Code generation from Isabelle/HOL theories

Florian Haftmann with contributions from Lukas Bulwahn

21 June 2010

Abstract

This tutorial gives an introduction to a generic code generator frame-
work in Isabelle for generating executable code in functional program-
ming languages from logical specifications in Isabelle/HOL.

1 INTRODUCTION AND OVERVIEW 1

1 Introduction and Overview

This tutorial introduces a generic code generator for the Isabelle system.
The target language for which code is generated is not fixed, but may be one
of several functional programming languages (currently, the implementation
supports SML [5], OCaml [4] and Haskell [7]).

Conceptually the code generator framework is part of Isabelle’s Pure meta
logic framework; the logic HOL [6], which is an extension of Pure, already
comes with a reasonable framework setup and thus provides a good basis for
creating code-generation-driven applications. So, we assume some familiarity
and experience with the ingredients of the HOL distribution theories.

The code generator aims to be usable with no further ado in most cases,
while allowing for detailed customisation. This can be seen in the structure
of this tutorial: after a short conceptual introduction with an example (§1.1),
we discuss the generic customisation facilities (§2). A further section (§3) is
dedicated to the matter of adaptation to specific target language environ-
ments. After some further issues (§4) we conclude with an overview of some
ML programming interfaces (§5).

| Ultimately, the code generator which this tutorial deals with is supposed to
® replace the existing code generator by Stefan Berghofer [2]. So, for the moment,
there are two distinct code generators in Isabelle. In case of ambiguity, we will
refer to the framework described here as generic code generator, to the other as
SML code generator. Also note that while the framework itself is object-logic
independent, only HOL provides a reasonable framework setup.

1.1 Code generation via shallow embedding

The key concept for understanding Isabelle’s code generation is shallow em-
bedding, i.e. logical entities like constants, types and classes are identified
with corresponding concepts in the target language.

Inside HOL, the datatype and definition/primrec/fun declarations
form the core of a functional programming language. The default code gen-
erator setup transforms those into functional programs immediately. This
means that “naive” code generation can proceed without further ado. For
example, here a simple “implementation” of amortised queues:

datatype 'a queue = AQueue 'a list 'a list

definition empty :: 'a queue where
empty = AQueue [] ||

1 INTRODUCTION AND OVERVIEW 2

primrec enqueue :: 'a = 'a queue = 'a queue where
enqueue x (AQueue xs ys) = AQueue (x # xs) ys

fun dequeue :: 'a queue = 'a option x 'a queue where
dequeue (AQueue [| []) = (None, AQueue [] [])
| dequeue (AQueue zs (y # ys)) = (Some y, AQueue zs ys)
| dequeue (AQueue s []) =
(case rev zs of y # ys = (Some y, AQueue [] ys))

Then we can generate code e.g. for SML as follows:

export-code empty dequeue enqueue in SML
module-name Ezample file examples/example. ML

resulting in the following code:

structure Example : sig
val foldl : (’a => ’b -> ’a) -> ’a -> ’b list -> ’a

val rev : ’a list -> ’a list

val list_case : ’a -> (’b -> ’b list -> ’a) -> ’b list -> ’a
datatype ’a queue = AQueue of ’a list * ’a list

val empty : ’a queue

val dequeue : ’a queue -> ’a option * ’a queue

val enqueue : ’a -> ’a queue -> ’a queue

end = struct

fun foldl f a [] = a
| foldl f a (x :: xs) = foldl f (f a x) xs;

fun rev xs = foldl (fn xsa => fn x => x :: xsa) [] xs;

fun list_case f1 f2 (a :: lista) = f2 a lista
| list_case f1 f2 [] = f1;

datatype ’a queue = AQueue of ’a list * ’a list;
val empty : ’a queue = AQueue ([1, [1);

(NONE, AQueue ([1, [1))

fun dequeue (AQueue ([1, [1))
(SOME y, AQueue (xs, ys))

| dequeue (AQueue (xs, y :: ;s))
1

| dequeue (AQueue (v :: va,
let
val y :: ys = rev (v :: va);

in
(SOME y, AQueue ([1, ys))
end;
fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);

end; (*struct Examplex)

The export-code command takes a space-separated list of constants for
which code shall be generated; anything else needed for those is added im-
plicitly. Then follows a target language identifier (SML, OCaml or Haskell)

1 INTRODUCTION AND OVERVIEW 3

and a freely chosen module name. A file name denotes the destination to
store the generated code. Note that the semantics of the destination depends
on the target language: for SML and OCaml it denotes a file, for Haskell it
denotes a directory where a file named as the module name (with extension
.hs) is written:

export-code empty dequeue enqueue in Haskell
module-name Ezxample file ezamples/

This is the corresponding code in Haskell:

module Example where {

foldla :: forall ab. (a ->b ->a) -> a -> [b] -> a;
foldla f a [] = a;
foldla f a (x : xs) = foldla f (f a x) xs;

rev :: forall a. [a] -> [a];
rev xs = foldla (\ xsa x -> x : xsa) [] xs;

list_case :: forall a b. a -> (b -> [b] -> a) -> [b] -> a;
list_case f1 f2 (a : list) = f2 a list;
list_case f1 f2 [] = f1;

data Queue a = AQueue [a] [a];

empty :: forall a. Queue a;
empty = AQueue []1 [1;

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue [] []) = (Nothing, AQueue [] [1);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue (v : va) [1)
let {
(y : ys) =rev (v : va);
} in (Just y, AQueue [] ys);

enqueue :: forall a. a -> Queue a -> Queue a;
enqueue x (AQueue xs ys) = AQueue (x : xs) ys;
}

This demonstrates the basic usage of the export-code command; for more
details see §4.

1.2 Code generator architecture

What you have seen so far should be already enough in a lot of cases. If
you are content with this, you can quit reading here. Anyway, in order
to customise and adapt the code generator, it is necessary to gain some
understanding how it works.

1 INTRODUCTION AND OVERVIEW 4

[raw code equations [code equations]
]

[

[speciﬁcation tools)—

serialisation

Figure 1: Code generator architecture

[intermediate program

The code generator employs a notion of executability for three foundational
executable ingredients known from functional programming: code equations,
datatypes, and type classes. A code equation as a first approximation is a
theorem of the form ft; to ... t, = t (an equation headed by a constant f
with arguments ¢; ty ... t, and right hand side t). Code generation aims
to turn code equations into a functional program. This is achieved by three
major components which operate sequentially, i.e. the result of one is the
input of the next in the chain, see figure 1:

e The starting point is a collection of raw code equations in a theory. It
is not relevant where they stem from, but typically they were either
produced by specification tools or proved explicitly by the user.

e These raw code equations can be subjected to theorem transformations.
This preprocessor can apply the full expressiveness of ML-based theo-
rem transformations to code generation. The result of preprocessing is
a structured collection of code equations.

e These code equations are translated to a program in an abstract inter-
mediate language. Think of it as a kind of “Mini-Haskell” with four
statements: data (for datatypes), fun (stemming from code equations),
also class and inst (for type classes).

e Finally, the abstract program is serialised into concrete source code of a
target language. This step only produces concrete syntax but does not
change the program in essence; all conceptual transformations occur in
the translation step.

2 TURNING THEORIES INTO PROGRAMS 5

From these steps, only the two last are carried out outside the logic; by
keeping this layer as thin as possible, the amount of code to trust is kept to
a minimum.

2 Turning Theories into Programs

2.1 The Isabelle/ HOL default setup

We have already seen how by default equations stemming from definition,
primrec and fun statements are used for code generation. This default
behaviour can be changed, e.g. by providing different code equations. The
customisations shown in this section are safe as regards correctness: all pro-
grams that can be generated are partially correct.

2.2 Selecting code equations

Coming back to our introductory example, we could provide an alternative
code equations for dequeue explicitly:

lemma [code]:
dequeue (AQueue zs []) =
(if zs =[] then (None, AQueue [] [])
else dequeue (AQueue [| (rev xs)))
dequeue (AQueue s (y # ys)) =
(Some y, AQueue xs ys)
by (cases s, simp-all) (cases rev xs, simp-all)

The annotation [code] is an Isar attribute which states that the given the-
orems should be considered as code equations for a fun statement — the
corresponding constant is determined syntactically. The resulting code:

dequeue :: forall a. Queue a -> (Maybe a, Queue a);
dequeue (AQueue xs (y : ys)) = (Just y, AQueue xs ys);
dequeue (AQueue xs []) =
(if nulla xs then (Nothing, AQueue [] [])
else dequeue (AQueue [] (rev xs)));

You may note that the equality test zs = [] has been replaced by the predicate
null xs. This is due to the default setup in the preprocessor to be discussed
further below (§2.4).

2 TURNING THEORIES INTO PROGRAMS 6

Changing the default constructor set of datatypes is also possible. See §2.5
for an example.

As told in §1.2, code generation is based on a structured collection of code
theorems. This collection may be inspected using the code-thms command:

code-thms dequeue

prints a table with all code equations for dequeue, including all code equa-
tions those equations depend on recursively.

Similarly, the code-deps command shows a graph visualising dependen-
cies between code equations.

2.3 class and instantiation

Concerning type classes and code generation, let us examine an example from
abstract algebra:

class semigroup =
fixes mult :: 'a = 'a = 'a (infixl ® 70)
assumes assoc: (z @ Y) @ z =2 ® (y ® 2)

class monoid = semigroup +
fixes neutral :: 'a (1)
assumes neutl: 1 ® v =z

and neutr: z ® 1 = =z

instantiation nat :: monoid
begin

primrec mult-nat where
0 ® n = (0::nat)
| Sucem@n=n+m®n

definition neutral-nat where
1= SucO

lemma add-mult-distrib:
fixes n m q :: nat
shows (n + m) ® q=n® ¢+ m ® q
by (induct n) simp-all

instance proof

2 TURNING THEORIES INTO PROGRAMS

fix m n q :: nat
show m @ n® ¢g=m® (n ® q)
by (induct m) (simp-all add: add-mult-distrib)
show 1 @ n =n
by (simp add: neutral-nat-def)
show m ® 1 =m
by (induct m) (simp-all add: neutral-nat-def)
qed

end

We define the natural operation of the natural numbers on monoids:

primrec (in monoid) pow :: nat = 'a = 'a where
pow 0 a=1
| pow (Sucn) a=a® pown a

This we use to define the discrete exponentiation function:

definition bexp :: nat = nat where
bexp n = pow n (Suc (Suc 0))

The corresponding code in Haskell uses that language’s native classes:

module Example where {
data Nat = Zero_nat | Suc Nat;

class Semigroup a where {

mult :: a -> a -> a;

};

class (Semigroup a) => Monoid a where {
neutral :: a;

1

pow :: forall a. (Monoid a) => Nat -> a -> a;

pow Zero_nat a = neutral;
pow (Suc n) a = mult a (pow n a);

plus_nat :: Nat -> Nat -> Nat;
plus_nat (Suc m) n = plus_nat m (Suc n);
plus_nat Zero_nat n = n;

neutral_nat :: Nat;
neutral_nat = Suc Zero_nat;

mult_nat :: Nat -> Nat -> Nat;
mult_nat Zero_nat n = Zero_nat;
mult_nat (Suc m) n = plus_nat n (mult_nat m n);

instance Semigroup Nat where {
mult = mult_nat;

2 TURNING THEORIES INTO PROGRAMS 8

};

instance Monoid Nat where {
neutral = neutral_nat;

>

bexp :: Nat -> Nat;
bexp n = pow n (Suc (Suc Zero_nat));

}

This is a convenient place to show how explicit dictionary construction man-
ifests in generated code (here, the same example in SML):
structure Example : sig

datatype nat = Zero_nat | Suc of nat
type ’a semigroup

val mult : ’a semigroup -> ’a -> ’a -> ’a

type ’a monoid

val semigroup_monoid : ’a monoid -> ’a semigroup
val neutral : ’a monoid -> ’a

val pow : ’a monoid -> mat -> ’a -> ’a

val plus_nat : nat -> nat -> nat
val neutral_nat : nat
val mult_nat : nat -> nat -> nat
val semigroup_nat : nat semigroup
val monoid_nat : nat monoid
val bexp : nat -> nat

end = struct

datatype nat = Zero_nat | Suc of nat;

type ’a semigroup = {mult : ’a -> ’a -> ’a};

val mult = #mult : ’a semigroup -> ’a -> ’a -> ’a;

type ’a monoid = {semigroup_monoid : ’a semigroup, neutral : ’a};

val semigroup_monoid = #semigroup_monoid : ’a monoid -> ’a semigroup;
val neutral = #neutral : ’a monoid -> ’a;

fun pow A_ Zero_nat a = neutral A_
| pow A_ (Suc n) a = mult (semigroup_monoid A_) a (pow A_ n a);

fun plus_nat (Suc m) n = plus_nat m (Suc n)
| plus_nat Zero_nat n = n;

val neutral_nat : nat = Suc Zero_nat;

fun mult_nat Zero_nat n = Zero_nat
| mult_nat (Suc m) n = plus_nat n (mult_nat m n);

val semigroup_nat = {mult = mult_nat} : nat semigroup;

val monoid_nat = {semigroup_monoid = semigroup_nat, neutral = neutral_nat}
: nat monoid;

fun bexp n = pow monoid_nat n (Suc (Suc Zero_nat));

end; (*struct Examplex)

Note the parameters with trailing underscore (A_), which are the dictionary
parameters.

2 TURNING THEORIES INTO PROGRAMS 9

2.4 The preprocessor

Before selected function theorems are turned into abstract code, a chain of
definitional transformation steps is carried out: preprocessing. In essence,
the preprocessor consists of two components: a simpset and function trans-
formers.

The simpset can apply the full generality of the Isabelle simplifier. Due
to the interpretation of theorems as code equations, rewrites are applied to
the right hand side and the arguments of the left hand side of an equation,
but never to the constant heading the left hand side. An important special
case are unfold theorems, which may be declared and removed using the
code-unfold or code-unfold del attribute, respectively.

Some common applications:

e replacing non-executable constructs by executable ones:

lemma [code-unfold]:
z € set xs <« member zs © by (fact in-set-code)

e climinating superfluous constants:

lemma [code-unfold):
1 = Suc 0 by (fact One-nat-def)

e replacing executable but inconvenient constructs:

lemma [code-unfold):
xs = [| «— List.null xs by (fact empty-null)

Function transformers provide a very general interface, transforming a list of
function theorems to another list of function theorems, provided that neither

the heading constant nor its type change. The 0 / Suc pattern elimination
implemented in theory Efficient-Nat (see §3.3) uses this interface.

The current setup of the preprocessor may be inspected using the print-codeproc
command. code-thms provides a convenient mechanism to inspect the im-
pact of a preprocessor setup on code equations.

!

® Attribute code-unfold also applies to the preprocessor of the ancient SML code
generator; in case this is not what you intend, use code-inline instead.

2 TURNING THEORIES INTO PROGRAMS 10

2.5 Datatypes

Conceptually, any datatype is spanned by a set of constructors of type 7 =
.= K ap...q, where {ag, ..., a,} is exactly the set of all type variables
in 7. The HOL datatype package by default registers any new datatype in
the table of datatypes, which may be inspected using the print-codesetup
command.

In some cases, it is appropriate to alter or extend this table. As an ex-
ample, we will develop an alternative representation of the queue example
given in §1.1. The amortised representation is convenient for generating code
but exposes its “implementation” details, which may be cumbersome when
proving theorems about it. Therefore, here is a simple, straightforward rep-
resentation of queues:

datatype 'a queue = Queue 'a list

definition empty :: 'a queue where
empty = Queue ||

primrec enqueue :: 'a = 'a queue = 'a queue where
enqueue (Queue zs) = Queue (zs Q [z])

fun dequeue :: 'a queue = 'a option X 'a queue where
dequeue (Queue []) = (None, Queue [])
| dequeue (Queue (x # xs)) = (Some z, Queue zs)

This we can use directly for proving; for executing, we provide an alternative
characterisation:

definition AQueue :: 'a list = 'a list = 'a queue where
AQueue zs ys = Queue (ys Q rev xs)

code-datatype AQueue

Here we define a “constructor” AQueue which is defined in terms of Queue
and interprets its arguments according to what the content of an amortised
queue is supposed to be. Equipped with this, we are able to prove the
following equations for our primitive queue operations which “implement”
the simple queues in an amortised fashion:

lemma empty-AQueue [code]:
empty = AQueue [| []

2 TURNING THEORIES INTO PROGRAMS 11

unfolding AQueue-def empty-def by simp

lemma enqueue-AQueue [code]:
enqueue ¢ (AQueue xs ys) = AQueue (x # xs) ys
unfolding A Queue-def by simp

lemma dequeue-AQueue [code]:
dequeue (AQueue zs []) =
(if zs =[] then (None, AQueue [] [])
else dequeue (AQueue [| (rev xs)))
dequeue (AQueue xs (y # ys)) = (Some y, AQueue s ys)
unfolding AQueue-def by simp-all

For completeness, we provide a substitute for the case combinator on queues:

lemma queue-case-AQueue [code]:
queue-case [(AQueue xs ys) = f (ys Q rev zs)
unfolding AQueue-def by simp

The resulting code looks as expected:

structure Example : sig
val foldl : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

val rev : ’a list -> ’a list

val null : ’a list -> bool

datatype ’a queue = AQueue of ’a list * ’a list
val empty : ’a queue

val dequeue : ’a queue -> ’a option * ’a queue
val enqueue : ’a -> ’a queue -> ’a queue

end = struct

fun foldl f a [] = a
| foldl f a (x :: xs) = foldl f (f a x) xs;
fun rev xs = foldl (fn xsa => fn x => x :: xsa) [] xs;

fun null [] = true
| null (x :: xs) = false;

datatype ’a queue = AQueue of ’a list * ’a list;
val empty : ’a queue = AQueue ([1, [1);
fun dequeue (AQueue (xs, y :: ys)) = (SOME y, AQueue (xs, ys))
| dequeue (AQueue (xs, [1)) =
(if null xs then (NONE, AQueue ([1, [1))
else dequeue (AQueue ([1, rev xs)));

fun enqueue x (AQueue (xs, ys)) = AQueue (x :: xs, ys);
end; (*struct Examplex)
From this example, it can be glimpsed that using own constructor sets is a

little delicate since it changes the set of valid patterns for values of that type.
Without going into much detail, here some practical hints:

2 TURNING THEORIES INTO PROGRAMS 12

e When changing the constructor set for datatypes, take care to provide
alternative equations for the case combinator.

e Values in the target language need not to be normalised — different
values in the target language may represent the same value in the logic.

e Usually, a good methodology to deal with the subtleties of pattern
matching is to see the type as an abstract type: provide a set of op-
erations which operate on the concrete representation of the type, and
derive further operations by combinations of these primitive ones, with-
out relying on a particular representation.

2.6 Equality

Surely you have already noticed how equality is treated by the code generator:

primrec collect-duplicates :: 'a list = 'a list = 'a list = 'a list where
collect-duplicates s ys || = xs
| collect-duplicates s ys (z#zs) = (if z € set xs
then if z € set ys
then collect-duplicates s ys zs
else collect-duplicates xs (z#ys) zs
else collect-duplicates (z#xs) (z#ys) zs)

The membership test during preprocessing is rewritten, resulting in member,
which itself performs an explicit equality check.

structure Example : sig

type ’a eq
val eq : ’a eq -> ’a -> ’a -> bool
val eqa : ’a eq -> ’a -> ’a -> bool

val member : ’a eq -> ’a list -> ’a -> bool
val collect_duplicates :
’a eq -> ’a list -> ’a list -> ’a list -> ’a list
end = struct

type ’a eq = {eq : ’a -> ’a -> bool};
val eq = #eq : ’a eq -> ’a -> ’a -> bool;

fun eqa A_ a b = eq A_ a b;

fun member A_ [] y = false
| member A_ (x :: xs) y = eqa A_ x y orelse member A_ xs y;

fun collect_duplicates A_ xs ys [] = xs
| collect_duplicates A_ xs ys (z :: zs) =
(if member A_ xs z
then (if member A_ ys z then collect_duplicates A_ xs ys zs
else collect_duplicates A_ xs (z :: ys) zs)

2 TURNING THEORIES INTO PROGRAMS 13

else collect_duplicates A_ (z :: xs) (z :: ys) zs);

end; (*struct Examplex)

Obviously, polymorphic equality is implemented the Haskell way using a
type class. How is this achieved? HOL introduces an explicit class eq with
a corresponding operation eq-class.eq such that eq-class.eq = op =. The
preprocessing framework does the rest by propagating the eq constraints
through all dependent code equations. For datatypes, instances of eq are
implicitly derived when possible. For other types, you may instantiate eq
manually like any other type class.

2.7 Explicit partiality

Partiality usually enters the game by partial patterns, as in the following
example, again for amortised queues:

definition strict-dequeue :: 'a queue = 'a X 'a queue where
strict-dequeue q = (case dequeue q

of (Some z, ¢") = (z, q'))

lemma strict-dequeue-AQueue [code]:
strict-dequeue (AQueue xs (y # ys)) = (y, AQueue xs ys)
strict-dequeue (AQueue xs []) =

(case rev zs of y # ys = (y, AQueue [| ys))
by (simp-all add: strict-dequeue-def dequeue-AQueue split: list.splits)

In the corresponding code, there is no equation for the pattern AQueue [] [:

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs []) =
let {

(y : ys) = rev xs;
} in (y, AQueue [] ys);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);

In some cases it is desirable to have this pseudo- “partiality” more explicitly,
e.g. as follows:

axiomatization empty-queue :: 'a

definition strict-dequeue’ :: 'a queue = 'a x 'a queue where
strict-dequeue’ q¢ = (case dequeue q of (Some z, q¢') = (z, ¢) | - =
empty-queue)

2 TURNING THEORIES INTO PROGRAMS 14

lemma strict-dequeue’-AQueue [code]:
strict-dequeue’ (AQueue s [|) = (if zs = [| then empty-queue
else strict-dequeue’ (AQueue [| (rev xs)))
strict-dequeue’ (AQueue zs (y # ys)) =
(y, AQueue zs ys)
by (simp-all add: strict-dequeue’-def dequeue-AQueue split: list.splits)

Observe that on the right hand side of the definition of strict-dequeue’, the
unspecified constant empty-queue occurs.

Normally, if constants without any code equations occur in a program, the
code generator complains (since in most cases this is indeed an error). But
such constants can also be thought of as function definitions which always
fail, since there is never a successful pattern match on the left hand side. In
order to categorise a constant into that category explicitly, use code-abort:

code-abort empty-queue

Then the code generator will just insert an error or exception at the appro-
priate position:

empty_queue :: forall a. a;
empty_queue = error "empty_queue";

strict_dequeue :: forall a. Queue a -> (a, Queue a);
strict_dequeue (AQueue xs (y : ys)) = (y, AQueue xs ys);
strict_dequeue (AQueue xs []) =
(if nulla xs then empty_queue else strict_dequeue (AQueue [] (rev xs)));

This feature however is rarely needed in practice. Note also that the HOL
default setup already declares undefined as code-abort, which is most likely
to be used in such situations.

2.8 Inductive Predicates

To execute inductive predicates, a special preprocessor, the predicate com-
piler, generates code equations from the introduction rules of the predicates.
The mechanisms of this compiler are described in [1]. Consider the simple
predicate append given by these two introduction rules:

append [] ys ys
append xs ys zs = append (z # xs) ys (z # zs)

2 TURNING THEORIES INTO PROGRAMS 15

To invoke the compiler, simply use code-pred:

code-pred append .

The code-pred command takes the name of the inductive predicate and then
you put a period to discharge a trivial correctness proof. The compiler infers
possible modes for the predicate and produces the derived code equations.
Modes annotate which (parts of the) arguments are to be taken as input, and
which output. Modes are similar to types, but use the notation 4 for input
and o for output.

For append, the compiler can infer the following modes:

e | = | = i = bool
e | = i = 0= bool
e 0= 0= 1= bool

You can compute sets of predicates using values:

values {zs. append [(1::nat),2,3] [4,5] zs}

outputs {[1, 2, 3, 4, 5]}, and

values {(zs, ys). append zs ys [(2::nat),3]}

outputs {([], [2, 3]), ([2], [3]), (12, 3], [D}-

If you are only interested in the first elements of the set comprehension (with
respect to a depth-first search on the introduction rules), you can pass an
argument to values to specify the number of elements you want:

values 1 {(zs, ys). append zs ys [(1::nat),2,3,4]}
values 3 {(zs, ys). append xs ys [(1::nat),2,3,4]}

The values command can only compute set comprehensions for which a
mode has been inferred.

The code equations for a predicate are made available as theorems with
the suffix equation, and can be inspected with:

thm append.equation

More advanced options are described in the following subsections.

2 TURNING THEORIES INTO PROGRAMS 16

Alternative names for functions

By default, the functions generated from a predicate are named after the
predicate with the mode mangled into the name (e.g., append-i-i-o). You
can specify your own names as follows:

code-pred (modes: i => i => o => bool as concat,
0 => o0 => 1 => bool as split,
i => 0 => 1 => bool as suffir) append .

Alternative introduction rules

Sometimes the introduction rules of an predicate are not executable because
they contain non-executable constants or specific modes could not be inferred.
It is also possible that the introduction rules yield a function that loops
forever due to the execution in a depth-first search manner. Therefore, you
can declare alternative introduction rules for predicates with the attribute
code-pred-intro. For example, the transitive closure is defined by:

rab=rttab
[rttab;rbc = r""ac

These rules do not suit well for executing the transitive closure with the
mode (i = o = bool) = i = 0 = bool, as the second rule will cause an
infinite loop in the recursive call. This can be avoided using the following
alternative rules which are declared to the predicate compiler by the attribute
code-pred-intro:

lemma [code-pred-intro]:
rab=rt"tab
rab=r"tTbc=rttac
by auto

After declaring all alternative rules for the transitive closure, you invoke
code-pred as usual. As you have declared alternative rules for the predicate,
you are urged to prove that these introduction rules are complete, i.e., that
you can derive an elimination rule for the alternative rules:

code-pred tranclp
proof —

case tranclp

from this converse-tranclpE[OF this(1)] show thesis by metis
ged

2 TURNING THEORIES INTO PROGRAMS 17

Alternative rules can also be used for constants that have not been defined
inductively. For example, the lexicographic order which is defined as:

lexord r =
{(z, v).
Jav.y=2Qa# vV
Fuabvw. (e, b)) erNz=uQa#vAy=uQb# w)}

To make it executable, you can derive the following two rules and prove the
elimination rule:

lemma [code-pred-intro]:
append xs (a # v) ys = lexord r (zs, ys)

lemma [code-pred-intro]:
append u (a # v) zs = append u (b # w) ys = r (a, b)
= lexord r (xs, ys)

code-pred lexord

Options for values

In the presence of higher-order predicates, multiple modes for some predicate
could be inferred that are not disambiguated by the pattern of the set com-
prehension. To disambiguate the modes for the arguments of a predicate,
you can state the modes explicitly in the values command. Consider the
simple predicate succ:

inductive succ :: nat = nat = bool
where

succ 0 (Suc 0)
| succ © y = succ (Suc x) (Suc y)

code-pred succ .

For this, the predicate compiler can infer modes 0 = 0 = bool, i = 0 =
bool, 0 = i = bool and i = i = bool. The invocation of values {n. tranclp
succ 10 n} loops, as multiple modes for the predicate succ are possible and
here the first mode 0 = 0 = bool is chosen. To choose another mode for the
argument, you can declare the mode for the argument between the values
and the number of elements.

values [mode: i => o => bool] 20 {n. tranclp succ 10 n}
values [mode: 0 => i => bool] 10 {n. tranclp succ n 10}

3 ADAPTATION TO TARGET LANGUAGES 18

Embedding into functional code within Isabelle/HOL

To embed the computation of an inductive predicate into functions that are
defined in Isabelle/HOL, you have a number of options:

e You want to use the first-order predicate with the mode where all ar-
guments are input. Then you can use the predicate directly, e.g.

valid-suffiz ys zs =
(if append [Suc 0, 2] ys zs then Some ys else None)

e If you know that the execution returns only one value (it is determin-
istic), then you can use the combinator Predicate.the, e.g., a functional
concatenation of lists is defined with

functional-concat zs ys = Predicate.the (append-i-i-o xs ys)

Note that if the evaluation does not return a unique value, it raises a
run-time error not-unique.

Further Examples

Further examples for compiling inductive predicates can be found in the
HOL/ ex / Predicate-Compile-ex theory file. There are also some examples in
the Archive of Formal Proofs, notably in the POPLmark— deBruijn and the
FeatherweightJava sessions.

3 Adaptation to target languages

3.1 Adapting code generation
The aspects of code generation introduced so far have two aspects in common:
e They act uniformly, without reference to a specific target language.

e They are safe in the sense that as long as you trust the code generator
meta theory and implementation, you cannot produce programs that
yield results which are not derivable in the logic.

3 ADAPTATION TO TARGET LANGUAGES 19

In this section we will introduce means to adapt the serialiser to a specific
target language, i.e. to print program fragments in a way which accommo-
dates “already existing” ingredients of a target language environment, for
three reasons:

e improving readability and aesthetics of generated code
e gaining efficiency

e interface with language parts which have no direct counterpart in HOL
(say, imperative data structures)

Generally, you should avoid using those features yourself at any cost:

e The safe configuration methods act uniformly on every target language,
whereas for adaptation you have to treat each target language sepa-
rately.

e Application is extremely tedious since there is no abstraction which
would allow for a static check, making it easy to produce garbage.

e Subtle errors can be introduced unconsciously.

However, even if you ought refrain from setting up adaptation yourself, al-
ready the HOL comes with some reasonable default adaptations (say, using
target language list syntax). There also some common adaptation cases
which you can setup by importing particular library theories. In order to un-
derstand these, we provide some clues here; these however are not supposed
to replace a careful study of the sources.

3.2 The adaptation principle

Figure 2 illustrates what “adaptation” is conceptually supposed to be:

In the tame view, code generation acts as broker between logic, intermediate
language and target language by means of translation and serialisation; for
the latter, the serialiser has to observe the structure of the language itself
plus some reserved keywords which have to be avoided for generated code.
However, if you consider adaptation mechanisms, the code generated by the
serializer is just the tip of the iceberg:

e serialisation can be parametrised such that logical entities are mapped
to target-specific ones (e.g. target-specific list syntax, see also §3.4)

3 ADAPTATION TO TARGET LANGUAGES 20

logic intermediate language target language

g=
L
©
/ g
=
)
0

includes

adaptation

T
)
JaS .
]
<

language

Figure 2: The adaptation principle

e Such parametrisations can involve references to a target-specific stan-
dard library (e.g. using the Haskell Maybe type instead of the HOL
option type); if such are used, the corresponding identifiers (in our ex-
ample, Maybe, Nothing and Just) also have to be considered reserved.

e Even more, the user can enrich the library of the target-language by
providing code snippets (“includes”) which are prepended to any gen-
erated code (see §3.6); this typically also involves further reserved iden-
tifiers.

As figure 2 illustrates, all these adaptation mechanisms have to act consis-
tently; it is at the discretion of the user to take care for this.

3.3 Common adaptation patterns

The HOL Main theory already provides a code generator setup which should
be suitable for most applications. Common extensions and modifications
are available by certain theories of the HOL library; beside being useful in
applications, they may serve as a tutorial for customising the code generator
setup (see below §3.4).

Code-Integer represents HOL integers by big integer literals in target lan-
guages.

3 ADAPTATION TO TARGET LANGUAGES 21

Code-Char represents HOL characters by character literals in target lan-
guages.

Code-Char-chr like Code-Char, but also offers treatment of character codes;
includes Code-Char.

Efficient-Nat implements natural numbers by integers, which in general will
result in higher efficiency; pattern matching with 0 / Suc is eliminated;
includes Code-Integer and Code-Numeral.

Code-Numeral provides an additional datatype inder which is mapped to
target-language built-in integers. Useful for code setups which involve
e.g. indexing of target-language arrays.

String provides an additional datatype String.literal which is isomorphic to
strings; String.literals are mapped to target-language strings. Useful
for code setups which involve e.g. printing (error) messages.

| When importing any of these theories, they should form the last items in an
® import list. Since these theories adapt the code generator setup in a non-
conservative fashion, strange effects may occur otherwise.

3.4 Parametrising serialisation

Consider the following function and its corresponding SML code:

primrec in-interval :: nat X nat = nat = bool where
in-interval (k, 1) n «— k <n An <1

structure Example : sig

datatype nat = Zero_nat | Suc of nat

datatype boola = True | False

val anda : boola -> boola -> boola

val less_nat : nat -> nat -> boola

val less_eq_nat : nat -> nat -> boola

val in_interval : nat * nat -> nat -> boola
end = struct

datatype nat = Zero_nat | Suc of nat;
datatype boola = True | False;
fun anda p True = p

| anda p False = False

| anda True p = p

| anda False p = False;

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = False

3 ADAPTATION TO TARGET LANGUAGES 22

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = True;

fun in_interval (k, 1) n = anda (less_eq_nat k n) (less_eq_nat n 1);

end; (*struct Examplex)

Though this is correct code, it is a little bit unsatisfactory: boolean values and
operators are materialised as distinguished entities with have nothing to do
with the SML-built-in notion of “bool”. This results in less readable code;
additionally, eager evaluation may cause programs to loop or break which
would perfectly terminate when the existing SML bool would be used. To
map the HOL bool on SML bool, we may use custom serialisations:

code_type bool
(SML "bool")
code_const True and False and "op A"
(SML "true" and "false" and "_ andalso _")

The code-type command takes a type constructor as arguments together
with a list of custom serialisations. Each custom serialisation starts with a
target language identifier followed by an expression, which during code serial-
isation is inserted whenever the type constructor would occur. For constants,
code-const implements the corresponding mechanism. Each “_” in a serial-
isation expression is treated as a placeholder for the type constructor’s (the
constant’s) arguments.

structure Example : sig

datatype nat = Zero_nat | Suc of nat

val less_nat : nat -> nat -> bool

val less_eq_nat : nat -> nat -> bool

val in_interval : nat * nat -> nat -> bool
end = struct

datatype nat = Zero_nat | Suc of nat;

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true;

fun in_interval (k, 1) n = (less_eq_nat k n) andalso (less_eq_nat n 1);

end; (*struct Examplex)

This still is not perfect: the parentheses around the “andalso” expression
are superfluous. Though the serialiser by no means attempts to imitate the
rich Isabelle syntax framework, it provides some common idioms, notably
associative infixes with precedences which may be used here:

3 ADAPTATION TO TARGET LANGUAGES 23

code_const "op A"
(SML infix]l 1 "andalso")

structure Example : sig

datatype nat = Zero_nat | Suc of nat

val less_nat : nat -> nat -> bool

val less_eq_nat : nat -> nat -> bool

val in_interval : nat * nat -> nat -> bool
end = struct

datatype nat = Zero_nat | Suc of nat;

fun less_nat m (Suc n) = less_eq_nat m n
| less_nat n Zero_nat = false

and less_eq_nat (Suc m) n = less_nat m n
| less_eq_nat Zero_nat n = true;

fun in_interval (k, 1) n = less_eq_nat k n andalso less_eq_nat n 1;

end; (*struct Examplex)

The attentive reader may ask how we assert that no generated code will ac-
cidentally overwrite. For this reason the serialiser has an internal table of
identifiers which have to be avoided to be used for new declarations. Ini-
tially, this table typically contains the keywords of the target language. It
can be extended manually, thus avoiding accidental overwrites, using the
code-reserved command:

code-reserved SML bool true false andalso

Next, we try to map HOL pairs to SML pairs, using the infix “*” type
constructor and parentheses:

code_type *
(SML infix 2 "x")
code_const Pair

(SML "' ((L),/ (™M)

LL'??

The initial bang “!” tells the serialiser never to put parentheses around the
whole expression (they are already present), while the parentheses around
argument place holders tell not to put parentheses around the arguments.
The slash “/” (followed by arbitrary white space) inserts a space which may
be used as a break if necessary during pretty printing.

These examples give a glimpse what mechanisms custom serialisations pro-
vide; however their usage requires careful thinking in order not to introduce
inconsistencies — or, in other words: custom serialisations are completely
axiomatic.

A further noteworthy details is that any special character in a custom
serialisation may be quoted using “’”; thus, in “fn ’_ => _” the first “_”
is a proper underscore while the second “_" is a placeholder.

3 ADAPTATION TO TARGET LANGUAGES 24

3.5 Haskell serialisation

For convenience, the default HOL setup for Haskell maps the eq class to
its counterpart in Haskell, giving custom serialisations for the class eq (by
command code-class) and its operation eg-class.eq

code_class eq
(Haskell "Eq")

code_const "op ="
(Haskell infixl 4 "==")

A problem now occurs whenever a type which is an instance of eq in HOL is
mapped on a Haskell-built-in type which is also an instance of Haskell Fq:

typedecl bar

instantiation bar :: eq
begin

definition eg-class.eq (z::bar) y «—— x =y
instance by default (simp add: eq-bar-def)

end

code_type bar
(Haskell "Integer")

The code generator would produce an additional instance, which of course is
rejected by the Haskell compiler. To suppress this additional instance, use
code-instance:

code-instance bar :: eq
(Haskell -)

3.6 Enhancing the target language context

In rare cases it is necessary to enrich the context of a target language; this
is accomplished using the code-include command:

4 FURTHER ISSUES 25

code_include Haskell "Errno"
{*errno i = error ("Error number: " ++ show 1i)x*}

code_reserved Haskell Errno

Such named includes are then prepended to every generated code. Inspect
such code in order to find out how code-include behaves with respect to a
particular target language.

4 Further issues

4.1 Further reading

To dive deeper into the issue of code generation, you should visit the Isabelle /Isar
Reference Manual [8], which contains exhaustive syntax diagrams.

4.2 Modules

When invoking the export-code command it is possible to leave out the
module-name part; then code is distributed over different modules, where
the module name space roughly is induced by the Isabelle theory name space.

Then sometimes the awkward situation occurs that dependencies between
definitions introduce cyclic dependencies between modules, which in the
Haskell world leaves you to the mercy of the Haskell implementation you
are using, while for SML/OCaml code generation is not possible.

A solution is to declare module names explicitly. Let use assume the three
cyclically dependent modules are named A, B and C. Then, by stating

code-modulename SML
A ABC
B ABC
C ABC

we explicitly map all those modules on ABC, resulting in an ad-hoc merge
of this three modules at serialisation time.

4 FURTHER ISSUES 26

4.3 FEvaluation oracle

Code generation may also be used to evaluate expressions (using SML as
target language of course). For instance, the value reduces an expression to
a normal form with respect to the underlying code equations:

value 42 / (12 :: rat)

will display 7 / 2.
The eval method tries to reduce a goal by code generation to True and
solves it in that case, but fails otherwise:

lemma 42 / (12 :: rat) =7 / 2
by eval

The soundness of the eval method depends crucially on the correctness of the
code generator; this is one of the reasons why you should not use adaptation
(see §3) frivolously.

4.4 Code antiquotation

In scenarios involving techniques like reflection it is quite common that code
generated from a theory forms the basis for implementing a proof procedure
in SML. To facilitate interfacing of generated code with system code, the
code generator provides a code antiquotation:

datatype form = T | F | And form form | Or form form

ML {*
fun eval_form @{code T} = true
| eval_form @{code F} = false

| eval_form (@{code And} (p, @) =
eval_form p andalso eval_form q

| eval_form (@{code Or} (p, q@)) =
eval_form p orelse eval_form q;

*}

code takes as argument the name of a constant; after the whole SML is read,
the necessary code is generated transparently and the corresponding constant
names are inserted. This technique also allows to use pattern matching on
constructors stemming from compiled datatypes.

For a less simplistic example, theory Ferrack is a good reference.

5 ML SYSTEM INTERFACES 27

4.5 Imperative data structures

If you consider imperative data structures as inevitable for a specific applica-
tion, you should consider Imperative Functional Programming with Isabelle/HOL
[3]; the framework described there is available in theory Imperative-HOL.

5 ML system interfaces

Since the code generator framework not only aims to provide a nice Isar
interface but also to form a base for code-generation-based applications, here
a short description of the most important ML interfaces.

5.1 Executable theory content: Code

This Pure module implements the core notions of executable content of a
theory.

Managing executable content

Reference

Code.add_eqn: thm -> theory -> theory
Code.del_eqn: thm -> theory -> theory
Code_Preproc.map_pre: (simpset -> simpset) -> theory -> theory
Code_Preproc.map_post: (simpset -> simpset) -> theory -> theory
Code_Preproc.add_functrans: string * (theory -> (thm * bool) list -> (thm * bool) list option
-> theory -> theory
Code_Preproc.del_functrans: string -> theory -> theory
Code.add_datatype: (string * typ) list -> theory -> theory
Code.get_type: theory -> string
-> (string * sort) list * (string * typ list) list
Code.get_type_of _constr_or_abstr: theory -> string -> (string * bool) option

Code.add_eqn thm thy adds function theorem thm to executable content.

Code.del_eqn thm thy removes function theorem thm from executable content,
if present.

Code_Preproc.map_pre f thy changes the preprocessor simpset.

Code_Preproc.add_functrans (name, f) thy adds function transformer f (named
name) to executable content; f is a transformer of the code equations be-
longing to a certain function definition, depending on the current theory

5 ML SYSTEM INTERFACES 28

context. Returning NONEFE indicates that no transformation took place;
otherwise, the whole process will be iterated with the new code equations.

Code_Preproc.del_functrans name thy removes function transformer named
name from executable content.

Code.add_datatype cs thy adds a datatype to executable content, with genera-
tion set cs.

Code.get_type_of_constr_or_abstr thy const returns type constructor corre-
sponding to constructor const; returns NONE if const is no constructor.

5.2 Auxiliary

Reference

Code.read_const: theory -> string -> string

Code.read_const thy s reads a constant as a concrete term expression s.

5.3 Implementing code generator applications

Implementing code generator applications on top of the framework set out so
far usually not only involves using those primitive interfaces but also storing
code-dependent data and various other things.

Data depending on the theory’s executable content

Due to incrementality of code generation, changes in the theory’s executable
content have to be propagated in a certain fashion. Additionally, such
changes may occur not only during theory extension but also during the-
ory merge, which is a little bit nasty from an implementation point of view.
The framework provides a solution to this technical challenge by providing a
functorial data slot Code_Data; on instantiation of this functor, the following
types and operations are required:

type T
val empty: T
val purge: theory — string list option — T — T

T the type of data to store.

REFERENCES 29

empty initial (empty) data.

purge thy consts propagates changes in executable content; consts indicates

the kind of change: NONE stands for a fundamental change which inval-
idates any existing code, SOME consts hints that executable content

for constants consts has changed.

An instance of Code_Data provides the following interface:

get: theory — T
change: theory — (T — T) — T
change-yield: theory — (T — ‘a x T) — 'a x T

get retrieval of the current data.

change update of current data (cached!) by giving a continuation.

change-yield update with side result.

Happy proving, happy hacking!

References

[1]

Stefan Berghofer, Lukas Bulwahn, and Florian Haftmann. Turning inductive
into equational specifications. In Theorem Proving in Higher Order Logics,
pages 131-146, 2009.

Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In

P. Callaghan, Z. Luo, J. McKinna, and R. Pollack, editors, Types for Proofs
and Programs: TYPES’2000, volume 2277 of Lecture Notes in Computer
Science. Springer-Verlag, 2002.

Lukas Bulwahn, Alexander Krauss, Florian Haftmann, Levent Erkk, and
John Matthews. Imperative functional programming with Isabelle/HOL. In
Theorem Proving in Higher Order Logics: TPHOLs 2008, Lecture Notes in
Computer Science. Springer-Verlag, 2008.

Xavier Leroy et al. The Objective Caml system — Documentation and user’s
manual. http://caml.inria.fr/pub/docs/manual-ocaml/.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard
ML. MIT Press, 1990.

http://caml.inria.fr/pub/docs/manual-ocaml/

REFERENCES 30

[6] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2002.

[7] Simon Peyton Jones et al. The Haskell 98 language and libraries: The revised
report. Journal of Functional Programming, 13(1):0-255, Jan 2003.
http://www.haskell.org/definition/.

[8] Makarius Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

http://www.haskell.org/definition/
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction and Overview
	Code generation via shallow embedding
	Code generator architecture

	Turning Theories into Programs
	The Isabelle/HOL default setup
	Selecting code equations
	class and instantiation
	The preprocessor
	Datatypes
	Equality
	Explicit partiality
	Inductive Predicates

	Adaptation to target languages
	Adapting code generation
	The adaptation principle
	Common adaptation patterns
	Parametrising serialisation
	Haskell serialisation
	Enhancing the target language context

	Further issues
	Further reading
	Modules
	Evaluation oracle
	Code antiquotation
	Imperative data structures

	ML system interfaces
	Executable theory content: Code
	Auxiliary
	Implementing code generator applications

