
Contents

NAME

HOW TO USE THIS DOCUMENT

REFERENCE

SYNOPSIS

SPECIFYING OPTIONS

OPTIONS

TUTORIAL AND DESCRIPTION

Overview

A Word About Program Defaults

Getting Help

Controlling Program Output

Managing Complexity

Renaming Basics

Literal String Substitution

Substitution Instances

Multiple Substitutions

More About Command Line Pitfalls

Forcing Renaming

Ignoring Case

The Strange Case Of Mac OS X And Windows

Using Regular Expressions

Changing The Renaming Separator & Escape Characters

Interactive Renaming

An Overview Of Renaming Tokens

Renaming Token Pitfalls

Renaming Tokens: The Gory Details

What’s The Difference Between An “Attribute” And A “Sequence”?

How tren Uses File Metadata

General Attribute Renaming Tokens

Time-Related Attribute Renaming Tokens

System Renaming Tokens

Sequence Renaming Tokens

General Format Of Sequence Renaming Tokens

Let’s Learn The Alphabet

Counting Pattern Format

Types Of Sequence Renaming Tokens

1

COMMON TASKS AND IDIOMS

ODDS AND ENDS

BUGS, MISFEATURES, OTHER

HOW COME THERE’S NO GUI?

COPYRIGHT AND LICENSING

AUTHOR

DOCUMENT REVISION INFORMATION

NAME

tren - Advanced File Renaming

HOW TO USE THIS DOCUMENT

tren is a powerful command line file/directory renaming tool. It implements a variety of sophisticated
renaming features than can be a bit complex to learn. For this reason, this document is split into two
general sections: “REFERENCE” and “TUTORIAL AND DESCRIPTION”. If you are new to tren,
start by studying the latter section first. It will take you from very simple- to highly complex tren

renaming operations. Once you’ve got a sense of what tren can do, the reference section will be handy
to look up options and their arguments.

!DANGER!

tren is very powerful and can easily and automatically rename things in ways you didn’t intend.
It is *strongly* recommended that you try out new tren operations with the -t option on the
command line. This turns on the “test mode” and will show you what the program would do
without actually doing it. It goes without saying that you should be even more careful when using
this program as the system root or administrator. It’s quite easy to accidentally rename system
files and thereby clobber your OS. You have been warned!!!

REFERENCE

SYNOPSIS

tren.py [-aCcdfhqtvXx] [-A alphabet] [-I file] [-i range] [-P esc] [-R sep] [-

r old=new] [-S suffix] [-w width] file|dir ...

2

SPECIFYING OPTIONS

You may specify tren options in one of three ways:

1) On the command line

2) In an “include” file specified with -I filename on the command line

3) Via the $TREN environment variable

Options specified on the command line are evaluated from left to right and supercede any options
specified in the environment variable. Think of any options set in $TREN as the “leftmost command line
options”.

All options must precede the list of files and/or directories being renamed. If one of your rename
targets start with the - character, most command shells recognize the double dash as an explicit “end
of options” delimiter:

tren.py -opt -opt -opt -- -this_file_starts_with_a_dash

Most shells aren’t too fussy about space between an option that takes an argument, and that
argument:

-i 1

-i1

Use whichever form you prefer. Just be aware that there are places where spaces matter. For
example, you can quote spaces on your command line to create renaming requests that, say, replace
spaces with dashes..

Some options below are “global” - they change the state of the entire program permanently and
cannot be undone by subsequent options. Some options are “toggles”, they can be turned on- and off
as you move from left- to right on the command line. In this way, certain options (like case sensitivity,
regular expression handling, and so on) can be set differently for each individual renaming request (-r).
(If you’re very brave, you can select the -d option to do a debug dump. Among many other things,
the tren debugger dumps the state of each renaming request, and what options are in effect for that
request.)

OPTIONS

-A alphabet Install a user-defined “alphabet” to be used by sequence
renaming tokens.

(Default : Built-in alphabets only)

The alphabet is specified in the form:

name:characterset

Both the name and the characterset are case- and whitespace-
sensitive (if your shell permits passing spaces on the com-
mand line). The “0th” element of the alphabet is the
leftmost character. The counting base is the length of
characterset. So, for instance, the following alphabet is
named Foo, counts in base 5 in the sequence, a, b, c,

d, e, ba, bb, ...:

-A Foo:abcde

-a Ask interactively before renaming each selected file or di-
rectory.

(Default : off)

3

If you invoke this option, tren will prompt you before
renaming each file. The default (if you just hit Enter) is
to not rename the file. Otherwise, you have the following
options:

n - Don’t rename the current file

y - Rename the current file

! - Rename all the remaining files with-

out further prompting

q - Quit the program

These options are all insensitive to case.

If you’re doing forced renaming (-f), this option will inter-
actively ask you first about making any necessary backups
and then renaming the original target. If you decline to do
the backup renaming, but accept the renaming of the origi-
nal target, the file or directory that already exists with that
name will be lost!.

-b Turn off backups during forced renaming.

(Default : Do Backups)

Ordinarily, tren will refuse to do a renaming if the new
name for a file- or directory already exists. You can over-
ride this with the -f (forced renaming) option. By default,
forced renaming makes a backup copy of the existing file
(by appending .backup to its name or some other suffix
you specify with the -S option) before doing the renam-
ing. This prevents existing files from being lost due to
a renaming. The -b option inhibits backups and allows
renaming over existing file- and directory names, thereby
losing the original file- or directory.

-C Do case sensitive renaming

(Default : This is the program default)

This option is provided so you can toggle the program
back to its default behavior after a previous -c on the
command line.

This option is observed both for literal and regular expression-
based renaming (-x). .

-c Collapse case when doing string substitution.

(Default : Search for string to replace is case sen-
sitive)

When looking for a match on the old string to replace,
tren will ignore the case of the characters found in the
filename. For example:

tren.py -c -r Old=NEW Cold.txt fOlD.txt

This renames both files to CNEW.txt and fNEW.txt respec-
tively. Notice that the new (replacement) string’s case is
preserved.

This option is observed both for literal and regular expression-
based renaming (-x).

-d Dump debugging information

4

(Default : Off)

Dumps all manner of information about tren internals -
of interest only to program developers and maintainers.
This option provides internal program state at the time it
is encountered on the command line. For maximum debug
output, place this as the last (rightmost) option on the
command line, right before the list of files and directories
to rename. You can also place multiple -d options on
the command line to see how the internal tables of the
program change as various options are parsed.

-f Force renaming even if target file or directory name al-
ready exists.

(Default : Skip renaming if a file or directory already exists
by the same name as the target.)

By default, tren will not rename something to a name that
is already in use by another file or directory. This option
forces the renaming to take place. However, the old file
or directory is not lost. It is merely renamed itself first,
by appending a suffix to the original file name. (Default :
.backup, but you can change it via the -S option.) This
way even forced renames don’t clobber existing files or
directories.

-h Print help information.

-I file “Include” command line arguments from file

It is possible to perform multiple renaming operations in
one step using more than one -r option on the tren com-
mand line. However, this can make the command line
very long and hard to read. This is especially true if the
renaming strings are complex, contain regular expressions
or Renaming Tokens, or if you make heavy use of com-
mand line toggles.

The -I option allows you to place any command line ar-
guments in a separate file in place of- or in addition to
the tren command line and/or the $TREN environment
variable. This file is read one line at a time and the con-
tents appended to any existing command line. You can
even name the files you want renamed in the file, but they
must appear as the last lines of that file (because they
must appear last on the command line).

Whitespace is ignored as is anything from a # to the end
of a line:

Example replacement string file

Each line appended sequentially

to the command line

-xr t[ext]+=txt # Appended first

-X

-r =/MYEAR/ -r foo=bar

my.file

your.file # Appended last

5

You may “nest” includes. That is, you can include file x,
that includes file y, that includes file z and so on. However,
its easy to introduce a “circular reference” when you do
this. Suppose file z tried to include file x in this example?
You’d be specifying an infinite inclusion loop. To avoid
this, tren limits the total number of inclusions to 1000.
If you exceed this, you’ll get an error message and the
program will terminate.

Note that wildcard metacharacters like * and ? that are
embedded in filenames included this way are expanded as
they would be from the command shell.

-i instances Specifies which “instances” of matching strings should be
replaced. (Default : 0 or leftmost)

A file may have multiple instances of the old renaming
string in it. The -i option lets you specify which of these
(one, several, all) you’d like to have replaced.

Suppose you have a file called foo1-foo2-foo3.foo4. The
leftmost foo is instance 0. The rightmost foo is instance
3. You can also refer to instances relative to the right. So
the -1 instance is the last (rightmost), -2, second from the
last, and so forth.

Often, you just want to replace a specific instance:

-i :3 -r foo=boo

-i :-1 -r foo=boo

Both of these refer to the last instance of old string foo

(found at foo4 in our example name).

Sometimes, you’d like to replace a whole range of in-
stances. An “instance range” is specified using the : sep-
arator in the form:

-i first-to-replace:stop-here

Notice that the “stop-here” instance is NOT replaced. In
our string above, the option:

-i 1:-1 -r foo=boo

Would change the file name to:

foo1-boo2-boo3.foo4

You can also provide partial ranges:

-i 1: # From instance 1 to end of name

-i :-2 # All instances up to (not in-

cluding) next-to-last

-i : # All instances

-P char Use char as the escape symbol. (Default : \)

-q Quiet mode, do not show progress.

(Default : Display progress)

Ordinarily, tren displays what it is doing as it processes
each file. If you prefer to not see this “noisy” output, use

6

the -q option. Note that this does not suppress warning
and error messages.

It doesn’t make much sense to use this option in test mode
(-t), although you can. The whole point of test mode is to
see what would happen. Using the quiet mode suppresses
that output.

-R char Use char as the separator symbol in renaming specifica-
tions. (Default : =)

-r <old=new> Replace old with new in file or directory names.

Use this option to specify which strings you want to re-
place in each file name. These strings are treated literally
unless you also invoke the -x option. In that case, old is
treated as a Python style regular expression.

Both old and new may optionally contain renaming tokens
described later in this document.

If you need to use the = symbol within either the old or
new string, simply escape it: \=

If it is convenient, you can change the separator character
to something other than = via the -R option. Similarly,
you can change the escape character via the -P option.

You can have multiple instances of this option on your
tren command line:

tren.py -r old=new -r txt:doc old-old.txt

This renames the file to:

new-old.doc

Remember that, by default, tren only replaces the first
(leftmost) instance of the old string with the new.

Each rename specification on the command line “remem-
bers” the current state of all the program options and acts
accordingly. For example:

tren.py -cr A=bb -Cr B=cc ...

The A=bb replacement would be done without regard to
case (both A and a would match), whereas the B=cc re-
quest would only replace B.

-S suffix Suffix to append when making backup copies of existing
targets.

(Default : .backup)

If you choose to force file renaming when the new name
already exists (-f), tren simply renames the existing file
or directory by appending a suffix to it. By default, this
suffix is .backup, but you can change it to any string you
like with the -S‘ option.

-t Test mode, don’t rename, just show what the program
would do.

tren is very powerful and capable of doing nasty things to
your file and directory names. For this reason, it is helpful
to test your tren commands before actually using them.
With this option enabled, tren will print out diagnostic

7

information about what your command would do, without
actually doing it.

If your renaming requests contain random renaming to-
kens, test mode will only show you an approximation of
the renaming to take place (because new random name
strings are generated each time the program runs).

-v Print detailed program version information and keep run-
ning.

This is handy if you’re capturing tren output into a log
and you want a record of what version of the program was
used.

-w length Set the length of diagnostic and error output.

(Default : 80)

tren limits output to this length when dumping debug in-
formation, errors, warnings, and general information as it
runs. This option is especially useful when you’re captur-
ing tren output into a log and don’t want lines wrapped:

tren.py -w999 2>&1 > tren.log

tren makes sure you don’t set this to some unreasonably
small value such that output formatting would be impos-
sible.

-X Treat the renaming strings literally

(Default : This is the program default)

This option is provided so you can toggle the program
back to its default behavior after a previous -x on the
command line.

-x Treat the old string in a -r replacement as a Python style
regular expression for matching purposes.

(Default : Treat the old string as literal text)

TUTORIAL AND DESCRIPTION

!DANGER!

ONE MORE TIME: tren is a powerful file and directory renaming tool. Be sure you know what
you’re about to do. If you’re not, run the program in test mode (invoke with the -t option) to
see what would happen. You have been warned!

The following sections are designed for the new- or occasional tren user. They begin with the
simplest of tren operations and incrementally build more and more complex examples, eventually
describing all of tren’s capabilities.

Overview

tren is a general purpose file and directory renaming tool. Unlike commands like mv, tren is particularly
well suited for renaming batches of files and/or directories with a single command line invocation. tren

eliminates the tedium of having to script simpler tools to provide higher-level renaming capabilities.

8

tren is also adept at renaming only part of an existing file or directory name either based on a
literal string or a regular expression pattern. You can replace any single, group, or all instances of a
given string in a file or directory name.

tren implements the idea of a “renaming token”. These are special names you can embed in your
renaming requests that represent things like the file’s original name, its length, date of creation, and so
on. There are even renaming tokens that will substitute the content of any environment variable or the
results of running a program from a shell back into the new file name.

tren can automatically generate sequences of file names based on their dates, lengths, times within
a given date, and so on. In fact, sequences can be generated on the basis of any of the file’s stat

information. Sequence “numbers” can be ascending or descending and the count can start at any initial
value. Counting can take place in one of several internally defined counting “alphabets” (decimal, hex,
octal, alpha, etc.) OR you can define your own counting alphabet. This allows you to create sequences
in any base (2 or higher please :) using any symbol set for the count.

A Word About Program Defaults

tren has many options, but its defaults are designed to do two things: a) Simplify the most common
operations by making them the default (no options required on the command line), and 2) Reduce the
risk of accidentally modifying more of the file name than you intented. So, by default:

tren treats renaming requests literally. That is, the “old string” you specify for replacement
is treated as literal text. It requires a command line option (-x) to treat it as a regular
expression. However, any renaming tokens found in either the old- or new strings of a
renaming request are interpreted before the renaming takes place.

tren renaming is case sensitive. If you want to ignore case, use the -c option.

tren will only replace the first (leftmost) instance of “old string” with “new string”. If you
want more- or different instances replaced, use the -i option.

tren will not allow you to rename a file or directory if one with the new name already exists.
Such attempts will cause no change to the file or directory being processed and an error
message will be displayed. This is intentional to force you to manually rename or remove
the file or directory that would have been clobbered by a rename. You can override this
default and force a renaming via the -f option. This will cause the orginal file or directory
itself to be renamed with a .backup suffix. You can change this suffix via the -S option.

Getting Help

There are three command line options that can give you some measure of help and information about
using tren:

-d Dumps debug information out to stderr. You can insert
multiple instances of this option on the command line to
see how the program has parsed everything to the left of it.
This is primarily intended as a debugging tool for people
maintaining tren but it does provide considerable infor-
mation on the internal state of the program that advanced
users may find useful.

-h Prints a summary of the program invocation syntax and
all the available options and then exits.

-v Prints the program version number and keeps running.

9

Controlling Program Output

As tren runs, it produces a variety of diagnostic and status information. There are a number of options
you can use to control how this works:

-q Sets “quiet” mode and suppresses everthing except error
messages.

-w num Tells tren to wrap lines after num characters have been
printed. If you’re capturing output to a log, set this to a
very high number like 999 to inhibit line wrapping.

Error and debug messages are sent to stderr. Normal informational messages are sent to stdout.
If you want to capture them both in a log, try something like this (depending on your OS and/or shell):

tren.py 2>&1 >tren.log

Managing Complexity

As you learn more of the program features, the tren command line can get long, complex, and easy to
goof up. It’s also hard to remember all the various options, how they work exactly, and which specific
one you need. For this reason, it is highly recommended that - once you have a renaming request
working the way you like - if you plan to use it again, save it as an “include” file. That way you can
reuse it easily without having to keep track of the details over and over. Instead of this:

tren.pu -c -i -1 -r .jpeg=.jpg file ...

Do this:

tren.py -I jpeg-to-jpg.tren file...

What’s in the jpeg-to-jpg.tren file? Just this:

tren Command Line

Converts ’.jpeg’ (in any case mixture) file name suffix to ’.jpg’

Make the replacement case insensitive

-c # Reset this later on the command line with -C

Only replace the rightmost instance

-i -1

The actual replacement request

-r .jpeg=.jpg

Notice that you can stick comments in the file anywhere you like and that they begin with #. Notice
also that the various options can be entered on separate lines so it’s simpler to read the include file. If
you find it useful, you can even include other include files in an include file:

Get the jpeg -> jpg suffix renaming

-I jpeg-to-jpg.tren

Let’s make it fancy

-i -1 -r .jpg=.fancy.jpg

10

If you do this, take care not to create a circular include. This can happen when an include file tries
to include itself, either directly, or via another include file. tren limits the total number of includes to
a very large number. If it sees that the number has been exceeded, it suspects a circular include and
will issue an error message to that effect and exit.

You can insert include options anywhere you like on the command line and you can have as many
as you like (up to a large number you’ll never hit in practice). Each include reference will be replaced
with the contents of that file at the position it appears on the command line.

If you find yourself using certain options most- or every time you use the program, you can put them
in the $TREN environment variable. tren picks this up every time it starts. This minimizes errors
and reduces typing tedium. Just keep in mind that some options can be overriden later on a command
line, and some cannot. For instance, suppose you do this:

export TREN=-f -c

The -c option to ignore case can be undone on the command line with a -C option. However, the
-f option cannot be undone.

So ... choose the options you want to make permanent in the environment variable wisely.

Renaming Basics

tren supports a variety of renaming mechanisms. The one thing they have in common is that they’re
built with one or more renaming requests that will be applied to one or more file- or directory names.
Renaming requests look like this on the tren command line:

tren.py ... -r old=new ... -r old=new ... list of files/directories

No matter how complicated they look, the basic logic of the renaming request stays the same: “When
you find the string old in the file- or directory name, change it to the string new.

The old and new renaming strings are built using a variety of building blocks:

Old Strings Are Built With: New Strings Are Built With:

Literal Text Literal Text

Regular Expressions Renaming Tokens

Renaming Tokens

You can use any of these building blocks alone or combine them to create expressive and powerful
renaming schemes.

Literal String Substitution

Literal String Substitution is just that - it replaces one literal string with another to rename the target
file or directory. This is the most common, and simplest way to use tren. This is handy when you have
files and directories that have a common set of characters in them you’d like to change. For instance:

tren.py -r .Jpeg=.jpg *.Jpeg

This would rename all files (or directories) whose names contained the string .Jpeg and replace it
with .jpg. Well ... that’s not quite right. Unless you specify otherwise with the -i option, only the
first (leftmost) instance of “old“ is replaced with “new“. So, for example, if you started out with the file,
My.Jpeg.Jpeg and ran the command above, you’d end up with a new file name of My.jpg.Jpeg

11

You can omit either old or new strings in a renaming specification, but never both.
If you omit the old string, you’re telling tren to change the whole file name:

tren.py -r =MyNewFilename foo # New Name: MyNewFilename

Be careful with this one. If you apply it to a list of files or directories, it’s going to try and name
them all to the same name. By default, tren will refuse to overwrite an existing filename, so it will
stop you from doing this. If you absolutely insist on this via the -f option, you’ll get a bunch of files
ending with .backup. Say you have files a, b, and c:

tren.py -fr =NewName a b c

When the command completes, the files will have been renamed in this fashion:

a -> NewName.backup.backup

b -> NewName.backup

c -> NewName

If you omit the new string, you’re telling tren to remove the leftmost instance of old string (or
other instances via the -i option described below) from the file- or directory name. For example:

tren.py -rfoo= foo1-foo2-foo3.foo4 # New name: 1-foo2-foo3.foo4

If you try to omit both old and new strings, you’re effectively telling tren to change the existing file
name to ... nothing (a null string). This is impossible because file names must be at least one character
long. tren enforces both this minimum length AND the maximum legal length of new file names. It
will print an error and exit if your renaming attempt would violate either of these limits. (As of this
writing, the maximum file- or directory name length allowed by the operating systems on which tren

runs is 255 characters.)

Substitution Instances

As we just saw above, sometimes the old string appears in several places in a file- or directory name.
By default, tren only replaces the first, or leftmost ”instance“ of an old string. However, using the
-i option you can specify any instance you’d like to replace. In fact, you can even specify a range of
instances to replace.

Instances are nothing more than numbers that tell tren just where in the name you’d like the
replacement to take place. Positive numbers means we’re counting instances from the left end of the
name. The leftmost instance is 0 (not 1!!!).

You can also count backwards from the right end of the string using negative numbers. -1 means
the last instance, -2 means next-to-last, and so on. In summary, counting from the left starts at zero
and counting from the right starts at -1.

Suppose you have a file called:

foo1-foo2-foo3.foo4

The leftmost foo1 is instance 0 of old string foo. It is also instance -4. The rightmost foo4 is
instance 3 of old string foo, and also instance -1.

You can specify a single instance to replace:

tren.py -i 1 -r f=b foo1-foo2-foo3.foo4 # New name: foo1-boo2-foo3.foo4

tren.py -i -1 -r f=b foo1-foo2-foo3.foo4 # New Name: foo1-foo2-foo3.boo4

You can also specify a range of instances to replace using the notation:

-i first-to-replace:stop-here

12

All instances from the ”first-to-replace“ up to, but NOT including ”the stop-here“ are replaced:

tren.py -i 1:3 -r f=b foo1-foo2-foo3.foo4 # New Name: foo1-boo2-boo3.foo4

tren.py -i -4:-2 -r f=b foo1-foo2-foo3.foo4 # New Name: boo1-boo2-foo3.foo4

-i : means ”replace all instances:

tren.py -i : -r f=b foo1-foo2-foo3.foo4 # New Name: boo1-boo2-boo3.boo4

You can also use partial range specifications:

tren.py -i 1: -r f=b foo1-foo2-foo3.foo4 # New Name: foo1-boo2-boo3.boo4

tren.py -i :-2 -r f=b foo1-foo2-foo3.foo4 # New Name: boo1-boo2-foo3.foo4

Note that you cannot specify individual, non-adjacent instances. There is no way to use a single
tren command to replace, say, the only the 2nd and the 4th instance of an old string. Doing that
requires two renaming requests. As we’ll see in the section below, the good news is that we can do them
both on a single tren invocation.

Multiple Substitutions

You can put as many renaming requests on a tren command line as you like (.... well, up to the length
limit imposed by your operating system and shell, anyway). As we just saw, this can be handy when a
single renaming request can’t quite do everything we want.

BUT ... there’s a catch. In designing your renaming requests, you have to keep in mind that tren

processes the command line from left to right, incrementally constructing the new name as it goes. That
is, the leftmost renaming request operates on the original file- or directory name. The next renaming
request to the right operates on that new name, and so on. In other words, each renaming request
modifies the name produced thus far by all the renaming requests to the left of it on the command line.

For instance:

tren.py -r foo=bar -r foo=baz foo1-foo2-foo3.foo4

Produces ... wait a second ... why on earth are there two renaming requests with identical old
strings on the same command line? Shouldn’t this produce a final name of baz1-foo2-foo3.foo4?

Nope. After the leftmost renaming request has been processed, the new name is bar1-foo2-

foo3.foo4. Remember that, by default, tren only replaces the leftmost or 0th instance of an old

string. So, when the second renaming request is processed, the instance 0 of foo is now found in the
string foo2. So, the final name will be, bar1-baz2-foo3.foo4.

The lesson to learn from this is that multiple renaming requests on the command line will work fine,
but you have to do one of two things (or both):

1) Make sure you’re tracking what the “intermediate”names will look like as the new
file name is being constructed, renaming request, by renaming request.

2) Make sure the renaming requests operate on completely disjoint parts of the file
name.

13

Tip

Similarly, tren remembers the last state of each option as you move from left to right on the
command line. For instance:

tren.py -i1 -r f=F -r o=O foo1-foo2-foo3.foo4

You might be tempted to believe that this would produce, fOo1-Foo2-foo3.foo4, but it doesn’t.
It produces, foO1-Foo2-foo3.foo4 instead because the -i 1 appears prior to both renaming
requests and thus applies to each of them. If you want the first instance of “o” to be replaced,
you need a command line like this:

tren.py -i1 -r f=F -i0 -r o=O foo1-foo2-foo3.foo4

This sort of thing is generally true for all options, so be sure they’re set the way you want them
to the left of a renaming request.

As a practical matter, this can get really complicated to track. If in doubt, it’s always better to
run two separate tren commands in, say, a shell script to make the renaming explicit, rather than to
obscure things with clever command line trickery.

So, let’s go back to our example from the previous section. We want to replace the 2nd and 4th
instances of the string “foo” in our file name. We do this with two renaming requests on the same
command line, considering what each one does to the name as it is encountered:

tren.py -i1 -r foo=bar -i2 -r foo=bar foo1-foo2-foo3.foo4

More About Command Line Pitfalls

As we just saw, you can get surprising results as tren works its way through the command line from left
to right. There are other potential pitfalls here, so it’s helpful to understand just how tren processes
your command line, step-by-step:

1) Prepend the contents of $TREN to the user-provided command line.

This allows you to configure your own default set of options so you don’t
have to type them in every time.

2) Resolve all references to include files.

This has to be done before anything that follows, because include files
add options to the command line.

3) Build a table of every file name to be renamed.

We’ll need this information if any of the renaming requests use the file
attribute- or sequence renaming tokens (discussed later in this document).

4) Build a table containing each renaming request storing the current state of every
program option at that point on the command line.

This allows tren to apply options differently to different renaming re-
quests on the same command line. This came in handy in our example
of the previous section.

5) Resolve any renaming tokens found in either the old or new portions of the re-
naming request.

At this point, both old and new are nothing more than simple strings
(although old may be interpreted as a regular expression rather than
literally if the option to do so is in effect).

14

6) Process each file found on the command line in left to right order, applying each
renaming request, in the order it appeared from left to right on the command line.

Simple eh? Well, mostly it is ... until it isn’t. As we just saw, incrementally building up a new name
with multiple renaming requests can produce unexpected results and we have to plan for them.

Similarly, you can inadvertently accidentally give a file the wrong name entirely ... this is usually a
Bad Thing.

Say you have two files, x and y. You want to rename x to y and y to z1. Well, order matters here.
Say you do this:

tren.py -fr x=y -r y=z1 x y

Let’s see what happens in order:

1) File x renaming:

x -> y

y -> z1

So, file x is renamed z1 (!)

2) File y renaming:

y -> z1 oops, x1 exists, we need a backup

z1 -> z1.backup

y -> z1

Um ... not quite what we wanted. However, if we shuffle around the order of renaming arguments
AND the order in which to process the files, we can get what we want:

tren.py -r y=z1 -r x=y y x

Notice that we can drop the -f option because there is no longer a naming conflict (see the next
section for more about forced renaming).

Tip

Always remember“ The Rightmost Renaming Request ”Wins“!

The point here, as we’ve said already, is that you have to be very careful when constructing command
lines, keeping track of options, and what order you specify both renaming requests and the files- and
directories to be renamed. As always, the simple way around this is to run multiple, separate tren

commands, each with its own single renaming request.

Forcing Renaming

By default, tren will not allow you to perform a renaming operation if the new name already exists.
For example, say you have three files, a, aa, and b, and you try this:

tren.py -r a=b a aa b

tren will skip the renaming of file a because a file named b already exists. It will, however, continue
to run and rename aa, to ba.

This is designed to prevent you from accidentally clobbering files that already exist. You can,
however, override this default behavior and force the renaming to take place in such situations, using
the -f option. Even then, the existing file isn’t lost, it is simply renamed itself by appending the suffix
.backup to its original name. That way, if you made a mistake, you haven’t lost the original file. So,
in our example above, the command becomes:

15

tren.py -fr a=b a aa b

When it’s done, we end up with these files:

b # The original ’a’ file

b.backup # The original ’b’ file

ba # The original ’aa’ file

If you don’t like the suffix, .backup, you can change it to any string (of length 1 or greater) via the
-S option:

tren.py -S .bku -fr a=b a aa b

Now the backed up file will be named b.bku.
tren will even backup files that are themselves backups. This can be handy if your renaming request

ends up mapping more than one file- or directory name to the same new name:

tren.py -fr =newname a b c

This produces files named:

newname # The original ’c’ file

newname.backup # The original ’b’ file

newname.backup.backup # The original ’a’ file

You can inhibit this behavior and prevent backups with the -b option. This effectively erases the
original file- or directory of that name. This is very dangerous and should rarely be used. It’s better
to do the backups and delete them later when you’re sure you do not need them. The underlying
operating system rules for renaming will still apply in this case. For instance, most OSs will not allow
you rename a file over the name of an existing directory and vice versa.

Note

The Unix mv command will allow you to move a file into a directory:

mv file dir

However, this is an mv ”move“ semantic, and is not properly a renaming operation. The underlying
file system will not permit a file to be renamed over a directory or vice versa. tren reflects this
OS semantic ... it’s not intended to be a reimplementation of mv.

Ignoring Case

”Literal“ string substitution means just that - tren must find an exact instance of old in the file name
being renamed and replace it with new. So, the default is to do case sensitive matching. There are
times, however, when you want to ignore case when doing this matching. For example, suppose you
have file names with a variety of suffixes in various case combinations like .jpeg, .Jpeg, and .JPEG.
Suppose you’d like these to all be changed to .jpg. Rather than having to do three separate renaming
operations it’s handy to just ignore case when matching the old string for replacement. That’s what the
-c option is for:

tren.py -i -1 -c -r.jpeg=.jpg *.jpeg *.Jpeg *.JPEG

Notice that the case insensitivity only applies to the matching of the old string. Once tren has
determined such a match exists, the new string is used literally with case intact.

You can turn case sensitivity on- and off for various renaming requests on the same command line.
-C turns case sensitivity on, and - as we just saw - -c turns it off:

16

tren.py -cr X=y -Cr A=b ...

The X=y renaming request will be done in a case insensitive manner, whereas the A=b will be done
only on literal instances of upper case A in the target file names.

The Strange Case Of Mac OS X And Windows

Mac OS X and Windows have an ”interesting“ property that makes case handling a bit tricky. Both
of these operating systems preserve case in file and directory names, but they do not observe it. (It is
possible to change this behavior in OS X when you first prepare a drive, and make the filesystem case
sensitive. This is rarely done in practice, however.)

These OSs show upper- and lower- case in file names as you request, but they do not distinguish
names on the basis of case. For instance, the files Foo, foo, and FOO, are all the same name in these
operating systems, and only one of these can exist in a given directory. This can cause tren to do the
unexpected when your renaming command is doing nothing more than changing case. Suppose you
start with a file called Aa.txt and run this command:

tren.py -rA=a Aa.txt

tren will immediately complain and tell you that the file aa.txt already exists and it is skipping
the renaming. Why? Because from the point-of-view of OS X or Windows, aa.txt (your new file name)
is the same as Aa.txt (your original file name). You can attempt to force the renaming:

tren.py -frA=a Aa.txt

Guess what happens? Since tren thinks the new file name already exists, it backs it up to
aa.txt.backup. But now, when it goes to rename the original file ... the file is gone (thanks to
the backup renaming operation)! tren declares an error and terminates.

This is not a limitation of tren but a consequence of a silly design decision in these two operating
systems. As a practical matter, the way to avoid this issue is to never do a renaming operation in OS
X or Windows that only converts case. Try to include some other change to the filename to keep the
distinction between ”old name“ and ”new name“ clear to the OS. In the worst case, you’ll have to resort
to something like:

tren.py -rA=X Aa.txt

tren.py -rX=a Xa.txt

Using Regular Expressions

Ordinarily tren treats both the old string you specify with the -r option literally. However, it is
sometimes handy to be able to write a regular expression to specify what you want replaced. If you
specify the -x option, tren will treat your old string as a regular expresion, compile it (or try to
anyway!) and use it to select which strings to replace. This makes it much easier to rename files that
have repeated characters or patterns, and groups of files that have similar, but not idential strings in
their names you’d like to replace.

Say you have a set of files that are similar, but not identical in name, and you want to rename them
all:

sbbs-1.txt

sbbbs-2.txt

sbbbbbbbbs-3.txt

17

Suppose you want to rename them, replacing two or more instances of b with X. It is tedious to have
to write a separate literal -r old=new string substitution for each instance above. This is where regular
expressions can come in handy. When you invoke the -x option, tren understands this to mean that
the old portion of the replacement option is to be treated as a Python style regular expression. That
way, a single string can be used to match many cases:

tren.py -x -r bb+=X *.txt

This renames the files to:

sXs-1.txt

sXs-2.txt

sXs-3.txt

Keep in mind that a literal string is a subset of a regular expression. This effectively means that
with -x processing enabled you can include both regular expressions and literal text in your ”old string“
specification. The only requirement is that the string taken as a whole must be a valid Python regular
expression. If it is not, tren will display an error message to that effect.

For more detail on the Python regular expression syntax, see:

http://docs.python.org/library/re.html

Because Python regular expressions can make use of the = symbol, you need a way to distinguish
between an = used in a regular exression and the same symbol used to separate the old and new operands
for the -r option. Where this symbol needs to appear in a regular expression, it has to be escaped
like this: \=. (You can also get around this by changing the old/new separator character with the -R

option.)
As with literal string renaming, regular expression renaming requests honor both the case sensitivity

options (-C and -c) as well as the instance option, -i. So, for example:

tren.py -x -ci -1 -r Bb+=X sbbsbbbsbbbbsbbbbbs

You’ll rename the file to sbbsbbbsbbbbsXs

Changing The Renaming Separator & Escape Characters

There may be times when the default renaming separator (=) and/or escape character (\) make it
clumsy to construct a renaming request. This can happen if, say, either the old- or new string in a
literal renaming needs to use the = symbol many times. Another case where this may be helpful is when
constructing complex regular expressions that need to make use of these characters.

The -R and -P options can be used to change the character used for renaming separator and escape
character respectively. You can use any character you like (these must be a single character each),
but bear in mind that the underlying operating system understands certain characters as being special.
Trying to use them here will undoubtedly deeply confuse your command shell, and possibly your file
system. For example, the / character is used as a path separator in Unix-derived systems. It’s therefore
a Really Bad Idea to try and use it as a renaming separator or escape character.

Interactive Renaming

By default, tren attempts to perform all the renaming requests on all the file- and directory names given
on the command line automatically. It is sometimes helpful to work interactively wherein you’re asked
what to do for each proposed renaming. Interactive renaming is requested via the -a, ”ask“ option:

tren.py -a -rfoo=Bar foo1.txt foo2.txt foo3.txt

18

http://docs.python.org/library/re.html

tren will compute each file’s proposed new name and ask you what you want to do. You have 4
possible choices:

N, n, or Enter - No, don’t rename this file

Y, y - Yes, rename the file

! - Yes, rename everything further without asking

Q, q - Quit the program

There is one slight subtlety here to watch for when doing forced renaming. As we’ve seen, if you
select the -f option and the new file name already exists, tren will backup the existing file name before
doing the renaming. In interactive mode, you will be asked whether or not to proceed with the renaming
both for the file in question and for any consequenent backups. If you decline to do the backup but
accept the primary renaming, this will have the same effect as the -b option: The existing file- or
directory will be overwritten by the renaming operation.

If the -b option is selected in interactive mode, then you’ll only be prompted for the primary file
renamings (because -b suppresses the creation of backups).

An Overview Of Renaming Tokens

tren implements the notion of renaming tokens. These can be a bit complex to grasp at first, so we’ll
introduce them ”gently“ in the next few sections and then dive into the detail thereafter.

It is sometimes useful to be able to take a group of files or rename them using some property they
possess like creation date, size, owner’s name, and so on. This is the purpose of renaming tokens.

Renaming tokens are nothing more than special symbols that represent ”canned“ information tren

knows about the file- or directory being renamed, information from the OS itself, and information used
to sequence or order the files being renamed.

For instance, if you insert the /MYEAR/ token into a old- or new string definition, tren will replace it
with the year the file or directory being renamed was last modified and use that string in the renaming
process:

tren.py -ryear=/MYEAR/ My-year.txt # New name: My-2010.txt

Renaming tokens can appear in either the old or new string components of a -r renaming argument.
Wherever they appear, they are ”resolved“ by tren before any renaming is attempted. By ”resolved“, we
mean that the renaming token will be replaced with a string that represents its meaning. For example:

tren.py -i : -r boo=/SIZE/ boors-and-boots.txt

This replaces all the instances of the literal string boo with the length of the file boors-and-

boots.txt. When we’re done the file will be renamed something like:

23rs-and-23ts.txt

This is a silly example but it serves to illustrate the point - all renaming tokens get turned into
strings before any renaming is attempted.

Note

Deep under the covers of it all, tren really only knows how to do string replacement. That is, it
can replace some old string with some new string. All the rest of the features you see are sort of
syntactic sugar to make it easy for you to express your renaming intent. When tren runs, it must
resolve all that fancy syntax and boil it down to creating a new file name the underling operating
system knows how to produce via its renaming services.

19

A really handy way to use renaming tokens is to name your files in a particular order. For example,
suppose you and your friends pool your vacation photos but each of your cameras uses a slightly different
naming scheme. You might want to just reorder them by the date and time each picture was taken, for
example. That way you end up with one coherent set of named and numbered files. You might start
with something like this:

DSC002.jpg # Bob’s camera, taken 1-5-2010 at noon

dc0234.Jpg # Mary’s camera, taken 1-5-2010 at 8am

032344.jpeg # Sid’s camera, taken 1-3-2010 at 4pm

It would be nice to get these in order somehow. We can, by combining attribute renaming tokens
(that know things about the file being renamed) and sequence renaming tokens (that know how to order
all the files being renamed by some key like date, length, who owns it, and so on):

tren.py -r =/MYEAR//MMON//MDAY/-MyVacation-/+MDATE::0001/.jpeg *.jp*

Every place you see something in the form /.../, think, ”That is a renaming token whose value will
be filled in by tren.“ This syntax is the same whether you’re using an attribute-, system-, or sequence
renaming token.

This would rename all the files in the current directory ending with .jp*. The /MYEAR/... would
be replaced with the date the picture was taken (well, actually, the date the file was last modified).
The /+MDATE::0001/ refers to a starting sequence number to uniquely identify files modified on the
same date. The other strings, -MyVacation- and .jpeg, are inserted literally in the final file names.
After we ran this command, the files above would end up with these names:

20100103-MyVacation-0001.jpeg # Sid’s

20100105-MyVacation-0001.jpeg # Mary’s

20100105-MyVacation-0002.jpeg # Bob’s

Notice that the files taken on the same date have been sequenced by the time-of-day they were taken
because we included the /+MDATE.../ sequence renaming token in our pattern. The + here means to
construct the sequence in ascending order. A - would specify descending order.

Note

Notice that there is no old string in our example above. That is, there is nothing to the left of
the = symbol in the -r option. This effectively means ”replace everything“ in the existing file or
directory name with our newly concocted naming scheme.

Of course, you don’t have to replace the entire filename when using tokens. It’s perfectly legitimate
to replace only a portion of the existing name:

tren.py -r file=/MYEAR/MMON//MDAY/-file file-1 file.2

This would rename our files to: 20100101-file-1 and 20100101-file.2 Notice that we combined
literal text and a renaming token to do this.

You can even use renaming tokens in your old string specification. For instance, suppose you manage
a number of different systems and you set their system name in an environment variable called SYSNAME

and this same name is used to identify backup files. You might then do something like this:

tren.py -xr ’/$SYSNAME/.*bku$=/FNAME/.old’ *

If your system name was matrix, then the command above would only rename files whose names
began with matrix and ended with bku. If your system name were morton, then the command above
would only rename files whose names began with morton and ended with bku.

Notice that we combined a reference to an environment variable within a regular expression. This
was done to do the match on ”names beginning with... and ending with ...“. Also notice that the
renaming token /FNAME/ is just the original name of the file.

20

In order for this to work, we had to single quote the renaming request. This is because Unix shells
will themselves try to replace $SYSNAME which is not what we want. If we don’t single quote (thereby
turning off shell variable interpolation) and run this, say, on a machine called ”matrix“, the command
will be handed to tren looking like this:

tren.py -xr /matrix/.*.bku=/FNAME/.old *

tren will then promptly error out and tell you that it doesn’t know about a renaming token called
/matrix/.

There are a several things to keep in mind when doing things like this:

1) The /$SYSNAME/ in the old string is used to find the text to rename, whereas
the same renaming token in the new string means insert the contents of that
environment variable here.

2) Renaming tokens are always evaluated before any regular expression processing
takes place. It’s up to you to make sure that when the two are combined (as we
have in the example above), that the final result is still a valid Python regular
expression. This may involve explicit quoting of the renaming tokens used in the
old string specification.

tren has many other kinds of renaming tokens. Their structure and use is described in some detail
in the section below entitled ”Renaming Tokens: The Gory Details“.

Renaming Token Pitfalls

As we saw in earlier sections, tren command line option and file name interaction can be tricky. It
can depend on order and on whether the various renaming requests ”collide“ with each other as a new
file name is computed. A similar potential collision exists between renaming tokens and renaming
requests. Recall from ”More About Command Line Pitfalls“ that renaming tokens are resolved before a
renaming request is processed. This means that the string substitution (literal or regular expression) of
the renaming operation can conflict with the characters returned when the renaming token was resolved.
For example, suppose we do this:

tren.py -r =New-/FNAME/ -r My=Your MyFile.txt

The first renaming request computes the name New-MyFile.txt. However, the second renaming
request further modifies this to New-YourFile.txt. In effect, the second renaming request is overwriting
part of the string produced by the renaming token reference. This is an intentional feature of tren to
allow maximum renaming flexibility. However, you need to understand how it works so you don’t get
unexpected and strange results. For example, look what happens when you reverse the order of the
renaming requests in this case:

tren.py -r My=Your -r =New-/FNAME/ MyFile.txt

My gets replaces with Your, but as soon as the second renaming request is processed, the whole
string is thrown away and replaced with the final name New-MyFile.txt. This is yet another example
of, ”The Rightmost Renaming Request Wins“.

Renaming Tokens: The Gory Details

As we’ve just seen, a renaming token is nothing more than a string representing something tren knows
about. These fit in one of three categories:

• An attribute of the file or directory being renamed

21

• An attribute of the underlying operating system environment

• A sequence that reflects some ordering principle

Renaming tokens are delimited by / characters, in the form:

/RentokenName/

tren replaces these tokens with the corresponding information (see descriptions below) wherever
you indicated in either the old or new strings of a -r rename command.

Currently, tren defines a number of renaming tokens. Future releases of tren may add more of
these, so it’s good to periodically reread this material.

What’s The Difference Between An ”Attribute“ And A ”Sequence“?

Some renaming tokens return attributes (of either a file or the underling operating system). Some return
sequences. So, what’s the difference?

An ”attribute“ is a value associated with the file- or directory being renamed (or something about
the underlying operating system). It could be the length of the file, the last year it was modified, and
so on. For example, /MYEAR/ returns the year the file being renamed was last modified, /SIZE/ returns
the length of the file, and /FNAME/ returns the original name of the file before renaming. So, if we do
this:

tren.py -r=/FNAME/-/MYEAR/-/SIZE/ file, file ...

Every file will be renamed in the form of:

original_name-YYYY-length # Example: myfile-2010-4099

So... attributes are string substitutions wherein the string tells you something about the file or system
on which you’re working.

”Sequences“, on the other hand, are just numbers that represent some ordering principle. Say you
use the sequence renaming token ordered by size, /+SIZE::001/ to rename 10 files of different sizes:

tren.py -r=/+SIZE::01/-/FNAME/ file, file, ...

This will produce a new set of files named like this:

01-original_name

02-original_name

03-original_name

...

10-original_name

Where, 01-original_name will be the shortest length file and 10-original_name will be the longest
length file.

So... sequences are strings of numbers used to put things in some order.
You can always tell the difference between an attribute- and sequence renaming token, because

sequence renaming tokens always start with either a + or - sign (to indicate ascending or descending
counting respectively). This distinction is important because some attribute- and sequence renaming
tokens share the same name. For instance, /FNAME/ is an attribute token representing the original name
of the file before it was renamed. However, /+FNAME::003/ is a sequence renaming token that returns
the position (order) of the file name in alphabetic order starting counting from 003. Although they are
both based on the file name (hence the common renaming token symbol), they do very different things.

22

How tren Uses File Metadata

To keep track of all these attributes and/or to compute sequences, tren needs the so-called ”metadata“
associated with the files- and directories you’ve named on the command line. This metadata includes
information like who owns them, how long they are, what date they were modified, and so on. (This
information is commonly described in a data structure called stat. Even non-Unix systems like Windows
have some version of this data structure.)

The file attribute- and sequence renaming tokens are built on this metadata, so it’s worth taking a
moment to understand just how it is used. tren keeps track of the following information for every file-
or directory you’ve named on the command line:

• The order the file appears on the command line

• The order the file appears alphabetically

• The original name of the file before any renaming took place

• The date/time it was last accessed

• The date/time it was last modified

• The date/time its directory entry (inode) was last modified

• The inode number for the file

• The device number where the directory entry (inode) lives

• The numeric group ID the file belongs to

• The name of the group the file belongs to

• The numeric user ID of the file owner

• The name of the user that owns the file

• The mode or permissions for the file

• The number of links to the file

• The size of the file

tren then later uses this information to resolve file attribute renaming tokens, compute the value
of a particular sequence renaming token and so on as it finds them in your renaming requests. For
example, a sequence renaming token based on group name will order the sequence alphabetically by
group name whereas one based on group ID will order it numerically.

It is likely that you’ll only be interested in a small subset of these. For completness, though, tren

keeps track of all the metadata available about the files- or directories named on the command line and
makes it available in the form of renaming tokens.

Most commonly, you’ll find yourself using the command line, alphabetic, original name, length, and
various time/date renaming tokens.

General Attribute Renaming Tokens

These tokens are derived from information about the file or directory being renamed.

23

Note

Windows Users Take Note!

tren is portable across many operating systems because it is written in the Python programming
language. Python mostly works the exact same way everywhere. However, Windows presents some
problems because it does not quite work the same way as Unix-derived OSs do. In particular, if
you need to make use of the /GROUP/ or /USER/ renaming tokens on Windows, consider installing
the win32all extensions to your Windows Python installation. If you don’t, tren will base its
order on the generic names WindowsUser and WindowsGroup which it will apply to every file- or
directory under consideration.
In any case, /DEV/, /GID/, /INODE/, /NLINK/, and /UID/ are not meaningful under Windows
and default to 0. Avoid using these tokens on Windows systems, since these will return the same
value for every file- or directory.

• /DEV/ Returns File- Or Directory’s Device ID

This is the ID of the device containing the file being renamed. You might want to
rename files so that all the files on a given device start with the same key. That way,
their names group together in a sorted directory listing:

tren.py -r=/DEV/-/FNAME/ file | dir, file | dir, ...

You end up with a sorted directory listing that looks something like:

93-...

93-...

97-...

98-...

The filenames are still preserved in our renaming reqest above, now they’re just preceded
by the device ID of the where they live with a trailing - separator.

• /FNAME/ Returns Original File- Or Directory Name

This is the name of the file- or directory you are renaming before you apply any renaming
requests. This allows you to create new names based, in part, on the old name:

tren.py -r=/FNAME/-suffix ... # Adds "-suffix" to original name

tren.py -r=prefix-/FNAME/ ... # Adds "-prefix" to original name

tren.py -r /FNAME/=newname ... # Same as "-r=newname"

tren.py -r /FNAME/=/FNAME/ ... # Does nothing since old- and new-

name are the same

• /GID/ Returns File- Or Directory’s Group ID

This is the number for the group to which the file- or directory belongs. One way to
use this is to prepend it to every file name, thereby having all files (and or directories)
in the same group list together in a sorted directory listing:

tren.py -r=/GID/-/FNAME/ *

• /GROUP/ Returns File- Or Directory’s Group Name

Essentially the same as /GID/ except it returns the name of the group rather than
the number. Again, this is useful when clustering names together in a sorted directory
listing:

tren.py -r=/GROUP/-/FNAME/ *

• /INODE/ Returns File- Or Directory’s Serial Number

24

This is typically an identifier to the directory entry for the file- or directory being
renamed. /DEV/ and /INODE/ taken together provide a unique systemwide identifier for
the file- or directory being renamed.

• /MODE/ Returns File- Or Directory’s Permissions

This is a numeric string that represents the permissions of the file- or directory being
renamed in standard Unix format.

• /NLINK/ Returns Number Of Links To File- Or Directory Being Renamed

Most operating systems allow a single file to have multiple names. These names are
”linked“ to the instance of the file. This replacement token is a numeric string repre-
senting the number of such links.

• /SIZE/ Returns File- Or Directory’s Length In Bytes

This is handy if you want a sorted directory listing to list all the files of the same size
together. You simply prepend the file- or directory’s length onto its name:

tren.py -r=/SIZE/-/FNAME/ *

Now all of the files of, say, length 23 will group together in a sorted directory listing.

• /UID/ Returns File- Or Directory’s User ID

This is the number for the user that owns the file- or directory being renamed. One way
to use this is to prepend it to every file name, thereby having all files (and or directories)
owned by the same user cluster together in a sorted directory listing:

tren.py -r=/UID/-/FNAME/ *

• /USER/ Returns File- Or Directory’s User Name

Essentially the same as /UID/ except it returns the name of the user rather than the
number. Again, this is useful when clustering names together in a sorted directory
listing:

tren.py -r=/USER/-/FNAME/ *

Time-Related Attribute Renaming Tokens

Modern operating system maintain three different kinds of timestamps for files and directories, ATIME,
CTIME, and MTIME:

ATIME refers to the last time the file- or directory was accessed.

This is updated every time the file is read.

CTIME refers to the last time the file- or directory’s inode (directory entry) was modified.

This is updated whenever a file- or directory’s permissions or ownership are
changed. It will also be updated when the file- or directory itself is modified.

MTIME refers to the last time the file- or directory itself was modified.

This is updated whenever the file- or directory is closed after modification.

25

tren implements a set of time-related file attribute renaming tokens intended to provide full access
to these various timestamps. As a practical matter, you’re most likely to use the MTIME-based tokens,
but components for all three time values are available should you need them. They are identically
named, except that the first letter of each of the time-related attribute tokens indicates which of the
three timestamps above is used to compute the value:

• /ADAY/, /CDAY/, /MDAY/ Returns Timestamp’s Day Of The Month

Returns the day of the month of the timestamp in dd format.

• /AHOUR, /CHOUR/, /MHOUR/ Returns Timestamp’s Hour Of The Day

Returns the hour of the day of the timestamp in hh format.

• /AMIN/, /CMIN/, /MMIN/ Returns Timestamp’s Minute Of The Hour

Returns the minute of the hour of the timestamp in mm format.

• /AMON/, /CMON/, /MMON/ Returns Timestamp’s Month Of The Year

Returns the month of the year of the timestamp in mm format

• /AMONTH, /CMONTH/, /MMONTH/ Returns Timestamp’s Name Of The Month

Returns the name of the month of the timestamp in Nnn format.

• /ASEC/, /CSEC/, /MSEC/ Returns Timestamp’s Seconds Of The Minute

Returns the seconds of the minute of the timestamp in ss format.

• /AWDAY, /CWDAY/, /MWDAY/ Returns Timestamp’s Name Of The Weekday

Returns the name of the day of the timestamp in Ddd format.

• /AYEAR, /CYEAR/, /MYEAR/ Returns Timestamp’s Year

Returns the year of the timestamp in yyyy format.

So, for example:

tren.py -r=/FNAME/-/MYEAR/-/MMON/-/MDAY/-/MMONTH/-/MWDAY/-/MHOUR/:/MMIN/:/MSEC/ foo

Might rename the file to something like:

foo-2005-01-07-Jan-Fri-01:23:33

System Renaming Tokens

These tokens are derived from the underlying operating system and runtime environment. Notice that,
because command interpreters (shells) on various systems work differently, the first two of these have
to be quoted in different ways.

• /$ENV/ Environment variable

This token is replaced with the value of the environment variable ENV. If that variable
does not exist, the token is replaced with an empty string:

tren.py -r =’/$ORGANIZATION/’-/FNAME/ * # Unix shells

tren.py -r =/$ORGANIZATION/-/FNAME/ * # Windows shells

This prepends the organization’s name to everything in the current directory.

26

• /‘cmd‘/ Arbitrary command execution

This token is replaced with the string returned by executing the cmd command. Note
that newlines are stripped from the results, since they don’t belong in file names. Spaces,
however, are preserved.

For instance, you might want to prepend the name of the system to all your shell scripts:

tren.py -r =’/‘uname -n‘/’-/FNAME/ *.sh # Unix shells

tren.py -r ="/‘uname -n‘/"-/FNAME/ *.sh # Windows shells

This construct is more generally a way to synthesize renaming tokens that are not built
into tren. You can write a script to do most anything you like, execute it within
the /‘cmd‘/ construct, and plug the results into your new file name. This effectively
provides tren an unlimited number of renaming tokens.

Warning

Be very careful using this. It’s possible to construct bizzarre, overly long, and just plain chowder-
headed strings that make no sense in a file name using this token. Moreover, if you attempt to
insert characters that don’t belong in a file- or directory name (like a path separator), construct a
file name that is too long (or too short), or just generally violate something about the filesystem’s
naming rules, this will cause tren to abort and spit out an error. However, you will not be
prevented from creating file names that are legal but undesirable, such as file names that begin
with the - character. In other words, be careful and be sure you know what you’re doing with
this renaming token.

Tip

MORE ABOUT QUOTING /$ENV/ AND /‘cmd‘/ SYSTEM RENAMING TOKENS

Both of these constructs are supported directly from most Unix command shells. That is, most
Unix shells will themselves dereference constructs like $ENV and ‘command‘. There’s no need to
pass them as renaming tokens, you can just use the shell’s capabilities:

tren.py -r =/FNAME/-‘uname -n‘-$LOGNAME

If you do want to use the renaming token form in a Unix shell, you must single quote them to
prevent the shell from ”interpolating“ the variables before tren is called. If you don’t do this, tren

will complain about encountering unknown renaming tokens:

tren.py -r =’/‘uname -n‘/’-/FNAME/ *.sh # This is correct

tren.py -r =/‘uname -n‘/-/FNAME/ *.sh # This will fail

The real reason for providing these renaming tokens at all is because the Windows command inter-
preter does not have an equivalent function. The only way to achieve what these do on Windows
is via renaming tokens. In Windows, you also have to pay attention to quoting, particularly when
there are spaces in a ‘cmd‘ renaming token:

tren.py -r=/FNAME/-/‘command option1 option2 argument‘/ files ...

This causes tren to complain mightily because it thinks /‘command, option, option2, are all
separate (invalid) command line arguments. To avoid this problem, you need to pass the renaming
token as a single command line entity via quotes:

tren.py -r=/FNAME/-"/‘command option1 option2 argument‘/" files ...

• /RAND#/ Random Number Generator

27

This generates a (quasi) random number string, # digits wide.

This can be useful when you want to guarantee that no renaming operation will generate
a new name that conflicts with an existing name:

tren.py -r=/MYEAR//MMON//MDAY/-/RAND10/ *

This generates new file names with a 10 character random number string suffix:

20100401-4708910871

In this case, just make sure the random number string is long enough to make a name
collision unlikely by picking a sufficiently large #.

must be a positive integer greater than 0. The random number generator is reinitialized
each time the program runs, so test mode operations will only show you the ”shape“ of
the names with the embedded random number strings, not the actual strings you’ll end
up with.

Another nice use of this feature is to ”mask“ the actual file names. Say you have a bunch
of encrypted files, but you don’t want a casual viewer to even know what they are or
what’s in them. You might do this:

tren.py -r=/RAND25/ * 2>&1 >tren.log

Now you can encrypt tren.log and send it along with the files themselves over a non-
secure channel. The recipient can decrypt the log, and figure out what the original file
names were, decrypt them, and store them accordingly.

Sequence Renaming Tokens

Sometimes it’s useful to rename files or directories based on some property they possess like the date
or time of creation, the size of the file, who owns it, and so on. That’s the idea behind the attribute
renaming tokens described in the previous sections.

But another really interesting use of renaming tokens is to order all the files being renamed based on
one of these parameters. For instance, instead of actually embedding the date and time of creation in a
file or directory name, you might want to order the files from oldest to newest with a naming convention
like:

file-1.txt

file-2.txt

file-3.txt

This guarantees uniqueness in the final name and also sees to it that a sorted directory listing will
show you the files or directories in the order you care about.

This is the purpose of sequence renaming tokens. They give you various ways to create sequences
that can be embedded in the final file or directory name.

Tip

Many sequence renaming tokens described below share the same name with an attribute renaming
token described in the previous sections. That’s because they are based on the same property
of the file- or directory being renamed. However, it’s easy to tell which is which: Sequence
renaming tokens always begin with either + or - (to indicate ascending- and descending ordering
respectively).
So, /GROUP/ is an attribute renaming token that returns the group name for the file. However,
/+GROUP.../ is a sequence renaming token that returns a number indicating what position the
file is in when all the files named on the command line are ordered by their group names.

28

General Format Of Sequence Renaming Tokens

Sequence renaming tokens consist of four descriptive components and have the following general format:

/OrderingType:Counting Alphabet:Counting Pattern/

where,

Ordering (Required):

+ ascending

- descending

Type (Required):

The attribute used to create the ordering.

Counting Alphabet (Optional):

The name of the counting system to use.

Counting Pattern (Optional):

Establishes the first value in the counting

sequence and/or provides a string to format

the count.

Note that there is no space between the Ordering flag and Type.
An Ordering flag is mandatory. It will either be + to indicate an ascending count or - to indicate a

descending count.
The Type is mandatory. These are documented in the section below entitled, ”Types Of Sequence Renaming Tokens“.
The Counting Alphabet is optional. Counting alphabets are ways to count in different bases and even

to use something other than just numbers to represent the count. These are described in the section
below entitled, ”Let’s Learn The Alphabet“.

If you omit naming a specific alphabet, tren will default to counting in Decimal. Note that you
cannot omit the alphabet delimiters, so the correct form of a sequence renaming token then becomes:

/OrderingType::Counting Pattern/

A Counting Pattern is optional. Counting patterns are used to do two things: Set the initial value
for the count and Describe the layout of how the count should look. This is described in the section
below entitled, ”Counting Pattern Format“.

If you omit a counting pattern, tren will start counting from the zero-th ”number“ in your chosen
alphabet, producing a counting pattern as ”wide“ as necessary to count all the items being renamed. In
that case, the format of a sequence renaming token becomes:

/OrderingType:Alphabet:/ # With explicit alphabet

/OrderingType::/ # With default decimal alphabet

Let’s Learn The Alphabet

Sequence renaming tokens are essentially ”counters“ that return a number string representing where the
file- or directory being renamed sits in some order - say, by time, alphabetically or on the command
line.

29

To be as flexible as possible in creating renaming strings, it’s helpful to be able to ”count“ in any
base, and use any set of symbols when counting. For instance, you may prefer sequences of letters
instead of numbers. Such a sequence might look like this:

a

b

...

z

aa

ab

...

az

ba

bb

And so on.
tren has a number of standard such ”counting alphabets“ built in for the most common counting

situations. As described in the previous section, you specify which of these you want to use in each
sequence renaming token reference on the command line. (If you omit naming a specific alphabet, the
token will default to counting in Decimal.)

The built in alphabets are:

Binary - Counting in Base 2 using numbers

Octal - Counting in Base 8 using numbers

Decimal - Counting in Base 10 using numbers

HexLower - Counting in Base 16 using numbers and lower case letters

HexUpper - Counting in Base 16 using numbers and upper case letters

Lower - Counting in Base 26 using lower case letters

LowerUpper - Counting in Base 52 using lower- then upper case letters

Upper - Counting in Base 26 using upper case letters

UpperLower - Counting in Base 52 using upper- then lower case letters

Tip

The difference between a ”base“ and a ”symbol set“.

In order to make such counting-based renamings as flexible as possible, tren is built to be able
to count in any base (2 or higher) and make use of any symbol set. What’s the difference? The
”base“ tells you how many symbols there are in your counting system. In Decimal, for example,
there are 10. The ”symbol“ set, assigns a character to represent each of those positions. In
Decimal, we customarily use, ”0“, ”1“, ”2“, and so on. However, there is nothing magical about the
symbol set. It is the base that defines the counting system. The symbol set is just an arbitarary
representation. For instance, there’s no reason we can count in base 10, using the symbols, ”)“,
”¡‘, ”#“, ”$“, ... and so on.

This ability to use any symbol set in any base makes it easy to construct counting strings that suit
your particular renaming needs. You do this by defining your own, custom counting ”alphabet“ via the
-A command line option:

-A AlphabetName:string-of-characters

Once defined, later renaming tokens on the command line can refer to it via the /...:Alphabet-

Name:.../ syntax discussed previously.
Say we do this:

tren.py -A Foo:s2X -r=/+MTIME:Foo:/ *

30

This will rename all the files in the current directory in ascending mtime timestamp order using the
following counting scheme:

s

2

X

ss

s2

sX

2s

22

2X

And so on. You can use most any combination of characters you like to customize your sequence
renaming token output. There are a few things to keep in mind, however:

• The counting base is determined by the number of symbols in the symbol set not what characters
you use. In the example above, we’re counting in base 3 irrespective of what symbols are used to
represent each ”number“.

• You can define as many new alphabets as you like on the command line. (Well ... up to the
maximum command line length limit imposed by the shell and/or operating system you’re using.)

• The alphabet name is case sensitive. Foo, FOO, and foo are all different alphabet names (assuming
they are all defined).

• There is no requirement that the symbol set be built out of unique characters. tren does no
analysis of your symbol set at all, so this is permitted (if not recommended):

-A Foo:abcx123xj3,m2

• Similarly, you can populate your alphabet with any symbols you like, BUT remember they’re
going to be embedded in some file- or directory name. It’s a good idea to make sure you avoid
illegal or undesirable characters like /, \, and - in your alphabets so they don’t end up getting
embedded in a name (or trying to, anyway).

• If you use non-numerical counting schemes, your sorted directory list will not reflect that order.
For example, suppose you have a bunch of files in a directory, and you do this:

tren.py -r=/-MTIME:LowerUpper:/ *

Your files will get renamed in descending mtime timestamp order as:

a

b

...

A

B

...

aa

And so on, where a is the oldest file- or directory. However, when you do a sorted directory listing,
the names beginning with upper case characters will be listed first. Why? Because directory
sorting is typically based on ASCII order wherein A-Z appear before a-Z.

31

Counting Pattern Format

When using sequence renaming tokens, it’s nice to be able to layout the resulting counting string in
some consistent way. You can use an optional ”counting pattern“ in your sequence renaming token to
do this. The renaming pattern is used to specify two things: The width of the sequence string, and,
optionally, the starting value for the sequence. For instance:

Pattern Results

------- -------

0001 -> 0001, 0002, 0003, ...

0000 -> 0000, 0001, 0002, ...

03 -> 03, 04, 05, ...

To understand counting patterns, you have to understand a few basic rules tren uses to interpret
them:

• The number of characters (of any kind) in the pattern fix the width of the counting
string. These characters need not even be in the counting alphabet:

tren.py -r=/+CTIME::abcde/ *

This produces files renamed in ascending ctime timestamp order like this:

abcd0

abcd1

...

abc10

And so on.

• When a count increments such that it would exceed the width of the pattern, it ”rolls
over“ and tren issues a warning message to that effect. Using the example above, we’d
get:

9998

9999

0000 # Count rolls over and warning issued!

Notice that the count rolls over in the selected counting alphabet, it does not restart
from the original counting pattern. In almost every case, you should avoid roll over
and make your counting pattern wide enough to hold a full count for all the files- and
directories you’ve named on the command line. One issue here is that rolling over is
possibly going to create a name collision and the renaming will either be skipped or
have to be forced (with backup) using the -f option.

• As we’ve seen, tren treats each position of the counting pattern as a placeholder and
”eats“ characters as the count goes up. This allows you great flexibility in creating
renaming patterns that embed both a count and a literal string via a single sequence
renaming token. You just have to make the counting pattern wide enough so that the
highest count never consumes your literal string:

tren.py -r=/+MTIME:HexLower:InHexMtimeOrder-0x00000/ *

This yields new file names like this:

InHexMtimeOrder-0x00000

InHexMtimeOrder-0x00001

InHexMtimeOrder-0x00002

...

32

Notice that the 0x string may mean ”this is a hex number“ to the human reader, but it
is completely insignificant to tren. If the count were to get large enough - bigger than
5 digits, the 0x string itself would get overwritten. Larger still, and InHexMtimeOrder-

would start to get consumed.

Tip

We could avoid the possibility of having the count ever consume our literal text, by taking it out

of the sequence renaming token and putting it in as a literal argument to the -r option:

tren.py -r=InHexMtimeOrder-0x/+MTIME:HexLower:00000/ *

In short, tren treats every character in a counting pattern the same - with complete
indifference.

• Well ... almost ”complete indifference“. When tren finds characters that are in the
selected counting alphabet, it adds them to the count. In this way we start counting
at some predermined initial value. Note that tren always produces sequence number
starting with 0 and, unless the pattern indicates otherwise:

tren.py -r=/+CMDLINE::/ a b c

Produces:

0 # Formerly a, the 1st command line argument

1 # Formerly b, the 2nd command line argument

2 # Formerly c, the 3nd command line argument

But say we wanted to start counting from 1 instead:

tren.py -r=/+CMDLINE::1/ a b c

Produces::

1 # Formerly a, the 1st command line argument

2 # Formerly b, the 2nd command line argument

3 # Formerly c, the 3nd command line argument

Similarly, /+CMDLINE::101/ would produce:

101 # Formerly a, the 1st command line argument

102 # Formerly b, the 2nd command line argument

103 # Formerly c, the 3nd command line argument

Because tren is insensitive to characters outside the counting alphabet, you can
produce really interesting counting patterns like this:

tren.py -r=/+CMDLINE::1x0/ a b c

Produces::

1x0 # Formerly a, the 1st command line argument

1x1 # Formerly b, the 2nd command line argument

1x2 # Formerly c, the 3nd command line argument

If you had enough files named on the command line, the

count would eventually consume the out-of-alphabet

characters::

1x0

33

...

1x9

110

111

...

So, by mixing characters that are both in- and out of the counting alphabet in a
counting pattern, you ”prime“ the sequence renaming token to start counting with
a certain string. Notice that you can do this in any position within the pattern.
Say you do this:

tren.py -r=/+CMDLINE::x1x4/ *

This will produce a counting sequence like this:

x1x4

x1x5

...

x110

...

x200

In other words, a character in any position of the pattern that is in the counting
alphabet will be added to the count.

This works for all alphabets, any base, and any symbol set:

tren.py -r=/+FNAME/:Upper:+0S/ *

Yields new file names:

+0S

+0T

...

+0Z

+BA

+BB

...

• There is no notion of starting the count from a ”negative number“ and counting up.
You can sort of synthesize this by sticking a - in front of a sequence renaming token (or
at the left end of its counting pattern). Keep in mind, though, that tren only knows
how to increment a count so you will always get an ”increasing negative number“ when
you do this:

tren.py -r=-/+CMDLINE::5/-/FNAME/ a b c

Will produce new file names:

-5-a

-6-b

-7-c

If you want the reverse order, specify a descending sequence renaming token:

tren.py -r=-/-CMDLINE::5/-/FNAME/ a b c

Will produce new file names:

-5-c

-6-b

-7-a

34

Types Of Sequence Renaming Tokens

Sequence renaming tokens are thus a way to generate an ordering based on some property common to
everything being renamed. That property is used to return a string representing just where in that order
a particular file- or directory appears. This string is formatted according to the counting alphabet and
counting pattern embedded in the sequence renaming token as described in the previous sections.

Keep in mind that for purposes of sequencing, tren makes no distinction between a file and directory.
It merely sequences based on the property you requested.

Note

There is one very important detail to keep in mind here. When tren first starts up, it examines
the metadata of every file- and directory name on the command line. It uses this to pre-create
the sequences for every possible ordering (alphabetic, by date, within date, by length, and so on)
whether or not every file actually ends up being renamed later on. In other words, sequences are
built on the list of names passed on the command line NOT on the list of files- or directories that
actually get renamed. If your renaming requests only apply to some of the file names you passed
on the command line, you may find the resulting sequence unexpected. Say you have three files,
a, b, and c and you do this:

tren.py -rb=/FNAME/-/+FNAME::001/ b c a

Only file b has a matching old string and thus is the only file renamed. However, because it is
second alphabetically of all the files named on the command line, it gets renamed to b-002. The
way to avoid this surprise is to make sure any renaming request with sequence renaming tokens
in it is constructed so that it applies to all the files- and directories named on the command line.

Sometimes, more than one file- or directory named on the command line maps to the same sequencing
key. For example, when using the /+GROUP.../ sequence renaming token, dozens of files in a given
directory may only map to a few group names. In this situation, all the names that map to the same
key will be sequenced alphabetically within the key. So if a and b are in group foo and c and d are in
group baz:

tren.py -r=/+GROUP/::/-/FNAME/ a b c d

Will create the new names:

0-c

1-d

2-a

3-b

tren currently supports a variety of sequence renaming tokens. Note that those associated with the
various OS timestamps begin with the corresponding first letter:

• /+-ADATE:Alphabet:Pattern/ Sequence based on atime WITHIN the same date

• /+-CDATE:Alphabet:Pattern/ Sequence based on ctime WITHIN the same date

• /+-MDATE:Alphabet:Pattern/ Sequence based on mtime WITHIN the same date

These return sequences within a given day. This enables renaming constructs like:

tren.py -r=/MYEAR//MMON/MDAY/-/+MDATE::001/ *

Yielding files named:

35

20100305-001

20100305-002

20100305-003

20100316-001

20100316-002

20100316-003

...

• /+-ATIME:Alphabet:Pattern/ Sequence based on atime timestamp

• /+-CTIME:Alphabet:Pattern/ Sequence based on ctime timestamp

• /+-MTIME:Alphabet:Pattern/ Sequence based on mtime timestamp

These return sequences in absolute timestamp order. For example:

touch foo

touch bar

touch baz

tren.py -r =/+MTIME::/-/FNAME

Yields:

0-foo

1-bar

2-baz

• /+-CMDLINE:Alphabet:Pattern/ Sequence based on the order of appearance on the com-

mand line

This is nothing more than the command line order:

tren.py -r=/+CMDLINE/-/FNAME::01/-/FNAME/ z b a

Yields:

01-z

02-b

03-a

• /+-DEV:Alphabet:Pattern/ Sequence based on the device ID number on which the file-

or directory resides

This is the a sequence ordered by which device ID contains the file- or directory to be renamed.

This is not supported on Windows and defaults to an alphabetic sequence equivalent to /+-

FNAME.../.

• /+-FNAME:Alphabet:Pattern/ Sequence based on alphabetic order of all targets on the

command line

This returns a sequence based on the alphabetic order of everything you’ve named for renaming.
Note that this is done on the fully qualified path name for each argument, not just the file- or
directory name itself:

tren.py -r=/+FNAME::/-/FNAME/ a/z b/b

Yields:

a/0-z

b/1-b

36

This is because the original file name a/z sorts alphabetically before b/b.

• /+-GID:Alphabet:Pattern/ Sequence based on the group ID number

This returns a sequence ordered by the ID number of the group to which the file- or directory
belongs.

This is not supported on Windows and defaults to an alphabetic sequence equivalent to /+-

FNAME.../.

• /+-GROUP:Alphabet:Pattern/ Sequence based on the group name

This returns a sequence ordered by the name of the group to which the file- or directory belongs.

This is only supported on Windows if the win32all Python extensions are installed. Otherwise,
this defaults to an alphabetic sequence equivalent to /+-FNAME.../.

• /+-INODE:Alphabet:Pattern/ Sequence based on the inode number

This returns a sequence ordered by the file- or directory inode numbers.

This is not supported on Windows and defaults to an alphabetic sequence equivalent to /+-

FNAME.../.

• /+-MODE:Alphabet:Pattern/ Sequence based on permissions

This returns a sequence ordered by the file- or directories permissions value.

• /+-NLINK:Alphabet:Pattern/ Sequence based on the nlink count

This returns a sequence ordered by the number of links associated with the file- or directory.

This is not supported on Windows and defaults to an alphabetic sequence equivalent to /+-

FNAME.../.

• /+-SIZE:Alphabet:Pattern/ Sequence based on size

This returns a sequence ordered by the size of each file- or directory.

• /+-UID :Alphabet:Pattern/ Sequence based on the user ID number

This returns a sequence ordered by the ID number of the user that owns the file- or directory.

This is not supported on Windows and defaults to an alphabetic sequence equivalent to /+-

FNAME.../.

• /+-USER:Alphabet:Pattern/ Sequence based on user name

This returns a sequence ordered by the name of the user that owns the file- or directory.

This is only supported on Windows if the win32all Python extensions are installed. Otherwise,
this defaults to an alphabetic sequence equivalent to /+-FNAME.../.

COMMON TASKS AND IDIOMS

With a program as feature dense as tren, it’s not possible to document every possible use case. The
following examples cover many common applications of the program.

• Literal String Replacement

Sometimes, all you want to do is replace a single substring in a name:

tren.py -r Old=New OldRecords-OldPeople # Yields: NewRecords-OldPeople

37

• Replacing Or Removing All Instances Of A String

Sometimes you want to replace every instance of the string:

tren.py -i : -r Old=New OldRecords-OldPeople # Yields: NewRecords-NewPeople

• Changing A File’s ”Extension“ Suffix

Common where the suffix of a file is significant to an applications program:

tren.py -i -1 -r .jpeg=.jpg *.jpeg

• Replace Spaces In A Filename With Underbars

Even though spaces are allowed in file names in most OSs, they’re a pain:

tren.py -i : -r " "=_ *

• Appending- Or Prepending Strings To An Existing File Name

Often, you want to keep the existing name, but add to it:

tren.py -r =Prefix-/FNAME/

tren.pu -r =/FNAME/-Suffix

• Ordering File Names By Last Modification Time

It’s nice to be able to see files in the order they were last modified. Usually, we preserve the old
name when doing this:

tren.py -r =/+MTIME::001/-/FNAME/

• Ordering File Names By Modification Time Within Date

Sometimes, what we want is the order of modification within the date it was changed:

tren.py -r =/MYEAR/-/MMON/-/MDAY/-/+MDATE::001/-/FNAME/ *

• Ordering File Names By Size

This is handy if we want a directory listing to list the files in size order:

tren.py -r =/SIZE/-/FNAME/ *

• Undoing A Previous Renaming

In complex renamings, sometimes the only way to get back to your original names is to examine
the renaming log. But in some cases it’s pretty automatic:

tren.py -r =’/$LOGNAME/’-/FNAME/ *

This can be undone by:

tren.py -r ’/$LOGNAME/’-= *

Generally, if you can isolate the text introduced by the previous renaming operation, and use it
as the old string in another renaming request, this will work.

38

ODDS AND ENDS

• Quoting your command line arguments properly for the shell you use is critical. Things like
spaces, \, and - have to be properly quoted or either the shell or tren itself are going to complain.
Similarly, when using the /$ENV/ and /‘cmd‘/ renaming tokens, make sure to enclose them in
single quotes if you’re using a standard Unix shell like bash.

• Whitespace is almost always significant within a tren option. You’ll need to put proper quoting
around it to perserve if for tren to see, whether in a renaming request, an alphabet definition, or
some part of a sequence renaming token.

• Most shells don’t care if you leave a space between an option and its argument. It’s a really good
idea to do so as a matter of habit, especially when dealing with a complex command line driven
tool like tren.

• tren will attempt to do any requested renaming. However, if you manage to embed some character
in the new name that the operating system doesn’t like, the renaming will fail and you’ll be notified
of the fact. Notwithstanding the fact that you can do all manner of clever things with tren, some
restraint is called for when constructing new file- or directory names.

• tren will prevent you from trying to rename something to a null string or a name too long for the
operating system. Mostly this is not an issue unless you managed to concoct a renaming request
that ends up requiring recursive backups. In that case, the backup suffix can be tacked onto the
file name enough times that the file name becomes too long for the OS to catch. While tren can,
and does catch this, it cannot unwind what it has done thus far and you CAN LOSE

FILES THIS WAY!!!. The smart move here is to use test mode and make sure your proposed
renaming isn’t going to require deeply recursive backups.

• Save the output from your tren runs in logs. That way, if you have to unwind a renaming gone
bad, you’ll have a record of what was done.

• The use of -bf is STRONGLY DISCOURAGED and is provided only for the most sophisti-
cated and careful users.

BUGS, MISFEATURES, OTHER

You must be running Python 2.6.x or later. tren makes use of features not supported in releases prior
to this. tren has not been tested with Python 3.x and is presumed not to work with it until/unless
otherwise demonstrated.

As a general matter, tren should run on any POSIX-compliant OS that has this version (or later)
of Python on it. It will also run on many Microsoft Windows systems. If the Windows system has the
win32all Python extensions installed, tren will take advantage of them for purposes of deriving the
names of the user and group that own the file or directory being renamed.

Warning

As of this writing, tren will not run in the cygwin environment because their version of Python
is still backleveled to 2.5.x. When and if the cygwin team upgrades to 2.6.x, tren is expected to
work there as well.

This program is EXPERIMENTAL (see the license). This means its had some testing but is
certainly not guaranteed to be perfect. As of this writing, it has been run on FreeBSD, Linux, Windows
XP, and Mac OS X. It has not, however, been run on 64-bit versions of those OSs.

39

If you have experience, positive or negative, using tren on other OS/bitsize systems, please contact
us at the email address below.

HOW COME THERE’S NO GUI?

tren is primarily intented for use by power users, sys admins, and advanced users that (mostly) find
GUIs more of a nuisance than a help. There are times, however when it would be handy to be able to
select the files to be renamed graphically. TundraWare has a freely available file browser that is macro
programmed. It will work nicely in such applications:

http://www.tundraware.com/Software/twander/

COPYRIGHT AND LICENSING

tren is Copyright (c) 2010 TundraWare Inc.
For terms of use, see the tren-license.txt file in the program distribution. If you install tren on a

FreeBSD system using the ’ports’ mechanism, you will also find this file in /usr/local/share/doc/tren.

AUTHOR

Tim Daneliuk

tren@tundraware.com

DOCUMENT REVISION INFORMATION

$Id: tren.rst,v 1.183 2010/04/23 18:40:15 tundra Exp $

You can find the latest version of this program at:

http://www.tundraware.com/Software/tren

This document was produced using reStructuredText:

http://docutils.sourceforge.net/rst.html

40

http://www.tundraware.com/Software/twander/
http://www.tundraware.com/Software/tren
http://docutils.sourceforge.net/rst.html

