
Pyvox Reference Manual
Release 0.66

Paul Hughett

March 6, 2002

Contents

1 Introduction 3
1.1 Overview of Pyvox . 3
1.2 Design Goals . 4

1.2.1 Medical Image Processing 4
1.2.2 Rapid Prototyping . 4
1.2.3 Efficient Execution . 4
1.2.4 Software Portability 4
1.2.5 Data Portability . 5
1.2.6 Open-Source Development 5

1.3 Architecture . 5
1.4 Capabilities . 6
1.5 Current Status . 7
1.6 Distribution . 7
1.7 Open Source Licensing . 8
1.8 Support . 8
1.9 How to Contribute . 8

2 Programming with Pyvox 10
2.1 Data Types . 10

2.1.1 Internal Numeric Types 10
2.1.2 External Numeric Types 10
2.1.3 Pyvox Arrays . 12
2.1.4 Array Slices . 13
2.1.5 Affine Transforms . 14
2.1.6 Neighborhood Kernels 14
2.1.7 Objects . 14

2.2 Programming Conventions . 15
2.2.1 Coordinate Systems . 15

1

2.2.2 Uninterpreted (Raw) Data 16
2.2.3 Image Data . 16
2.2.4 Points and Vectors . 16
2.2.5 Matrices . 17
2.2.6 Histograms . 17

3 Theory 18
3.1 Cubic Spline Transform . 18

4 Pyvox Reference 19
4.1 Listing by Category . 20

4.1.1 Pyvox Modules . 20
4.1.2 Pyvox Types and Classes 20
4.1.3 Data Export and Import 20
4.1.4 Image Display . 20
4.1.5 Array Creation . 20
4.1.6 Basic Array Manipulations 21
4.1.7 Type Conversions . 21
4.1.8 Arithmetic and Boolean Operations 22
4.1.9 Elementary Functions 23
4.1.10 Other Elementwise Operations 23
4.1.11 Array Reduction Operations 23
4.1.12 Array and Image Metrics 24
4.1.13 Matrix Operations . 24
4.1.14 Neighborhood Operations 24
4.1.15 Statistical Operations 25
4.1.16 Voxel Classification . 25
4.1.17 Other Image Operations 25
4.1.18 Affine Transforms . 26
4.1.19 Interpolation and Resampling 26
4.1.20 Image Registration . 27
4.1.21 Optimization . 27
4.1.22 Graphics and Drawing 27

4.2 Full Descriptions . 28

5 Application Reference 65
5.1 Data File Formats . 65
5.2 Applications . 66

2

6 Installation 67
6.1 Prerequisites . 67

6.1.1 ANSI C Compiler . 67
6.1.2 X and Motif . 67
6.1.3 LAPACK and BLAS 68
6.1.4 Python . 68
6.1.5 Miscellaneous . 68

6.2 Procedure . 69
6.3 Upgrading Old Installations 70
6.4 Particular Systems . 70

6.4.1 Linux . 70
6.4.2 Solaris . 71

6.5 Configuration Options . 71
6.6 Make Targets . 73

7 Implementation 74
7.1 Some History . 74
7.2 Design Decisions and Rationale 75

7.2.1 Target Audience . 75
7.2.2 Target Platform . 76
7.2.3 Open Source License 76
7.2.4 Large Images . 77
7.2.5 Image Operations . 77
7.2.6 Focus on the Core Engine 78
7.2.7 Installation Prerequisites 78
7.2.8 Moderate Portability 78
7.2.9 Efficiency Tradeoffs . 79
7.2.10 Parallel Processing . 80
7.2.11 Data Typing . 80
7.2.12 Limited Number of New Types 80
7.2.13 Short Function Names 81
7.2.14 External Data Formats 81
7.2.15 Internal Data Formats 81
7.2.16 C . 82
7.2.17 Python . 82
7.2.18 LaTeX . 83
7.2.19 LAPACK and BLAS 83
7.2.20 Vectorization over Rows 83

3

7.2.21 FIXME Notes . 84
7.2.22 Signed Sizes and Indices 85

7.3 Open Issues . 85
7.3.1 Error Handling . 85
7.3.2 Image Objects . 85
7.3.3 Image Views . 85
7.3.4 Huge Images . 85
7.3.5 64-bit Platforms . 85

7.4 Development Prerequisites . 85
7.5 Directory Layout . 86
7.6 Architecture and Code Organization 87

7.6.1 Voxel Kit . 87
7.6.2 Pyvox . 87
7.6.3 BIPS . 87
7.6.4 Exim . 88
7.6.5 Numerical Methods . 88
7.6.6 Language Extensions 88
7.6.7 Applications . 88
7.6.8 Examples . 89
7.6.9 Test Scripts . 89

7.7 Make Targets . 89
7.8 Coding Style . 90

7.8.1 Rationale . 90
7.8.2 The Rules . 90
7.8.3 The Old Regime . 95

7.9 Coding Issues . 96
7.9.1 Bugs in Python 1.5.2 96
7.9.2 Upcalls . 97
7.9.3 The /usr/bin/env Hack 97
7.9.4 Inlineable Functions 97
7.9.5 Solaris isalpha Bug . 98
7.9.6 getsubopt Bug . 98

7.10 Release Checklist . 99

4

List of Tables

2.1 Internal numeric types . 11
2.2 External numeric types . 11

5

Chapter 1

Introduction

1.1 Overview of Pyvox

BBLimage is a set of software tools for medical image processing, particu-
larly skull stripping and segmentation of MR brain images; tools to support
other applications may be added later. These tools are intended to support
researchers who need to prototype new image analysis algorithms or to de-
velop automated image analysis tools for specific image analysis applications.
The sequence of processing operations is specified through a scripting lan-
guage which can be used interactively or in command files; the language used
is an extension of Python.

The BBLimage package contains both Pyvox, an extension to the Python
language written in C and designed for efficient processing of volume images,
and a collection of older command-line programs written directly in C. Pyvox
has proven both efficient and easy to use and is the main current line of
development; the older C language programs are vestigial and will probably
be replaced by scripts using Pyvox as development proceeds.

Important design criteria for BBLimage and Pyvox include: script files
and data files are portable across multiple Unix platforms, including Linux;
suitable for rapid prototyping of new algorithms and analysis protocols; suit-
able for efficient, automated processing of the finished analysis protocols; and
easily extensible by programmers outside the original development team.

BBLimage is being distributed under an Open Source license which per-
mits free use, modification, and redistribution provided that proper credit is
given.

6

1.2 Design Goals

BBLimage is a set of software tools being developed for medical image pro-
cessing with a particular emphasis on brain masking and segmentation of
magnetic resonance brain images; tools to support other applications may
be added later. These tools are intended to support researchers who need
to prototype new image analysis algorithms or to develop automated im-
age analysis tools for specific image analysis applications. The particular
sequence of processing operations is specified through a scripting language
which can be used interactively or in command files; the language used is an
extension of Python.

1.2.1 Medical Image Processing

BBLimage is designed primarily for medical image processing, because that
is what the author needs to do most; other applications of volume images
are no doubt possible, but their needs come second.

1.2.2 Rapid Prototyping

BBLimage should be suitable for rapid prototyping of new algorithms and
analysis protocols. To do this, BBLimage is implemented as a extension
to the Python language. Python is a high-level object-oriented scripting
language which can be used interactively or in programmed scripts and which
is designed to be easily extensible in C.

1.2.3 Efficient Execution

BBLimage should also be suitable for efficient, automated processing of the
finished analysis protocols. To do this, the actual image processing functions
are written in C, which is more efficient than Python.

1.2.4 Software Portability

The script files that define the analysis protocols and the programs that they
invoke should be portable across multiple Unix platforms (including Linux).
To meet this requirement, BBLimage is written to comply with the usual
standards, including ANSI C, Posix, and the X Window System.

7

1.2.5 Data Portability

The image files and other data files should also be portable across multi-
ple Unix platforms. In particular, it should be possible to create an image
file on a big-endian machine (e.g. Sparc), copy it to a little-endian machine
(e.g. Pentium), and further process that image without needing to do any
conversion of the file. This is accomplished through a set of portable C func-
tions that can read and write data in specified external formats, converting
as necessary to or from the platform-native format.

1.2.6 Open-Source Development

BBLimage should also be easily extensible by programmers outside the orig-
inal development team. This is accomplished by following good software
engineering practice in documenting the software for later maintenance and
extensions.

1.3 Architecture

In order to be both efficient and easy to use, BBLimage is designed using
a layered approach. The top layer is Pyvox, an image processing extension
to the Python programming language. Image analysis scripts are written in
Python and work with functions and objects defined by Pyvox. Code at this
level is inefficient but usually accounts for only a tiny fraction of the total
run time.

The middle layer consists of the Voxel Kit, which is a collection of C-
callable functions for high-level image processing operations such as convo-
lution, object extraction, and statistical analysis. Many of these functions
are made directly available to the user through Pyvox; others are used only
internally. These functions can also be called from C programs; access from
languages other than C and Python is possible, but may require writing a
set of wrapper functions.

The bottom layer consists of BIPS, the basic image processing subrou-
tines, which are a relatively small set of C functions for elementary image
processing functions such as image arithmetic and are written for high ef-
ficiency; if needed, these subroutines can be hand optimized for a specific
platform. For those familiar with numerical linear algebra, the relationship
between the Voxel Kit and BIPS is essentially the same as between LAPACK

8

and BLAS. BIPS probably accounts for 95% or more of the total run time,
so efficiency improvements here have a dramatic effect.

In addition, the quick diagnostic viewer (qdv) provides interactive exam-
ination of image files and is implemented using Motif and the X Window
System.

1.4 Capabilities

BBLimage is designed to work directly with multi-dimensional image data
(up to 8 dimensions) in signed integer, unsigned integer, and floating point
formats from 1 to 8 bytes long. Currently supported operations on such
arrays include:

• Reading or writing image files in signed integer, unsigned integer, and
floating point formats, both big and little endian. For data portability,
external files are always written in some specified external format (e.g.
big-endian 2-byte two’s complement integer or big-endian 4-byte IEEE
754 float), and converted to or from the native format as necessary.

• Image arithmetic, including boolean operators, comparison, transce-
dental functions, table lookup, and min/max.

• Image resampling to new coordinate systems.

• The morphological operations erode and dilate.

• Univariate and bivariate histograms.

• K-means and nearest neighbor classification.

• Object extraction, where an object is defined as a maximal connected
set of voxels.

• Convolution and linear filtering.

• A basic set of matrix operations.

• Interactive image viewing along any coordinate axis with intensity win-
dowing and selection of data format (which is also useful for determin-
ing the format of a unknown image file).

9

Additional capabilities will be added as determined by the needs of BBLim-
age users. Some areas that are currently under consideration include:

• Improved masking and segmentation algorithms, including handling of
shading and partial volume effects.

• Interactive and automated image registration.

• Fourier transforms.

• Tools for validating brain masking and segmentation algorithms.

• Interactive modification of images, especially for manual correction of
not-quite-correct automatically masked and segmented images.

1.5 Current Status

BBLimage is still under development, which means that the interface is sub-
ject to change without notice when we discover a better way of doing things.
Those who want to use it for brain research will need to take care to main-
tain some stable version themselves and to beware of bugs. We will try to
ensure that the NEWS file in the distribution kit will identify any incompat-
ible changes between versions, but you should expect to have to periodically
modify old scripts for compatibility with newer versions of BBLimage. Once
we reach version 1.0, we will try to keep the interface stable. The “Open
Issues” section in the Implementation chapter indicates some areas in which
changes are likely.

1.6 Distribution

BBLimage is being distributed under an Open Source license which permits
free use, modification, and redistribution provided that proper credit is given.
There is no warranty. The file COPYING gives the precise license, which is
a variant of the BSD license. People who fix bugs or make generally useful
improvements are requested to send the modifications back to the author to
be folded into the master copy.

Prerequisites for this software include an ANSI C compiler, make, POSIX
libraries, the X Window System, and Python binaries and header files. The

10

software is known to compile with gcc for both Linux on Intel and Solaris on
Sparc. Porting to other compilers and Unix platforms should be straightfor-
ward.

BBLimage is still preliminary, alpha software, although there is now
enough functionality to support some practical applications. The source
code is available from the BBL website at http://www.med.upenn.edu/bbl
in the Publications and Downloads section.

1.7 Open Source Licensing

We are distributing this code under an open source license (which permits
free modification and distribution) for several reasons. First, we believe that
software is a form of scientific knowledge and that science advances most
rapidly when we can build on each other’s work rather than re-implementing
the wheel. We hope that the people who find our software useful will recip-
rocate by contributing bug fixes and other improvements to be folded back
into our master copy for future releases. Second, we find that we write bet-
ter software when we expect that dozens of people will be reading our code
than when we are writing just for ourselves. Finally, we would rather spend
our time doing science rather than trying to monitor and enforce a more
restrictive license.

1.8 Support

BBLimage comes with absolutely NO warranty or support. Nevertheless, it
is currently being maintained by Paul Hughett

<hughett@bbl.med.upenn.edu> ,

who will simulate pleasure at receiving bug reports and who might actually
even do something about them. Bug fixes and other improvements are really
welcome.

1.9 How to Contribute

If you have found BBLimage useful and would like to contribute to its further
development, there are several things that you can do, most of which will get

11

your name added to the Credits file:
1. Use BBLimage in a research project and let us know how it worked

for you.
2. Use the programs and send us bug reports so that we can fix the bugs

in future editions.
3. Fix the bugs yourself, and send us the fixes to be included in future

editions.
4. Port BBLimage to another platform, and send us the changes that you

had to make to get it to work. If it didn’t need any changes, tell us so we
can pat ourselves on the back for writing really portable software.

5. Think of some feature that BBLimage really needs, and implement it.
Send us the code and documentation.

12

Chapter 2

Programming with Pyvox

2.1 Data Types

2.1.1 Internal Numeric Types

Pyvox supports essentially all of the numeric types provided by C. (The sole
exception is plain char; both signed and unsigned char are supported, how-
ever.) The properties of these types are inheritied from the C implementation
underlying Pyvox, including their length and arithmetic behavior. Table 2.1
gives the type names defined in the exim module for these types.

2.1.2 External Numeric Types

The exim module defines a set of external data types which describe the
format of numeric data stored in files or other external media, and provides
tools for converting these external representations to suitable internal nu-
meric types. Each of these external types can be stored in either big- or
little-endian byte order; the choice of byte order is specified by a separate
flag. A byte is assumed to be exactly 8 bits. Table 2.2 shows the external
types that are currently defined; it is possible to add others, but these have
been found sufficient for the present.

13

Table 2.1: Internal numeric types

Pyvox name C name Description
none Undefined or unspecified type
uchar unsigned char
ushort unsigned short
uint unsigned int
ulong unsigned long
schar signed char
short (signed) short
int (signed) int
long (signed) long
float float
double double
complex float[2] Real, imag pair of floats
dcomplex double[2] Real, imag pair of doubles

Table 2.2: External numeric types

Name Length Description
uint1 1 Unsigned integer
uint2 2 Unsigned integer
uint4 4 Unsigned integer
int1 1 Two’s complement signed integer
int2 2 Two’s complement signed integer
int4 4 Two’s complement signed integer
float4 4 IEEE-754 floating point
float8 8 IEEE-754 floating point
complex8 8 Real, imag pair of float4s
complex16 16 Real, imag pair of float8s

14

2.1.3 Pyvox Arrays

The Pyvox array is the principal data type used within Pyvox; it is a homo-
geneous multi-dimensional array of one of the internal data types listed above.
The type of the array, is the internal data type stored in the array. The
number of dimensions, or rank, ranges from zero to eight inclusive. The
dimensions themselves are presented as a tuple of numbers, each giving the
size of the array along one axis. The coordinates along each axis begin at zero
and range up to (but not including) the dimension along that axis. The data
elements are stored sequentially, with the last index varying most rapidly.
By convention, the last three axes are typically known as the slice, row, and
column and denoted z, y, and x. A multi-band image is often stored with
the band indexed along the last axis; for example, a three-dimensional RGB
image would usually be stored with indices slice, row, column, and band in
that order. The type, rank, and dimensions of a Pyvox array are all available
as read-only attributes of the array.

The origin attribute of a Pyvox array gives the physical coordinates
corresponding to the voxel indexed by (0, 0, . . .); the space attribute gives
the physical distance between successive elements on each axis. Both the
origin and space attributes may be read and set. If any space value is set
to zero, it indicates that the physical spacing is unknown or not meaningful;
for example, the spacing along the red/green/blue axis should be set to zero.
If no particular physical coordinates are defined, then origin should be set
to zero, and space to all ones. The total number of elements in the array
may be accessed through the Python function len().

The rank of a Pyvox array may be zero, in which case the array is called
a scalar array. A scalar array always contains exactly one element, which is
indexed by an empty subscript list. As of Python 1.5.2, however, a empty
subscript list is not allowed; as a workaround, a scalar array will accept (and
ignore) a single subscript. A Pyvox array of any rank that contains only a
single element is known as a singleton. In most contexts where a value is
required, a scalar or singleton array acts as if it were a number.

Any desired element of a Pyvox array can be accessed or assigned to using
the subscript notation. For example, a[0,1,2] evaluates to the element
at slice 0, row 1, column 2 of a three-dimensional array; assigning to the
same expression will alter the value of that element. Using the subscript
expression as an argument to a subroutine will pass the value of the element
to the subroutine; assigning to the corresponding formal argument in the

15

subroutine will not affect the array. (This is consistent with the passing of
list elements to subroutines.)

FIXME: Should there be some way to pass a reference to the element
to a subroutine? Perhaps a way to create a singleton array slice which is
distinguishable from a plain number?

The array type is conventionally used to represent certain types of data,
including monochrome and RGB images, points, vectors, histograms, and
matrices; these are discussed under Conventions.

2.1.4 Array Slices

An array slice is a subset of a Pyvox array obtained by selecting only cer-
tain index values along each axis. The permissible forms for each axis are
a single number; a list or tuple of numbers; or a slice object in the form
init:limit:stride. If the stride is omitted, it defaults to 1. If the init value is
omitted, it defaults to zero. If the limit is omitted, it defaults to the length
of that dimension. The colon used alone means all the indices along the
given axis. In addition, the ellipsis object “...” may be used once in a
subscript list to indicate that all index values from the unspecified axes are
to be selected.

There are some special cases that the user should be aware of. If A and B

are Pyvox arrays, then A[...] = B assigns the elements of B to A, without
changing the shape of A, provided that the number of elements in B is the
same as the number of elements of A. Using A[...] as an expression yields a
copy of A, retaining the shape and contents. Logically, if A is a scalar, or zero
rank array, then subscripting with no arguments, or A[], should yield the
number contained in A; Python (1.5.2, anyway) is not so logical, so Pyvox
allows you to provide any subscript to a scalar array, and ignores it.

FIXME: The implementation of array slices is currently in flux. Eval-
uating an array slice, or assigning to one will behave correctly. However,
passing one as a subroutine argument passes a copy of the slice rather than
a reference to it, as is done for lists and other mutable objects. This can be
expected to change in future releases, with array slices becoming first-class
objects.

FIXME: The semantics of reversed slice objects (limit less than init, or
stride less than zero) is not well defined in Python or Pyvox. Expect the
behavior of such slices to change, or at least be more carefully specified, in
the future.

16

2.1.5 Affine Transforms

An affine transform is a mapping of the form y = Ax+ b where A is a matrix
and b is a vector; that is, it is a linear transform plus a constant offset.
An affine transform is represented within Pyvox as its own class, containing
the matrix A and the offset b. Points to be transformed are represented
by column vectors as Pyvox arrays. The difference between two points is a
vector and transforms as v = Au; the distinction corresponds to two different
methods in the affine transform class.

Affine transforms may be composed to yield another affine transform.
The order is significant; we will say that A is precomposed with B if they
are applied to a point in the order A then B. Conversely, A is postcomposed
with B if B is applied first, then A. A flag argument is used to indicate
whether to pre- or postcompose; it defaults to postcomposition.

2.1.6 Neighborhood Kernels

A neighborhood kernel (or just kernel) is used to specify the neighboring
voxels and coefficients used in a convolution; more generally, it is also used
to specify the neighborhood in other neighborhood operations such as dila-
tion and erosion. The rank of a kernel is the number of dimensions. The
count of a kernel is the number of voxels in the neighborhood defined by the
kernel, possibly including the center voxel. Each neighbor is associated with
a coefficient, which convolution multiplies by the value at the neighbor. The
position of each neighbor is given by a delta, which is a list of coordinate
offsets relative to the center voxel. The bias is a number, which is added to
the sum computed by convolution; it can be used to offset the convolution
output to fit within a desired range.

FIXME: Check which of these attributes are read-only or read/write.

2.1.7 Objects

Pyvox provides tools for extracting the objects in a 3D image, where an object
is defined as a maximal connected set of non-zero voxels (where each voxel is
considered to be connected to its 26 nearest neighbors). The implementation
of object extraction in the Voxel Kit is relatively complete, and each object
is defined by an id, a canonical id, a point on the object, and a count of
voxels contained in the object. The implementation at the Pyvox level is

17

incomplete, and all you can get is a mask showing the voxels contained in
the largest object; the issue has been to decide exactly how to represent
objects within Pyvox.

Most fast algorithms for finding objects in an image have the characteris-
tic that they sometimes assign different id numbers to two apparently distinct
objects that are later found to be parts of the same object. When this hap-
pens, one object id is taken as canonical and the canon field of the other
is set to this canonical id; furthermore, the count field of the non-canonical
object is added to that of the canonical object and then set to zero. The
canonical object number is distinguished by the fact that its canon field is
equal to its ident field. The point coordinates of the non-canonical object
are left unchanged, although it’s not clear that they are useful for anything.
The ident (and canon) fields are limited to the size of unsigned short to
facilitate later table lookup on object idents. If you have more than 65535
objects in an image, you’re out of luck, at least with the current version of
Pyvox. Ident 0 is always reserved for the background.

FIXME: find a less overloaded name for these? Perhaps blob?
FIXME: The information needed to compute the moments would also be

useful, as would a set of run-length codes giving the voxels in the object.

2.2 Programming Conventions

This section describes some conventions which are not required by Pyvox,
but which are normally used; in particular, these conventions are used in
describing the various functions and methods provided.

2.2.1 Coordinate Systems

Following the usual convention in C (which differs from Fortran), multi-
dimensional arrays are stored with the last coordinate varying most rapidly.
A set of voxels for which the last coordinate is constant is called a row, and
a set for which the last two coordinates are constant is called a slice; there
isn’t any established name for larger aggregates. The last three coordinates
are called z, y, and x in that order; note carefully that this differs from the
usual mathematical convention.

Pyvox arrays typically represent a rectangular sampling of some physical
property and specify the origin and spacing of the samples in some physical

18

coordinate system; the origin and spacing may be set to zero and one when
the physical coordinate system is unknown. An array element may be referred
to using either its array indices or its physical coordinates. The first of these
is defined as “index” coordinates, and the second as “physical” coordinates.

2.2.2 Uninterpreted (Raw) Data

Data which has been read from a file but not yet interpreted as useful data
is usually represented by a rank-1 array of type unsigned char; that is, as
raw binary data. For example, an image viewer might read an image file of
unknown format as raw data and allow the user to interactively experiment
with different interpretation until he finds the one that works. The functions
in exim provide the means for interpreting raw data as integers, floats, or
whatever.

2.2.3 Image Data

Images which contain a single echo or band of information per pixel are
conventionally stored as Pyvox arrays of the appropriate rank and type.
In most cases, it is appropriate to set the origin and space attributes to
indicate the relationship between index coordinates and physical coordinates.

Images which contain multiple echoes or bands per pixel are convention-
ally stored with the last dimension running over the defined bands; note that
this does require that all bands be representable in the same data format.
In particular, RGB images are usually stored in unsigned char or unsigned
short arrays with the last dimension equal to three and running over the red,
green, and blue components.

2.2.4 Points and Vectors

The canonical representation of a geometrical point or vector in n dimensions
is an n×1 column vector of type double containing its (physical) coordinates,
but most functions and methods that expect points will also accept a row
vector, 1-dimensional array, list, or tuple containing numbers of any type
whenever its meaning is unambiguous.

There are a few instances, notably in the affine transforms, where it is
necessary to distinguish between points and vectors; the distinction is that

19

a vector is considered to be the difference of two points and is affected only
by the matrix part of an affine transform.

2.2.5 Matrices

The canonical representation of a matrix (or linear transform) is an n ×
m array of type double using physical coordinates, but most functions and
methods that expect matrices will also accept a two-dimensional array of any
numeric type, or nested tuples and lists. For example, the matrix

[
1 2
3 4

]

could be represented by the nested lists [[1,2], [3,4]].

2.2.6 Histograms

The histogram of an usigned char or short image is conventionally represented
as a 256- or 65536-element rank-1 array of type unsigned long; histograms of
other array types have not yet been implemented but will probably follow a
similar pattern.

20

Chapter 3

Theory

This chapter details the mathematical theory behind some of the more es-
oteric operations, primarily to establish the notation and its relationship to
the softare parameters; a full explanation is left to more tutorial texts. The
choice of topics in this chapter is selective, because I don’t have time to
explain all the background.

3.1 Cubic Spline Transform

Image warps are often defined within Pyvox using a coordinate transform
based on cubic Hermite splines. To fix notation, we suppose that such a
transform maps from an M -dimensional space to an N -dimensional space.
The spline is defined over a rectangular grid containing R0×R1×· · ·×RM−1

nodes in total. At each node r = (r0, r1, . . . , rM−1) of this grid is given an
offset br and matrix Ar which define the local affine transform at that node.

21

Chapter 4

Pyvox Reference

This chapter describes in detail the functions, methods, and attributes pro-
vided by Pyvox. The first section is a listing by category, which is useful
for finding the function that provided some desired capability; the second
section is in alphabetical order and provides a complete description.

Much of the functionality of Pyvox is provided by methods belonging to
objects of some given type or class, and invoked as an attribute of the object.
For instance, if affine is some expression which evaluates to an instance of an
affine transform, then affine.inverse() computes and returns the inverse of
that transform. Such methods are listed here under the name of the class or
type; in this example, affine.inverse(). Similarly, the italicized word array
indicates an expression which evaluates to a Pyvox array; kernel indicates a
Pyvox kernel.

Optional arguments are followed by an equal sign and the default value;
the value ??? means the default value is given in the description below.

FIXME: Keyword arguments should not be used until I have the chance
to ensure that the argument names used here are actually the same as those
used in the code.

22

4.1 Listing by Category

4.1.1 Pyvox Modules

Importable Pyvox Modules
exim Data export and import
optim Optimization functions and classes
pyvox Pyvox core types and functions
regis Image registration classes and functions

4.1.2 Pyvox Types and Classes

Pyvox Types and Classes
pyvox.AffineType Class object for an affine transform
pyvox.ArrayType Type of a Pyvox array
pyvox.KernelType Type of a Pyvox kernel

4.1.3 Data Export and Import

Data Export and Import
array.print() Print contents of a Pyvox array
array.write() Write contents of a Pyvox array
array.writeppm() Write Pyvox array as a PPM image file
pyvox.rawread() Read a Pyvox array from stream or file

4.1.4 Image Display

4.1.5 Array Creation

Array Creation
pyvox.array() Create an array from given data
pyvox.column() Create column vector from given data
pyvox.const() Create a constant array (deprecated)
pyvox.diag() Create a diagonal matrix from given data
pyvox.matrix() Create a rank-2 matrix from given data
pyvox.point() Create coordinate point from given data
pyvox.ramp() Create array with coordinate indices
pyvox.vector() Create rank-1 vector from given data

23

4.1.6 Basic Array Manipulations

Basic Array Manipulations
array[] Element or slice
array[] = expr Assign to element or slice
array.copy() Copy contents and attributes
array.count() Number of elements in an array
array.i2p() Index-to-physical transform
array.list() Elements as a Python list
array.origin Physical coordinates of origin
array.p2i() Physical-to-index transform
array.spacing Physical spacing of coordinate planes
array.rank Rank, or number of dimensions
array.refcnt Reference count
array.reshape() Change the shape of an array
array.size Dimensions of an array
array.tuple() Elements as a Python tuple
array.type Type of data in an array
len(array) Number of elements (Python bug!)

4.1.7 Type Conversions

Type Conversions
array.double() Convert to double
array.float() Convert to float
array.int() Convert to int
array.long() Convert to long
array.short() Convert to short
array.schar() Convert to signed char
array.uchar() Convert to unsigned char
array.uint() Convert to unsigned int
array.ulong() Convert to unsigned long
array.ushort() Convert to unsigned short

24

4.1.8 Arithmetic and Boolean Operations

Elementwise Arithmetic and Boolean Operations
-array Additive inverse
+array (Copy?)
array + array Addition
array - array Subtraction
array * array Multiplication
array / array Division
~array Bitwise negation
array & array Bitwise AND
array | array Bitwise OR
array ^ array Bitwise XOR
array.abs() Absolute value
abs(array) Absolute value (deprecated)
array.ceil() Ceiling
array.floor() Floor
array.max() Maximum of two arrays
array.min() Minimum of two arrays
array.compare() Comparison of two arrays

25

4.1.9 Elementary Functions

Elementary Functions
array.acos() Arc cosine
array.asin() Arc sine
array.atan() Arc tangent
array.atan2() Two-argument arc tangent
array.cos() Cosine
array.cosh() Hyperbolic cosine
array.exp() Exponential
array.log() Natural logarithm
array.log10() Logarithm to the base 10
array.pow() Power
array.sin() Sine
array.sinh() Hyperbolic sine
array.sqrt() Square root
array.tan() Tangent
array.tanh() Hyperbolic tangent

4.1.10 Other Elementwise Operations

Other Elementwise Operations
array.logcomp() Log intensity compression
array.lookup() Lookup table
array.scale() Scale by constant gain and bias

4.1.11 Array Reduction Operations

Reduction Operations
array.amax() Maximum value within array
array.amin() Minimum value within array
array.aprod() Product of array elements
array.asum() Sum of array elements
array.mean() Mean of elements along specified axes

26

4.1.12 Array and Image Metrics

Array and Image Metrics
array.dot() Vector dot product of two arrays
array.norm1() Vector 1-norm of an array
array.norm2() Vector 2-norm of an array
array.normsup() Vector sup-norm of an array
regis.info() Information content of an image
regis.mutinfo() Mutual information of two images

4.1.13 Matrix Operations

Matrix Operations
array.det() Determinant of a square matrix
array.diag() Extract diagonal elements of a matrix
array.eigsy() Solution of real symmetric eigensystem
array.inverse() Matrix inverse
array.mmul() Matrix multiplication
array.prinaxes() Principal axes transformation
array.solve() Solve the linear system AX = B
array.trans() Transpose of a matrix

4.1.14 Neighborhood Operations

Neighborhood Operations
array.convolve() Convolution with optional subsampling
array.dilate() Dilation
array.erode() Erosion
array.lostat() Local mean and variance
array.lowpass() Lowpass filter with optional subsampling
kernel.bias Bias term of a kernel
kernel.coef Coefficients of a kernel
kernel.count Number of neighbors in a kernel
kernel.delta Neighbor offsets for a kernel
kernel.rank Rank of a kernel
pyvox.kernel() Create a kernel

27

4.1.15 Statistical Operations

Statistical Operations
array.bihist() Bivariate histogram
array.histo() Univariate histogram
array.kmeans1() Train K-means classifier
array.lostat() Local mean and variance
array.mean() Mean of elements along specified axes
array.moments() Center of gravity and principal moments
array.mop() Arbitrary moments of a product of images
array.stat() Mean and standard deviation of elements
pyvox.monomials() Monomials of degree ≤ n in k literals
regis.info() Information content of an image
regis.mutinfo() Mutual information of two images

4.1.16 Voxel Classification

Voxel Classification
array.kmeans1() Compute K-means classifier
array.nnclass1() Univariate nearest neighbor classifier
array.nnclass2() Bivariate nearest neighbor classifier

4.1.17 Other Image Operations

Other Image Operations
array.bigob() Extract largest object in image
array.chamfer() Compute chamfer distance transform
array.zerbv() Zero boundary voxels

28

4.1.18 Affine Transforms

Affine Transforms
affine.addparam() Add vector of parameters to the transform
affine.compose() Compose with another affine transform
affine.compose2() Compose with given matrix and offset
affine.i2p() Compose with index-to-physical transform
affine.inverse() Inverse
affine.invert() Invert in place
affine.linear() Resample image with linear interpolation
affine.matrix Matrix part of affine transform
affine.nearest() Resample with nearest neighbor interpolation
affine.norm() Norm of an affine transform
affine.offset Constant part of affine transform
affine.p2i() Compose with physical-to-index transform
affine.param() Transform as a vector of parameters
affine.point() Transform a point
affine.rotate() Compose with a rotation
affine.rotate3d() Compose with a rotation around axis in 3-D
affine.scale() Compose with scale transform
affine.setparam() Set transform from a vector of parameters
affine.shear() Compose with elementary shear transform
affine.translate() Compose with translation
affine.vector() Transform a vector
pyvox.affine() Create an affine transformation

4.1.19 Interpolation and Resampling

Interpolation and Resampling
affine.linear() Resample image with linear interpolation
affine.nearest() Resample with nearest neighbor interpolation
array.linear() Linear interpolation within an image
array.nearest() Nearest neighbor interpolation in image

29

4.1.20 Image Registration

Image Registration
regis.obaffine Obfunction for affine registration
regis.obregis Generic obfunction for image registration
regis.obrigid Obfunction for rigid registration

4.1.21 Optimization

Optimization
optim.obfunction Base class for an objective function
optim.powell Powell direction set method

4.1.22 Graphics and Drawing

Graphics and Drawing
array.fill2d() Fill a 2D contour with a value

30

4.2 Full Descriptions

affine.addparam(parms)

Updates an affine transform by adding the contents of the vector parms to
the elements of the n×(n+1) matrix defining the affine transform, taking the
matrix elements in row-major order. This function is useful for optimization
algorithms that generate perturbations to an initial transform.

affine.compose(other, pre=0)

Updates affine to contain the composition of the affine transformations
affine and other ; returns the updated transform. If pre is 1, then precomposes
other with affine; if pre is 2 (or 0), then postcomposes other with affine; if
pre is −1, then precomposes the inverse of other with affine; if pre is −2,
then postcomposes the inverse of other with affine; any other value of pre is
an error.

affine.compose2(matrix, offset, pre=0)

Updates the affine transform affine by composing it with another affine
transform given by matrix and offset; returns the updated transform. The
value of pre determines the order in which the two transforms are composed;
see affine.compose() for the permitted values.

affine.i2p(origin, spacing, pre=0)

Updates affine by composing it with the index-to-physical transformation
given by origin and spacing; returns the updated transform. The value of
pre determines the order in which the two transforms are composed; see
affine.compose() for the permitted values.

31

affine.inverse()

Returns a new affine transform which is the inverse of the affine transform
affine.

affine.invert()

Updates affine to contain the inverse of the original transform; returns
the updated value.

affine.linear(image, dimen)

Resamples image through the affine transform given by affine to yield a
new Pyvox array with dimensions dimen and the same type as image. Linear
interpolation is used. The affine transform must be given as the destination-
to-source transform (not the source-to-destination transform that you might
naively expect) and must be given in index coordinates for both the source
and destination.

(There are actually two implementations of this method. The linear0

method is a reference implementation which is not particularly fast but which
is simple enough to be verified by inspection; the linear method is a faster
implementation which has been verified against the reference algorithm.)

affine.matrix

The matrix part of the affine transform, as a Pyvox array. This attribute
may be freely read, but setting it is not recommended.

affine.nearest(image, dimen)

Resamples image through the affine transform given by affine to yield a
new Pyvox array with dimensions dimen and the same type as image. Nearest
neighbor interpolation is used. The affine transform must be given as the
destination-to-source transform (not the source-to-destination transform that

32

you might naively expect) and must be given in index coordinates for both
the source and destination.

affine.norm(other=None, length=100)

Computes a simple norm on the vector space of affine transforms; the
computed norm is also the maximum sup-norm of the image of any point
with sup-norm not exceeding the given length. If other is given, the norm is
computed on the (vector) difference of self and other; as a special case, setting
other to 1 compares self to the identity transform. For the mathmatically
inclined, the norm is defined as

‖T‖ = max
r

(
|br|+ λ

∑

c

|Arc|
)

(4.1)

where T is an affine transform, λ is the specified length, A and b are the matrix
(or linear) and offset parts of T , and the indices r and c run over the rows and
columns of A. (The sup-norm rather than the Euclidean norm on the points
is used because the resulting norm on affine transforms is slightly faster to
compute.) Note that this norm does not behave properly for composition
and so is NOT an operator norm.

affine.offset

The constant offset part of the affine transform, as a Pyvox column vector.
This attribute may be freely read, but setting it is not recommended.

affine.p2i(origin, spacing, pre=0)

Updates affine by composing it with the physical-to-index transformation
given by origin and spacing; returns the updated transform. The value of
pre determines the order in which the two transforms are composed; see
affine.compose() for the permitted values.

33

affine.param()

Returns a vector containing the elements of the n×(n+1) matrix defining
the transform, taken in row-major order. This is useful for optimization
methods which work on vectors.

affine.point(x)

Transforms a point according to the given affine transform, returning a
new Pyvox array.

affine.rotate(i, j, angle, pre=0)

Updates affine by composing it with an elementary rotation of the form
x[i] = x[i] cos θ + x[j] sin θ and x[j] = −x[i] sin θ + x[j] cos θ; returns the
updated transform. The value of pre determines the order in which the two
transforms are composed; see affine.compose() for the permitted values.

affine.rotate3d(axis, angle, pre=0)

Updates affine by composing with a rotation around axis by the given
angle in radians. The axis is presumed to go through the origin, and a
positive angle is defined by the righthand rule. The value of pre determines
the order in which the two transforms are composed; see affine.compose()
for the permitted values.

affine.scale(coef, pre=0)

Updates affine by composing it with an elementary scale of the form
x[i] = C[i]x[i]; returns the updated transform. The value of pre determines
the order in which the two transforms are composed; see affine.compose()
for the permitted values.

34

affine.setparam(parms)

Sets the elements of the n× (n+ 1) matrix defining the transform, taken
in row-major order, from the contents of the vector parms. This is useful for
optimization methods which work on vectors.

affine.shear(i, j, coef, pre=0)

Updates affine by composing it with an elementary shear of the form
x[i] = x[i] + Cx[j]; returns the updated transform. The value of pre deter-
mines the order in which the two transforms are composed; see affine.compose()
for the permitted values.

affine.translate(delta, pre=0)

Updates affine by composing it with a translation of the form x[i] =
x[i] + ∆[i]; returns the updated transform. The value of pre determines the
order in which the two transforms are composed; see affine.compose() for
the permitted values.

affine.vector(v)

Transforms a vector (difference of points) according to the affine trans-
form affine, returning a new Pyvox array.

abs(array)

Deprecated; use array.abs() in new code.

array.abs()

Returns a new Pyvox array containing the elementwise absolute value
of the original array. NOTE: Since Pyvox inherits its arithmetic from the

35

underlying C implementation, you can get unexpected results taking the
absolute value of signed integral types on a two’s complement machine; the
absolute value of −2n−1, where n is the width of the type in bits, is the same
value −2n−1.

array.acos()

Returns a new Pyvox array containing the elementwise arc cosine of the
original array. The returned value is in radians. Valid for types float and
double only.

array.amax()

Returns the maximum value found in the array.

array.amin()

Returns the minimum value found in the array.

array.aprod()

Returns the product of the array elements.

array.asin()

Returns a new Pyvox array containing the elementwise arc sine of the
original array. The returned value is in radians. Valid for types float and
double only.

array.asum()

36

Returns the sum of the array elements. The array.dot() method may
be used to obtain a weighted sum of the elements.

array.atan()

Returns a new Pyvox array containing the elementwise arc tangent of the
original array. The returned value is in radians. Valid for types float and
double only.

array.atan2(other)

Returns a new Pyvox array containing the elementwise two-argument arc
tangent of the original and other arrays. The returned value is in radians.
Valid for types float and double only.

array.bigob(label=255, other=0)

Returns a new unsigned char Pyvox array containing a mask covering only
the largest object in the original image; an object is defined as a maximal
connected set of non-zero voxels.

array.bihist(other, weight=1)

Returns a new two-dimensional unsigned long Pyvox array containing the
bivariate histogram of the two unsigned char arrays array and other; it also
computes the two marginal histograms (which are the univariate histograms
of the individual images) as one-dimensional unsigned long Pyvox arrays.
An optional unsigned char array of weights may be provided; it must be the
same shape as the other two arrays and defaults to weight 1 for each voxel.
These results are returned as a tuple containing the bivariate histogram and
the two univariate histograms.

37

array.ceil()

Returns a new Pyvox array containing the elementwise ceiling of the
original array. Valid for types float and double only.

array.chamfer(type=???)

Returns a new Pyvox array containing the chamfer distance transform of
the original array. The chamfer distance is defined to be zero wherever the
original array is non-zero, and the taxicab (L1) distance to the nearest non-
zero voxel otherwise. The type of the result may be specified by the caller
to be either exim.uchar or exim.ushort, and will default to the shortest
type which is capable of containing the longest possible distance within the
original image.

array.compare(other, less, equal, more)

Returns a new unsigned char Pyvox array containing the results of com-
paring array element by element to other. The result takes one of the values
less, equal, or more depending on whether each element of array is less than,
equal to, or greater than the corresponding element of other. The array
other may be replaced by a number or scalar, which is then used in all the
comparisons.

array.convolve(kernel, shrink=1)

Convolves array with kernel, optionally subsamples by the factor shrink,
and returns the result as a new Pyvox array; the algorithm used avoids com-
puting pixel values that will be omitted by subsampling and is faster than
convolution followed by subsampling. The object array may be of any rank,
type, or shape, except that convolution is not defined for rank zero arrays;
the array and kernel must have the same rank. The shrink argument may
be either a single positive integer, or a list of integers giving the desired
shrink factor for each dimension of the array; if the shrink is omitted, no
subsampling is done. The convolution is calculated in double precision and

38

converted back to the original image type; if the original type cannot repre-
sent the values, the nearest representable value is used instead.

array.copy()

Returns a new Pyvox array containing contents and attributes of the
original array but which shares no storage with it.

array.cos()

Returns a new Pyvox array containing the elementwise cosine of the orig-
inal array. The input is in radians. Valid for types float and double only.

array.cosh()

Returns a new Pyvox array containing the elementwise hyperbolic cosine
of the original array. Valid for types float and double only.

array.count()

Returns the number of elements in array.

array.det()

Returns the determinant of a square matrix represented as a Python
array. Valid for types float and double only.

array.diag()

Returns a new rank-1 Pyvox array whose elements are the diagonal ele-
ments of array; the type of the result is the same as the type of array. Use
the function pyvox.diag(values) to construct a diagonal matrix.

39

array.dilate(kernel=???)

Returns a new Pyvox array containing the morphological dilation of array,
which must have non-zero rank and any unsigned integral type; the dilation is
done bitwise on the voxel values. The neighborbood is specified by a kernel
object and defaults to a centered 3 × 3 × 3 neighborhood. The bias and
coefficients of kernel, if any, are ignored.

array.dot(other=None, weight=None)

Returns the vector dot product of array and other, with optional pixelwise
weights provided by weight. The source and weight arrays may be of any type
and are converted to double for this computation; they must, however, be
the same shape. Note that array.dot(w) can also be interpreted as the sum
of the elements of array with weights w; setting w to None will compute the
unweighted sum of the elements of array.

array.double()

Returns a new Pyvox array containing the contents of the original array
converted to double.

array.eigsy()

Returns a pair (val, vec) containing the eigenvalues and eigenvectors
of the original Pyvox array considered as a real symmetric matrix; the results
are undefined if the Pyvox array is not actually symmetric. the result val

is a list of the eigenvalues. The result vec is an orthogonal matrix, the rows
of which are the eigenvectors; vec may or may not be a proper orthogonal
matrix (with determinant equal to +1). (If a proper matrix of eigenvalues is
required, use array.prinaxes() instead.) If A denotes the original matrix,
then A = vec’*diag(val)*vec.

40

array.erode(kernel=???)

Returns a new Pyvox array containing the morphological erosion of array,
which must have non-zero rank and any unsigned integral type; the dilation is
done bitwise on the voxel values. The neighborbood is specified by a kernel
object and defaults to a centered 3 × 3 × 3 neighborhood. The bias and
coefficients of kernel, if any, are ignored.

array.exp()

Returns a new Pyvox array containing the elementwise exponential (to
the base e) of array. Valid for types float and double only.

array.fill2d(points, value)

Modifies a two-dimensional Pyvox array by setting the voxels inside the
contour defined by points to the given value and returns the modified array.
The points are given by an N × 2 Pyvox array of (y, x) coordinate pairs.
(Other formats may be added later.) If the first and last points are not
identical, then the contour is closed by assuming a line segment from the
last to the first. A voxel is considered to be inside the contour if a ray to
infinity from the center of the voxel (given by integer coordinates) crosses
the contour an odd number of times; this is known as the even-odd rule.
The ambiguity present when the voxel center falls exactly on the contour are
handled by pretending the the voxel center is actually displayed by a positive
epsilon along each axis from its nominal position.

array.float()

Returns a new Pyvox array containing the contents of the original array
converted to float.

array.floor()

41

Returns a new Pyvox array containing the elementwise floor of the original
array. Valid for types float and double only.

array.histo(weight=1)

Returns a new Pyvox array containing the univariate histogram of array,
which must be an unsigned char image. An optional unsigned char array of
weights may be provided; the weight array must be the same shape as array
and defaults to unit weights for each voxel.

array.i2p()

Returns the affine transform which maps index coordinates into physical
coordinates, as defined by the origin and spacing attributes of array.

array.int()

Returns a new Pyvox array containing the contents of the original array
converted to int.

array.inverse()

Returns a new Pyvox array containing the inverse of the non-singular
square matrix represented by the original Pyvox array. Note that it is gener-
ally better to use array.solve for the solution of a system of linear equations.

array.kmeans1(cent)

Returns the class centroids computed by the K-means classification algo-
rithm, where array is the histogram of an unsigned char image (and must have
exactly 256 bins) and cent is a list of initial guess at the class centroids. The
centroids thus computed can be used later by the array.nnclass1 method
to do the actual segmentation. If initial guesses are not available for the

42

centroids, they should all be set to zero. The number of classes found is set
by the number of centroids provided.

array.linear(point)

Returns the pixel value at a given position possibly between samples,
using linear interpolation. The argument point may be given as a tuple, list,
or rank-1 array of coordinate values. Samples outside the image are assumed
to be zero.

(There are actually two implementations of this method. The linear

method invokes the fastest algorithm that is currently considered trustwor-
thy; linear0 invokes a reference implementation which is simple enough
to be verified by inspection and which is used to validate faster but more
complex algorithms.)

array.list()

Returns the elements of array as a Python list, in row-major order; the
elements of the list will be Python floats, ints, or longs as appropriate.

array.log()

Returns a new Pyvox array containing the elementwise natural logarithm
of the original array. Valid for types float and double only.

array.log10()

Returns a new Pyvox array containing the elementwise base-10 logarithm
of the original array. Valid for types float and double only.

array.logcomp()

43

Returns a new unsigned char Pyvox array containing a intensity-compressed
version of the orginal image, which must be of type unsigned long. The com-
pression rule is the transformation y = A log(1 + x), where A is chosen such
that the largest voxel value actually present in the image is converted to the
value 255.

array.long()

Returns a new Pyvox array containing the contents of the original array
converted to long.

array.lookup(lut)

This Pyvox function takes each voxel in array and uses it as the index
into the lookup table lut, saving the result of the lookup as the destination
image. The source image must be either unsigned char or unsigned short but
may be of any shape. The lookup table must be rank 1 and contain at least
as many entries as the largest voxel value in the source image; but it (and
thus the destination) may be of any type.

array.lomean()

Obsolete?

array.lostat()

This Pyvox function computes the local mean and standard deviation
within each 3× 3× 3 neighborhood of a volume image and returns them as
a list containing two new images of the same shape and type; the first is the
local mean and the second is the local standard deviation. Boundary voxels
are handled correctly. The standard deviation is multiplied by 2.0 for images
of type unsigned char, to better match the possible range of values to the
range supported by unsigned char; the scale is left at 1.0 for all other data
types.

44

array.lovar()

Obsolete. Use array.lostat instead.

array.lowpass(shrink=1)

Lowpass filters array, optionally subsamples by the factor shrink, and re-
turns the result as a new Pyvox array; the algorithm used avoids computing
pixel values that will be omitted by subsampling and is faster than convolu-
tion followed by subsampling. The object array may be of any rank, type, or
shape, except that lowpass filtering is not defined for rank zero arrays. The
shrink argument may be either a single positive integer, or a list of integers
giving the desired shrink factor for each dimension of the array; if the shrink
is omitted, no subsampling is done. The convolution is calculated in double
precision and converted back to the original image type; if the original type
cannot represent the values, the nearest representable value is used instead.

In the current implementation, the array must be rank 3. The kernel
used is a 3 × 3 × 3 convolution kernel and has the form 2−3+|x|+|y|+|z|; this
kernel will completely surpress the Nyqist frequency along any of the three
coordinate axes. (Future versions of this function may operate in any num-
ber of dimensions and may allow the bandwidth of the lowpass filter to be
specified.)

array.max(other)

Returns a new Pyvox array containing the elementwise maximum of the
original and other arrays.

array.mean(weight=None, axes=All)

This function computes the weighted mean of the array elements along
the specified axes (defaulting to all axes) and returns either a scalar or an
array of reduced rank. The weight is normally an array but may be None or

45

a plain number to specify an unweighted mean. The axes argument may be
an integer in the range [0, n− 1], where n is the rank of the array, meaning a
single axis counting from the left; an integer in the range [−1,−n], meaning a
single axis counting from the right; or a tuple or list of such integers, meaning
all the axes listed. The default is to reduce on all axes to yield a scalar, and
can be obtained either by omitting the axes argument or setting it to None.
On the other hand, setting axes to a list or tuple with no elements is just
a expensive way to cast the array to type double. The values listed in axes
may be in any order, and duplicates are permitted. The array and weight
arguments may be of any type but must be the same shape; the returned
value is always type double. If you’re foolish enough to let the weights sum
to zero for some output element, you get whatever value the underlying C
implementation provides for division by zero; this should normally be nan
for IEEE-754 platforms.

array.min(other)

Returns a new Pyvox array containing the elementwise minimum of the
original and other arrays.

array.mmul(other)

Returns a new Pyvox array containing the matrix product of array and
other, both of which must be rank-2 arrays of type float or double and com-
patible for multiplication. As a special case, if other is a rank-1 array of the
appropriate length, it will be treated as a column vector.

FIXME: The current version requires that both arrays are of the same
type.

array.moments()

Returns a tuple containing the total mass, center of gravity, and second
central moments of a volume image; the values returned are the total mass (as
a Python float), the center of gravity (as a Pyvox array), and the moments

46

(as a Pyvox array). The center of gravity and moments are in physical units,
as defined by the origin and spacing of the volume image.

array.mop(moments, array2=None, array3=None)

This function computes and returns arbitrary non-central moments in
index coordinates for the elementwise product of up to three arrays. The
requested moments are defined by moments, which must be a Pyvox array
of type int with any number of rows and a number of columns equal to
the dimension of array; each row of moments specifies one moment to be
computed, while each column specifies the power to which the corresponding
coordinate is to be raised. (The pyvox.monomials function may be useful in
constructing the moments argument.) The requested moments are returned
in a one-dimensional Pyvox array of type double and are in the same order
as the rows of moments. The three arrays must be the same dimension
and shape, but may be of any type or types; the product is always done in
double. (It often takes less time and memory to let this function compute the
products on the fly rather than computing them outside; this is especially
true for arrays of integral type.)

array.nearest(point)

Returns the pixel value at a given position possibly between samples,
using nearest neighbor interpolation. The point may be given as a tuple,
list, or rank-1 array of coordinate values. Samples outside the image are
assumed to be zero.

array.nnclass1(clids, cents)

Returns a new unsigned char Pyvox array containing the classification of
each voxel of the original image using a univariate nearest neighbor classifier;
the original image must be of type unsigned char. The arguments are the
class ids and the class centroids. Different centroids may be assigned to
the same class number. There must be exactly as many class ids as class
centroids.

47

FIXME: The current calling sequence was adopted because it was fairly
easy to implement quickly, but it’s not clear that it’s the best option; so it
might change in the future.

array.nnclass2(other, clids, cents1, cents2)

Returns a new unsigned char Pyvox array containing the classification
of each voxel using a bivariate nearest neighbor classifier on corresponding
voxels of the original and other arrays, both of which must be of type unsigned
char. The remainings arguments are the class ids and the class centroids for
each array. Different centroids may be assigned to the same class number.
There must be exactly as many class ids as class centroids.

FIXME: The current calling sequence was adopted because it was fairly
easy to implement quickly, but it’s not clear that it’s the best option; so it
might change in the future.

array.norm1(other=0, weight=1)

Computes the vector 1-norm of array, or the difference between array
and other, with optional pixelwise weights given by weight. The argument
other must either be the same shape and type as array, or must be the scalar
0, or must be omitted. The argument weight, if provided, must be same
shape as array but may be of any type; however, types other than float and
double should be avoided pending a decision as to whether integral types
will be interpreted as integer or scaled fraction values. Note that it is better
to use foo.norm1(bar) rather than (foo-bar).norm1() because it avoids
potential overflow and wraparound problems in the subtraction. Note also
that the weighted norm of a single array may be computed as array.norm1(0,
weight).

array.norm2(other=0, weight=1)

Computes the vector 2-norm of array, or the difference between array
and other, with optional pixelwise weights given by weight. The argument
other must either be the same shape and type as array, or must be the scalar

48

0, or must be omitted. The argument weight, if provided, must be same
shape as array but may be of any type; however, types other than float and
double should be avoided pending a decision as to whether integral types
will be interpreted as integer or scaled fraction values. Note that it is better
to use foo.norm2(bar) rather than (foo-bar).norm2() because it avoids
potential overflow and wraparound problems in the subtraction. Note also
that the weighted norm of a single array may be computed as array.norm2(0,
weight).

array.normsup(other=0, weight=1)

Computes the vector sup-norm of array, or the difference between array
and other, with optional pixelwise weights given by weight. The argument
other must either be the same shape and type as array, or must be the
scalar 0, or must be omitted. The argument weight, if provided, must be
same shape as array but may be of any type; however, types other than
float and double should be avoided pending a decision as to whether integral
types will be interpreted as integer or scaled fraction values. Note that it is
better to use foo.normsup(bar) rather than (foo-bar).normsup() because
it avoids potential overflow and wraparound problems in the subtraction.
Note also that the weighted norm of a single array may be computed as
array.normsup(0, weight).

array.origin

This attribute of a Pyvox array is a list which specifies the physical co-
ordinates corresponding to zero index coordinates and is represented as a
list of numbers. Assigning to this attribute changes the origin. As a special
case, a plain number may be assigned as the origin of a rank-1 array; it will,
however, always be returned as a list.

array.p2i()

Returns the affine transform which maps physical coordinates into index
coordinates, as defined by the origin and spacing attributes of array.

49

array.pow(other)

Returns a new Pyvox array containing the elementwise power function of
array and other; that is, pow(x, y) or xy for each element. Valid for types
float and double only.

array.prinaxes()

Returns a pair (val, vec), where val is a vector containing the principal
moments and val is a proper orthogonal matrix containing the principal axes
of the original array considered as a real symmetric matrix. The results are
undefined if the matrix is not actually symmetric. This method is equivalent
to array.eigsy, except that the matrix of eigenvalues is guaranteed to have
determinant +1.

array.print(stream)

(Not yet implemented) Writes a human-readable representation of the
contents to the indicated stream.

array.rank

Reports the rank of the Pyvox array. This attribute may not be changed
directly, although the reshape method will modify it.

array.refcnt

Reports the reference count of a Pyvox array. (Mainly useful for debug-
ging Pyvox itself.)

array.reshape(newshape)

50

Changes the shape of a Pyvox array without copying or modifying any
of its elements. It is not permitted to change the total number of elements
by this method; that is, the product of the new dimensions must equal the
product of the old dimensions. Similarly, it is not permitted to change the
type of the data.

FIXME: Once array views are implemented, this will probably change to
return a new view of the array, leaving the old array intact but sharing it.

array.scale(gain=1.0, bias=0.0)

Returns a new Pyvox array of the same type as the original, with each
element rescaled by multiplying by the gain and adding the bias; the rescaling
is done in double and then rounded and limited to the destination type. This
operation can be done with other functions, but this function makes better
use of cache and is faster for arrays of integral type.

array.schar()

Returns a new Pyvox array containing the contents of the original array
converted to signed char.

array.short()

Returns a new Pyvox array containing the contents of the original array
converted to short.

array.sin()

Returns a new Pyvox array containing the elementwise sine of the original
array. The input is in radians. Valid for types float and double only.

array.sinh()

51

Returns a new Pyvox array containing the elementwise hyperbolic sine of
the original array. Valid for types float and double only.

array.size

This attribute of a Pyvox array is a tuple containing its dimensions. The
rank is obviously the length of this list. This attribute may not be changed
directly, although the array.reshape() method will modify it. FIXME: This
should probably be renamed as array.shape() for consistency.

array.solve(rhs)

Returns the solution X of the linear system AX = B for a square matrix
A given by array and a general matrix B given by rhs. Both array and rhs
must be the same type, either float or double, and must be compatible in
shape.

array.spacing

This attribute of a Pyvox array is a line which specifies the spacing be-
tween coordinate planes in each axis and is represented as a list of numbers.
Assigning to this attribute changes the spacing. As a special case, a plain
number may be assigned as the spacing of a rank-1 array; it will, however,
always be returned as a list.

array.sqrt()

Returns a new Pyvox array containing the elementwise square root of the
original array. Valid for types float and double only.

array.stat(weight=None)

52

Returns a tuple containing the estimated mean x̄ and standard deviation
s of the elements of array, optionally weighted by the contents of weight. The
two arrays may be of any type or shape, but must be the same shape. The
results are defined by

pi =
wi∑
iwi

(4.2)

x̄ =
∑

i

pixi (4.3)

s2 =

∑
i pi(xi − x̄)2

1−∑i p
2
i

(4.4)

where i runs over the elements of array, xi is the ith element of array, wi is
the ith element of weight, and pi is the weight wi converted to a probability.
In the case that weight is omitted or set to None, these simplify to

x̄ =
1

N

∑

i

xi (4.5)

s2 =
1

N − 1

∑

i

(xi − x̄)2 (4.6)

where N is the number of elements in array.

array.tan()

Returns a new Pyvox array containing the elementwise tangent of the
original array. The input is in radians. Valid for types float and double only.

array.tanh()

Returns a new Pyvox array containing the elementwise hypebolic tangent
of the original array. Valid for types float and double only.

array.trans()

53

Returns a new Pyvox array containing the transpose of the original array.
Valid for an array of any type.

array.tuple()

Returns the elements of array as a Python tuple, in row-major order; the
elements of the tuple will be Python floats, ints, or longs as appropriate.

array.type

This attribute of a Pyvox array is the internal type used for the contents
of the Pyvox array. This attribute may not be modified.

array.uchar(lower=0, upper=255)

Returns a new Pyvox array containing the contents of the original array
converted to unsigned char. The caller may optionally specify the lower and
upper limits of the range to be linearly compressed to fit the 0..255 range of
unsigned char voxels; if no limits are specified, then the input range 0..255
will be converted to the output range 0..255.

array.uint()

Returns a new Pyvox array containing the contents of the original array
converted to unsigned int.

array.ulong()

Returns a new Pyvox array containing the contents of the original array
converted to unsigned long.

54

array.ushort()

Returns a new Pyvox array containing the contents of the original array
converted to unsigned short.

array.write(filename, extype=???, bigend=1)

Writes the contents of a Pyvox array to an external file in some specified
external format. If a string is given as the file argument, then that file is
opened for writing, the data are written to it, and the file is closed; if a file
object is given, then the data are written to the file starting at its current
position but the file is neither closed nor repositioned after writing. If no
external data type is specified, the data are written in the ”natural” data
type corresponding to the type of the Pyvox array; note that careless use of
this feature can produce output files that you don’t know how to read back
in.

array.writeppm(filename)

Writes the contents of a Pyvox array to an external file in the binary
Portable Pixel Map format. The array must be unsigned char and rank 2;
the last dimension must be 3 and contain the red, green, and blue components
of each pixel in that order.

array.zerbv(thresh)

Returns a new Pyvox array in which voxels whose local variance exceeds
the given threshold have been set to zero; the threshold is specified as the
standard deviation. The intent is that the output image should contain
only voxels in the interior of regions with approximately uniform tone, and
that voxels on the boundary between regions should be zeroed; this should
make histogram-based segmentation algorithms more robust by eliminating
partial volume effects from the analysis. Voxels at the edges of the image are
boundary voxels by definition, to avoid the problems of having an incomplete
neighborhood. The threshold value is given as the standard deviation, or

55

the square root of the threshold variance, and is a compromise between the
intensity variance of uniform regions and the difference in gray level between
uniform regions. As a rough rule of thumb, take the threshold to be 2 or 3σ,
where σ is the standard deviation of the intensity variation within a uniform
region; if this value is comparable to or larger than the intensity differences
between regions, this algorithm probably won’t produce any useful results.
The minimum and maximum possible values of the standard deviation are
approximately 0.19 and 127.5 for a 3D unsigned char image.

kernel.bias

The bias attribute of a kernel object is the value to which is added the
sum of coefficient times voxel intensity for each voxel in the neighborhood.
This attribute may be either read or written.

kernel.coef

Returns a list of the kernel coefficients, one for each neighbor given in
the kernel and corresponding to the delta list. This attribute may not be
written, to guarantee consistency between the coefficients and the deltas.

kernel.count

Returns the number of neighbors defined in the kernel.

kernel.delta

Returns a list of kernel deltas. Each delta is a list of coordinate offsets
relative to the center of the neighborhood.

kernel.rank

56

Returns the rank of the kernel, which is the same as the number of di-
mensions in which it is defined.

optim.obfunction [base class]

This base class defines an objective function to be minimized using the
optimization functions defined in the optim module, and also contains the
parameters that control the minimization process. It may be used by itself
when the function to be optimized is simple, or as a base class for more
complex optimizations. Note that the precise interpretation of the optimiza-
tion parameters is determined by the particular optimizer used, although the
following descriptions should be typical.

An instance of an objective function has the following attributes:
obfun.npar is the number of dimensions in the parameter space, or the

number of arguments to the objection function.
obfun.funct is the function to be optimized and will be invoked when

the instance is used as a function, as in obfun(foo). The user or derived
class may elect to do strange things by overriding the call method, in
which case the funct attribute is traditionally set to None.

obfun.xtol is a vector of tolerances in the abscissae; optimization stops
when the dimensions of the box which the optimizer is currently exploring
become less than the tolerances.

obfun.ftol is the tolerance in the objective function; optimization stops
when the range of the objective function within the region the optimizer is
currently exploring becomes less than this tolerance.

obfun.xopt is the best abscissa found so far, or None if no optimization
has been attempted yet. It is usually a vector, but will be a scalar for one-
dimensional optimization.

obfun.fopt is the value of the objective function at the abscissa xopt.
obfun.step is a vector of “reasonable” step sizes defining a box within

which the optimizer should start exploring for a minimum; the optimizer is
not, however, prohibited from moving outside this initial region.

obfun.niter is the maximum number of iterations that the optimizer
should attempt. Generally speaking, an iteration consists of a complete cycle
through all parameters, but the precise definition depends on the particular
optimizer.

57

The obfunction class itself does not define any user-callable methods,
although its derived classes often do.

optim.powell(obfun)

This function in the optim module implements the Powell direction set
optimization algorithm. It takes one argument, which is an objective func-
tion (that is, an instance of the optim.obfunction class or a derived class)
which defines the function to be minimized and the the parameters for the
optimizer. The location and value of the minimum found by the optimizer
is stored in the xopt and fopt attributes of the objective function.

pyvox.affine(ndim, matrix=identity, offset=0)

Creates a new affine transform in the given number of dimensions with
the given matrix and offset. If the matrix is omitted, an identity matrix is
used; if the offset is omitted, zero is used.

pyvox.AffineType

Returns the Python class object for an affine transform, which can be
used with the Python function isinstance to check if some object is a
Pyvox affine transform.

pyvox.array(dimen, type=double, data=0)

This method constructs a new Pyvox array with given shape and type,
and fills it with data from a list. The data must be a list of numbers, and
the total number of data provided must exactly match the total number of
elements in the array to be created. As a special case, the given data may
be a scalar value, in which case the entire array is filled with that value; the
default is to fill the array with zeroes. The internal type defaults to double,
which is larger than is necessary in many applications but can contain any
value (except complex).

58

pyvox.ArrayType

Returns the Python type object for a Pyvox array, which can be used
with the Python function isinstance() to check if some object is a Pyvox
array.

pyvox.column(data, n=None)

Creates an n× 1 Pyvox array of type double from the given data, which
may be an int, float, tuple, list, or a Pyvox array of any shape; if data is an int
or float, then n must be specified and the value of data is used for all elements
of the column vector. If n is not specified, it defaults to the actual number
of elements in data. If n is specified but differs from the actual number of
elements in data, or if those elements are not numeric, then an exception is
thrown.

The function pyvox.point() is identical to this one but may more clearly
express the user’s intent in some contexts.

pyvox.const(dimen, intype=double, value=0)

Creates a constant Pyvox array with the given dimensions, internal type,
and constant value. The value defaults to zero. The internal type defaults
to double, which may be much larger than is necessary in many applications
but can contain any value (except complex).

This method is now deprecated; use pyvox.array() instead.

pyvox.diag(data, n=None)

Creates a new n×n Pyvox array of type double whose diagonal elements
are taken from the given data, which may be an int, float, tuple, list, or
Pyvox array of any shape. If data is an int or float, then n must be specified
and the value of data is used for all diagonal elements. If n is not specified,
it defaults to the actual number of elements in data. If n is specified but

59

differs from the actual number of elements in data, or if those elements are
not numeric, then an exception is thrown. Use the method array.diag() to
extract the diagonal elements of a matrix.

pyvox.kernel(deltas, coefs=None, bias=0)

Returns a new Pyvox kernel with the given neighbors (defined by coor-
dinate offsets or deltas), the coefficient for each neighbor, and the constant
bias for the convolution. The coefficients are optional; if omitted, the ker-
nel defines a neighborhood only. The bias is also optional; if omitted, it
defaults to zero. Once constructed, the kernel cannot be changed, although
this restriction may be lifted in later versions. The number of neighbors is
determined by the length of the outer delta list; the length of the coefficient
list must be the same, or zero. The rank is determined by the length of the
inner delta lists; it is an error if these are not all the same. Kernels containing
no neighbors are invalid by decree, since it is not possible to determine the
rank in that case.

pyvox.KernelType

Returns the Python type object for a Pyvox kernel, which can be used
with the Python function isinstance() to check if some object is a Pyvox
kernel.

pyvox.matrix(data, nr=None, nc=None)

Creates a nr×nc Pyvox array of type double and fills it with the contents
of data, which may be a Pyvox array of any shape, a list (tuple) of lists
(tuples) of numbers, an int, or a float; if data is an int or float, then nr and
nc must be specified and a diagonal matrix with the value of data along the
diagnonal is returned. If nr and nc are omitted they default to the values
implied by data; if nr is provided but nc is not, then nc is set equal to nr;
if they are provided but fail to match the values implied by data, then an
exception is thrown. An exception will be thrown if the contents of data
are not all numeric. (Note that this function will not allow you to create a

60

matrix from a flat list of numbers; for that, you should use pyvox.array()

with appropriate arguments.

pyvox.monomials(n, k)

Returns a new Pyvox array defining the monomials in k literals of total
degree less than or equal to n. Each row of the table defines one possible
monomial; each column gives the power to which the corresponding literal is
to be raised. For example, the following array gives the monomials of degree
≤ 2 in 2 literals, which we shall take to be y and x.

0 0 means 1
0 1 means x
0 2 means x2

1 0 means y
1 1 means xy
2 0 means y2

The order of rows in the table is not guaranteed to be consistent from one
version of Pyvox to the next.

This function may be useful in generating a set of nth order moments in
k dimensions for use with the array.mop() function.

pyvox.point(data, n=None)

Creates an n× 1 Pyvox array of type double from the given data, which
may be an int, float, tuple, list, or Pyvox array of any shape; if data is
an int or float, the n must be specified and the value of data is used for all
coordinates of the point. If n is not specified, it defaults to the actual number
of elements in data. If n is specified but differs from the actual number of
elements in data, or if those elements are not numeric, then an exception is
thrown.

This function is identical to pyvox.column() but may more clearly ex-
press the user’s intent in some contexts.

61

pyvox.ramp(shape, type=double, axis=Last)

Returns a new Pyvox array of the specified shape and type, each voxel of
which contains its own coordinate along the specified axis, converted to the
array type according to the usual C rules. The type defaults to double, and
the axis defaults to the last axis.

pyvox.rawread(filename, dimen, extype=uint1, bigend=1)

Return a new Pyvox array initialized with raw image data read from
an external file in some specified external numeric format and converted to
the most natural internal format. The arguments are the file to read from,
the desired shape of the array (as a tuple or list), the external type (which
defaults to unsigned char), and an optional flag to mark bigendian (which
defaults to bigendian).

If the given filename ends in .gz or .Z, it is assumed to be a compressed
file and is uncompressed into a temporary file and then read. If there is
no image file with the given name, but there is a file with either .gz or .Z

appended, then that file is assumed to be the image file compressed, which
is uncompressed on the fly and read instead.

The first element of the dimen array may be zero, in which case the
number of slices is determined by the size of the (uncompressed) image file.

pyvox.read(...)

A deprecated name for what is now called pyvox.rawread, and will soon
be replaced by a read function for multiple formats.

pyvox.vector(data, n=None)

Creates an n-element rank-1 Pyvox array of type double from the given
data, which may be an int, float, tuple, list, or Pyvox array of any shape;
if data is an int or float, the n must be specified and the value of data is
used for all elements of the vector. If n is not specified, it defaults to the
actual number of elements in data. If n is specified but differs from the actual

62

number of elements in data, or if those elements are not numeric, then an
exception is thrown.

regis.info(image, mask=None)

This function in the regis module computes the information content, in
bits per voxel, of an unsigned char image of any rank and shape. Zero voxels
are assumed to be background and are ignored. The optional mask image
defines a per-pixel weight; it must be unsigned char and the same shape as
image. The mask defaults to one. The information content I in bits per voxel
is defined by

pk =
∑

xi=k

wi

/∑

i

wi (4.7)

I =
∑

k

pk log2 pk (4.8)

where i ranges over the voxels in the image, k runs over the intensity levels
1 through 255, xi is the intensity of the ith voxel, and wi is the weight for
the ith voxel.

regis.mutinfo(image1, image2, mask=None)

This function in the regis module computes the mutual information of
two unsigned char images, in bits per voxel. The two images image1 and
image2 may be of any rank and shape but must be the same rank and shape.
The optional mask image defines a per-pixel weight; it must be unsigned char
and the same shape as the other two images. The mask defaults to one. The
mutual information I in bits per voxel is defined by

pkl =
∑

xi=k; yi=l

wi

/∑

i

wi (4.9)

pk =
∑

l

pkl (4.10)

pl =
∑

k

pkl (4.11)

63

I =
∑

kl

pkl log2

(
pkl
pkpl

)
(4.12)

where i ranges over the voxels in each image, k and l run over the intensity
levels 0 through 255, xi and yi are the intensities of the ith voxel in the first
and second images, and wi is the weight for the ith voxel.

regis.obaffine(source, target, init=1)

This class invocation creates an instance of the obaffine class, which is
used to define an objective function for the affine registration of two images.
Its arguments are the source and target images to be registered, plus an
optional initial guess init at the transform that will register the two images.
The initial guess defaults to the identity transform and may be an affine
transform, an obaffine instance, or an obrigid instance. In either of the latter
two cases, the metric, scenter, and tcenter attributes are also copied into
the new obaffine object.

The class is derived from regis.obregis and inherits the attributes and
methods of that class. The following additional attributes and methods are
defined.

The ndim attribute is the number of dimensions in the images to be
registered. Both images must be the same number of dimensions. This
attribute is set automatically when the instance is initialized and should not
be altered.

The npar attribute is the number of parameters needed to define an affine
transform; it is set automatically and should not be modified.

The xtol, ftol, and step attributes of the obregis class are set to
reasonable default values and do not usually need to be set by the user.

The itgt2src() method returns the best transform found so far in index
coordinates, as an instance of the affine class. The transform returned is in
index coordinates for the unshrunk images and is the desired mapping from
target coordinates to source coordinates.

The ptgt2src() method returns the best transform found so far in phys-
ical coordinates, as an instance of the affine class. The transform returned
is in physical coordinates for the images and is the desired mapping from
target coordinates to source coordinates.

64

The ctgt2src() method returns the best transform found so far in cen-
tered physical coordinates, as an instance of the affine class. Centered
physical coordinates have the same spacing as physical coordinates, but the
origin is placed at the specified center of the source or target. The optimizer
works in centered physical coordinates, since this generally gives the most
rapid convergence.

The deprecated initrigid(obrigid) method initializes the optimizer to
the best rigid transform found by an earlier obrigid rigid registraton objective
function; the init argument to the obaffine constructor should be used in
new code.

regis.obregis [base class]

This base class is derived from optim.obfunction and is used to derive
objective function classes for image registration. It is not usually used on its
own but defines the following attributes and methods in addition to those
defined by optim.obfunction.

The source and target attributes define the source and target images
to be registered. Both images must have the same rank and both must
(currently) be of type unsigned char.

The scenter and tcenter attributes are the nominal centers of rotation
and scaling for the source and target images. They are not strictly necessary,
but choosing good values here often yields faster convergence; setting them
to the center of gravity of each image is a good default choice.

The sspacing and tspacing attributes are the physical pixel spacings in
the source and target images. They are used to correct for aniotropic sam-
pling and default to the spacing attributes of the source and target images;
few user will need to set the explicitly.

The metric attribute selects the metric to be used to measure the quality
of the match between the two images. The following choices are currently
supported: “correl” uses a Pearson product moment correlation; “mutinfo”
uses the mutual information between the two images; and “norm2” uses the
L2 norm or RMS error.

The scale(shrink, smooth=0) method sets shrink and smoothing levels
for multi-scale registration. The values set remain effective until new values
are set with this method; the best transform found so far is automatically
modified to suit the new scale. When the shrink parameter is not zero (which

65

is its default value when an instance is created), the metric is evaluated on
images shrunk by the factor 2shrink; thus if the shrink is 2, the metric is eval-
uated on an image reduced by a factor of 4 in each dimension. When the
smooth parameter is not zero (its default value), the images being registered
are lowpass filtered smooth times after being shrunk and before being reg-
istered. (The original unshrunk and unsmoothed images are saved for later
use.) Initially registering with shrunk and smoothed images and progres-
sively unshrinking and unsmoothing them often provides a faster and more
robust algorithm than attempting to register using only the original images.

regis.obrigid(source, target, init=1)

This class invocation creates an instance of the obrigid class, which is
used to define an objective function for the rigit registration of two images.
Its arguments are the source and target images to be registered, plus an
optional initial guess init at the transform that will register the two images.
The initial guess defaults to the identity transform and may be an affine
transform, an obrigid instance, or an obaffine instance. In either of the latter
two cases, the metric, scenter, and tcenter attributes are also copied into
the new obrigid instance. Note that, while it is possible to set the initial
transform to other than a rigid transform, it is rarely sensible to do so.

The class is derived from regis.obregis and inherits the attributes and
methods of that class. The following additional attributes and methods are
defined.

The ndim attribute is the number of dimensions in the images to be
registered. Both images must be the same number of dimensions. This
attribute is set automatically when the instance is initialized and should not
be altered.

The npar attribute is the number of parameters needed to define an affine
transform; it is set automatically and should not be modified.

The xtol, ftol, and step attributes of the obregis class are set to
reasonable default values and often do not need to be set by the user.

The itgt2src() method returns the best transform found so far in index
coordinates, as an instance of the affine class. The transform returned is in
index coordinates for the unshrunk images and is the desired mapping from
target coordinates to source coordinates.

66

The ptgt2src() method returns the best transform found so far in phys-
ical coordinates, as an instance of the affine class. The transform returned
is in physical coordinates and is the desired mapping from target coordinates
to source coordinates.

The ctgt2src() method returns the best transform found so far in cen-
tered physical coordinates, as an instance of the affine class. Centered
physical coordinates have the same spacing as physical coordinates, but the
origin is placed at the specified center of the source or target. The optimizer
works in centered physical coordinates, since this generally gives the most
rapid convergence.

67

Chapter 5

Application Reference

In addition to Pyvox itself, BBLimage also contains various command-line
appliction programs written either as Python scripts or directly in C. These
are listed briefly below and are fully described by man pages.

5.1 Data File Formats

File Formats
cdata(5) Commented data files
mri data(5) MRI data formats used at BBL
param(5) Parameter files

68

5.2 Applications

Command-line Programs
binnseg(1 Bivariate nearest-neighbor segmentation
conseg(1) Compute concordance of two segmented images
decomment(1) Remove comments from a commented data file
imstack(1) Stack slice files into a volume image file
inleav(1) Interleave 2 single-echo images into a dual-echo image
lovar(1) Compute local variance of an unsigned char volume image
qdv(1) Image viewer for gray-scale volume images
rpsamp(1) Choose random set of points within an image
skmiv(1) Shaded K-means segmentation on interior voxels
swab(1) Swap bytes according to a pattern
usb2uc(1) Convert unsigned short big-endian image to unsigned char
vibihist(1) Compute bivariate histogram of two volume images
vihist(1) Compute univariate histogram of a volume image

69

Chapter 6

Installation

6.1 Prerequisites

In short, BBLimage requires a Unix-compatible operating system, the Gnu
C compiler, Posix-compatible C libraries, Python 1.5, the X Window System
with 24-bit true color visuals, the LAPACK and BLAS libraries, and Lesstif
or Motif. If this describes your system, there is a pretty good chance that you
can compile and install BBLimage without having to do anything special. If
not, or if you run into problems, the sections below discuss possible solutions.

6.1.1 ANSI C Compiler

BBLimage is intended to work with any ANSI (1989) C compiler, but for the
moment that compiler must be the Gnu C compiler (gcc). This is considered
a bug but we haven’t yet figured out how to portably build shared libraries
(which are required for Python extensions). If you manage to get it working
with another compiler, please let us know how.

6.1.2 X and Motif

The qdv image viewer requires X and Motif with a 24-bit true color visual.
As long as the header and library files are in reasonably standard places, no
special steps should be needed; if not, use the --with-c-header-path and
--with-library-path configure options to indicate the right place to look.
If you don’t have X and Motif at all, use the --without-x option to leave

70

out the qdv viewer. The requirement for 24-bit true color could be removed
in theory, but doesn’t seem to us to be worth the effort.

6.1.3 LAPACK and BLAS

BBLimage uses the LAPACK and BLAS libraries for numerical linear al-
gebra; some platforms may also require the f2c library or the F77 and I77
libraries. Note that these libraries must be shared libraries; Python exten-
stions such as Pyvox cannot be implemented as statically linked code. If
you have these libraries installed in a reasonably standard place, then the
configure script should be able to find them automatically and nothing spe-
cial needs to be done. If you have them in some non-standard place, then
you will need to use the --with-lapack option to specify where; see the
section on configuration options for more details. If the configure script can-
not find these libraries (which must be shared libraries), or if you specify
the --without-lapack option, then it will use its own internal light-weight
version.

It should be noted that LAPACK and BLAS libraries tuned for your
specific platform are generally much better if you care at all about numerical
linear algebra; this light-weight code is provided only as a convenience for
users who are primarily interested in image processing and don’t want to
spend a lot of time getting BBLimage up and running.

6.1.4 Python

BBLimage currently requires version 1.5 of Python; we’ll get around to ex-
tending to version 2.x any day now. There is a --without-python option to
configure that compiles only the C language bindings but it has not been
tested for some time now.

6.1.5 Miscellaneous

The /usr/bin/env command is required; the Python scripts use this to find
the Python executable without knowing its exact path. If you don’t have it
for some reason, you will need to modify the first line of each Python script
to indicate where the Python executable is found.

If gzip is visible on the path during configuration, then it will be used to
support automatic uncompression of image files for reading.

71

6.2 Procedure

BBLimage has been sucessfully compiled and run under Red Hat Linux 6.1
and later on Intel and under Solaris 2.7 and later on Sparc. We will be
interested to hear about other successes or failures, and very interested to
receive fixes that will yield success on other machines and operating systems.

The following instructions should work on most systems. If they don’t,
or if one of the special caveats below applies to you, see the other sections in
this chapter.

If you are upgrading from BBLimage 0.62 or earlier, see the the section
“Upgrading Old Installations” below on manually fixing some incompatibilies
between the old and new versions.

If you intend to install both BBLimage and segm, you should install segm
first, then BBLimage; there are a few installed files that are shared between
the two packages, and BBLimage is most likely to have the current version.

The following steps will usually suffice:

1. Unpack the tar file and cd into the source tree.

2. Run ./configure to guess the right parameters for your machine. See
the section “Configuration Options” below for possible options to this
command.

3. Run make to compile and link everything.

4. If you’re a programmer, run make tags to create the TAGS file for
emacs; if you’re a vi partisan, make the obvious change to the Makefile
first.

5. As root, run make install to install all the executable binaries and
man pages, usually in /usr/local/bin and /usr/local/man. See the
configuration options below if you want to install it elsewhere.

6. Several Python extension modules are installed in the directory

$PREFIX/lib/python1.5/site-packages;

you will need to add this directory to your PYTHONPATH if it is not
already there.

72

7. Similarly, the shared library libbbli.so is installed in $PREFIX/lib;
you may need to add this directory to the search path for shared li-
braries. The details for doing this will depend on your operating sys-
tem, its setup, and your choice of shell; a few systems are described in
the section “Particular Systems” below.

6.3 Upgrading Old Installations

If you are upgrading from BBLmage version 0.62 or earlier, you may need to
make the following changes by hand.

• The default location for installing the Python modules has changed
from $PREFIX/lib/python1.5 to $PREFIX/lib/python1.5/site-packages.
You should remove the old files pyvox.so and exim.so from the old
location.

• The pyvox module is now defined by a Python file pyvox.py and a
shared library pyvoxC.so; it was previously defined by a shared library
pyvox.so. You should remove the old file pyvox.so to prevent it from
shadowing pyvox.py.

• Versions of Pyvox prior to 0.63 advocated creating a link from /usr/local/bin/python

to /usr/bin/python if needed; this is no longer necessary and should
be removed unless needed for some other reason.

6.4 Particular Systems

6.4.1 Linux

You can make the new shared libraries available by adding the the directory
$PREFIX/lib to /etc/ld.so.conf and running ldconfig, or by adding the
directory to LD LIBRARY PATH in /etc/profile or other shell init file. The
most convenient way to declare PYTHONPATH for all users is to add the line

export PYTHONPATH=$PREFIX/lib/python1.5

to /etc/profile, substituting the proper value of PREFIX where appropriate.

73

6.4.2 Solaris

Some of the X headers provided with Solaris omit the type declaration on
many of the functions they declare, letting it default to ‘int’; this yields a
page or two of warning messages, which can be ignored.

6.5 Configuration Options

The following options may be provided to the configuration script to provide
for special needs. To change the options, you should run make distclean

to clean up the source tree before running configure with the new options.

1. The machine-independent files (only the man pages, at the moment)
are installed in $prefix/man, where prefix defaults to /usr/local.
You can specify another location PATH by using the

--prefix=PATH

option to the configure command.

2. The machine-dependent files are installed in the location specified by
$exec prefix, which defaults to $prefix. More specifically, the exe-
cutable programs and scripts are installed in $exec prefix/bin; the li-
braries (except the Python modules) are installed in $exec prefix/lib;
and the Python modules are installed in $exec prefix/lib/python1.5.
The

--exec-prefix=PATH

option to the configure script can be used to specify another location.

3. In most cases, the configure script will automatically find the necessary
header and library files. If not, the configure options

--with-c-include-path=PATH

--with-library-path=PATH

74

may be used to indicate the directories where they may be found.
For example, --with-c-include-path=/img/prog/include will cause
that directory to be added to the list of directories searched for include
files. Multiple directories may be specified and are separated by colons.
The environment variables C INCLUDE PATH and LIBRARY PATH work
the same way.

4. Motif-compatible headers and library files are required to compile the
qdv viewer. They will be found automatically if present in the usual
place within the X11 directory tree. If they are actually somewhere else,
use the --with-c-include-path and --with-library-path options
described above to indicate where.

5. If you don’t have X and Motif, or don’t want to use them, the configure
option

--without-x

will omit compilation of all the programs and libraries that use X.

6. BBLimage will try to find and use the platform-specific versions of the
LAPACK and BLAS libraries if they exist, but will use its own generic
light-weight version if they cannot be found. The option

--with-lapack=OPTIONS

allows the user to specify any necessary -L and -l loader options
to get the platform-specific libraries, including libf2c or libF77 and
libI77 if necessary; the options string will need to be quoted if it con-
tains blanks. (The -L options could also be specified through the
--with-library-path configure option.) The option

--without-lapack

forces BBLimage to use its own light-weight libraries.

7. The configure script attempts to find an existing installation of Python
1.5 automatically. If it fails, the options

75

--with-python=DIR

--with-python-exec[=XDIR]

can be used to specify the location of the Python machine-independent
and -dependent files. The header files are expected to be found in
$DIR/include/python1.5, the executables in $XDIR/bin, and the li-
braries in $XDIR/lib/python1.5. The value of XDIR defaults to $DIR.

6.6 Make Targets

This section summarizes the targets for the make command that are useful
for the installer and user; see the same-named section in the Implementation
chapter for additional targets useful for developers.

The all target compiles (but does not install) all the components of
BBLimage that are needed for the specified configuration.

The clean target deletes all the compiled and generated files and some
related files but does not modify the configuration.

The distclean target deletes all compiled and generated files, plus the
files that define the configuration. In general, it attempts to restore the
directory to its “as-distributed” state.

The install target installs the compiled code into the locations specified
by configuration. In general, you must be root to install BBLimage.

The dvi and pdf targets regenerate the dvi and pdf forms of the documen-
tation from their original TeX files. You will need to have LaTeX installed
for the dvi target, and both LaTeX and ps2pdf installed for the pdf target.
The documentation is distributed in pdf format, so most users will never
need to do this.

76

Chapter 7

Implementation

This Chapter is intended primarily for the developers of Pyvox itself, al-
though other users may find the discussion of design decisions interesting.
(The decisions are ordered from basic to technical, so begin at the beginning
and read until it becomes too technical.) Even this Chapter does not give
all the details; for that you must consult the source code. But it does try to
give you enough orientation that you understand the architecture, can easily
find the right source code to read, and understand why things were done as
they were. A final section discusses some design issues that are still open.

7.1 Some History

A bit of history may be helpful in understanding the organization of the
software. BBLimage was originally designed as a toolkit of image processing
functions intended to be called from C, plus a set of command-line programs
that would call the lower-level toolkit to provide user-level functionality.

The results were not entirely satisfactory. Building complete image anal-
ysis protocols for end users by using shell scripts to connect CLI programs
was just plain painful and involved constantly reading and writing images to
disk; on the other hand, writing complete protocols in C involved getting a
lot of fussy little details straight that distracted from the image processing
algorithm itself.

The current approach is to encapsulate the image processing library as
an extension of the Python language, which was chosen because it is a full-
featured, high-level programming language which is very easily extended in

77

C. This approach makes it easy to program new analysis protocols in Python
while still permitting the lower-level functions to be written in highly efficient
C. There are, however, still many command-line programs that have not yet
been converted into Python scripts.

BBLimage previously contained the programs BrainMask, Kmean 3Dseg,
and AdpKmean 3Dseg Ebeta, which were originally developed by Michelle
Yan for use with specific MR imaging protocols used at the Brain Behavior
Lab. These programs are heavily used at BBL for image analysis, but have
not proven adaptable to other imaging protocols. They have been moved
into the segm package (which is made available to the public but is not
recommended for general use) and are no longer included in BBLimage.

7.2 Design Decisions and Rationale

7.2.1 Target Audience

The primary audience for Pyvox is image analysts in neuroscience and related
research groups who need to develop automated image analysis protocols and
apply them to hundreds of large images. The key quality criteria for this
group include rapid development and validation, efficiency, and robustness.
Portability will be important to any analysts who have a platform other
than the few that Pyvox is being developed on. Ease of learning, pretty
graphical user interfaces, and elegant code are definitely secondary issues;
anyone who needs to process hundreds of images can be assumed to be willing
to spend some time learning how to do it efficiently and to want effective
automation more than a pretty graphical interface. Clarity, maintainability,
and extensibility of the source code, while of little interest to the image
analyst, are of considerable interest to the developers; they will be given
high priority but may be sacrificed if necessary to the primary virtues of
rapid development, efficiency, and robustness. By the way, rapid development
refers to the rapid development of applications using Pyvox, not necessarily
to the development of Pyvox itself.

The reason for choosing this audience is that it’s the itch I need to scratch.
Researchers who need to do rapid prototyping of algorithms without worrying
about efficiency in applying them, and students who want to experiment with
medical image processing will not be deliberately excluded, but if it comes
down to inconveniencing them or inconveniencing my primary audience, I’ll

78

focus on the needs of my primary audience.

7.2.2 Target Platform

Pyvox is generally optimized for a modern scientific or engineering work-
station or high-performance personal computer, say a system with dual 500
MHz or faster processors, 256 MB or more of RAM, 20 GB or more of fast
hard disk, 1280 × 1024 or better display resolution with 24-bit color, and
a 19-inch monitor or better. The software is designed to be portable, but
there is a definite bias toward Linux and Unix platforms, because that’s
what I’m most experienced and comfortable with; volunteers to get Pyvox
to run well on Windows or Macintosh will be gratefully received. Pyvox will
probably run successfully on smaller and slower platforms (assuming enough
swap space and hard disk) but s-s-l-l-o-o-w-w-l-l-y-y. As for larger and faster
platforms—if someone would like to donate a supercomputer and its upkeep,
I’ll be happy to make Pyvox work on it.

7.2.3 Open Source License

Pyvox is distributed under an Open Source license (which permits free modi-
fication and distribution) for several reasons. First, I believe that software is
a form of scientific knowledge and that science advances most rapidly when
we can build on each other’s work rather than re-implementing the wheel. I
hope that the people who find this software useful will reciprocate by con-
tributing bug fixes and other improvements to be folded back into the master
copy for future releases. Second, I find that we write better software when I
expect that dozens of people will be reading my code than when I am writing
just for myself. Finally, I would rather spend my time doing science rather
than trying to monitor and enforce a more restrictive license. (Note: The
only reason that last paragraph says “I” rather than “we” is simply that I’m
the only developer so far.)

Since Pyvox is funded in large part by federal research grants, I do not
feel that it is ethical to prohibit for-profit organizations (who do, after all,
pay some of the taxes which support Pyvox) from using this code. Thus I
use a license similar to the BSD license rather than the Gnu General Public
License and do not use GPLed code within Pyvox to avoid its viral property.

Note also that I am an academic, for whom publications and citations
are often worth more than money (at least, they can often be converted into

79

tenure and money), so I really do want to see citations of this work.

7.2.4 Large Images

Pyvox is optimized for “large” images, by which we mean images that will
fit comfortably into main memory, but not into L2 cache. A modern 32-bit
workstation can typically support up to 3-4 GB of virtual memory; physical
memory may be somewhat smaller. L2 cache is typically about 256 to 2048
KB. An MRI volume image containing 256× 256× 256 voxels of 8- or 16-bit
data, or a data set of several such images, would be representative. Efficient
processing of large images requires careful attention to locality and blocking
to avoid unnecessary traffic between the cache and main memory. On the
good side, Pyvox does not need to be particularly careful about limiting the
size of image headers; any reasonable information may be included in the
header without noticeably increasing the total memory requirements.

Pyvox will support “small” images that fit into L2 cache but will not
exploit their small size for improved efficiency. The actual payload in a
“tiny” image such as a 4×4 array used to represent an affine transformation
will likely be overwhelmed by the size of the header; since relatively few of
these are expected to be used, the cost in memory and computer time should
be acceptable.

On the other hand, “huge” images that will not fit into main memory (or
a single disk file) and must be processed in pieces introduce a whole new set
of problems that Pyvox will not attempt to handle, at least yet.

7.2.5 Image Operations

Pyvox emphasizes the use of operations that work on entire images, with op-
erations on individual voxels an anomaly. This viewpoint will be familiar to
experienced Matlab programmers, but will seem bizarre and uncomfortable
to C and Fortran programmers. Rest assured, however, that the effort of
recasting algorithms into operations on entire images pays off in efficiency,
because much of the overhead in dealing with single voxels can then be amor-
tized over the entire image; this is especially true in comparing pixelwise op-
erations written in Pyvox to imagewise operations written as a C extension
to Python.

80

7.2.6 Focus on the Core Engine

Pyvox focuses on the computational engine for image processing, and is de-
signed to be used from a scripting language rather than interactively; it
provides a graphical user interface (GUI) only when human intervention is
absolutely necessary. GUIs are nice for interactive experimentation but do
not lend themselves to batch processing or reproducible analysis protocols.
For our target audience, the effort put into a GUI would usually be better
spent in improving the computational engine.

A slightly more subtle issue is that Pyvox focuses on the core image
processing algorithms such as convolution, resampling, etc rather than at-
tempting to implement the wide variety of segmentation, registration, etc.
algorithms currently available in the literature. The idea is that the wider
variety of complete algorithms can be written in Python using the efficient
core functions provided by Pyvox; they can thus be both concise and efficient.

7.2.7 Installation Prerequisites

Pyvox is designed for the serious user who intends to process many images
with it; such a user is assumed to be willing to expend a little additional effort
in installation to obtain more efficient operation. Thus we recommend that
the user take the extra time to install the best available libraries (currently
just LAPACK and BLAS) before installing Pyvox, although we also provide
an internal lightweight version for the impatient.

7.2.8 Moderate Portability

Pyvox is designed to be moderately portable; this means that it should com-
pile and run with at most minor modifications on a wide variety of modern
platforms, especially Unix system. It does not, however, attempt to handle
every possible perversion permitted by the relevant standards. A general rule
is that code should be written to be platform-independent whenever feasi-
ble and reasonably efficient; but if portability requires platform-specific code
that we don’t have sample platforms to test on, we’ll just go ahead and be
non-portable to those platforms.

For example, some of the code in exim assumes that signed integers are
represented in two’s complement format, and that the value −2n−1 has a valid
representation. Since handling one’s complement machines would require

81

special-case code which cannot be tested on any machine we have, we simply
don’t try to handle one’s complement machines. Similarly, we don’t try to
handle platforms on which the char type is not exactly 8 bits, or the character
representation is not ASCII.

On the other hand, both big- and little-endian platforms are supported.
(Middle-endian platforms are not.) Any platform which supports ANSI C
(1989) and Posix should be able to comple and run Pyvox with little or no
modification.

Floating point in other than IEEE 754 format and ints shorter than 32 bits
are intermediate cases. They are supported in principle, but we don’t develop
on any platforms that don’t support these possibilities, so some dependencies
may have crept in without detection.

7.2.9 Efficiency Tradeoffs

An emphasis on run-time efficiency tends to degrade ease of use, robustness,
maintainability, extensibility, generality, and all those other virtues; Pyvox
is by no means exempt from this trade-off, and it is necessary to decide
when efficiency should dominate and when the other virtues should be more
important.

Operations in Pyvox can be roughly classified by how frequently they
are executed: Per-image operations are done once or only a few times per
image. Per-pixel operations are done once (or more) for each pixel in an
image; image addition or histogramming are good examples. Per-neighbor
operations are done once (or more) for each neighbor of each pixel in an
image; convolution is the canonical example. Per-neighbor and per-pixel
operations will normally constitute the largest fraction of the computer time
spent in an algorithm, with per-image operations as a minor contributor. As
a rough estimate, we might say that per-neighbor operations constitute 80%
of the run time, per-pixel operations about 15%, and per-image about 5%.
It follows that efficiency matters enormously in per-neighbor and per-pixel
operations, and hardly at all in per-image operations.

The general policy is thus to emphasize efficiency in per-neighbor and
per-pixel operations, even if it requires sacrificing clarity, generality, and ease
of use. On the other hand, per-image operations should emphasize clarity,
generality, and ease of use.

82

7.2.10 Parallel Processing

Pyvox is being written to be thread-safe wherever possible, to facilitate the
possible future use of multiple processors; however, there are no current
efforts to actively exploit multiple processors except by running multiple
copies of Pyvox in parallel (which is soon limited by available memory).

Pyvox will probably never try to exploit the parallelism possible in a net-
work of workstations. If you’ve got multiple workstations, the most effective
way to use them (for our target audience) is usually to process separate im-
ages in parallel on separate workstations and there is little benefit to the
complex coordination and data communication required to harness multiple
workstations to process a single image.

7.2.11 Data Typing

The header for a Pyvox arrays includes a field encoding the data type con-
tained in that array. The functions in BIPS switch on this field to determine
which efficient loop to use. Most higher-level functions are then implemented
to handle any of the defined data types and do not even need to examine
the type field; the only common exception to this rule is that some opera-
tions are meaningful only for floating point data. This approach facilitates
simple, generic high-level routines, at the cost of messy (but efficient) code
at the lower levels. It is also consistent with Python’s data typing, which is
attached to data items rather than to the variables that contain them.

7.2.12 Limited Number of New Types

There are two basic approaches to choosing the new types (or classes) to be
implemented in a package. The “splitting” approach is to embody even fine
distinctions between object usages into distinct types or classes; the “lump-
ing” approach is to introduce distinct new types only where it seems unavoid-
able, and otherwise overloading existing types with specific interpretations.
Pyvox has generally chosen to lump, on the grounds that this is probably
the best choice for a small, compact package that nevertheless intends to be
used in a wide variety of applications.

83

7.2.13 Short Function Names

Similarly, function and method names can be either short and abbreviated,
or long and explicit. Pyvox has generally chosen to use short, mnemonic
names at the user level rather than long, explicit names for essentially the
same reasons that it introduces only a few new types—it seems unnecessarily
complex to use long names for a small, compact package developed by a single
programmer. Lower-level functions, on the other hand, often have longer
descriptive names.

7.2.14 External Data Formats

For simplicity in transfering data files between platforms with possibly differ-
ent internal data representations, Pyvox recommends and supports writing
and reading data files in defined external formats rather than in the na-
tive formats; the code that actually imports or exports the data is written
to be platform-independent. The recommended formats are the ones most
commonly used internally: two’s complement signed integers, and IEEE 754
floating point; other external formats may be added as needed. The choice
between big and little endian is essentially arbitrary; BBL has standardized
on big-endian because most of our data was originally written in that byte
order.

The current version of Pyvox supports only raw pixel data in raster or-
der; extensions to handle DICOM are almost certain but have not yet been
implemented. Other extensions could be added; the only ones that are likely
in the near future are Analyze and NRIA formats. Some tools for reading
legacy data are also provided in exim.

7.2.15 Internal Data Formats

The performance of many operations on large images is limited by main
memory bandwidth and can be improved by using a data type no longer than
is necessary to represent the data values. To facilitate this, Pyvox supports
essentially the full set of data types provided by the underlying C language.
The sole exception is plain char, although both signed and unsigned char are
supported; the reasoning is that a type of unknown signedness is worthless for
numerical work and the Pyvox array type is not intended for text processing.

Float and double complex types are planned, mostly to support the FFT

84

and frequency domain processing; the set of supported operations is likely to
be limited compared to the native types.

7.2.16 C

Most of Pyvox, and all of the low level functions, are written in ANSI C (1989)
because the language is well standardized, lends itself to efficient software,
and good open-source optimizing compilers are readily available for a variety
of different platforms; the fact that I am experienced with and comfortable
with C was also a consideration. Once compilers for the 1999 C standard
become available, it is likely that Pyvox will be modified to match; some
features such as the restrict and inline keywords are already used when the
compilers support them as extensions.

C++ might have been a possibility except that I didn’t have any expe-
rience with it, and it was not clear that C++ would be compatible with
Python. C++ also seems to encourage inefficient programming, which is
not a good thing for this application. C++ does support some tempting
capabilities, such as exceptions, so an upgrade to C++ is still possible.

Fortran 77 might have been more efficient for the lowest-level operations
(because the aliasing rules permit better optimization) but does not support
data structures or structured programming; Fortran 90 does but open source
compilers are not available. Other languages including Ada and Java were
excluded simply because I have no experience with them.

7.2.17 Python

Although Pyvox is written primarily in C, its applications will normally
use an interactive scripting language to support rapid development. The
language chosen is Python, because it is well-suited to C extensions, has a
well-defined syntax and sematics, supports a reasonable implementation of
objects, and is portable to a variety of platforms including Unix, Windows,
and Macintosh. Perl was rejected because it does not facilitate extensions
in C and because its semantics is rather ad hoc; any language in which
experimentation is necessary to determine how to do an operation is not
well suited to a large software project. Tcl does not support objects and
has a rather limited semantic model. Java was rejected because I have little
experience with it and it seems more suited for compilation than interactive
design.

85

It is also important to note that Pyvox has been designed to support
a single scripting language. Attempting to support multiple scripting lan-
guages requires either restricting capabilities to the common subset of the
languages or providing multiple variants suited to each language.

7.2.18 LaTeX

Useful software requires documentation, and documentation requires choos-
ing a word processor or document compiler. I standardized on TeX/LaTeX
more than a decade ago because it is unsurpassed at typesetting mathemat-
ics; while that particular virtue is largely irrelevant to this project, I see no
reason to change a winning strategy. TeX has also proven highly portable
and stable. Its major disadvantage is that it takes a long time to learn how
to use effectively.

7.2.19 LAPACK and BLAS

Volume image analysis requires some numerical linear algebra, including
eigenvalues, least squares, solution of linear systems, and so on. Various
packages are available for this, even some in C. The current state of the art
package for linear algebra is LAPACK, supported by BLAS. The major dis-
advantage of LAPACK and BLAS is that they are written in Fortran, and
portably interfacing C and Fortran code is messy at best. It is possible us-
ing f2c to convert Fortran into C, but many platforms will have optimized
versions of BLAS and it seems foolish not to take advantage of these.

The policy that I’ve adopted is to use the platform-specific LAPACK
and BLAS libraries if available, but to use an internal light-weight version
generated using f2c if not. This decision will be reconsidered if things become
too messy, but it seems to be working reasonably well so far.

Additional packages for optimization and special functions are likely to be
needed in due course; once C/Fortran interfacing is worked out, it becomes
possible to use Fortran packages for this purpose as well.

7.2.20 Vectorization over Rows

As has already been discussed, it is inefficient to do most operations pixel-by-
pixel; arranging to spread the overhead over many pixels works better. The
BIPS layer essentially provides an abstract vector processor for this purpose.

86

If multiple operations must be done, it is also inefficient to vectorize over
an entire large image because the image must then be brought into cache
multiple times; it is better to bring into cache a portion of the image and
perform the multiple operations on that portion, before bringing in the next
portion of the image. While it is theoretically possible to optimize the size
of the portion brought into cache, it is difficult to do well in practice. Pyvox
generally compromises by bringing in one row or scanline of an image at a
time; a row is defined as a set of voxels with the same first n−1 coordinates.
A row typically contains 128–1024 voxels, which is enough to amortize the
loop overhead without overflowing the cache.

A typical loop nest for a point operation looks like this:

Setup for the entire image

Loop over the rows of the image

Setup for the current row

Loop over the voxels in the row

A typical loop nest for a neighborhood operation looks like this:

Setup for the entire image

Loop over the rows of the image

Setup for the current row

Loop over the voxels of the neighborhood

Setup for the current neighbor and row

Loop over the voxels in the current row and neighbor

7.2.21 FIXME Notes

Pyvox is (and probably never will be) incomplete; thus it is inevitable that
there will be sections of code that are unfinished, have known or suspected
bugs, do not handle special cases, and could be made faster or otherwise
improved. All such unresolved issues are marked with the special string FIXME
in the source code so that they may be easily found by a search command;
a few such issues appear in the user documentation are are marked by the
same string. The principle here is to be honest about the state of the code.

An early attempt was made to distinguish between bugs and enhance-
ments, marking the latter with the string ADDME, but it proved too difficult
to make the distinction consistently.

87

7.2.22 Signed Sizes and Indices

Array sizes and indices are stored as signed rather than unsigned longs. The
advantage of using unsigned values is that you can specify counts and indices
that are twice as large, but there is a formidable set of disadvantages: you
cannot easily and safely take the difference of two indices, and the difference
may exceed the range of values representable in either signed or unsigned
longs; and you cannot safely compare a count or index to a signed value with-
out treating a negative signed value as a special case. Considering that the
size of virtual memory and disk files is usually no more than twice LONG MAX,
the extra trouble of unsigned counts and indices doesn’t seem worth it.

7.3 Open Issues

7.3.1 Error Handling

7.3.2 Image Objects

...meaning objects as connected sets of non-zero voxels, not Python objects

7.3.3 Image Views

7.3.4 Huge Images

7.3.5 64-bit Platforms

7.4 Development Prerequisites

Those who want to participate in developing Pyvox itself will need a few more
tools than are necessary to compile and install it. Gnu autoconf and m4 are
used to create the configuration script. LaTeX, dvips, and ps2pdf are used for
the Reference Manual; groff or some equivalent is needed for the man pages.
The f2c Fortran-to-C converter is used to construct the internal lightweight
LAPACK/BLAS implementation so that it can be compiled with only a C
compiler; a few of the f2c runtime library functions are also needed. Either
etags (for emacs) or ctags (for vi) is helpful for rapidly finding particular
functions. Of course, substantial knowledge of the Python C API, scientific

88

programming, C programming, and image processing algorithms wouldn’t
hurt any.

7.5 Directory Layout

The source directory for BBLimage contains the following subdirectories for
specific types of files.

The bin directory is reserved for the compiled object files and programs.
The bitmaps directory contains the X Window icons used by the qdv

image viewer.
The doc directory contains the original TeX files for the documentation,

plus their conversions into dvi and pdf formats.
The examples directory contains a variety of image processing scripts

written using Pyvox, plus man pages.
The include directory contains the C header files used by BBLimage.
The lib directory contains the compiled object library files, and various

Python modules that implement Pyvox. These make rather strange bedfel-
lows and this directory may get split into two.

The lite directory contains the lightweight LAPACK and BLAS imple-
mentation used when BBLimage cannot find a native implementation. Its
contents are divided into lapack and f2clib subdirectories to distinguish
components taken from different sources.

The local directory is reserved for site-specific files and is guaranteed
never to be touched by configuration or any of the make *clean targets.

The man directory contains the man pages for BBLimage proper; man
pages for the examples are included in the examples directory.

The src directory contains the C source code for BBLimage proper, in-
cluding applications but excluding examples and test scripts. Header files
are kept in the include directory.

The test directory contains test programs and scripts for testing BBLim-
age.

89

7.6 Architecture and Code Organization

7.6.1 Voxel Kit

The Voxel Kit is a collection of higher level tools for volume image processing,
at roughly the level treated in image processing textbooks; it includes the
files voxel.c, voxel.h, and vxli.h. Most of the per-pixel operations within
the Voxel Kit are actually done by BIPS, which can be optimized to specific
platforms. The Voxel Kit may be called directly from C language programs,
or used from Python via the Pyvox extension.

7.6.2 Pyvox

Pyvox is an image processing extension to the Python language written partly
in C and partly in Python.

PyvoxC is the C language part of Python; it consists of the files pyvox.h,
pyvox.c, and parray.c, encapsulates the voxel kit as a Python extension,
and is compiled into a shared library pyvoxC.so.

The rest of Pyvox is written in Python; it includes the files pyvox.py,
which exposes pyvoxC.so to the Python user and implements a set of core
image processing methods; optim.py, which implments a set of optimization
algorithms; and regis.py which implements a basic set of image registration
methods.

7.6.3 BIPS

The BIPS (Basic Image Processing Subroutines) level defines a relatively
small set of image processing primitives from which higher level operations
can be built and which can reasonably be hand-optimized for specific target
platforms; the functions in the Voxel Kit are built from BIPS routines and
should not have to be modified for efficiency on different platforms. The rela-
tionship between the Voxel Kit and BIPS is essentially the same as between
LAPACK and BLAS for those familiar with numerical linear algebra. BIPS
includes the files bips.c and bips.h.

90

7.6.4 Exim

Exim is a set of functions for translating between external (file) and internal
(native) representations of data and is used to permit Sparc-format data
to be read on any platform; it includes the files exim.h and exim.c. It is
designed to accomodate many different external data formats, although only
the most common formats are currently supported. Pyexim, consisting of
the file pyexim.c, encapsulates exim as a Python extension (although only
the data type names are currently implemented).

7.6.5 Numerical Methods

C wrappers for LAPACK are defined in clap.h and clap.c; these have not
yet been made truly portable.

7.6.6 Language Extensions

The files errm.c, errm.h, memm.c, and memm.h encapsulate the standard
C error handling and memory management facilities into something more
convenient. The files rand.c and rand.h implement a high-quality random
number generator. The files cdata.c, cdata.h, and decomment.c imple-
ment some functions for processing “commented data”; that is, data files
with embedded comments that can be usefully read by either a person or a
computer. The file dstring.c implements some functions for dynamically al-
located strings, which seem much less useful now that the facilities of Python
can be used.

7.6.7 Applications

...both Python scripts and CLI C programs
The files bblanz.c, bblanz.h, and dumpbblanz.c use exim to support

reading, dumping, and writing a BBL variant of the Analyze VW image
header format.

The files binnseg.c, conseg.c, imstack.c, inleav2.c, lovar.c, rowcol.c,
rpsamp.c, skmiv.c, swab.c, usb2uc.c, vibihist.c, and vihist.c imple-
ment command-line programs for particular useful image processing func-
tions. Most or all of these are relicts of the the command-line days prior to
Pyvox and will eventually be replaced by Python scripts.

91

The file qdv.c implements an interactive image viewer.

7.6.8 Examples

The directory examples contains a few Python scripts for image processing;
these are intended more as examples (or particular functions that we needed
at BBL) than as finished user applications.

7.6.9 Test Scripts

The test directory contains various scripts and programs for testing BBLim-
age; most of these are intended as regression tests to verify that BBLimage
works correctly rather than as diagnostic tests to determine the precise loca-
tion of a bug.

7.7 Make Targets

This section summarizes the make targets that are useful for the developer;
see also the same-named section in the Installation chapter for additional
targets useful for users and installers.

The realclean target deletes everything that can be regenerated from
other source files in the distribution. You will need f2c, ps2pdf, autoconf,
and m4 installed to regenerate the deleted files, so don’t do this unless you
really mean it.

The tags target will regenerate the TAGS file used by emacs to rapidly
find the definitions of given names. If you prefer vi, make the obvious changes
to Makefile or Makefile.in.

The loc runs a program to count the total number of lines of code in
BBLimage, not including code borrowed from other sources (e.g. LAPACK).
This requires the loc program, which can be obtained from the same place
you got BBLimage itself.

The f2c target regenerates C code for the lightweight LAPACK/BLAS
implementation from the original Fortran implementation. You will need to
have the f2c program installed for this to work.

There are additional targets to make specific subsets of BBLimage; see
the Makefile for details.

92

7.8 Coding Style

7.8.1 Rationale

The Open Source movement has removed some of the legal and social barriers
to the widespread distribution and reuse of source code but it has not directly
addressed the problem of ensuring that the available source code is worth
finding, understanding, and reusing. The following style rules used at BBL
are an attempt to make it as easy as possible for a prospective code recycler
to understand and evaluate the code that we write, and to provide as much
portability as possible, without imposing an unreasonable burden on the
author. None of these rules are dogma, but they are a good starting point;
you probably shouldn’t violate them without a pretty good reason. On the
other hand, the spirit of the rule is almost always more important than the
letter, except in a couple of areas where diversity seems to create too much
confusion.

For a (tongue-in-cheek) contrarian view, see the “Old Regime” section
below.

These rules are definitely C- and Unix-centric, because those are the
language and operating system that I use by choice. Feel free to modify for
your own preferences.

It is perhaps worth noting that these rules are not armchair theorizing;
they are the rules that I actually follow (most of the time) when writing code
that others may see or that I expect to be still using myself a year or two
from now. I thus have a real incentive to make the rules as simple as possible,
consistent with communicating what the reader needs to know.

...audiences for reuse: use program as black box; fix bugs in the black box;
use program as initial approximation to the desired program; use selected
functions; study algorithms and style;

...uses: black box; baseline; component store; education; bug fixing; good
(or bad) example;

...components: whole program; major modules; functions; data struc-
tures; algorithms; documentation

7.8.2 The Rules

• The package should be distributed as a tar file which is named in the
format bblimage-1.0.src.tgz, containing the name of the package, the

93

version number, the fact that it is source, and the file format (gzipped tar
file). It should unpack into a directory bblimage-1.0, using both the name
and version number.
• The distribution package should contain README, INSTALL, and NEWS

text files giving a introduction to the package, installation instructions, and
notes on recent changes. In the installation instructions are short, they may
be included in the README file.
• A man page or similar documentation should be included for each in-

dependent program or important file format. Alternatively, a full-fledged
reference or user’s manual may be done in TeX.
• Gnu autoconf should be used to automatically configure the programs to

the user’s system. There should be a Makefile (or Makefile.in) with at least
targets all and install.
• The source code should be POSIX-compatible wherever possible. OS-

specific coding should not be used, unless there is no other way to get the job
done; if unavoidable, it should be wrapped in appropriate ifdefs or bundled
into architecture-specific files.
• Standard (ISO) C should be used wherever possible. Any exceptions

should be commented and justified.
• You may assume IEEE 754 floating point and two’s complement integers

if you need to; it would be nice to comment these for the benefit of the poor
sod that doesn’t have a nice computer.
• Library functions that might be useable in other, possibly non-interactive

programs should be kept in separate source files and should not depend on
XView or other GUI functions.
• Each source file should begin with a banner comment similar to the ex-

ample below that gives the name of the file and briefly describes its contents–
enough that a reader can quickly decide if this file is likely to contain the bug
he’s currently trying to track down, or the algorithm that he wants to study
and copy. The first line, as illustrated, should give the name of the file and
a one-line description; the exact format shown should be used, so that the
one-line description can be automatically extracted for a table of contents.
The same format can be used for a major block section within a source file,
such as a group of functions for handling linked lists.

/**

defenst.c - Defenestrate a randomly chosen programmer

94

Author: A. L. Fanatic

This program examines /etc/group to obtain a list of users

belonging to the prog group, randomly selects one user from

that list, remotely examines any desktop machines owned by

the user, and forcibly replaces MS Windows by Linux. See the

man page for the complete gory details.

***/

• The banner comment for a source file containing the main program for
a standalone program should also describe in user-oriented terms what the
program does and what arguments it takes; or it should refer to the man
page or other documentation that provides this information. If it’s necessary
to read the program source to decide how to use it (or what it does), you
need more comments.
• Each function, or tightly connected group of functions should have a

banner comment in the form given below, which is slightly less emphatic. It
should begin with a one-line function name and description, and describe the
purpose and calling sequence of the function. Information contained in the
comments describing each argument need not be repeated.

/*--

fat2ext2fs - Remotely convert FAT file system to 2nd extended fs

Given the IP address of a Windows system, this function converts

each FAT file system on that computer to a Linux 2nd extended file

system. The names and contents of the files are unchanged; the

ownership and permissions are set according to the parameters

described below.

---*/

• The format for the banner comments should be followed to the letter,
to make it easier for automatic collection and indexing of those one-line
descriptions. (We’ll get around to writing that automatic indexing program
real soon now.)
• The type declaration and argments for each function are also written in

a stylized format, to convey as much information as possible with the least
programming effort. The ideal is that a programmer who reads the banner

95

description and argument descriptions can successully call the function in
question without having to examine any of the code.

int /* 1 => success; 0 => failure */

fat2ext2fs(

unsigned char ip[4], /* IP address of remote system */

char *passwd) /* Adminstrator’s password */

{

...definition of the function...

}

• The function name and the beginning and ending braces should be flush
left, again to facilitate automatic processing; no other braces should be flush
left, to avoid confusing our hypothetical automatic processor.
• Any of the fifteen standard indentation styles is acceptable, provided that

at least three spaces are used per level. But please try not to switch styles
more than five times per page.
• Use the string FIXME to mark known bugs and other potential problems

that you are brushing under the rug. If you’re really brave, add your initials
so we know who to blame.
• If you’re making a possibly dangerous change that might break something,

include an explanatory comment, your initials, and the date; this might make
life much easier for the poor sod that has to figure out what broke. This is in
addition to whatever comments you provided to the source control system; if
you insist on living dangerously, please leave some conspicuous cues behind
for those of us that might have to clean up after you.
• The type of each function should always be explicitly declared, even if int

or void.
• Function prototypes should always be used, and placed in header files for

functions used outside a single file. Functions used only in a single file should
be declared static.
• The code should compile without warnings under

gcc -Wall -Wmissing-prototypes

• You may assume that the reader understands C and common algorithms,
but not that he can read your mind to determine what variable names, data
structures, etc. mean.

96

• Dividing a function definition into paragraphs headed by an brief explana-
tory comment can be very helpful to the reader.
• An explanatory comment should be attached to any variable declaration,

except for temporary variables of obvious meaning.
• If you’re not sure whether it’s obvious, it’s not!
• More than a few comments tacked onto the ends of executable source

lines usually means that you need to rethink your algorithm, or that you
don’t trust the reader to understand C.
•White space (i.e. blank lines) is a useful way to visually break up your

code into meaningful blocks without being heavy-handed. Putting several
blank lines between function definitions makes it far easier to tell where one
ends and the next begins.
• A textbook example of a well-written (if useless) function is given below.

/---

area_in_common - Compute intersection of many bounding boxes

Given a linked list of bounding boxes, this function counts

the number of boxes on the list and computes the area of

their intersection.

--*/

struct bounding_box_rec {

struct bounding_box_rec *next; /* Pointer to next record, or zero */

double left, right, top, bottom; /* Boundaries of the box; */

} ; /* origin is to the top and left */

double

area_in_common(

struct bounding_box_rec *list, /* Head of the linked list */

double *area) /* Area of intersection */

{

int count; /* Number of boxes on list */

double left, right, top, bottom; /* Limits of intersection so far */

/* Initialize before walking over the list */

/* FIXME: This function will break if the list is empty. */

count = 1;

97

left = list->left;

right = list->right;

top = list->top;

bottom = list->bottom;

/* Walk the list, keeping track of intersection */

for (list = list->next; list != NULL; list = list->next) {

count++;

if (left < list->left) left = list->left;

if (right > list->right) right = list->right;

if (top < list->top) top = list->top;

if (bottom > list->bottom) bottom = list->bottom; }

/* Compute the area, which might be zero */

if (left > right || top > bottom)

*area = 0.0;

else

*area = (right - left) * (bottom - top);

return count;

}

7.8.3 The Old Regime

• Comments are for wimps; I can keep all the documentation in my head,
since no one else will ever need to read or modify the program.
• Anyone that needs to learn how to use the program can learn from me

directly.
• Anyone that needs to know what the file formats are can read the source

code and figure out how the input/output routines work.
• No one will ever want to use any feature of this program without going

through the GUI.
• No one will ever want to port this program to another platform. Even if

they do, everything that they need to know is in the source code.
• It works under my compiler. Why should I worry about POSIX compat-

ibility?

98

7.9 Coding Issues

This section contains some minor coding issues that require explanation and
which don’t lend themselves to documentation in the code itself.

7.9.1 Bugs in Python 1.5.2

There are a number of arguable bugs in Python 1.5.2, but since current
Python development is working on version 2.x, it is pointless to report these
and expect them to be repaired; so we just work around them. Upgrading to
Python 2.x is the right thing to do, but there appear to be enough changes to
the API that it will probably break the existing code, which we don’t want
to do until Python 2.x becomes the de facto standard version. Anyway, here
are the “bugs”:

• foo[] is invalid syntax, even though it’s the logically consistent expres-
sion to get the value of a scalar array. We handle this by permitting
and ignoring any scalar subscript.

• math.sqrt(-1) produces an OverflowError rather than a NaN or a
DomainError. This doesn’t really affect anything and is ignored.

• The C API for the len() function returns type int rather than long;
this may not be big enough for a voxel array on a platform where int
is only 16 bits. We claim to support only 32-bit platforms.

• Python does not appear to support IEEE 754 even if the underlying C
implementation does. FIXME: What the heck did I mean by this?

• /usr/local is not on the default sys.paths; this doesn’t affect Pyvox
itself but might confuse the user.

• x[i:j] always tries to call the sq slice method even if it doesn’t
exist and the mp getitem method does; similarly x[i:j] = v always
calls sq ass slice rather than mp setitem. We work around this by
providing the sq slice and sq ass slice methods even though they
are logically redundant.

• PyNumber Check(ob) == true does not guarantee that ob is a built-in
number type, nor that it supports all of the number functions.

99

7.9.2 Upcalls

The usual practice is that the Python layer calls functions and methods
defined in the C layer, but it is occasionally necessary or useful for functions
written in C to call functions or methods written in Python; such calls are
referred to as “upcalls” since they go from the lower level to the upper.

An upcall to a Python function is done using the PyObject CallFunction

of the Python C API; see the function upcall function in pyvox.c for an ex-
ample. It may be necesary to map the name of the function or method into a
Python object; this is done using the C API function PyDict GetItemString

with the Python dictionary of the class or module in which the function is de-
fined. The dictionary of the pyvox module is passed down to the C level dur-
ing initialization of the module calling the set pyvox dict function, which
caches the dictionary in the global C variable pyvox dict. Dictionaries for
other classes or modules can be added as necessary.

Similarly, an upcall to a Python method uses the PyObject CallMethod

of the C API; see upcall method in pyvox.c for an example. In this case,
the API expects the method name as text, so it is not usually necessary to
look up the name.

Variables in the Python layer can presumably be looked up by name in
the appropriate dictionary to obtain a Python object, but there are as yet
no actual examples of this.

7.9.3 The /usr/bin/env Hack

The location at which Python is installed depends on the platform: It is usu-
ally installed at /usr/bin for systems for which it is included as a standard
feature (e.g. Linux) but at /usr/local/bin when it is not standard and is
added later by the system adminstrators. To handle this variability, the first
line of scripts should be set to #! /usr/bin/env python, which will find
python, wherever it may be in the path and call it. The env is intended to
make temporary changes in the environment, but may be adapted for the
present purpose.

7.9.4 Inlineable Functions

The inline keyword, which is standard in C++ and C99 and often available
as an extension in C89, causes the function definition which it prefixes to be

100

expanded inline rather than called when that function is invoked; this usually
improves performance and can be significant for heavily used functions.

The configuration script checks whether or not the compiler accepts the
inline keyword or some equivalent and defines a C macro in the file config.h
appropriately. For an inlineable function defined and used within a single file,
it is sufficient to qualify that function definition as static inline.

Handling an inlineable function used in more than one source file is trick-
ier. If inline is supported, then the function definition should be qualified
as static inline and included in each source file that needs it; if not, then
the function definition must be qualified as extern and contained in exactly
one source file. The BBLimage configuration script handles the complexity
by defining two additional macros in config.h. The macro HAVE INLINE

is defined if the compiler supports inline or an equivalent, and undefined
otherwise; it is used to control where the inlineable functions are actually de-
fined. The macro inlineable is defined as either static inline or extern
under the same condition and is used to qualify inlineable functions appro-
priately for the compiler.

7.9.5 Solaris isalpha Bug

There is a bug in the Solaris implementation of the function isalpha and its
relatives. The ANSI standard specifies that these functions take an argument
of type int; under the usual promotion rules, or under the standard prototype
which specifies an argument of type int, an argument of type char should be
cast to type int. Sun, however, implements these functions as a macro that
does a table lookup without doing the cast first; the gcc compiler detects
this and generates a cryptic warning message subscript has type ‘char’

when it sees a expression of the form isalpha(c) where c is an expression
of type char. To avoid these warning messages, we use isspace((int)c) to
include the necessary cast explicitly. This should not cause problems on other
systems, but is explained here to avoid puzzling any human programmer who
might be reading the code.

7.9.6 getsubopt Bug

The Gnu and Solaris C libraries both provide an implementation of getsubopt
and the two implementations are compatible. However gcc under Linux fails
to provide a prototype for this function in stdlib.c while gcc under Solaris

101

does provide a prototype. Any programs that use getsubopt must contain
various hackery that attempt to provide a prototype only when it is needed;
BBLimage does not currently contain any such programs but might in the
future.

7.10 Release Checklist

The following release checklist is of little interest to anyone except the BBLim-
age maintainer, but this is a convenient place to store it.

1. Update the NEWS and README files as needed. Commit them to the
repository.

2. Choose the new version number and update the bblimage.ver file.

3. Regenerate the files doc/pyvox.pdf and ./configure if necessary and
commit to the repository.

4. If necessary, regenerate and commit the C source files for the LAPACK
lite code.

5. In a working directory, check that all the files seem to be there and are
consistent with the repository. Then use them with a tag in the form
bblimage-nn-nn, using the tag command.

6. Export the new release to a working directory (~/src is a good place
for this) and name the top directory with the version number, e.g.
bblimage-nn.nn.

7. Tar and gzip, in the form bblimage-nn.nn.src.tgz.

8. Try making the exported version, just as a quick check that eveything
is there.

9. Put one copy of the tgz file in mercur:/export/devel/distrib.

10. Add to the BBL website and update the web page.

11. Email announcements as appropriate.

102

