’ in front of a class specifier (e.g. ‘=qx.util.*’) means ‘without dependencies’. In this case, exactly
the listed classes are included (wildcards expanded), but not their dependencies. Otherwise, for the given classes their
dependencies are calculated recursively, and those classes are also included.

include (top-level)

Include external config files. Takes a list of maps.

"include" :
[

{
"path" : "<path>",
"as" : "<name>",
"import" : ["job1", "job2", "job3"],
"block" : ["job4", "job5"]

}
]

Within each specifying map, you can specify

• path (required): Path string to the external config file which is interpreted relative to the current config file

• as : Identifier that will be used to prefix the external job names on import; without it, job names will be imported
as they are.

• import : List of job names to import; this list will be intersected with the export list of the external config, and
the resulting list of jobs will be included. : A single entry can also be a map of the form {“name”: <jobname>,
“as”: <alias>}, so you can import individual jobs under a different name.

• block : List of job names to block during import; this is the opposite of the import key and allows you to
block certain jobs from being imported (helpful if you want to import most but not all of the jobs offered by the
external configuration).

Special section

jobs

Define jobs for the generator. Takes a map.

13.3. Tooling 465

qooxdoo Documentation, Release 1.6

"jobs" :
{

"<job_name>" : { <job_definition> }
}

Job definitions can take a lot of the predefined keys that are listed on this page (see the overview to get a comprehensive
list). The can hold “actions” (keys that cause the generator to perform some action), or just settings (which makes
them purely declarative). The latter case is only useful if those jobs are included by others (through the extend key,
and thus hold settings that are used by several jobs (thereby saving you from typing).

let

Define macros. Takes a map.

"let" :
{

"<macro_name>" : "<string>",
"<macro_name1>" : [...],
"<macro_name2>" : { ... }

}

Each key defines a macro and the value of its expansion. The expansion may contain references to previously defined
macros (but no recursive references). References are denoted by enclosing the macro name with ${...} and can
only be used in strings. If the value of the macro is a string, references to it can be embedded in other strings (e.g.
like “/home/${user}/profile”); if the value is a structured expression, like an array or map, references to it must fill the
entire string (e.g. like “${MyList}”).

• <macro_name> : The name of the macro.

Special section

let (top-level)

Define default macros. Takes a map (see the other ‘let’). Everything of the normal ‘let’ applies here, except that this
let map is included automatically into every job run. There is no explicit reference to it, so be aware of side effects.

library

Define libraries to be taken into account for this job. Takes an array of maps.

"library" :
[

{
"manifest" : "<path>",
"uri" : "<from_html_to_manifest_dir>"

}
]

Each map can contain the keys

• manifest (required) : path to the “Manifest” file of the library; may be relative to config file location; may use
contrib:// scheme

• uri : URI prefix from your HTML file to the directory of the library’s “Manifest” file

Special section

466 Chapter 13. References

qooxdoo Documentation, Release 1.6

lint-check

Check Javscript source code with a lint-like utility. Takes a map.

"lint-check" :
{

"allowed-globals" : ["qx", "${APPLICATION}"]
}

Note: peer-keys: library, include

Keys are:

• allowed-globals : list of names that are not to be reported as bad use of globals

log

Configure log/reporting features. Takes a map.

"log" :
{

"classes-unused" : ["custom.*", "qx.util.*"],
"privates" : ("on"|"off"),
"resources" :
{
"file" : "<filename>"

}
"filter" :
{
"debug" : ["generator.code.PartBuilder.*"]

},
"dependencies" :
{
"type" : ("using"|"used-by"),
"phase" : ("runtime"|"loadtime"),
"include-transitive-load-deps" : (true|false),
"force-fresh-deps" : (true|false),
"format" : ("txt"|"dot"|"json"|"provider"|"flare"|"term"),
"dot" :
{

"root" : "custom.Application",
"file" : "<filename>",
"radius" : 5,
"span-tree-only" : (true|false),
"compiled-class-size" : (true|false)

},
"json" :
{

"file" : "<filename>",
"pretty" : (true|false)

},
"flare" :
{

"file" : "<filename>",
"pretty" : (true|false)

}

13.3. Tooling 467

qooxdoo Documentation, Release 1.6

}
}

Note: peer-keys: cache, include, library, compile-options

This key allows you to enable logging features along various axes.

• classes-unused : Report unused classes for the name space patterns given in the list.

• privates : print out list of classes that use a specific private member

• resources: writes the map of resource infos for the involved classes to a json-formatted file

– file : output file path (default resources.json)

• filter : allows you to define certain log filter

– debug : in debug (“verbose”) logging enabled with the -v command line switch, only print debug mes-
sages from generator modules that match the given pattern

• dependencies : print out dependency relations of classes

– type (required): which kind of dependencies to log

* using: dependencies of the current class to other classes; uses the using key; supports txt, dot,
json and flare output formats

* used-by: dependencies of other classes to the current class; supports only txt format

– phase : limit logging to run-time or load-time dependencies (default: loadtime)

– include-transitive-load-deps : for load-time dependencies, whether transitive dependencies (i.e. depen-
dencies that are not lexically in the code, but are required at load-time by some lexical dependency) should
be included (default: true)

– force-fresh-deps : force to re-calculate the class dependencies before logging them; this will take consid-
erably longer but assures that the dependencies match exactly the latest state of the source trees (interesting
after statics optimization; default: false)

– format : format of the dependency output (default: txt)

* txt: textual output to the console

* dot: generation of a Graphviz dot file; uses the dot key

* json: “native” Json data structure (reflecting the hierarchy of the txt output class -> [run|load]); uses
the json key

* provider: similar to the json output, but all id’s are given as path suffixes (slashes between name
spaces, file extensions), and dependencies are extended with resource id’s and translatable string keys
(as translation#<key>); uses the json key

* flare: Json output suitable for Prefuse Flare depencency graphs; uses the flare key

* term: textual output to the console, in the form of a term depends(<class>, [<load-deps>,...], [<run-
deps>,...])

– dot:

* span-tree-only: only create the spanning tree from the root node, rather than the full dependency
graph; reduces graph complexity by limiting incoming edges to one (i.e. for all classes at most one
arrow pointing to them will be shown), even if more dependency relations exist

* root : the root class for the dot format output; only dependencies starting off of this class are included

468 Chapter 13. References

qooxdoo Documentation, Release 1.6

* file : output file path (default deps.dot)

* radius : include only nodes that are within the given radius (or graph distance) to the root node

* compiled-class-size : use compiled class size to highlight graph nodes, rather than source file sizes;
if true classes might have to be compiled to determine their compiled size, which could cause the log
job to run longer; compile optimization settings are searched for in compile-options/code/optimize,
defaulting to none; (default true)

– json:

* file : output file path (default deps.json)

* pretty : produce formatted Json, with spaces and indentation; if false produce compact format (de-
fault: false)

– flare:

* file : output file path (default flare.json)

* pretty : produce formatted Json, with spaces and indentation; if false produce compact format (de-
fault: false)

Special section.

migrate-files

Migrate source files to current qooxdoo version. Takes a map.

"migrate-files" :
{

"from-version" : "0.7",
"migrate-html" : false

}

This key will invoke the mechanical migration tool of qooxdoo, which will run through the class files an apply succes-
sive sequences of patches and replacements to them. This allows to apply migration steps automatically to an existing
qooxdoo application, to make it better comply with the current SDK version (the version the key is run in). Mind
that you might have to do further adaptions by hand after the automatic migration has run. The migration tool itself is
interactive and allows entering migration parameters by hand.

• from-version : qooxdoo version of the code before migration

• migrate-html : whether to patch .html files in the application (e.g. the index.html)

name

Provides some descriptive text for the whole configuration file.

"name" : "Some text."

packages

Define packages for this app. Takes a map.

"packages" :
{

"parts" :
{

13.3. Tooling 469

qooxdoo Documentation, Release 1.6

"<part_name>" :
{

"include" : ["app.class1", "app.class2", "app.class3.*"],
"expected-load-order" : 1,
"no-merge-private-package" : (true|false)

}
},
"sizes" :
{
"min-package" : 1,
"min-package-unshared" : 1

},
"init" : "<part_name>",
"separate-loader" : (true|false),
"i18n-as-parts" : (true|false),
"additional-merge-constraints" : (true|false),
"verifier-bombs-on-error" : (true|false)

}

Note: peer-keys: compile, library, include

Keys are

• parts : map of part names and their properties

– <part_name> :

* include (required): list of class patterns

* expected-load-order : integer > 0 (default: undefined)

* no-merge-private-package : whether the package specific to that individual part should not be
merged; this can be used when carving out resource-intensive parts (default: false)

• sizes : size constraints on packages

– min-package : minimal size of a package in KB (default: 0)

– min-package-unshared : minimal size of an unshared package in KB (default: <min-package>)

• init : name of the initial part, i.e. the part to be loaded first (default: “boot”)

• separate-loader : whether loader information should be included with the boot package, or be separate; if set
true, the loader package will contain no class code (default: false)

• i18n-as-parts : whether internationalization information (translations, CLDR data) should be included with
the packages, or be separate; if set true, the code packages will contain no i18n data; rather, i18n data will be
generated in dedicated parts, which have to be loaded by the application explicitly; see special section (default:
false)

• additional-merge-constraints : if set to false, the generator will be more permissive when merging one package
into another, which might result in fewer packages at the end, but can also result in consistencies which the part
verifier will complain about (default: true)

• verifier-bombs-on-error : whether the part verifier should raise an exception, or just warn and continue (default:
true)

Special section

470 Chapter 13. References

qooxdoo Documentation, Release 1.6

pretty-print

Triggers code beautification of source class files (in-place-editing). An empty map value triggers default formatting,
but further keys can tailor the output.

"pretty-print" :
{

"general" :
{
"indent-string" : " "

},
"comments" :
{
"block" :
{

"add" : true
},
"trailing" :
{

"keep-column" : false,
"comment-cols" : [50, 70, 90],
"padding" : " "

}
},
"code" :
{
"align-with-curlies" : false,
"open-curly" :
{

"newline-before" : "m",
"indent-before" : false

}
}

}

Note: peer-keys: library, include

Keys are:

• general : General settings.

– indent-string : “<whitespace_string>”, e.g. “t” for tab (default: ” ” (2 spaces))

• comments : Settings for pretty-printing comments.

– block : Settings for block comments (“/*...*/”)

* add : (true|false) Whether to automatically add JSDoc comment templates, e.g. ahead of method
definitions (default: true)

– trailing : Settings for pretty-printing line-end (“trailing”) comments (“//...”).

* keep-column : (true|false) Tries to fix the column of the trailing comments to the value in the original
source (default: false)

* comment-cols : [n1, n2, ..., nN] Column positions to start trailing comments at, e.g. [50, 70, 90]
(default: [])

* padding : “<whitespace_string>” White space to be inserted after statement end and beginning of
comment (default: ” ” (2 spaces))

13.3. Tooling 471

qooxdoo Documentation, Release 1.6

• code : Settings for pretty-printing code blocks.

– align-with-curlies : (true|false) Whether to put a block at the same column as the surrounding/ending
curly bracket (default: false)

– open-curly : Settings for the opening curly brace ‘{‘.

* newline-before : “([aA]|[nN]|[mM])” Whether to insert a line break before the opening curly always
(aA), never (nN) or mixed (mM) depending on block complexity (default: “m”)

* indent-before : (true|false) Whether to indent the opening curly if it is on a new line (default: false)

provider

Collects application classes, resources, translateable strings and dependency information in a specific directory struc-
ture, under the provider root directory. Takes a map.

"provider" :
{

"app-root" : "./provider",
"include" : ["${APPLICATION}.*"],
"exclude" : ["${APPLICATION}.test.*"]

}

Note: peer-keys: library, cache

Keys are:

• app-root : Chose a different root directory for the output (default: ./provider).

• include : Name spaces for classes and resources to be included (default: ${APPLICATION}.*).

• exclude : Name spaces for classes and resources to be excluded (default: ${APPLICATION}.test.*).

require

Define prerequisite classes needed at load time. Takes a map.

"require" :
{

"<class_name>" : ["qx.util", "qx.fx"]
}

Each key is a

• <class_name> : each value is an array of required classes for this class.

run

Define a list of jobs to run. Takes an array of job names.

"run" : ["<job1>", "<job2>", "<job3>"]

These jobs will all be run in place of the defining job (which is sort of a ‘meta-job’). All further settings in the defining
job will be inherited by the listed jobs (so be careful of side effects).

Special section

472 Chapter 13. References

qooxdoo Documentation, Release 1.6

shell

Triggers the execution of external commands. Takes a map.

"shell" :
{

"command" : ("echo foo bar baz"|["echo foo", "echo bar", "echo baz"])
}

Note: peer-keys: cache

Possible keys are

• command : command string or list of command strings to execute by shell

Note: Generally, the command string is passed to the executing shell “as is”, with one exception: Relative paths are
absolutized, so you can run those jobs from remote directories. In order to achieve this, all strings of the command
are searched for path separators (e.g. ‘/’ on Posix systems, ‘\’ on Windows - be sure to encode this as ‘\\’ on Windows
as ‘\’ is the Json escape character). Those strings are regarded as paths and - unless they are already absolute - are
absolutized, relative to the path of the current config. So e.g. instead of writing

"cp file1 file2"

you should write

"cp ./file1 ./file2"

and it will work from everywhere.

simulate

Runs a suite of GUI tests (simulated interaction). Takes a map.

"simulate" :
{

"java-classpath" : ["../rhino/js.jar", "../selenium/selenium-java-client-driver.jar"],
"qxselenium-path" : "${SIMULATOR_ROOT}/tool",
"rhino-class" : "org.mozilla.javascript.tools.shell.Main",
"simulator-script" : "${BUILD_PATH}/script/simulator.js"

}

Possible keys are

• java-classpath (required): Java classpath argument for Rhino application. Takes an Array. Must point to the
Selenium client driver and Rhino JARs. (default: ${SIMULATOR_CLASSPATH})

• qxselenium-path (required): Location of the QxSelenium Java class. (default: ${SIMULATOR_ROOT}/tool)

• rhino-class (required): Full name of the Mozilla Rhino class that should be used to run the simulation. Set
to org.mozilla.javascript.tools.debugger.Main to run the test application in Rhino’s visual debugger. (default:
org.mozilla.javascript.tools.shell.Main)

• simulator-script (required): Path of the compiled Simulator application to be run. (default:
${ROOT}/simulator/script/simulator.js)

13.3. Tooling 473

qooxdoo Documentation, Release 1.6

slice-images

Triggers cutting images into regions. Takes a map.

"slice-images" :
{

"images" :
{
"<input_image>" :
{

"prefix" : "<string>",
"border-width" : (5 | [5, 10, 5, 10]),
"trim-width" : (true|false)

}
}

}

Note: peer-keys: cache

• images : map with slice entries.

– <input_image> : path to input file for the slicing; may be relative to config file location

* prefix (required) : file name prefix used for the output files; will be interpreted relative to the input
file location (so a plain name will result in output files in the same directory, but you can also navigate
away with ../../.... etc.)

* border-width : pixel width to cut into original image when slicing borders etc. Takes either a single
integer (common border width for all sides) or an array of four integers (top, right, bottom, left).

* trim-width : reduce the width of the center slice to no more than 20 pixels. (default: true)

translate

(Re-)generate the .po files (usually located in source/translation) from source classes. Takes a map. The
source classes of the specified name space are scanned for translatable strings. Those strings are extracted and put into
map files (.po files), one for each language. Those .po files can then be edited to contain the proper translations of the
source strings. For a new locale, a new file will be generated. For existing .po files, re-running the job will add and
remove entries as appropriate, but otherwise keep existing translations.

"translate" :
{

"namespaces" : ["qx.util"],
"locales" : ["en", "de"],
"pofile-with-metadata" : (true|false)
"poentry-with-occurrences" : (true|false)

}

Note: peer-keys: cache, library

• namespaces (required) : List of name spaces for which .po files should be updated.

• locales : List of locale identifiers to update.

• pofile-with-metadata : Whether meta data is automatically added to a new .po file; on existing .po files the
meta data is retained (default: true)

474 Chapter 13. References

qooxdoo Documentation, Release 1.6

• poentry-with-occurrences : Whether each PO entry is preceded by #: comments in the .po files, which indicate
in which source file(s) and line number(s) this key is used (default: true)

use

Define prerequisite classes needed at run time. Takes a map.

"use" :
{

"<class_name>" : ["qx.util", "qx.fx"]
}

Each key is a

• <class_name> : each value is an array of used classes of this class.

13.3.3 Generator Config Macros

This page lists the macros which are pre-defined in qooxdoo, and can (mostly) be overridden in custom configuration
files. (Others, like PYTHON_CMD or QOOXDOO_VERSION, you would only want to reference, but not set).

13.3. Tooling 475

qooxdoo Documentation, Release 1.6

Macro
name

Description Default value

API_EXCLUDElist of class pattern to exclude from the api
documentation

[]

API_INCLUDE list of class pattern to include in the api
documentation

[”qx.*”, “${APPLICATION}.*”]

APPLICA-
TION

application name space <undef>

APPLICA-
TION_MAIN_CLASS

application main class ${APPLICATION}.Application

BUILD_PATH output path for the “build” job (can be rel. to
config dir)

./build

CACHE path to the compile cache (can be rel. to config
dir)

${TMPDIR}/cache

CACHE_KEY takes the value of a complete cache configuration
key (i.e. a map)

{ “compile” : “${CACHE}”, “downloads” :
“${CACHE}/downloads”,
“invalidate-on-tool-change” : true }

GENERA-
TOR_OPTS

(experimental) (read-only) string with the
command line options the generator was invoked
with (e.g. “-c myconf.json -q”)

<undef>

HOME (read-only) value of the (process) environment
variable “HOME”

”.” (for safety reasons)

LOCALES list of locales for this application [“en”]
OPTIMIZE list of optimization options for build version [”basecalls”, “comments”, “privates”,

“strings”, “variables”, “variants”]
QOOX-
DOO_PATH

path to the qooxdoo installation root dir <undef>

QOOX-
DOO_VERSION

the current qooxdoo version 1.6

QOOX-
DOO_REVISION

(read-only) the current qooxdoo repository
revision

(only defined in a repository checkout)

QXICON-
THEME

icon theme to use for this application [”Tango”]

QXTHEME theme to use for this application “qx.theme.Modern”
PYTHON_CMD(read-only) Python executable (your system’s default Python executable)
ROOT application root dir (rel. to config dir) ”.”
SIMULA-
TION_INCLUDE

class pattern to search for GUI test classes “${APPLICATION}.simulation.*”

SIMULA-
TOR_CLASSPATH

Java classpath argument for GUI test runner “${SIMULATOR_ROOT}/tool/js.jar:
${SIMULATOR_ROOT}/tool/selenium-
java-client-driver.jar”

SIMULA-
TOR_ROOT

path to the framework’s simulator component “${QOOXDOO_PATH}/ component/
simulator”

TEST_INCLUDEclass pattern to search for unit test classes “${APPLICATION}.test.*”
TEST_EXCLUDEclass pattern to exclude unit test classes “${APPLICATION}.test.oldtests.*”
TESTS_SCRIPTscript file name for the test application (the

“AUT”)
“tests.js”

TMPDIR (read-only) path to tmp directory (platform-dependent, like /tmp etc.; run
generate.py info to find out)

USER-
NAME

(read-only) value of the (process) environment
variable “USERNAME”

<undef>

476 Chapter 13. References

qooxdoo Documentation, Release 1.6

13.3.4 Syntax Diagrams

A short summary of the elements used in syntax diagrams.

Syntax symbol Description
:= production rule (“non-terminal can be expanded to ...”)
{ ... } 0..N occurrences (“*”)
[...] 0..1 occurrences (”?”)
(...) grouping
... | ... alternative
‘ ... ‘ literal
< ... > placeholder for literal
? ... ? comment

13.3.5 ASTlets - AST Fragments

Note: Work in Progress

This is an ongoing page to record and document the AST (abstract syntax tree) fragments (“ASTlets”), as they are gen-
erated by the tool chain Javascript parser. It shows how certain JS syntax constructs get translated into the correspond-
ing AST representation. This serves mainly internal purposes and should not be relevant for a qooxdoo application
developer.

The notation is a simplified tree structure that names token symbols and their nesting through indentation. “|” denotes
alternatives.

Syntax Constructs

a[i]

accessor
identifier ("a")
key
variable

identifier ("i")

a()

call
operand
variable

identifier ("a")
params

{a : 1}

map
keyvalue ("a")
value

constant (1)

13.3. Tooling 477

qooxdoo Documentation, Release 1.6

a = b

assignment
left
variable

identifier ("a")
right
variable

identifier("b")

a.b.c(d)

call
operand
variable

identifier ("a")
identifier ("b")
identifier ("c")

params
variable

identifier ("d")

a.b().c(d)

accessor
left
call

operand
variable
identifier ("a")
identifier ("b")

right
call

operand
variable
identifier ("c")

params
variable
identifier ("d")

[file:] a.b(“c”,{d:e})

file
call
operand

variable
identifier ("a")
identifier ("b")

params
constant ("c")
map

keyvalue ("d")
value

478 Chapter 13. References

qooxdoo Documentation, Release 1.6

variable
identifier ("e")

(function () {return 3;})()

(anonymous function immediately called)

call
operand
group

function
params
body
block

return
expression
constant ("3")

function () {return 3;}()

(anonymous function immediately called - no paren)

call
operand
function

params
body

block
return

expression
constant ("3")

if (1) {} else {}

loop
expression
constant ("1")

statement
block

elseStatement
block

for (var i=0; i<l; i++) {}

loop
first
definitionList

definition
assignment
constant ("0")

second
operation

13.3. Tooling 479

qooxdoo Documentation, Release 1.6

first
variable
identifier ("i")

second
variable
identifier ("j")

third
operation ("inc")

first
variable
identifier ("i")

statement
block

for (var i in j) {}

loop
first
operation ("in")

first
definitionList
definition ("i")

second
variable
identifier ("j")

statement
block

13.4 Miscellaneous

13.4.1 Third-party Components

The qooxdoo project makes use of components and tools from other projects and endeavours. This applies to the
framework JavaScript class code, the tool chain, and static resources. This page gives an overview over those compo-
nents which are included with the SDK or other deliverables. Please refer to the contained files for version information
of a particular component.

Besides foreign files we have included in the project, we also want to list the tools we use to either produce or consume
genuine files of our source tree (beyond basic text editors ;-), so it is easy to oversee all the project’s dependencies.

Framework JavaScript Code

These are components that are integrated into the JavaScript class code.

Component License
Sizzle MIT
mustache.js MIT
SWFFix MIT
Sinon.JS BSD
parseUri MIT
iScroll MIT

480 Chapter 13. References

http://sizzlejs.com/
http://www.opensource.org/licenses/mit-license.php
https://github.com/janl/mustache.js/
http://www.opensource.org/licenses/mit-license.php
http://code.google.com/p/swffix/
http://www.opensource.org/licenses/mit-license.php
http://sinonjs.org/
http://www.opensource.org/licenses/bsd-license.php
http://blog.stevenlevithan.com/archives/parseuri
http://www.opensource.org/licenses/mit-license.php
http://cubiq.org/iscroll-4/
http://www.opensource.org/licenses/mit-license.php

qooxdoo Documentation, Release 1.6

Application JavaScript Code

These are components that are integrated into the JavaScript class code from our demo apps.

Component License
ACE MPL/GPL/LGPL

Resources

Static resource files, like images, CSS, etc..

Component License
Tango Icons CC BY-SA 2.5
Oxygen Icons LGPLv3
CLDR Data Unicode Terms of Use
JQTouch Project MIT
iScroll MIT

Tool Chain

These are the Python modules we use that are not self-written, nor part of a vanilla Python 2.x SDK:

Module License
cssmin BSD-compat
elementtree old-style Python (HPND)
graph MIT
polib MIT
pyparsing MIT
simplejson MIT
textile new BSD

Components or tools that are not included with the SDK

Tool License
ImageMagick GPL-compat
Make GPL 3.0 or later
Mozilla Rhino MPL 1.1/GPL 2.0, Unnamed License
RRDTool GPL
Selenium Apache License 2.0
Sphinx BSD
TeX Live mixed free licenses

13.5 Glossary

13.5.1 Glossary

API Viewer A popular qooxdoo application, the API Viewer is a class browser for the framework class hierarchy,
written in qooxdoo. It allows for customized views, where the framework classes are displayed together with
the classes of an application, in order to provide automated application documentation. The data displayed is
extracted from the JavaScript source code where it is maintained as JavaDoc-like comments.

13.5. Glossary 481

http://ajaxorg.github.com/ace/
https://github.com/ajaxorg/ace/blob/master/LICENSE
http://tango.freedesktop.org/Tango_Icon_Library
http://creativecommons.org/licenses/by-sa/2.5/
http://www.oxygen-icons.org/
http://www.gnu.org/licenses/lgpl-3.0.html
http://cldr.unicode.org/
http://www.unicode.org/copyright.html
http://www.jqtouch.com/
http://www.opensource.org/licenses/mit-license.php
http://cubiq.org/iscroll-4/
http://www.opensource.org/licenses/mit-license.php
http://pypi.python.org/pypi/cssmin/
https://github.com/zacharyvoase/cssmin/blob/master/LICENSE
http://effbot.org/zone/element-index.htm
http://effbot.org/zone/copyright.htm
http://www.opensource.org/licenses/historical.php
http://pypi.python.org/pypi/python-graph
http://www.opensource.org/licenses/mit-license.php
http://pypi.python.org/pypi/polib
http://www.opensource.org/licenses/mit-license.php
http://pypi.python.org/pypi/pyparsing/
http://www.opensource.org/licenses/mit-license.php
http://pypi.python.org/pypi/simplejson
http://www.opensource.org/licenses/mit-license.php
http://code.google.com/p/pytextile/
http://www.opensource.org/licenses/bsd-license.php
http://www.imagemagick.org/script/index.php
http://www.imagemagick.org/script/license.php
http://www.gnu.org/s/make/
http://www.gnu.org/licenses/gpl-3.0.html
http://developer.mozilla.org/en/Rhino
http://www.mozilla.org/MPL/MPL-1.1.html
http://www.gnu.org/licenses/gpl-2.0.html
https://developer.mozilla.org/en/Rhino_License#License_for_portions_of_the_Rhino_debugger
http://oss.oetiker.ch/rrdtool/
http://www.gnu.org/copyleft/gpl.html
http://www.apache.org/licenses/LICENSE-2.0
http://sphinx.pocoo.org/
http://www.opensource.org/licenses/bsd-license.php
http://www.tug.org/texlive/
http://tug.org/texlive/LICENSE.TL

qooxdoo Documentation, Release 1.6

Build Process qooxdoo comes with its own build system, usually referred to as the “build process” or “build sys-
tem”. It is a collection of ‘’make” Makefiles and command line tools. Together they help to maintain a develop-
ment environment and is seamlessly used throughout the framework, the standard applications that come with
qooxdoo, and is recommended for any custom application. Its features encompass checking of dependencies
and maintaining lists of used framework classes, generating files to “glue” everything together, copying code,
HTML, style and resource files around, pretty-formatting of source code, generating complete and compressed
JavaScript files, and creating distribution-ready, self-contained application folders. Particularly, the build system
helps to maintain a Source and a Build Version of a qooxdoo application.

Build Version The “Build Version” of a qooxdoo application is the version where all application files together with
all relevant framework classes have been compressed and optimized, to provide a self-contained and efficient
Web application that can be distributed to any Web environment.

Class A JS object created with qx.Class.define().

Compiler A compiler is a tool that translates code written in some programming language into another language,
usually a lower-level one. In qooxdoo we are transforming JavaScript into optimized JavaScript, which is often
referred to as translation (as the target language is on the same level as the source language). But as it is the
more popular term, we usually refer to this process as compilation as well.

Constructor A class method that is run everytime a new instance of the class is created. Used to do initialisation on
the class instance. In qooxdoo this method is named construct.

Destructor A class method that is run everytime a class instance is deleted.

Event A notification that signals a special situation in time. Events usually take the form of concrete objects. Impor-
tant for reactive systems like user interfaces, to notify parts of the software of a particular situation, e.g. a user
action like a keyboard stroke or a mouse click.

Execption An exceptional situation that prohibits the normal continuation of the program flow.

Framework A coherent collection of a library, documentation, tools and a programming model which application
developers use to create applications.

Generator The generator is the backbone of qooxdoo’s build process. It is the main tool that drives various other
tools to achieve the various goals of the build process, like dependency checking, compression and resource
management.

Initialization The process of setting up a certain software component, like an object, for its work, or the programming
code to achieve such a setting up.

Interface An Interface is “a class without implementation”, i.e. a class-like structure that only names
class features like attributes and methods without providing an implementation. It is created with
qx.Interface.define().

Key Keys are the “left-hand side” of the key-value pairs in a map. Map keys have to be unique within the map.

Map A data structure that contains key-value pairs. Each value can be looked up by using the key on the map. In
JavaScript, maps are also object literals, i.e. each map constitutes an object.

Member A class attribute, usually a method. Within qooxdoo, members usually refer to instance methods (as op-
posed to static methods).

Meta-Theme A theme that only references other themes.

Mixin A Mixin is a class you cannot instantiate, but provides a certain set of features. Mixins are the in-
cluded in “proper” classes to add this feature set without the necessity to re-implement it. It is created with
qx.Mixin.define().

Package A JavaScript file that is loaded by an application.

Pollution Application-specific variables that are added to the global name space in the JavaScript interpreter.

482 Chapter 13. References

qooxdoo Documentation, Release 1.6

Property A class attribute that is not accessed directly, but rather through automatic accessor methods (get-
ters/setters/resetters, initializers, ...).

Quirks Mode “Quirks mode refers to a technique used by some web browsers for the sake of maintaining backwards
compatibility with web pages designed for older browsers, instead of strictly complying with W3C and IETF
standards in standards mode.” [Wikipedia]

RIA Rich internet application. A desktop-like application with menus, toolbars, etc. that runs over the Internet in a
browser.

Ribbon “The ribbon is a graphical user interface widget composed of a strip across the top of the window that
exposes all functions the program can perform in a single place, with additional ribbons appearing based on
the context of the data.” [Wikipedia]

Skeleton A minimal qooxdoo application that serves as a starting point for custom applications. qooxdoo provides
several skeleton applications, according to intended application domain.

Source Version The “source version” of a qooxdoo application is the version where all class files are loaded individ-
ually and in their original source form. This is less efficient when loaded into the browser, but much better for
debugging and error tracing. Hence, it is the preferred development version.

Style A set of visual attributes that determin how a certain element is displayed. This encompasses things like
foreground and background colors, background images, font types and border styles.

Theme A comprehensive set of style definitions that can be used to give an application a consistent look and feel
through all of its visual elements.

Widget Visual user interface element, like a button, a text input field or a scroll bar. Usually, widgets have their own
specific behaviours, i.e. a way of reacting to user interaction, but there are also pure display widgets.

Window A distinct rectangular region on the screen, usually with borders and a top bar that allows to drag it around.
More specifically a browser window.

13.6 License

13.6.1 qooxdoo License

qooxdoo may be used under the terms of either the

• GNU Lesser General Public License (LGPL) http://www.gnu.org/licenses/lgpl.html

or the

• Eclipse Public License (EPL) http://www.eclipse.org/org/documents/epl-v10.php

As a recipient of qooxdoo, you may choose which license to receive the code under. Certain files or entire directories
may not be covered by this dual license, but are subject to licenses compatible to both LGPL and EPL. License
exceptions are explicitly declared in all relevant files or in a LICENSE file in the relevant directories.

Following are the license text of the two licenses.

GNU Lesser General Public License, version 2.1

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

13.6. License 483

http://en.wikipedia.org/wiki/Quirks_mode
http://en.wikipedia.org/wiki/Ribbon_(computing)
http://www.gnu.org/licenses/lgpl.html
http://www.eclipse.org/org/documents/epl-v10.php

qooxdoo Documentation, Release 1.6

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software–to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages–typically libraries–of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that

484 Chapter 13. References

qooxdoo Documentation, Release 1.6

there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author’s reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the “Lesser” General Public License because it
does Less to protect the user’s freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in

13.6. License 485

qooxdoo Documentation, Release 1.6

non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users’ freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
“work based on the library” and a “work that uses the library”. The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called “this License”).
Each licensee is addressed as “you”.

A “library” means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work
which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for

486 Chapter 13. References

qooxdoo Documentation, Release 1.6

writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those

13.6. License 487

qooxdoo Documentation, Release 1.6

sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the

488 Chapter 13. References

qooxdoo Documentation, Release 1.6

Library, but is designed to work with the Library by being compiled or
linked with it, is called a “work that uses the Library”. Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a “work that uses the Library” with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a “work that uses the
library”. The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a “work that uses the Library” with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever

13.6. License 489

qooxdoo Documentation, Release 1.6

changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable “work that
uses the Library”, as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the
Library” must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library

490 Chapter 13. References

qooxdoo Documentation, Release 1.6

facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent

13.6. License 491

qooxdoo Documentation, Release 1.6

license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
“any later version”, you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is

492 Chapter 13. References

qooxdoo Documentation, Release 1.6

copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

13.6. License 493

qooxdoo Documentation, Release 1.6

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the library, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

Eclipse Public License - v 1.0

Eclipse Public License - v 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS ECLIPSE PUBLIC
LICENSE (“AGREEMENT”). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE PROGRAM
CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

“Contribution” means:

a) in the case of the initial Contributor, the initial code and documentation distributed under this Agreement, and

b) in the case of each subsequent Contributor:

i) changes to the Program, and

ii) additions to the Program;

494 Chapter 13. References

qooxdoo Documentation, Release 1.6

where such changes and/or additions to the Program originate from and are distributed by that particular Contributor.
A Contribution ‘originates’ from a Contributor if it was added to the Program by such Contributor itself or anyone
acting on such Contributor’s behalf. Contributions do not include additions to the Program which: (i) are separate
modules of software distributed in conjunction with the Program under their own license agreement, and (ii) are not
derivative works of the Program.

“Contributor” means any person or entity that distributes the Program.

“Licensed Patents” mean patent claims licensable by a Contributor which are necessarily infringed by the use or sale
of its Contribution alone or when combined with the Program.

“Program” means the Contributions distributed in accordance with this Agreement.

“Recipient” means anyone who receives the Program under this Agreement, including all Contributors.

2. GRANT OF RIGHTS

a) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive, worldwide,
royalty-free copyright license to reproduce, prepare derivative works of, publicly display, publicly perform, distribute
and sublicense the Contribution of such Contributor, if any, and such derivative works, in source code and object code
form.

b) Subject to the terms of this Agreement, each Contributor hereby grants Recipient a non-exclusive, worldwide,
royalty-free patent license under Licensed Patents to make, use, sell, offer to sell, import and otherwise transfer the
Contribution of such Contributor, if any, in source code and object code form. This patent license shall apply to the
combination of the Contribution and the Program if, at the time the Contribution is added by the Contributor, such
addition of the Contribution causes such combination to be covered by the Licensed Patents. The patent license shall
not apply to any other combinations which include the Contribution. No hardware per se is licensed hereunder.

c) Recipient understands that although each Contributor grants the licenses to its Contributions set forth herein, no
assurances are provided by any Contributor that the Program does not infringe the patent or other intellectual
property rights of any other entity. Each Contributor disclaims any liability to Recipient for claims brought by any
other entity based on infringement of intellectual property rights or otherwise. As a condition to exercising the rights
and licenses granted hereunder, each Recipient hereby assumes sole responsibility to secure any other intellectual
property rights needed, if any. For example, if a third party patent license is required to allow Recipient to distribute
the Program, it is Recipient’s responsibility to acquire that license before distributing the Program.

d) Each Contributor represents that to its knowledge it has sufficient copyright rights in its Contribution, if any, to
grant the copyright license set forth in this Agreement.

3. REQUIREMENTS

A Contributor may choose to distribute the Program in object code form under its own license agreement, provided
that:

a) it complies with the terms and conditions of this Agreement; and

b) its license agreement:

13.6. License 495

qooxdoo Documentation, Release 1.6

i) effectively disclaims on behalf of all Contributors all warranties and conditions, express and implied, including
warranties or conditions of title and non-infringement, and implied warranties or conditions of merchantability and
fitness for a particular purpose;

ii) effectively excludes on behalf of all Contributors all liability for damages, including direct, indirect, special,
incidental and consequential damages, such as lost profits;

iii) states that any provisions which differ from this Agreement are offered by that Contributor alone and not by any
other party; and

iv) states that source code for the Program is available from such Contributor, and informs licensees how to obtain it
in a reasonable manner on or through a medium customarily used for software exchange.

When the Program is made available in source code form:

a) it must be made available under this Agreement; and

b) a copy of this Agreement must be included with each copy of the Program.

Contributors may not remove or alter any copyright notices contained within the Program.

Each Contributor must identify itself as the originator of its Contribution, if any, in a manner that reasonably allows
subsequent Recipients to identify the originator of the Contribution.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain responsibilities with respect to end users, business partners
and the like. While this license is intended to facilitate the commercial use of the Program, the Contributor who
includes the Program in a commercial product offering should do so in a manner which does not create potential
liability for other Contributors. Therefore, if a Contributor includes the Program in a commercial product offering,
such Contributor (“Commercial Contributor”) hereby agrees to defend and indemnify every other Contributor
(“Indemnified Contributor”) against any losses, damages and costs (collectively “Losses”) arising from claims,
lawsuits and other legal actions brought by a third party against the Indemnified Contributor to the extent caused by
the acts or omissions of such Commercial Contributor in connection with its distribution of the Program in a
commercial product offering. The obligations in this section do not apply to any claims or Losses relating to any
actual or alleged intellectual property infringement. In order to qualify, an Indemnified Contributor must: a) promptly
notify the Commercial Contributor in writing of such claim, and b) allow the Commercial Contributor to control, and
cooperate with the Commercial Contributor in, the defense and any related settlement negotiations. The Indemnified
Contributor may participate in any such claim at its own expense.

For example, a Contributor might include the Program in a commercial product offering, Product X. That Contributor
is then a Commercial Contributor. If that Commercial Contributor then makes performance claims, or offers
warranties related to Product X, those performance claims and warranties are such Commercial Contributor’s
responsibility alone. Under this section, the Commercial Contributor would have to defend claims against the other
Contributors related to those performance claims and warranties, and if a court requires any other Contributor to pay
any damages as a result, the Commercial Contributor must pay those damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS PROVIDED ON AN “AS

496 Chapter 13. References

qooxdoo Documentation, Release 1.6

IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED
INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE,
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient
is solely responsible for determining the appropriateness of using and distributing the Program and assumes all risks
associated with its exercise of rights under this Agreement , including but not limited to the risks and costs of
program errors, compliance with applicable laws, damage to or loss of data, programs or equipment, and
unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR ANY
CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS),
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. GENERAL

If any provision of this Agreement is invalid or unenforceable under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this Agreement, and without further action by the parties hereto, such
provision shall be reformed to the minimum extent necessary to make such provision valid and enforceable.

If Recipient institutes patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit)
alleging that the Program itself (excluding combinations of the Program with other software or hardware) infringes
such Recipient’s patent(s), then such Recipient’s rights granted under Section 2(b) shall terminate as of the date such
litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it fails to comply with any of the material terms or
conditions of this Agreement and does not cure such failure in a reasonable period of time after becoming aware of
such noncompliance. If all Recipient’s rights under this Agreement terminate, Recipient agrees to cease use and
distribution of the Program as soon as reasonably practicable. However, Recipient’s obligations under this Agreement
and any licenses granted by Recipient relating to the Program shall continue and survive.

Everyone is permitted to copy and distribute copies of this Agreement, but in order to avoid inconsistency the
Agreement is copyrighted and may only be modified in the following manner. The Agreement Steward reserves the
right to publish new versions (including revisions) of this Agreement from time to time. No one other than the
Agreement Steward has the right to modify this Agreement. The Eclipse Foundation is the initial Agreement
Steward. The Eclipse Foundation may assign the responsibility to serve as the Agreement Steward to a suitable
separate entity. Each new version of the Agreement will be given a distinguishing version number. The Program
(including Contributions) may always be distributed subject to the version of the Agreement under which it was
received. In addition, after a new version of the Agreement is published, Contributor may elect to distribute the
Program (including its Contributions) under the new version. Except as expressly stated in Sections 2(a) and 2(b)
above, Recipient receives no rights or licenses to the intellectual property of any Contributor under this Agreement,
whether expressly, by implication, estoppel or otherwise. All rights in the Program not expressly granted under this
Agreement are reserved.

This Agreement is governed by the laws of the State of New York and the intellectual property laws of the United
States of America. No party to this Agreement will bring a legal action under this Agreement more than one year
after the cause of action arose. Each party waives its rights to a jury trial in any resulting litigation.

13.6. License 497

qooxdoo Documentation, Release 1.6

498 Chapter 13. References

INDEX

A
android, 241
animation, 117, 129, 241, 245
API Viewer, 481
attribute, 117

B
background, 117
Build Process, 481
Build Version, 482

C
Class, 482
Compiler, 482
compiler hint, 150, 348
Constructor, 482
CSS, 117
cursor, 117

D
decoration, 117
Destructor, 482
dimension, 117

E
Event, 482
Execption, 482

F
Framework, 482

G
Generator, 482

I
Initialization, 482
Interface, 482
ios, 241
iscroll, 241

K
Key, 482

L
location, 117

M
Map, 482
Member, 482
Meta-Theme, 482
Mixin, 482
mobile, 241

O
opacity, 117
overflow, 117

P
Package, 482
page, 241, 245
phonegap, 241
Pollution, 482
Property, 482
property, 117

Q
Quirks Mode, 483

R
RIA, 483
Ribbon, 483

S
scroll, 117, 241
Skeleton, 483
Source Version, 483
Style, 483
style, 117

T
Theme, 483
theme, 241
touch, 241

499

qooxdoo Documentation, Release 1.6

W
Widget, 483
widget, 241
Window, 483

500 Index

	Introduction
	About
	Framework
	GUI Toolkit
	AJAX
	More Information (online)

	Getting Started
	Requirements
	Client
	Server
	Tools

	Hello World
	Setup the Framework
	Create your Application
	Run your Application
	Write Application Code
	Debugging
	Deployment
	API Reference
	Unit Testing

	Troubleshooting
	Python Installation

	Tutorials
	Rich Internet Applications (RIA)
	Mobile Apps
	Tooling
	Video Tutorials

	SDK
	Introduction to the SDK
	Framework Structure
	Application Structure
	Manifest.json
	Code Structure
	Architecture

	Core Framework
	Object Orientation
	Introduction to Object Orientation
	Features of Object Orientation
	Classes
	Interfaces
	Mixins

	Properties
	Introduction to Properties
	Properties in more detail
	Initialization Behavior
	Property features summarized

	Environment
	Environment

	Data Binding
	Data Binding

	Low Level Framework
	General
	Overview

	Tutorials
	Setting up a low-level library
	Low-Level APIs
	Back-Button and Bookmark Support
	Low-level tutorial for web developers

	Technical Topics
	HTML Element Handling
	Image Handling
	The Event Layer
	The Focus Layer
	qooxdoo Animation
	Transforms and Animations (CSS3)
	From jQuery to qooxdoo

	GUI Toolkit
	Overview
	Widgets
	Composites
	Roots
	Applications

	Widgets Introduction
	Widget
	Basic Widgets
	Interaction
	Resources
	Selection Handling
	Drag & Drop
	Inline Widgets
	Custom Widgets
	Form Handling
	Menu Handling
	Window Management
	HTML Editing
	Table Styling
	Widget Reference

	Layouts
	Layouting

	Themes
	Theming
	Appearance
	Custom Themes
	Decorators
	Web Fonts
	Using themes of contributions in your application

	Mobile Framework
	Introduction
	Overview
	Tutorial: Creating a Twitter Client with qooxdoo mobile

	Server Framework
	Server Overview
	How to get it?
	Included Features
	Supported Runtimes
	Basic Example
	Additional Scenarios

	Communication
	Low-level requests
	Higher-level requests
	Higher-level requests
	AJAX

	REST
	REST (Representational State Transfer)

	Remote Procedure Calls (RPC)
	RPC (Remote Procedure Call)
	RPC Servers

	Specific Widget Communication
	Using the remote table model

	Development
	Application Creation
	Application Skeletons

	Debugging
	Logging System
	Debugging Applications

	Performance
	Memory Management
	Profiling Applications

	Testing
	Unit Testing
	The qooxdoo Test Runner
	Simulator
	Simulator: Locating elements

	Parts
	Parts and Packages Overview
	Using Parts
	Further Resources

	Internationalization
	Internationalization

	Miscellaneous
	Image clipping and combining
	Writing API Documentation
	Reporting Bugs
	An Aspect Template Class
	Internet Explorer specific settings

	Tooling
	Generator
	Introduction
	Configuration
	Reference Material

	Further Tools
	Source Code Validation

	Standard Applications
	Demo Applications
	Demobrowser
	Feedreader
	Playground
	ToDo
	Portal
	Showcase
	Widgetbrowser

	Developer Tools
	Apiviewer
	Testrunner
	Inspector
	Simulator
	Feature Configuration Editor

	Migration
	Migration Guide

	References
	Core
	Class Declaration Quick Ref
	Interfaces Quick Ref
	Mixin Quick Ref
	Properties Quick Reference
	Array Reference
	Framework Generator Jobs

	GUI Toolkit
	Widget Reference
	Layout Reference

	Tooling
	Generator Default Jobs
	Generator Config Keys
	Generator Config Macros
	Syntax Diagrams
	ASTlets - AST Fragments

	Miscellaneous
	Third-party Components

	Glossary
	Glossary

	License
	qooxdoo License

	Index

