
Quantum GIS (QGIS)

Building QGIS from source - step by step

Sunday August 07, 2011

1

Last Updated: Sunday August 07, 2011 Last Change : Tuesday June 28, 2011

Contents

1 Introduction 4

2 Overview 5

3 Building on GNU/Linux 6
3.1 Building QGIS with Qt 4.x . 6
3.2 Prepare apt . 6
3.3 Install build dependencies . 7
3.4 Setup ccache (Optional) . 8
3.5 Prepare your development environment 8
3.6 Check out the QGIS Source Code . 8
3.7 Starting the compile . 9
3.8 Building Debian packages . 10
3.9 A practical case: Building QGIS and GRASS from source on Ubuntu with

ECW and MrSID formats support . 10
3.9.1 Step 1: install base packages . 11
3.9.2 Step 2: compile and install the ecw libraries 11
3.9.3 Step 3: download the MrSID binaries 12
3.9.4 Step 4: compile and install the gdal libraries 12
3.9.5 Step 5: compile and install GRASS 13
3.9.6 Step 6: compile and install QGIS 14

4 Building on Windows 16
4.1 Building with Microsoft Visual Studio . 16

4.1.1 Visual C++ Express Edition . 16
4.1.2 Other tools and dependencies . 16
4.1.3 Setting up the Visual Studio project with CMake 17
4.1.4 Packaging . 19
4.1.5 Packaging your own build of QGIS 19
4.1.6 Osgeo4w packaging . 20

4.2 Building using MinGW . 20
4.2.1 MSYS . 20
4.2.2 Qt . 20
4.2.3 Flex and Bison . 21
4.2.4 Python stuff (optional) . 21
4.2.5 Subversion . 22
4.2.6 CMake . 22
4.2.7 QGIS . 23
4.2.8 Compiling . 23

2

4.2.9 Configuration . 24
4.2.10 Compilation and installation . 24
4.2.11 Run qgis.exe from the directory where it’s installed (CMAKE INSTALL PREFIX) 24
4.2.12 Create the installation package: (optional) 24

4.3 Creation of MSYS environment for compilation of Quantum GIS 25
4.3.1 Initial setup . 25
4.3.2 Installing dependencies . 26
4.3.3 Cleanup . 29

5 Building on MacOS X 30
5.1 Install Qt4 from disk image . 30
5.2 Install development frameworks for QGIS dependencies 31

5.2.1 Additional Dependencies: General compatibility note 32
5.2.2 Additional Dependencies: Expat 32
5.2.3 Additional Dependencies: Python 32
5.2.4 Additional Dependencies: SIP . 33
5.2.5 Additional Dependencies: PyQt . 34
5.2.6 Additional Dependencies: Qwt/PyQwt 35
5.2.7 Additional Dependencies: Bison 36

5.3 Install CMake for OSX . 37
5.4 QGIS source . 37
5.5 Configure the build . 37
5.6 Building . 39

6 Authors and Acknowledgments 40

3

1 Introduction

This document is the original installation guide of the described software Quantum
GIS. The software and hardware descriptions named in this document are in most cases
registered trademarks and are therefore subject to the legal requirements. Quantum GIS
is subject to the GNU General Public License. Find more information on the Quantum
GIS Homepage: http://www.qgis.org

The details, that are given in this document have been written and verified to the best
of knowledge and responsibility of the editors. Nevertheless, mistakes concerning the
content are possible. Therefore, all data are not liable to any duties or guarantees. The
editors and publishers do not take any responsibility or liability for failures and their
consequences. You are always welcome for indicating possible mistakes.

You can download this document as part of the Quantum GIS ’User and Installation
Guide’ in HTML and PDF format via http://www.qgis.org. A current version is also
available at the wiki, see: http://www.qgis.org/wiki/Installation Guide

Translations of this document can also be downloaded at the documentation area of
the Quantum GIS project at http://www.qgis.org. More information is available via
http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner.

Please visit http://qgis.org for information on joining our mailing lists and getting in-
volved in the project further.

/!\ Note to document writers: Please use this document as the central place for
describing build procedures. Please do not remove this notice.

/!\Note to document writers: This documented is generated from doc/INSTALL.t2t
- if you need to edit this document, be sure to edit that file rather than the generated
INSTALL document found in the root of the source directory.

4

http://www.qgis.org
http://www.qgis.org
http://www.qgis.org/wiki/Installation_Guide
http://www.qgis.org
http://wiki.qgis.org/qgiswiki/DocumentationWritersCorner
http://qgis.org

2 Overview

QGIS, like a number of major projects (eg. KDE 4.0), uses CMake (http://www.cmake.org)
for building from source.

Following a summary of the required dependencies for building:

Required build tools:

• CMake >= 2.6.0
• Flex
• Bison

Required build deps:

• Qt >= 4.4.0
• Proj >= 4.4.x
• GEOS >= 3.0
• Sqlite3 >= 3.0.0
• GDAL/OGR >= 1.4.x
• Qwt >= 5.0

Optional dependencies:

• for GRASS plugin - GRASS >= 6.0.0 (libraries compiled with exceptions support
on Linux 32bit)
• for georeferencer - GSL >= 1.8
• for postgis support and SPIT plugin - PostgreSQL >= 8.0.x
• for gps plugin - expat >= 1.95 and gpsbabel
• for mapserver export and PyQGIS - Python >= 2.3 (2.5+ preferred)
• for python support - SIP >= 4.8, PyQt >= must match Qt version
• for qgis mapserver - FastCGI

5

http://www.cmake.org

3 Building on GNU/Linux

3.1 Building QGIS with Qt 4.x

Requires: Ubuntu / Debian derived distro

These notes are for Ubuntu - other versions and Debian derived distros may require
slight variations in package names.

These notes are for if you want to build QGIS from source. One of the major aims here
is to show how this can be done using binary packages for *all* dependencies - building
only the core QGIS stuff from source. I prefer this approach because it means we can
leave the business of managing system packages to apt and only concern ourselves with
coding QGIS!

This document assumes you have made a fresh install and have a ’clean’ system. These
instructions should work fine if this is a system that has already been in use for a while,
you may need to just skip those steps which are irrelevant to you.

/!\ Note: Refer to the section Building Debian packages for building debian packages.
Unless you plan to develop on QGIS, that is probably the easiest option to compile and
install QGIS.

3.2 Prepare apt

The packages qgis depends on to build are available in the ”universe” component of
Ubuntu. This is not activated by default, so you need to activate it:

1. Edit your /etc/apt/sources.list file. 2. Uncomment the all the lines starting with
”deb”

Also you will need to be running (K)Ubuntu ’edgy’ or higher in order for all dependencies
to be met.

Now update your local sources database:

Listing

sudo apt-get update

3.3 Install build dependencies

6

Distribution install command for packages
lenny apt-get install bison cmake doxygen flex graphviz grass-dev libexpat1-dev libfcgi-dev libgdal1-dev libgeos-dev libgsl0-dev libpq-dev libqt4-dev libqwt5-qt4-dev libsqlite3-dev pkg-config proj pyqt4-dev-tools python python-dev python-qt4 python-qt4-dev python-sip4-dev sip4 txt2tags

lucid apt-get install bison cmake doxygen flex graphviz grass-dev libexpat1-dev libfcgi-dev libgdal1-dev libgeos-dev libgsl0-dev libpq-dev libproj-dev libqt4-dev libqwt5-qt4-dev libspatialite-dev libsqlite3-dev pkg-config pyqt4-dev-tools python python-dev python-qt4 python-qt4-dev python-sip python-sip-dev txt2tags

maverick apt-get install bison cmake doxygen flex graphviz grass-dev libexpat1-dev libfcgi-dev libgdal1-dev libgeos-dev libgsl0-dev libpq-dev libproj-dev libqt4-dev libqtwebkit-dev libqwt5-qt4-dev libspatialite-dev libsqlite3-dev pkg-config pyqt4-dev-tools python python-dev python-qt4 python-qt4-dev python-sip python-sip-dev txt2tags

natty apt-get install bison cmake doxygen flex graphviz grass-dev libexpat1-dev libfcgi-dev libgdal1-dev libgeos-dev libgsl0-dev libpq-dev libproj-dev libqt4-dev libqtwebkit-dev libqwt5-qt4-dev libspatialite-dev libsqlite3-dev pkg-config pyqt4-dev-tools python python-dev python-qt4 python-qt4-dev python-sip python-sip-dev txt2tags

sid apt-get install bison cmake doxygen flex graphviz grass-dev libexpat1-dev libfcgi-dev libgdal1-dev libgeos-dev libgsl0-dev libpq-dev libproj-dev libqt4-dev libqtwebkit-dev libqwt5-qt4-dev libspatialite-dev libsqlite3-dev pkg-config pyqt4-dev-tools python python-dev python-qt4 python-qt4-dev python-sip python-sip-dev txt2tags

squeeze apt-get install bison cmake doxygen flex graphviz grass-dev libexpat1-dev libfcgi-dev libgdal1-dev libgeos-dev libgsl0-dev libpq-dev libproj-dev libqt4-dev libqwt5-qt4-dev libspatialite-dev libsqlite3-dev pkg-config pyqt4-dev-tools python python-dev python-qt4 python-qt4-dev python-sip python-sip-dev txt2tags

(extracted from the respective control files in debian/)

/!\ A Special Note: If you are following this set of instructions on a system where you
already have Qt3 development tools installed, there will be a conflict between Qt3 tools
and Qt4 tools. For example, qmake will point to the Qt3 version not the Qt4. Ubuntu
Qt4 and Qt3 packages are designed to live alongside each other. This means that for
example if you have them both installed you will have three qmake exe’s:

Listing

/usr/bin/qmake -> /etc/alternatives/qmake

/usr/bin/qmake-qt3

/usr/bin/qmake-qt4

The same applies to all other Qt binaries. You will notice above that the canonical
’qmake’ is managed by apt alternatives, so before we start to build QGIS, we need to
make Qt4 the default. To return Qt3 to default later you can use this same process.

You can use apt alternatives to correct this so that the Qt4 version of applications is
used in all cases:

Listing

sudo update-alternatives --config qmake

sudo update-alternatives --config uic

sudo update-alternatives --config designer

sudo update-alternatives --config assistant

sudo update-alternatives --config qtconfig

sudo update-alternatives --config moc

sudo update-alternatives --config lupdate

sudo update-alternatives --config lrelease

sudo update-alternatives --config linguist

Use the simple command line dialog that appears after running each of the above com-
mands to select the Qt4 version of the relevant applications.

/!\ Note: For python language bindings SIP >= 4.5 and PyQt4 >= 4.1 is required!
Some stable GNU/Linux distributions (e.g. Debian or SuSE) only provide SIP < 4.5
and PyQt4 < 4.1. To include support for python language bindings you may need to
build and install those packages from source.

7

3.4 Setup ccache (Optional)

You should also setup ccache to speed up compile times:

Listing

cd /usr/local/bin

sudo ln -s /usr/bin/ccache gcc

sudo ln -s /usr/bin/ccache g++

3.5 Prepare your development environment

As a convention I do all my development work in $HOME/dev/<language>, so in this
case we will create a work environment for C++ development work like this:

Listing

mkdir -p ${HOME}/dev/cpp

cd ${HOME}/dev/cpp

This directory path will be assumed for all instructions that follow.

3.6 Check out the QGIS Source Code

There are two ways the source can be checked out. Use the anonymous method if you do
not have edit privaleges for the QGIS source repository, or use the developer checkout if
you have permissions to commit source code changes.

1. Anonymous Checkout

Listing

cd ${HOME}/dev/cpp

git clone git://github.com/qgis/Quantum-GIS.git

2. Developer Checkout

Listing

cd ${HOME}/dev/cpp

git clone git@github.com:qgis/Quantum-GIS.git

8

3.7 Starting the compile

I compile my development version of QGIS into my ˜/apps directory to avoid conflicts
with Ubuntu packages that may be under /usr. This way for example you can use the
binary packages of QGIS on your system along side with your development version. I
suggest you do something similar:

Listing

mkdir -p ${HOME}/apps

Now we create a build directory and run ccmake:

Listing

cd Quantum-GIS

mkdir build-master

cd build-master

ccmake ..

When you run ccmake (note the .. is required!), a menu will appear where you can con-
figure various aspects of the build. If you do not have root access or do not want
to overwrite existing QGIS installs (by your packagemanager for example), set the
CMAKE INSTALL PREFIX to somewhere you have write access to (I usually use
${HOME}/apps). Now press ’c’ to configure, ’e’ to dismiss any error messages that
may appear. and ’g’ to generate the make files. Note that sometimes ’c’ needs to be
pressed several times before the ’g’ option becomes available. After the ’g’ generation is
complete, press ’q’ to exit the ccmake interactive dialog.

Now on with the build:
Listing

make

make install

It may take a little while to build depending on your platform.

After that you can try to run QGIS:

Listing

$HOME/apps/bin/qgis

If all has worked properly the QGIS application should start up and appear on your
screen.

9

3.8 Building Debian packages

Instead of creating a personal installation as in the previous step you can also create
debian package. This is done from the qgis root directory, where you’ll find a debian
directory.

First you need to install the debian packaging tools once:

Listing

apt-get install build-essential

First you need to create an changelog entry for your distribution. For example for
Ubuntu Lucid:

Listing

dch -l ~lucid --force-distribution --distribution lucid "lucid build"

The QGIS packages will be created with:

Listing

dpkg-buildpackage -us -uc -b

/!\ Note: If dpkg-buildpackage complains about unmet build dependencies you can
install them using apt-get and re-run the command.

/!\ Note: If you have libqgis1-dev installed, you need to remove it first using dpkg

-r libqgis1-dev. Otherwise dpkg-buildpackage will complain about a build conflict.

The packages are created in the parent directory (ie. one level up). Install them using
dpkg. E.g.:

Listing

sudo debi

3.9 A practical case: Building QGIS and GRASS from source on Ubuntu
with ECW and MrSID formats support

The following procedure has been tested on Ubuntu 8.04, 8.10 and 9.04 32bit. If you
want to use different versions of the software (gdal, grass, qgis), just make the necessary
adjustments to the following code. This guide assumes that you don’t have installed any
previous version of gdal, grass and qgis.

10

3.9.1 Step 1: install base packages

First you need to install the necessary packages required to download the source code
and compile it. Open the terminal and issue the following command:

Listing

sudo apt-get install build-essential g++ subversion

3.9.2 Step 2: compile and install the ecw libraries

Go to the ERDAS web site http://www.erdas.com/ and follow the links ”’products –¿
ECW JPEG2000 Codec SDK –¿ downloads’” then download the ”’Image Compression
SDK Source Code 3.3’” (you’ll need to make a registration and accept a license).

Uncompress the arquive in a proper location (this guide assumes that all the downloaded
source code will be placed in the user home) and the enter the newly created folder

Listing

cd /libecwj2-3.3

Compile the code with the standard commands

Listing

./configure

then
Listing

make

then
Listing

sudo make install

leave the folder
Listing

cd ..

11

http://www.erdas.com/

3.9.3 Step 3: download the MrSID binaries

Go to the LIZARDTECH web site http://www.lizardtech.com/ and follow the links
”’download –¿ Developer SDKs’”, then download the ”’GeoExpress SDK for Linux (x86)
- gcc 4.1 32-bit’” (you’ll need to make a registration and accept a license).

Uncompress the downloaded file. The resulting directory name should be similar to
”Geo DSDK-7.0.0.2167”

3.9.4 Step 4: compile and install the gdal libraries

Download the latest gdal source code

Listing

svn checkout https://svn.osgeo.org/gdal/trunk/gdal gdal

then copy a few files from the MrSID binaries folder to the folder with the gdal source
code (’replace ”USERNAME” with your actual account username’)

Listing

cp /home/USERNAME/Geo_DSDK-7.0.0.2167/include/*.* /home/USERNAME/gdal/frmts/mrsid/

enter the gdal source code folder

Listing

cd /gdal

and run configure with a few specific parameters

Listing

./configure --without-grass --with-mrsid=../Geo_DSDK-7.0.0.2167 --without-jp2mrsid

at the end of the configuration process you should read something like

Listing

...

GRASS support: no

...

...

...

ECW support: yes

MrSID support yes

...

12

http://www.lizardtech.com/

then compile normally

Listing

make

and
Listing

sudo make install

finish the process by creating the necessary links to the most recent shared libraries

Listing

sudo ldconfig

at this point you may want to check if gdal was compiled correctly with MrSID and
ECW support by issuing one (or both) of the following commands

Listing

gdalinfo --formats | grep ’ECW’

Listing

gdalinfo --formats | grep ’SID’

leave the folder
Listing

cd ..

3.9.5 Step 5: compile and install GRASS

Before downloading and compile GRASS source code you need to install a few other
libraries and programs. We can do this through apt

Listing

sudo apt-get install flex bison libreadline5-dev libncurses5-dev lesstif2-dev debhelper dpatch libtiff4-dev \

tcl8.4-dev tk8.4-dev fftw-dev xlibmesa-gl-dev libfreetype6-dev autoconf2.13 autotools-dev \

libgdal1-dev proj libjpeg62-dev libpng12-dev libpq-dev unixodbc-dev doxygen fakeroot cmake \

python-dev python-qt4-common python-qt4-dev python-sip4 python2.5-dev sip4 libglew1.5-dev libxmu6 \

libqt4-dev libgsl0-dev python-qt4 swig python-wxversion python-wxgtk2.8 libwxgtk2.8-0 libwxbase2.8-0 tcl8.4-dev \

tk8.4-dev tk8.4 libfftw3-dev libfftw3-3

13

At this point we can get the GRASS source code: you may want to download it through
svn or maybe you want just to download the latest available source code arquive.
For example the GRASS 6.4rc4 is available at http://grass.itc.it/grass64/source/grass-
6.4.0RC4.tar.gz

Uncompress the arquive, enter the newly created folder and run configure with a few
specific parameters

Listing

CFLAGS="-fexceptions" ./configure --with-tcltk-includes=/usr/include/tcl8.4 --with-proj-share=/usr/share/proj --with-gdal=/usr/local/bin/gdal-config \

--with-python=/usr/bin/python2.5-config

The additional gcc option -fexceptions is necessary to enable exceptions support in
GRASS libraries. It is currently the only way to avoid QGIS crashes if a fatal error
happens in GRASS library. See also http://trac.osgeo.org/grass/ticket/869

Then as usual (it will take a while)

Listing

make

and
Listing

sudo make install

leave the folder
Listing

cd ..

you have now compiled and installed GRASS (also with the new wxpyhton interface) so
you may want to give it a try

Listing

grass64 -wxpython

3.9.6 Step 6: compile and install QGIS

As for GRASS you can obtain the QGIS source code from different sources, for in-
stance from svn or just by downloading one of the source code arquives available at
http://www.qgis.org/download/sources.html

14

http://grass.itc.it/grass64/source/grass-6.4.0RC4.tar.gz
http://grass.itc.it/grass64/source/grass-6.4.0RC4.tar.gz
http://trac.osgeo.org/grass/ticket/869
http://www.qgis.org/download/sources.html

For example download the QGIS 1.1.0 source code here http://download.osgeo.org/qgis/src/qgis 1.1.0.tar.gz

uncompress the arquive and enter the newly created folder

Listing

cd /qgis_1.1.0

then run ccmake
Listing

ccmake .

press the ”c” key, then when the option list will appear we need to manually configure the
”GRASS PREFIX” parameter. Scroll down until the ”GRASS PREFIX” will appear,
press enter and manually set it to

Listing

/usr/local/grass-6.4.0RC4

then press enter again.

Press the ”c” again and the option ”Press [g] to generate and exit” will appear. Press
the ”g” key to generate and exit.

then as usual (it will take a while)

Listing

make

and
Listing

sudo make install

At the end of the process you should have QGIS and GRASS working with MrSID and
ECW raster format support.

To run QGIS just use this command

Listing

qgis

15

http://download.osgeo.org/qgis/src/qgis_1.1.0.tar.gz

4 Building on Windows

4.1 Building with Microsoft Visual Studio

This section describes how to build QGIS using Visual Studio on Windows. This is
currently also who the binary QGIS packages are made (earlier versions used MinGW).

This section describes the setup required to allow Visual Studio to be used to build
QGIS.

4.1.1 Visual C++ Express Edition

The free (as in free beer) Express Edition installer is available under:

http://download.microsoft.com/download/d/c/3/dc3439e7-5533-4f4c-9ba0-
8577685b6e7e/vcsetup.exe

The optional products are not necessary. In the process the Windows SDKs for Visual
Studio 2008 will also be downloaded and installed.

You also need the Microsoft Windows Server R© 2003 R2 Platform SDK (for setupapi):

http://download.microsoft.com/download/f/a/d/fad9efde-8627-4e7a-8812-
c351ba099151/PSDK-x86.exe

You only need Microsoft Windows Core SDK / Build Environment (x86 32-Bit).

4.1.2 Other tools and dependencies

Download and install following packages:

Tool Website
CMake http://www.cmake.org/files/v2.8/cmake-2.8.4-win32-x86.exe
Flex http://gnuwin32.sourceforge.net/downlinks/flex.php
Bison http://gnuwin32.sourceforge.net/downlinks/bison.php
SVN http://sourceforge.net/projects/win32svn/files/1.6.13/Setup-Subversion-1.6.13.msi/download
or GIT http://msysgit.googlecode.com/files/Git-1.7.4-preview20110204.exe
OSGeo4W http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe

OSGeo4W does not only provide ready packages for the current QGIS release and nightly
builds of the trunk, but also offers most of the dependencies needs to build it.

For the QGIS build you need to install following packages from OSGeo4W (select Ad-
vanced Installation):

16

http://download.microsoft.com/download/d/c/3/dc3439e7-5533-4f4c-9ba0-8577685b6e7e/vcsetup.exe
http://download.microsoft.com/download/d/c/3/dc3439e7-5533-4f4c-9ba0-8577685b6e7e/vcsetup.exe
http://download.microsoft.com/download/f/a/d/fad9efde-8627-4e7a-8812-c351ba099151/PSDK-x86.exe
http://download.microsoft.com/download/f/a/d/fad9efde-8627-4e7a-8812-c351ba099151/PSDK-x86.exe
http://www.cmake.org/files/v2.8/cmake-2.8.4-win32-x86.exe
http://gnuwin32.sourceforge.net/downlinks/flex.php
http://gnuwin32.sourceforge.net/downlinks/bison.php
http://sourceforge.net/projects/win32svn/files/1.6.13/Setup-Subversion-1.6.13.msi/download
http://msysgit.googlecode.com/files/Git-1.7.4-preview20110204.exe
http://download.osgeo.org/osgeo4w/osgeo4w-setup.exe

• expat
• fcgi
• gdal17
• grass
• gsl-devel
• iconv
• pyqt4
• qt4-devel
• qwt5-devel-qt4
• sip

This will also select packages the above packages depend on.

Additionally QGIS also needs the include file unistd.h, which normally doesn’t exist on
Windows. It’s shipped with Flex/Bison in GnuWin32\include and needs to be copied
into the VC\include directory of your Visual C++ installation.

Earlier versions of this document also covered how to build all above dependencies. If
you’re interested in that, check the history of this page in the Wiki or the SVN repository.

4.1.3 Setting up the Visual Studio project with CMake

To start a command prompt with an environment that both has the VC++ and the
OSGeo4W variables create the following batch file (assuming the above packages were
installed in the default locations):

Listing

@echo off

path %SYSTEMROOT%\system32;%SYSTEMROOT%;%SYSTEMROOT%\System32\Wbem;%PROGRAMFILES%\CMake 2.8\bin;%PROGRAMFILES%\subversion\bin;%PROGRAMFILES%\GnuWin32\bin

set PYTHONPATH=

set VS90COMNTOOLS=%PROGRAMFILES%\Microsoft Visual Studio 9.0\Common7\Tools\

call "%PROGRAMFILES%\Microsoft Visual Studio 9.0\VC\vcvarsall.bat" x86

set INCLUDE=%INCLUDE%;%PROGRAMFILES%\Microsoft Platform SDK for Windows Server 2003 R2\include

set LIB=%LIB%;%PROGRAMFILES%\Microsoft Platform SDK for Windows Server 2003 R2\lib

set OSGEO4W_ROOT=C:\OSGeo4W

call "%OSGEO4W_ROOT%\bin\o4w_env.bat"

@set GRASS_PREFIX=c:/OSGeo4W/apps/grass/grass-6.4.0

@set INCLUDE=%INCLUDE%;%OSGEO4W_ROOT%\apps\gdal-17\include;%OSGEO4W_ROOT%\include

@set LIB=%LIB%;%OSGEO4W_ROOT%\apps\gdal-17\lib;%OSGEO4W_ROOT%\lib

@cmd

Start the batch file and on the command prompt checkout the QGIS source from svn to
the source directory qgis-trunk:

17

Listing

svn co https://svn.osgeo.org/qgis/trunk/qgis qgis-trunk

or using git-svn (from the git shell):

Listing

git svn clone --username $USER --revision 15611:HEAD https://svn.osgeo.org/qgis/trunk/qgis

Create a ’build’ directory somewhere. This will be where all the build output will be
generated.

Now run cmake-gui and in the Where is the source code: box, browse to the top level
QGIS directory.

In the Where to build the binaries: box, browse to the ’build’ directory you created.

Adjust the path to bison and flex so that the shortened C:/Progra~1 is used rather than
C:/Program Files.

Verify that the ’BINDINGS GLOBAL INSTALL’ option is not checked, so that python
bindings are placed into the output directory when you run the INSTALL target.

Hit Configure to start the configuration and select Visual Studio 9 2008 and keep
native compilers and click Finish.

The configuration should complete without any further questions and allow you to click
Generate.

Now close cmake-gui and continue on the command prompt by starting vcexpress.
Use File / Open / Project/Solutions and open the qgis-x.y.z.sln File in your project
directory.

Change Solution Configuration from Debug to RelWithDebInfo (Release with Debug
Info) or Release before you build QGIS using the ALL BUILD target (otherwise you
need debug libraries that are not included).

After the build completed you should install QGIS using the INSTALL target.

Install QGIS by building the INSTALL project. By default this will install to c:\Program
Files\qgis<version> (this can be changed by changing the CMAKE INSTALL PREFIX
variable in cmake-gui).

You will also either need to add all the dependency DLLs to the QGIS install directory
or add their respective directories to your PATH.

18

4.1.4 Packaging

To create a windows ’all in one’ standalone package under ubuntu (yes you read correctly)
do the following:

Listing

sudo apt-get install nsis

Now
Listing

cd qgis/ms-windows/osgeo4w

And run the nsis creation script:

Listing

creatensis.pl

When the script completes, it should have created a QGIS installer executable in the
ms-windows directory (using the QGIS binaries from OSGEO4W).

4.1.5 Packaging your own build of QGIS

Assuming you have completed the above packaging step, if you want to include your own
hand built QGIS executables, you need to copy them in from your windows installation
into the ms-windows file tree created by the creatensis script.

Listing

cd ms-windows/

rm -rf osgeo4w/unpacked/apps/qgis/*

cp -r /tmp/qgis1.7.0/* osgeo4w/unpacked/apps/qgis/

Now create a package.

Listing

./quickpackage.sh

After this you should now have a nsis installer containing your own build of QGIS and
all dependencies needed to run it on a windows machine.

19

4.1.6 Osgeo4w packaging

The actual packaging process is currently not documented, for now please take a look
at:

ms-windows/osgeo4w/package.cmd

4.2 Building using MinGW

Note: This section might be outdated as nowadays Visual C++ is use to build the
”official” packages.

Note: For a detailed account of building all the dependencies yourself you can visit
Marco Pasetti’s website here:

http://www.webalice.it/marco.pasetti/qgis+grass/BuildFromSource.html

Read on to use the simplified approach with pre-built libraries...

4.2.1 MSYS

MSYS provides a unix style build environment under windows. We have created a zip
archive that contains just about all dependencies.

Get this:

http://download.osgeo.org/qgis/win32/msys.zip

and unpack to c:\msys

If you wish to prepare your msys environment yourself rather than using our pre-made
one, detailed instructions are provided elsewhere in this document.

4.2.2 Qt

Download Qt opensource precompiled edition exe and install (including the download
and install of mingw) from here:

http://qt.nokia.com/downloads/

When the installer will ask for MinGW, you don’t need to download and install it, just
point the installer to c:\msys\mingw

When Qt installation is complete:

20

http://www.webalice.it/marco.pasetti/qgis+grass/BuildFromSource.html
http://download.osgeo.org/qgis/win32/msys.zip
http://qt.nokia.com/downloads/

Edit C:\Qt\4.7.0\bin\qtvars.bat and add the following lines:

Listing

set PATH=%PATH%;C:\msys\local\bin;c:\msys\local\lib

set PATH=%PATH%;"C:\Program Files\Subversion\bin"

I suggest you also add C:\Qt\4.7.0\bin\ to your Environment Variables Path in the
windows system preferences.

If you plan to do some debugging, you’ll need to compile debug version of Qt: C:\Qt\4.7.0\bin\qtvars.bat
compile debug

Note: there is a problem when compiling debug version of Qt 4.7, the script ends with
this message ”mingw32-make: *** No rule to make target ‘debug’. Stop.”. To compile
the debug version you have to go out of src directory and execute the following command:

Listing

c:\Qt\4.7.0 make

4.2.3 Flex and Bison

Get Flex http://sourceforge.net/project/showfiles.php?group id=23617&package id=16424
(the zip bin) and extract it into c:\msys\mingw\bin

4.2.4 Python stuff (optional)

Follow this section in case you would like to use Python bindings for QGIS. To be able
to compile bindings, you need to compile SIP and PyQt4 from sources as their installer
doesn’t include some development files which are necessary.

Download and install Python - use Windows installer

(It doesn’t matter to what folder you’ll install it)

http://python.org/download/

Download SIP and PyQt4 sources

http://www.riverbankcomputing.com/software/sip/download http://www.riverbankcomputing.com/software/pyqt/download

21

http://sourceforge.net/project/showfiles.php?group_id=23617&package_id=16424
http://python.org/download/
http://www.riverbankcomputing.com/software/sip/download
http://www.riverbankcomputing.com/software/pyqt/download

Extract each of the above zip files in a temporary directory. Make sure to get versions
that match your current Qt installed version.

Compile SIP

Listing

c:\Qt\4.7.0\bin\qtvars.bat

python configure.py -p win32-g++

make

make install

Compile PyQt

Listing

c:\Qt\4.7.0\bin\qtvars.bat

python configure.py

make

make install

Final python notes

/!\ You can delete the directories with unpacked SIP and PyQt4 sources after a success-
full install, they’re not needed anymore.

4.2.5 Subversion

In order to check out QGIS sources from the repository, you need Subversion client. This
installer should work fine:

http://www.sliksvn.com/pub/Slik-Subversion-1.6.13-win32.msi

4.2.6 CMake

CMake is build system used by Quantum GIS. Download it from here:

http://www.cmake.org/files/v2.8/cmake-2.8.2-win32-x86.exe

22

http://www.sliksvn.com/pub/Slik-Subversion-1.6.13-win32.msi
http://www.cmake.org/files/v2.8/cmake-2.8.2-win32-x86.exe

4.2.7 QGIS

Start a cmd.exe window (Start -> Run -> cmd.exe) Create development directory and
move into it

Listing

md c:\dev\cpp

cd c:\dev\cpp

Check out sources from SVN:

For svn trunk:
Listing

svn co https://svn.osgeo.org/qgis/trunk/qgis

For svn 1.5 branch
Listing

svn co https://svn.osgeo.org/qgis/branches/Release-1_5_0 qgis1.5.0

4.2.8 Compiling

As a background read the generic building with CMake notes at the end of this document.

Start a cmd.exe window (Start -> Run -> cmd.exe) if you don’t have one already. Add
paths to compiler and our MSYS environment:

Listing

c:\Qt\4.7.0\bin\qtvars.bat

For ease of use add c:\Qt\4.7.0\bin\ to your system path in system properties so you
can just type qtvars.bat when you open the cmd console. Create build directory and set
it as current directory:

Listing

cd c:\dev\cpp\qgis

md build

cd build

23

4.2.9 Configuration

Listing

cmakesetup ..

Note: You must include the ’..’ above.

Click ’Configure’ button. When asked, you should choose ’MinGW Makefiles’ as gener-
ator.

There’s a problem with MinGW Makefiles on Win2K. If you’re compiling on this plat-
form, use ’MSYS Makefiles’ generator instead.

All dependencies should be picked up automatically, if you have set up the Paths cor-
rectly. The only thing you need to change is the installation destination (CMAKE INSTALL PREFIX)
and/or set ’Debug’.

For compatibility with NSIS packaging scripts I recommend to leave the install prefix to
its default c:\program files\

When configuration is done, click ’OK’ to exit the setup utility.

4.2.10 Compilation and installation

Listing

make make install

4.2.11 Run qgis.exe from the directory where it’s installed
(CMAKE INSTALL PREFIX)

Make sure to copy all .dll:s needed to the same directory as the qgis.exe binary is installed
to, if not already done so, otherwise QGIS will complain about missing libraries when
started.

A possibility is to run qgis.exe when your path contains c:\msys\local\bin and c:\msys\local\lib
directories, so the DLLs will be used from that place.

4.2.12 Create the installation package: (optional)

Download and install NSIS from (http://nsis.sourceforge.net/Main Page)

24

http://nsis.sourceforge.net/Main_Page

Now using windows explorer, enter the win build directory in your QGIS source tree.
Read the READMEfile there and follow the instructions. Next right click on qgis.nsi
and choose the option ’Compile NSIS Script’.

4.3 Creation of MSYS environment for compilation of Quantum GIS

4.3.1 Initial setup

MSYS

This is the environment that supplies many utilities from UNIX world in Windows and
is needed by many dependencies to be able to compile.

Download from here:

http://puzzle.dl.sourceforge.net/sourceforge/mingw/MSYS-1.0.11-2004.04.30-
1.exe

Install to c:\msys

All stuff we’re going to compile is going to get to this directory (resp. its subdirs).

MinGW

Download from here:

http://puzzle.dl.sourceforge.net/sourceforge/mingw/MinGW-5.1.3.exe

Install to c:\msys\mingw

It suffices to download and install only g++ and mingw-make components.

Flex and Bison

Flex and Bison are tools for generation of parsers, they’re needed for GRASS and also
QGIS compilation.

Download the following packages:

http://gnuwin32.sourceforge.net/downlinks/flex-bin-zip.php

25

http://puzzle.dl.sourceforge.net/sourceforge/mingw/MSYS-1.0.11-2004.04.30-1.exe
http://puzzle.dl.sourceforge.net/sourceforge/mingw/MSYS-1.0.11-2004.04.30-1.exe
http://puzzle.dl.sourceforge.net/sourceforge/mingw/MinGW-5.1.3.exe
http://gnuwin32.sourceforge.net/downlinks/flex-bin-zip.php

http://gnuwin32.sourceforge.net/downlinks/bison-bin-zip.php

http://gnuwin32.sourceforge.net/downlinks/bison-dep-zip.php

Unpack them all to c:\msys\local

4.3.2 Installing dependencies

Getting ready

Paul Kelly did a great job and prepared a package of precompiled libraries for GRASS.
The package currently includes:

• zlib-1.2.3
• libpng-1.2.16-noconfig
• xdr-4.0-mingw2
• freetype-2.3.4
• fftw-2.1.5
• PDCurses-3.1
• proj-4.5.0
• gdal-1.4.1

It’s available for download here:

http://www.stjohnspoint.co.uk/grass/wingrass-extralibs.tar.gz

Moreover he also left the notes how to compile it (for those interested):

http://www.stjohnspoint.co.uk/grass/README.extralibs

Unpack the whole package to c:\msys\local

GRASS

Grab sources from CVS or use a weekly snapshot, see:

http://grass.itc.it/devel/cvs.php

In MSYS console go to the directory where you’ve unpacked or checked out sources (e.g.
c:\msys\local\src\grass-6.3.cvs)

Run these commands:

26

http://gnuwin32.sourceforge.net/downlinks/bison-bin-zip.php
http://gnuwin32.sourceforge.net/downlinks/bison-dep-zip.php
http://www.stjohnspoint.co.uk/grass/wingrass-extralibs.tar.gz
http://www.stjohnspoint.co.uk/grass/README.extralibs
http://grass.itc.it/devel/cvs.php

Listing

export PATH="/usr/local/bin:/usr/local/lib:$PATH"

./configure --prefix=/usr/local --bindir=/usr/local --with-includes=/usr/local/include --with-libs=/usr/local/lib --with-cxx --without-jpeg \

--without-tiff --with-postgres=yes --with-postgres-includes=/local/pgsql/include --with-pgsql-libs=/local/pgsql/lib --with-opengl=windows --with-fftw \

--with-freetype --with-freetype-includes=/mingw/include/freetype2 --without-x --without-tcltk --enable-x11=no --enable-shared=yes \

--with-proj-share=/usr/local/share/proj

make

make install

It should get installed to c:\msys\local\grass-6.3.cvs

By the way, these pages might be useful:

• http://grass.gdf-hannover.de/wiki/WinGRASS Current Status
• http://geni.ath.cx/grass.html

GEOS

Download the sources:

http://geos.refractions.net/geos-2.2.3.tar.bz2

Unpack to e.g. c:\msys\local\src

To compile, I had to patch the sources: in file source/headers/timeval.h line 13.
Change it from:

Listing

#ifdef _WIN32

to:
Listing

#if defined(_WIN32) && defined(_MSC_VER)

Now, in MSYS console, go to the source directory and run:

Listing

./configure --prefix=/usr/local

make

make install

27

http://grass.gdf-hannover.de/wiki/WinGRASS_Current_Status
http://geni.ath.cx/grass.html
http://geos.refractions.net/geos-2.2.3.tar.bz2

SQLITE

You can use precompiled DLL, no need to compile from source:

Download this archive:

http://www.sqlite.org/sqlitedll-3 3 17.zip

and copy sqlite3.dll from it to c:\msys\local\lib

Then download this archive:

http://www.sqlite.org/sqlite-source-3 3 17.zip

and copy sqlite3.h to c:\msys\local\include

GSL

Download sources:

ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz

Unpack to c:\msys\local\src

Run from MSYS console in the source directory:

Listing

./configure

make

make install

EXPAT

Download sources:

http://dfn.dl.sourceforge.net/sourceforge/expat/expat-2.0.0.tar.gz

Unpack to c:\msys\local\src

Run from MSYS console in the source directory:

Listing

./configure

28

http://www.sqlite.org/sqlitedll-3_3_17.zip
http://www.sqlite.org/sqlite-source-3_3_17.zip
ftp://ftp.gnu.org/gnu/gsl/gsl-1.9.tar.gz
http://dfn.dl.sourceforge.net/sourceforge/expat/expat-2.0.0.tar.gz

make

make install

POSTGRES

We’re going to use precompiled binaries. Use the link below for download:

http://wwwmaster.postgresql.org/download/mirrors-ftp?file=%2Fbinary%2Fv8.2.4%2Fwin32%2Fpostgresql-
8.2.4-1-binaries-no-installer.zip

copy contents of pgsql directory from the archive to c:\msys\local

4.3.3 Cleanup

We’re done with preparation of MSYS environment. Now you can delete all stuff in
c:\msys\local\src - it takes quite a lot of space and it’s not necessary at all.

29

http://wwwmaster.postgresql.org/download/mirrors-ftp?file=%2Fbinary%2Fv8.2.4%2Fwin32%2Fpostgresql-8.2.4-1-binaries-no-installer.zip
http://wwwmaster.postgresql.org/download/mirrors-ftp?file=%2Fbinary%2Fv8.2.4%2Fwin32%2Fpostgresql-8.2.4-1-binaries-no-installer.zip

5 Building on MacOS X

In this approach I will try to avoid as much as possible building dependencies from
source and rather use frameworks wherever possible.

The base system here is Mac OS X 10.4 (Tiger), with a single architecture build. Included
are notes for building on Mac OS X 10.5 (Leopard) and 10.6 (Snow Leopard). Make
sure to read each section completely before typing the first command you see.

General note on Terminal usage: When I say ”cd” to a folder in a Terminal, it means
type ”cd ” (without the quotes, make sure to type a space after) and then type the path
to said folder, then <return>. A simple way to do this without having to know and type
the full path is, after type the ”cd ” part, drag the folder (use the icon in its window
title bar, or drag a folder from within a window) from the Desktop to the Terminal, then
tap <return>.

Parallel Compilation: On multiprocessor/multicore Macs, it’s possible to speed up com-
pilation, but it’s not automatic. Whenever you type ”make” (but NOT ”make install”),
instead type:

Listing

make -j [n]

Replace [n] with the number of cores and/or processors your Mac has. On recent models
with hyperthreading processors this can be double the physical count of processors and
cores.

ie: Mac Pro ”8 Core” model (2 quad core processors) = 8

ie: Macbook Pro i5 (hyperthreading) = 2 cores X 2 = 4

5.1 Install Qt4 from disk image

You need a minimum of Qt-4.4.0. I suggest getting the latest. There is no need for the
full Qt SDK, so save yourself some download time and get the frameworks only.

Snow Leopard note: If you are building on Snow Leopard, you will need to decide be-
tween 32-bit support in the older, Qt Carbon branch, or 64-bit support in the Qt Cocoa
branch. Appropriate installers are available for both as of Qt-4.5.2. Qt 4.6+ is recom-
mended for Cocoa.

PPC note: The readymade Qt Cocoa installers don’t include PPC support, you’d have
to compile Qt yourself. But, there appear to be issues with Qt Cocoa on PPC Macs
anyways. Qt Carbon is recommended on PPC Macs.

30

http://qt.nokia.com/downloads

If you want debug frameworks, Qt also provides a separate download with these. These
are in addition to the non-debug frameworks.

Once downloaded open the disk image and run the installer. Note you need admin
privileges to install.

Qt note: Starting in Qt 4.4, libQtCLucene was added, and in 4.5 libQtUiTools was
added, both in /usr/lib. When using a system SDK these libraries will not be found.
To fix this problem, add symlinks to /usr/local:

Listing

sudo ln -s /usr/lib/libQtUiTools.a /usr/local/lib/

sudo ln -s /usr/lib/libQtCLucene.dylib /usr/local/lib/

These should then be found automatically on Leopard and above. Earlier systems may
need some help by adding ’-L/usr/local/lib’ to CMAKE SHARED LINKER FLAGS,
CMAKE MODULE LINKER FLAGS and CMAKE EXE LINKER FLAGS in the cmake
build.

5.2 Install development frameworks for QGIS dependencies

Download William Kyngesburye’s excellent GDAL Complete package that includes PROJ,
GEOS, GDAL, SQLite3, Spatialite, and image libraries, as frameworks. There is also a
GSL framework.

http://www.kyngchaos.com/wiki/software/frameworks

Once downloaded, open and install the frameworks.

William provides an additional installer package for Postgresql (for PostGIS support).
Qgis just needs the libpq client library, so unless you want to setup the full Postgres +
PostGIS server, all you need is the client-only package. It’s available here:

http://www.kyngchaos.com/wiki/software/postgres

Also available is a GRASS application:

http://www.kyngchaos.com/wiki/software/grass

31

http://qt.nokia.com/downloads
http://www.kyngchaos.com/wiki/software/frameworks
http://www.kyngchaos.com/wiki/software/postgres
http://www.kyngchaos.com/wiki/software/grass

5.2.1 Additional Dependencies: General compatibility note

There are some additional dependencies that, at the time of writing, are not provided as
frameworks or installers so we will need to build these from source. If you are wanting
to build Qgis as a 64-bit application, you will need to provide the appropriate build
commands to produce 64-bit support in dependencies. Likewise, for 32-bit support on
Snow Leopard, you will need to override the default system architecture, which is 64-bit,
according to instructions for individual dependency packages.

Stable release versions are preferred. Beta and other development versions may have
problems and you are on your own with those.

5.2.2 Additional Dependencies: Expat

Snow Leopard note: Snow Leopard includes a usable expat, so this step is not necessary
on Snow Leopard.

Get the expat sources:

http://sourceforge.net/project/showfiles.php?group id=10127

Double-click the source tarball to unpack, then, in Terminal.app, cd to the source folder
and:

Listing

./configure

make

sudo make install

5.2.3 Additional Dependencies: Python

Leopard and Snow Leopard note: Leopard and Snow Leopard include a usable Python
2.5 and 2.6, respectively. So there is no need to install Python on Leopard and Snow
Leopard. You can still install Python from python.org if preferred.

If installing from python.org, make sure you install at least the latest Python 2.x from

http://www.python.org/download/

Python 3 is a major change, and may have compatibility issues, so try it at your own
risk.

32

http://sourceforge.net/project/showfiles.php?group_id=10127
http://www.python.org/download/

5.2.4 Additional Dependencies: SIP

Retrieve the python bindings toolkit SIP from

http://www.riverbankcomputing.com/software/sip/download

Double-click the source tarball to unpack it, then, in Terminal.app, cd to the source
folder. Then for your chosen Python:

python.org Python

Listing

python configure.py

make

sudo make install

Leopard system Python

SIP wants to install in the system path – this is not a good idea. More configuration is
needed to install outside the system path:

Listing

python configure.py -n -d /Library/Python/2.5/site-packages -b /usr/local/bin \

-e /usr/local/include -v /usr/local/share/sip -s MacOSX10.5.sdk

Snow Leopard system Python

Similar to Leopard, you should install outside the system Python path. Also, you need
to specify the architecture you want (requires at least SIP 4.9), and make sure to run
the versioned python binary (this one responds to the ’arch’ command, ’python’ does
not).

If you are using 32-bit Qt (Qt Carbon):

Listing

python2.6 configure.py -n -d /Library/Python/2.6/site-packages -b /usr/local/bin \

-e /usr/local/include -v /usr/local/share/sip --arch=i386 -s MacOSX10.6.sdk

For 64-bit Qt (Qt Cocoa), use this configure line:

Listing

python2.6 configure.py -n -d /Library/Python/2.6/site-packages -b /usr/local/bin \

-e /usr/local/include -v /usr/local/share/sip --arch=x86_64 -s MacOSX10.6.sdk

continue...

33

http://www.riverbankcomputing.com/software/sip/download

Then continue with compilation and installation:

Listing

make

sudo make install

5.2.5 Additional Dependencies: PyQt

Retrieve the python bindings toolkit for Qt from

http://www.riverbankcomputing.com/software/pyqt/download

Double-click the source tarball to unpack it, then, in Terminal.app, cd to the source
folder. Then for your chosen Python:

python.org Python

Listing

python configure.py

yes

Leopard system Python

PyQt wants to install in the system path – this is not a good idea. More configuration
is needed to install outside the system path:

Listing

python configure.py -d /Library/Python/2.5/site-packages -b /usr/local/bin

Snow Leopard system Python

Similar to Leopard, you should install outside the system Python path. Also, you need to
specify the architecture you want (requires at least PyQt 4.6), and make sure to run the
versioned python binary (this one responds to the ’arch’ command, which is important
for pyuic4, ’python’ does not).

If you are using 32-bit Qt (Qt Carbon):

Listing

python2.6 configure.py -d /Library/Python/2.6/site-packages -b /usr/local/bin --use-arch i386

For 64-bit Qt (Qt Cocoa), use this configure line:

34

http://www.riverbankcomputing.com/software/pyqt/download

Listing

python2.6 configure.py -d /Library/Python/2.6/site-packages -b /usr/local/bin --use-arch x86_64

continue...

There is a problem with the configuration that needs to be fixed now (it affects PyQwt
compilation later). Edit pyqtconfig.py and change the qt dir line to:

Listing

’qt_dir’: ’/usr’,

Then continue with compilation and installation (this is a good place to use parallel
compilation, if you can):

Listing

make

sudo make install

If there is a problem with undefined symbols in QtOpenGL on Leopard, edit QtOpenGL/makefile
and add -undefined dynamic lookup to LFLAGS. Then make again.

5.2.6 Additional Dependencies: Qwt/PyQwt

The GPS tracking feature uses Qwt. Some popular 3rd-party plugins use PyQwt. You
can take care of both with the PyQwt source from:

http://pyqwt.sourceforge.net/

Double-click the tarball to unpack it. The following assumes PyQwt v5.2.0 (comes with
Qwt 5.2.1). Normal compilation does both Qwt and PyQwt at the same time, but Qwt
is statically linked into PyQwt, and Qgis can’t use it. So, we need to split the build.

Now, cd into the qwt-5.2 subdir in a Terminal. Type these commands to build and
install:

Listing

cat >> qwtconfig.pri <<EOF

CONFIG += release QwtDll

EOF

qmake -spec macx-g++

make

sudo make install

sudo install_name_tool -id /usr/local/qwt-5.2.1-svn/lib/libqwt.5.dylib \

/usr/local/qwt-5.2.1-svn/lib/libqwt.5.dylib

35

http://pyqwt.sourceforge.net/

The Qwt shared library is now installed in /usr/local/qwt-5.x.x[-svn] (x.x is the mi-
nor.point version, and it may be an SVN version). Remember this for QGIS and PyQwt
configuration.

Now for PyQwt. Still in the Terminal (for all Pythons, except see Snow Leopard Carbon
note below):

Listing

cd ../configure

python configure.py --extra-include-dirs=/usr/local/qwt-5.2.1-svn/include \

--extra-lib-dirs=/usr/local/qwt-5.2.1-svn/lib --extra-libs=qwt

make

sudo make install

Make sure to use the qwt install path from the Qwt build above.

Snow Leopard note

If using Qt Carbon, you need to specify which architectures to build, otherwise it will
default to a combination that does not work (ie x86 64 for a Carbon Qt). This is not
needed for Qt Cocoa. Configure as follows:

Listing

python configure.py --extra-cflags="-arch i386" --extra-cxxflags="-arch i386" \

--extra-lflags="-arch i386" --extra-include-dirs=/usr/local/qwt-5.2.1-svn/include \

--extra-lib-dirs=/usr/local/qwt-5.2.1-svn/lib --extra-libs=qwt

5.2.7 Additional Dependencies: Bison

Leopard and Snow Leopard note: Leopard and Snow Leopard include Bison 2.3, so this
step can be skipped on Leopard and Snow Leopard.

The version of bison available by default on Mac OS X 10.4 is too old so you need to
get a more recent one on your system. Download at least version 2.3 from:

Listing

ftp.gnu.org/gnu/bison/

Now build and install it to a prefix of /usr/local.Ê Double-click the source tarball to
unpack it, then cd to the source folder and:

Listing

./configure --prefix=/usr/local

make

36

sudo make install

5.3 Install CMake for OSX

Get the latest source release from here:

http://www.cmake.org/cmake/resources/software.html

Binary installers are available for OS X, but they are not recommended (2.4 versions
install in /usr instead of /usr/local, and 2.6+ versions are a strange application). Instead,
download the source, double-click the source tarball, then cd to the source folder and:

Listing

./bootstrap --docdir=/share/doc/CMake --mandir=/share/man

make

sudo make install

5.4 QGIS source

Unzip the QGIS source tarball to a working folder of your choice (/usr/somewhere is
not a good choice as it’s hidden and requires root privileges). If you are reading this
from the source, you’ve already done this.

If you want to experiment with the latest development sources, see the CODING docu-
ment.

5.5 Configure the build

CMake supports out of source build so we will create a ’build’ dir for the build process.
OS X uses ${HOME}/Applications as a standard user app folder (it gives it the system
app folder icon). If you have the correct permissions you may want to build straight
into your /Applications folder. The instructions below assume you are building into
a pre-existing ${HOME}/Applications directory. In a Terminal cd to the qgis source
folder previously downloaded, then:

Listing

mkdir build

cd build

cmake -D CMAKE_INSTALL_PREFIX=~/Applications \

-D CMAKE_BUILD_TYPE=MinSizeRel \

-D WITH_INTERNAL_SPATIALITE=FALSE -D WITH_MAPSERVER=TRUE \

-D QWT_LIBRARY=/usr/local/qwt-5.2.1-svn/lib/libqwt.dylib \

37

http://www.cmake.org/cmake/resources/software.html

-D QWT_INCLUDE_DIR=/usr/local/qwt-5.2.1-svn/include \

..

This will automatically find and use the previously installed frameworks, and the GRASS
application if installed.

Or, to use a Unix-style build of GRASS, use the following cmake invocation (minimum
GRASS version as stated in the Qgis requirements, substitute the GRASS path and
version as required):

Listing

cmake -D CMAKE_INSTALL_PREFIX=~/Applications -D CMAKE_BUILD_TYPE=Release \

-D CMAKE_BUILD_TYPE=MinSizeRel \

-D WITH_INTERNAL_SPATIALITE=FALSE -D WITH_MAPSERVER=TRUE \

-D QWT_LIBRARY=/usr/local/qwt-5.2.1-svn/lib/libqwt.dylib \

-D QWT_INCLUDE_DIR=/usr/local/qwt-5.2.1-svn/include \

-D GRASS_PREFIX=/user/local/grass-6.4.1 \

..

Snow Leopard note: To handle 32-bit Qt (Carbon), create a 32bit python wrapper script
and add arch flags to the configuration:

Listing

sudo cat >/usr/local/bin/python32 <<EOF

#!/bin/sh

exec arch -i386 /usr/bin/python2.6 \${1+"\$@"}

EOF

sudo chmod +x /usr/local/bin/python32

cmake -D CMAKE_INSTALL_PREFIX=~/Applications -D \

-D CMAKE_BUILD_TYPE=MinSizeRel \

-D WITH_INTERNAL_SPATIALITE=FALSE -D WITH_MAPSERVER=TRUE \

-D QWT_LIBRARY=/usr/local/qwt-5.2.1-svn/lib/libqwt.dylib \

-D QWT_INCLUDE_DIR=/usr/local/qwt-5.2.1-svn/include \

-D CMAKE_OSX_ARCHITECTURES=i386 -D PYTHON_EXECUTABLE=/usr/local/bin/python32 \

..

Bundling note: Older Qt versions may have problems with some Qt plugins and Qgis.
The way to handle this is to bundle Qt inside the Qgis application. You can do this now
or wait to see if there are immediate crashes when running Qgis. It’s also a good idea
to bundle Qt if you need to copy Qgis to other Macs (where you would have to install
Xcode just so Qt would install!).

To bundle Qt, add the following line before the last line (the ”..” line) in the above
cmake configurations:

38

Listing

-D QGIS_MACAPP_BUNDLE=1 \

Even better for distribution purposes, to also bundle any extra non-framework, non-
standard, libs (ie postgres’ libpq) bump the bundle number to 2:

Listing

-D QGIS_MACAPP_BUNDLE=2 \

5.6 Building

Now we can start the build process (remember the parallel compilation note at the
beginning, this is a good place to use it, if you can):

Listing

make

If all built without errors you can then install it:

Listing

make install

or, for an /Applications build:

Listing

sudo make install

39

6 Authors and Acknowledgments

The following people have contributed to this document:

• Windows MINGW Section

– Tim Sutton, Godofredo Contreras 2006

– CMake additions Magnus Homann 2007

– Python additions Martin Dobias 2007

– With thanks to Tisham Dhar for preparing the initial msys environment

• Windows MSVC Section (Detailed install)

– David Willis 2007

– MSVC install additions Tim Sutton 2007

– PostgreSQL, Qt compile, SIP, Python, AutoExp additions Juergen Fischer
2007

• Windows MSVC Section (Simplified install)

– Tim Sutton 2007

– Juergen Fischer 2007

– Florian Hillen 2010

• OSX Section

– Tim Sutton 2007

– With special thanks to Tom Elwertowski and William Kyngesburye

• GNU/Linux Section
– Tim Sutton 2006
– Debian package section: Juergen Fischer 2008

40

	qgis-greenIntroduction
	qgis-greenOverview
	qgis-greenBuilding on GNU/Linux
	qgis-greenBuilding QGIS with Qt 4.x
	qgis-greenPrepare apt
	qgis-greenInstall build dependencies
	qgis-greenSetup ccache (Optional)
	qgis-greenPrepare your development environment
	qgis-greenCheck out the QGIS Source Code
	qgis-greenStarting the compile
	qgis-greenBuilding Debian packages
	qgis-greenA practical case: Building QGIS and GRASS from source on Ubuntu with ECW and MrSID formats support
	qgis-greenStep 1: install base packages
	qgis-greenStep 2: compile and install the ecw libraries
	qgis-greenStep 3: download the MrSID binaries
	qgis-greenStep 4: compile and install the gdal libraries
	qgis-greenStep 5: compile and install GRASS
	qgis-greenStep 6: compile and install QGIS

	qgis-greenBuilding on Windows
	qgis-greenBuilding with Microsoft Visual Studio
	qgis-greenVisual C++ Express Edition
	qgis-greenOther tools and dependencies
	qgis-greenSetting up the Visual Studio project with CMake
	qgis-greenPackaging
	qgis-greenPackaging your own build of QGIS
	qgis-greenOsgeo4w packaging

	qgis-greenBuilding using MinGW
	qgis-greenMSYS
	qgis-greenQt
	qgis-greenFlex and Bison
	qgis-greenPython stuff (optional)
	qgis-greenSubversion
	qgis-greenCMake
	qgis-greenQGIS
	qgis-greenCompiling
	qgis-greenConfiguration
	qgis-greenCompilation and installation
	qgis-greenRun qgis.exe from the directory where it's installed (CMAKE_INSTALL_PREFIX)
	qgis-greenCreate the installation package: (optional)

	qgis-greenCreation of MSYS environment for compilation of Quantum GIS
	qgis-greenInitial setup
	qgis-greenInstalling dependencies
	qgis-greenCleanup

	qgis-greenBuilding on MacOS X
	qgis-greenInstall Qt4 from disk image
	qgis-greenInstall development frameworks for QGIS dependencies
	qgis-greenAdditional Dependencies: General compatibility note
	qgis-greenAdditional Dependencies: Expat
	qgis-greenAdditional Dependencies: Python
	qgis-greenAdditional Dependencies: SIP
	qgis-greenAdditional Dependencies: PyQt
	qgis-greenAdditional Dependencies: Qwt/PyQwt
	qgis-greenAdditional Dependencies: Bison

	qgis-greenInstall CMake for OSX
	qgis-greenQGIS source
	qgis-greenConfigure the build
	qgis-greenBuilding

	qgis-greenAuthors and Acknowledgments

