
National PDES Testbed
Report Series

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NATIONAL

TESTBED

Validation Testing
System:
Reusable Software
Component Design
Katherine C. Morris

David Sauder

Sandy Ressler

NISTIR 4937

U.S. DEPARTMENT OF

COMMERCE

Barbara H. Franklin,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

National PDES Testbed

U.S. DEPARTMENT OF COMMERCE

National Institute of Standards and Technology

NATIONAL

TESTBED

U
N

ITED STATES OF AMER
IC

A

D
E

P
A

R
TM

ENT OF COMM
E

R
C

E

Validation Testing
System:
Reusable Software
Component Design

Katherine C. Morris

David Sauder

Sandy Ressler

NISTIR 4937

October 1992

3

Contents

1 Introduction ...5

2 Overview ..7

3 VTS Specific / Model Independent Layer ..9
3.1 STEP Class Library .. 9
3.2 Data Editor Library.. 17
3.3 VTS Interface Library.. 21

4 Application Model Specific Layer..25

5 Data Probe: An Example Application..26

6 Conclusions, Summary and Future Directions..30

7 References...31

Appendix A EXPRESS Model of Registry Classes ...33

Appendix B VTS Document Series...37

Validation Testing System: Reusable Software Component Design

4

5

Validation Testing System:
Reusable Software
Component Design

Abstract

Data sharing is a difficult problem with a variety of issues. There is a need to share data
across multiple enterprises, different hardware platforms, different data storage para-
digms, and a variety of network architectures. The ISO Standard for the Exchange of
Product Model Data (STEP) addresses this need by providing information models
which clearly and unambiguously describe data. The validity of these information
models is essential for success in sharing data in a highly automated business environ-
ment.

The design of software, which supports the testing of information models for validity
and correctness, is described in this document. This design follows requirements and an
architecture described in previously published Validation Testing System (VTS) project
documents. The collection of these documents provides a basis for software develop-
ment within the National PDES Testbed. The Testbed is used to validate information
models for STEP. The scope of this document is limited to the design of those compo-
nents of VTS software scheduled for development in the initial phase of the project.

1 Introduction

The software described in this document supports the Validation Testing System (VTS)
at the National PDES Testbed1. The Testbed is used by researchers to test the validity of
application protocols, or application models2, which are being proposed for STEP3.

1. Funding for this work and the Testbed, located at NIST, has been provided by the Department
of Defense’s Computer-Aided Acquisition and Logistic Support (CALS) Office. PDES, Product
Data Exchange using STEP, is the U.S. activity in support of the international STEP standard.

2. The termapplication model will be used throughout this paper to refer to the domain specific
schema which is being evaluated whether that be an application protocol (AP), an application
resource model (ARM), a context driven integrated model (CDIM), or some other form of an
application schema.

3. The Standard for the Exchange of Product Model Data (STEP) is a project of the International
Organization for Standardization (ISO) Technical Committee on Industrial Automation Systems
(TC 184) Subcommittee on Manufacturing Data and Languages (SC4).

Validation Testing System: Reusable Software Component Design

6

The testing process is described in a paper outlining the methodology for Application
Protocol validation [Mitch91].

The design architecture [Morris92] provides a framework for the software developed
within the VTS project. The software described in this document will be designed and
implemented incrementally as resources are available. Likewise, this document will be
updated regularly as the design of the various software components is completed. For a
complete description of the VTS document series please see Appendix B4.

The initial emphasis of the VTS software is the support of Test Data Generation soft-
ware, more commonly known as the Data Probe. Therefore, the software components
detailed in this document directly support the requirements for Test Data Generation.

The audience for this document includes software designers and developers. This docu-
ment builds on the software architecture covered in the VTS architecture document
[Morris92]. This approach is relevant to those software developers concerned with the
development of STEP-based schema driven software for production oriented environ-
ments.

A Note on Document Style

Throughout this document we have used a number of typographic practices to improve
clarity, as indicated inFIGURE 1. All references to the names of software modules, and
libraries are in italics, classes and specific fragments of code (EXPRESS, C or C++) are
set incourier . The actual names of attributes and functions in these diagrams do not
necessarily correspond to existing code. This is not a software reference manual, and
names are meant to be descriptive in nature.

Class diagrams are drawn with the following convention:

FIGURE 1 Class illustration conventions

4. No approval or endorsement of any product by the National Institute of Standards and Tech-
nology is intended or implied. The work described is funded by the United States Government
and is not subject to copyright.

ClassName

Attribute1

AttributeList

Function1

Function2

pointers to
other objects are
illustrated with
arrows

●●● indicates a list
of items

typeset in courier regular
typeset in courier oblique

Overview

7

2 Overview

The VTS software architecture integrates modular software libraries. These libraries
will be incorporated into a single system which supports functions needed for the vali-
dation process [Mitch91]. The use of object-oriented techniques and standard interfaces
will enable software reusability. The system will use software as available from external
sources. When such software is unavailable, the necessary software will be developed.
Support for the implementation methods specific to STEP will need to be developed.

Since STEP is a developing standard, the mechanisms for its implementation are not
stabilized. Furthermore, since these mechanisms are developing concurrently with the
application models which the VTS software is used to validate, it is unlikely that exter-
nally developed software will be available in the necessary time frame. These mecha-
nisms include the specification language for the application models -- EXPRESS
[ISO11] -- and the data interface formats, such as the exchange file format [ISO21]. The
VTS must be responsive to changes in these implementation mechanisms by providing
software which is quickly and easily adaptable to new versions of the mechanisms.

The following goals have influenced the design of the VTS software architecture:

■ minimize the impact of changes to the standard on implementation software

■ permit easy transition of the software to support a new application model,

■ minimize the need for data translation by providing an integrated system which sup-
ports a broad range of functions,

■ provide a single end-user program,

■ enable the development of different style user interfaces,

■ allow for the integration of externally developed software into the system, and

■ develop reusable software.

All the software components needed to support the testing process involve the comput-
erized manipulation of data based on a common schema or application model. There-
fore, the approach taken has been to develop a library of data structures and access
functions for representing a schema which can be shared among the different compo-
nents. These data structures must be rich enough to store data and provide some
semantic information from the application models at runtime. Semantic information
needed at runtime includes the names of the structures, their fields, and, when possible,
acceptable values for the fields and rules governing instance structure. In the initial
implementation the latter information is available only by displaying the application
model, as specified in EXPRESS, to the user.

Relationships between the VTS Software Components

This section discusses relationships between the VTS software layers as specified in the
VTS architecture document [Morris92]. The application model specific libraries, the
VTS specific libraries, and the generic systems each contain functional elements of this
software. The VTS software design is confined initially to the components in these
layers. Only the first 2 layers are discussed here, since software in the “generic” layer is

Validation Testing System: Reusable Software Component Design

8

expected to come from outside (i.e. commercial or public domain) sources. Dependen-
cies between the software in these layers are shown inFIGURE 2.

FIGURE 2 VTS Software Component Relationships

The division of the VTS software into component libraries enables code reuse by encap-
sulating the functionality needed for different aspects of the validation process. Several
considerations are influential in defining the components of the VTS software, but two
functional requirements are of particular importance:

Schema

Indicates Dependency

Database
Utilities

Translators

Application
Database

Library

Generic
Interfaces

Abstract
Data Types

Data Probe

STEP Class

VTS
Interface

Data Editor EXPRESS
Browser

Application

VTS

Generic

Specific
Libraries

Model
Specific

Libraries

and
Machine

Dependent
Systems

Generated Library

Library

LEGEND:

VTS Specific / Model Independent Layer

9

■ the need to easily transition the software to a new application model, and

■ the desire to enable different user interfaces to be developed.

The conceptual division of VTS software is based on these requirements. The informa-
tion from a particular application model is encapsulated in theSchema Class Library.
TheData Editor Library encapsulates the information and operations needed for manip-
ulating and editing that information. TheVTS Interface Library contains the operations
needed to present that information to the user. The presentation format in the user inter-
face is not influenced by the specific content of the information but uses generalizations,
or abstractions, about the structure of the information. These abstractions are based on
EXPRESS and are supported by theSTEP Class Library.

The VTS architecture layering supports modularization of the software. Component
libraries in each layer are dependent on some of the libraries in the next, more general
layer. However, the more general layers are not dependent on the less general layers.
For example, theVTS specific layer depends on thegeneric systems layer, but not vice
versa. Dependencies are limited to the interface between layers. The exception is in the
database management system. The database system will come from an external source
and will have its own particular structure.

The VTS architecture is structured to enable reuse of the software. A different style of
user interface could be developed for the VTS software by replacing theVTS Interface
Library. This can be done without affecting the data editing and representation capabili-
ties of the system. For example, two different systems could be developed by replacing
this library. One could support window-based interfaces and the other ASCII-based
interfaces. These systems would provide the same functions in terms of editing and
representational capabilities, since those components of the software would not change.

Other programs may use parts of the VTS software. In particular, theSTEP Class
Library andSchema Classlibraries may represent the application data structures. Stand-
alone translators could be developed using these libraries. These translators would not
be dependent on theVTS Interface Library which may require a sophisticated
windowing system. But they would share the same data representation capabilities of
the VTS software and would be able to directly access the same database using the
interface provided in theSchema Class Library. The interface to the database would be
transparent to the translators. Likewise, parts of theVTS InterfaceandData Editor
libraries could be used for any general purpose editor of highly structured information.

3 VTS Specific / Model Independent Layer

Software in this layer is specific to the needs of validation testing but independent of
any particular application model. These include the data structures needed to represent
entities. In addition, the functionality for editing the data contained in these data struc-
tures is in this layer.

3.1 STEP Class Library

TheSTEP Class Library (SCL) is a collection of application independent class defini-
tions. They are used by the application dependent classes found in the Schema Class
Library. Classes found in theSCL include a common “base” class for all entity class

Validation Testing System: Reusable Software Component Design

10

definitions and classes to maintain meta-information from the schemas. After a brief
description of some problems solved by theSCL, this section will conclude with defini-
tions of the major classes in this library.

TheSTEP Class Library (seeFIGURE 3) provides functionality for supporting a
Schema Class Library, a dictionary of the application model, and data files. TheSCL is
dependent on the external C++ libraries for standard input and output [McLay90].

The problem with any translation of a conceptual model into an implementation
language is the translation of the semantics conveyed by the conceptual model. The
symbolic names used in a model store some of the meaning intended by the modelers.
Consider the following type definition:

TYPE inches = INTEGER;

END_TYPE;

To a human reading a conceptual model, the terminches conveys more information than
the terminteger.At first glance, it may seem as if inches can simply be translated to an
integer and all would be well; however, this approach does not maintain the semantics
captured by the terminches. Inches is a specific unit of measurement not simply a
number.

To capture the symbolic information several classes have been created. TheSTEPentity
class captures information pertaining to the entities of the conceptual model; the
STEPattribute class handles the descriptions of the entity’s attributes.

FIGURE 3 STEP Class Library - major classes and relationships

3.1.1 Class Relationships within STEP Class Library

TheSTEPentity class contains the functionsSTEPread andSTEPwrite which
encapsulate the behavior required to read and write an entity encoded in the STEP
exchange file format.

STEPattribute

pointer

descriptiveType

Error

STEPentity

STEPAttributeList

STEPfileID

STEPread

STEPwrite

Error

An
Attribute
Instance

●●●

VTS Specific / Model Independent Layer

11

TheSTEPattributeList is a list of pointers to the instances of the attributes of an
entity. Functions can traverse the list of attributes without any knowledge of attribute
types. Information in theSTEPattribute class describes the type of an attribute for
a given instance of the attribute. Using this information theSTEPattribute can
“validate” itself by ensuring that the data pointed to by theSTEPattribute corre-
sponds to the correct type.

The descriptive information from a schema is encapsulated in a set of classes, which
populates aRegistry (see FIGURE 4) . TheRegistry is used as a dictionary
to the contents of the schema for the application model. TheRegistry is also used to
create new instances of theSTEPentity class at run-time based on the entity’s
symbolic name.

The objects contained in theRegistry are instances ofEntity Descriptors
andAttribute Descriptors . These classes maintain information about an entity
such as its name, the supertype(s) and subtypes, and the names of its attributes. The
information in theRegistry mirrors the particular schema being used.

FIGURE 4 Registry classes

3.1.2 Relationships to other Libraries

TheSTEPentity class is the link to the other libraries within the VTS software. The
VTS Interface Library provides the interactive user’s view of an instance of an entity.
The view is dependent on theSTEPentity class to provide its structure.

Classes in theData Editor Library manage sets of instances of theSTEPentity class.
TheData Editor Library is unaware of the contents of the instances but is able to gener-
ically manipulate them. Likewise, theSTEPfile class is able to generically operate on
instances of theSTEPentity class, leaving the details of the file syntax to be handled
by theSTEPentity andSTEPattribute classes.

AttributeDescriptorEntityDescriptor

Name

SuperTypes

SubTypes

AttributeDescriptors

TypeDescriptor

●●●

●●●

●●●

Validation Testing System: Reusable Software Component Design

12

TheRegistry is used by theData Editor Library. TheRegistry provides func-
tions for inserting, deleting, and retrieving entity descriptors. All of the entity descrip-
tors in theRegistry must be unique. To support this functionality the nodes in the
Registry have a key. In EXPRESS a unique key is determined by the combination of
the entity name and schema name, but in this implementation uniqueness is determined
by entity name alone. Entity names may not be used in more than one schema.

3.1.3 Classes

TheSTEP Class Library consists of two parallel sets of classes (seeTABLE 1): one
dealing with instances and the other dealing with symbolic descriptions of the instances,
the schema. Each set contains a class for representing entities and a class for repre-
senting attributes. The library also contains parallel sets of classes which are specialized
for different types of attributes (i.e. aggregate attributes.) These specialized classes are
not described in detail in this document. (A model written in EXPRESS describes all the
classes for theRegistry of EXPRESS. See the Appendix for details on this model.)

TABLE 1 Primary Classes of the STEP Class Library

instance schema

STEPentity EntityDescriptor

STEPattribute AttributeDescriptor

TypeDescriptor

STEPattributeList Registry

The separation of sets of classes is guided by the multiple uses for the library. One cate-
gory of functions that the library is intended to support involves interactive browsing of
an application model; the other category of functions involves translations of data into a
particular application model. For interactive tools the symbolic descriptions of the
application model is needed. For translators a programming interface to the application
model is sufficient. Many tools (i.e., a data editor), however, support combinations of
these functions and, therefore, use both sets of classes.

STEPentity

The abstract base class,STEPentity , enables the generic manipulation of the specific
classes which correspond to entities in the application model -- the classes generated (by
the fedex_plus utility) from an EXPRESS schema. TheSTEPentity class encapsu-
lates the access to information about an instance of entity, including both values for its
attributes and symbolic information describing the entity’s type. TheSTEPentity
class does not maintain this information directly. The values for the attributes are main-
tained by the appropriate subclass of theSTEPentity . The symbolic information is
provided by theEntity Descriptor . However, all this information can be
accessed through theSTEPentity class.

VTS Specific / Model Independent Layer

13

In addition, theSTEPentity class provides the necessary functions for implementing
the STEP file exchange protocol [ISO21] and initiating instance validation. In partic-
ular, theSTEPentity class contains an instance identifier, error state information, and
a list of its attributes. The identifier is used to maintain the instances’s identifier for an
exchange file. The error state is used to report invalid or missing data values. As the ISO
standard develops, theSTEPentity class may be used in the implementation of other
data sharing features such as an identifier which has a broader context than an exchange
file.

A key design goal for theSCL was to isolate the implementation of the exchange proto-
col from the generated class definitions for a particular application model. By doing so,
it is possible to change the exchange protocol without modifying code that uses the
Schema Class Library. This approach also serves to isolate the details of the exchange
protocol from the users of the software.

The exchange file has a syntactic format based on an EXPRESS schema. The file is a
series of sets of data values. The format of the data sets is based directly on the entity
definitions of the corresponding application model. The fragment below shows an
example of the file exchange format. The numbers preceded by the symbol @ are
instance identifiers. The following fragment is from a STEP exchange file based on the
Geometry model [ISO42] (this example is from a very early version of the file format):

STEP;

HEADER;

FILE_IDENTIFICATION(’IBMPRT2’,’1990 01 24 18 30
17’,(’L.MCKEE’),(’COMPANY 3’),’1’,’1’,’PDES’);

FILE_DESCRIPTION(’SIMPLE PART’);

IMP_LEVEL(’USER DEFINED ENTITIES ONLY’);

ENDSEC;

DATA;

.

.

@19=DIRECTION(,,0.7071067845031212,0.7071067845031212,0.);

@20=DIRECTION(,,-0.7071067845031212,0.7071067845031212,0.);

@21=DIRECTION(,,0.,0.,1.0000000308363815);

@22=CARTESIAN_POINT(,,0.0625,21.3794994354248047,11.5299997329711
914);

@23=TRANSFORMATION(,,#19,#20,#21,#22,);

@24=COORDINATE_SYSTEM(,,,#23);

STEPattribute

Like theSTEPentity class theSTEPattribute class encapsulates the access to
information about values for an entity’s attributes and symbolic information describing
the attribute. The actual values for an entity’s attributes are maintained by the appro-
priate class in theSchema Library; however, theSTEPattribute class maintains a
pointer to the value for an attribute. This feature is used to access an attribute’s values
without knowing the nature of the attribute. The descriptive information about the
attribute is maintained within theAttributeDescriptor which is accessible

Validation Testing System: Reusable Software Component Design

14

through the instance of theSTEPattribute . TheSTEPattribute class maintains
error state information for the attribute. The error state is accessed by theSTEPentity
class during instance validation.

STEPattributeList

TheSTEPattributeList class is the key to providing common functionality for
subclasses of theSTEPentity class. The list can be used to traverse the attributes of
any entity instance. Using the instances of theSTEPattribute both the values for
and the descriptive information about the attribute can be accessed. For example, the list
is traversed by the function which implements the exchange file format for reading and
writing of the values for an instance. Similarly, the list is used to display the names of an
entity’s attributes to an interactive user.

Registry

The purpose of theRegistry is to provide access to the descriptive information about
schemas, types and attributes. This information is used to present meaningful informa-
tion, such as names, to users. In addition theRegistry has a mechanism for the
creation of instances based on the entity name. The traversal of the schema hierarchy via
pointers to the parent and subtype entities is also facilitated by information in the
Registry .

A Registry provides two important functions:

■ it contains symbolic information about the structures (the entities and their
attributes) described in the application model.

■ it provides a mechanism to create new instances of an entity type given an entity’s
symbolic name.

TheRegistry used in the VTS software contains entries associated with an applica-
tion model written in EXPRESS; however, theRegistry class may alternatively be
populated with information from models specified in a different data modeling
language. To use theRegistry for a different data modeling language, appropriate
descriptor classes (analogous to the Entity and Attribute Descriptors described below)
must be defined as subtypes of theRegistry Entry class.

Support for multiple schemas at runtime is one requirement which led to the design of
theRegistry class. TheRegistry class provides a mechanism to instantiate a
program with a particular application model. In the design of the initial VTS software
only one application model, and therefore one instance of aRegistry , will be used.
However, it is envisioned that multiple registries would be used to support multiple
schemas in a single program. By doing so the user would be able to switch “contexts.”
In this way the application model visible to the user could be switched at runtime.

An aspect of the STEP application models, currently not addressed in the VTS software
design, relates to the organization of the application models. The VTS software
currently is not addressing these requirements because the organization of these models
and the relationship of this organization to the EXPRESS language is in a very active
stage of development. It is anticipated that a mechanism for supporting multiple, and
possibly overlapping or nested, application models in a single program will be needed to

VTS Specific / Model Independent Layer

15

support the emerging organization. As these requirements are defined and become more
stable, more support for these will need to be incorporated into the VTS software
design. TheRegistry class encapsulates the mechanism to support future application
model needs. This encapsulation will isolate the changes to the VTS software needed to
support the new organization.

One problem area is entity referencing between schemas. Two EXPRESS language
constructs in the interface specification portion of EXPRESS, USE FROM and
REFERENCE FROM, allows schemas to use entities from other schemas. This is not
handled in a robust way by the current version offedex_plus [McLay 90] or the VTS
libraries. This area is in flux in the EXPRESS committee and other committees within
the STEP community.

As an aside, the class descriptors used by theRegistry were developed by using an
early version of the Data Probe (see the section Data Probe: An Example Application).
A model of EXPRESS in EXPRESS was created, translated to C++ and a Data Probe of
this EXPRESS of EXPRESS schema was created. Data entered in this particular Data
Probe was used to prototype the class information which we desired to represent in the
Registry . This iterative design process has proven quite useful [Kramer92].

EntityDescriptor

For each entity in the application model an entity descriptor is created. An entity
descriptor encapsulates the minimum set of symbolic information needed by the VTS
software at runtime. The entity descriptor is represented by the classEntityDe-
scriptor . This class is used to populate an instance of theRegistry class and is
theRegistry entry for an EXPRESS information model. Instances of this class
contain the following information:

■ name

■ schema

■ subtype(s)

■ supertype(s)

■ attribute(s)

■ creation function

One entity descriptor is created for each entity in the application model. The entity
descriptor is accessible in a number of ways.

■ The entity descriptor is represented as a global variable in the Schema library.

■ Those subclasses of theSTEPentity class which are instantiated contain a pointer
to anEntityDescriptor . Each instance of aSTEPentity points to the entity
descriptor for the entity type.

■ When an entity descriptor is stored in aRegistry , it is accessible from theReg-
istry given the entity name. The entity name serves as the key into theRegis-
try .

Validation Testing System: Reusable Software Component Design

16

AttributeDescriptor

A description of each attribute is also contained in the schema dictionary or
Registry . These descriptions are most easily accessible through the entity descrip-
tions which contain direct pointers to the descriptions of the attributes. The EXPRESS
definition of the attribute descriptor is as follows:

ENTITY attribute_descriptor;

name: STRING;

type: type_descriptor;

optionality: BOOLEAN;

uniqueness: BOOLEAN;

owner: entity_descriptor;

END_ENTITY;

This structure describes the basic properties associated with an attribute. In the initial
implementation this information is used to present a simple description of the attribute
to the user; in later implementations it may be used in conjunction with constraint
checking on values of attributes.

The initial implementation of the VTS software does not provide support for derived
attributes. The requirements which support derived attributes have not been identified
for this design. However, it is anticipated that theAttributeDescriptor concept
will be extended to support these attributes.

TypeDescriptor

Much of the information which describes an attribute is contained in the attribute’s type.
To support this, another type of entity is introduced: thetype_descriptor . Due to
the variety of types available in an EXPRESS schema, there are several subtypes of
type_descriptor . The following EXPRESS definitions represent the basic
type_descriptor :

TYPE base_type =

ENUMERATION OF (

INTEGER_TYPE, STRING_TYPE, REAL_TYPE, ENTITY_TYPE,
AGGREGATE_TYPE, ENUM_TYPE, REAL_PTR_TYPE, INTEGER_PTR_TYPE,
SELECT_TYPE, BOOLEAN_TYPE, LOGICAL_TYPE, NUMBER_TYPE,BINARY_TYPE
UNKNOWN_TYPE);

END_TYPE;

ENTITY type_descriptor;

name: STRING ;

fundamental_type: base_type;

description: STRING;

END_ENTITY;

Thename, fundamental_type anddescription are currently implemented in
the VTS software. The subtypes of thetype_descriptor are not implemented in
the initial implementation of the VTS software. The level of detail provided by this
design is not a priority for the VTS software. The information encapsulated in the
type_descriptor represents a minimal set of information which is needed at
runtime.

VTS Specific / Model Independent Layer

17

Thetype_descriptor encapsulates the area which will be expanded for future
implementations to support access to more robust type information. The expanded type
information is particularly necessary for the software to evolve to support tighter
domain restrictions for attribute values and other types of constraints.

3.2 Data Editor Library

One of the goals of the VTS software design is to provide a clean separation of the soft-
ware’s functionality and the interface. Support for editing is contained within theData
Editor Library. This library includes functions for editing individual instances and for
manipulating groups of instances. Group manipulation includes merging exchange files,
searching sets of instances, and checking sets of instances for completeness with respect
to the application model. TheData Editor Library also maintains the state of an interac-
tive editing session.

TheData Editor Library manages information from two areas. First, it is responsible for
managing information about instances ofSTEPentity with regard to the editing
process. This information is used as the subject material for the visual objects (views of
the subject) that are shown to the user with the VTS user interface. (A visual object
refers to an object in theVTS Interface Library which can actually be seen on the
computer screen.) The information in the visual objects can then be viewed, edited and
copied back to the underlying subject. The second area of information managed by the
data editor is information about the display, such as:

■ whichSTEPentity is currently being displayed,

■ which of the STEPentity instances have been displayed,

■ in what orderSTEPentit y instances are displayed in the list ofSTEPentity
instances read from an exchange file,

■ in what order available entity types are displayed,

■ how aSTEPentity instance has been saved,

■ whichSTEPentity instances are marked to be deleted,

■ what is the state of a visual display of aSTEPentity instance (is writable or read-
only)

It is important to note that the visual objects are not actually created or placed on the
screen by theData Editor Library. TheData Editor Library maintains information
about whichSTEPentity instances have an associated visual object and the state associ-
ated with those objects. TheData Editor Library is only loosely tied to a specific user
interface library.

3.2.1 Class Relationships within Data Editor Library

The primary classes in theData Editor Library are theInstanceManager , the
ManagerNode , and theSTEPfile class. The library also relies on theRegistry
andSTEPentity classes, which were described in the previous section. The prime
use of theInstance Manager is to maintain a list of the entire set of instances of
STEPentity for a particular editing session. TheInstanceManager is also used

Validation Testing System: Reusable Software Component Design

18

by theSTEPfile class to maintain information about the header section associated
with a particular file.

FIGURE 5 Data Editor classes

3.2.2 Relationships to other Libraries

Classes in theData Editor Library work closely with the classes from theSTEP Class
Library andVTS Interface Library to implement a graphical editor for STEP entities.
TheVTS Interface Library defines visual classes. TheData Editor Library serves as a
meditator between theSTEP Class Library and theVTS Interface Library (FIGURE 6).

MgrNode

state

GetSTEPentity

DisplayNode

InstanceManager

MasterInstanceArray

SaveComplete

SaveIncomplete

Delete

Replicate

STEPfile

instanceManager

registry

headerID

fileName

readExchangeFile

writeExchangeFile

appendExchangeFile

readWorkingFile

writeWorkingFile

appendWorkingFile

●●●

DisplayNode

state

mgrNode

SEE

CommandManager

completeMgrList

incompleteMgrList

cancelMgrList

deleteMgrList

writeDispList

viewDispList

closeDispList

●●●

●●●

●●●

●●●

●●●

●●●

●●●

VTS Specific / Model Independent Layer

19

FIGURE 6 Data Editor Library as Mediator

3.2.3 Classes

The classes in theData Editor Library primarily perform management functions. They
implement the control necessary to pass control messages through a variety of data
structures.

TABLE 2 Primary Classes of the Data Editor Library

InstanceManager ManagerNode

STEPFile

InstanceManager

TheInstanceManger maintains a set of instances.

The primary purpose of theInstanceManager class is to keep a master list of
instances in the current editing session. It also maintains an index into that set for fast
look ups. Whenever a new instance is created during the editing session, either interac-
tively or by reading in a data file, the new instance is added to the master Instance
Manager.

TheInstanceManager class also maintains other instances. For example, an
Instance Manager instance is used by theSTEPfile class to maintain the header
information associated with a particular file. Future implementations may allow the user
to indicate groupings of instances. Such a feature could be implemented using the
InstanceManager class.

Data Editor

STEP Class

VTS
Interface

primary representation
of STEP data

message control center
mediating between user
and data

user view of data and
interaction control

Library

Library

Library

Validation Testing System: Reusable Software Component Design

20

ManagerNode (MgrNode)

TheManagerNode class maintains an association between an object of theSTEPEn-
tity class and a visual object in the user interface. TheManagerNode class allows
the application model to remain independent of theVTS Interface Library. The
ManagerNode maintains an editing state for aSTEPentity object and a state for
the display object. The editing states are

■ saved complete,

■ saved incomplete,

■ marked for deletion, and

■ new

Thesaved completestate indicates that the instance has all necessary values (i.e. all
non-optional attributes have values) and, as far as can be determined, these values are
correct. The saved incomplete indicates that the instance does not have all its necessary
values. This state can be set in two ways: 1) An error resulted when the validation func-
tion from theSTEPentity class was executed. 2) Or the user interactively set the state
to “incomplete” through the user interface. Thenewstate indicates that the instance has
been recently created interactively and has not been edited.

The Manager Node maintains information about which instances have corresponding
Display objects and the state of those Display objects. Available states for Display
objects are

■ editable display object

■ view-only display object

■ unmapped display object

■ no display object

An editable display objectis visible on the screen and may be edited by a user. Aview-
only display object is visible on the screen but may only be viewed by the user. An
unmapped display object refers to a display object which has been created but is not
currently visible on the screen. (An Unmapped display object is a mechanism for buff-
ering the implementation of the display.)

In addition, the Manager Node also maintainsintended states for the instances. Intended
states are used to mark instances for attempted state changes which can then be applied
at one time. For example, several instances can be marked for deletion or display, and
messages to initiate the appropriate operations can be sent to the respective objects at
one time. This functionality is intended to aid editing across the Internet or modems
where display performance is a problem.

STEPFile

TheSTEPFile class implements two important functions:

■ controls the reading and writing of data files, and

■ interfaces with the file system for opening and closing files.

VTS Specific / Model Independent Layer

21

TheSTEPfile class relies on theSTEPentity , theRegistry , and theInstance
Manager classes for implementing the functions which it initiates.

For instance, for the reading and writing of data files theSTEPfile class serves as a
driver. TheSTEPfile class opens the file, controls the parsing of the sections of the
file, initiates the creation of newSTEPentity instances (theRegistry class actu-
ally creates the instances), initiates the reading or writing of the instances (the
STEPentity class actually parses the instances), updates theInstanceManager
during the process, and finally closes the file. The parsing of the file involves two passes
over the Data Section (to resolve forward references.) These passes are controlled by the
STEPfile class. Throughout the process theSTEPfile class monitors the error state
and provides appropriate messages as errors are encountered.

TheSTEPfile class also implements functions to save the working state of an editing
session. The state of the session is saved into a file similar in structure to an exchange
file: aworking session file. The working session file stores the state of the instances with
the editing session as indicated by theManagerNode . Unlike the exchange file, the
working session file does not requireSTEPentity instances to be a complete and
valid state (in other words, attribute values, required by the application model, can be
missing).

CommandManager

TheCommandManager isolates and encapsulates editing functionality. Functionally
the command manager contains commands which act upon the selected entities. For
example, a set of entities which are to be saved in a complete state are maintained by the
Command Manager . Other operations handled by theCommandManager include
save incomplete, cancel, and delete. These commands are subsequently processed by
theProbe class (defined in the VTS Interface Library, seeFIGURE 7).

DisplayNode

TheDisplayNode is the class which contains display information for an entity. The
DisplayNode encapsulates all display information. Furthermore DisplayNode s
only exist for those entities which are actually displayed on the screen. This is a signifi-
cant performance issue as we expect to have data files with thousands of entities. The
display node points to the actual display object which could be replaced by other display
objects in the future if a new user interface is chosen.

3.3 VTS Interface Library

TheVTS Interface Library was designed with the user in mind. Users are expected to be
people familiar with the STEP file format [ISO 21], and the EXPRESS language [ISO
11]. Users interact primarily with three different types of windows. First the EntityType
window (seeFIGURE 10) which displays a list of all entity types for the schema. The
other window is the Entity Instance window (seeFIGURE 11) which displays entity
instances. Display of these instances is in the STEP physical file format, a format
familiar to the users. The third window type is the STEP Entity Editor (SEE) window
used for the actual editing of data.

Validation Testing System: Reusable Software Component Design

22

Each time the user creates a new instance or views an existing one a SEE window (see
left side window of FIGURE 10) is created and displayed. In the context of the current
implementation which uses the X windows system each SEE is created as a separate
window which can be moved and iconified. This approach allows the user to interact
with the windows without introducing any new unknown window management
commands.

Where possible the key bindings used by the display and editable objects match those
found in GNU emacs [Schoo92]. This library works with a window manager for the X
window system environment. Windows inserted onto the screen will generally be deco-
rated and placed by the window manager. Moving and resizing of windows will be done
with the aid of the window manager.

3.3.1 Class Relationships within Library

A SEE is made up of attribute rows and buttons. The attribute rows pass messages to the
SEE, as appropriate.

The information communicated between the different windows in this library goes
through the Probe class. For example when the save button on a SEE is hit, the infor-
mation goes through theProbe to update the same information in the Instance List.

FIGURE 7 VTS Interface Library classes

3.3.2 Relationships to other Libraries

Much of the lower level user interface functionality is derived from the Interviews class
library, a public domain C++ library available from Stanford [Linton91]. TheProbe

Probe

InstanceManager

Registry

STEPfile

CommandMgr

FileChooser

InstListDisplay

TypeListDisp

STEPEntityEditor

commandButtons

stepEntity

GetProbe

EntityInstanceDisplay

instanceDisplayList

commandButtons

●●●

EntityTypeDisplay

typeDisplayList

commandButtons

●●●

●●●

●●●

VTS Specific / Model Independent Layer

23

class manages the interaction with the data objects managed by classes of other
libraries. TheProbe class manages the interaction between the displays. Its main func-
tion is to manage the display information and to keep it consistent with the underlying
information objects. (The same information in different windows is kept consistent.)

TheProbe receives an interpretation of keystroke or button commands and performs
the function. For example, to save the instances, theProbe receives the list of
commands to execute from theCommandManager (in theData Editor Library).

When a button is pushed theProbe executes a single command for the selected
instance and is “notified” by the genericInterview class Subject when it is set by the
button object.

In general, display objects such as those in the SEE point to the actual information
objects instantiated from other classes such as theSTEP Class Library. The SEE itself
points to an instance of aSTEPentity (from theSTEP Class Library). A particular
row of a SEE which displays the attribute information for a particular entity points to a
particular attribute and an instance of the classSTEPattribute (also from theSTEP
Class Library).

3.3.3 Classes

The classes in theVTS Interface Library group the functionality of existing Interviews
library classes into a meaningful interface.

TABLE 3 Primary Classes of the VTS User Interface Library

StepEntityEditor (SEE) Probe

EntityInstanceList EntityTypeList

StepEntityEditor (SEE)

TheStepEntityEditor is a visual representation of an underlyingSTEPentity .
The SEE allows a user to interactively edit aSTEPentity on the screen. The
StepEntityEditor class is independent of the particularSTEPentity type. The
SEE sizes itself appropriately based on the number ofSTEPattributes contained in
the underlyingSTEPentity . When the user is editing through a SEE, the current row
corresponds to an attribute of the underlying entity.

SEE windows are created and appear when a command for creating or editing an entity
instance is given. They disappear (unless “pinned”) when a command is given to save
the instance, delete the instance, or close the window. A single SEE window is shown in
FIGURE 8.

Validation Testing System: Reusable Software Component Design

24

FIGURE 8 STEP Entity Editor (SEE) window

The SEE window for an instance lists the name of the type of entity and the identifica-
tion number of the entity at the top of the window. Identification numbers are assigned
to entity instances either as read from an input file or in numerical order. The remainder
of the window consists mostly of rows for the attributes of the entity, one attribute per
row. Each row has three sections: the name of the attribute, a space for the user to enter
the value of the attribute, and a description of the required type of the attribute. When an
entity instance is first created, the middle section of each line is blank. When an entity
instance is edited, blank values may be filled in or existing values changed.

The message line in a SEE is a place where the software can give the user feedback. For
example if the user attempts to save an entity such as the one illustrated above without a
valid x_coordinate the message:missing value for x_coordinate , would
appear in the message line.

Each SEE window has a “save” button at the bottom. When this button is selected, the
window disappears, and the contents of the window are transcribed to the Entity
Instance List.

The SEE window helps prevent errors by refusing attempts to enter invalid data for
attribute values and by checking data types again when an instance is transcribed from
the SEE window to the Entity Instance List. Invalid data is not transcribed.

Operations which a user may perform via a SEE can:

■ activate operations using an emacs-like key binding interface,

■ create new instances and automatically make the connection to the “current”
attribute,

■ provide both key bindings and visual buttons for the user.

The StepEntityEditor provides the following editing operations on an entity instance:

■ Save Complete

■ Save Incomplete

SEE attribute row

SEE attribute

editors

row list

message line

Application Model Specific Layer

25

■ Cancel

■ Delete

■ Replicate

■ Edit Attribute’s Instance

■ Mark (select marked instance for current attribute)

■ List Values (for an enumeration)

EntityInstanceListDisplay

TheEntityInstanceListDisplay class is a display object. It contains an object
which is a list of string representations of the actual underlying data entities. This scrol-
lable list is the primary user interface mechanism for selecting particular entities. It also
contains a collection of buttons which the user can use to perform operations on the
underlying entities. From the user interface, the user can mark an entire set of instances,
delete or save, and invoke these operations at once via an execute button (or keystroke).
Another field allows the user to search for particular entities by entering a substring.

EntityTypeListDisplay

TheEntityTypeDisplayList has many of the same functional mechanisms as
theEntityInstanceDisplayList . It presents the user with a list of types which
the user may select. The user may elect to create a new instance of the selected type or
display more semantic information about the type. This window also contains a
searching function.

Probe

TheProbe is the main grouping object. It contains pointers to theInstanceMan-
ager, Registry, STEPfile, Command Manager, FileChooser,
InstListDisplay, TypeListDisp . It also has a number of menu objects. In a
sense theProbe object is the object oriented equivalent of amain routine in a C
program.

4 Application Model Specific Layer

Theapplication model specific layer represents the components which are tailored to the
application model undergoing validation. These components are updated each time the
application model changes.

TheSTEP Schema Class Library is the set of files that result from the translation of an
EXPRESS schema. These files are generated automatically using theFed-X Toolkit
[Clark92] for translating EXPRESS and are producible from an EXPRESS schema. The
programfedex_plus, which is a backend toFed-X, takes a conceptual data model written
in EXPRESS as input and generates three C++ files for each schema [Morris92]. The
C++ code in these files provides the class definitions and member functions for STEP
entities needed by an application program.

Validation Testing System: Reusable Software Component Design

26

Applications in projects working on process planning research and an IGES to PDES
translator have used the C++ code produced as the output offedex_plus. TheSTEP
Schema Class Library is the result of a mapping process between EXPRESS and C++.
The mappings occur as follows:

■ EXPRESS entities are translated into C++ classes derived from the classSTEPen-
tity .

■ EXPRESS attributes are translated into data members.

■ Public access functions are automatically created allowing values to be read and
written to the data members.

■ Instances of Entity and Attribute descriptors are created for populating aRegis-
try .

5 Data Probe: An Example Application

The Data Probe is the major application which uses the various libraries described in
this document. It is intended to allow people involved with the creation and testing of
STEP Application Protocols to examine and populate data files corresponding to those
models.

New versions of the Data Probe may be automatically generated for an EXPRESS
schema. Each Data Probe executable is specific to a particular schema. A UNIX shell
script calledmkprobe takes as input an EXPRESS schema and outputs a new Data
Probe specific to that schema. The process of creating a new Data Probe is completely
automated through this process. It is anticipated that users will not be working with very
many different schemas and will instead concentrate on one schema at a time.

FIGURE 10 shows the main windows of the Data Probe built for Part 42 of STEP. The
editor consists of four types of persistent windows, all of which may be manipulated in
the typical ways (move, open, close, hide, expose, resize, etc.):

1 Data Probe management window (FIGURE 9),

2 STEP Entity Editor (SEE) windows (left side of FIGURE 10),

3 an Entity Type List window (right side of FIGURE 10),

4 and an Entity Instance List window (FIGURE 11).

Any number of temporary STEP Entity Editing (SEE) windows may be created and
destroyed as the editor is being used. A single SEE window is shown in the left side of
FIGURE 10, partly obscuring the Entity Type List window.

Data Probe Management Window

The Data Probe management window provides the user with systems functions such as
saving or appending files, clearing the Entity Instance List, and quitting the editor. There

Data Probe: An Example Application

27

is also a subwindow for brief messages to the user. InFIGURE 9 the status window
provides feedback that an instance has just been created.

FIGURE 9 Data Probe Management Window

Entity Type List Window

The Entity Type List window contains a scrollable list of all the entities defined in the
EXPRESS schema used to create the editor. Instances of these entities make up a STEP
file. In FIGURE 10, the first few entities in this window are angle_measure, area_mea-
sure and axis1_placement. The circle entity is highlighted in this window because the
user has selected it. Below the list of entities there are some command buttons.

Validation Testing System: Reusable Software Component Design

28

FIGURE 10 Entity Type List window and new SEE

This window is used to select the type of entity to create when the user decides to create
an instance of an entity. The user simply selects the name of the entity type to be created
(by pointing at the name with the mouse cursor and clicking a mouse button) and then
selects the “create” command button in a similar manner. This causes a SEE window to
pop up for a new instance of that type of entity. The example illustrates an instance of
“Circle” has just been created.

Entity Instance List Window

The Entity Instance List window has two main parts. The top part has the appearance of
the “DATA” section of a STEP file. Entity instances are listed, one instance per line. An
indication of the editing status (such as marked for deletion) of an instance may be
displayed to the left of the instance.

Data Probe: An Example Application

29

FIGURE 11 Entity Instance List window

The bottom part of the window contains the controls for a searching utility that may be
used to find text strings. The bottom part also contains a set of command buttons to
perform actions on instances such as: delete, modify, view, save, etc. To use the
command buttons, an instance is selected with the mouse, and then the desired
command button is selected with the mouse. If either viewing or modifying is selected,
a SEE window pops up.

Validation Testing System: Reusable Software Component Design

30

6 Conclusions, Summary and Future Directions

A functioning system called the Data Probe has been designed and implemented. At the
time of writing this document it is under preliminary testing by knowledgeable users.
The implementation of a set of class libraries has proven to be a flexible and robust
approach. The libraries have been designed to allow the software developer the freedom
to choose user interface styles and systems.

The initial implementation of the Data Probe is limited to the use of one input file at a
time. The underlying data structures however will allow the use of multiple files and this
extension is planned for the future.

Future work will include a more sophisticated use of schemas with more display of
schema information and integration of a document browsing utility for on-line access to
the ISO documents. Another future activity is the move to an SDAI (STEP Data Access
Interface). SDAI will be a standard mechanism to access STEP data. As the standard is
defined data accessed with the Data Probe will move through an SDAI interface. The
intent is to use the same SDAI interface with persistence data repositories such as an
object oriented data base for the persistent storage of STEP data.

References

31

7 References

[Clark92] Clark, S.N., Libes, D.,Fed-X: The NIST Express Translator, NISTIR
4822, National Institute of Standards and Technology, Gaithersburg, MD,
April 3, 1992.

[ISO11] ISO 10303 Industrial Automation Systems -- Product Data
Representation and Exchange -- Part 11: Description Methods: The
EXPRESS Language Reference Manual, Draft International Standard,
ISO TC184/SC4, Spiby, P., ed., July 15, 1992.

[ISO21] ISO 10303 Industrial Automation Systems -- Product Data
Representation and Exchange -- Part 21: Clear Text Encoding of the
Exchange Structure, Draft International Standard, ISO TC184/SC4, Van
Maanen, J., ed., July 15, 1992.

[ISO42] ISO 10303 Industrial Automation Systems -- Product Data Representation
and Exchange -- Part 42: Integrated Generic Resources: Geometric and
Topological Representation, Committee Draft N121.5 ISO TC184/SC4/
WG4, Goult, R., ed., May 14, 1992.

[Kramer92] Kramer, T., Morris, K.C., Sauder, D.A Structural EXPRESS Editor,
NISTIR 4903, National Institute of Standards and Technology,
Gaithersburg, MD, July 1992.

[Linton91] Linton, M,.InterViews Reference Manual Version 3.0-alpha, Computer
Systems Laboratory, Departments of Electrical Engineering and
Computer Science, Stanford University, Silicon Graphics, January 1991.

[McLay90] McLay, M.J., Morris, K.C.,The NIST STEP Class Library, C++ at Work-
’90 Conference Proceedings, (reprinted as NISTIR 4411,) September
1990.

[Mitch91] Mitchell, M., A Proposed Testing Methodology for STEP Application
Protocol Validation, NISTIR 4684, National Institute of Standards and
Technology, Gaithersburg, MD, September 1991.

[Morris91] Morris, K.C., McLay, M., Carr, P. J.,Validation Testing System
Requirements, NISTIR 4676, National Institute of Standards and
Technology, Gaithersburg, MD, September 1991.

[Morris92] Morris, K.C.,Architecture for the Validation Testing System Software ,
NISTIR 4742, National Institute of Standards and Technology,
Gaithersburg, MD, January 1992.

Validation Testing System: Reusable Software Component Design

32

[Schoo92] Schoonover, M., Bowie, J.S., Arnold, W.,GNU Emacs UNIX Text
Editing and Programming, Hewlett-Packard Press, 1992.

[Strang86] Strang, John,Programming with Curses, O’Reilly and Associates Inc.
1986.

References

33

Appendix A EXPRESS Model of Registry Classes

The following EXPRESS schema is a model of EXPRESS. This model was developed
as a basis for a skeleton of schema information from an EXPRESS model available at
run-time using the VTS software. (The VTS software components involved are the
STEP Class Library and a schema library generated from EXPRESS using fed-x-plus.)

With these exceptions this schema includes everything covered by EXPRESS-G:

■ intra-schema relationships

■ cardinality

■ derived attributes

SCHEMA express_meta_model;

TYPE base_type =

ENUMERATION OF (

INTEGER_TYPE, STRING_TYPE, REAL_TYPE, ENTITY_TYPE,

AGGREGATE_TYPE, ENUM_TYPE, REAL_PTR_TYPE,
INTEGER_PTR_TYPE, SELECT_TYPE, BOOLEAN_TYPE,
LOGICAL_TYPE, NUMBER_TYPE, BINARY_TYPE, UNKNOWN_TYPE);

(*

attribute_type =

SELECT (

base_type, type_descriptor);

*)

END_TYPE;

ENTITY type_descriptor

(* SUPERTYPE OF (ONEOF (real_type_descriptor,

string_type_descriptor, array_type_descriptor,

bag_type_descriptor, list_type_descriptor,

set_type_descriptor, enumeration_type_descriptor,

select_type_descriptor))

*)

;

name:STRING ;

fundamental_type:base_type;

(* the fundamental type will default to certain values

according to the subtype of the type_descriptor *)

referent_type:type_description;

description:STRING;

END_ENTITY;

ENTITY real_type_descriptor

Validation Testing System: Reusable Software Component Design

34

 SUBTYPE OF (type_descriptor);

 precision_spec: OPTIONAL INTEGER;

END_ENTITY;

ENTITY string_type_descriptor

 SUBTYPE OF (type_descriptor);

 width: OPTIONAL INTEGER;

 fixed_size: BOOLEAN;

END_ENTITY;

ENTITY aggregate_type_descriptor

 ABSTRACT SUPERTYPE

 SUBTYPE OF (type_descriptor);

 (* The bounds spec have been simplified to integer values -- they

 can actually have functional values *)

 bound_1: INTEGER;

 bound_2: INTEGER;

 unique_elements: BOOLEAN;

 aggr_domain_type:type_descriptor;

END_ENTITY;

ENTITY array_type_descriptor

 SUBTYPE OF (aggregate_type_descriptor);

 optional_elements: BOOLEAN;

 (* WHERE exists (bound_1 && bound_2) *)

END_ENTITY;

ENTITY bag_type_descriptor

 SUBTYPE OF (aggregate_type_descriptor);

 (* unique_elements: always TRUE *)

END_ENTITY;

ENTITY list_type_descriptor

 SUBTYPE OF (aggregate_type_descriptor);

END_ENTITY;

ENTITY set_type_descriptor

 SUBTYPE OF (aggregate_type_descriptor);

 (* unique_elements: always TRUE *)

END_ENTITY;

References

35

ENTITY entity_type_descriptor

 SUBTYPE OF (type_descriptor);

 entity_type: entity_descriptor;

END_ENTITY;

ENTITY enumeration_type_descriptor

 SUBTYPE OF (type_descriptor);

 elements: LIST OF UNIQUE STRING;

END_ENTITY;

ENTITY select_type_descriptor

 SUBTYPE OF (type_descriptor);

 elements: LIST OF UNIQUE type_descriptor;

END_ENTITY;

ENTITY attribute_descriptor;

name:STRING;

domain_type:type_descriptor;

optional_value:BOOLEAN;

unique_value:BOOLEAN;

owner:entity_descriptor;

END_ENTITY;

ENTITY inverse_attribute_descriptor

 SUBTYPE OF (attribute_descriptor);

 inverse_attribute : attribute_descriptor;

(*

role_attr: ExplicitAttribute;

min_cardinality: bound_description;

max_cardinality: bound_description;

duplicates: OPTIONAL BOOLEAN;

(* 3-Apr-1992 kcm

WHERE

uniqueness_correct: (EXISTS (duplicates) AND max_cardinality > 1)
OR

(max_cardinality = 1 AND NOT EXISTS (duplicates);

*)

*)

END_ENTITY;

ENTITY schema_descriptor;

name:STRING;

END_ENTITY;

Validation Testing System: Reusable Software Component Design

36

ENTITY entity_descriptor;

name:STRING;

originating_schema:schema_descriptor;

abstract_entity: BOOLEAN;

subtypes: OPTIONAL LIST OF UNIQUE entity_descriptor;

supertypes:OPTIONAL LIST OF UNIQUE entity_descriptor;

explicit_attr:OPTIONAL LIST OF UNIQUE
attribute_descriptor;

derived_attr: OPTIONAL LIST OF UNIQUE STRING; -- not
implemented yet

inverse_attr: OPTIONAL LIST OF UNIQUE
inverse_attribute_descriptor;

UNIQUE name;

(* functions

istypeof (entity_descriptor):

create_instance:

*)

END_ENTITY;

END_SCHEMA; --express_meta_model

References

37

Appendix B VTS Document Series

This document complements others in the National PDES Testbed Report Series which
provide detailed technical information relating to the Testbed software. Those docu-
ments which specifically address aspects of the Validation Testing System are described
below.

Validation Testing Systems Planlays out the tasks and the overall approach for the
initial implementation of the Validation Testing System. (NISTIR 4417)

Proposed Testing Methodology for STEP Application Protocol Validation describes the
complete process used to develop and validate application protocols. This methodology
document focuses on the analysis of application models and planning for validation
testing. (NISTIR 4684)

Validating STEP Application Models at the National PDES Testbed describes a strategy
for automation based on an analysis of the information flow in the application protocol
development and testing process, and on initial experiences with automation for valida-
tion testing at the National PDES Testbed. (NISTIR 4735)

Validation Testing System Requirements describes functional requirements for automa-
tion of the VTS. This document also provides an overview of the VTS software environ-
ment. Requirements for the VTS system are driven by the STEP development effort and
reflect the needs of the National PDES Testbed users. (NISTIR 4676)

Architecture for the Validation Testing System Software describes an architecture for
software which supports the testing of information models for validity and correctness.
The architecture provides a basis for software development within the National PDES
Testbed. (NISTIR 4742)

Validation Testing System: Reusable Software Component Design provides guidelines
for the implementation of the VTS software. The document describes the design of soft-
ware libraries which fit within the VTS architecture. These libraries enable the creation
and support of tool which support the VTS testing methodology. Designs for the compo-
nents of the software are also provided. (NISTIR 4937)

