SWI-Prolog binding to libarchive

Jan Wielemaker
VU University Amsterdam
The Netherlands
E-mail: J.Wielemaker@vu.nl

October 4, 2012

Abstract

The library libarchive provides a portable way to access archive files. This package is a Prolog
wrapper around this library. The motivation to introduce this library is twofold. In the first place,
it provides a minimal platform independent API to access archives. In the second place, it allows
accessing archives through Prolog streams, which often elimaniates the need for temporary files
and all related consequences for performance, security and platform dependency.

Contents
1 Motivation
2 library(archive): Access several archive formats

3 Status

1 Motivation

Archives play two roles: they combine multiple documents into a single one and they typically provide
compression and sometimes encryption or other services. Bundling multiple resources into a single
archive may greatly simplify distribution and guarantee that the individual resources are consistent.
SWI-Prolog provides archiving using its (rather arcane) saved-state format. See resource/3 and
open_resource/ 3. It also provides compression by means of library(zlib).

External archives may be accessed through the process interface provided by
process_create/3, but this has disadvantages. The one that motivated this library was
that using external processes provide no decent platform independent access to archives. Most likely
zip files comes closest to platform independent access, but there are many different programs for
accessing zip files that provide slightly different sets of options and the existence of any of these
programs cannot be guaranteed without distributing our own bundled version. Similar arguments
hold for Unix tar archives, where just about any Unix-derives system has a tar program but except for
very basic commands, the command line options are not compatible and tar is not part of Windows.
The only format granted on Windows is .cab, but a program to create them is not part of Windows
and the .cab format is rare outside the Windows context.

Discarding availability of archive programs, each archive program comes with its own set of com-
mand line options and its own features and limitations. Fortunately, libarchive provides a consistent
interface to a wealth of compression and archiving formats. The library archive wraps this library,
providing access to archives using Prolog streams both for the archive as a whole and the archive
entries. E.g., archives may be read from Prolog streams and each member in turn may be processed
using Prolog streams without materialising data using temporary files.

2 library(archive): Access several archive formats

See also http://code.google.com/p/libarchive/

This library uses libarchive to access a variety of archive formats. The following example lists the
entries in an archive:

list_archive (File) :-
archive_open(File, Archive, []),
repeat,
(archive_next_header (Archive, Path)
-> format (' "w'n’, [Path]),
fail
; L,

archive_close (Archive)

archive_open(+Data, -Archive, +Options) [det]
Open the archive in Data and unify Archive with a handle to the opened archive. Data is
either a file or a stream that contains a valid archive. Details are controlled by Options.

Typically, the option close_parent(true) is used to close stream if the archive is closed using
archive_close/1. For other options, the defaults are typically fine. The option format(raw)
must be used to process compressed streams that do not contain explicit entries (e.g., gzip’ed
data) unambibuously.

close_parent(+Boolean)
If this option is true (default false), Stream is closed if archive_close/1 is
called on Archive.

compression(+Compression)
Support the indicated compression. This option may be used multiple times to support
multiple compression types. If no compression options are provided, all is assumed.
Supported values are all, bzip2, compress, gzip, 1zma, none and xz. The value
all is default.

format(+Format)
Support the indicated format. This option may be used multiple times to support multiple
formats. If no format options are provided, a1l is assumed. Supported values are: all,
ar, cpio, empty, 1s09660, mtree, raw, tar and zip. The value all is default.

Note that the actually supported compression types and formats may vary depending on the
version and installation options of the underlying libarchive library. This predicate raises a
domain error if the (explicitly) requested format is not supported.

Errors
- domain_error(compression, Compression) if the requested compression type is not supported.
- domain_error(format, Format) if the requested format type is not supported.

archive_close(+Archive) [det]
Close the archive. If close_parent(true) is specified, the underlying stream is closed too.

archive_next_header(+Handle, -Name) [semidet]
Forward to the next entry of the archive for which Name unifies with the pathname of the entry.
Fails silently if the name of the archive is reached before success. Name is typically specified
if a single entry must be accessed and unbound otherwise. The following example opens a
Prolog stream to a given archive entry. Note that Stream must be closed using close/1 and
the archive must be closed using archive_close/1 after the data has been used. See also
setup_call_cleanup/3.

open_archive_entry (ArchiveFile, Entry, Stream) :-
open (ArchiveFile, read, In, [type(binary)l]),
archive_open (In, Archive, [close_parent (true)l),
archive_next_header (Archive, Entry),
archive_open_entry (Archive, Stream).

archive_open_entry(+Archive, -Stream) [det]
Open the current entry as a stream. Stream must be closed.

archive_header_property(+Archive, ?Property)
True when Property is a property of the current header. Defined properties are:

4

filetype(-Type)
Type is one of file, link, socket, character_device, block_device,
directoryor fifo.

mtime(-Time)
True when entry was last modified at time.

size(-Bytes)
True when entry is Bytes long.

archive_extract(+ArchiveFile, +Dir, +Options)
Extract files from the given archive into Dir. Supported options:

remove_prefix(+Prefix)
Strip Prefix from all entries before extracting

Errors

- existence_error(directory, Dir) if Dir does not exist or is not a directory.

- domain_error(path_prefix(Prefix), Path) if a path in the archive does not start with Prefix
To be done Add options

archive_entries(+Archive, -Paths) [det]
True when Paths is a list of pathnames appearing in Archive.

3 Status

The current version is merely a proof-of-concept. It lacks writing archives and does not support many
of the options of the underlying library. The main motivation for starting this library was to achieve
portability of the upcomming SWI-Prolog package distribution system. Other functionality will be
added on ‘as needed’ basis.

Index

archive library, 3
archive_close/1, 4
archive_entries/2, 5
archive_extract/3, 5
archive_header_property/2, 4
archive_next_header/2, 4
archive_open/3, 3
archive_open_entry/2, 4

open_resource/3, 3
process_create/3, 3

resource/3, 3

	Motivation
	library(archive): Access several archive formats
	Status

