
1

ABSTRACT

The problem of sharing data has many facets. The need to share
data across multiple enterprises, different hardware platforms, dif-
ferent data storage paradigms and systems, and a variety of net-
work architectures is growing. The emerging Standard for The
Exchange of Product Model Data (STEP), being developed in the
International Organization for Standardization (ISO), addresses
this need by providing information models, calledapplication pro-
tocols, which clearly and unambiguously describe data. The valid-
ity of these information models is essential for success in sharing
data in a highly automated engineering environment.

This paper describes the Data Probe: a tool for examining, edit-
ing, and managing EXPRESS-based data. The Data Probe tool
supports the validation of STEP application protocols. The paper
includes a description of the software architecture, the initial im-
plementation, and plans for future enhancements. The software is
designed as independent components which can be incorporated
into other STEP-related systems or software requiring general pur-
pose editing tools for structured information.

The initial version of the Data Probe tool is based on two imple-
mentation mechanisms defined within STEP: the conceptual mod-
eling language EXPRESS and the STEP exchange file format.
Future work will focus on integrating a database system into the
software. The software architecture and the use of object-oriented
techniques enables code reusability and system extensibility and
has been instrumental for a phased implementation.

The software is under development at the National Institute of
Standards and Technology and is in the public-domain. The soft-
ware supports the Validation Testing System, part of the Applica-
tion Protocol Development Environment, at the CALS-sponsored
National PDES Testbed. (PDES, Product Data Exchange using
STEP, is the U.S. effort in support of the international standard.)

INTRODUCTION

The emerging Standard for the Exchange of Product Model
Data, a project of the International Organization for Standardiza-
tion and commonly referred to as STEP1, addresses the need to
share data in a complex computer environment. STEP will provide
a basis for a common understanding and communication of data,
thus allowing it to be shared. STEP includes definitions of infor-
mation models and mechanisms for representing the models and
related data. The information models communicate the structure
and the semantics of the data necessary to inter-operate between
different computer systems. The validity of these information
models is essential for success in sharing data in a highly automat-
ed business environment — the models must be shown to be both
useful and usable for their intended purposes. Demonstration that
the information models support the needs of applications is the
most direct method of validating these models (Mitchell, 1991).

The information models within STEP are integrated and orga-
nized into application protocols. An application protocol
addresses a specific application area and contains an information
model written in the conceptual modeling language EXPRESS (ISO,
1992b). The information model describes the data in the applica-
tion area. TheData Probe tool described in this paper is being
developed to support validation of these application models2. The
Data Probe is a tool for editing data and is under development at
the National PDES Testbed3.

1The Standard for the Exchange of Product Model Data (STEP) is a
project of the International Organization for Standardization (ISO) Techni-
cal Committee on Industrial Automation Systems (TC184) Subcommittee
on Industrial Data and Global Manufacturing Programming Languages
(SC4). For an overview of the standard refer toPart 1: Overview and Fun-
damental Principles (ISO, 1992a).

DATA PROBE: A TOOL FOR EXPRESS-BASED DATA

KC Morris

Factory Automation Systems Division
National Institute of Standards and Technology

Gaithersburg, Maryland

Engineering Data Management: Key to Success in a Global Market
ASME 1993

2

The background of validation software at the National PDES
Testbed is presented in the following section. Subsequent sections
describe and discuss the design of the VTS software architecture
and the Data Probe tool. Further details of the methodology used
for validation and requirements for automating that process are de-
scribed in other documents (Mitchell, 1991)(Morris,
1991a)(Morris, 1991b)(Mitchell, 1992).

This paper is directed at software designers, developers, and
project managers. Developers of tools relating to STEP and, in
particular, to the validation of application protocols will be inter-
ested in the architecture and the approach taken to software
development. This architecture is also relevant to similar software
projects which involve the presentation and manipulation of struc-
tured data. An object-oriented approach is used for the
architecture, design, and implementation of the Data Probe soft-
ware.

BACKGROUND

This section provides a brief background of the needs for valida-
tion testing software for the reader unfamiliar with the validation
process for application models. For further information on these
topics the reader is referred to (Mitchell, 1991) (Morris, 1991b)
(Mitchell, 1992). An overview of the need for validation software
is presented here. A discussion follows of prior experience with
software used for the validation of application models at the Na-
tional PDES Testbed.

The Need for V alidation T esting Software

People have many means of communicating ideas and informa-
tion. When someone writes a paper to convey a point, readers of
the paper can judge the position presented and determine whether
or not it is valid. The validity of the point raised in the paper is not
judged by the tools which were used to prepare the paper. The
writer could use pencil and paper or a sophisticated word process-
ing system to prepare the manuscript — the tools used would not
matter to the reader in judging the validity of the point raised. The
validity of the paper is judged on the evidence provided to sup-
ports the point that the paper raises.

On the other hand, a means of sharing information between
computer systems must be very rigidly defined, hence a standard

2The termapplication model is used throughout this paper to refer to the
domain specific information model which is being evaluated. The applica-
tion model may be part of an application protocol or any other information
model such as an application resource model (also in STEP) or a similar
model which is not included in the international standard.

3The National PDES Testbed is located at the National Institute of Stan-
dards and Technology. Funding for the work described in this paper has
been provided by the Department of Defense’s Computer-Aided Acquisi-
tion and Logistic Support (CALS) Office. The work described is funded
by the United States Government and is not subject to copyright.

emerges. Such a standard can be specified as aninformation model
which captures the meaning of the information in the context of a
particular usage, orapplication area. The validity of such a stan-
dard is based on the usefulness of the contentandthe
computability of the presentation format. In this case the tools
used to prepare the standard and to produce the evidence that it is
capable of supporting its intended usage are of the utmost impor-
tance. If the proposed standard is not demonstrated to support the
computerized sharing of data, it will never be used. Furthermore,
due to the complexity of the standard, tools are necessary to assist
people in analyzing the completeness and accuracy of the specifi-
cation.

Two aspects are important for validating such a standard:

• the meaning of the standard must be clear and complete,
and

• the standard must be in a format which allows for the
computerized sharing of data.

These two aspects combine to effectively communicate and suc-
cessfully implement the ideas presented in the standard. Judging
the first aspect — thecontent of the standard — is much like the
judgement the reader of a paper makes as to its quality. However,
the second aspect — thecomputability of the standard — is only
tested by representing the information in a computer and demon-
strating that the representation is capable of meeting the data
access needs for the applications involved in the sharing. The
computerized implementation of the standard information model
also helps the person who must judge the content to analyze the
clarity, accuracy, and completeness of the model. This assistance
is necessary for a person to be able to reliably evaluate complex
information models.

The software used to validate application models at the National
PDES Testbed serves two purposes:

• to assist users in tracking and manipulating the vast
amount of complex information involved in validating
the content of the application models, and

• to demonstrate that the models can meet the needs of the
computer applications which they are intended to sup-
port.

Application protocols are validated by simulating the data ac-
cess needs for the particular application area (Mitchell, 1991)
which they are intended to support. This strategy addresses both
aspects necessary for validating an application model. It provides
a means for people to judge the content of a model, and at the
same time it demonstrates the usability of the model on a comput-
er.

Assistance in managing the information in the model and the ad-
ditional information involved in validating the model is necessary
due to the complexity of this information. The application of soft-
ware tools to assist in these tasks greatly increases the productivity
of the people validating the models. Furthermore, the quality of
the tools can also impact the testing process. For instance, the
project schedule for the validation of one of the early application

3

models for configuration controlled design data was severely im-
pacted by the lack of reliable and efficient tools (PDES, 1990a).

In addition, the content of an application model can be more re-
liably judged with the aid of software. Initial rounds of validation
testing uncovered significant flaws in information models which
had been proposed for standardization. One specific example of
such flaws was found in the Geometry model in STEP: the pro-
posed model did not require objects to be founded in geometric
space. This flaw created ambiguity in the meaning of data ex-
changed according to that model. By simulating the application
needs, testers were able to analyze the model and uncover this
flaw — after it had gone undetected by visual inspection of the
source text for over two years.

Validation T esting Software at the National PDES
Testbed

The software to support validation simulates the data access re-
quirements of an application area4. As stated earlier, this strategy
addresses both aspects necessary for validating an application
model — it supports validation of the content of a model, and it
demonstrates the computability of the model. The simulation re-
flects the intended usage of the application model and is essential

4Other software requirements for validation (Morris, 1991a) include sup-
port for clerical aspects of the process, such as preparation of documenta-
tion. These aspects are not addressed in the architecture. These
requirements can be supported using commercially available software,
such as word processing systems.

Test Case
Product
Instance

Generation

Model
Developmen

IGES
file

Designer

Test
Operator

IBM CATIA

CV CADDS4

IGES to STEP
Translator

itop

CADDS4 to STEP
Extract

pm2step

STEP
File

STEP File Parser
stepparse_step

Report Generator

SQL
Inserts

Smalltalk
Input File

SQL
Load

stepwf_sql

SQL
Unload

po

Data Editor
stepparse_qdes

qdes

STEP File
Utilities

fixin
getstep

oton
pef

renumber
rmvnonpr

Testing
DB

Visualizer

Semantic
Working Schema

Schema
Generators

STEP
Specification

EXPRESS Parser
fedex

SQL
fedex_sql

Smalltalk
fedex_qdes
fedex_flatten

FIGURE 1 : INTERIM SOFTWARE AT THE NATIONAL PDES TESTBED

4

FIGURE 2 : THE VALIDATION TESTING SYSTEM SOFTWARE ENVIRONMENT

Model
Development

 STEP
 Specification

C++ Class
Definitions

Semantic
Working Schema

EXPRESS
Parser

Schema
Generators

VTS Software

Other Libraries

Application
Database

Schema Class
Library

CAD Systems

IGES or other
exchange files

CAD System
Exporter

Validation Testing

DesignerTest
Operator

files
executable
programs

in-memory
formats

Legend

for validating the model. The method allows people to fully ana-
lyze the content of a model against requirements for an application
area. Furthermore, the testing process is not verifiable if the tests
are not computer processible and repeatable.

In addition, the software assists in managing the complexity of
the information involved in the testing process. This information
includes

• product data associated with an application model,

• relationships within the data,

• the application model as defined in EXPRESS, and

• the english description of the application model.

The Data Probe tool assists in preparation of product data to be
used in testing an application model. The software supports the
editing, browsing, and formatting of product data, and browsing of
the structure of the application model. Planned future enhance-
ments include support for the execution of the actual tests.

The National PDES Testbed has been used for STEP validation
testing since 1989. The early software which supported the testing
process, theinterim system, consisted of a set of tools which were
not integrated.FIGURE 1 taken from theValidation Testing Labo-
ratory User’s Guide (Breese, 1991), illustrates the problems of the
interim system. The tools in this system were collected from a va-
riety of sources, and, as a result, they operated on a variety of
hardware platforms and in a variety of software environments. In
the interim system the user needed to be familiar with a number of
executable programs and their interfaces. In addition, the method
of sharing data throughout the testing process was through ex-
change of data files between the different tools. The data was
represented in memory in one of a number of different types of
data structures depending on the tool.

The Data Probe integrates the functions supported by the set of
tools in the interim system. The integration of the functions more

5

efficiently automates the testing process. The Data Probe software
improves on the existing system in the following areas:

• the number of errors is reduced by reducing the frequency
of data translation and human intervention;

• the amount of time needed for the testing process is
reduced by improved performance and automation of the
workflow;

• the time needed for learning to use the software is
reduced by providing a single user interface to the sys-
tem;

• inconsistencies in the data are reduced by providing more
sophisticated support for data editing and creation; and

• the potential for errors is reduced through better and more
extensive error checking.

The interim system required data translation every time data
was moved between activities in the testing process. The transla-
tion process introduced errors or inconsistencies, and the
associated manual steps, such as importing and exporting the data,
were time consuming. With respect to data editing, the interim
system did not track which portions of the data were complete and
which needed further development. Manual support for this func-
tion was extremely difficult, given the amount of data, and lead to
inconsistencies in the data. In addition, the manual configuration
of the different versions of all the intermediate data files was error
prone. The Data Probe software, illustrated inFIGURE 2, allows
users to operate through a single interface, rather than with each
tool separately.

Planned future enhancements to the Data Probe include the use
of a database system, rather than exchange files, as the primary
means of data sharing5. In the interim system, data was assembled
from the various tools and manually integrated using exchange
files to create a single data set. This manual process forced the
testing process to revolve around the availability of data and tools
to provide the data, rather than the needs for testing particular as-
pects of the application model. The use of a database system
which can be shared by the different tools will make the process
smoother, thereby allowing the user to concentrate on the valida-
tion activities.

The remainder of this paper describes the software which sup-
ports the Data Probe tool. The Data Probe tool is based on the
Validation Testing System (VTS) software. The VTS software is
composed of reusable software libraries which support the differ-
ent functional areas for automating the validation process. These
libraries are combined to create a Data Probe tool which supports
the validation of a specific application model.

5Note that the database environment will not preclude the use of exchange
files as a means of importing and exporting data into and out of the system.
In particular data files are used to import data from external CAD systems.
Exchange files are also used for sharing data until a database has been inte-
grated into the system.

The architecture is designed to isolate changes to the system.
This allows the software to be extended with additional function-
ality as available and as new requirements emerge. For example,
the initial implementation has focused on the implementation of a
data editor. The next aspect to be addressed is the integration of a
database system into the software. The integration of the database
system should be transparent to the users of the data editor; how-
ever, the integration will enable the expansion of the functions
supported by the tool.

THE VTS SOFTWARE ARCHITECTURE

The VTS software architecture integrates modular software li-
braries which are incorporated into a single system to provide the
functions needed for the validation process. The use of object-ori-
ented techniques and standard interfaces enables software
reusability. The system uses as much software as is available from
external sources. When such software is unavailable, the neces-
sary software has been developed. Specifically, support for the
implementation methods specific to STEP were developed.

Since STEP is a developing standard, the mechanisms for its
implementation have not been stable. Furthermore, these mecha-
nisms have been developed concurrently with the application
models which the VTS software is used to validate. These mecha-
nisms include the EXPRESS language in which the application
models are specified and the data interface formats, such as the
exchange file format (ISO, 1992c) and the STEP Standard Data
Access Interface (SDAI) (ISO, 1992d). The software at National
PDES Testbed must be quickly and easily adaptable to new
versions of the mechanisms.

The following goals have influenced the design of the VTS soft-
ware:

• to minimize the need for data translation by providing an
integrated system which supports a broad range of func-
tions,

• to provide a single end-user program,

• to easily transition the software to support a new applica-
tion model,

• to enable different style user interfaces to be developed,

• to allow for the integration of externally developed soft-
ware into the system, and

• to develop reusable software.

The previous section described the high-level design of the sys-
tem — an integrated software system with a single user interface.
This design is reflected in the first two goals listed above. The re-
maining goals on the list above have influenced the modular
organization of the VTS software and are discussed throughout
this section.

6

Establishing the T esting Environment

An application model is represented in many formats through-
out the validation process: English, EXPRESS and EXPRESS-G (ISO,
1992b), other graphical modeling formats, one or more program-
ming languages, and computer memory formats. From the
perspective of the end user the interface to the VTS software is
through the EXPRESS description of the application model; howev-
er, from the perspective of the software developer the
programming language format is of primary importance (Clark,
1990). In the interim system many different programming formats
are used by the various tools; however, in the VTS software a sin-
gle format is used: C++6 (Stroustrup, 1990). The C++
representation of the application model can be automatically gen-
erated from an EXPRESS description.

FIGURE 3 illustrates the VTS software development method-
ology for producing a testing environment for a specific applica-
tion model. An application model, as represented in a library of
data structures and access functions, is integrated into the VTS
software. The application model, described in EXPRESS, is trans-
lated into a software library (the upper-left side ofFIGURE 3.)
This library is then installed in the VTS software to generate a new
testing environment for that model. (See the description of the
Data Probe tool in the following section.) This library changes for
each application model being tested. In order to minimize the diffi-
culty in the transition to a new testing environment it is important
to be able to automatically generate these libraries.

The pieces above the center line inFIGURE 3 reflect system re-
quirements, or inputs into the software development process; the
pieces below the line illustrate the structure of the VTS software
for a runtime system. The representation of the application model
used by the software results from the direct translation of an EX-

PRESS schema into a library of C++ class definitions.
Requirements derived from the STEP specifications and the needs
of the VTS are also represented in component libraries; however,
these libraries are not automatically generated.

Much of the general functionality needed to support the applica-
tion model is implemented separately from the application model.
This software, represented in the figure asCore Access Opera-
tions, implements the STEP specifications for EXPRESS and the
STEP exchange file format. The other software needs of the VTS,
also supported as separate software libraries, are based on analysis
of the validation process and users’ needs (Morris, 1991a).

6C++ has been chosen as the programming language for implementation
because it provides the following features:

 • good performance in interactive situations,

 • programming language constructs which support those found in
EXPRESS (i.e. hierarchies and networks of data structures),

 • interfaces to externally developed software (specifically, a user in-
terface toolkitInterViews (Linton, 1991) and several object-oriented data-
base systems), and

 • object-oriented features which enable code reuse.

The component libraries of the VTS software are integrated to
support the functional requirements for the validation process and
are accessible through a single user interface. The interface pro-
vides mechanisms for initiating the functions. A representative
sample of these functions is shown in the bottom row ofFIGURE
3. Together the libraries and the functional interface make up the
VTS software. This figure only shows a select subset of the com-
ponents of the VTS software. The composition of the software is
explained in more detail in the remainder of this section and the
functions supported by the user interface for the Data Probe tool
are described in the following section.

VTS Software Layering

The VTS software libraries can be decomposed into four layers
based on specialization with respect to the needs of the VTS sys-
tem and a specific application model. This design is intended to
foster the reuse of code and the integration of external software
into the system.Table 1 shows the software components of each
layer. The four layers focus on different functional areas and are
named accordingly.

The first three layers represent functionality that is tailored to
the VTS needs. Most of these software components have been (or
are being) developed for the VTS and are based on externally
developed software. The components of the last layer,generic

Requirements

Data Probe Functions

Edit
Data

BrowseLoad
STEP
File

Database
View

Entities

VTS Software

Core Access

Operations

VTS

Interface

Application
Model as C++

Class Definitions

STEP

Specifications

EXPRESS
Translation

EXPRESS

Schema

VTS Functional
Requirements

Software

FIGURE 3 : VTS SOFTWARE GENERATION

7

systems, are available from external sources and do not need to be
developed specifically for the VTS. The software components are
briefly discussed here; the VTS design document (Morris, 1992)
provides a more extensive description.

Multiple Application Model Libraries.

The multiple application model layer provides the software
needed for handling more than one application model. This layer
supports the configuration of tools, application models, and test
data to support the validation of different application models. In
the current system many of these functions are manually con-
trolled. The software components in this layer are external to the
VTS run-time environment.7

This layer includes the EXPRESS to C++ translator
(McLay,1990), part of the NIST PDES Toolkit (Clark 1990). The
tool automatically translates an application model into the C++
class definitions used to represent it in the VTS software as illus-
trated inFIGURE 3. These class definitions are referred to as the
Schema Class Library.

7The Data Converter should ultimately be integrated into the VTS run-
time environment; however, this integration is beyond the current scope of
the project.

TheData Converter converts data to a new version of an appli-
cation model. It takes as input the data corresponding to an
application model and a listing of changes to the application mod-
el and outputs data corresponding to the new version of the
application model. Initial work has been done in the design of the
system and the language for specifying some of the changes to a
model (Kohout, 1992) (Clark, 1992).

Application Model Specific Libraries.

The application model specific and the VTS specific layers con-
tain the data structures needed to support the computerized
manipulation of data based on a common schema or application
model. Theapplication model specific layer represents the compo-
nents that are tailored to the application model undergoing
validation. These components are updated each time the applica-
tion model changes.

The Schema Class Library is the representation of an applica-
tion model in C++ and provides the data structures, functions, and
dictionary specific to that model. Most of the changes to support
the validation of a new application model are limited to the Sche-
ma Class Library. Other libraries in this layer — theApplication
Database and the Data Probe tool — only need to be re-installed
to reflect their interaction with the newSchema Class Library.8

This design enables the creation of tools which can be tailored to a

TABLE 1 VTS SOFTWARE LAYERING

VTS Layer Software Components

Multiple application model EXPRESS to C++ translator

Data Converter

Application model specific Application Model: Schema Class Library

Application Database

Data Probe tool

Translators from CAx, IGES, etc.

VTS specific STEP Core library

VTS Interface library

Data Editor library

Generic systems Generic User Interface libraries: X Windows, InterViews

Database management system

Abstract Data Type libraries

C++ compiler and standard libraries

Operating system: POSIX (FIPS151, 1988)

8

particular application model by linking with the library for that
model.

TheApplication Database is the database system that has been
installed with a particular application model.9 The schema defini-
tion for the Application Database is provided by the class
definitions in theSchema Class Library. The installation process
involves preprocessing the class definitions from the Schema
Class Library to generate the database. The preprocessor is pro-
vided by the database supplier. In this way the database can use
the same representation form for the data that is used by the other
components of the VTS.

EachTranslator from a specific CAx10 system is a separate soft-
ware component. A translator functions by accepting data from
the system being translated and creating new instances of the
classes in theSchema Class Library.

VTS Specific Libraries.

The VTS specific layer of the software architecture includes li-
braries to support the general functional requirements of the VTS
software and is independent of the application model being tested.
This layer contains software to support the following functional
areas:

• data storage,

• user interface,

• data editing and data and schema browsing.

This software is divided into libraries based on its dependencies
on STEP or external systems. TheSTEP Corelibrary supports re-
quirements specific to STEP, while theVTS Interfaceand theData
Editor libraries support other requirements specific to the VTS
tools. This division is illustrated inFIGURE 3 as separate re-
quirements. Dependencies between the libraries in this layer are
minimized to enable their reuse.

TheSTEP Corelibrary provides functionality for supporting the
Schema Class Library and for accessing a dictionary of informa-
tion about the application model at run-time. The dictionary

8The impact of a change to theSchema Class Libraryon the translators is
dependent on the particular changes in the application model. Resolving
such changes will probably be more difficult than re-installing theSchema
Class Library.

9This term is used to distinguish it from the generic database system soft-
ware which is independent of an application model.

10CAx is any Computer-Aided operations/processes, including: MCAD
(Mechanical Computer-Aided Design), e.g. drawing/drafting; ECAD
(Electrical Computer-Aided Design), e.g. PCB layout; MCAE (Mechani-
cal Computer-Aided Engineering), e.g. solids modeling; ECAE (Electrical
Computer-Aided Engineering), e.g. logic design; CAM and CIM (Com-
puter-Aided Manufacturing and Computer-Integrated Manufacturing), e.g.
NC processing.

contains the names of entities and other descriptive information.
Support for theSchema Class Libraryis provided through a set of
abstract classes which support the basic constructs found in EX-

PRESS. These classes form the basis for theSchema Class Library
and allow the other libraries in this layer to manipulate the con-
tents of theSchema Class Libraryin a general way.

The Data Editor library extends theSTEP Corelibrary to sup-
port data editing. This library includes functions for editing
instances of product data and functions for manipulating groups of
instances. The latter functionality includes merging STEP ex-
change files, searching sets of instances, and checking sets of
instances for completeness with respect to the application model.
Some of this functionality may be migrated to theSTEP Core li-
brary should it prove to be more generally useful.

The VTS Interfacelibrary is designed with the potential for
multiple types of display11. The strategy for this is to encapsulate
the functional content of the interface so that it is not tightly
coupled with the display functionality. The initial version of the
interface uses the InterViews (Linton, 1991) toolkit. TheVTS
Interface is built on the InterViews library by extending it to
support the specific interface of the Testbed tools. The extensions
include classes for displaying data instances, groups of data
instances, and an application model.

Generic Systems.

The generic systems are completely independent of the specific
needs of the VTS and are available as self-contained packages ei-
ther in the public domain or as commercial systems. The software
in this layer isolates the rest of the VTS software from dependen-
cies on a particular hardware platform. The generic systems refer
to toolkits or other external software which is directly integrated
into the VTS architecture and include the operating system and
compiler used in developing the software. Other generic systems
used in the VTS software include:

• InterViews user interface toolkit for the X11 (Scheifler,
1989) environment;

• Open Object-Oriented Database Toolkit from Texas
Instruments12 (Wells, 1992); and

• C++ streams library for system i/o.

Summary

The VTS architecture is based on a decomposition of the func-
tional needs for validation of STEP application protocols. The
object-oriented techniques of encapsulation and abstraction are

11The initial version uses the InterViews toolkit. Another potential inter-
face is to an ASCII terminal.

12The Open Object-Oriented Database Toolkit from Texas Instruments is a
research prototype.

9

used to define reusable software components which support the
functions needed for automating the validation process.

The structure of the software enables code reusability and sys-
tem extensibility. The software developed for the VTS can provide
the foundations for STEP-related systems or general purpose edi-
tors for structured information. The architecture defines a structure
for attaching new software components as the VTS expands to
cover broader functional requirements. The new functions can be
integrated into the system without disturbing the existing function-
ality.

In particular, theCore andSchema Class libraries can be used
for other implementations based on the STEP models or any mod-
els written in Express. These libraries represent the data structures
for a particular application model. For example, a stand-alone
translator for extracting data from IGES (IGES5.1, 1991)13 to a
proposed STEP format for geometry was prototyped using an ini-
tial version of these libraries (PDES, 1990b). A translator such as
this is not dependent on theVTS Interfacelibrary which may re-
quire a sophisticated windowing system. However, the translator
shares the functionality for representing the application model
with the VTS software. Therefore, it is able to directly access the
VTS database using the interface provided inSchema Class Li-
brary. The interface to the database is transparent to a translator
based on this library and should not need to be updated when the
Schema Class Library is integrated with a database.

Likewise, parts of theVTS InterfaceandData Editor libraries
are useful for any general purpose editor of highly structured in-
formation.

THE DATA PROBE TOOL

The Data Probe is the major application which uses the various
libraries described. It is intended to allow people involved with the
creation and testing of STEP Application Protocols to examine
and populate data files corresponding to those models. This sec-
tion of the paper describes the Data Probe tool and illustrates the
user interface to the tool. The examples used in this section are
based on the STEP models for geometry and topology14.

Each Data Probe executable is specific to a particular informa-
tion model, and new versions of the Data Probe are automatically
generated from an EXPRESS schema. The creation of a new Data
Probe tool is a three step process. First the EXPRESS schema is
translated into aSchema Class Library, which is then compiled
and linked with the other libraries of the VTS. A UNIX shell script
called mkProbe automates this process.mkProbe accepts an

13IGES is the Initial Graphics Exchange Specification.

14This is theEXPRESS schema from a early draft version of ISO 10303 In-
dustrial Automation Systems — Product Data Representation and Ex-
change — Part 42: Integrated Generic Resources: Geometric &
Topological Representation.

EXPRESS schema as input and outputs a new Data Probe specific to
that schema.

The Data Probe tool consists of five types of windows:

1 Data Probe management window (FIGURE 4),

2 Entity Type List window (large window inFIGURE 5),

3 Entity Instance List window (FIGURE 6),

4 STEP Entity Editor (SEE) windows (small window in
FIGURE 5), and

5 STEP Entity Descriptor (SED) window (FIGURE 7).

These windows may be manipulated in the typical ways (move,
open, close, hide, expose, resize, etc.) supported by the X window-
ing system. Any number of temporary SEE and SED windows
may be created and destroyed as the editor is being used. A single
SEE window is shown in the left side ofFIGURE 5, partly ob-
scuring the Entity Type List window.

The presentation of these windows is implemented in the VTS
Interface library; The underlying functionality is implemented in
the Data Editor library; and the data is represented and stored us-
ing the Schema Class Library.

Data Probe Management W indow

The Data Probe management window provides the user with
system functions such as saving or appending files, clearing the
Entity Instance List, and quitting the editor. There is also a line for
brief messages to the user. InFIGURE 4 the status window
provides feedback to the user that there is one incomplete instance
in the list of instances. This particular message would appear
when a file is saved or when the user asks to verify the instances.
Such operations are initiated using the pull down menu under the
title File Management.

Entity T ype List W indow

The Entity Type List window contains a scrollable list of all the
entities defined in the EXPRESS schema or schemas used to create
the editor. Instances of these entities make up a STEP exchange
file. In FIGURE 5, the first few entities in this window are
angle_measure, area_measure and axis1_placement. The circle
entity is highlighted in this window because the user has selected
it.

At the bottom of the window are two command buttons which
indicate the primary use of this window. When the user decides to
create an instance of an entity, the window is used to select the
type of entity to create. The user selects the name of the entity type
to be created (by pointing to the name with the mouse cursor and
clicking a mouse button) and then selects theCreate command
button in a similar manner. This causes a SEE window to pop up
for a new instance of that type of entity. The example illustrates an
instance of “Circle” has just been created.

The second function initiated by this window is the display of
type information about a particular entity. As with the create func-

10

FIGURE 4 : DATA PROBE MANAGEMENT WINDOW

FIGURE 5 : ENTITY TYPE LIST WINDOW

11

tion, the user selects the desired entity type and presses the button
labeledType Information. This action brings up a SED for that
entity type.

Entity Instance List W indow

The Entity Instance List window has two main parts. The top
part has the appearance of the “DATA” section of a STEP
exchange file. Entity instances are listed, one instance per line.
(Lines that do not fit on the screen are truncated.) An indication of
the editing status (such as I for Incomplete) of an instance may be
displayed to the left of the instance.

The bottom part of the window contains the controls for a search
utility that may be used to find text strings. The bottom part also
contains a set of command buttons to perform actions on instances
such as: delete, modify, view, save, etc. To use the command but-
tons, an instance is selected with the mouse, and then the desired

FIGURE 6 : ENTITY INSTANCE LIST WINDOW

command button is selected with the mouse. If either viewing or
modifying is selected, a SEE window pops up.

STEP Entity Editor and STEP Entity Descriptor
Windows

The SEE window shown inFIGURE 5 is used to edit the data
values for a circle. The circle shown has 3 attributes:local_coordi-
nate_system, radius, andposition. The user can enter values for
these attributes into the editable fields in the middle of the
window.

The STEP Entity Descriptor (SED) window provides more
detailed information about an entity type. The SED inFIGURE 7
give more detailed information about the entitycircle. This
window shows thatcircle is a specialized subtype ofconic, curve,
andgeometry. The attributelocal_coordinate_system is inherited
from the parent supertypegeometry. 15

CONCLUSION

The most significant impacts of the VTS software architecture
are on the amount of time needed for and on the reliability of the
validation of an application protocol. The integration of the soft-
ware significantly reduces the amount of time needed for
validation and improves the reliability of the results. These im-
provements enable application protocols to be validated more
quickly and with less effort.

Several significant features of the VTS architecture support
responsiveness to the needs for validation testing. These features
include the following:

• a structure for isolating changes to the system due to
changing requirements (i.e. the application model, differ-
ent software or hardware platforms, the evolution of
STEP, etc.);

• a single format for data representation, thereby eliminat-
ing both the need to translate the data to a variety of for-
mats and the errors associated with such translations;

• a single point of access for the user, thereby reducing the
amount of time spent in learning to use the software and
minimizing the impact on the user when new functional-
ity is introduced; and

• a collection of reusable source code, which supports the
integration of additional functionality into the system and

15Multiple inheritance is not yet supported by the VTS software.

12

also supports the implementation of other STEP-based
systems.

Status and A vailability of the Software

Several components of this architecture have been implemented
to support the needs for STEP application protocol validation
within the National PDES Testbed (Mitch, 1990). TheData
Editor, STEP Core, andVTS Interface libraries, the EXPRESS to
C++ translator for creating aSchema Class Library, and the Data
Probe tool are in the public domain and are available from NIST.
They can be obtained from the ftp site at

ftp.cme.nist.gov

or via modem or mail server (Katz, 1991(Ressler, 1991). Contact
the Factory Automation Systems Division (301 975-3508 or npt-
info@cme.nist.gov) more information on how to obtain the soft-
ware, or for other information related to the work at the National
PDES Testbed.

Initial implementation of portions of the architecture have al-
ready been used by other projects (PDES, 1990b)(McLay, 1990)
and future collaborations are planned with the NIST Process Plan-
ning Testbed.

Current development activities are addressing the use of TI’s
Open Object Oriented Database in the system and the use of the
STEP Standard Data Access Interface (ISO, 1992d) to allow
interoperability with multiple database systems.16 The architec-
ture defined here provides a basis for these expansions to the VTS
software.

REFERENCES

Breese, J. N., McLay, M. and Silvernale, G.,Validation Testing
Laboratory User’s Guide, NISTIR4683, National Institute of Stan-
dards and Technology, Gaithersburg, MD, October 1991.

Clark, S. N.,An Introduction to The NIST PDES Toolkit, NIS-
TIR 4336, National Institute of Standards and Technology, Gaith-
ersburg, MD, May 1990.

Clark, S.N.,Transformr: A Prototype STEP Exchange File Mi-
gration Tool, NISTIR 4944, National Institute of Standards and
Technology, Gaithersburg, Maryland, October 1992.

Federal Information Processing Standard 151,POSIX: Portable
Operating System Interface for Computer Environments, IEEE
1003.1/Draft 12, September 1988.

The Initial Graphics Exchange Specification (IGES), Version
5.1, IGES/PDES Organization, NCGA, Fairfax, VA, September
1991.

International Organization for Standardization,ISO 10303 In-
dustrial Automation Systems and Integration— Product Data Rep-
resentation and Exchange — Overview and Fundamental
Principles, Draft International Standard, ISO TC184/SC4, 1992a.

International Organization for Standardization,ISO 10303 In-
dustrial Automation Systems and Integration — Product Data
Representation and Exchange — Description Methods: The EX-

16Funding for this work is provided by the Department of Defense’s De-
fense Advanced Research Projects Agency (DARPA).

FIGURE 7 : STEP ENTITY DESCRIPTOR WINDOW

13

PRESS Language Reference Manual, Draft International Standard,
ISO TC184/SC4, 1992b.

International Organization for Standardization,ISO 10303 In-
dustrial Automation Systems and Integration — Product Data
Representation and Exchange — Clear Text Encoding of the Ex-
change Structure, Draft International Standard, ISO TC184/SC4,
1992c.

International Organization for Standardization,ISO 10303 In-
dustrial Automation Systems and Integration — Product Data
Representation and Exchange — Standard Data Access Interface
Specification, Working Draft, ISO TC184/SC4, 1992d.

Kohout, R.C., Clark, S.N.,Considerations for the Transforma-
tion of STEP Physical Files, NISTIR 4793, National Institute of
Standards and Technology, Gaithersburg, Maryland, March 1992.

Katz, S., STEP On-Line Information Service User’s Guide,
NISTIR4491, National Institute of Standards and Technology,
Gaithersburg, MD, January 1991.

Linton, M,. InterViews Reference Manual Version 3.0-alpha,
Computer Systems Laboratory, Departments of Electrical Engi-
neering and Computer Science, Stanford University, Silicon
Graphics, January 1991.

McLay, M.J. and Morris, K.C.,The NIST STEP Class Library,
C++ at Work-’90 Conference Proceedings, September 1990. (Re-
printed as NISTIR 4411.)

Mitchell, Mary, Development Plan: Validation Testing System,
NISTIR 4417, National Institute of Standards and Technology,
Gaithersburg, MD, October 1990.

Mitchell, M., A Proposed Testing Methodology for STEP Ap-
plication Protocol Validation, NISTIR 4684, National Institute of
Standards and Technology, Gaithersburg, MD, September 1991.

Mitchell, M. J., Morris, K. C.The Use of Application Model
Validation in Testing a Proposed Standard,Proceedings of the
Sixth Annual ASME Database Symposium - Engineering Data
Management: Key to Integrated Product Development, American
Society of Mechanical Engineers, New York, August 1992.

Morris, K.C., McLay, M. and Carr, P. J.,Validation Testing Sys-
tem Requirements, NISTIR 4676, National Institute of Standards
and Technology, Gaithersburg, MD, September 1991a.

Morris, K.C., Mitchell, M.J. and Sauder, D.Validating STEP
Application Protocols at the National PDES Testbed, NISTIR, Na-
tional Institute of Standards and Technology, Gaithersburg, MD,
November 1991b.

Morris, K. C., Sauder, D., Ressler, S.,Validation Testing Sys-
tem: Reusable Software Component Design, NISTIR 4937, Na-
tional Institute of Standards and Technology, Gaithersburg, MD,
October 1992.

PDES, Inc.Test Report for Context-Driven Integrated Model
(CDIM) Application A1, Skeels, J., ed., PDES, Inc. internal report
PMG012.01.00, SCRA, Charleston, SC, April 1990a.

PDES, Inc., Block Point Release 2.1 Systems Manual
PTI018.01.00, Silvernale, Gerard, ed., SCRA, Charleston, SC,
February 1, 1990b.

Ressler, Sandy, “The National PDES Testbed Mail Server Us-
er’s Guide”, NISTIR 4508, National Institute of Standards and
Technology, Gaithersburg, MD, Jan., 1991.

Scheifler, R.W.,X Protocol Reference Manual for Version 11,
O’Reilly and Associates, Inc., Sebastopol, CA, 1989.

Stroustrup, B., ANSI X3J16/90-0020,C++ Language System
Reference Manual.

David Wells, José Blakeley, Craig Thompson, “Architecture of
an Open Object-Oriented Database Management System,”IEEE
Computer, October 1992.

No approval or endorsement of any product by the National
Institute of Standards and Technology is intended or implied.

Documents from the National Institute of Standards and
Technology are available through the National Technical

Information Service (NTIS), Springfield, VA, 22161. To request
the documents use the NISTIR number.

