Asterisk Reference Information
Version 1.6.2.17.3

Asterisk Development Team
Asterisk.org

April 21, 2011

Contents

(1__Introduction 8
(L1 [icense Informationl 8
(.1.1 Hold Music 9
.............................. 10
(L.2.1 Introductionl.o 10
[1.2.2 Network Security| 10
(1.2.3 Dialplan Security| 10
(1.2.4 Log Security|. 11

L3 Hardwarel 11
(3.1 Introductionlo 11
(1.3.2 DAHDI compatible hardware] 12
[1.3.3 Non-DAHDI compatible hardware]. 13
(1.3.4 mISDN compatible hardware] 13
(L.3.5 Miscellaneous other interfaces 14

[2_ Configuration] 15
[2.1 General Configuration Information| 15
[2.1.1 Configuration Parser| 15
2.1.2 Asterisk.confl oo 19
2.1.3 CLI Prompt|. 22
214 PExtensions oo 23
[2.1.5 TP Quality of Service| 24
2.1.6 MP3 Support| L 28
............................ 28

[2.2 Database Support|. oL 28

222 FreeTDSo 31
PTIVACY|. « « v v v e e e e e e e e e e e 32
231 Firstofall oL 32
[2.3.2 Next, Fight against autodialers!!|. 32
[2.3.3 Next, Fight against the empty CALLERID! 32
[2.3.4 Next, use a WELCOME MENUY 33
2.3.5 Next: Torture Them! 34
[2.3.6 Using Call Screeningl 35
[2.3.7 The 'N"and 'n” options|. 36
2.3.8 Recorded Introductions. 37
3__Channel Variables| 40
3.1 Introduction| 40
[3.2 Parameter Quoting| 40
3.3 Variabled L 41
3.4 Variable Inheritancel 41
[3.4.1 Examplel oo 42

[3.5 Selecting Characters from Variables| 42
[3.6 Expressions|o 43
[3.6.1 Spaces Inside Variables Values| 43
[3.6.2 Operators|, 44
[3.6.3 Floating Point Numbers| 46
3.6.4 Functiond L. 47
[3.6.50 Examples L 48
[3.6.6 Numbers Vs. Strings| 50
[3.6.7 Conditionalsf. oo 50
3.6.8 Parse Frrors oo 51
[3.6.9 NULL Strings| 51
[3.6.10 Warning 51
[3.6.11 Incompatabilities| 52
[3.6.12 Debugging Hints| 53

3.0 _Asterisk standard channel variablesl 55
[3.7.1 Application return values|. 56
[3.7.2 Various application variables 57
[3.7.3 The MeetMe Conference Bridge| 58
3.7.4 The VoiceMail() application| 58

3.7.5 The VMAuthenticate() application| 58

£3.7.6 DUNDiLookup()|, 58

.77 chan dahdil oo 58
[3.7.8 chansip 59
[3.7.9 chan agent|. oL 59
3.7.10 The Dial() application| 59
3.7.11 The chanisavail() application|. 60
[3.7.12 Dialplan Macros|. 60
£3.7.13 The ChanSpy() application| 60

3. 014 OSPL . .. 60

[4 AEL: Asterisk Extension Language| 62
4.1 Introduction|. oo 62
M2 Asteriskin a Nutshelll. 63
421 Contexts 63
[4.2.2 Extensions and priorities| 63
423 Macrod. 64
[4.2.4 Applications| oo 64

4.3 Getting Started| L 65
(4.4 Debugging| 65
4.5 About "aelparse”|o oL 65
4.6 General Notes about Syntax| 66
4.7 Keywords 67
4.8 Procedural Interface and Internalsl 69
M81 AEL version 2 BNE]. 69

4.9 AEL Example USAGE[. 72
491 Comments, 72
492 Contextl 73
493 BExtensions oo 73
494 Includes oo 74
[4.9.5 Finclude].o 75
[4.9.6 Dialplan Switches 75
[4.9.7 lgnorepat| 0L 75
498 Variables. 75
4.9.9 local Variables 76
4.9.10 Loops| 7
4.9.11 Conditionalsf. 77
[4.9.12 Break, Continue, and Return| 79
[4.9.13 goto, jump, and labels 79

[4.10 Examples oL 81
411 Semantic Checkd 82
[4.12 Differences with the original version of AEL| 84
[4.13 Hints and Bugs| 0L 86
414 The Full Power of ABRLI. oo o000 87
[5 SLA: Shared Line Appearances| 88
.1 TIntroduction|o 88
(5.2 Configurationl L 88
[>.2.1 Summary| 88
[.2.2 Dialplan|o 88
.23 Trunkso 89
b.2.4 Stations 90

[>.3 Configuration Examples 91
3.1 Basic STAl. 91
b.3.2 SLA and Voicemaill oo 92

(5.4 Call Handling| 94
[p.4.1 Summary| 94
5.4.2 Station goes off hook (not ringing) 94

5.4.3 Station goes off hook (ringing) 94
[>.4.4 Line button on a station is pressed| 95

6 Channel Drivers| 96
0.1 TAX2 96
6.1.1 Introduction|. 96
[6.1.2 Why TAX27] 96
[6.1.3 Configuration| 98
6.1.4 TAX2 Jitterbuffer] 98

6.2 mISDN|. 101
[6.2.1 Introduction|. 101
622 Features 101
0.2.3 Fast Installation Guidef 102
[6.2.4 Pre-Requisites|. 102
[6.2.5 Configuration| 102
626 mISDN CLI commands 105
6.2.7 mISDN Variables| 105
[6.2.8 Debugging and sending bug reports| 106

7

[6.3.2 Examples] L
[6.3.3 Trivial Local channel examplel
[6.3.4 Delay dialing devices|
[6.3.5 Dialing destinations with different information|
[6.3.6 Using callfiles and Local channels
(6.3.7 Understanding When To Use /n|.
6.3.8 Local channel modifiersf.

istributed Universal Number Discovery |

2 and DUNDIRESULT}.
[7.3 Peering Agreement|

8 ENUM

8.1 The ENUMLOOKUP dialplan function|
[8.1.1 Arguments|.
[8.1.2 Examples
[8.1.3 Usage notes and subtle features|
[.1.4 Some more Examples

[9

AMI: Asterisk Manager Interface|

9.1 The Asterisk Manager TCP/IP API|.
9.2 Command Syntaxl
9.3 Manager commands|. L
9.4 Examples
9.5 Ensuring all modules are loaded|
9.6 Device status reports|

9.8 Asynchronous Javascript Asterisk Manger (AJAM)[.
[9.8.1 Setup the Asterisk HT'TP server|.
9.8.2 Allow Manager Access via H1TP|
[9.8.3 Integration with other web servers|.

10 _CDR: Call Detail Records!

(10.4 Storage Backends| oL 152
(10.4.1 Microsott SQL Server|. 152
[10.4.2 MySQL| 155
[10.4.3 PostgreSQL| 155
(10.4.4 SQLite 2] 156
(10.4.5 SQLite 3| 156
10.4.6 RADIUSI. 156

11 Voicemail 161

(11.1 ODBC Storage| 161

[11.2 IMAP Storage| 162
(11.2.1 Installation Notes 162
(11.2.2 Modity voicemail.conf| 164
1123 IMAP Folders 165
[11.2.4 Separate vs. Shared Email Accounts| 165
(11.2.5 IMAP Server Implementations|. 165
(11.2.6 Quota Support| 166
(11.2.7 Application Notes|. 166

12 SMS 168

(2.1 Introductionlo 168

(12.2 Background| oo 168

(12.3 Typical use with Asteriskl 169

(12.4 Terminology| 169

12,5 Sub address o 170

M2.6 extensions.conflo L. 170

(12.7 Using smsq| 171

12.8 File formatso 177

(12.9 Delivery reports|o 179

13 Queues 180

13.1 Introductionl 180

(13.2 Configuring Call Queues 180
[13.2.1 queues.conf], 180

[13.2.2 Routing incoming Calls to Queues|.
[13.2.3 Assigning agents to Queues|
(13.2.4 Controlling The Way Queues Call the Agents|
(13.2.5 Pre Acknowledgement Message|
|1;i.2.(i g:il&g:ill:il --------------------------
(13.3 Queue Logs|

(14 _Phone Provisioning|

(14.1 Introduction|o
(14.2 Configuration of phoneprov.conf|
(14.2.1 The |general| section|
(14.2.2 Creating phone profiles|
(14.3 Configuration of users.conff
(14.3.1 The |general| section|
14.3.2 Invdividual Usersl
(14.4 Templates|o
(14.5 Putting it all together|

(15 Packet Loss Concealment|

(15.2 How does Asterisk detect packet loss?|.
(15.3 A bit of background on translation|
[15.4 Additional restrictions and caveats
(15.5 Summary|

[16_Sounds Packages|

6.1 Introductionl oo

(16.3.2 makeg722
[16.3.3 scripts|o

{17 Development|

Chapter

Introduction

This document contains various pieces of information that are useful for
reference purposes.

1.1 License Information

Asterisk is distributed under the GNU General Public License version 2 and is
also available under alternative licenses negotiated directly with Digium, Inc.
If you obtained Asterisk under the GPL, then the GPL applies to all loadable
Asterisk modules used on your system as well, except as defined below. The
GPL (version 2) is included in this source tree in the file COPYING.

This package also includes various components that are not part of As-
terisk itself; these components are in the 'contrib’ directory and its subdirec-
tories. These components are also distributed under the GPL version 2 as
well.

Digium, Inc. (formerly Linux Support Services) holds copyright and/or
sufficient licenses to all components of the Asterisk package, and therefore
can grant, at its sole discretion, the ability for companies, individuals, or or-
ganizations to create proprietary or Open Source (even if not GPL) modules
which may be dynamically linked at runtime with the portions of Asterisk
which fall under our copyright/license umbrella, or are distributed under
more flexible licenses than GPL.

If you wish to use our code in other GPL programs, don’t worry — there
is no requirement that you provide the same exception in your GPL’d prod-

ucts (although if you've written a module for Asterisk we would strongly
encourage you to make the same exception that we do).

Specific permission is also granted to link Asterisk with OpenSSL, OpenH323
and/or the UW IMAP Toolkit and distribute the resulting binary files.

In addition, Asterisk implements two management /control protocols: the
Asterisk Manager Interface (AMI) and the Asterisk Gateway Interface (AGI).
It is our belief that applications using these protocols to manage or control an
Asterisk instance do not have to be licensed under the GPL or a compatible
license, as we believe these protocols do not create a ’derivative work’ as
referred to in the GPL. However, should any court or other judiciary body
find that these protocols do fall under the terms of the GPL, then we hereby
grant you a license to use these protocols in combination with Asterisk in
external applications licensed under any license you wish.

The ’Asterisk’ name and logos are trademarks owned by Digium, Inc., and
use of them is subject to our trademark licensing policies. If you wish to use
these trademarks for purposes other than simple redistribution of Asterisk
source code obtained from Digium, you should contact our licensing depart-
ment to determine the necessary steps you must take. For more information
on this policy, please read:

http://www.digium.com/en/company /profile/trademarkpolicy.php

If you have any questions regarding our licensing policy, please contact
us:

+1.877.344.4861 (via telephone in the USA) +1.256.428.6000 (via tele-
phone outside the USA) +1.256.864.0464 (via FAX inside or outside the
USA) TAX2/pbx.digium.com (via IAX2) licensing@digium.com (via email)

Digium, Inc. 445 Jan Davis Drive Huntsville, AL 35806 USA

1.1.1 Hold Music

Digium has licensed the music included with the Asterisk distribution From
opsound.org for use and distribution with Asterisk. It is licensed ONLY for
use as hold music within an Asterisk based PBX.

1.2 Security

1.2.1 Introduction

PLEASE READ THE FOLLOWING IMPORTANT SECURITY RELATED
INFORMATION. IMPROPER CONFIGURATION OF ASTERISK COULD
ALLOW UNAUTHORIZED USE OF YOUR FACILITIES, POTENTIALLY
INCURRING SUBSTANTIAL CHARGES.

Asterisk security involves both network security (encryption, authentica-
tion) as well as dialplan security (authorization - who can access services in
your pbx). If you are setting up Asterisk in production use, please make sure
you understand the issues involved.

1.2.2 Network Security

If you install Asterisk and use the "make samples” command to install a
demonstration configuration, Asterisk will open a few ports for accepting
VoIP calls. Check the channel configuration files for the ports and IP ad-
dresses.

If you enable the manager interface in manager.conf, please make sure
that you access manager in a safe environment or protect it with SSH or
other VPN solutions.

For all TCP/IP connections in Asterisk, you can set ACL lists that will
permit or deny network access to Asterisk services. Please check the "permit”
and "deny” configuration options in manager.conf and the VoIP channel
configurations - i.e. sip.conf and iax.conf.

The TAX2 protocol supports strong RSA key authentication as well as
AES encryption of voice and signalling. The SIP channel does not support
encryption in this version of Asterisk.

1.2.3 Dialplan Security

First and foremost remember this:

USE THE EXTENSION CONTEXTS TO ISOLATE OUTGOING OR
TOLL SERVICES FROM ANY INCOMING CONNECTIONS.

You should consider that if any channel, incoming line, etc can enter an
extension context that it has the capability of accessing any extension within
that context.

10

Therefore, you should NOT allow access to outgoing or toll services in
contexts that are accessible (especially without a password) from incoming
channels, be they IAX channels, FX or other trunks, or even untrusted sta-
tions within you network. In particular, never ever put outgoing toll services
in the "default” context. To make things easier, you can include the ” default”
context within other private contexts by using:

include => default

in the appropriate section. A well designed PBX might look like this:

[longdistance]
exten => _91NXXNXXXXXX,1,Dial(DAHDI/g2/${EXTEN:1})
include => local

[locall
exten => _9NXXNXXX,1,Dial(DAHDI/g2/${EXTEN:1})
include => default

[default]
exten => 6123,Dial (DAHDI/1)

DON'T FORGET TO TAKE THE DEMO CONTEXT OUT OF YOUR
DEFAULT CONTEXT. There isn’t really a security reason, it just will keep
people from wanting to play with your Asterisk setup remotely.

1.2.4 Log Security

Please note that the Asterisk log files, as well as information printed to the
Asterisk CLI, may contain sensitive information such as passwords and call
history. Keep this in mind when providing access to these resources.

1.3 Hardware

1.3.1 Introduction

A PBX is only really useful if you can get calls into it. Of course, you can
use Asterisk with VoIP calls (SIP, H.323, TAX, etc.), but you can also talk
to the real PSTN through various cards.

Supported Hardware is divided into two general groups: DAHDI de-
vices and non-DAHDI devices. The DAHDI compatible hardware supports
pseudo-TDM conferencing and all call features through chan_dahdi, whereas
non-DAHDI compatible hardware may have different features.

11

1.3.2 DAHDI compatible hardware
e Digium, Inc. (Primary Developer of Asterisk) http://www.digium.com

— Analog Interfaces

x TDM400P - The TDM400P is a half-length PCI 2.2-compliant
card that supports FXS and FXO station interfaces for con-

necting analog telephones and analog POTS lines through a
PC.

x TDMB800P - The TDMSOOP is a half-length PCI 2.2-compliant,
8 port card using Digium’s VoiceBus technology that supports
FXS and FXO station interfaces for connecting analog tele-
phones and analog POTS lines through a PC.

x TDM2400P - The TDM2400P is a full-length PCI 2.2-compliant
card for connecting analog telephones and analog POTS lines
through a PC. It supports a combination of up to 6 FXS
and/or FXO modules for a total of 24 lines.

— Digital Interfaces

x TEA412P - The TE412P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

x TE410P - The TE410P improves performance and scalability
through bus mastering architecture. It supports E1, T1, and
J1 environments and is selectable on a per-card or per-port
basis.

x TE407P - The TE407P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

x TE405P - The TE405P improves performance and scalability
through bus mastering architecture. It supports both E1, T1,
J1 environments and is selectable on a per-card or per-port
basis.

x TE212P - The TE212P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

x TE210P - The TE210P improves performance and scalability
through bus mastering architecture. It supports E1, T1, and

12

http://www.digium.com

J1 environments and is selectable on a per-card or per-port
basis.

x TE207P - The TE207P offers an on-board DSP-based echo
cancellation module. It supports E1, T1, and J1 environments
and is selectable on a per-card or per-port basis.

x TE205P - The TE205P improves performance and scalability
through bus mastering architecture. It supports both E1 and
T1/J1 environments and is selectable on a per-card or per-
port basis.

x TE120P - The TE120P is a single span, selectable T1, E1,
or J1 card and utilizes Digium’s VoiceBus™technology. It
supports both voice and data modes.

x TE110P - The TE110P brings a high-performance, cost-effective,
and flexible single span togglable T1, E1, J1 interface to the
Digium line-up of telephony interface devices.

1.3.3 Non-DAHDI compatible hardware

e QuickNet, Inc. http://www.quicknet.net

— Internet PhoneJack - Single FXS interface. Supports Linux tele-
phony interface. DSP compression built-in.

— Internet LineJack - Single FXS or FXO interface. Supports Linux
telephony interface.

1.3.4 mISDN compatible hardware

mISDN homepage: http://www.misdn.org/
Any adapter with an mISDN driver should be compatible with chan_-
misdn. See the mISDN section for more information.

e Digium, Inc. (Primary Developer of Asterisk) http://www.digium.com

— B410P - 4 Port BRI card (TE/NT)

e beroNet http://www.beronet.com

— BN4S0 - 4 Port BRI card (TE/NT)

13

http://www.quicknet.net
http://www.misdn.org/
http://www.digium.com
http://www.beronet.com

— BNB8SO0 - 8 Port BRI card (TE/NT)
— Billion Card - Single Port BRI card (TE (/NT with crossed cable))

1.3.5 Miscellaneous other interfaces

e Digium, Inc. (Primary Developer of Asterisk)

— TC400B - The TC400B is a half-length, low-profile PCI 2.2-compliant
card for transforming complex VoIP codecs (G.729) into simple
codecs.

e ALSA http://www.alsa-project.org
— Any ALSA compatible full-duplex sound card
e OSS http://www.opensound.com

— Any OSS compatible full-duplex sound card

14

http://www.alsa-project.org
http://www.opensound.com

Chapter

Configuration

2.1 General Configuration Information

2.1.1 Configuration Parser
Introduction

The Asterisk configuration parser in the 1.2 version and beyond series has
been improved in a number of ways. In addition to the realtime architecture,
we now have the ability to create templates in configuration files, and use
these as templates when we configure phones, voicemail accounts and queues.

These changes are general to the configuration parser, and works in all
configuration files.

General syntax
Asterisk configuration files are defined as follows:

[section]
label = value
label2 = value

In some files, (e.g. mgep.conf, dahdi.conf and agents.conf), the syntax is
a bit different. In these files the syntax is as follows:

[section]

labell = valuel
label2 = value2
object => name

15

label3 value3
label2 valued
object2 => name2

In this syntax, we create objects with the settings defined above the object
creation. Note that settings are inherited from the top, so in the example
above object2 has inherited the setting for ”labell” from the first object.

For template configurations, the syntax for defining a section is changed
to:

[section] (options)
label = value

The options field is used to define templates, refer to templates and hide

templates. Any object can be used as a template.
No whitespace is allowed between the closing ”]” and the parenthesis ” (.

Comments

9,9

All lines that starts with semi-colon ”;” is treated as comments and is not
parsed.

The 7 ;--" is a marker for a multi-line comment. Everything after that
marker will be treated as a comment until the end-marker ”--;” is found.
Parsing begins directly after the end-marker.

;This is a comment
label = value

;—— This is

a comment --;

;—— Comment --; exten=> 1000,1,dial(SIP/lisa)

Including other files

In all of the configuration files, you may include the content of another file
with the #include statement. The content of the other file will be included
at the row that the #include statement occurred.

#include myusers.conf

You may also include the output of a program with the #exec directive,
if you enable it in asterisk.conf

In asterisk.conf, add the execincludes = yes statement in the options
section:

16

[options]
execincludes=yes

The exec directive is used like this:

#exec /usr/local/bin/myasteriskconfigurator.sh

Adding to an existing section

[section]
label = value

[section] (+)
label2 = value2

In this case, the plus sign indicates that the second section (with the
same name) is an addition to the first section. The second section can be in
another file (by using the #include statement). If the section name referred
to before the plus is missing, the configuration will fail to load.

Defining a template-only section

[section] (!)
label = value

The exclamation mark indicates to the config parser that this is a only
a template and should not itself be used by the Asterisk module for config-
uration. The section can be inherited by other sections (see section ”Using
templates” below) but is not used by itself.

Using templates (or other configuration sections)

[section] (name[,name])
label = value

The name within the parenthesis refers to other sections, either templates
or standard sections. The referred sections are included before the configura-
tion engine parses the local settings within the section as though their entire
contents (and anything they were previously based upon) were included in
the new section. For example consider the following:

[fool
disallow=all

allow=ulaw
allow=alaw

17

[bar]

allow=gsm
allow=g729
permit=192.168.2.1

[baz] (foo,bar)
type=friend
permit=192.168.3.1
context=incoming
host=bnm

The [baz] section will be processed as though it had been written in the
following way:

[baz]

disallow=all
allow=ulaw
allow=alaw
allow=gsm
allow=g729
permit=192.168.2.1
type=friend
permit=192.168.3.1
context=incoming
host=bnm

It should also be noted that there are no guaranteed overriding semantics,
meaning that if you define something in one template, you should not expect
to be able to override it by defining it again in another template.

Additional Examples
(in top-level sip.conf)

[defaults] (!)
type=friend
nat=yes
qualify=on
dtmfmode=rfc2833
disallow=all
allow=alaw

#include accounts/*/sip.conf

(in accounts/customerl/sip.conf)

[def-customerl] (!,defaults)
secret=this_is_not_secret
context=from-customerl
callerid=Customer 1 <300>
accountcode=0001

18

[phonel] (def-customerl)
mailbox=phonel@customerl

[phone2] (def-customerl)
mailbox=phone2@customeril

This example defines two phones - phonel and phone2 with settings inher-
ited from ”def-customer1”. The ”def-customerl” is a template that inherits
from ”defaults”, which also is a template.

2.1.2 Asterisk.conf
Asterisk Main Configuration File

Below is a sample of the main Asterisk configuration file, asterisk.conf. Note
that this file is not provided in sample form, because the Makefile creates it
when needed and does not touch it when it already exists.

[directories]
; Make sure these directories have the right permissions if not
; running Asterisk as root

; Where the configuration files (except for this one) are located
astetcdir => /etc/asterisk

; Where the Asterisk loadable modules are located
astmoddir => /usr/lib/asterisk/modules

; Where additional ’library’ elements (scripts, etc.) are located
astvarlibdir => /var/lib/asterisk

; Where AGI scripts/programs are located
astagidir => /var/lib/asterisk/agi-bin

; Where spool directories are located

; Voicemail, monitor, dictation and other apps will create files here
; and outgoing call files (used with pbx_spool) must be placed here
astspooldir => /var/spool/asterisk

; Where the Asterisk process ID (pid) file should be created
astrundir => /var/run/asterisk

; Where the Asterisk log files should be created

astlogdir => /var/log/asterisk

[options]
;Under "options" you can enter configuration options
;that you also can set with command line options

; Verbosity level for logging (-v)

19

verbose = 0

; Debug: "No" or value (1-4)
debug = 3

; Background execution disabled (-f)
nofork=yes | no

; Always background, even with -v or -d (-F)
alwaysfork=yes | no

; Console mode (-c)
console= yes | no

; Execute with high priority (-p)
highpriority = yes | no

; Initialize crypto at startup (-i)
initcrypto = yes | no

; Disable ANSI colors (-n)
nocolor = yes | no

; Dump core on failure (-g)
dumpcore = yes | no

; Run quietly (-q)
quiet = yes | no

; Force timestamping in CLI verbose output (-T)
timestamp = yes | no

; User to run asterisk as (-U) NOTE: will require changes to
; directory and device permissions

runuser = asterisk

; Group to run asterisk as (-G)
rungroup = asterisk

; Enable internal timing support (-I)
internal_timing = yes | no

; Language Options
documentation_language = en | es | ru

; These options have no command line equivalent
; Cache record() files in another directory until completion
cache_record_files = yes | no

record_cache_dir = <dir>

; Build transcode paths via SLINEAR
transcode_via_sln = yes | no

; send SLINEAR silence while channel is being recorded
transmit_silence_during_record = yes | no

20

; The maximum load average we accept calls for
maxload = 1.0

; The maximum number of concurrent calls you want to allow
maxcalls = 255

; Stop accepting calls when free memory falls below this amount specified in MB
minmemfree = 256

; Allow #exec entries in configuration files
execincludes = yes | no

; Don’t over-inform the Asterisk sysadm, he’s a guru
dontwarn = yes | no

; System name. Used to prefix CDR uniqueid and to fill \${SYSTEMNAME}
systemname = <a_string>

; Should language code be last component of sound file name or first?
; when off, sound files are searched as <path>/<lang>/<file>

; when on, sound files are search as <lang>/<path>/<file>

; (only affects relative paths for sound files)

languageprefix = yes | no

; Locking mode for voicemail

;- lockfile: default, for normal use

; — flock: for where the lockfile locking method doesn’t work
; eh. on SMB/CIFS mounts

lockmode = lockfile | flock

Entity ID. This is in the form of a MAC address. It should be universally
unique. It must be unique between servers communicating with a protocol
that uses this value. The only thing that uses this currently is DUNDi,
but other things will use it in the future.

entityid=00:11:22:33:44:55

[files]

; Changing the following lines may compromise your security

; Asterisk.ctl is the pipe that is used to connect the remote CLI

; (asterisk -r) to Asterisk. Changing these settings change the

; permissions and ownership of this file.

; The file is created when Asterisk starts, in the "astrundir" above.

;astctlpermissions = 0660
;astctlowner = root
;astctlgroup = asterisk
;astctl = asterisk.ctl

21

2.1.3 CLI Prompt

Changing the CLI Prompt

The CLI prompt is set with the ASTERISK_PROMPT UNIX environment
variable that you set from the Unix shell before starting Asterisk

You may include the following variables, that will be replaced by the
current value by Asterisk:

e %d - Date (year-month-date)

o %s - Asterisk system name (from asterisk.conf)
e %h - Full hostname

e %H - Short hostname

e Yt - Time

e %u - Username

e %g - Groupname

e %% - Percent sign

o %+# - '# if Asterisk is run in console mode, ">’ if running as remote
console

e %Cn[;n] - Change terminal foreground (and optional background) color
to specified A full list of colors may be found in include/asterisk/
term.h

On systems which implement getloadavg(3), you may also use:

e %l1 - Load average over past minute
e %12 - Load average over past 5 minutes

e %I3 - Load average over past 15 minutes

22

2.14 Extensions
The Asterisk dialplan

The Asterisk dialplan is divided into contexts. A context is simply a group
of extensions. For each "line” that should be able to be called, an extension
must be added to a context. Then, you configure the calling "line” to have
access to this context.

If you change the dialplan, you can use the Asterisk CLI command ”di-
alplan reload” to load the new dialplan without disrupting service in your
PBX.

Extensions are routed according to priority and may be based on any
set of characters (a-z), digits, #, and *. Please note that when matching a
pattern, "N”, 7X” and "7Z” are interpreted as classes of digits.

For each extension, several actions may be listed and must be given a
unique priority. When each action completes, the call continues at the next
priority (except for some modules which use explicitly GOTO’s).

Extensions frequently have data they pass to the executing application
(most frequently a string). You can see the available dialplan applications
by entering the ”core show applications” command in the CLI.

In this version of Asterisk, dialplan functions are added. These can be
used as arguments to any application. For a list of the installed functions in
your Asterisk, use the ”core show functions” command.

Example dialplan

The example dial plan, in the configs/extensions.conf.sample file is in-
stalled as extensions.conf if you run "make samples” after installation of
Asterisk. This file includes many more instructions and examples than this
file, so it’s worthwhile to read it.

Special extensions

There are some extensions with important meanings:

— What to do when an extension context is entered (unless over-
ridden by the low level channel interface) This is used in macros,

23

7 o

and some special cases. ”s” is not a generic catch-all wildcard

extension.
o i
— What to do if an invalid extension is entered
e h
— The hangup extension, executed at hangup
ot
— What to do if nothing is entered in the requisite amount of time.
o T
— This is the extension that is executed when the ’absolute’ time-
out is reached. See "core show function TIMEOUT” for more
information on setting timeouts.
e c

— This extension will substitute as a catchall for any of the ’i’, 't’,
or "7 extensions, if any of them do not exist and catching the
error in a single routine is desired. The function EXCEPTION
may be used to query the type of exception or the location where
it occurred.

And finally, the extension context ”"default” is used when either a) an
extension context is deleted while an extension is in use, or b) a specific
starting extension handler has not been defined (unless overridden by the
low level channel interface).

2.1.5 IP Quality of Service
Introduction

Asterisk supports different QoS settings at the application level for various
protocols on both signaling and media. The Type of Service (TOS) byte can
be set on outgoing IP packets for various protocols. The TOS byte is used

24

by the network to provide some level of Quality of Service (QoS) even if the
network is congested with other traffic.

Asterisk running on Linux can also set 802.1p CoS marks in VLAN pack-
ets for the VoIP protocols it uses. This is useful when working in a switched
environment. In fact Asterisk only set priority for Linux socket. For mapping
this priority and VLAN CoS mark you need to use this command:

vconfig set_egress_map [vlan-device] [skb-priority] [vlan-qos]

The table below shows all VoIP channel drivers and other Asterisk mod-
ules that support QoS settings for network traffic. It also shows the type(s)
of traffic for which each module can support setting QoS settings.

’ H Signaling \ Audio \ Video \ Text ‘

chan_sip + + + +
chan_skinny + + +
chan_mgcp + +

chan_unistm + +

chan_h323 +

chan_iax2 +

Table 2.1: Channel Driver QoS Settings

’ H Signaling \ Audio \ Video \ Text ‘
dundi.conf + (tos setting)
iaxprov.conf + (tos setting)

Table 2.2: Other ToS Settings

IP TOS values

The allowable values for any of the tos™ parameters are: CS0, CS1, CS2,
CS3, CS4, CS5, CS6, CS7, AF11, AF12, AF13, AF21, AF22, AF23, AF31,
AF32, AF33, AF41, AF42, AF43 and ef (expedited forwarding),

The tos™ parameters also take numeric values.

25

Note that on a Linux system, Asterisk must be compiled with libcap in
order to use the ef tos setting if Asterisk is not run as root.

The lowdelay, throughput, reliability, mincost, and none values have been
removed in current releases.

802.1p CoS values

Because 802.1p uses 3 bits of the VLAN header, this parameter can take
integer values from 0 to 7.

Recommended values

The recommended values shown below are also included in sample configu-
ration files:

’ H tos \ Ccos ‘
Signaling || cs3 | 3
Audio ef 5
Video af4l | 4
Text af4l | 3
Other ef

Table 2.3: Recommended QoS Settings

IAX2

In iax.conf, there is a "tos” parameter that sets the global default TOS
for TAX packets generated by chan_iax2. Since IAX connections combine
signalling, audio, and video into one UDP stream, it is not possible to set
the TOS separately for the different types of traffic.

In iaxprov.conf, there is a ”"tos” parameter that tells the IAXy what
TOS to set on packets it generates. As with the parameter in iax.conf, IAX
packets generated by an IAXy cannot have different TOS settings based upon
the type of packet. However different IAXy devices can have different TOS
settings.

26

SIP

In sip.conf, there are four parameters that control the TOS settings: ”tos_-
sip”, "tos_audio”, "tos_video” and "tos_text”. tos_sip controls what TOS SIP
call signaling packets are set to. tos_audio, tos_video and tos_text control
what TOS values are used for RTP audio, video, and text packets, respec-
tively.

There are four parameters to control 802.1p CoS: ”cos_sip”, ”cos_audio”,

"cos_video” and ”cos_text”. The behavior of these parameters is the same as
for the SIP TOS settings described above.

Other RTP channels

chan_mgcp, chan_h323, chan_skinny and chan_unistim also support TOS and
CoS via setting tos and cos parameters in their corresponding configuration
files. Naming style and behavior are the same as for chan _sip.

Reference

IEEE 802.1Q Standard: http://standards.ieee.org/getieee802/download/
802.1Q-1998.pdf Related protocols: IEEE 802.3, 802.2, 802.1D, 802.1Q

RFC 2474 - ”Definition of the Differentiated Services Field (DS field) in
the IPv4 and IPv6 Headers”, Nichols, K., et al, December 1998.

TANA Assignments, DSCP registry Differentiated Services Field Code-
points http://www.iana.org/assignments/dscp-registry

To get the most out of setting the TOS on packets generated by Asterisk,
you will need to ensure that your network handles packets with a TOS prop-
erly. For Cisco devices, see the previously mentioned ”Enterprise QoS Solu-
tion Reference Network Design Guide”. For Linux systems see the ”Linux
Advanced Routing & Traffic Control HOWTO” at http://www.lartc.org/.

For more information on Quality of Service for VoIP networks see the
"Enterprise QoS Solution Reference Network Design Guide” version 3.3 from
Cisco at: http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/
c649/ccmigration_09186a008049b062. pdf

27

http://standards.ieee.org/getieee802/download/802.1Q-1998.pdf
http://standards.ieee.org/getieee802/download/802.1Q-1998.pdf
http://www.iana.org/assignments/dscp-registry
http://www.lartc.org/
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns432/c649/ccmigration_09186a008049b062.pdf

2.1.6 MP3 Support
MP3 Music On Hold

Use of the mpgl23 for your music on hold is no longer recommended and is
now officially deprecated. You should now use one of the native formats for
your music on hold selections.

However, if you still need to use mp3 as your music on hold format, a
format driver for reading MP3 audio files is available in the asterisk-addons
SVN repository on svn.digium.com or in the asterisk-addons release at http:
//downloads.digium.com/pub/telephony/asterisk/\

2.1.7 ICES

The advent of icecast into Asterisk allows you to do neat things like have a
caller stream right into an ice-cast stream as well as using chan_local to place
things like conferences, music on hold, etc. into the stream.

You’ll need to specify a config file for the ices encoder. An example is
included in contrib/asterisk-ices.xml.

2.2 Database Support

2.2.1 Realtime Database Configuration
Introduction

The Asterisk Realtime Architecture is a new set of drivers and functions
implemented in Asterisk.

The benefits of this architecture are many, both from a code management
standpoint and from an installation perspective.

The ARA is designed to be independent of storage. Currently, most
drivers are based on SQL, but the architecture should be able to handle
other storage methods in the future, like LDAP.

The main benefit comes in the database support. In Asterisk v1.0 some
functions supported MySQL database, some PostgreSQL and other ODBC.
With the ARA, we have a unified database interface internally in Asterisk,
so if one function supports database integration, all databases that has a
realtime driver will be supported in that function.

Currently there are three realtime database drivers:

28

http://downloads.digium.com/pub/telephony/asterisk/
http://downloads.digium.com/pub/telephony/asterisk/

e ODBC: Support for UnixODBC, integrated into Asterisk The UnixODBC
subsystem supports many different databases, please check www.unixodbc.
org for more information.

e MySQL: Found in the asterisk-addons subversion repository on |svn.
digium.com

e PostgreSQL: Native support for Postgres, integrated into Asterisk

Two modes: Static and Realtime

The ARA realtime mode is used to dynamically load and update objects.
This mode is used in the SIP and TAX2 channels, as well as in the voicemail
system. For SIP and TAX2 this is similar to the v1.0 MYSQL_FRIENDS
functionality. With the ARA, we now support many more databases for
dynamic configuration of phones.

The ARA static mode is used to load configuration files. For the Asterisk
modules that read configurations, there’s no difference between a static file
in the file system, like extensions.conf, and a configuration loaded from a
database.

You just have to always make sure the var_metric values are properly set
and ordered as you expect in your database server if you're using the static
mode with ARA (either sequentially or with the same var_metric value for
everybody).

If you have an option that depends on another one in a given configuration
file (i.e, 'musiconhold’ depending on ’agent’ from agents.conf) but their var_-
metric are not sequential you’ll probably get default values being assigned
for those options instead of the desired ones. You can still use the same
var_metric for all entries in your DB, just make sure the entries are recorded
in an order that does not break the option dependency.

That doesn’t happen when you use a static file in the file system. Al-
though this might be interpreted as a bug or limitation, it is not.

Realtime SIP friends

The SIP realtime objects are users and peers that are loaded in memory
when needed, then deleted. This means that Asterisk currently can’t handle
voicemail notification and NAT keepalives for these peers. Other than that,

29

www.unixodbc.org
www.unixodbc.org
svn.digium.com
svn.digium.com

most of the functionality works the same way for realtime friends as for the
ones in static configuration.

With caching, the device stays in memory for a specified time. More
information about this is to be found in the sip.conf sample file.

If you specify a separate family called "sipregs” SIP registration data will
be stored in that table and not in the ”sippeers” table.

Realtime H.323 friends

Like SIP realtime friends, H.323 friends also can be configured using dynamic
realtime objects.

New function in the dial plan: The Realtime Switch

The realtime switch is more than a port of functionality in v1.0 to the new
architecture, this is a new feature of Asterisk based on the ARA. The real-
time switch lets your Asterisk server do database lookups of extensions in
realtime from your dial plan. You can have many Asterisk servers sharing a
dynamically updated dial plan in real time with this solution.

Note that this switch does NOT support Caller ID matching, only exten-
sion name or pattern matching.

Capabilities

The realtime Architecture lets you store all of your configuration in databases
and reload it whenever you want. You can force a reload over the AMI,
Asterisk Manager Interface or by calling Asterisk from a shell script with
asterisk -rx "reload”
You may also dynamically add SIP and TAX devices and extensions and
making them available without a reload, by using the realtime objects and
the realtime switch.

Configuration in extconfig.conf

You configure the ARA in extconfig.conf (yes, it’s a strange name, but is was
defined in the early days of the realtime architecture and kind of stuck).

The part of Asterisk that connects to the ARA use a well defined family
name to find the proper database driver. The syntax is easy:

30

<family> => <realtime driver>,<db name>[,<table>]

The options following the realtime driver identified depends on the driver.
Defined well-known family names are:

e sippeers, sipusers - SIP peers and users

e iaxpeers, iaxusers - IAX2 peers and users
e voicemail - Voicemail accounts

e queues - Queues

e queue_members - Queue members

e cxtensions - Realtime extensions (switch)

Voicemail storage with the support of ODBC described in file docs/
odbcstorage.tex ((11.1)).

Limitations

Currently, realtime extensions do not support realtime hints. There is a
workaround available by using func_odbc. See the sample func_odbc.conf for
more information.

FreeTDS supported with connection pooling

In order to use a FreeTDS-based database with realtime, you need to turn
connection pooling on in res_odbc.conf. This is due to a limitation within
the FreeTDS protocol itself. Please note that this includes databases such as
MS SQL Server and Sybase. This support is new in the current release.

2.2.2 FreeTDS

The cdr_tds module now works with most modern release versions of FreeTDS
(from at least 0.60 through 0.82). Although versions of FreeTDS prior to 0.82
will work, we recommend using the latest available version for performance
and stability reasons.

The latest release of FreeTDS is available from http://www.freetds.org/

31

2.3 Privacy

So, you want to avoid talking to pesky telemarketers/charity seekers/poll
takers/magazine renewers/etc?

2.3.1 First of all

the FTC "Don’t call” database, this alone will reduce your telemarketing call
volume considerably. (see: https://www.donotcall.gov/default.aspx) But,
this list won’t protect from the Charities, previous business relationships, etc.

2.3.2 Next, Fight against autodialers!!

Zapateller detects if callerid is present, and if not, plays the da-da-da tones
that immediately precede messages like, "I'm sorry, the number you have
called is no longer in service.”

Most humans, even those with unlisted /callerid-blocked numbers, will not
immediately slam the handset down on the hook the moment they hear the
three tones. But autodialers seem pretty quick to do this.

I just counted 40 hangups in Zapateller over the last year in my CDR’s.
So, that is possibly 40 different telemarketers/charities that have hopefully
slashed my back-waters, out-of-the-way, humble home phone number from
their lists.

I highly advise Zapateller for those seeking the nirvana of ”privacy”.

2.3.3 Next, Fight against the empty CALLERID!

A considerable percentage of the calls you don’t want, come from sites that
do not provide CallerID.

Null callerid’s are a fact of life, and could be a friend with an unlisted
number, or some charity looking for a handout. The PrivacyManager appli-
cation can help here. It will ask the caller to enter a 10-digit phone number.
They get 3 tries(configurable), and this is configurable, with control being
passed to next priority where you can check the channelvariable PRIVA-
CYMGRSTATUS. If the callerid was valid this variable will have the value
SUCCESS, otherwise it will have the value FAILED.

PrivacyManager can’t guarantee that the number they supply is any good,
tho, as there is no way to find out, short of hanging up and calling them back.

32

https://www.donotcall.gov/default.aspx

But some answers are obviously wrong. For instance, it seems a common
practice for telemarketers to use your own number instead of giving you
theirs. A simple test can detect this. More advanced tests would be to look
for -555- numbers, numbers that count up or down, numbers of all the same
digit, etc.

PrivacyManager can be told about a context where you can have patterns
that describe valid phone numbers. If none of the patterns match the input,
it will be considered a non-valid phonenumber and the user can try again
until the retry counter is reached. This helps in resolving the issues stated
in the previous paragraph.

My logs show that 39 have hung up in the PrivacyManager script over
the last year.

(Note: Demanding all unlisted incoming callers to enter their CID may
not always be appropriate for all users. Another option might be to use call
screening. See below.)

2.3.4 Next,use a WELCOME MENU !

Experience has shown that simply presenting incoming callers with a set of
options, no matter how simple, will deter them from calling you. In the vast
majority of situations, a telemarketer will simply hang up rather than make
a choice and press a key.

This will also immediately foil all autodialers that simply belch a message
in your ear and hang up.

Example usage of Zapateller and PrivacyManager

[homeline]
exten => s,1,Answer
exten => s,2,SetVar,repeatcount=0
exten => s,3,Zapateller,nocallerid
exten => s,4,PrivacyManager
;; do this if they don’t enter a number to Privacy Manager

exten => s5,5,GotoIf($["${PRIVACYMGRSTATUS}" = "FAILED"]7s,105)

exten => s,6,GotoIf($["${CALLERID(num)}" = "7773334444" & "${CALLERID(name)}" : "Privacy Manager"]7callerid-liar,
exten => s,7,Dial(SIP/yourphone)

exten => s,105,Background(tt-allbusy)

exten => s,106,Background(tt-somethingwrong)

exten => s,107,Background(tt-monkeysintro)

exten => s,108,Background(tt-monkeys)

exten => s,109,Background(tt-weasels)

v

exten s,110,Hangup

33

I suggest using Zapateller at the beginning of the context, before anything
else, on incoming calls. This can be followed by the PrivacyManager App.

Make sure, if you do the PrivacyManager app, that you take care of the
error condition! or their non-compliance will be rewarded with access to the
system. In the above, if they can’t enter a 10-digit number in 3 tries, they get
the humorous "I'm sorry, but all household members are currently helping
other telemarketers...”, ”something is terribly wrong”, ” monkeys have carried
them away...”, various loud monkey screechings, ”weasels have...”, and a
hangup. There are plenty of other paths to my torture scripts, I wanted to
have some fun.

In nearly all cases now, the telemarketers/charity-seekers that usually get
thru to my main intro, hang up. I guess they can see it’s pointless, or the
average telemarketer/charity-seeker is instructed not to enter options when
encountering such systems. Don’t know.

2.3.5 Next: Torture Them!

I have developed an elaborate script to torture Telemarketers, and enter-
tain friends. (Seehttp://www.voip-info.org/wiki-Asterisk+Telemarketer+
Torture)

While mostly those that call in and traverse my teletorture scripts are
those we know, and are doing so out of curiosity, there have been these
others from Jan 1st,2004 thru June 1st, 2004: (the numbers may or may not
be correct.)

e 603890zzzz — hung up telemarket options.
e "Integrated Sale” — called a couple times. hung up in telemarket options

e "UNITED STATES GOV” — maybe a military recruiter, trying to lure
one of my sons.

e 800349zzzz — hung up in charity intro

e 800349zzzz — hung up in charity choices, intro, about the only one who
actually travelled to the bitter bottom of the scripts!

e 216377zzzz — hung up the magazine section

34

http://www.voip-info.org/wiki-Asterisk+Telemarketer+Torture
http://www.voip-info.org/wiki-Asterisk+Telemarketer+Torture

e 626757zzzz. = "LIR 7 (pronounced "Liar”?) hung up in telemarket

intro, then choices

e 757821zzzz — hung up in new magazine subscription options.

That averages out to maybe 1 a month. That puts into question whether
the ratio of the amount of labor it took to make the scripts versus the benefits
of lower call volumes was worth it, but, well, I had fun, so what the heck.

but, that’s about it. Not a whole lot. But I haven’t had to say "NO” or
"GO AWAY” to any of these folks for about a year now ...!

2.3.6 Using Call Screening

Another option is to use call screening in the Dial command. It has two main
privacy modes, one that remembers the CID of the caller, and how the callee
wants the call handled, and the other, which does not have a ”memory”.

Turning on these modes in the dial command results in this sequence of
events, when someone calls you at an extension:

1.

d.

The caller calls the Asterisk system, and at some point, selects an
option or enters an extension number that would dial your extension.

. Before ringing your extension, the caller is asked to supply an intro-

duction. The application asks them: ” After the tone, say your name”.
They are allowed 4 seconds of introduction.

. After that, they are told "Hang on, we will attempt to connect you

to your party. Depending on your dial options, they will hear ringing
indications, or get music on hold. I suggest music on hold.

Your extension is then dialed. When (and if) you pick up, you are told
that a caller presenting themselves as <their recorded intro is played>
is calling, and you have options, like being connected, sending them to
voicemail, torture, etc.

You make your selection, and the call is handled as you chose.

There are some variations, and these will be explained in due course.
To use these options, set your Dial to something like:

35

exten => 3,3,Dial(DAHDI/5r3&DAHDI/6r3,35,tmPA(beep))
or

exten => 3,3,Dial (DAHDI/5r3&DAHDI/6r3,35,tmP (something)A(beep))
or

exten => 3,3,Dial (DAHDI/5r3&DAHDI/6r3,35,tmpA(beep))

The ’t’ allows the dialed party to transfer the call using #’. It’s optional.

The 'm’ is for music on hold. I suggest it. Otherwise, the calling party
gets to hear all the ringing, and lack thereof. It is generally better to use
Music On Hold. Lots of folks hang up after the 3rd or 4th ring, and you
might lose the call before you can enter an option!

The 'P” option alone will database everything using the extension as a
default ’tree’. To get multiple extensions sharing the same database, use
P(some-shared-key). Also, if the same person has multiple extensions, use
P(unique-id) on all their dial commands.

Use little 'p’ for screening. Every incoming call will include a prompt for
the callee’s choice.

the A(beep), will generate a 'beep’ that the callee will hear if they choose
to talk to the caller. It’s kind of a prompt to let the callee know that he has
to say ’hi’. It’s not required, but I find it helpful.

When there is no CallerID, P and p options will always record an in-
tro for the incoming caller. This intro will be stored temporarily in the
/var/lib/asterisk/sounds/priv-callerintros dir, under the name NO-
CALLERID _<extension> <channelname> and will be erased after the callee
decides what to do with the call.

Of course, NOCALLERID is not stored in the database. All those with
no CALLERID will be considered ”Unknown”.

2.3.7 The’N’ and ’n