
htsh / wapsh - User Guide

Copyright 2000, exolution GmbH / Michael Kerrisk, Munich, Germany
http://www.exolution.de/wapsh
mailto:wapsh@exolution.de

Draft 1.0, last revised 21 Nov 2000

1. Introduction..2
2. Terminology...3
3. Operating Model ...3
4. Client Shell Initialisation..5

4.1. Initialisation file content..5
4.1.1. General formatting notes ..5
4.1.2. Initialisation file commands ..5
4.1.3. An example user-specific initialisation file...9

4.2. Environment Variables ..10
5. User interface ...11
6. WAP Browser User Interface..11

6.1. WAP Browser Navigation ..12
6.1.1. WAP Browser Navigation Map ..12
6.1.2. UP Phones...12
6.1.3. Nokia Phones..13

6.2. Login page ...13
6.2.1. Specifying a default username and login host (wapsh only)..14

6.3. Shell output..14
6.4. Shell text input..15
6.5. History ..16

6.5.1. Scrolling through the history list...16
6.5.2. Clearing the history list ..17
6.5.3. Editing a command from the history..17

6.6. Shortcuts...17
6.7. Control character input..18
6.8. Output scrolling ..18

6.8.1. Scrolling forward and backward ...19
6.8.2. Output searching..20

6.9. Check output ...21
6.10. Logout..22

7. Web Browser Interface...22
7.1. Web Browser Navigation Map...22
7.2. Login page ...22
7.3. Main page ..23
7.4. History page ..24

 2

1. Introduction

htsh is a system which allows users to login in to a Unix shell via a web browser or WAP phone (in the latter
incarnation, the htsh is also called wapsh). htsh offers the following features:

• WML (WAP phone) and HTML (Web browser) interfaces.

• Line-oriented interface. Lines and individual characters can be transmitted to the shell, but no screen

mode emulation is provided. Thus it is possible to run most programs, except those requiring a screen
interface. (The most notable standard Unix programs that this excludes are screen mode editors such as
emacs(1) and vi(1) – it is nevertheless possible to use ex(1), the line mode of vi, and to use the original
Unix editor ed(1).)

• Multiple simultaneous login support. Any number of users can simultaneously login and operate

separate shells using htsh .

• Integration with standard login authentication. The user logs in by supplying their usual username
and password. After authentication and initialisation, htsh will launch the user’s standard shell.

• User-specific initialisation file. Each user can have an initialisation file (residing in their login

directory) which tailors the appearance and operation of their browser or phone display. Control
statements are provided allowing sections of the initialisation file to be processed dependent on the
protocol (“wap” or “http”) or user agent (browser/phone type) being employed for the remote login.

• Shortcuts. In order to save typing on a WAP phone (or in a web-browser), it is possible to create

shortcuts for commonly used shell commands. These shortcuts are displayed as a user-selectable menu.

• Command history. Shell inputs are saved in a history list, which can be edited and re-executed

• Control character input. Menus and buttons are provided to allow special characters, such as
control-C, control-D, and ESCAPE, to be transmitted to the remote shell.

• Output scrolling and searching. Since the display capacity of a WAP phone (and to a much lesser

extent a web browser) is limited, the result of commands producing a large amount of output cannot be,
and is not, displayed in a single step. htsh provides facilities for scrolling forward and backward
through the generated output and for searching through it.

• Environment variables made available to login shell. htsh makes environment variables available to

the login shell which identify the protocol (“wap” or “http”) and user agent (browser/phone type) being
employed. This enables shell startup scripts to be tailored according to these values if desired.

• Optional separation of HTTP (web) server and Login Host. Normally the htsh (HTML +WAP)

HTTP Server software and the htsh server daemon reside on the same host. It is however possible to
separate these two components of htsh onto different hosts.

• Single HTTP Server can serve multiple Login Hosts. A single HTTP Server can be configured to

allow users to login on multiple Login Hosts.

• Secure transmission. SSL (https) is used to encrypt data transmission between the web browser (client
PC) or WAP gateway and the htsh web server. If the htsh web server and the htsh server daemon reside
on different machines, the server daemon can be configured only to accept transmissions from
designated web servers.

 3

2. Terminology
In the following sections, these terms are used:

• (Client) browser: a web browser running on a user workstation, or a WML browser operating on a
WAP phone.

• WAP gateway: a server which provides connectivity between a mobile telephone network and the

Internet.

• HTML: Hypertext Markup Language – the language used to define the layout and operation of web
pages dis played on a web browser.

• WML: Wireless Markup Language – the language used to define the layout and operation of screen

displays on a WAP phone.

• HTTP: The Hypertext Transfer Protocol used for transmission of hypertext data across the Internet.

• HTTPS: The Secure Hypertext Transfer Protocol which allows information to be transmitted in
encrypted form. Use of HTTPS requires installation of an SSL (Secure Sockets Layer) certificate on
an HTTP Server.

• HTTP Server: (Also known as a Web Server.) Software which handles browser requests submitted

across the Internet and sends responses (in the form of HTML or WML) to the browser. htsh makes use
of Apache, the most widely used web server software.

• HTTP Server Host: A computer running the HTTP Server software.

• Socket: a technique used by applications running on separate (or the same) computers to communicate

information with one another.

• htsh Web Application: A PHP4-scripted web application which provides the browser interface to the
htsh system.

• (htsh) Login Host: The computer on which users are allowed to login and operate shells via htsh .

• htsh (Server) Daemon (htshd): A process running on the Login Host which authenticates login

requests sent via the HTTP Server and creates a Client Shell to serve each login.

• (htsh) Client Shell: A process running a standard shell on the Login Host, which accepts input sent via
the HTTP Server from the Client Browser and sends output back via the same route.

3. Operating Model
Diagram 1 gives an overview of the operation of htsh .

 4

Web
browser

(user PC)

HTTP Server
(Apache

running htsh
web

application)

htsh Server
Daemon (htshd)

Socketconnection

Internet

Login Host
HTTP

Server Host

Client
Shell

Client
Shell

WAP
phone

WAP
Gateway

Web
browser

(user PC)

WAP
phone

HTTPS Client
Shell

Client
Shell

(HTTP Server host and login
host may be same machine)

Diagram 1: Schematic overview of the operation of htsh

In order to make use of htsh , the following steps must take place:

1. Via a Client Browser, the user enters the URL of the HTTP Server Host providing access to the desired
Login Host.

2. The user is presented with a login page, into which they enter their username and password (as defined

in the system password database on the Login Host) and then submit this information to the HTTP
Server. If the HTTP Server provides access to more than one Login Host then the login page will also
allow the user to select their desired Login Host.

3. The HTTP Server transmits the username and password to the Login Host which then authenticates the

user.

4. On successful authentication, the htsh server daemon (htshd) running on the Login Host creates a Client
Shell for the user, and returns a success notification to the HTTP Server (after which the HTTP Server
then allows further communication between the Client Browser and the Client Shell). Included in the
success notification message is a randomly generated authorisation key. This key is a secret value
shared between the Client Shell and the HTTP Server. All subsequent transmissions from the HTTP
Server to the Client Shell include a copy of this key and this copy is checked by the Client Shell to
verify that the transmission has been sent by the logged in user.

5. Using a browser form, the user submits shell input to the HTTP Server. The HTTP Server transmits this

input to the Client Shell. The Client Shell passes the resulting output back to the HTTP Server, which in
turn passes it back to the Client Browser, where it is displayed to the user.

6. The previous step can be performed repeatedly. Upon completion, the user sends a logout message to

the Client Shell which then exits.

There are some important points to add to the above diagram and description:

• Client Shell output is only ever sent to the Client Browser in response to submission of input. (There is
no “push” of data from the HTTP Server to the Client Browser). This means that any output which isn’t
generated by the Client Shell within a short period of time after submission of the current user input will
not be returned to the browser in the current request-response cycle. Instead, it will be “piggy-backed”
with the output produced in response to the next request from the user’s browser. (It is also possible to
send a special command (“Check output”) which simply requests that any outstanding output from the
Client Shell is returned to the Client Browser.) This mode of operation is required since it is not
possible for the Client Shell to definitively know whether or not a command has finished producing
output. Therefore the Client Shell operates a timeout on the output, and if the timeout is exceeded,
ceases transmitting output to the HTTP server.

• Some commands to the Client Shell may generate large amounts of output. Rather than transmitting all

of this output to the HTTP Server / Client Browser, the Client Shell will transmit only a portion to the
HTTP Server. Further output will be sent to the HTTP Server as described in the previous point.

 5

4. Client Shell Initialisation
Before executing the user’s standard shell, the Client Shell performs a number of initialisations based on the
contents of the following files:

1. The global initialisation file created by the system administrator and used by all htsh logins. (By
default this file is expected to be /etc/htsh_profile, but a different file name may be specified
by the system administrator when starting the htsh server daemon.)

2. The user-specific initialisation file .htshrc in the user’s home directory.

These files are processed in the above order. Either or both of these files may be absent: in this case htshd
proceeds without error.

Both files have the same format and contents. Each allows the specification of shortcuts to appear in a menu on
the Client Browser, and also allows the setting of attributes controlling which htsh features will appear in the
Client Browser display and how they will appear. Control statements are provided enabling initialisations to be
performed conditionally depending on the communication protocol (“wap” or “http”) being employed by the
Client Browser, and user agent (i.e. Client Browser type – each phone and/or web browser model/version
generates a unique user agent string).

Note that some of the settings in the initialisation files correspond to values that can also be set globally for users
by the system administrator in the htsh server daemon (htshd) configuration file and on the htshd command line
(as described in the htsh Installation and Administration Guide). Since the initialisation files are processed at
the time of user login, settings in these files will override corresponding settings in the htshd configuration file
and command line.

4.1. Initialisation file content

4.1.1. General formatting notes
The following general rules apply when writing initialisation files:

• Lines whose first non-whitespace character is a “#”are treated as comments and ignored.

• Blank lines are ignored

• Lines (other than comment lines) can be continued by placing a backslash at the end of the line and
continuing on the next line (the backslash and newline are removed)

• White space indentation can be freely used to make the file layout more readable

4.1.2. Initialisation file commands
The following commands may appear in the initialisation file.

 6

Command format Description

sc [-n] name definition

sc [-n] definition

Create an entry for the browser shortcut menu. Name specifies the
string to appear in the menu list. Definition is the corresponding text
which will be sent to the Client Shell if the user selects this menu
item

In the second form, a shortcut is created whose name and definition
are the same string.

If the name and definition strings contain embedded spaces they
should be nested in single quotes. Embedded quotes (and
backslashes) in either string can be escaped using “\” (backslash).

The –n option specifies that a trailing newline should not be included
as part of the shortcut when it is sent to the Client Shell.

By default, if the second argument of this command starts with a
hyphen (-), htsh assumes this argument specifies options to the
command. To create an option whose name starts with a hypen, use
the form:

sc -- -name definition

Some examples:

sc 'list files' 'ls –F'

sc ps

sc status 'echo $?'

sc warning 'echo Don\’t do that'

sc -- -demo 'echo hyphen'

clearsc Clear the list of shortcuts created so far. This command is primarily
intended for use (somewhere near the top) in the user-specific
initialisation file (.htshrc) to remove shortcuts created in the
global initialisation file.

set name value Set a value for one of the named variables controlling the operation of
htsh . The variables which may be set are described below.

set allowedprotocols
'proto-name... '

Specify the set of protocols which may be used to login to htsh . If
more than one protocol name is specified, the names must be
specified in single quotes and separated by spaces or tabs.

The following protocols can be specified (in lower case):

• wap

• http

By default, the permitted set of login protocols is that specified by the
administrator when starting the htsh server daemon. (If the
administrator has not explicitly specified a list of protocols, then all
available protocols can be used to login to htsh .)

Note that this command can only be used to specify a subset of the
protocols specified by the administrator at htsh server daemon
startup. (In other words, if the administrator specified that only
“http” logins were permitted, then this command cannot be used to
enable “wap” logins.)

Example: set allowedprotocols 'http wap'

 7

set csoutputtimeout nsecs Specify the time for which the Client Shell will wait for any further
shell output (after receiving shell input) before informing the HTTP
Server that output is complete. To avoid slow response times, this
should be set to some small value (usually less than one second).

Example: set csoutputtimeout 0.5

Default is the value specified (for all users) during startup of the htsh
server daemon. Attempts to set this value outside the range 0.1 to
15.0 result in an error.

set csmaxtransfersize
nbytes

Specify the largest number of bytes that will be transferred in a single
block by the Client Shell to the HTTP Server. This is useful to
prevent large outputs from choking the Client Browser. Otherwise,
the HTTP Server/Client Browser could be overrun with large amounts
of output and the user would be prevented from sending further input
(for example a Control-C to abort the command generating the
output) until all of the output has been completed.

This setting defaults to the maximum value specified by the system
administrator when starting the htsh server daemon, and attempts to
specify a value higher than the maximum are silently ignored.

Attempts to set this value less than 1000 bytes are silently ignored.

set historyblocksize
nitems

Set number of items to be displayed in each block of the history list.

By default the web browser interface will display a maximum of 10
commands a time from the history and a WAP phone will display 3
commands.

Attempts to set this value to a number lower than 3 are silently
ignored.

set outputbufferlimit
nbytes

Set an upper limit for the size of the buffer used to record all output
during this shell session.

This setting defaults to the maximum value specified by the system
administrator when starting the htsh server daemon, and attempts to
specify a value higher than the maximum are silently ignored.

Setting this value to zero means that no shell output is buffered (and
thus it will only be possible to use the buffer scrolling commands to
browse the most recent block of output returned from the shell).

set outputwindowsize
nbytes

Set the maximum number of characters to be displayed in each
window of output.

By default, a web browser displays a maximum of 1000 characters of
output at a time, and a WAP phone displays 200 characters at a time.

Attempts to set this value lower than 100 bytes are silently ignored.

set shortcutblocksize
nitems

Set number of items to be displayed in each block of the shortcut list.
This setting only has effect for WAP browsers.

By default, the WAP browser interface will display a maximum of 10
shortcuts on one page.

Attempts to set this value to a number lower than 3 are silently
ignored.

set shelltimeout num-secs Set the timeout period for shell input. If input is not received within
this time, the Client Shell automatically terminates.

Default is the value specified (for all users) during startup of the
htshd server daemon.

 8

set wapbrowserstyle style Set the browser style to be employed on a WAP phone. (This option
only has meaning for WAP phones.)

Normally it should never be necessary to set this option: default for
this value is automatically determined according to the phone type, as
described below.

Permissible settings for style are as follows:

• up – Can be used to force Nokia phones to use the same
navigation mode as UP browser phones (i.e. page navigation by
in page hyperlinks rather than the softkey menu)

Example: set wapbrowserstyle up

set –o option

set +o option

Enable (-) or disable (+) an option

set +o allowcontrolchars If this option is disabled then the user will not be presented with
buttons and input boxes allowing control characters to be sent to the
shell session.

By default this option is on.

set +o allowshellcmd

If this option is disabled, the browser interface will not include a text
box for directly entering shell commands. This may be useful if you
only want to allow the user to enter input to the client shell using the
shortcut menu.

By default, this option is enabled.

set -o allowsilent

If this option is disabled, then the user is offered the “> null”
checkbox when entering shell input or editing shell input history.

By default this option is off.

set –o allowtrigraphs (This one’s for all the old time C programmers out there!)

Some WAP phones have a limited set of input keyboard characters
available. For example, the Siemens C32 has no means of inputting a
backslash character. Trigraphs are three character sequences (all
beginning with two question marks) which are interpreted as though
they were equivalent single characters. If this option is enabled, then
the following trigraphs (as in the C standard) are interpreted:

• ??= for # (hash)

• ??(for [(brackets)

• ??) for]

• ??/ for \ (backslash)

• ??’ for ^ (caret)

• ??< for { (braces)

• ??> for }

• ??! for | (pipe symbol)

• ??- for ~ (tilde)

By default this option is off.

 9

set +o allowuserinit If this option is disabled in the global initialisation file, then
processing of user-specific initialisation files is prevented. This
provides a way for the htsh administrator to provide a fixed interface
(as defined by configuration file and global initialisation file options)
for all users.

By default this option is enabled (i.e. user-specific initialisation files
are processed).

set +o displaymenu

If this option is disabled, the browser interface will not include a
menu of shortcut commands.

By default, such a menu will appear if at least one entry for the
shortcut menu has been created using the sc command.

set –o filteransiesc If this option is enabled, then the Client Shell attempts to filter any
ANSI terminal escape sequences from the output generated by
commands. (This may be necessary because certain programs,
notably certain options to ls(1) on Linux, generate ANSI escape
sequences regardless of the setting of the TERM environment
variable.

By default, this option is off.

set +o history If disabled, the user will not be provided with access to history
enabling past shell inputs to be resent.

By default this option is on.

ifprotocol protocol-name

 cmd-list

fi

Allows for sections of the .htshrc file to be conditionally processed,
depending on what protocol (lowercase “http” or “wap”) is being
used for communication with the Client Browser.

ifprotocol wap

 sc pwd

fi

ifuseragent user-agent…

 cmd-list

fi

Allows for sections of the .htshrc file to be conditionally processed,
depending on which user agent (browser type) is being employed.
Since user agent names often contain spaces, these names should be
nested in single quotes. Multiple user agents may be specified on the
command line: if any of the specifications match then, the contained
cmd-list is processed.

User agent specifications are case sensitive. The user agent
specifications can make use of the wildcard characters “*”, “?”, and
“[]” with the same meanings as in the shell.

ifprotocol wap

 ifuseragent '*Nokia*'

 set outputblocksize 400

 fi

fi

4.1.3. An example user-specific initialisation file
The following commands show a sample initialisation file which include conditional logic to handle initialisation
for Web and WAP logins:

htsh startup file (.htshrc)

set csoutputtimeout 1.5
set csmaxtransfersize 5000

 10

Make shell timeout 1 hour

set shelltimeout 3600

Uncomment the following if the "> null" checkbox is desired
#set -o allowsilent

Special stuff for WAP

ifprotocol wap
 set shortcutblocksize 4
 set outputwindowsize 200
 set historyblocksize 5
 set shelltimeout 600

 set -o allowtrigraphs

 # Create shortcuts to save typing on phone

 sc pwd
 sc who
 sc date
 sc processes 'ps ax -o "pid uid cmd"'

 # Do some extra stuff if this is a Nokia phone

 ifuseragent '*Nokia*'
 sc 'NokiaWap' 'echo This is a Nokia WAP Phone'
 set shortcutblocksize 15

 # Uncomment following if you prefer hyperlinks on Nokia phone
 #set wapbrowserstyle up
 fi
fi

Some general shortcuts for WAP and Web browser

sc greet 'echo \'hello world\''
sc 'apache stop' '/sbin/init.d/apache stop'
sc 'apache start' '/sbin/init.d/apache start'
sc 'allow core dumps' 'ulimit -c unlimited'
sc 'sleep 60'

Create a shortcut for a long command

sc 'Large output' 'j=0; while test $j -lt 100; do k=0; \
 while test $k -lt 5; do \
 echo -n "$j-$k aaaaaaaaa "; k=`expr $k + 1`; done; \
 echo ""; j=`expr $j + 1`; done'

4.2. Environment Variables
htsh sets a number of environment variables before launching the user’s login shell. These include:

SHELL Pathname of the user’s login shell

HOME Pathname of the user’s login directory

 11

TERM Set to glasstty so that programs which abide by the value of this environment variable
setting will not attempt to perform screen-mode operations.

HTSH_PROTOCOL Set to indicate the communication protocol being employed by the Client Browser.
Contains either “wap” or “http”

Testing for the existence of this string is the correct way of determining if the login shell
is being run over htsh .

if test ! –z $HTSH_PROTOCOL then
 alias vi='echo "Using vi is not a good idea in htsh"'
fi

To test for a specific protocol value, the following can be used

if test "X$HTSH_PROTOCOL" = "Xwap" then
 echo "This is a WAP login"
fi

HTSH_USER_AGENT The user agent identification string as passed in HTTP headers from the Client Browser
to the HTTP Server.

The following sample shows the kinds of tests that can be made in a shell startup file (such as .bashrc):

if test ! -z "$HTSH_PROTOCOL"; then
 unalias ls # So ls on Linux doesn’t generate escape sequences
 echo "Looks like an htsh login"
fi
if test "X$HTSH_PROTOCOL" = Xhttp; then
 echo "Ya gotta shell, Web Browser! '$HTSH_USER_AGENT'"
fi
if test "X$HTSH_PROTOCOL" = Xwap; then
 echo "Ya gotta shell, WAP phone! '$HTSH_USER_AGENT'"
 PS1='$ ' # Make prompt short
 if expr "X$HTSH_USER_AGENT" : 'X.*Nokia' >/dev/null ; then
 echo "Looks like this is a Nokia WAP phone"
 fi
fi

5. User interface
The user interfaces for web browsers and WAP phone offer essentially the same functionality. The major
difference is that all shell command input and output features are provided on a single page display in the web
browser interface, while on the WAP phone, these operations are split over several screens and menus. Note that
the setting of options in the global and user-specific htsh initialisation files will control whether all of the
features described in the following sections appear.

6. WAP Browser User Interface
Known under the name wapsh , htsh currently provides support for two categories of WAP phone:

• Phones running the widely used UP (Unwired Planet) browser from phone.com. These include
phones from Siemens and Motorola (other phones running the UP browser are listed at
http://www.phone.com/)

• Nokia phones.

 12

wapsh determines the type of phone in use and tailors its operation to the features and limitations of each phone
type.

The following pages show example screenshots for the two browser types. These screen shots were obtained
using:

• the Nokia 7110 Phone Emulator, which provides a close emulation of a real Nokia phone.

• the emulator provided with the Unwired Planet Software Development Kit. This emulator only

provides an approximate emulation of a phone display, so that the appearance of htsh on UP-browser
supplied phones may vary somewhat from the screenshots shown here.

6.1. WAP Browser Navigation
The following WAP-specific terms are used in describing the wapsh user interface.

• Deck. A deck is approximately the WAP analogue of an HTML web page. Each request to a WAP
server returns a deck, which is then displayed by the phone browser. The crucial difference between an
WAP deck and an HTML web page is that a deck can be split into a number a of cards.

• Card. A WAP deck consists of one or more cards. At any time, the phone browser displays one of the

cards from a deck. The user can navigate from one card to another using hyperlinks and menu menu
options. The advantage of the use of cards is that the user display can be split into logically separate
parts, which the user can navigate between, without requiring a (time-consuming) request-response
cycle between the phone and the WAP server.

In the description below, the terms page and screen will often be used synonymously with deck .

6.1.1. WAP Browser Navigation Map
Diagram 2 shows the navigation paths between the various pages (decks) in the wapsh user interface. Note that
the navigation model and style used by wapsh will depend on the type of WAP phone in use, as described in the
next sections.

htsh main

Scroll / Search
Forward and

backward scrolling
and searches

History
View, and re-
execute past
commands

Control
Chars

Entry of control
characters

Shortcuts
Browsing and
execution of

shortcuts

output
View shell output,

scroll forward

input
Enter shell input

menu
Logout, Check output,
Links to other screens

History Edit
Edit and re-

execute a past
command

Login
Enter username,
password, select

host

Diagram 2: WAP Browser Navigation Map

6.1.2. UP Phones
When using UP Phones, the main htsh page consists of three parts (cards) labelled output, input, and menu,
whose separate functions are shown in Diagram 2. These three cards are transmitted as part of a single WML

 13

deck (page), so that navigating between them does not involve a round trip to the WAP gateway and is thus
immediate. At the foot of each of the three cards are hyperlinks allowing navigation to each of the other cards
on the page.

Navigation to other (sub-)pages (Scroll/search, Control characters, History, Shortcuts) is provided via
hyperlinks on these cards as indicated in Diagram 2. Each sub-page provides a set of hyperlinks which can be
used to navigate back to any of the three main htsh cards.

The following displays show the three cards of the main page:

Output card

Input card
(partial display)

Menu card
(partial display)

6.1.3. Nokia Phones
Nokia WAP phones run a browser which provides superior handling of forms and input fields, as well as true
modeless access to the softkey menus, and htsh takes advantage of these features. In particular:

• The main htsh page combines all three parts (output, input, menu) onto a single page.

• All navigation between pages is done via options in the (left) softkey menu

The following screen shows the start of the htsh main page as displayed on a Nokia phone (the rest of the page
text is available by scrolling down, and will be discussed in more detail shortly).

Navigation to other pages is provided via the softkey menu:

(Note that the first three items on the softkey menu, Home, Bookmarks and Edit are defaults with standard
meanings provided by the Nokia browser.)

6.2. Login page
The URL of the wapsh login page has the form:

 14

 http://domain/login_wml.php

This screen allows the user to enter their username and password. If the HTTP server permits logging into a
range of Login Hosts, these will be displayed in a menu on the login page and the user can select the desired
Login Host. After entering the preceding information, the user clicks the Login hyperlink to enter htsh

Here is the Login page as displayed on a Nokia phone (the UP login procedure is similar, although the display
appears different as per the usual mode of the UP browser):

Login page
(first half)

Login page
(second half)

6.2.1. Specifying a default username and login host (wapsh only)
If you regularly login to with the same username on the same login host, you may find it useful to create a
bookmark which specifies these defaults. To do this, create a bookmark of the form:

http://domain/login_wml.php?u=myusername&h=preferredhost

(Note that, for security reasons, it is not possible to specify a default for the password value.)

6.3. Shell output
All output so far generated by all commands during a shell session is stored in a buffer on the HTTP Server.
This output buffer grows continuously up to a maximum limit defined by the system administrator when the htsh
server daemon is started. (Individual users can also set lower values for the buffer size using the set
outputbufferlimit initialisation file command). Once this limit is reached, old input is discarded from the start of
the buffer.

At any moment, the Client Browser displays a section of the output buffer (normally the most recent output).
When a command generates a large volume of output, the Client Browser displays the first section of output and
provides scrolling options to advance forward (or backward) through the output.

After initially logging in, we see a display similar to the following:

The initial “$” character shown here is the prompt from the shell. After we have executed any command, the
output of that command is displayed at the top of the htsh main screen.

 15

After the shell output comes a line of the form “*** X more chars”. When a command generates more output
than can be displayed in a single WAP browser page, htsh will show the first part of the output and use this line
to show how much further output is available for viewing. This further output can be viewed using the “Output
scrolling” options described below.

6.4. Shell text input
On the Nokia phone, to enter input to the shell, simply scroll down the page until the shell input textbox is
visible. For UP browsers, click the To htsh input hyperlink.

A textbox can be used to enter text to be sent (by pressing the send button) to the Client Shell. In addition to
supplying the input text, the user can set two further options:

• “Newline?” – specifies that a trailing newline is to be appended to the submitted text (This option is
enabled by default.)

• “> null” – This option is useful to discard the output from a command which is expected to generate a

large volume of output. It is exactly equivalent to appending the string “> /dev/null” to the end of
the input text. [Note: This option will only be displayed if the set -o allowsilent option was specified in
an htsh initialisation file.]

After filling in all of the above information, the shell input can then be sent using the Send input hyperlink.

On the WAP phone all of the above information is entered by scrolling through the htsh main page:

On the UP browser, the process is similar, although the page display appears somewhat differently:

(If, after entering shell input on the UP browser, you decide that you do not want to send it to the shell, simply
click either of the links to the output or menu cards, instead of the Send input hyperlink.)

After submitting the shell output, htsh will then display the resulting output. Here is the output we would see on
the two phone types:

 16

(Note that the shell echoes whatever input we enter, so that we also see the command (“pwd”) we just entered.)

6.5. History
htsh maintains a history of past shell inputs (excluding shortcut menu selections and control characters which we
describe below). This list can be reviewed and individual items edited and resent. Since the history list may be
long, it is displayed in blocks of a fixed number of items, and buttons are provided to navigate forward and
backward through the list. (Other than this, navigation through the history list is non-existent. In particular,
options are not currently provided to jump to the top or bottom of the list or to search through it.).

Any item from the history list can be immediately re-submitted by clicking the associated send hyperlink, or first
edited and then re-submitted.

To access the history list, choose the History option from softkey menu (Nokia phone) or go to the htsh menu
card (UP browser) and select the History hyperlink:1

On both phones, htsh displays a count of how many commands are currently in the history list.

The history list appears as follows:

The send hyperlink re-submits the corresponding input to the shell without editing, while the edit hyperlink
allows the input to be edited before resubmission.

Note that when re-submitting an input from the history using the send hyperlink, the same “newline?” and “>
null” settings will be used as were specified when the input was originally entered. To view or change these
settings, the command must be edited before re-submitting.

6.5.1. Scrolling through the history list
If the history list is long, htsh allows you to scroll forward or backward through it. Scrolling options, prev
history and next history, as well as the option to return to the htsh main page(s), are provided either in the
softkey menu (Nokia phone) or at the foot of the history page (UP browser).

1 Note that history hyperlinks/softkey options are only displayed if at least one shell input has been sent to the
client shell (and history access has not been disabled (set +o history) in the htsh initialisation files).

 17

6.5.2. Clearing the history list
If desired, the entire contents of the history list can be erased. This feature is available under the softkey menu
on the Nokia phone, or as a hyperlink at the base of the main history page on the UP browser. Clearing the
history also automatically returns the user to the htsh main (Nokia) or output (UP browser) page.

6.5.3. Editing a command from the history
The process of editing a command is similar to entering shell input. When editing an item, in addition to
changing the text of the item, it is also possible to modify the settings of the “newline?” and “> null”
checkboxes as desired. The item can then be re-submitted by pressing the corresponding send hyperlink.

The following screenshots show this process for the Nokia phone.

Note that hyperlinks / softkey options are provided allowing the user to exit from editing a command and return
either to the history list or the htsh main page(s).

6.6. Shortcuts
The shortcuts defined in the .htshrc file with the “sc” command are made available to the user via a set of
hyperlinks on the Shortcuts page. The shortcuts page appears as follows:

Selecting one of the shortcut items causes the corresponding shell input (which is not displayed as part of the
menu list) to be sent to the Client Shell.

 18

If the list of shortcuts is long, then it will be displayed in blocks of a fixed number of items (set according to the
set shortcutblocksize initialisation file command described earlier) with accompanying scrolling options (Next
shortcuts, Prev shortcuts) to move backward and forward through the list of options. These options, as well as
options to return to the htsh main pages appear under the softkey menu (Nokia phone) or at the foot of the
shortcut list (UP Browser).

6.7. Control character input
Since the keyboard of a WAP phone is limited, htsh provides a special page allowing control characters to be
sent to the shell. A textbox may be used to send any standard control character to the Client Shell. To send for
example, a Control-A, enter the letter “A” (upper or lower case) into the textbox, and click the send button. (To
be precise, this feature causes the ASCII code whose numeric value is 0x40 (64 decimal) less than the entered
character to be sent to the Client Shell.)

Alternatively a set of hyperlinks can be used to send specific control characters. The following hyperlinks are
provided for specific control characters.

• Control-C (Interrupt)

• Control-D (End of file)

• Control-Z (Suspend)

• Control-\ (Quit)

• Control-[(Escape)

The following screens show the appearance of the control characters page on the Nokia phone (the functionality
is similar on the UP browser, although the operation of the browser makes the appearance slightly different):

6.8. Output scrolling
As noted already, if a command generates a large amount of output then htsh will only display the first part of
the output. Facilities are provided to allow us to scroll though the remaining output (or back to previous output).
As an example, suppose we entered the command “ls –l” in the root directory (/). Then on the htsh main/output
page we would see the following display on the Nokia phone (UP browser is similar):

 19

Scrolling down the page, we eventually see the following:

The Next screen hyperlink allows us to skip to the next undisplayed block of output. The Bottom Screen
hyperlink allows us to skip all intervening output and advance to the last page of output.

In addition to these features, the Scroll/Search page allows more general searching scrolling through the output
generated so far in the login session. As usual this page is reached via the htsh main page softkey menu (Nokia
phone) or the htsh menu page (UP browser).

On the Nokia phone the Scroll/Search page appears as follows:

The top half of this page allows for searching the output buffer. The bottom half of the page displays
information about the buffer as follows:

• The total number of characters in the buffer.
• The current position in the output (i.e. the location of the first character on the last output screen on

the htsh main/output page.
• The number of characters displayed in the last output screen on the htsh main/output page.
• Number of characters remaining to be displayed beyond the end of the last output screen on the

htsh main/output page.

6.8.1. Scrolling forward and backward
Options to scroll forward and backward through the output buffer are provided on the Scroll/Search page either
as softkey options (Nokia phone) or hyperlinks at the foot of the page (UP browser).

 20

Depending on the amount of output so far generated during the login session some of the following navigation
options will be provided:

• Next screen – Show the next screen of output (this option will not be displayed if there is no output
beyond that currently displayed)

• Bottom of output – Advance to the last screen of output in the buffer. (This option will not be

displayed if there is no more than one further screen of output past the screen currently being viewed –
in which case Next screen suffices to advance to the remaining output.)

• Previous screen – Move to the previous screen of output. (This option will not be displayed if the user

is currently viewing the topmost section of the output buffer.)

• Top of output – Move to the topmost screen of the output buffer. (This option will not be displayed if

there is no more than one previous screen of output above the screen currently being viewed - in which
case Previous screen suffices to navigate to it.)

Note that when scrolling through the output buffer, htsh will attempt to display whole lines of output where
possible. This means that htsh will sometimes display fewer characters than the permitted maximum (as
specified by the set outputwindowsize initialisation file command).

6.8.2. Output searching
The textbox and forward / backward search hyperlinks can be used to enter a string to search for in the output
buffer. Searches may be made forward or backward and proceed from the current screen. If a search is
successful, htsh will attempt to display text from the beginning of the line containing the string. Subsequent
searches (if performed without intervening scrolling or other operations) will, however, proceed from the point
of the last match, rather than the start of the line.

As an example, suppose that we have just executed the “processes” shortcut described earlier, and that we wish
to search the output for a process named “expd”. This is the procedure we would follow (on the Nokia browser
– the UP browser is similar):

Execute a command with a

lot of output

Go to the Scroll/Search
page

Enter string “expd”, and
search forward

String found at character
3168 in output buffer

After a successful search, htsh displays a message string indicating where in the buffer the search string was
found, and then the line containing the string (where possible this line will be shown from the beginning). If a
search is unsuccessful, htsh displays a warning message and leaves our position in the output buffer unchanged,
as in the following example, where we unsuccessfully attempt to search for a second occurrence of the string
“expd”:

 21

Go to the Scroll/Search
page

htsh “remembers” last
searched for string

Search fails, so we stay at
same place in buffer

6.9. Check output
In considering the discussion that follows, you may find it useful to refer back to Diagram 1which shows the
relationship between the Client Browser, the HTTP Server and the Client Shell.

Recall that each time a Client Browser (WAP phone or web browser) submits input to the shell, this input is
passed by the HTTP Server to the Client Shell. The Client Shell then yields output which is passed back to the
HTTP Server which formats the output appropriately and passes it back to the Client Browser. All output
produced in a login session and returned to the HTTP Server is maintained in a (per-session) buffer which the
user may scroll though and search using the procedures described above.

Sometimes a shell command may generate a large volume of output (for example: ls –lR /usr) or may take a long
time to produce some output (for example: sleep 10; date). In both of these cases it is undesirable to have htsh
wait until all command output has been produced. In the first case this is because the output would take a long
time to produce and transmit, and during this time the user would be unable to enter further shell input (such as a
Control-C to abort the command). In the second case, there is in general no way for htsh to definitively know
when the Client Shell has finished output and htsh should avoid waiting too long for output and instead allow the
user to enter further shell input if desired. For these reasons, htsh operates two governors on the shell output.
The first of these is the limit established by the set csmaxtransfersize initialisation file command, which specifies
the maximum amount of output that will be transferred back to the HTTP Server in response to a shell input (by
default 10000 bytes). The second limit is established by the set csoutputtimeout initialisation file command
which specifies the maximum time that htsh will wait without detecting any output before ceasing to wait and
instead allowing the user to enter further input. (This timeout value should normally be set to some low value -
say 0.5 seconds).

If either of these two governors comes into effect, then it may be that the Client Shell still has further output to
send to the Client Browser. By default, when the Client Browser next submits some input, the outstanding
output will then be delivered back to the Client Browser. Sometimes, however, we would like to check if there
is any further output without sending any shell input at all. This is exactly the feature provided by the Check
Output option, as shown in Diagram 3.

HTTP Server

per-session
output buffer

htsh Server
Daemon (htshd)

Login Host
HTTP

Server Host

WAP
phone Client

Shell

1. Client Browser sends
"Check output" request

2. HTTP Server fetches
outstanding output from

Client Shell

3. HTTP Server passes
output to Client Browser

Diagram 3: Logical operation of Check Ouput

Note that it is important to distinguish the purpose of the Check Output option from that of the output scrolling
and search facilities described earlier. The latter are provided to navigate through the buffer of all Client Shell

 22

output, which is already on the HTTP Server. The Check Output button forces a trip to the Client Shell itself,
to check for further output, which will then be appended to the output buffer maintained on the HTTP Server.

The Check Output option is provided in the htsh main page softkey menu (Nokia phone) or in the htsh menu
page (UP browser).

6.10. Logout
This option (available on the htsh main page softkey menu (Nokia phone) or the htsh menu page (UP Browser))
terminates the htsh login session and closes the Client Shell on the Login Host.

7. Web Browser Interface
htsh also provides a web browser interface. One use for this interface is as a training ground to give an idea of
the capabilities of the htsh interface prior to trying the WAP interface to the system (wapsh).

7.1. Web Browser Navigation Map
Diagram 4 shows the navigation paths for the web browser interface of htsh .

htsh main
View command output,

Search/scroll through output
Enter shell input, Shortcuts,

Control chars
Logout; Check output

History
Command history
browsing, editing,
and reexecution

Login
Enter username,

password,
select host

Diagram 4: Web Browser Navigation Map

7.2. Login page
The URL of the htsh login page has the form:

 http://domain/login_html.php

 23

7.3. Main page
The web browser main page combines all of the features previously described in the WAP interface (except
history browsing and editing).

The following further differences are found in the web browser interface:

• Buttons, rather than hyperlinks, are used to perform most actions.

• The scrolling actions, “Previous screen”, “Next screen”, “Top of output”, and “Bottom of output” are

replaced by buttons labelled (respectively) “<”, “>”, “<<”, and “>>”.

• The web browser interface provides an additional Hidden Input textbox. This can be used to enter text
(such as passwords) which is not supposed to be displayed on the browser. Only one of the “Standard input
textbox” or Hidden Input textboxes should be filled in when submitting shell input.

• The web browser interface provides an additional Repeat Previous button with no counterpart (currently) in
the WAP Phone interface. Clicking this button re-submits the most recently submitted shell input.

 24

7.4. History page

