htsh / wapsh - User Guide

Copyright 2000, exolution GmbH / Michael Kerrisk, Munich, Germany
http://www.exolution.de/wapsh
mailto:wapsh@exol ution.de

Draft 1.0, last revised 21 Nov 2000

1
2.
3.
4,

5.
6.

g oo [FTox o] o OO T ST
Terminology.............
Operating Model
Client Shell Initiaisation...............
41. Initialisation file content
411 General formatting NOES........cceuvveveerierereeee et senseees
412 Initialisation file commands
413. An example user-specific initialisation file........c.ccovenencnienns
42, Environment Variables.........ccoenriererecereee e
USEN INEEITACE ...ttt
WAP Browser USer INTEITACE. ..ot
6.1. WAPBrowser Navigationcccoeeeeninicenenseessesesseessessssesssssesesssssnns
6.1.1 WAP Browser Navigation Mapcccceveeeennenneessnensssssesssesessennns
6.1.2. UP PhONES......cooiieritireintisiree ettt saes
6.1.3. Nokia Phones.
322 oo g I oo RO
6.2.1. Specifying a default username and login host (wapsh only)
TG TS 1= 01U o 1 | TR
64. Shell text input
6.5, HISIOIY .ottt
65.1. Scrolling through the RISEOMY TISE........cieieec e
6.5.2. Clearing the NIStONY TSt ...t
6.5.3. Editing acommand from the history
B.6. SNOMTCULS....ceeietcececee ettt ettt ettt ee e e e e R b b E A bbbt et n b e s
6.7. CONLrOl CharaCLEr INPUL......c.cuiveecueirececte et sss st a s b st es e st s s s st es e bbb s s aesen s s aetesnanans
6.8. Output scrolling

6.8.1. Scrolling forward and BaCKWard ...ttt ssesns
6.8.2. Output searching

6.9. Check output......cccccourverrrrenee.

6.10. L OQOUL.....evtiieieiete ittt bbb bbbk bbb bbb bbb bbb bbb bbb bbbtk bbbt b bbb b ttes
WED BrOWSES INEEITACE.cu ettt s s s st se st e e e st ne et s e s et esnennansnsennnns

7.1.

7.2.

7.3.

74.

1. Introduction

htsh is a system which allows usersto login in to a Unix shell viaaweb browser or WAP phone (in the latter
incarnation, the htsh is also called wapsh). htsh offers the following features:

WML (WAP phone) and HTML (Web browser) interfaces.

Line-oriented interface. Linesand individual characters can be transmitted to the shell, but no screen
mode emulation isprovided. Thusit is possible to run most programs, except those requiring a screen
interface. (The most notable standard Unix programs that this excludes are screen mode editors such as
emacs(1) and vi(1) —itisnevertheless possibleto use ex(1), the line mode of vi, and to use the original
Unix editor ed(1).)

Multiple smultaneouslogin support. Any number of users can simultaneously login and operate
separate shells using htsh.

Integration with standard login authentication. The user logsin by supplying their usual username
and password. After authentication and initialisation, htsh will launch the user’s standard shell.

User-specificinitialisation file. Each user can have aninitialisation file (residing in their login
directory) which tailors the appearance and operation of their browser or phone display. Control
statements are provided allowing sections of the initialisation file to be processed dependent on the
protocol (“wap” or “http”) or user agent (browser/phone type) being employed for the remote login.

Shortcuts. In order to save typing on aWAP phone (or in aweb-browser), it is possible to create
shortcuts for commonly used shell commands. These shortcuts are displayed as a user-sel ectable menu.

Command history. Shell inputs are saved in a history list, which can be edited and re-executed

Control character input. Menus and buttons are provided to allow special characters, such as
control-C, control-D, and ESCAPE, to be transmitted to the remote shell.

Output scrolling and searching. Since the display capacity of a WAP phone (and to a much lesser
extent aweb browser) islimited, the result of commands producing a large amount of output cannot be,
and is not, displayed in asingle step. htsh providesfacilities for scrolling forward and backward
through the generated output and for searching through it.

Environment variables made availableto login shell. htsh makes environment variables available to
the login shell which identify the protocol (“wap” or “http”) and user agent (browser/phone type) being
employed. This enables shell startup scriptsto betailored according to these valuesif desired.

Optional separation of HTTP (web) server and Login Host. Normally the htsh (HTML +WAP)
HTTP Server software and the htsh server daemon reside on the same host. It is however possibleto
separate these two components of htsh onto different hosts.

Single HTTP Server can serve multiple Login Hosts. A single HTTP Server can be configured to
allow usersto login on multiple Login Hosts.

Securetransmission. SSL (https) is used to encrypt data transmission between the web browser (client
PC) or WAP gateway and the htsh web server. If the htsh web server and the htsh server daemon reside
on different machines, the server daemon can be configured only to accept transmissions from
designated web servers.

2.

Terminology

In the following sections, these terms are used:

3.

(Client) browser: aweb browser running on a user workstation, or aWML browser operating on a
WAP phone.

WAP gateway: aserver which provides connectivity between a mobile telephone network and the
Internet.

HTML: Hypertext Markup Language — the language used to define the layout and operation of web
pages displayed on aweb browser.

WML : Wireless Markup Language — the language used to define the layout and operation of screen
displays on aWAP phone.

HTTP: The Hypertext Transfer Protocol used for transmission of hypertext data across the Internet.
HTTPS: The Secure Hypertext Transfer Protocol which allows information to be transmitted in
encrypted form. Use of HTTPSrequiresinstallation of an SSL (Secure Sockets Layer) certificate on

an HTTP Server.

HTTP Server: (Also known asaWeb Server.) Software which handles browser requests submitted
across the Internet and sends responses (in the form of HTML or WML) to the browser. htsh makes use
of Apache, the most widely used web server software.

HTTP Server Host: A computer running the HTTP Server software.

Socket: atechnique used by applications running on separate (or the same) computers to communicate
information with one another.

htsh Web Application: A PHP4-scripted web application which provides the browser interface to the
htsh system.

(htsh) Login Host: The computer on which users are allowed to login and operate shells via htsh.

htsh (Server) Daemon (htshd): A process running on the Login Host which authenticates login
requests sent viathe HTTP Server and creates a Client Shell to serve each login.

(htsh) Client Shell: A process running a standard shell on the Login Host, which accepts input sent via
the HTTP Server from the Client Browser and sends output back via the same route.

Operating Model

Diagram 1 gives an overview of the operation of htsh.

WAP Internet e e

phone [+ S
‘\\ m HTTP Server | | ¢, Ocket htsh Server
- » % Daemon (htshd)

M WAP - (Apache [«

| Gateway HTTPS running htsh
; web] G @)
WAP ," application) '\

Web .
phone browser HTTP

(user PC) Server Host Login Host
Web (HTTP Server host and login
(beWSECI;) host may be same machine)
user P

Diagram 1: Schematic overview of the operation of htsh
In order to make use of htsh, the following steps must take place:

1. ViaaClient Browser, the user enters the URL of the HTTP Server Host providing access to the desired
Login Host.

2. Theuser ispresented with alogin page, into which they enter their username and password (as defined
in the system password database on the Login Host) and then submit thisinformation to the HTTP
Server. If theHTTP Server provides access to more than one Login Host then the login page will also
allow the user to select their desired Login Host.

3. TheHTTP Server transmits the username and password to the Login Host which then authenticates the
user.

4. Onsuccessful authentication, the htsh server daemon (htshd) running on the Login Host creates a Client
Shell for the user, and returns a success notification to the HTTP Server (after which the HTTP Server
then allows further communication between the Client Browser and the Client Shell). Included in the
success notification message is arandomly generated authorisation key. Thiskey isasecret value
shared between the Client Shell and the HTTP Server. All subsequent transmissions from the HTTP
Server to the Client Shell include a copy of thiskey and this copy is checked by the Client Shell to
verify that the transmission has been sent by the logged in user.

o

Using a browser form, the user submits shell input to the HTTP Server. The HTTP Server transmits this
input to the Client Shell. The Client Shell passes the resulting output back to the HTTP Server, whichin
turn passes it back to the Client Browser, whereit is displayed to the user.

6. The previous step can be performed repeatedly. Upon completion, the user sends alogout message to
the Client Shell which then exits.

There are some important points to add to the above diagram and description:

Client Shell output isonly ever sent to the Client Browser in response to submission of input. (Thereis
no “push” of datafrom the HTTP Server to the Client Browser). This means that any output whichisn’t
generated by the Client Shell within a short period of time after submission of the current user input will
not be returned to the browser in the current request-response cycle. Instead, it will be “ piggy-backed”
with the output produced in response to the next request from the user’s browser. (It isalso possibleto
send a special command (“ Check output™) which simply requests that any outstanding output from the
Client Shell isreturned to the Client Browser.) This mode of operation isrequired sinceit isnot
possible for the Client Shell to definitively know whether or not a command has finished producing
output. Thereforethe Client Shell operates atimeout on the output, and if the timeout is exceeded,
ceases transmitting output to the HTTP server.

Some commands to the Client Shell may generate large amounts of output. Rather than transmitting all
of thisoutput to the HTTP Server / Client Browser, the Client Shell will transmit only a portion to the
HTTP Server. Further output will be sent to the HTTP Server as described in the previous point.

4. Client Shell Initialisation

Before executing the user’ s standard shell, the Client Shell performs a number of initialisations based on the
contents of the following files:

1. Theglobal initialisation file created by the system administrator and used by al htsh logins. (By
default thisfileisexpectedto be/ et ¢/ ht sh_pr of i | e, but adifferent file name may be specified

by the system administrator when starting the htsh server daemon.)
2. Theuser-specificinitiaisationfile. ht shr ¢ in the user’shome directory.

Thesefiles are processed in the above order. Either or both of these files may be absent: in this case htshd
proceeds without error.

Both files have the same format and contents. Each allows the specification of shortcutsto appear in amenu on
the Client Browser, and also allows the setting of attributes controlling which htsh features will appear inthe
Client Browser display and how they will appear. Control statements are provided enabling initialisations to be
performed conditionally depending on the communication protocol (“wap” or “http”) being employed by the
Client Browser, and user agent (i.e. Client Browser type — each phone and/or web browser model/version
generates a unique user agent string).

Note that some of the settingsin theinitialisation files correspond to val ues that can also be set globally for users
by the system administrator in the htsh server daemon (htshd) configuration file and on the htshd command line
(asdescribed in the htsh Installation and Administration Guide). Sincethe initialisation files are processed at

the time of user login, settingsin these files will override corresponding settings in the htshd configuration file
and command line.

4.1. Initialisation file content

41.1. General formatting notes

The following general rules apply when writing initialisation files:
Lines whose first non-whitespace character isa“#” are treated as comments and ignored.
Blank lines are ignored

Lines (other than comment lines) can be continued by placing a backslash at the end of the line and
continuing on the next line (the backslash and newline are removed)

White space indentation can be freely used to make the file layout more readable

41.2. Initialisation file commands
The following commands may appear in theinitialisation file.

Command for mat

Description

sc [-n] nane definition

sc [-n] definition

Create an entry for the browser shortcut menu. Name specifiesthe
string to appear in the menu list. Definition isthe corresponding text
which will be sent to the Client Shell if the user selects this menu
item

In the second form, a shortcut is created whose name and definition
are the same string.

If the name and definition strings contain embedded spaces they
should be nested in single quotes. Embedded quotes (and
backslashes) in either string can be escaped using “\" (backslash).

The —n option specifies that a trailing newline should not be included
as part of the shortcut when it is sent to the Client Shell.

By default, if the second argument of this command starts with a
hyphen (-), htsh assumes this argument specifies options to the
command. To create an option whose name starts with a hypen, use
the form:

sc -- -nane definition
Some examples:
sc 'list files' 'Is —F
sc ps
sc status 'echo $?'
sc warning 'echo Don\'t do that’

sc -- -denmp 'echo hyphen'

cl earsc

Clear thelist of shortcuts created so far. Thiscommand is primarily
intended for use (somewhere near the top) in the user-specific
initialisation file (. ht shr ¢) to remove shortcuts created in the

global initiaisation file.

set nane val ue

Set avalue for one of the named variabl es controlling the operation of
htsh. The variables which may be set are described below.

set al |l owedprotocol s
'proto-nane... '

Specify the set of protocols which may be used to login tohtsh. If
more than one protocol name is specified, the names must be
specified in single quotes and separated by spaces or tabs.

The following protocols can be specified (in lower case):
wap
http

By default, the permitted set of login protocolsisthat specified by the
administrator when starting the htsh server daemon. (If the
administrator has not explicitly specified alist of protocols, then al
available protocols can be used to login to htsh.)

Note that this command can only be used to specify a subset of the
protocols specified by the administrator at htsh server daemon
startup. (Inother words, if the administrator specified that only
“http” logins were permitted, then this command cannot be used to
enable “wap” logins.)

Example set al | owedprotocols 'http wap'

set csout putt i mout nsecs

Specify the time for which the Client Shell will wait for any further
shell output (after receiving shell input) before informing the HTTP
Server that output is complete. To avoid slow response times, this
should be set to some small value (usually less than one second).

Example set csout puttimeout 0.5

Default is the value specified (for all users) during startup of the htsh
server daemon. Attemptsto set this value outside the range 0.1 to
15.0resultin an error.

set csmaxtransfersize
nbyt es

Specify the largest number of bytesthat will be transferred in asingle
block by the Client Shell to the HTTP Server. Thisisuseful to
prevent large outputs from choking the Client Browser. Otherwise,
the HTTP Server/Client Browser could be overrun with large amounts
of output and the user would be prevented from sending further input
(for example aControl-C to abort the command generating the

output) until all of the output has been completed.

This setting defaults to the maximum value specified by the system
administrator when starting the htsh server daemon, and attempts to
specify avalue higher than the maximum are silently ignored.

Attemptsto set this value less than 1000 bytes are silently ignored.

set historybl ocksize
ni tens

Set number of itemsto be displayed in each block of the history list.

By default the web browser interface will display a maximum of 10
commands atime from the history and a WAP phone will display 3
commands.

Attempts to set this value to anumber lower than 3 are silently
ignored.

set outputbufferlimt
nbyt es

Set an upper limit for the size of the buffer used to record all output
during this shell session.

This setting defaults to the maximum value specified by the system
administrator when starting the htsh server daemon, and attempts to
specify avalue higher than the maximum are silently ignored.

Setting this value to zero means that no shell output is buffered (and
thusit will only be possible to use the buffer scrolling commands to
browse the most recent block of output returned from the shell).

set out putw ndowsi ze
nbyt es

Set the maximum number of charactersto be displayed in each
window of output.

By default, aweb browser displays a maximum of 1000 characters of
output at atime, and aWAP phone displays 200 characters at atime.

Attempts to set this value lower than 100 bytes are silently ignored.

set shortcut bl ocksi ze
nitens

Set number of itemsto be displayed in each block of the shortcut list.
This setting only has effect for WAP browsers.

By default, the WAP browser interface will display a maximum of 10
shortcuts on one page.

Attempts to set this value to anumber lower than 3 are silently
ignored.

set shelltimeout num secs

Set the timeout period for shell input. If input is not received within
thistime, the Client Shell automatically terminates.

Default isthe value specified (for al users) during startup of the
htshd server daemon.

set wapbrowserstyle style

Set the browser style to be employed on aWAP phone. (Thisoption
only has meaning for WAP phones.)

Normally it should never be necessary to set this option: default for
thisvalue is automatically determined according to the phone type, as
described below.

Permissible settings for style are asfollows:

up — Can be used to force Nokia phones to use the same
navigation mode as UP browser phones (i.e. page navigation by
in page hyperlinks rather than the softkey menu)

Example set wapbr owserstyl e up

set —o option Enable (-) or disable (+) an option

set +0 option

set +o allowcontrol chars If this option is disabled then the user will not be presented with
buttons and input boxes allowing control charactersto be sent to the
shell session.
By default thisoptionison.

set +o all owshell cnd If this option is disabled, the browser interface will not include atext
box for directly entering shell commands. This may be useful if you
only want to allow the user to enter input to the client shell using the
shortcut menu.
By default, this option is enabled.

set -0 allowsilent If this option is disabled, then the user is offered the“> nul | ”
checkbox when entering shell input or editing shell input history.
By default this option is off.

set —o allowrigraphs (Thisone'sfor al the old time C programmers out there!)

Some WAP phones have alimited set of input keyboard characters
available. For example, the Siemens C32 has ho means of inputting a
backslash character. Trigraphs are three character sequences (all
beginning with two question marks) which are interpreted as though
they were equivalent single characters. If thisoption is enabled, then
the following trigraphs (as in the C standard) are interpreted:

??=for # (hash)
??2(for [(brackets)
??) for]

??/ for \ (backslash)
?? for 7 (caret)

??< for { (braces)

??> for }
??1 for | (pipe symbol)
??- for ~ (tilde)

By default this option is off.

set +o allowuserinit

If this option is disabled in the global initialisation file, then
processing of user-specific initialisation filesis prevented. This
provides away for the htsh administrator to provide afixed interface
(as defined by configurationfile and global initialisation file options)
for al users.

By default thisoption is enabled (i.e. user-specific initialisation files
are processed).

set +o di spl aynenu

If this option is disabled, the browser interface will not include a
menu of shortcut commands.

By default, such amenu will appear if at least one entry for the
shortcut menu has been created using the sc command.

set —o filteransiesc

If this option is enabled, then the Client Shell attemptsto filter any
ANSI terminal escape sequences from the output generated by
commands. (Thismay be necessary because certain programs,
notably certain options tols(1) on Linux, generate ANSI escape
sequences regardless of the setting of the TERM environment
variable.

By default, this option is off.

set +o0 history

If disabled, the user will not be provided with access to history
enabling past shell inputsto be resent.

By default thisoptionison.

i fprotocol protocol-nane
cmd-list
fi

Allows for sections of the .htshrc file to be conditionally processed,
depending on what protocol (lowercase “http” or “wap”) is being
used for communication with the Client Browser.

i fprotocol wap
sc pwd
fi

i fuseragent user-agent ...
cmd-list
fi

Allows for sections of the .htshrc file to be conditionally processed,
depending on which user agent (browser type) is being employed.
Since user agent names often contain spaces, these names should be
nested in single quotes. Multiple user agents may be specified on the
command line: if any of the specifications match then, the contained
cmd-list is processed.

User agent specifications are case sensitive. The user agent
specifications can make use of the wildcard characters“*”, “?’, and
“['1” with the same meanings asin the shell.

i fprotocol wap
i fuseragent ' *Nokia*'
set out put bl ocksi ze 400
fi
fi

4.1.3. An example user-specific initialisation file
The following commands show a sampleinitialisation file which include conditional logic to handle initialisation

for Web and WAP logins:

htsh startup file (.htshrc)

#

set csoutputtineout 1.5
set csmaxtransfersize 5000

Make shell tineout 1 hour
set shelltimeout 3600

Unconment the following if the "> null" checkbox is desired
#set -0 allowsilent

Special stuff for WAP

i fprotocol wap
set shortcutbl ocksi ze 4
set out putw ndowsi ze 200
set historybl ocksize 5
set shelltinmeout 600

set -0 allowrigraphs
Create shortcuts to save typing on phone

sc pwd
sc who
sc date
sc processes 'ps ax -0 "pid uid cnmd"’

Do some extra stuff if this is a Nokia phone

i fuseragent ' *Nokia*'
sc ' Noki aWwap' 'echo This is a Nokia WAP Phone'
set shortcutbl ocksize 15

Unconment following if you prefer hyperlinks on Nokia phone
#set wapbrowserstyle up
fi
fi

Some general shortcuts for WAP and Web browser

sc greet 'echo \'hello world\""'

sc 'apache stop' '/sbin/init.d/apache stop'
sc 'apache start' '/shin/init.d/ apache start’
sc "allow core dunps' 'ulimt -c unlimted
sc 'sleep 60

Create a shortcut for a long conmand

sc 'Large output' 'j=0; while test $j -1t 100; do k=0; \
while test $k -1t 5; do \
echo -n "$j-%$k aaaaaaaaa "; k="expr $k + 1°; done; \
echo ""; j="expr $ + 1°; done'

4.2. Environment Variables

htsh sets a number of environment variables before launching the user’ slogin shell. Theseinclude:

SHELL Pathname of the user’ slogin shell

HOVE Pathname of the user’slogin directory

10

TERM Set to glasstty so that programs which abide by the value of this environment variable
setting will not attempt to perform screen-mode operations.

HTSH_PROTOCOL Set to indicate the communication protocol being employed by the Client Browser.
Contains either “wap” or “http”

Testing for the existence of thisstring isthe correct way of determining if the login shell
isbeing run over htsh.

if test ! —z $HTSH PROTCCCL then
alias vi="echo "Using vi is not a good idea in htsh"'

fi
Totest for aspecific protocol value, the following can be used

if test "X$HTSH PROTOCOL" = "Xwap" then
echo "This is a WAP | ogi n"
fi

HTSH_USER_AGENT The user agent identification string as passed in HTTP headers from the Client Browser
tothe HTTP Server.

The following sample shows the kinds of tests that can be made in a shell startup file (such as. bashr c):

if test ! -z "$HTSH PROTOCOL"; then
unalias Is # So |'s on Linux doesn't generate escape sequences
echo "Looks |ike an htsh | ogin"
fi
if test "X$HTSH PROTOCOL" = Xhttp; then
echo "Ya gotta shell, Wb Browser! '$HTSH USER AGENT' "
fi
if test "X$HTSH PROTOCOL" = Xwap; then
echo "Ya gotta shell, WAP phone! '$HTSH USER AGENT' "
PS1="$ # Make pronpt short
if expr "X$HTSH USER AGENT" : 'X *Nokia' >/dev/null ; then
echo "Looks like this is a Nokia WAP phone"
fi
fi

5. User interface

The user interfaces for web browsers and WAP phone offer essentially the same functionality. The major
differenceisthat all shell command input and output features are provided on a single page display in the web
browser interface, while on the WAP phone, these operations are split over several screens and menus. Note that
the setting of optionsin the global and user-specific htsh initiaisation fileswill control whether all of the

features described in the following sections appear.

6. WAP Browser User Interface

Known under the name wapsh, htsh currently provides support for two categories of WAP phone:
Phones running the widely used UP (Unwired Planet) browser from phone.com These include
phones from Siemens and Motorola (other phones running the UP browser are listed at
http://www.phone.conm/)

Nokia phones.

1

wapsh determines the type of phone in use and tailorsits operation to the features and limitations of each phone
type.

The following pages show example screenshots for the two browser types. These screen shots were obtained
using:

the Nokia 7110 Phone Emulator, which provides a close emulation of areal Nokia phone.

the emulator provided with the Unwired Planet Software Development Kit. Thisemulator only
provides an approximate emulation of aphone display, so that the appearance of htsh on UP-browser
supplied phones may vary somewhat from the screenshots shown here.

6.1. WAP Browser Navigation

The following WAP-specific terms are used in describing the wapsh user interface.

Deck. A deck isapproximately the WAP analogue of an HTML web page. Each request to aWAP
server returns adeck, which is then displayed by the phone browser. The crucial difference between an
WAP deck and an HTML web page is that adeck can be split into a number a of cards.

Card. A WAP deck consists of one or more cards. At any time, the phone browser displays one of the
cards from adeck. The user can navigate from one card to another using hyperlinks and menu menu
options. The advantage of the use of cardsisthat the user display can be split into logically separate
parts, which the user can navigate between, without requiring a (time-consuming) request-response
cycle between the phone and the WAP server.

In the description below, the termspage and screen will often be used synonymously with deck.

6.1.1. WAP Browser Navigation Map

Diagram 2 shows the navigation paths between the various pages (decks) in the wapsh user interface. Note that
the navigation model and style used by wapsh will depend on the type of WAP phonein use, as described in the
next sections.

htsh main

Login m

Enter username,

\ 4

Passwhoorgt, select] output o input o menu
View shell output, [™ Enter shell input Lagl Lpgout, Check output
scroll forward Links to other screens|
/ / \
Scroll / Search Control History Shortcuts
Forward and Chars View, and re- Browsing and
backward scrolling Entry of control execute past execution of
and searches characters commands shortcuts
] I
Y
History Edit
Edit and re-
execute a past
command
'
k

Diagram 2: WAP Browser Navigation M ap

6.1.2. UP Phones

When using UP Phones, the main htsh page consists of three parts (cards) labelled output, input, and menu,
whose separate functions are shown in Diagram 2. These three cards are transmitted as part of asingle WML

deck (page), so that navigating between them doesnot involve around trip to the WAP gateway and is thus
immediate. At the foot of each of the three cards are hyperlinks allowing navigation to each of the other cards
on the page.

Navigation to other (sub-)pages (Scroll/search, Control characters, History, Shortcuts) isprovided via
hyperlinks on these cards as indicated in Diagram 2. Each sub-page provides a set of hyperlinks which can be
used to navigate back to any of the three main htsh cards.

The following displays show the three cards of the main page:

Output card Input card Menu card
(partial display) (partial display)

§

##%%0 more chars

Shell input htsh menu
[Shortouts. . .]
[Control chars...]
[History (3)...]
[Check ocutput]
[Logout]

[Scrollisearch...]
[To htsh input]

[To htsh menu]

OF [6):4

6.1.3. Nokia Phones

Nokia WAP phones run a browser which provides superior handling of forms and input fields, aswell astrue
model ess access to the softkey menus, and htsh takes advantage of these features. In particular:

The main htsh page combines all three parts (output, input, menu) onto a single page.
All navigation between pagesis done via options in the (left) softkey menu

The following screen shows the start of the htsh main page as displayed on a Nokia phone (the rest of the page
text isavailable by scrolling down, and will be discussed in more detail shortly).

#%%0 mwe chars
Shell gt
L |

Options

Is...
Contrel chars.,.
Check autput
Le-gout
Select Back

(Note that the first three items on the softkey menu, Home, Bookmarks and Edit are defaults with standard
meanings provided by the Nokia browser.)

6.2. Login page
The URL of the wapsh login page has the form:

13

http://domain/ | ogi n_wm . php

This screen allows the user to enter their username and password. If the HTTP server permitslogging into a
range of Login Hosts, these will be displayed in a menu on the login page and the user can select the desired
Login Host. After entering the preceding information, the user clicks the Login hyperlink to enter htsh

Hereisthe Login page as displayed on a Nokia phone (the UP login procedure is similar, although the display
appears different as per the usual mode of the UP browser):

Login page Login page
(first half) (second half)

hitsh Login——
e e]
Aok
[loc skl
| i

Optiens

6.2.1. Specifying a default username and login host (wapsh only)

If you regularly login to with the same username on the same login host, you may find it useful to create a
bookmark which specifies these defaults. To do this, create abookmark of the form:

http://domain/ | ogi n_wml . php?u=myusername&h=preferredhost

(Notethat, for security reasons, it isnot possible to specify adefault for the password value.)

6.3. Shell output

All output so far generated by all commands during ashell session is stored in abuffer on the HTTP Server.
This output buffer grows continuously up to amaximum limit defined by the system administrator when the htsh
server daemon is started. (Individual users can also set lower valuesfor the buffer size using the set
outputbufferlimit initialisation file command). Once thislimit is reached, old input is discarded from the start of
the buffer.

At any moment, the Client Browser displays a section of the output buffer (normally the most recent output).
When a command generates alarge volume of output, the Client Browser displays the first section of output and
provides scrolling options to advance forward (or backward) through the output.

After initially logging in, we see a display similar to the following:

]
W AL,
3
#%%0 more chars
[Scroll/search. ..
[To htsh input]

[To ht=sh menu]

OFK

Theinitial “$” character shown here is the prompt from the shell. After we have executed any command, the
output of that command is displayed at the top of the htsh main screen.

14

After the shell output comes aline of the form “*** X more chars’. When a command generates more output
than can be displayed in asingle WAP browser page, htsh will show thefirst part of the output and use thisline
to show how much further output is available for viewing. Thisfurther output can be viewed using the “Output
scrolling” options described below.

6.4. Shell text input

On the Nokia phone, to enter input to the shell, simply scroll down the page until the shell input textbox is
visible. For UP browsers, click the To htsh input hyperlink.

A textbox can be used to enter text to be sent (by pressing the send button) to the Client Shell. In additionto
supplying the input text, the user can set two further options:

“Newline?” — specifiesthat atrailing newlineisto be appended to the submitted text (Thisoptionis
enabled by default.)

“> null” — Thisoption is useful to discard the output from a command which is expected to generate a
large volume of output. It isexactly equivalent to appending the string “> / dev/ nul | ” to the end of
the input text. [Note: This option will only be displayed if the set -0 allowsilent option was specified in
an htsh initialisation file|]

After filling in all of the above information, the shell input can then be sent using the Send input hyperlink.

On the WAP phone all of the above information is entered by scrolling through the htsh main page:

Shell input line? 7 psend input]
prdd | [To htsh output]
[To htsh menu]

(If, after entering shell input on the UP browser, you decide that you do not want to send it to the shell, simply
click either of the links to the output or menu cards, instead of the Send input hyperlink.)

After submitting the shell output, htsh will then display the resulting output. Hereisthe output we would see on
the two phone types:

e ik BT

Ewd

Fhomsrht ®#%0 more chars
[Scrollfsearch. ..
[To htsh input]

]
%% more chars
Dptions

OK

15

(Notethat the shell echoes whatever input we enter, so that we al so see the command (“ pwd”) we just entered.)

6.5. History

htsh maintains a history of past shell inputs (excluding shortcut menu selections and control characters which we
describe below). Thislist can bereviewed and individual items edited and resent. Sincethe history list may be
long, it isdisplayed in blocks of afixed number of items, and buttons are provided to navigate forward and
backward through the list. (Other than this, navigation through the history list is non-existent. In particular,
options are not currently provided to jump to the top or bottom of the list or to search through it.).

Any item from the history list can beimmediately re-submitted by clicking the associated send hyperlink, or first
edited and then re-submitted.

To access the history list, choose the History option from softkey menu (Nokiaphone) or go to the htsh menu
card (UP browser) and select the History hyperlink:*

htsh menu

= 2 [Zhortocuts. . .]
=—Service oplions —
Cevallize areh. .. [Control chars...]
Shortouts.. [History (3]...]
Conlrel chars... [Check ocutput]
g
Back

[s):4

On both phones, htsh displays a count of how many commands are currently in the history list.

The history list appears as follows:;

el
[send)]
[edit]

: ls -F
[=end]
[edit]

OK

The send hyperlink re-submits the corresponding input to the shell without editing, while the edit hyperlink
allows the input to be edited before resubmission.

Note that when re-submitting an input from the history using the send hyperlink, the same “newline?’ and “>
null” settings will be used as were specified when the input was originally entered. To view or change these
settings, the command must be edited before re-submitting.

6.5.1. Scrolling through the history list

If the history list islong, htsh allows you to scroll forward or backward through it. Scrolling options, prev
history and next history, aswell asthe option to return to the htsh main page(s), are provided either in the
softkey menu (Nokia phone) or at the foot of the history page (UP browser).

! Note that history hyperlinks/softkey options are only displayed if at |east one shell input has been sent to the
client shell (and history access has not been disabled (set +o0 hi st or y) inthe htsh initialisation files).

16

P [Prev history]
[Mext history]
[Clear hist ory]
[To htsh outpur]

—Service opliors—

Hexl historg
Clear history
To htah main

Selact Back,

[To htsh input]
[To htsh menu]

Link

6.5.2. Clearing the history list

If desired, the entire contents of the history list can be erased. Thisfeature isavailable under the softkey menu
on the Nokia phone, or as a hyperlink at the base of the main history page on the UP browser. Clearing the
history also automatically returns the user to the htsh main (Nokia) or output (UP browser) page.

6.5.3. Editing a command from the history

The process of editing acommand is similar to entering shell input. When editing an item, in addition to
changing the text of theitem, it is also possible to modify the settings of the“newl i ne?” and“> nul | ”

checkboxes as desired. Theitem can then be re-submitted by pressing the corresponding send hyperlink.

The following screenshots show this process for the Nokia phone.

Note that hyperlinks/ softkey options are provided allowing the user to exit from editing a command and return
either to the history list or the htsh main page(s).

P [Send input]
[Back to -hi:stca'x:g?]
[To htsh output]
[To htsh input]
[To htsh menu]

6.6. Shortcuts

The shortcuts defined in the .htshrc file with the “ sc” command are made available to the user via a set of
hyperlinks on the Shortcuts page. The shortcuts page appears as follows:

Selecting one of the shortcut items causes the corresponding shell input (which is not displayed as part of the
menu list) to be sent to the Client Shell.

17

If thelist of shortcutsislong, then it will be displayed in blocks of afixed number of items (set according to the
set shortcutbl ocksize initialisation file command described earlier) with accompanying scrolling options (Next
shortcuts, Prev shortcuts) to move backward and forward through the list of options. These options, aswell as
optionsto return to the htsh main pages appear under the softkey menu (Nokiaphone) or at the foot of the
shortcut list (UP Browser).

IR

[S L

Total shortcuts: 11
P[Prev shortocuts]
t [Hext shortcuts)
Prev shorbouts [To htsh output]

Hext shortculs [To htsh input]
Ta htsh main [To htsh menu]

D Link

6.7. Control character input

Since the keyboard of aWAP phoneislimited, htsh provides a special page allowing control charactersto be
sent to the shell. A textbox may be used to send any standard control character to the Client Shell. To send for
example, aControl-A, enter the letter “A” (upper or lower case) into the textbox, and click the send button. (To
be precise, this feature causes the ASCII code whose numeric value is 0x40 (64 decimal) less than the entered
character to be sent to the Client Shell.)

Alternatively aset of hyperlinks can be used to send specific control characters. The following hyperlinks are
provided for specific control characters.

Control-C (Interrupt)
Control-D (End of file)
Control-Z (Suspend)
Control-\ (Quit)

Control-{ (Escape)

Thefollowing screens show the appearance of the control characters page on the Nokia phone (the functionality
issimilar on the UP browser, although the operation of the browser makes the appearance slightly different):

48 oF sebech one of
Dplions

6.8. Output scrolling

Asnoted already, if acommand generates alarge amount of output then htsh will only display the first part of
the output. Facilities are provided to allow usto scroll though the remaining output (or back to previous output).
As an example, suppose we entered the command“Is—I” in the root directory (/). Then on the htsh main/output
page we would see the following display on the Nokia phone (UP browser is similar):

18

hsh man
total 100
drwdb-wr-4 2 rook
rook 1892 Jun 29

Detions

k-l

Scrolling down the page, we eventually see the following:

bR B

The Next screen hyperlink allows us to skip to the next undisplayed block of output. The Bottom Screen
hyperlink allows usto skip al intervening output and advance to the last page of output.

In addition to these features, the Scroll/Search page allows more general searching scrolling through the output
generated so far in thelogin session. Asusual this page isreached viathe htsh main page softkey menu (Nokia
phone) or the htsh menu page (UP browser).

On the Nokia phone the Scroll/Search page appears as follows:

T

WA L,

Lagt screen: 173

Bememnang: 3232
Oplions

Thetop half of this page allows for searching the output buffer. The bottom half of the page displays
information about the buffer as follows:

The total number of charactersin the buffer.
The current position in the output (i.e. the location of the first character on the last output screen on
the htsh main/output page.

The number of characters displayed in the last output screen on the htsh main/output page.

Number of characters remaining to be displayed beyond the end of the last output screen on the
htsh main/output page.

6.8.1. Scrolling forward and backward

Optionsto scroll forward and backward through the output buffer are provided on the Scroll/Search page either
as softkey options (Nokia phone) or hyperlinks at the foot of the page (UP browser).

19

%% Serolling. ..

-} [Previous screen]
[Mext screen]
Ment sereen [Top of Dutpﬁtj_
Top of cutpuk [Bottom of output]
[To htsh Dunput:_l'

— Sy o Op ki —
Previous screen

Link

Depending on the amount of output so far generated during the login session some of the following navigation
options will be provided:

Next screen — Show the next screen of output (this option will not be displayed if there is no output
beyond that currently displayed)

Bottom of output — Advance to the last screen of output in the buffer. (This option will not be
displayed if there is no more than one further screen of output past the screen currently being viewed —
in which case Next screen suffices to advance to the remaining output.)

Previous screen — Move to the previous screen of output. (Thisoption will not be displayed if the user
iscurrently viewing the topmost section of the output buffer.)

Top of output — Move to the topmost screen of the output buffer. (Thisoption will not be displayed if
there is no more than one previous screen of output above the screen currently being viewed - in which
case Previous screen sufficesto navigatetoit.)

Note that when scrolling through the output buffer, htsh will attempt to display whole lines of output where
possible. This means that htsh will sometimes display fewer characters than the permitted maximum (as
specified by the set outputwindowsize initialisation file command).

6.8.2. Output searching

The textbox and forwar d / backward sear ch hyperlinks can be used to enter a string to search for in the output
buffer. Searches may be made forward or backward and proceed from the current screen. If asearchis
successful, htsh will attempt to display text from the beginning of the line containing the string. Subsequent
searches (if performed without intervening scrolling or other operations) will, however, proceed from the point
of the last match, rather than the start of the line.

As an example, suppose that we have just executed the “ processes” shortcut described earlier, and that we wish
to search the output for a process named “expd”. Thisisthe procedure we would follow (on the Nokia browser
—the UP browser is similar):

Executeacommandwitha Gotothe Scroll/Search Enter string “expd”, and String found at character
lot of output page search forward 3168 in output buffer

—hzh main
hish: fred ab: 2168

1328 507 escpd 1000
1327 507 wi htdrc
10 [krhsshad] 1228 0 .Mitshd =d

Optians | i | Options

After asuccessful search, htsh displays a message string indicating where in the buffer the search string was
found, and then the line containing the string (where possible thisline will be shown from the beginning). If a
search is unsuccessful, htsh displays awarning message and leaves our position in the output buffer unchanged,
asin the following example, where we unsuccessfully attempt to search for a second occurrence of the string
“expd”:

Go to the Scroll/Search htsh “remembers’ last Search fails, so we stay at
page searched for string same place in buffer

— Gt aplion: htsh main
e Search Fikzhy: mol found

Bookmarks 1326 507 supd 1000 |
tcrollfsearch... o Torwar o) 1327 507 vi hishet |
Shortculs... . 1328 O fhishd -d

Select Back, i | Oplians

6.9. Check output

In considering the discussion that follows, you may find it useful to refer back to Diagram 1which shows the
relationship between the Client Browser, the HTTP Server and the Client Shell.

Recall that each time a Client Browser (WAP phone or web browser) submitsinput tothe shell, thisinput is
passed by the HTTP Server to the Client Shell. The Client Shell then yields output which is passed back to the
HTTP Server which formats the output appropriately and passesit back to the Client Browser. All output
produced in alogin session and returned to the HTTP Server is maintained in a (per-session) buffer which the
user may scroll though and search using the procedures described above.

Sometimes a shell command may generate alarge volume of output (for example: Is—IR /usr) or may take along
time to produce some output (for example: sleep 10; date). In both of these casesit is undesirable to have htsh
wait until all command output has been produced. Inthefirst case thisis because the output would take along
timeto produce and transmit, and during this time the user would be unable to enter further shell input (such asa
Control-C to abort the command). In the second case, there isin general no way for htsh to definitively know
when the Client Shell has finished output and htsh should avoid waiting too long for output and instead allow the
user to enter further shell input if desired. For these reasons, htsh operates two governors on the shell output.
Thefirst of theseisthe limit established by the set csmaxtransfersize initialisation file command, which specifies
the maximum amount of output that will be transferred back to the HTTP Server in response to a shell input (by
default 10000 bytes). The second limit is established by the set csoutputtimeout initialisation file command
which specifies the maximum time that htsh will wait without detecting any output before ceasing to wait and
instead allowing the user to enter further input. (Thistimeout value should normally be set to some low value -
say 0.5 seconds).

If either of these two governors comes into effect, then it may be that the Client Shell still has further output to
send to the Client Browser. By default, when the Client Browser next submits some input, the outstanding
output will then be delivered back to the Client Browser. Sometimes, however, we would like to check if there
isany further output without sending any shell input at all. Thisisexactly the feature provided by the Check
Output option, as shown in Diagram 3.

1. Client Browser sends 2. HTTP Server fetches htsh Server |
"Check output” request HTTP Server outstanding output from Daemon (htshd) |

WAP [Client Shell Client
phone |- per-session Shell |
3. HTTP Server passes output buffer i
output to Client Browser Login Host |

HTTP
Server Host

Diagram 3: Logical operation of Check Ouput

Notethat it isimportant to distinguish the purpose of the Check Output option from that of the output scrolling
and search facilities described earlier. The latter are provided to navigate through the buffer of all Client Shell

21

output, which isalready on the HTTP Server. The Check Output button forces atrip to the Client Shell itself,
to check for further output, which will then be appended to the output buffer maintained on the HTTP Server.

The Check Output option is provided in the htsh main page softkey menu (Nokia phone) or in the htsh menu
page (UP browser).

[Control chars...]

[History (3)...]
—Servite oplicng—
kol [Check output]

[Logout]
}[TD htsh output]
[To htsh input]

Contrel chars...

Link

6.10. Logout

This option (available on the htsh main page softkey menu (Nokia phone) or the htsh menu page (UP Browser))
terminates the htsh login session and closes the Client Shell on the Login Host.

7. Web Browser Interface

htsh also provides aweb browser interface. One usefor thisinterfaceisasatraining ground to give an idea of
the capabilities of the htsh interface prior to trying the WAP interface to the system (wapsh).

7.1. Web Browser Navigation Map

Diagram 4 shows the navigation paths for the web browser interface of htsh.

htsh main
Login View commandoutput,
Enter username, [— g Search/scroll through output
password, Enter shell input, Shortcuts,
select host Control chars
Logout; Check output
A
Y
History

Command history
browsing, editing,
and reexecution

Diagram 4: Web Browser Navigation Map
7.2. Login page
The URL of the htsh login page has the form:

http://domain/l ogi n_htm . php

i " Bockmarhs & Location: |52 6611 2] 50T Whals Aelated BRI
ksl login

WUsemame: |
Password: |
Hust: frayr -

== Docemert Do = 35 &0 o0& (@ w2
7.3. Main page

The web browser main page combines all of the features previously described in the WAP interface (except
history browsing and editing).

G wk Bockmerks A Locatior [hesc 132 1681 100 zenmard prin =] 7 whars Rslaad E
Shell output

crw-—---—- 1 root root 45, 72 Mar 24 2000 isdnctrlé

(S mtn ol 1 root oot 45, 73 Har 24 2000 isdnctrld

rr--rF--F—- 1 oot root 45, 255 Mar Z4 2000 isdnoinfo
5539 chare rensardne, [Fotal 50135, corrent: 44405, this ecreen 195]

.‘ﬂﬂi‘]ﬂ Search: | Fomand | Backiend

Shell input

1 o

F &d4d fraibng pesvine T = Adesill Hidden wypas

Sand 1 Fepest previnus input | Higtaey (4]
Cuntrultharg:ﬂ ﬂ :-I ﬂ Egcape -
Shorteuts: [=] Do Chack oufput | | Logaut |
& == [Dociarert: Eona e e R A

Thefollowing further differences are found in the web browser interface:
Buttons, rather than hyperlinks, are used to perform most actions.

The scrolling actions, “Previous screen”, “Next screen”, “Top of output”, and “Bottom of output” are
replaced by buttons labelled (respectively) “<”, “>", “<<”, and “>>".

The web browser interface provides an additional Hidden Input textbox. This can be used to enter text
(such as passwords) which is not supposed to be displayed on the browser. Only one of the Standard input
textbox” or Hidden Input textboxes should be filled in when submitting shell input.

The web browser interface provides an additional Repeat Previous button with no counterpart (currently) in
the WAP Phone interface. Clicking this button re-submits the most recently submitted shell input.

23

7.4,

History page

IS Bodhaes A Licaion[rin: 7132 150 111 Do Fimi e

hesh history

Fetum bo hteh mawn page

Command 1:

=] & whateRelied B

Ijte
e

M Add fraifing newime ™ > fdewinull
Ezecire comirand |

Command 2z
12

P Add wailing aewhne [= ddewhnall
Execute command 2

Clear fistery |

== g

Documeny: Dora

24

