Slo User’'s Guide

Revision: July 2008
Version: 4.6.2 of the Slo Library
Document Release Number LLNL-SV-406516

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Liver-
more National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

Chapter 1

| ntroduction to Silo

1.1.

Overview

Silo isalibrary which implements an application programing interface
(API) designed for reading and writing awide variety of scientific datato
binary, disk files. The files Silo produces and the data within them can be
easily shared and exchanged between wholly independently devel oped
applications running on disparate computing platforms.

Consequently, the Silo API facilitates the devel opment of general purpose
tools for processing scientific data. One of the more popular tools that pro-
cess Silo datafilesis the Vislt! visualization tool.

Silo supports gridless (point) meshes, structured meshes, unstructured-zoo
and unstructured-arbitrary-polyhedral meshes, block structured AMR
meshes, constructive solid geometry (CSG) meshes as well as piecewise-
constant (e.g. zone-centered) and piecewise-linear (e.g. node-centered) vari-
ables defined on these meshes. In addition, Silo supports awide array of
other useful objects to address various scientific computing applications
needs.

Although the Silo library isaserial library, it has key features which enable
it to be applied quite effectively and scalably in parallel.

Architecturally, the library is divided into two main pieces; an upper-level
application programming interface (API) and alower-level 1/0 implementa-
tion called adriver. Silo supports multiple 1/0O drivers, the two most com-
mon of which are the HDF5 (Hierarchical Data Format 5)2 and PDB
(Portable Data Base, a hinary database file format developed at LLNL by
Stewart Brown) drivers. However, the reader should take care not to infer

1. Vislt can be obtained from http://www.lInl.gov/visit

Slo User's Guide 1-1

1.2.

from this that Silo can read any HDF5 file. It cannot. For the most part, Silo
isableto read only files that it has also written.

Brief History and Background

Development of the Silo library began in the early 1990's at Lawrence Liv-
ermore National Laboratory to address arange of issues related to the stor-
age and exchange of data among awide variety of scientific computing
applications and platforms.

In the early days of scientific computing, roughly 1950 - 1980, simulation
software development at many labs, like Livermore, invariably took the
form of a number of software “stovepipes’. Each big code effort included
sub-efforts to devel op supporting tools for visualization, data differencing,
browsing and management.

Developers working in a particular stovepipe designed every piece of soft-
ware they wrote, simulation code and tools alike, to conform to a common
representation for the data. In a sense, all software in a particular stovepipe
was really just one big, monoalithic application, typically held together by a
common, binary or ASCI|I file format.

Data exchanges across stovepipes were laborious and often achieved only
by employing one or more computer scientists whose soletask in lifewasto
write a conversion tool called alinker. Worse, each linker needed to be kept
it up to date as changes were made to one or the other codesthat it linked. In
short, there was nothing but brute force data sharing and exchange. Further-
more, there was duplication of effort in the development of support toolsfor
each code.

Between 1980 and 2000, an important innovation emerged, the general pur-
pose \O library. In fact, two variants emerged each working at a different
level of abstraction. One focused on the “objects’ of computer science. That
isarrays, structs and linked lists (e.g. data structures). The other focused on
the “objects’ of computational modeling. That is structured and unstruc-
tured meshes with piecewise-constant and piecewise-linear fields. Examples
of the former are CDF, HDF (HDF4 and HDF5) and PDBL.ib. Siloisan
example of the latter type of I/O library. At the sasmetime, Silo makes use of
the former.

2. TheNational Center for Supercomputing Applications (NCSA) at the University
of Illinois at Urbana-Champaign (UIUC). The HDF5 software can be obtained
from http://hdf5.ncsa.uiuc.edu/HDF5/rel ease/obtains.html.

Slo User’'s Guide

Architecture

1.3.

Silo Architecture

Silo has severa drivers. Some are read-only and some are read-write. These
areillustrated in Figure 1-1:

Application

Silo-API

Drivers HDF5 PDB netcdf Taurus

[] Read/write] Read only

Figure 1-1: Model of Silo Architecture.

1.3.1.

1.3.2.

1.4

Silo supports both read and write on the PDB (Portabl e Database) formatted
filesand HDF5 drivers. However, Silo cannot read just any PDB or HDF5
file. It can read only PDB or HDF5 files that were a so written with Silo.
Silo supports only read on the taurus and netcdf drivers. The particular
driver used to write data is chosen by an application when a Silo fileis cre-
ated. It can be automatically determined by the Silo library when a Silo file
is opened.

Reading Silo Files

The Silo library has application-level routines to be used for reading mesh
and mesh-related data. These functions return compound C data structures
which represent datain a general way.

Writing Silo files

The Silo library contains application-level routines to be used for writing
mesh and mesh-related datainto Silo files.

In the C interface, the application provides a compound C data structure
representing the data. In the Fortran interface, the datais passed viaindivid-
ual arguments.

Terminology

Hereisashort summary of some of the terms used throughout the Silo
interface and documentation. These terms are common to most computer
simulation environments.

Slo User’'s Guide

Computational Meshes Supported by Slo

Block

Mesh

Variable

Material
Node

Zone

1.5.

153.

Thisisthe fundamental building block of a computational mesh. It
defines the nodal coordinates of one contiguous section of a mesh (also
known as a mesh-block).

A computational mesh, composed of one or more mesh-blocks. A mesh
can be composed of mesh-blocks of different types (quad, UCD) as
well as of different shapes.

Data which are associated in some way with a computational mesh.
Variables usually represent values of some physics quantity (e.g., pres-
sure). Values are usually located either at the mesh nodes or at zone
centers.

A physical material being modeled in a computer simulation.

A mathematical point. The fundamental building-block of a mesh or
zone.

An area or volume of which meshes are comprised. Zones are polygons
or polyhedrawith nodes as vertices (see “UCD 2-D and 3-D Cell
Shapes’ on page 1-6.)

Computational Meshes Supported by Silo

Silo supports several classes, or types, of meshes. These are quadrilateral,
unstructured-zoo, unstructured-arbitrary, point, constructive solid geometry
(CSG), and adaptive refinement meshes.

Quadrilateral-Based Meshes and Related Data

A quadrilateral mesh is one which contains four nodes per zone in 2-D and
eight nodes per zone (four nodes per zone face) in 3-D. Quad meshes can be
either regular, rectilinear, or curvilinear, but they must be logically rectan-
gular (Fig. 1-2).

Slo User’'s Guide

UCD Meshes

Rectilinear Curvilinear
Y Y
X X
={0.0,1.0,2.0,3.0, X ={0.0,1.0,2.0,
AR IR
= {0.0,1.0,2.0, 3.0} 0:0:0:0:0:0}
Y = {0.0,0.0,0.0,
0.0,0.4,0.8,
0.0,0.8, 1.6,
0.0,1.0,2.0}

Figure 1-2: Examples of quadrilateral meshes.

1.5.4. UCD-Based Meshes and Related Data

An unstructured (UCD) mesh isavery general mesh representation; it is
composed of an arbitrary list of zones of arbitrary sizes and shapes. Most
meshes, including quadrilateral ones, can be represented as an unstructured
mesh (Fig. 1-4). Because of their generality, however, unstructured meshes
reguire more storage space and more complex algorithms.

In UCD meshes, the basic concept of zones (cells) till applies, but thereis
no longer an implied connectivity between a zone and its neighbor, as with
the quadrilateral mesh. In other words, given a 2-D quadrilateral mesh zone
accessed by (i, j), one knows that this zone'sneighbors are (i-1,)), (i+1,)), (i,
j-1), and so on. Thisis not the case with a UCD mesh.

In aUCD mesh, astructure called azonelist is used to define the nodes
which make up each zone. A UCD mesh need not be composed of zones of
just one shape (Fig. 1-5). Part of the zonelist structure describes the shapes
of the zones in the mesh and a count of how many of each zone shape
occurs in the mesh. The facelist structure is analogous to the zonelist struc-
ture, but defines the nodes which make up each zone face.

Slo User's Guide

Slo Objects

Figure 1-3: Sample 2-D UCD Meshes

[}
Point Line Triangle Quadrilateral
Tetrahedron Pyramid Prism Hexahedron

Figure 1-4: UCD 2-D and 3-D Cell Shapes

1.5.5. Point Meshes and Related Data

A point mesh consists of a set of locations, or points, in space. Thistype of
mesh iswell suited for representing random scalar data, such astracer parti-
cles.

1.5.6. Constructive Solid Geometry (CSG) Meshes and Related Data

A constructive Solid Geometry mesh is constructed by boolean combina
tions of solid model primitives such as spheres, cones, planes and quadric
surfaces. In a CSG mesh, a*“zone” isaregion defined by such a boolean
combination. CSG meshes support only zone-centered variables.

1.5.7. Block Structured, Adaptive Refinement Meshes (AMR) and Related
Data

Block structured AMR meshes are composed of alarge number of Quad

meshes representing refinements of other quad meshes. The hierarchy of
refinement is characterized using a Mesh Region Grouping (MRG) tree.

1.6. Summary of Silo’s Computational Modeling
Objects

Objects are a grouping mechanism for maintaining related variables, dimen-
sions, and other data. The Silo library understands and operates on specific
types of objects including the previously described computational meshes

1-6 Slo User’'s Guide

Slo Objects

and related data. The user is also able to define arbitrary objects for storage
of dataif the standard Silo objects are not sufficient.

The objects are generalized representations for data commonly found in
physics simulations. These objects include:

Quadmesh

Quadvar

Ucdmesh

Ucdvar

Pointmesh

Csgmesh
Csgvar
Defvar

Groupel Map

Multimat

Multimatspecies

Multimesh

Multivar

A quadrilateral mesh. At a minimum, this must include the dimension
and coordinate data, but typically also includes the mesh's coordinate
system, labelling and unit information, minimum and maximum
extents, and valid index ranges.

A variable associated with a quadrilateral mesh. At aminimum, this
must include the variable's data, centering information (node-centered
vs. zone centered), and the name of the quad mesh with which this vari-
able is associated. Additional information, such astime, cycle, units,
label, and index ranges can also be included.

An unstructured mesh?. At aminimum, this must include the dimen-
sion, connectivity, and coordinate data, but typically also includes the
mesh’s coordinate system, labelling and unit information, minimum and
maximum extents, and alist of face indices.

A variable associated with a UCD mesh. This at a minimum must
include the variabl€'s data, centering information (node-centered vs.
zone-centered), and the name of the UCD mesh with which this vari-
able is associated. Additional information, such astime, cycle, units,
and label can also be included.

A point mesh. At aminimum, this must include dimension and coordi-
nate data.

A constructive solid geometry (CSG) mesh.
A variable defined on a CSG mesh (always zone centered).

Defined variable representing an arithmetic expression involving other
variables.

Used in concert with an MRG tree to define subsetted regions of
meshes.

A set of materials. This object containsthe names of the materialsin the
Set.

A set of material species. This object contains the names of the material
speciesin the set.

A set of meshes. This object contains the names of and types of the
meshes in the sat.

Mesh variable data associated with a multimesh.

1. Unstructured cell data (UCD) is aterm commonly used to denote an arbitrarily

connected mesh. Such amesh is composed of vectors of coordinate values along

with an index array which identifies the nodes associated with each zone and/or

face. Zones may contain any number of nodes for 2-D meshes, and either four,
five, six, or eight nodes for 3-D meshes.

Slo User’'s Guide

1-7

Slo Objects

Material

Material species

MRG Tree

Zonelist

PHZonedlist

Facelist

Curve

Variable

Material information. Thisincludes the number of materials present, a
list of valid materia identifiers, and azonal-length array which contains
the material identifiers for each zone.

Extramaterial information. A material speciesis atype of amaterial.
They are used when a given material (i.e. air) may be made up of other
materials (i.e. oxygen, nitrogen) in differing amounts.

Mesh Region Grouping tree used to define various subset regions of any
of Silo’'s mesh types.

Zone-oriented connectivity information for a UCD mesh. This object
contains a sequential list of nodes which identifies the zonesin the
mesh, and arrays which describe the shape(s) of the zones in the mesh.

Arbitrary, polyhedral extension of azonelist.

Face-oriented connectivity information for aUCD mesh. This object
contains a sequential list of nodes which identifies the facesin the
mesh, and arrays which describe the shape(s) of the facesin the mesh. It
may optionally include arrays which provide type information for each
face.

X versusY data. This object must contain at least the domain and range
values, along with the number of pointsin the curve. In addition, atitle,
variable names, labels, and units may be provided.

Array data. This object contains, in addition to the data, the dimensions
and data type of the array. This object is not required to be associated
with amesh.

1.6.8. Other Silo Objects

In addition to the objects listed in the previous section which are tailored to
the job of representing computational data from scientific computing appli-
cations. Silo supports a number of other objects useful to scientific comput-
ing applications. Some of the more useful ones are briefly summarized here.

Compound Array A compound array is an abstraction of a Fortran common block. It is

Directory

Optlist

Simple Variable

also somewhat likeaC struct. It isalist of similarly typed by differently
named and sized (usually small in size) items that one often treats as a
group (particularly for 1/O purposes).

A silo file can be organized into directories in much the same way as a
UNIX" filesystem.

An “options list” object used to pass additional optionsto various Silo
API functions.

A simple variableisjust a named, multi-dimensional array of arbitrary
data

User Defined Object A generic, user-defined object or arbitrary nature.

Slo User’'s Guide

Slo Objects

1.7. Silo’s Fortran Interface

The Silo library isimplemented in C. Nonetheless, a set of Fortran callable
wrappers have been written to make amajority of Silo’s functionality avail-
able to Fortran applications. These wrappers simply take the datathat is
passed through a Fortran function interface, re-package it and call the
equivalent C function. However, there are afew limitations of the Fortran
interface.

1.7.9. Limitations of Fortran Interface

First, it is primarily awrite-only interface. This means Fortran applications
can use the interface to write Silo files so that other tools, like Vislt, can
read them. However, for all but afew of Silo’s abjects, only the functions
necessary to write the objects to a Silo file have been implemented in the
Fortran interface. This means Fortran applications cannot really use Silo for
restart file purposes.

Conceptualy, the Fortran interface isidentical to the C interface. To avoid
duplication of documentation, the Fortran interface is documented right
aong with the C interface. However, because of differencesin C and For-
tran argument passing conventions, there are key differencesin the inter-
faces. Here, we use an example to outline the key differencesin the
interfaces as well as the rules to be used to construct the Fortran interface
from the C.

1.7.10. Conventions used to construct the Fortran interface from C

In this section, we show an example of a C function in Silo and its equiva-
lent Fortran. We use this exampl e to demonstrate many of the conventions
used to construct the Fortran interface from the C.

We describe these rules so that Fortran user’s can be assured of having up to
date documentation (which tends to always first come for the C interface)
but still be aware of key differences between the two.

A C function specification...

i nt DBAddRegi onArray(DBnrgtree *tree, int nregn, const char **regn_nanes
int info_bits, const char *maps_nane, int nsegs, int *seg ids, int *seg_lens,
int *seg_types, DBoptlist *opts)

The equivalent Fortran function...

i nteger function dbaddregi ona(tree_id, nregn, regn_nanes, |regn_nanes,
type_info_bits, maps_nane, | maps_nanme, nsegs, seg_ids, seg_lens, seg_types
optlist_id, status)

integer tree_id, nregn, lregn_nanes, type_info_bits, | maps_nane
integer nsegs, optlist_id, status

integer lregn_nanes(), seg_ids(), seg_lens(), seg_types()
character* maps_nane

character*N regn_nanes

Slo User’'s Guide 1-9

Slo Objects

|<strname>

|<strname>s

<object>_id

data ids

status

1.8.

Wherever the C interface accepts a char*, the fortran interface accepts
two arguments; the character* argument followed by an integer argu-
ment indicating the string’s length. In the function specifications, it will
aways beidentified with an el (‘I') in front of the name of the charac-
ter* argument that comes beforeit. In the example above, thisruleis
evident inthe maps_nane and | maps_narme arguments.

Wherever the C interface accepts an array of char* (e.g. char**), the
Fortran interface accepts a character* N followed by an array of lengths
of the strings. In the above example, thisrule is evident by the
regn_names and| r egn_nanes arguments. By default, N=32, but
thevaluefor N can be changed, as needed by thedbset 2dst r | en()
method.

Wherever the C interface accepts a pointer to an abstract Silo object,
like the Silo database file handle (DBfile *) or, asin the example above,
aDBmrgtree*, the Fortran interface accepts an equivalent pointer_id. A
pointer_idisreally aninteger index into an internally maintained table
of pointersto Silo’s objects. In the above example, thisruleisevident in
thetree_i daandopt | i st _i d arguments.

Wherever the C interface accepts an array of void* (e.g. avoid** argu-
ment), the Fortran interface accepts an array of integer pointer_ids. The
Fortran application may use thedbnkpt r () function to a create the
pointer ids to populate this array. The above example does not demon-
strate thisrule.

Wherever the C interface returns integer error information in the return
value of the function, the Fortran interface accepts an extrainteger argu-
ment named status as the last argument in the list. The above example
demonstrates thisrule.

Finaly, there are afew function in Silo’s API that are unique to the Fortran
interface. Those functions are described in the section of the API manual
having to do with Fortran.

Using Silo in Parallel

Siloisaserid library. Nevertheless, it (aswell asthe tools that useit like
Vislt) has several features that enable its effective use in parallel with excel-
lent scaling behavior. However, using Silo effectively in parallel does
require an application to store its data to multiple Silo files; typically
between 8 and 64 depending on the number of concurrent I/O channels the
application has available.

The two features that enable Silo to be used effectively in paralel areits
ability to create separate namespaces (directories) within asingle file and
the fact that a multi-block object can span multiple Silo files. With these fea-
tures, aparallel application can easily divide its processorsinto N groups
and write a separate Silo file for each group.

1-10

Slo User’'s Guide

Slo Objects

Within agroup, each processor in the group writes to its own directory
within the Silo file. One and only one processor has write access to the
group’'s Silofile at any onetime. So, I/O is seria within agroup. However,
because each group has a separate Silo file to write to, each group has one
processor writing concurrently with other processors from other groups. So,
I/Ois parallel across groups.

After al processors have created al their individual objectsin various direc-
tories within the each group’s Silo file, one processor is designated to write
multi-block objects. The multi-block objects serve as an assembly of the
names of al theindividual objects written from various processors.

When N, the number of processor groups, is equal to one, I/O is effectively
seria. All the processors write their datato asingle Silo file. When Nis
equal to the number of processors, each processor writesits data to its own,
unique Silo file. Both of these extremes are bad for effective and scalable
parallel 1/0. A good choice for N is the number of concurrent 1/0 channels
available to the application when it is actually running. For many parallel,
HPC platforms, this number istypically between 8 and 64.

This technique for using aserial 1/0O library effectively in parallel while
being able to tune the number of files concurrently being written to is affec-
tionately called Poor Man’s Parallel 1/0O (PMPIO).

There is a separate header file, pmpio.h, with a set of convenience methods
to support PMPIO-based parallel 1/0 with Silo. See “Multi-Block Objects,
Parallelism and Poor-Man’s Paralel 1/0” on page 124 and See
“PMPIO_Init” on page 145 for more information.

Slo User’'s Guide

1-11

Slo Objects

1-12 Slo User’'s Guide

Chapter 2

C and Fortran Functions

2.1

2.1.1.

2.1.2.

DBopt | i st

C Interface Overview

This chapter documents the C and Fortran interface to the Silo library. The
C header fileis"silo.h” and the Fortran header fileis“silo.inc”

Optional Arguments

Many Silo functions have optional arguments. By optional, it ismeant that a
dummy value can be supplied instead of an actual value. An argument to a
C function which the user does not want to provide, and which is docu-
mented as being optional, should be replaced with aNULL (as defined in
thefilesi | 0. h).

Using the Silo Option Parameter

Many of the functions take as one of their arguments alist of option-name/
option-value pairs. In this way additional information can be passed to a
function without having to change the function's interface. The following
sequence of function declarations outlines the procedure for creating and
populating such alist:

DBVakeOptlist (int naxopts) / Create a list with
maxi mumlist length */

i nt DBAddOpti on (/* Add an option to the list: */

DBoptlist *optlist, /* the list, */
int option_id, /* the option, */
voi d *option_val ue /* the option's value */

Slo User's Guide 2-1

C Interface Overview

2.1.3. C Calling Sequence
The functionsin the Silo output package should be called in a particular

order.

2.1.3.1. Write Sequence
Start by creating a Silo file, with DBCreate(), create any necessary directo-
ries, then call the remaining routines as needed for writing out the mesh,
material data, and any physics variables associated with the mesh.

2.13.2.

Schematically, your program should ook something like this:

DBCr eat e

DBMkdi r
DBSet Di r

DBPut Quadmnesh
DBPut Quadvar 1
DBPut Quadvar 1

DBSet Di r

DBWkdi r
DBSet Di r

DBPut Zonel i st
DBPut Facel i st
DBPut Ucdnesh
DBPut Vat eri al
DBPut Ucdvar 1

DBSet Di r
DBCl ose

Example of C Calling Sequence for writing

Thefollowing C code is an example of the creation of a Silo file with just

one directory (the root):

#i nclude <silo. h>
#i ncl ude <string. h>

int nai
{
DBf

n()

ile

char

fl oat
fl oat
fl oat

i nt

/*

Create

*file = NULL;

*coor dnames|[2] ;
nodex| 4] ;
nodey[4] ;

*coordi nat es[2] ;

di nmensi ons|[2] ;

the Silo file */

/[* The Silo file pointer */
/* Names of the coordinates */
/* The coordi nate arrays */

/* The array of coordinate
arrays */

/* The nunber of nodes in
each di nension */

Slo User’'s Guide

C Interface Overview

file

/*
coor dnanes| 0]
coor dnanes| 1]

/* Gve the x
nodex[0] - 1.
nodex| 1] - 0.
nodex| 2] 1.
nodex| 3] 1.

/* Gve they
nodey[0] - 2.
nodey| 1]
nodey| 2]
nodey| 3]

-1
0.
0

DBCr eat e(“sanpl e. si | 0”7,

Nane t he coordi nate axes

RN

DB_CLOBBER, DB_LOCAL, NULL,

DB _PDB) ;

‘X and ‘'Y */
= strdup(“X’);
= strdup(“Y");
coordi nates of the mesh */
1,

1;
3;
7.

coordi nates of the mesh */
4,

/* How many nodes in each direction? */

di mensi ons|[0]
di nensi ons|[1]

4;
4;

/* Assign coordinates to coordinates array */

coor di nat es[0]
coordi nat es[1]

/*

/*
DBCl ose(fil e);

return (0);

2.1.3.3.

Wite out the
DBPut Quadnesh(fil e,

nodex;
nodey;

nesh to the file */
“meshl”, coordnames, coordi nates,

di nensi ons, 2, DB FLOAT, DB _COLLI NEAR, NULL);

Close the Silo file */

Read Sequence

Start by opening the Silo file with DBOpen(), then change to the required
directory, and then read the mesh, material, and variables. Schematically,
your program should look something like this:

DBOpen

DBSet Di r
DBGet Quadnesh
DBGet Quadvar 1
DBGet Quadvar 1

Slo User’'s Guide

C Interface Overview

DBSet Di r
DBGet Ucdnesh
DBCGet Ucdvar 1

DBGet Mat eri al
DBC ose
2.2. Fortran Interface
Currently, C-callable functions exist for all routines, but Fortran-callable
functions exist for only a portion of the routines. The Fortran header fileis
“silo.inc”.
2.2.4. Optional Arguments
The functions described below have optional arguments. By optiondl, itis
meant that a dummy value can be supplied instead of an actua value. An
argument to a Fortran function, which the user does not want to provide,
and which is documented as optional, should be replaced with the parame-
ter DB_F77NULL, which isdefined in thefilesi | 0. i nc.
2.2.5. Using the Silo Option Parameter
Many of the functionstake as one of their arguments alist of option-name/
option-value pairs. In this way, additional information can be passed to a
function without having to change the function’s interface. The following
sequence of function declarations outlines the procedure for creating and
populating such alist:
i nt eger function dbnkoptli st (| Create a list:
maxopt s, I maximumlist |ength
optlist_id I list identifier

i nteger function dbaddi opt (

2.2.6.

)

Add an integer option

I
I to the list:

optlist_id, I the list

option_id, I the option

i nt _val ue I the option’ s integer
I

val ue

)

There also are functions for adding real and character option valuesto alist.

Fortran Calling Sequence

The functionsin the Silo output package should be called in a particular
order. Start by creating aSilofile, withdbcr eat e() , create any necessary
directories, then call the remaining routines as needed for writing out the
mesh, material data, and any physics variables associated with the mesh.

Schematically, your program should ook something like this:

Slo User’'s Guide

C Interface Overview

dbcreat e

dbrkdi r
dbsetdir
dbput gm
dbput qv1
dbput qv1
dbput qv1

dbset di r.

dbrkdi r

dbsetdir
dbput z|
dbput f 1
dbput um
dbput mat
dbput uvl

dbset di r

dbcl ose

2.3. Reading Silo Files

Silo functions that return Silo objects from an open file return a C struct
data structure defining the object. The most reliable source of information
on the C structure returned from each call is the silo header file, silo.h. For
reference, the header file for this version of Silo is attached as an appendix

to this manual.

Slo User’'s Guide

2-5

C Interface Overview

2-6 Slo User’'s Guide

Error Handling and Other Global Library Behavior............ccieeneeeccneccsneccnnee 7

DBEITFUNC e 8
DBEITNO 9
DBEITStIINg . . .o 10
DBShOWEITOTIS 11
DBVariableNameValid. 12
DBVEISIONo e 13
DBSEtAIIOWOVEIWIIES . . . o . ottt et e e e e e e 14
DBGetAIIOWOVEIWIILES ittt et e e 15
DBForceSingle 16
DBSetDataReadMask o 17
DBGetDataReadMask. i 19
DBSetEnableChecksums e 20
DBGetEnableChecksums 21
DBSetComMPIesSION. . . . oottt et e e e 22
DBGEtCOMPIESSION . . . oottt ettt et e et e e e e e e e e e e 25
DBSetFriendlyHDFSNamMeso e e 26
DBGetFriendlyHDFSNames. e 27
DBSetDeprecate Warningsttt ettt 28
DBGetDeprecateWarningsottt 29
SILO_VERSION _GE. e 30
Files and File STrUCTUIE....ccceeeeeeeeeeeeeeeeeeeeeeeeeeeeseensssssssseseeceecesesesesssssssssssssssssssssssase 31
DB Create. . . .o 32
DBOPeN . .. 34
DBCIOSE . . .ot 35
DBGEtTOC. . oo 36
DBMEKDIL .« .. 37
DB SEtDIr. . . . 38
DB G DT . . oo 39
DB DI, . .ot 40
DBGIabDIivVer.o e 41
DBUNGIabDIIVeT. . . . ot 42
DBGetDIIVEITYPE. . . o oot e 43
DBGetDriverTypeFromPath. 44
DBINgFile 45
CSHOUDINTO . . oot 46
_hdfShibingo. . ..o 47
_was_grabbed 48
Meshes, Variables and Materialscccccceernnnrrrcrnnneeeeeeniececccsesssssssssssassssssseececens 49
DBPUtCUIVE e 51

DBGEtCUIVE . . . oot e 53

DBPutPointmesh. 54
DBGetPointmesh 56
DBPUtPoINtvar 57
DBPutPointvarl 59
DBGetPOINtVALo 61
DBPutQuadmesh. e 62
DBGetQuadmesh 65
DBPutQuadvar e 66
DBPutQuadvarl 69
DBGetQuadvar. 71
DBPutUcdmesh. 72
DBPutUcdsubmesh. 80
DBGetUcdmesh 81
DBPUtZonelist 82
DBPUtZonelist2 83
DBPUutPHZONELISo 85
DBGetPHZONELISt 88
DBPutFacelist. 89
DBPUtUCAVAr 91
DBPutUcdvarl 94
DBGetUcdvar. e 96
DBPutCsgmesh. 97
DBGetCsgmesh. o 102
DBPUutCSGZonelist.o e 103
DBGetCSGZONEliSto 108
DBPUtCSZVAT . . .ot e 109
DBGetCsgVar . . .ot 111
DBPutMaterial 112
DBGetMaterial 116
DBPUtMaAtSPECIES . . . oottt ettt 117
DBGEtMaAtSPECIES . . . o . v ottt et et e e e e e 119
DBPuUtDefvars. 120
DBGetDefvars. e 122
DBIngMeshname 123
DBINgMeshtypeo 124

Multi-Block Objects, Parallelism and

Poor-Man’s Parallel I/eeeeieeeereeneeecceeeeeeeeenesccceseessesssssccessssssssssscssssans 125
DBPutMultimesh 126
DBGetMultimesh 130
DBPutMultimeshad] e 131
DBGetMultimeshadj. e 134
DBPUtMUItIVAr 135

DBGetMUltIVAr. 138

DBPutMultimat. 139
DBGetMultimat 142
DBPUutMUltimatSpecies oottt ettt 143
DBGetMUltimatsSPeCies. oottt et e e e 145
PMPIO _Init. . ..o 146
PMPIO_CreateFileCallBack. 149
PMPIO_OpenFileCallBack. e 150
PMPIO_CloseFileCallBack i 151
PMPIO_WaitForBaton 152
PMPIO _HandOffBaton.ottt e e e e e 153
PMPIO_Finish 154
PMPIO_GroupRank e 155
PMPIO_RankInGroupt it e e e e e 156

Part Assemblies, AMR, Slide Surfaces,

Nodesets and Other Arbitrary Mesh SubDSetscceieeevvcnrericisiscnneneccssccnnnennces 157
DBMaKeMIgtree.ot 158
DBAdAAREZION.o 162
DBAAAREZIONAITAY oottt e e e e e e e 164
DB St W . . .ot 167
DB G W . . et e 168
DBPULMIGIIEE. oot 169
DBGEtMIGIICE . . . oottt 170
DBEFreeMIZIree.ot e 171
DBPUtMIGVAr 172
DBGetMIgVar. . . ot 174
DBPutGroupelmapot 175
DBGetGroupelmap oot 177
DBFreeGroupelmapottt 178
DBOPT_REGION_PNAMES . .. e e e 179
Object Allocation and Free.....eiiiciiivvnericciisssnnriccsssssnsnicsssssssssnecssssssssssessssens 181
DBAILOC. .. .ttt 182
DBErCe. .. o 183
L OF: 1 V11T P10 1) 1 T 1 N 184
DBCalcExternalFacelist 185
DBCalcExternalFacelist2 187

OPLLSTS..uuurreeriieiiisrraneiicsssssnsseecsssssnssesssssssssssesssssssssssasssssssasssssssssssasssassssssssassssssssns 189

DBMakeOptlist.ot 190
DBAAAOPtION. . ..o 191
DBCIearOptionottt 192
DBGetOPtIoNnot 193
DBEFrecOptliSt. . . ot 194
DBClearOptlistot 195
User Defined (Generic) Data and ODbjects......ccocvvveerriceiisrnnrriccssssnnnnscssssnansssses 196
DB W . . .o 197
DBWIItESLICE . . . o oottt e 198
DBReadVar. 200
DBReadVarl. 201
DBReadVarSlice.ot 202
DBGetVar. . . 203
DBINGVarEXistso 204
DBINgVarType . . .o 205
DBGetVarByteLength e 207
DBGetVarDims. 208
DBGetVarLength 209
DBGetVarType. . o oot 210
DBPutCompoundarraycout ittt e 211
DBInqCompoundarrayo.t ittt e 212
DBGetCompoundarraycovt ettt 213
DBMaKeODbjectot 214
DBEFTeeOb eCt ottt 215
DBChangeODbjecto 216
DBCIearObjectot 217
DBAdADDICOMPONENtot 218
DBAAAFItCOMPONENt.ot 219
DBAdAINtCOMPONENL.ottt e e e 220
DBAdAStrComponent.ot e 221
DBAddAVarComponent ot 222
DBWIriteCompPOnent oo ettt et e e e e e 223
DBWIriteODbJeCt . . . ottt 224
DBGetOD]eCt. . . .ot 225
DBGetComponent.o e 226
DBGetComponentTypeot 227
Previously Undocumented Use CONVENLIONSuueeeieecissrnnereccssssnnssssssssnsssssces 228
_viISTt_defvars ... 229
_visit_searchpath. e 230

_VISIE_dOmMAIN_GIOUPS. . . o ottt ettt e e e e e e e 231

AlphabetizeVariables 232
Connectivity[STImeVarying e et 233
MultivarToMultimeshMap_vars. e e 234
MultivarToMultimeshMap_meshes i, 235
Sil0’S FOrtran INEEITACEeeeeeeeceeieeeeeeeeceeeeeneeneenecccceeeenesssscccceesssssssssseccsssssssnnes 236
4 1021014 01 o 237
AOrmMIPLr .« L 238
dbset2dstrlen 239
dbget2dstrlen. 240
DBFortranAlloCPoINter. 241
DBFortranAccessPOINter 242
DBFortranRemovePointer 243
Deprecated FUNCLIONSeeeeeiieiiiivneiiicisissnnnniicsssssnsenscsssssssssscsssssssssssssssssnsssssses 244

1 API Section Error Handling and Other Global Library
Behavior

The functions described in this section of the Silo Application Programming Interface (API) man-
ual, are those that effect behavior of the library, globally, for any file(s) that are or will be open.
These include such things as error handling, requiring Silo to do extra work to warn of and avoid
overwrites, to compute and warn of checksum errors and to compress data before writing it to disk.

The functions described here are...

DBEITFUNC . . . e 8
DBEITNO . ..o e 9
DBEITSHIINGo 10
DBShOWEITOTSo 11
DBVariableNameValid. 12
DBVEISION . .o 13
DBSEtALIOWOVEIWIIESottt e e e e e e 14
DBGEetAIIOWOVEIWIILES . . . o . ottt et e e e e e 15
DBForceSingle 16
DBSetDataReadMask 17
DBGetDataReadMask. 19
DBSetEnableChecksums 20
DBGetEnableChecksums e 21
DBSetCOMPIESSION. . . . oottt et ettt e et e e e e 22
DBGEetCOMPIESSION . . . v vttt ettt et e e e e e e e e e e e 25
DBSetFriendlyHDFSNames 26
DBGetFriendlyHDFSNames. e 27
DBSetDeprecateWarningso ittt e 28
DBGetDeprecateWarningso vttt et e et e 29
SILO_VERSION _GE. e e e 30

Silo User’s Guide 2-7

DBErrFunc

DBEr r Func—Get name of error-generating function

Synopsis:

char *DBErr Func (voi d)
Fortran Equivalent:

None
Returns:

DBErrFunc returns a char * containing the name of the function that generated the last error. It
cannot fail.

Description:

The DBErrFunc function is used to find the name of the function that generated the last Silo error.
It is implemented as a macro. The returned pointer points into Silo private space and must not be
modified or freed.

2-8 Silo User’s Guide

DBErrno

DBEr r nO—Get internal error number.

Synopsis:
int DBErrno (void)

Fortran Equivalent:

i nt eger function dberrno()

Returns:

DBErrno returns the internal error number of the last error. It cannot fail.

Description:

The DBErrno function is used to find the number of the last Silo error message. It is implemented
as a macro. The error numbers are not guaranteed to remain the same between different release

versions of Silo.

Silo User’s Guide 2-9

DBErrString

DBEr r St r i ng—Get error message.

Synopsis:
char *DBErrString (void)
Fortran Equivalent:
None
Returns:
DBErrString returns a char * containing the last error message. It cannot fail.
Description:

The DBErrString function is used to find the last Silo error message. It is implemented as a macro.
The returned pointer points into Silo private space and must not be modified or freed.

2-10 Silo User’s Guide

DBShowErrors

DBShoWEr r or S—Set the error reporting mode.
Synopsis:
voi d DBShowerrors (int level, void (*func)(char*))

Fortran Equivalent:

i nt eger function dbshowerrors(level)

Arguments:
| evel Error reporting level. One of DB_ALL, DB_ABORT, DB_TOP, or DB_NONE.
func Function pointer to an error-handling function.

Returns:

DBShowErrors returns nothing (void). It cannot fail.

Description:

The DBShowErrors function sets the level of error reporting done by Silo when it encounters an
error. The following table describes the action taken upon error for different values of | evel

Error level value Error action

DB_ALL Show all errors, beginning with the (possibly internal) routine
that first detected the error and continuing up the call stack
to the application.

DB_ABORT Same as DB_ALL except abort is called after the error mes-
sage is printed.

DB_TOP (Default) Only the top-level Silo functions issue error mes-
sages.

DB_NONE The library does not handle error messages. The application

is responsible for checking the return values of the Silo func-
tions and handling the error.

Silo User’s Guide 2-11

DBVariableNameValid

DBVar i abl eNaneVal i d—check if character string represents a valid Silo variable name

Synopsis:
i nt DBVal i dvari abl eNane(const char *s)
Fortran Equivalent:
None
Arguments:
S The character string to check
Returns:
non-zero if the given character string represents a valid Silo variable name; zero otherwise
Description:

This is a convenience function for Silo applications to check whether a given variable name they
wish to use will be considered valid by Silo.

The only valid characters that can appear in a Silo variable name are all alphanumerics (e.g. [a-zA-
70-9]) and the underscore (e.g. °_’"). If a candidate variable name contains any characters other
than these, that variable name is considered invalid. If that variable name is ever used in a call to
create an object in a Silo file, the call will fail with error E_INVALIDNAME.

2-12 Silo User’s Guide

DBVersion

DBVer si 0n—Get the version of the Silo library.

Synopsis:
char *DBVersion (void)
Fortran Equivalent:
None
Returns:
DB Version returns the version as a character string.

Description:

The DB Version function determines what version of the Silo library is being used and returns that
version in string form.

Silo User’s Guide 2-13

DBSetAllowOverwrites

DBSet Al | owOver wr i t es—Set flag permitting or denying overwrites of Silo objects
Synopsis:
int DBSet All owOverwrites(int allow)

Fortran Equivalent:

i nteger function dbsetovrwt(all ow)

Arguments:
al | ow Integer value indicating if Silo library should allow overwrites to Silo objects. A
value of 0 indicates that overwrites should NOT be allowed, a value of non-zero
indicates that overwrites SHOULD be allowed.
Returns:

Returns the previous value set for allowing overwrites.
Description:

By default, the Silo library does not do any work to determine if the caller is somehow using the
library in such a way that Silo objects are being overwritten. In fact, if a given file is open by mul-
tiple processes, it is impossible for Silo to detect this condition and either prevent it or even issue a
message indicating it is happening.

When DBSetAllowOverwrites is passed a non-zero value, all succeeding calls that modify a Silo
file first check to make sure the object(s) being written do not already exist in the file. If they do,
the operation will abort and an error message will be generated.

Some Silo calls such as DBWriteSlice permit repeated calls to write different portions of the same
object. Overwrites are always allowed for these types of objects regardless of the setting passed
here.

The default setting is to allow overwrites and not do any costly work to detect when they are occur-
ing.

2-14 Silo User’s Guide

DBGetAllowOverwrites

DBGet Al | owOver wr i t eS—Get current setting for the allow overwrites flag

Synopsis:
i nt DBGet All owOverwrites(void)
Fortran Equivalent:
i nt eger function dbgetovrwt()
Returns:
Returns the current setting for the allow overwrites flag

Description:

See DBSetAllowOverwrites for a description of the meaning of this flag

Silo User’s Guide 2-15

DBForceSingle

DBFor ceSi ngl e—Force all floating point data read in read methods to be single precision

Synopsis:

i nt DBForceSingle(int force)

Fortran Equivalent:

None
Arguments:
force Flag to indicate if forcing should be set or not. Pass non-zero to force single
precision. Pass zero to NOT force single precision.
Returns:

Zero on success. -1 on failure
Description:

This setting is global to the whole library. After a call to DBForceSingle() with a non-zero force
value, all functions that read floating point data from a Silo database will convert any double-preci-
sion data they encounter to single precision (and set the associated datatype members of the
DBxxx objects to DB_FLOAT). Calling DBForceSingle() with a force value of zero, will return
the library to ‘normal’ behavior. That is, double-precision data will be read and returned in double-
precision.

This method is typically used by downstream, post-processing tools to reduce memory require-
ments. By default, Silo DOES NOT have single precision forcing enabled. When it is enabled,
only the methods that result in reading of floating point data from a Silo file are effected. Write
methods are NOT effected.

2-16 Silo User’s Guide

DBSetDataReadMask

DBSet Dat aReadMas k—Set the data read mask

Synopsis:
| ong DBSet Dat aReadMask (| ong mask)

Fortran Equivalent:
None
Arguments:

mask The mask to use to read data. This is a bit vector of values that define whether
each data portion of the various Silo objects should be read.

Returns:
DBSetDataReadMask returns the previous data read mask.
Description:

The DBSetDataReadMask allows the user to set the mask that’s used to read various large data
components within Silo objects.

Most Silo objects have a metadata portion and a data portion. The data portion is that part of the
object that consists of pointers to long arrays of data. These arrays are “problem sized”.

Setting the data read mask allows for a DBGet* call to only return part of the data. With the data
read mask set to DBAII, the DBGet* functions return all of the information. With the data read
mask set to DBNone, they return only the metadata. The mask is a bit vector specifying which part
of the data model should be read.

A special case is found in the DBCalc flag. Sometimes data is not stored in the file, but is instead
calculated from other information. The DBCalc flag controls this behavior. If it is turned off, the
data is not calculated. If it is turned on, the data is calculated.

The values that DBSetDataReadMask takes as the mask parameter are binary-or’ed combinations
of the values shown in the following table:

Mask bit Meaning

DBAII All data values are read. This value is identical to specifying all of the
other mask bits or’ed together, setting all of the bit values to 1.

DBNone No data values are read. This value sets all of the bit values to 0.

DBCalc If data is calculable, calculate it. Otherwise, return NULL for that infor-
mation.

DBMatMatnos The lists of material numbers in material objects are read by the DBGet-
Material call.

DBMatMatnames The arrays of material names in material objects are read by the DBGet-
Material call.

Silo User’s Guide 2-17

DBSetDataReadMask

Mask bit Meaning

DBMatMatlist The lists of the correspondence between zones and material numbers in
material objects are read by the DBGetMaterial call.

DBMatMixList The lists of mixed material information in material objects are read by
the DBGetMaterial call.

DBCurveArrays The data values of curves are read by the DBGetCurve call.

DBPMCoords The coordinate values of pointmeshes are read by the DBGetPointmesh
call.

DBPVData The data values of pointvars are read by the DBGetPointvar call.

DBQMCoords The coordinate values of quadmeshes are read by the DBGetQuad-
mesh call.

DBQVData The data values of quadvars are read by the DBGetQuadvar call.

DBUMCoords The coordinate values of UCD meshes are read by the DBGetUcdmesh
call.

DBUMFacelist The facelists of UCD meshes are read by the DBGetUcdmesh call.

DBUMZonelist The zonelists of UCD meshes are read by the DBGetUcdmesh call.

DBUVData The data values of UCD variables are read by the DBGetUcdvar call.

DBFacelistInfo The nodelists and shape information in facelists are read by the DBGet-
Facelist call.

DBZonelistInfo The nodelist and shape information in zonelists are read by the DBGet-
Zonelist call.

DBUMGIobNodeNo The global node numbers of UCD meshes are read by the DBGetUcd-
mesh call

DBZonelistGlobZoneNo The global zone numbers of UCD meshes are read by the DBGetUcd-
mesh call

DBMatMatcolors The material colors of material objects are read by the DBGetMaterial

and DBGetMultimat calls

DBMMADJNodelists The multimesh adjacency nodelist is read in DBGetMultimeshadj()
DBMMADJZonelists The multimesh adjacency zonelists is read in DBGetMultimeshadj()
DBCSGMBoundarylnfo The boundary list is read by the DBGetCsgmesh call
DBCSGMZonelist The zonelist is read by the DBGetCsgmesh call

DBCSGMBoundaryNames The boundary names are read by the DBGetCsgmesh call

DBCSGVData The data values of CSG variables are read by the DBGetCsgvar call

DBCSGZonelistZoneNames | The zone names are read by the DBGetCSGZonelist call

DBCSGZonelistRegNames The region names are read by the DBGetCSGZonelist call

Use the DBGetDataReadMask call to retrieve the current data read mask without setting one.

By default, the data read mask is set to DBAIL. The data read mask effects only the read portion of
the Silo APL

2-18 Silo User’s Guide

DBGetDataReadMask

DBCGet Dat aReadMask—Get the current data read mask

Synopsis:
| ong DBCet Dat aReadMask (voi d)

Fortran Equivalent:
None

Returns:

DBGetDataReadMask returns the current data read mask.

Description:

The DBGetDataReadMask allows the user to find out what mask is currently being used to read
the data within Silo objects.

See the documentation on DBSetDataReadMask for a complete description.

Silo User’s Guide 2-19

DBSetEnableChecksums

DBSet Enabl eChecksuns—Set flag controlling checksum checks

Synopsis:

i nt DBSet Enabl eChecksuns(i nt enabl e)

Fortran Equivalent:

i nt eger function dbsetcksuns(enabl e)

Arguments:

enabl e Integer value controlling checksum behavior of the Silo library. See description
for a complete explanation.

Returns:

Returns the previous setting for checksum behavior.

Description:

If checksums are enabled, whenever Silo writes data, it will compute checksums on the data in
memory and store these checksums with the data in the file. Note that during a write call, in no cir-
cumstance will Silo re-read data written to confirm it was written correctly (e.g. it gets back what it
wrote). In other words, Silo will not detect checksum errors on writes. It will detect them only on
reads and only if checksums were actually computed and stored with the data when it was written.

If checksums are enabled, whenever Silo reads data AND the data it is reading has checksums
stored in the file, it will compute and compare checksums. If the checksums computed on read do
not agree with the checksums stored in the file, the Silo call resulting in the data read will fail. The
error, E_CHECKSUM will be set (See “DBShowErrors” on page 2-11). Note that because check-
sums are not checked on write, there is no foolproof way to detect whether a read has failed
because the data was corrupted when it was originally written or because the read itself has failed.

Checksum checks are supported ONLY on the HDF5 driver. The PDB driver DOES NOT support
checksum checks. Calling DBCr eat e() with checksumming enabled will fail if DB_PDB is
specified as the driver. If checksumming is enabled while any PDB file is opened, the request for
checksumming will be silently ignored by all attempts to write or read data from a PDB file.

In the HDFS5 driver, only the data that winds up in HDFS5 datasets in the file is checksumed. In
most applications, this represents more than 99% of all the data the client writes. However, it is
important to note that when checksuming is enabled, NOT ALL data written by Silo is check-
sumed. Various bits of metadata is not checksumed.

Finally, empirical results show that the resulting files are 1-5% larger and take about 1-5% longer
to write when checksumming is enabled. This is due primarily to the fact that a different class of
HDFS5 dataset, called a chunked dataset, is required in order to enable checksumming.

2-20

Silo User’s Guide

DBGetEnableChecksums

DBCGet Enabl eChecksuns—Get current state of flag controlling checksumming

Synopsis:

i nt DBGet Enabl eChecksuns(voi d)
Fortran Equivalent:

i nt eger function dbgetcksumns()
Returns:

Zero if checksumming is not currently enabled. Non-zero if checksumming is currently enabled.

Description:

This function returns the current setting for the library-global flag controlling checksumming
behavior.

Silo User’s Guide 2-21

DBSetCompression

DBSet Conpr essi on—sSet compression options for succeeding writes of Silo data

Synopsis.n
i nt DBSet Conpr essi on(char *options)

Fortran Equivalent:

i nt eger function dbsetconpress(options, |options)

Arguments:
opti ons Character string containing the name of the compression method and various
parameters. The method set using the keyword, “METHOD=". Any remaining
parameters are dependent on the compression method and are described below.
Returns:

Returns the previous value set for compression behavior.
Description:

Compression is currently supported only on the HDFS5 driver.

Note that the responsibility for enabling compression falls only on the data producer. Any Silo cli-
ents attempting to read compressed data may do so without concern for whether the data in the file
is compressed or not. If the data is compressed, decompression will occur automatically during
read. This is true as long as the Silo library to which the client reading the data was compiled and
linked has the necessary decompression code. Because writer and reader need not be compiled and
linked to the same exact Silo library installation, each could be compiled with differing compres-
sion capabilities making it impossible to read data in some situations.

To the extent possible, the public installations of Silo on LLNL systems have all been enabled with
compatible compression features. However, because many application developers have taken to
creating their own installations of Silo, it is important to consider the effect of disabling (or
enabling) various compression features.

Compression features are controlled by an arbitrary string, whose contents are described in more
detail below. By default, the Silo library does not have compression enabled. A number of differ-
ent compression techniques are available. Some operate without regard to the type of data and
mesh being written. Others depend on the type of data and sometimes even the type of mesh.

Compression parameters global to all compression methods: There are two global parameters that
control behavior of compression algorithms. These must appear in the compression options string

before any compression-specific parameters.

The first is the error mode (“ERRMODE=<word>" which controls how the Silo library responds
when it encounters an error during compression and/or is unable to compress the data. The two
options are “FALLBACK” or “FAIL”. Including “ERRMODE=FALLBACK” in the compression
options string tells Silo that whenever compression fails, it should simply fallback to writing
uncompressed data. Including “ERRMODE=FAIL” in the compression options string tells Silo to
fail the write and return E_COMPRESSION error for the operation.

2-22 Silo User’s Guide

DBSetCompression

The second is the minimum compression ratio to be achieved by compressing the data. It is speci-
fied as “MINRATIO=<float>". For example, including “MINRATIO=2.5" in the compression
options string tells Silo that all data must be compressed by at least a factor of 2.5:1. If it is unable
the compress by at least this amount, Silo will either fallback or fail the write depending on the
ERRMODE setting.

The remaining paragraphs describe compression algorithm specific options.

GZIP compression: is enabled using “METHOD=GZIP” in the options string. GZIP recognizes
the LEVEL=<int>, compression parameter. The compression level is an integer from 0 to 9, where
0 results in the fastest compression performance but at the expense of lower compression ratios.
Likewise, a level of 9 results in the slowest compression performance but with possibly better
compression ratios. If the “LEVEL=<int>" keyword does not appear in the options string or speci-
fies invalide values, the default is level one (1). The GZIP method of compression is applied inde-
pendently to float and integer data for all types of meshes and variables. It is also guarenteed to be
available to all Silo clients.

SZIP compression: is enabled using “METHOD=SZIP” in the options string. The SZIP compres-
sion algorithm is designed specifically for scientific data. SZIP recognizes the BLOCK=<int>, and
MASK={EC|NN} parameters. The BLOCK=<int>, takes an integer value from 0 to 32, which is a
blocking size and must be even and not greater than 32, with typical values being 8, 10, 16, or 32.
This parameter affects the compression ratio; the more values vary, the smaller this number should
be to achieve better performance. The MASK=EC, selects entropy coding method, this is best
suited for data that has been processed, working best for small numbers. MASK=NN, selects the
nearest neighbor coding method, preprocesses the data then applies the EC method as above. The
default parameters for SZIP compression are “METHOD=SZIP BLOCK=4 MASK=NN”. Ifin a
subsequent write operation (DBPutXXX, DBWrite, etc.) the value for BLOCK is bigger than the
total number of elements in a dataset, the write will fail. This means that you should take care not
to have compression turned on when doing small writes. To achieve optimal performance for SZIP
compression, it is recommended that one select a value for BLOCK that is an integral divisor of
the dataset’s fastest-changing dimension. Note that the SZIP compression encoder is licensed for
non-commercial use only while the decoder (e.g. decompressor) is unlimited. Read more about
SZIP licensing at http://www.hdfgroup.org/doc_resource/SZIP/index.html. Note that SZIP decom-
pression is NOT guarenteed to be available to all Silo clients; only those for which the Silo library
was configured with SZIP compression capability enabled. Like GZIP, SZIP compression is
applied to float and integer data independently of the types of meshes and variables.

FPZIP compression: is enabled using “METHOD=FPZIP” in the options string. The FPZIP com-
pression algorithm was developed by Peter Lindstrom at LLNL and is also designed for high speed
compression of regular arrays of data. FPZIP recognizes the “LOSS=0|1|2|3” parameter which
specifies the amount of loss that is tolerable in the result in terms of quarters of full precision. For
example, “LOSS=3" indicates that a loss of 3/4 of full precision is tolerable (resulting in 8 bit
floats or 16 bit doubles). Note that for data being written from a double precision writer for down
stream visualization purposes, visualization tools such as Vislt often enforce single precision data.
Therefore, specifying a loss of 32 bits here for double precision data could have a dramatic imapct
on compression and I/O performance with neglible effect in down stream visualization. If the
LOSS parameter is not specified, the default is “LOSS=0". It is possible to build the Silo library
without FPZIP compression support. So, it is not always guarenteed to exist.

HZIP compression: is enabled using “METHOD=HZIP” in the options string. The HZIP compres-
sion algorithm was developed by Peter Lindstrom at LLNL and is designed for high-speed com-

Silo User’s Guide 2-23

DBSetCompression

pression of unstructured meshes of quad or hex elements and node-centered variables (it does not
yet support zone-centered variables) defined on a mesh. Before applying this compression method
to any given Silo mesh or variable object, the Silo library checks for compatibility with the con-

straints of the compression algorithm. If the mesh or variable object is compatible, the object will
be written with compression enabled. Otherwise, compression will be silently ignored. It is possi-

ble to build the Silo library without HZIP compression support. So, it is not always guarenteed to
exist.

2-24

Silo User’s Guide

DBGetCompression

DBCGet Conpr essi on—Get current compression parameters

Synopsis:

char *DBGet Conpression()
Fortran Equivalent:

i nt eger function dbgetconpress(options, |options)
Arguments:

None

Returns:

NULL if no compress parameters have been set. A string of compression parameters if compres-
sion has been set

Description:

Obtain the current compression parameters.

Silo User’s Guide 2-25

DBSetFriendlyHDF5Names

DBSet Fri endl yHDF5Nanmes—Set flag to indicate Silo should create friendly names for
HDFS5 datasets
Synopsis:
i nt DBSet Fri endl yHDF5Nanes(i nt enabl e)

Fortran Equivalent:

i nt eger function dbset hdf nns(enabl e)

Arguments:
enabl e Flag to indicate if friendly names should be turned on (non-zero value) or off
(zero).
Returns:
Old setting for this flag
Description:

The HDF5 driver uses HDF5 in a way that makes the data somewhat UNnatural to the user when
viewed with HDFS5 tools such as h5ls, hSdump and hdfview. This is not a problem for Silo but is a
problem for these and other HDF5 tools.

DBSetFriendlyHDF5Names() is a way to address this issue so that the data in an HDF5 file written
by Silo looks more “natural.”. Calling DBSetFriendlyHDF5Names() with a non-zero value will
result in additional HDFS5 metadata being added to the file (in the form of links) with better names
(and locations) for Silo objects’ datasets.

Notes:

If it was not obvious from the name, this method effects only the HDF5 driver.

2-26 Silo User’s Guide

DBGetFriendlyHDF5Names

DBCet Fr i endl yHDF5Namnmes—Get setting for friendly HDF5 names flag

Synopsis:

i nt DBGet Fri endl yHDF5Nanes()
Fortran Equivalent:

i nt eger function dbget hdf nnms()
Arguments:

None

Returns:

The current setting for the HDF5 friendly names flag.

Description:

See DBSetFriendlyHDF5Names().

Silo User’s Guide 2-27

DBSetDeprecateWarnings

DBSet Depr ecat eWAr ni NgS—Set maximum number of deprecate warnings Silo will

issue for any one function, option or convention

Synopsis:

i nt DBSet Depr ecat eWar ni ngs(i nt max_count)

Fortran Equivalent:

i nt eger function dbsetdepwarn(max_count)

Arguments:

max_count Maximum number of warnings Silo will issue for any single API function.

Returns:

The old maximum number of deprecate warnings

Description:

Some of Silo’s API functions have been deprecated. Some options on Silo objects have also been
deprecated. Finally, some conventional arrays, such as _Vvi sit _def var s, have been depre-
cated.

When an attempt to use a deprecated function, option or convention is detected, Silo will issue an
error message on stderr and proceed normally. The default number of error messages any given
deprecated function will report on stderr is 3. Note, this is on a per-deprecated function, option or
convention basis. If this number is decreased to zero by calling DBSet Depr ecat eVar n-

i ngs(0), no warnings will be generated on stderr. If it is increased, more warnings will be
issued.

Note that deprecated functions, options and conventions are guaranteed to operate correctly only
in the first release in which they became deprecated. In subsequent releases, they may be removed
entirely. So, it is wise to run your application for a while without turning off deprecation warnings
to get some inventory of functions that require attention.

2-28

Silo User’s Guide

DBGetDeprecateWarnings

DBGet Depr ecat eVAr ni NgS—Get maximum number of deprecated function warnings
Silo will issue

Synopsis:

i nt DBGet Depr ecat eWar ni ngs()
Fortran Equivalent:

i nt eger function dbget depwarn()

Arguments:

None

Returns:

The current maximum number of deprecate warnings

Description:

Silo User’s Guide 2-29

SILO_VERSION_GE

SI LO_VERSI ON_CGE—Compile time macro to test silo version number

Synopsis:
SI LO_VERSI ON_GE(Maj , M n, Pat)

Arguments:
Maj Major version number digit
Mn Minor version number digit. A zero is equivalent to no minor digit.
Pat Patch version number digit. A zero is equivalent to no patch digit.
Returns:

True (non-zero) if the combination of major, minor and patch digits results in a version number of
the Silo library that is greater (e.g. newer) than or equal to the version of the Silo library being
compiled against. False (zero), otherwise.

Description:

This macro is useful for writing version-specific code that interacts with the Silo library. Note,
however, that this macro appeared in version 4.5.1 of the Silo library and is not available in earlier
versions of the library.

As an example of use, the function DBSetDeprecate Warnings() was introduced in Silo version 4.6
and not available in earlier versions. You could use this macro like so...

#i f SI LO_VERSI ON_CE(4, 6, 0)
DBSet Depr ecat eWar ni ngs(0) ;
#endi f

2-30 Silo User’s Guide

SILO_VERSION_GE

2 API Section Files and File Structure

If you are looking for information regarding how to use Silo from a parallel application, please See
“Multi-Block Objects, Parallelism and Poor-Man’s Parallel I/O” on page 125.

The Silo API is implemented on a number of different low-level drivers. These drivers control the
low-level file format Silo generates. For example, Silo can generate PDB (Portable DataBase) and
HDF5 formatted files. The specific choice of low-level file format is made at file creation time.

In addition, Silo files can themselves have directories. That is, within a single Silo file, one can
create directory hierarchies for storage of various objects. These directory hierarchies are analo-
gous to the Unix filesystem. Directories serve to divide the name space of a Silo file so the user can
organize content within a Silo file in a way that is natural to the application.

Note that the organization of objects into directories within a Silo file may have direct implications
for how these collections of objects are presented to users by post-processing tools. For example,
except for directories used to store multi-block objects (See “Multi-Block Objects, Parallelism and
Poor-Man’s Parallel I/O” on page 125.), Vislt will use directories in a Silo file to create submenus
within its Graphical User Interface (GUI). For example, if Vislt opens a Silo file with two directo-
ries called “foo” and “bar” and there are various meshes and variables in each of these directories,
then many of Vislt’s GUI menus will contain submenus named “foo” and “bar” where the objects
found in those directories will be placed in the GUI.

Silo also supports the concept of grabbing the low-level driver. For example, if Silo is using the
HDFS5 driver, an application can obtain the actual HDFS5 file id and then use the native HDF5 API
with that file id.

The functions described in this section of the interface are...

DBOCreate. . ..o 32
DBOPeN . .. 34
DBCIOSEt 35
DBGEtTOC. . oo 36
DBMEKDIL . .. 37
DB SEtDIr. . . .o 38
DB G DT . .o e 39
DB P DAL, . .ot 40
DBGIabDIiver.o 41
DBUNGIabDIIVEL. . . . ottt et e e e e 42
DBGetDIIVerTYPe. . o oot 43
DBGetDriverTypeFromPath. 44
DBINGFIleo 45
CSHOUDINTO . . oo, 46
_hdfShibinfo. . ..o 47
_was_grabbed 48

Silo User’s Guide 2-31

DBCreate

DBCr eat e—Create a Silo output file.

Synopsis:

DBfile *DBCreate (char *pathnane, int node, int target,
char *fileinfo, int filetype)

Fortran Equivalent:

i nt eger function dbcreate(pathnanme, | pathnanme, node, target,
fileinfo, Ifileinfo, filetype)

Arguments:
pat hnanme Path name of file to create. This can be either an absolute or relative path.
node Creation mode. One of the predefined Silo modes: DB_CLOBBER or
DB_NOCLOBBER.
t ar get Destination file format. One of the predefined types: DB_LOCAL, DB_SUN3,
DB_SUN4, DB_SGI, DB_RS6000, or DB_CRAY.
fileinfo Character string containing descriptive information about the file’s contents.

This information is usually printed by applications when this file is opened. If
no such information is needed, send NULL for this argument.

filetype Destination file type. Specify one of ether DB_PDB, DB_HDFS5,
DB_HDF5_SEC2, DB_HDFS5_STDIO, DB_HDF5_CORE, DB_HDF5_MPIO,
or DB_HDF5_MPIPOSIX.

Returns:

DBCreate returns a DBfile pointer on success and NULL on failure.
Description:

The DBCreate function creates a Silo file and initializes it for writing data.
Notes:

Silo supports two underlying “drivers” for storing named arrays of machine independent data. One
is called the Portable DataBase Library (PDBLib or just PDB) and the other is Hierarchical Data
Format, Version 5 (HDF5). In turn, the HDF5 library also supports a number of system interfaces
for doing the actual disk I/O; section 2 routines (e.g create/open/read/write/close), stdio routines
(e.g. fcreate/fopen/fread/fwrite/fclose) are the most common. In HDFS5 parlance, these are called
Virtual File Drivers (VFDs).

Because section 2 routines are unbuffered, that VFD typically performs better when there are
fewer, larger I/O requests while the stdio VFD performs better when there are more, smaller
requests. Unfortunately, the metric for what constitutes a “small” or “large” request is system
dependent. So, it helps to experiment with the different VFDs for the HDFS5 driver by running
some typically sized use cases. Some results on the Luster file system for tiny 1/O requests (100’s
of bytes) showed that the stdio VFD can perform 100x or more better than the section 2. So, it pays
to spend some time experimenting with this.

2-32 Silo User’s Guide

DBCreate

The HDF5 driver for Silo also supports several of HDF5’s more exotic VFDs. These are the “core”
VFD which creates the entire file in memory and then writes it to disk (with minimal I/O requests)
upon close as well as a couple of interfaces specialized for parallel file systems. Although Silo
itself DOES NOT support true parallel I/O (e.g. multiple processors writing to the same file, con-
currently), Silo can take advantage of any performance capabilities available in the underlying I/O
systems calls in HDF5’s parallel VFDs. These are the MPI-IO VFD which uses MPI-10’s 1/O rou-
tines and the MPI-POSIX.

For the DB_HDF5_CORE filetype, it is necessary for the caller to specify the allocation increment
to use each time HDFS5 needs to grow the “file” in memory. This is specified in terms of kilobytes
(1024 bytes) as the high-order 21 bits of the filetype argument. So, for example, to specify that
HDFS5 allocate space for the “file” in memory in 1 Megabyte increments, the caller would con-
struct the filetype argument as ((1024<<11) | DB_HDF5_CORE) . The 1024 is because we want
1024 Kilobytes (e.g. 1 Megabyte) increments. The 11 bit shift is to put the value in the high order
21 bit portion of the filetype argument.

Both PDB and HDF5 support the concept of targeting output files. That is, a Sun IEEE file can be
created on the Cray, and vice versa. If creating files on a mainframe or other powerful computer, it
is best to target the file for the machine where the file will be processed. Because of the extra time
required to do the floating point conversions, however, one may wish to bypass the targeting func-
tion by providing DB_LOCAL as the target.

In Fortran, an integer represent the file’s id is returned. That integer is then used as the database file
id in all functions to read and write data from the file.

Note that regardless of what type of file is created, it can still be read on any machine.

Silo User’s Guide 2-33

DBOpen

DBOpen—Open an existing Silo file.

Synopsis:
DBfile *DBOpen (char *name, int type, int node)
Fortran Equivalent:

i nt eger function dbopen(nane, | nane, type, node)

Arguments:
name Name of the file to open. Can be either an absolute or relative path.
type The type of file to open. One of the predefined types: DB_PDB, DB_HDFS5,
DB_HDF5_SEC2, DB_HDF5_STDIO, DB_HDF5_MPIO,
DB_HDF5_MPIPOSIX, DB_TAURUS, or DB_UNKNOWN.
nmode The mode of the file to open. One of the values DB_READ or DB_APPEND.
Returns:

DBOpen returns a DBfile pointer on success and a NULL on failure.
Description:

The DBOpen function opens an existing Silo file. If the file t ype is DB_UNKNOWN, Silo will
guess at the file type by iterating through the known types attempting to open the file. This itera-
tion does incur a small performance penalty. Thus, if at all possible, it is best to open using a spe-
cific type. See DBGet Dr i ver TypeFr onmPat h() for a function that uses cheap heuristics to
determine the driver type from specified filename.

Indeed, in order to use a specific VFD (see “DBCreate” on page 2-32) in HDFS5, it is necessary to
pass the specific DB_HDF5_XXX argument in this call. If the caller wishes to support both HDF5
and PDB files and doesn’t always know ahead of time which file type will be opened, the caller
can always iterate over the file types just as the DB_UNKNOWN functionality currently does.

The reader will notice that one of HDF5’s VFDs, DB_HDF5_CORE, is not supported in this call.
This is because HDF5 does NOT currently support bringing a whole file into memory from disk. It
supports only the creation of new files with the core VFD.

The mode parameter allows a user to append to an existing Silo file. If a file is DBOpen’ed with a
node of DB_APPEND, the file will support write operations as well as read operations.

2-34 Silo User’s Guide

DBClose

DBCl 0se—Close a Silo database.

Synopsis:

int DBClose (DBfile *dbfile)
Fortran Equivalent:

i nt eger function dbcl ose(dbid)

Arguments:

dbfile Database file pointer.

Returns:

DBClose returns zero on success and -1 on failure.

Description:

The DBClose function closes a Silo database.

Silo User’s Guide

2-35

DBGetToc

DBGet ToC—Get the table of contents of a Silo database.

Synopsis:
DBt oc *DBCGet Toc (DBfile *dbfile)
Fortran Equivalent:
None
Arguments:
dbfile Database file pointer.
Returns:
DBGetToc returns a pointer to a DBtoc structure on success and NULL on error.
Description:

The DBGetToc function returns a pointer to a DBtoc structure, which contains the names of the
various Silo object contained in the Silo database. The returned pointer points into Silo private
space and must not be modified or freed. Also, calls to DBSetDir will free the DBtoc structure,
invalidating the pointer returned previously by DBGetToc.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-36 Silo User’s Guide

DBMFkDir

DBNVK DI r —Create a new directory in a Silo file.
Synopsis:
int DBMKDir (DBfile *dbfile, char *dirname)

Fortran Equivalent:

i nt eger function dbnkdir(dbid, dirname, |dirnane,

Arguments:

dbfile Database file pointer.

di r nane Name of the directory to create.
Returns:

DBMKDir returns zero on success and -1 on failure.

Description:

st at us)

The DBMKkDir function creates a new directory in the Silo file as a child of the current directory
(see DBSetDir). The directory name may be an absolute path name similar to *“/ di r / subdi r”,

or may be a relative path name similarto “. . /. . / di r/ subdi r”.

Silo User’s Guide

2-37

DBSetDir

DBSet Di r —Set the current directory within the Silo database.

Synopsis:
int DBSetDir (DBfile *dbfile, char *pathnamne)

Fortran Equivalent:

i nteger function dbsetdir(dbid, pathnane, | pathnane)

Arguments:

dbfile Database file pointer.

pat hnane Path name of the directory. This can be either an absolute or relative path name.
Returns:

DBSetDir returns zero on success and -1 on failure.
Description:

The DBSetDir function sets the current directory within the given Silo database. Also, calls to
DBSetDir will free the DBtoc structure, invalidating the pointer returned previously by DBGetToc.
DBGetToc must be called again in order to obtain a pointer to the new directory’s DBtoc structure.

2-38 Silo User’s Guide

DBGetDir

DBGet Di r —Get the name of the current directory.

Synopsis:
int DBGetDir (DBfile *dbfile, char *dirnane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

di r nane Returned current directory name. The caller must allocate space for the returned
name. The maximum space used is 256 characters, including the NULL
terminator.

Returns:

DBGetDir returns zero on success and -1 on failure.

Description:

The DBGetDir function returns the name of the current directory.

Silo User’s Guide 2-39

DBGetDir

DBCpDi r —Copy a directory hierarchy from one Silo file to another.

Synopsis:

int DBCpDir(DBfile *srcFile, const char *srcDir,
DBfile *dstFile, const char *dstDir)

Fortran Equivalent:

None
Arguments:
srcFile Source database file pointer.
srcDir Name of the directory within the source database file to copy.
dstFile Destination database file pointer.
dstDir Name of the top-level directory in the destination file. If an absolute path is
given, then all components of the path except the last must already exist.
Otherwise, the new directory is created relative to the current working directory
in the file.
Returns:

DBCpDir returns 0 on success, -1 on failure
Description:

DBCpDir copies an entire directory hierarchy from one Silo file to another.

Note that this function is available only on the HDF5 driver and only if the Silo library has been
compiled with HDF5 version 1.8 or later. This is because the implementation exploits functional-
ity available only in versions of HDF5 1.8 and later.

2-40 Silo User’s Guide

DBGrabDriver

DBGr abDr i ver —Obtain the low-level driver file handle

Synopsis:
void *DBGrabDriver(DBfile *file)
Fortran Equivalent:
None
Arguments:
file The Silo database file handle.
Returns:
A void pointer to the low-level driver’s file handle on success. NULL(0) on failure.
Description:

This method is used to obtain the low-level driver’s file handle. For example, one can use it to
obtain the HDFS5 file id. The caller is responsible for casting the returned pointer to a pointer to the
correct type. Use DBGetDriverType() to obtain information on the type of driver currently in use.

When the low-level driver’s file handle is grabbed, all Silo-level operations on the file are pre-
vented until the file is UNgrabbed. For example, after a call to DBGrabDriver, calls to functions
like DBPutQuadmesh or DBGetCurve will fail until the driver is UNgrabbed using DBUngrab-
Driver().

Notes:

As far as the integrity of a Silo file goes, grabbing is inherently dangerous. If the client is not care-
ful, one can easily wind up corrupting the file for the Silo library (though all may be ‘normal’ for
the underlying driver library). Therefore, to minimize the likelihood of corrupting the Silo file
while it is grabbed, it is recommended that all operations with the low-level driver grabbed be con-
fined to a separate sub-directory in the silo file. That is, one should not mix writing of Silo objects
and low-level driver objects in the same directory. To achieve this, before grabbing, create the
desired directory and descend into it using Silo’s DBMkDir() and DBSetDir() functions. Then,
grab the driver and do all the work with the low-level driver that is necessary. Finally, ungrab the
driver and immediately ascend out of the directory using Silo’s DBSetDir(“..”).

For reasons described above, if problems occur on files that have been grabbed, users will likely be
asked to re-produce the problem on a similar file that has NOT been grabbed to rule out the possi-
ble corruption from grabbing.

Silo User’s Guide 2-41

DBUngrabDriver

DBUNngr abDr i ver —Ungrab the low-level file driver

Synopsis:
i nt DBUngrabDriver(DBfile *file, const void *drvr_hndl)

Fortran Equivalent:

None
Arguments:
file The Silo database file handle.
drvr _hndl The low-level driver handle.
Returns:

The driver type on success, DB_UNKNOWN on failure.
Description:

This function returns the Silo file to an ungrabbed state, permitting ‘norma’ Silo calls to again pro-
ceed as normal.

2-42 Silo User’s Guide

DBGetDriverType

DBGet Dri ver Type—Get the type of driver for the specified file

Synopsis:
int DBGetDriverType(const DBfile *file)

Fortran Equivalent:
None

Arguments:

file A Silo database file handle.
Returns:
DB_UNKNOWN for failure. Otherwise, the specified driver type is returned

Description:

This function returns the type of driver used for the specified file. If you want to ask this question
without actually opening the file, use DBGetDriverTypeFromPath

Silo User’s Guide 2-43

DBGetDriverTypeFromPath

DBGet Dri ver TypeFr onPat h—Guess the driver type used by a file with the given
pathname

Synopsis:
i nt DBGet Driver TypeFronPat h(const char *path)
Fortran Equivalent:
None
Arguments:
pat h Path to a file on the filesystem
Returns:

DB_UNKNOWN on failure to determine type. Otherwise, the driver type (e.g. DB_PDB,
DB_HDF5)

Notes:

As currently implemented, it is not possible for this method to return a driver type the library has
not been compiled with.

2-44 Silo User’s Guide

DBlIngFile

DBI ngFi | e—Inquire if f i | enane is a Silo file.

Synopsis:

int DBIngFile (char *fil enane)

Fortran Equivalent:

i nteger function dbingfile(filenane, Ifilenane, is_file)
Arguments:
fil ename Name of file.

Returns:

DBIngFile returns 0 if f i | ename is not a Silo file, a positive number if f i | enare is a Silo file,
and a negative number if an error occurred.

Description:

The DBIngFile function is mainly used for its return value, as seen above.

Silo User’s Guide 2-45

DBIngFile

_Si | ol i bi nf 0o—<character array written by Silo to root directory indicating the Silo library
version number used to generate the file

Synopsis:

int n;

char vers[1024];

sprintf(vers, “silo-4.6");

n = strlen(vers);

DBWite(dbfile, “ _silolibinfo”, vers, &1, 1, DB CHAR);

Description:

This is a simple array variable written at the root directory in a Silo file that contains the Silo
library version string. It cannot be disabled.

2-46 Silo User’s Guide

DBlIngFile

__hdf 51 i bi nf 0—<character array written by Silo to root directory indicating the HDF5

library version number used to generate the file

Synopsis:

int n;

char vers[1024];

sprintf(vers, “hdf5-1.6.6");

n = strlen(vers);

DBWite(dbfile, “ _hdf5libinfo”, vers, &1, 1, DB CHAR);

Description:

This is a simple array variable written at the root directory in a Silo file that contains the HDF5
library version string. It cannot be disabled. Of course, it exists, only in files created with the
HDFS5 driver.

Silo User’s Guide 2-47

DBIngFile

was gr abbed—single integer written by Silo to root directory whenever a Silo file has
been grabbed.

Synopsis:

int n=1;
DBWite(dbfile, “_was_grabbed”, &n, &n, 1, DB_INT);

Description:

This is a simple array variable written at the root directory in a Silo whenever a Silo file has been
grabbed by the DBGrabDriver() function. It cannot be disabled.

2-48 Silo User’s Guide

DBlIngFile

3 API Section = Meshes, Variables and Materials

If you are interested in learning how to deal with these objects in parallel, See “Multi-Block
Objects, Parallelism and Poor-Man’s Parallel I/O” on page 125.

This section of the Silo API manual describes all the high-level Silo objects that are sufficiently
self-describing as to be easily shared between a variety of applications.

Silo supports a variety of mesh types including simple 1D curves, structured meshes including
block-structured Adaptive Mesh Refinement (AMR) meshes, point (or gridless) meshes consisting
entirely of points, unstructured meshes consisting of the standard zoo of element types, fully arbi-
trary polyhedral meshes and Constructive Solid Geometry “meshes” described by boolean opera-
tions of primitive quadric surfaces.

In addition, Silo supports both piecewise constant (e.g. zone-centered) and piecewise-linear (e.g.
node-centered) variables (e.g. fields) defined on these meshes. Silo also supports the decomposi-
tion of these meshes into materials (and material species) including cases where multiple materials
are mixing within a single mesh element. Finally, Silo also supports the specification of expres-
sions representing derived variables.

The functions described in this section of the manual include...

DBPUtCUIVE e 51
DBGetCUIVE . . . e 53
DBPutPointmesh. 54
DBGetPointmesh e 56
DBPUtPoINtvar 57
DBPutPointvarl 59
DBGetPOINtVAr 61
DBPutQuadmesh. 62
DBGetQuadmesh 65
DBPUtQuadvar 66
DBPutQuadvarl e 69
DBGetQuadvar. 71
DBPutUcdmesh. 72
DBPutUcdsubmesh. 80
DBGetUcdmesh 81
DBPUtZonelist 82
DBPUtZonelist2 83
DBPUtPHZONELISto 85
DBGetPHZoneElist. 88
DBPUtFacelist. 89
DBPUtUCAVAr 91
DBPutUcdvarl 94
DBGetUcdvar. 96
DBPutCsgmesh. e 97
DBGetCsgmesh.o 102
DBPUtCSGZONELISt.o 103

Silo User’s Guide 2-49

DBIngFile

DBGetCSGZonelisto e 108
DB PUtC S VAL . . . e 109
DBGetCsgVar . . .ot 111
DBPutMaterial e 112
DBGetMaterial 116
DBPUtMAtSPECIES . . . oot ottt et et et e 117
DB GetMatSPECICS . . o v vttt e e 119
DBPutDefvars.o 120
DBGetDetvars.o 122
DBIngMeshname e 123

2-50 Silo User’s Guide

DBPutCurve

DBIngMeshtype124DBPut Cur ve—Write a curve object into a Silo file

Synopsis:

int DBPutCurve (DBfile *dbfile, char *curvenanme, void *xvals,
void *yvals, int datatype, int npoints,
DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbputcurve(dbid, curvenane, |curvenane, xvals,
yval s, datatype, npoints, optlist_id, status)

Arguments:

dbfile Database file pointer

curvenane Name of the curve object

xval s Array of length npoi nt s containing the x-axis data values. Must be NULL
when either DBOPT_XVARNAME or DBOPT_REFERENCE is used.

yval s Array of length npoi nt s containing the y-axis data values. Must be NULL
when either DBOPT_YVARNAME or DBOPT_REFERENCE is used.

dat at ype Data type of the Xxval s and yval s arrays. One of the predefined Silo types.

npoi nts The number of points in the curve

optli st Pointer to an option list structure containing additional information to be

included in the compound array object written into the Silo file. Use NULL is
there are no options.

Returns:
DBPutCurve returns zero on success and -1 on failure.
Description:

The DBPutCurve function writes a curve object into a Silo file. A curve is a set of x/y points that
describes a two-dimensional curve.

Both the xval s and yval s arrays must have the same datatype.

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name Da\t/ZI'LII'ipe Option Meaning Default Value
DBOPT_LABEL int Problem cycle value. 0
DBOPT_XLABEL char * Label for the x-axis NULL
DBOPT_YLABEL char * Label for the y-axis NULL

Silo User’s Guide 2-51

DBPutCurve

Option Name

Value
Data Type

Option Meaning

Default Value

DBOPT_XUNITS

char *

Character string defining the units for the
X-axis.

NULL

DBOPT_YUNITS

char *

Character string defining the units for the
y-axis

NULL

DBOPT_XVARNAME

char *

Name of the domain (x) variable. This is
the problem variable name, not the code
variable name passed into the xval s
argument.

NULL

DBOPT_YVARNAME

char *

Name of the domain (y) variable. This is
problem variable name, not the code vari-
able name passed into the yval s argu-
ment.

NULL

DBOPT_REFERENCE

char *

Name of the real curve object this object
references. The name can take the form of
‘<file:/path-to-curve-object>’ just as mesh
names in the DBPutMultiMesh call.

Note also that if this option is set, then the
caller must pass NULL for both xvals and
yvals arguments but must also pass valid
information for all other object attributes
including not only npoints and datatype
but also any options.

NULL

DBOPT_HIDE_FROM_GUI

int

Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

In some cases, particularly when writing multi-part silo files from parallel clients, it is convenient
to write curve data to something other than the “master” or “root” file. However, for a visualization
tool to become aware of such objects, the tool is then required to traverse all objects in all the files
of a multi-part file to find such objects. The DBOPT_REFERENCE option helps address this issue
by permitting the writer to create knowledge of a curve object in the “master” or “root” file but put
the actual curve object (the referenced object) wherever is most convenient. This output option

would be useful for other Silo objects, meshes and variables, as well. However, it is currently only
available for curve objects.

2-52

Silo User’s Guide

DBGetCurve

DBGet Cur ve—Read a curve from a Silo database.

Synopsis:
DBcurve *DBCGet Curve (DBfile *dbfile, char *curvenane)

Fortran Equivalent:

i nt eger function dbgetcurve(dbid, curvename, |curvenane, maxpts,
xval s, yvals, datatype, npts)

Arguments:

dbfile Database file pointer.

cur venane Name of the curve to read.
Returns:

DBCurve returns a pointer to a DBcurve structure on success and NULL on failure.

Description:

The DBGetCurve function allocates a DBcurve data structure, reads a curve from the Silo data-
base, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-53

DBPutPointmesh

DBPut Poi nt mesh—Write a point mesh object into a Silo file.

Synopsis:

i nt DBPut Poi ntmesh (DBfile *dbfile, char *nane, int ndins,
float *coords[], int nels, int datatype,
DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbputpn(dbid, name, |Inane, ndins, X, y, z, nels,
datatype, optlist_id, status)
float* x, y, z (if ndinse<3, z=0 ok, if ndinms<2, y=0 ok)

Arguments:
dbfile Database file pointer.
name Name of the mesh.
ndi s Number of dimensions.
coords Array of length ndi s containing pointers to coordinate arrays.
nel s Number of elements (points) in mesh.
dat at ype Datatype of the coordinate arrays. One of the predefined Silo data types.
optli st Pointer to an option list structure containing additional information to be
included in the mesh object written into the Silo file. Typically, this argument is
NULL.
Returns:

DBPutPointmesh returns zero on success and -1 on failure.
Description:

The DBPutPointmesh function accepts pointers to the coordinate arrays and is responsible for
writing the mesh into a point-mesh object in the Silo file.

A Silo point-mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the number of dimensions (1,2,3,...) and the number of points.

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_XLABEL char * Character string defining the label associ- | NULL
ated with the X dimension.

2-54 Silo User’s Guide

DBPutPointmesh

Value
Option Name Data Type Option Meaning Default Value

DBOPT_YLABEL char * Character string defining the label associ- | NULL
ated with the Y dimension.

DBOPT_ZLABEL char * Character string defining the label associ- | NULL
ated with the Z dimension.

DBOPT_NSPACE int Number of spatial dimensions used by this | ndims
mesh.

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ- | NULL
ated with the X dimension.

DBOPT_YUNITS char * Character string defining the units associ- | NULL
ated with the Y dimension.

DBOPT_ZUNITS char * Character string defining the units associ- | NULL
ated with the Z dimension.

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools

DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to | NULL
be associated with this mesh.

The following optlist options have been deprecated. Instead use MRG trees

DBOPT_GROUPNUM int The group number to which this point- -1 (not in a group)

mesh belongs.

Silo User’s Guide

2-55

DBGetPointmesh

DBCGet Poi nt mesh—Read a point mesh from a Silo database.

Synopsis:

DBpoi nt nesh *DBGet Poi nt mesh (DBfile *dbfile, char *meshnane)

Arguments:
dbfile Database file pointer.
meshnane Name of the mesh.
Returns:

DBGetPointmesh returns a pointer to a DBpointmesh structure on success and NULL on failure.
Description:

The DBGetPointmesh function allocates a DBpointmesh data structure, reads a point mesh from
the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-56 Silo User’s Guide

DBPutPointvar

DBPut Poi nt var —Write a vector/tensor point variable object into a Silo file.

Synopsis:

i nt DBPut Poi ntvar (DBfile *dbfile, char *nanme, char *neshnane,
int nvars, float *vars[], int nels,
i nt datatype, DBoptlist *optlist)

Fortran Equivalent:

None. See DBPut Poi ntvarl

Arguments:
dbfile Database file pointer.
name Name of the variable set.
meshnane Name of the associated point mesh.
nvars Number of variables supplied in var s array.
vars Array of length nvar s containing pointers to value arrays.
nel s Number of elements (points) in variable.
dat at ype Datatype of the value arrays. One of the predefined Silo data types.
optli st Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.
Returns:

DBPutPointvar returns zero on success and -1 on failure.
Description:

The DBPutPointvar function accepts pointers to the value arrays and is responsible for writing the
variables into a point-variable object in the Silo file.

A Silo point-variable object contains all necessary information for describing a variable associated
with a point mesh. This includes the number of arrays, the datatype of the variable, and the number
of points. This function should be used when writing vector or tensor quantities. Otherwise, it is
more convenient to use DBPutPointvarl.

Silo User’s Guide 2-57

DBPutPointvar

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_NSPACE int Number of spatial dimensions used by this | ndims
mesh.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_ASCII_LABEL int Indicate if the variable should be treated 0
as single character, ascii values. A value
of 1 indicates yes, 0 no.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools
DBOPT_REGION_PNAMES | char** A null-pointer terminated array of pointers | NULL

to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“DBOPT_REGION_PNAMES” on

page 179.

2-58

Silo User’s Guide

DBPutPointvarl

DBPut Poi nt var 1—Write a scalar point variable object into a Silo file.

Synopsis:

int DBPut Pointvarl (DBfile *dbfile, char *nane, char *neshnane,
float var[], int nels, int datatype,
DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbputpvl(dbid, nanme, |nanme, neshnane, | nmeshnane,
var, nels, datatype, optlist_id, status)

Arguments:
dbfile Database file pointer.
nanme Name of the variable.
meshnane Name of the associated point mesh.
var Array containing data values for this variable.
nel s Number of elements (points) in variable.
dat at ype Datatype of the variable. One of the predefined Silo data types.
optli st Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.
Returns:

DBPutPointvarl returns zero on success and -1 on failure.
Description:

The DBPutPointvarl function accepts a value array and is responsible for writing the variable into
a point-variable object in the Silo file.

A Silo point-variable object contains all necessary information for describing a variable associated
with a point mesh. This includes the number of arrays, the datatype of the variable, and the number
of points. This function should be used when writing scalar quantities. To write vector or tensor
quantities, one must use DBPutPointvar.

Silo User’s Guide 2-59

DBPutPointvarl

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_NSPACE int Number of spatial dimensions used by this | ndims
mesh.

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0

want this object to appear in menus of
downstream tools

2-60

Silo User’s Guide

DBGetPointvar

DBCGet Poi nt var —Read a point variable from a Silo database.

Synopsis:

DBreshvar *DBGet Poi ntvar (DBfile *dbfile, char *varnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
var nanme Name of the variable.
Returns:

DBGetPointvar returns a pointer to a DBmeshvar structure on success and NULL on failure.

Description:

The DBGetPointvar function allocates a DBmeshvar data structure, reads a variable associated
with a point mesh from the Silo database, and returns a pointer to that structure. If an error occurs,
NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-61

DBPutQuadmesh

DBPut Quadnmesh—Write a quad mesh object into a Silo file.

Synopsis:

i nt DBPut Quadrmesh (DBfile *dbfile, char *nanme, char *coordnanes|],
float *coords[], int dins[], int ndins,
i nt datatype, int coordtype,
DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbput gn(dbid, name, |name, xnane, |xname, ynane,
| ynane, znane, |znane, x, y, z, dins, ndins,
dat at ype, coordtype, optlist_id, status)

float* x, y, z (if ndinse<3, z=0 ok, if ndinms<2, y=0 ok)

character* xnane, yname, znane (if ndi ne<3, zname=0 ok, etc.)

Arguments:
dbfile Database file pointer.
name Name of the mesh.

coordnanes Array of length ndi s containing pointers to the names to be provided when
writing out the coordinate arrays. This parameter is currently ignored and can

be set as NULL.
coords Array of length ndi s containing pointers to the coordinate arrays.
di ns Array of length ndi s describing the dimensionality of the mesh. Each value

in the di s array indicates the number of nodes contained in the mesh along
that dimension.

ndi ns Number of dimensions.
dat at ype Datatype of the coordinate arrays. One of the predefined Silo data types.

coor dt ype Coordinate array type. One of the predefined types: DB_COLLINEAR or
DB_NONCOLLINEAR. Collinear coordinate arrays are always one-
dimensional, regardless of the dimensionality of the mesh; non-collinear arrays
have the same dimensionality as the mesh.

optli st Pointer to an option list structure containing additional information to be
included in the mesh object written into the Silo file. Typically, this argument is
NULL.

Returns:
DBPutQuadmesh returns zero on success and -1 on failure.
Description:

The DBPutQuadmesh function accepts pointers to the coordinate arrays and is responsible for
writing the mesh into a quad-mesh object in the Silo file.

2-62 Silo User’s Guide

DBPutQuadmesh

A Silo quad-mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear). In
addition, other information is useful and is therefore optionally included (row-major indicator,
time and cycle of mesh, offsets to ‘real’ zones, plus coordinate system type.)

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_COORDSYS int Coordinate system. One of: DB_OTHER
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_FACETYPE int Zone face type. One of the predefined DB_RECTILINEAR
types: DB_RECTILINEAR or
DB_CURVILINEAR.
DBOPT_HI_OFFSET int * Array of length ndi ns which defines zero- | {0,0,...}
origin offsets from the last node for the
ending index along each dimension.
DBOPT_LO_OFFSET int * Array of ndi ns which defines zero-origin {0,0,...}
offsets from the first node for the starting
index along each dimension.
DBOPT_XLABEL char * Character string defining the label associ- | NULL
ated with the X dimension.
DBOPT_YLABEL char * Character string defining the label associ- | NULL
ated with the Y dimension.
DBOPT_ZLABEL char * Character string defining the label associ- | NULL
ated with the Z dimension.
DBOPT_MAJORORDER int Indicator for row-major (0) or column- 0
major (1) storage for multidimensional
arrays.
DBOPT_NSPACE int Number of spatial dimensions used by this | ndims
mesh.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_PLANAR int Planar value. One of: DB_AREA or DB_OTHER
DB_VOLUME.
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_XUNITS char * Character string defining the units associ- | NULL

ated with the X dimension.

Silo User’s Guide

2-63

DBPutQuadmesh

Value
Option Name Data Type Option Meaning Default Value

DBOPT_YUNITS char * Character string defining the units associ- | NULL

ated with the Y dimension.
DBOPT_ZUNITS char * Character string defining the units associ- | NULL

ated with the Z dimension.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0

want this object to appear in menus of

downstream tools
DBOPT_BASEINDEX int[3] Indicate the indices of the mesh within its 0,0,0

group.
DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to | NULL

be associated with this mesh.

The following options have been deprecated. Use MRG trees instead

DBOPT_GROUPNUM int The group number to which this quad- -1 (not in a group)

mesh belongs.

The options DB_LO_OFFSET and DB_HI_OFFSET should be used if the mesh being described
uses the notion of “phoney” zones (i.e., some zones should be ignored.) For example, if a 2-D
mesh had designated the first column and row, and the last two columns and rows as “phoney”,
then we would use: lo_off = {1,1} and hi_off = {2,2}.

2-64 Silo User’s Guide

DBGetQuadmesh

DBCGet Quadnmesh—Read a quadrilateral mesh from a Silo database.

Synopsis:
DBquadnesh *DBCGet Quadnesh (DBfile *dbfile, char *meshnane)

Fortran Equivalent:

None

Arguments:
dbfile Database file pointer.
meshnane Name of the mesh.

Returns:

DBGetQuadmesh returns a pointer to a DBquadmesh structure on success and NULL on failure.

Description:

The DBGetQuadmesh function allocates a DBquadmesh data structure, reads a quadrilateral mesh
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-65

DBPutQuadvar

DBPut Quadvar —Write a vector/tensor quad variable object into a Silo file.

Synopsis:

i nt DBPut Quadvar (DBfile *dbfile, char *name, char *meshnane,

Fortran Equivalent:

int nvars, char *varnanes[], float *vars[],
int dims[], int ndinms, float *m xvars[],
int mxlen, int datatype, int centering,
DBoptlist *optlist)

None (see DBPut Quadvar 1)

Arguments:

dbfile Database file pointer.

nanme Name of the variable.

nmeshnane Name of the mesh associated with this variable (written with DBPutQuadmesh
or DBPutUcdmesh). If no association is to be made, this value should be NULL.

nvars Number of sub-variables which comprise this variable. For a scalar array, this is
one. If writing a vector quantity, however, this would be two for a 2-D vector
and three for a 3-D vector.

var nanes Array of length nvar s containing pointers to character strings defining the
names associated with each sub-variable.

vars Array of length nvar s containing pointers to arrays defining the values
associated with each subvariable

di s Array of length ndi s which describes the dimensionality of the variable. For
all non-DB_NODECENT centerings, each value in the di ns array indicates
the number of zones contained in the variable along that dimension. For
DB_NODECENT centerings only, each value in the di s array indicates the
number of nodes contained in the variable along that dimension.

ndi s Number of dimensions.

m xvar s Array of length nvar s containing pointers to arrays defining the mixed-data
values associated with each subvariable. If no mixed values are present, this
should be NULL.

m x| en Length of mixed data arrays, if provided.

dat at ype Datatype of the variable. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT or
DB_ZONECENT.

optli st Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.

2-66 Silo User’s Guide

DBPutQuadvar

Returns:

DBPutQuadvar returns zero on success and -1 on failure.

Description:

The DBPutQuadvar function writes a variable associated with a quad mesh into a Silo file. A quad-
var object contains the variable values.

For node- (or zone-) centered data, the question of which value in the var s array goes with which
node (or zone) is determined implicitly by a one-to-one correspondence with the multi-dimen-
sional array list of nodes (or zones) defined by the logical indexing for the associated mesh’s nodes
(or zones).

Edge- and face-centered data require a little more explanation. We can group edges according to
their logical orientation. In a 2D mesh of Nx by Ny zones, there are Nx(Ny+1) i-oriented edges
and Ny(Nx+1) j-oriented edges. Likewise, in a 3D mesh of Nx by Ny by Nz zones, there are
Nx(Ny+1)(Nz+1) i-oriented edges, Ny(Nx+1)(Nz+1), j-oriented edges and Nz(Nx+1)(Ny+1) k-
oriented edges. Consequently, edgelist for a quadmesh is taken to be all the i-oriented edges fol-
lowed by all the j-oriented edges followed by all the k-oriented edges.

A similar approach is used for faces. In a 3D mesh of Nx by Ny by Nz zones, there are
(Nx+1)NyNz i-intercepting faces, (Ny+1)NxNz j-intercepting faces and (Nz+1)NxNy k-intercept-
ing faces. The facelist for a quadmesh is taken to be all the i-intercepting faces, followed by all the
j-intercepting faces followed by all the k-intercepting faces.

Unlike node- and zone-centered data, there does not necessarily exist in Silo an explicit list of
edges or faces. As an aside, the DBPut Facel i st call is really for writing the external faces of a
mesh so that a downstream visualization tool need not have to compute them when it displays the
mesh. Now, requiring the caller to create explicit lists of edges and/or faces in order to handle
edge- or face-centered data results in unnecessary additional data being written to a Silo file. This
increases file size as well as the time to write and read the file. To avoid this, we rely upon implicit
lists of edges and faces.

Other information can also be included. This function is useful for writing vector and tensor fields,
whereas the companion function, DBPutQuadvarl, is appropriate for writing scalar fields.

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_COORDSYS int Coordinate system. One of: DB_OTHER
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.
DBOPT_CYCLE int Problem cycle value. 0

Silo User’s Guide 2-67

DBPutQuadvar

Value
Option Name Data Type Option Meaning Default Value
DBOPT_FACETYPE int Zone face type. One of the predefined DB_RECTILINEAR
types: DB_RECTILINEAR or
DB_CURVILINEAR.
DBOPT_LABEL char * Character string defining the label associ- | NULL
ated with this variable.
DBOPT_MAJORORDER int Indicator for row-major (0) or column- 0
major (1) storage for multidimensional
arrays.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_UNITS char * Character string defining the units associ- | NULL
ated with this variable.
DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value DB_OFF
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.
DBOPT_ASCII_LABEL int Indicate if the variable should be treated 0
as single character, ascii values. A value
of 1 indicates yes, 0 no.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools
DBOPT_REGION_PNAMES | char** A null-pointer terminated array of pointers | NULL

to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
‘DBOPT_REGION_PNAMES” on

page 179.

2-68

Silo User’s Guide

DBPutQuadvarl

DBPut Quadvar 1— Write a scalar quad variable object into a Silo file.

Synopsis:

i nt DBPut Quadvarl (DBfile *dbfile, char *nanme, char *neshnane,
float *var, int dins[], int ndins,
float *mi xvar, int mxlen, int datatype,
int centering, DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbputqgvl(dbid, nanme, |nanme, neshnane, | nmeshnane,
var, dins, ndins, mixvar, nixlen, datatype,
centering, optlist _id, status)

Arguments:

dbfile Database file pointer.

name Name of the variable.

nmeshnane Name of the mesh associated with this variable (written with DBPutQuadmesh
or DBPutUcdmesh.) If no association is to be made, this value should be NULL.

var Array defining the values associated with this variable.

di ns Array of length ndi s which describes the dimensionality of the variable. For
all non-DB_NODECENT centerings, each value in the di ms array indicates
the number of zones contained in the variable along that dimension. For
DB_NODECENT centerings only, each value in the di s array indicates the
number of nodes contained in the variable along that dimension.

ndi ms Number of dimensions.

m xvar Array defining the mixed-data values associated with this variable. If no mixed
values are present, this should be NULL.

m xl en Length of mixed data arrays, if provided.

dat at ype Datatype of sub-variables. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT or
DB_ZONECENT.

optli st Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.

Returns:
DBPutQuadvarl returns zero on success and -1 on failure.
Description:

The DBPutQuadvarl function writes a scalar variable associated with a quad mesh into a Silo file.
A quad-var object contains the variable values, plus the name of the associated quad-mesh. Other

Silo User’s Guide 2-69

DBPutQuadvarl

information can also be included. This function should be used for writing scalar fields, and its
companion function, DBPutQuadvar, should be used for writing vector and tensor fields.

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_COORDSYS int Coordinate system. One of: DB_OTHER
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_FACETYPE int Zone face type. One of the predefined DB_RECTILINEAR
types: DB_RECTILINEAR or
DB_CURVILINEAR.
DBOPT_LABEL char * Character string defining the label associ- | NULL
ated with this variable.
DBOPT_MAJORORDER int Indicator for row-major (0) or column- 0
major (1) storage for multidimensional
arrays.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_UNITS char * Character string defining the units associ- | NULL
ated with this variable.
DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value DB_OFF
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0

want this object to appear in menus of
downstream tools

2-70

Silo User’s Guide

DBGetQuadvar

DBCGet Quadvar —Read a quadrilateral variable from a Silo database.

Synopsis:
DBquadvar *DBGet Quadvar (DBfile *dbfile, char *varnamne)

Fortran Equivalent:

None

Arguments:
dbfile Database file pointer.
var nanme Name of the variable.

Returns:

DBGetQuadvar returns a pointer to a DBquadvar structure on success and NULL on failure.

Description:

The DBGetQuadvar function allocates a DBquadvar data structure, reads a variable associated
with a quadrilateral mesh from the Silo database, and returns a pointer to that structure. If an error
occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-71

DBPutUcdmesh

DBPut Ucdnesh—Write a UCD mesh object into a Silo file.

Synopsis:

Fortran Equivalent:

i nt eger function dbput un{dbid,

i nt DBPut Ucdrmesh (DBfile *dbfile, char *nane, int ndins,
char *coordnanes[], float *coords[],
i nt nnodes, int nzones,
char *zonel _nane, char *facel _nane,
i nt datatype, DBoptlist *optlist)
nane, | nanme, ndins, X, y, z, xnane,
| xname, ynane, |ynanme, znane, |znanme, nnodes
nzones, zonel nane, |zonel name, facel nane,
| facel _name, datatype, optlist_id, status)

fl oat

*X,¥,z (if ndinms<3,

z=0 ok, if ndinms<2, y=0 ok)

character* xnane, ynane, znane (same rul es)

Arguments:

dbfile
namne
ndi ns

coor dnanes

coords
nnodes
nzones
zonel _name

facel name

dat at ype
optli st

Database file pointer.
Name of the mesh.
Number of spatial dimensions represented by this UCD mesh.

Array of length ndi s containing pointers to the names to be provided when
writing out the coordinate arrays. This parameter is currently ignored and can
be set as NULL.

Array of length ndi s containing pointers to the coordinate arrays.
Number of nodes in this UCD mesh.
Number of zones in this UCD mesh.

Name of the zonelist structure associated with this variable [written with
DBPutZonelist]. If no association is to be made or if the mesh is composed
solely of arbitrary, polyhedral elements, this value should be NULL. If a
polyhedral-zonelist is to be associated with the mesh, DO NOT pass the name of
the polyhedral-zonelist here. Instead, use the DBOPT_PHZONELIST option
described below. For more information on arbitrary, polyhedral zonelists, see
below and also see the documentation for DBPutPHZonelist.

Name of the facelist structure associated with this variable [written with
DBPutFacelist]. If no association is to be made, this value should be NULL.

Datatype of the coordinate arrays. One of the predefined Silo data types.

Pointer to an option list structure containing additional information to be
included in the mesh object written into the Silo file. See the table below for the
valid options for this function. If no options are to be provided, use NULL for
this argument.

2-72

Silo User’s Guide

DBPutUcdmesh

Returns:

DBPutUcdmesh returns zero on success and -1 on failure.

Description:

Notes:

The DBPutUcdmesh function accepts pointers to the coordinate arrays and is responsible for writ-
ing the mesh into a UCD mesh object in the Silo file.

A Silo UCD mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3....) and the type (collinear or non-collinear.) In
addition, other information is useful and is therefore included (time and cycle of mesh, plus coor-
dinate system type).

A Silo UCD mesh may be composed of either zoo-type elements or arbitrary, polyhedral elements
or a mixture of both zoo-type and arbitrary, polyhedral elements. The zonelist (connectivity) infor-
mation for zoo-type elements is written with a call to DBPutZonelist. When there are only zoo-
type elements in the mesh, this is the only zonelist information associated with the mesh. However,
the caller can optionally specify the name of an arbitrary, polyhedral zonelist written with a call to
DBPutPHZonelist using the DBOPT_PHZONELIST option. If the mesh consists solely of arbi-
trary, polyhedral elements, the only zonelist associated with the mesh will be the one written with
the call to DBPutPHZonelist.

When a mesh is composed of both zoo-type elements and polyhedral elements, it is assumed that
all the zoo-type elements come first in the mesh followed by all the polyhedral elements. This has
implications for any DBPutUcdvar calls made on such a mesh. For zone-centered data, the vari-
able array should be organized so that values corresponding to zoo-type zones come first followed
by values corresponding to polyhedral zones. Also, since both the zoo-type zonelist and the poly-
hedral zonelist support hi- and lo- offsets for ghost zones, the ghost-zones of a mesh may consist
of zoo-type or polyhedral zones or a mixture of both.

See the description of “DBCalcExternalFacelist” on page 2-185 or “DBCalcExternalFacelist2” on
page 2-187 for an automated way of computing the facelist needed for this call.

Silo User’s Guide 2-73

DBPutUcdmesh

1 2 3
| |
4 1	5 I I
:	713
A 8_	___/9
e e Y	
10 11 12	
X	
nnodes = 13	
nzones =3	
nzshapes =2	
znodelist = 2*8 + 1*5 = 21 zone nodes	
nf aces = 13 external faces	
nf shapes = 2 external face shapes	
nftypes =0	
fnodelist = 9*4 + 4*3 = 48 external face nodes	
fnodelist = { 1,2,8,7 external face nodeli st
2,3,9,8,
8,9,12, 11,
5,6,12,11,...}
f shapesi ze = {4,3} external face shape sizes
fshapecnt = {9, 4} external face shape counts
fzoneno ={1,2,2,2,...}external face zone nos
znodelist = { 7,610,11,8,1,4,5,2, zone nodeli st

8,11,12.9,2,5.6, 3,
3,9, 12, 6,13}

zshapesi ze = {8,5} zone shape sizes

zshapecnt
x = {0,1,
y ={11
z ={1,1,

= {2,1} zone shape counts
0,1,2,0,1,2,0,1, 2, 3}
0,0,0,1,1,1,0,0,0,.5}
1,1,1,0,0,0,0,0,0, .5}

Figure 0-1: Example usage of UCD zonelist and external facelist variables.

The order in which nodes are defined in the zonelist is important, especially for 3D cells. Nodes
defining a 2D cell should be supplied in either clockwise or counterclockwise order around the

2-74

Silo User’s Guide

DBPutUcdmesh

cell. The node, edge and face ordering and orientations for the predefined 3D cell types are illus-
trated below.

NodezOrder Edge Order Face Order

0:012
1:023
2:031
3:132

Tetrahedron

0:0123
1:034
2:041
3:142
4:243

Pyramid

f\ 8 7K 0:0123
2 4 1:034
Prism 78 > 2:0451

1'/ 3 3:152
2 5 4:2543

0:0154
1:0321
2:0473

- 3:1265
e eoo) 412376
’ 5:4567

Hexahedron 0

Figure 0-2: Node, edge and face ordering for zoo-type UCD zone shapes.

Given the node ordering in the left-most column, there is indeed an algorithm for determining the
other orderings for each cell type.

For edges, each edge is identified by a pair of integer indices; the first being the “tail” of an arrow
oriented along the edge and the second being the “head” with the smaller node index always
placed first (at the tail). Next, the ordering of edges is akin to a lexicographic ordering of these
pairs of integers. This means that we start with the lowest node number of a cell shape, zero, and
find all edges with node zero as one of the points on the edge. Each such edge will have zero as its
tail. Since they all start with node 0 as the tail, we order these edges from smallest to largest
“head” node. Then we go to the next lowest node number on the cell that has edges that have yet to

Silo User’s Guide 2-75

DBPutUcdmesh

have been placed in the ordering. We find all the edges from that node (that have not already been
placed in the ordering) from smallest to largest “head” node. We continue this process until all the
edges on the cell have been placed in the ordering.

For faces, a similar algorithm is used. Starting with the lowest numbered node on a face, we enu-
merate the nodes over a face using the right hand rule for the normal to the face pointing away
from the innards of the cell. When one places the thumb of the right hand in the direction of this
normal, the direction of the fingers curling around it identify the direction we go to identify the
nodes of the face. Just as for edges, we start identifying faces for the lowest numbered node of the
cell (0). We find all faces that share this node. Of these, the face that enumerates the next lowest
node number as we traverse the nodes using the right hand rule, is placed first in the ordering.
Then, the face that has the next lowest node number and so on.

The nodes of a DB_ZONETYPE_POLYHEDRON are specified in the following fashion: First
specify the number of faces in the polyhedron. Then, for each face, specify the number of nodes in
the face followed by the nodes that make up the face. The nodes should be ordered such that they
are numbered in a counter-clockwise fashion when viewed from the outside. For a fully arbitrarily
connected mesh, see DBPutPHZonelist().

2-76

Silo User’s Guide

DBPutUcdmesh

1 2 3
i .
4 1	5 I I
:	713
z A 8_	___/9
i i Y	
10 11 12	
X	
nzones =3	
nzshapes =2	
znodelist =8+ 1 +6 *5+1+5+4%* 4 =261	
znodel i st = {7,10,11,8,1,4,5, 2,
61
4,11,12,9, 8,
4,12,6, 3,9,
4,6,5, 2, 3,
4,5, 11 8 2
4,5, 6, 12 11
4,3, 2, 8, 9
51
4,3,6,12,9,
3,6, 13, 12
3,12, 13 9,
3,9, 13, 3
3, 3,13, 6}
zshapetype = {DB_ ZO\IETYPE HEX,
DB ZONETYPE PO_YHEDRO\I}
zshapecnt = {1, 2}
zshapesi ze = {8, 53}

Figure 0-3: Example usage of UCD zonelist combining a hex and 2 polyhedra.

Silo User’s Guide 2-77

DBPutUcdmesh

The following table describes the options accepted by this function:

Value
Option Name Data Type Option Meaning Default Value
DBOPT_COORDSYS int Coordinate system. One of: DB_OTHER
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.
DBOPT_NODENUM int* An array of length nnodes giving a global | NULL
node number for each node in the mesh.
DBOPT_CYCLE int Problem cycle value 0
DBOPT_FACETYPE int Zone face type. One of the predefined DB_RECTILINEAR
types: DB_RECTILINEAR or
DB_CURVILINEAR.
DBOPT_XLABEL char * Character string defining the label associ- | NULL
ated with the X dimension.
DBOPT_YLABEL char * Character string defining the label associ- | NULL
ated with the Y dimension.
DBOPT_ZLABEL char * Character string defining the label associ- | NULL
ated with the Z dimension.
DBOPT_NSPACE int Number of spatial dimensions used by this | ndi ns
mesh.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_PLANAR int Planar value. One of: DB_AREA or DB_NONE
DB_VOLUME.
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_XUNITS char * Character string defining the units associ- | NULL
ated with the X dimension.
DBOPT_YUNITS char * Character string defining the units associ- | NULL
ated with the Y dimension.
DBOPT_ZUNITS char * Character string defining the units associ- | NULL
ated with the Z dimension.
DBOPT_PHZONELIST char * Character string holding the name for a NULL
polyhedral zonelist object to be associated
with the mesh
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools
DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to | NULL

be associated with this mesh.

2-78

Silo User’s Guide

DBPutUcdmesh

Value
Option Name Data Type Option Meaning Default Value

DBOPT_TOPO_DIM int Used to indicate the topological dimension | same as spatial

of the mesh apart from its spatial dimen-

sion.
DBOPT_TV_CONNECTIVTY | int A non-zero value indicates that the con- 0

nectivity of the mesh varies with time
DBOPT_DISJOINT_MODE int Indicates if any elements in the mesh are DB_NONE

disjoint. There are two possible modes.
One is DB_ABUTTING indicating that ele-
ments abut spatially but actually reference
different node ids (but spatially equivalent
nodal positions) in the node list. The other
is DB_FLOATING where elements neither
share nodes in the nodelist nor abut spa-
tially.

The foll

owing options

have been deprecated. Use MRG trees instead

DBOPT_GROUPNUM

int

The group number to which this quad-

mesh belongs.

-1 (not in a group)

Silo User’s Guide

2-79

DBPutUcdsubmesh

DBPut Ucdsubmesh—Write a subset of a parent, ucd mesh, to a Silo file

Synopsis:

i nt DBPut Ucdsubnmesh(DBfile *file, const char *nane,
const char *parentnesh, int nzones, const char *zl nane,
const char *flnane, DBoptlist *opts)

Fortran Equivalent:

None
Arguments:
file The Silo database file handle.
name The name of the ucd submesh object to create.

parent mesh The name of the parent ucd mesh this submesh is a portion of.

nzones The number of zones in this submesh.
zl name The name of the zonelist object.
fl [OPT] The name of the facelist object.
opts Additional options.

Returns:

A positive number on success; -1 on failure
Description:

DO NOT USE THIS METHOD.

It is an extremely limited, inefficient and soon to be retired way of trying to define subsets of
a ucd mesh. Instead, use a Mesh Region Grouping (MRG) tree. See “DBMakeMrgtree” on
page 158.

2-80 Silo User’s Guide

DBGetUcdmesh

DBGet Ucdnmesh—Read a UCD mesh from a Silo database.

Synopsis:
DBucdnesh *DBGet Ucdnmesh (DBfile *dbfile, char *nmeshnane)

Fortran Equivalent:

None

Arguments:
dbfile Database file pointer.
meshnane Name of the mesh.

Returns:

DBGetUcdmesh returns a pointer to a DBucdmesh structure on success and NULL on failure.

Description:

The DBGetUcdmesh function allocates a DBucdmesh data structure, reads a UCD mesh from the
Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-81

DBPutZonelist

DBPut Zonel i st —Write a zonelist object into a Silo file.

Synopsis:

i nt DBPut Zonelist (DBfile *dbfile, char *nane, int nzones,
int ndinms, int nodelist[], int |Inodelist,
int origin, int shapesize[], int shapecnt[],
i nt nshapes)

Fortran Equivalent:

i nt eger function dbputzl (dbid, nanme, |nane, nzones, ndins,
nodel i st, | nodelist, origin, shapesize,
shapecnt, nshapes, status)

Arguments:
dbfile Database file pointer.
name Name of the zonelist structure.
nzones Number of zones in associated mesh.
ndi s Number of spatial dimensions represented by associated mesh.
nodel i st Array of length | nodel i st containing node indices describing mesh zones.
| nodel i st Length of nodelist array.
origin Origin for indices in the nodelist array. Should be zero or one.
shapesi ze Array of length nshapes containing the number of nodes used by each zone
shape.
shapecnt Array of length nshapes containing the number of zones having each shape.
nshapes Number of zone shapes.

Returns:

DBPutZonelist returns zero on success or -1 on failure.

Description:

Notes:

Do not use this method. Use DBPutZonelist2() instead.

The DBPutZonelist function writes a zonelist object into a Silo file. The name assigned to this
object can in turn be used as the zonel _nane parameter to the DBPutUcdmesh function.

See the write-up of DBPutUcdmesh for a full description of the zonelist data structures.

2-82

Silo User’s Guide

DBPutZonelist2

DBPut Zonel i st 2—Write a zonelist object containing ghost zones into a Silo file.

Synopsis:

i nt DBPut Zonelist2 (DBfile *dbfil e,

Fortran Equivalent:

i nteger function dbputzl 2(dbid,

Arguments:

dbfile
name
nzones
ndi s
nodel i st

| nodel i st
origin

| o_of fset
hi _of f set
shapet ype

shapesi ze

shapecnt
nshapes
optli st

Returns:

char *nane, int nzones,
int ndinms, int nodelist[], int |Inodelist,
int origin, int lo_offset, int hi_offset,
i nt shapetype[], int shapesize[],

i nt shapecnt[], int nshapes,

DBoptlist *optlist)

name, | nanme, nzones, ndins,
nodel i st, |Inodelist, origin, |o_offset,
hi _of fset, shapetype, shapesize, shapecnt,
nshapes, optlist_id, status)

Database file pointer.

Name of the zonelist structure.

Number of zones in associated mesh.

Number of spatial dimensions represented by associated mesh.

Array of length | nodel i st containing node indices describing mesh zones.
Length of nodelist array.

Origin for indices in the nodelist array. Should be zero or one.

The number of ghost zones at the beginning of the nodel i st .

The number of ghost zones at the end of the nodel i st .

Array of length nshapes containing the type of each zone shape. See
description below.

Array of length nshapes containing the number of nodes used by each zone
shape.

Array of length nshapes containing the number of zones having each shape.
Number of zone shapes.

Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

DBPutZonelist2 returns zero on success or -1 on failure.

Silo User’s Guide

2-83

DBPutZonelist2

Description:

The DBPutZonelist2 function writes a zonelist object into a Silo file. The name assigned to this
object can in turn be used as the zonel _nane parameter to the DBPutUcdmesh function.

The allowed shape types are described in the following table:

Type Description

DB_ZONETYPE_BEAM A line segment

DB_ZONETYPE_POLYGON A polygon where nodes are enumerated to form a polygon
DB_ZONETYPE_TRIANGLE A triangle

DB_ZONETYPE_QUAD A quadrilateral

DB_ZONETYPE_POLYHEDRON | A polyhedron with nodes enumerated to form faces and
faces are enumerated to form a polyhedron

DB_ZONETYPE_TET A tetrahedron

DB_ZONETYPE_PYRAMID A pyramid

DB_ZONETYPE_PRISM A prism

DB_ZONETYPE_HEX A hexahedron

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value
DBOPT_ZONENUM int* Array of global zone numbers, one per NULL
zone in this zonelist.

DBOPT_EDGELIST char® Name of explicit edgelist object NULL

For a description of how the nodes for the allowed shapes are enumerated, see “DBPutUcdmesh”
on page 2-72

2-84 Silo User’s Guide

DBPutPHZonelist

DBPut PHZonel | st —Write an arbitrary, polyhedral zonelist object into a Silo file.

Synopsis:

i nt DBPut PHZonelist (DBfile *dbfile, char *name, int nfaces,

Fortran Equivalent:

i nt *nodecnts, int |Inodelist, int *nodelist,
char *extface, int nzones, int *facecnts,
int Ifacelist, int *facelist, int origin,
int o _offset, int hi_offset,

DBoptlist *optlist)

None
Arguments:

dbfile Database file pointer.

nanme Name of the zonelist structure.

nf aces Number of faces in the zonelist. Note that faces shared between zones should
only be counted once.

nodecnt s Array of length nf aces indicating the number of nodes in each face. That is
nodecnt s[i] is the number of nodes in face i .

| nodel i st Length of the succeeding nodel i st array.

nodel i st Array of length | nodel i st listing the nodes of each face. The list of nodes
for face i begins at index Sum(nodecnts[j]) for j=0...i-1.

extface An optional array of length nf aces where ext f ace[i] ! =0x0 means that
face i is an external face. This argument may be NULL.

nzones Number of zones in the zonelist.

facecnts Array of length nzones where f acecnt s[i] is number of faces for zone i .

| faceli st Length of the succeeding f acel i st array.

faceli st Array of face ids for each zone. The list of faces for zone i begins at index
Sum(facecnts[j]) for j=0...i-1. Note, however, that each face is
identified by a signed value where the sign is used to indicate which ordering of
the nodes of a face is to be used. A face id >= 0 means that the node ordering as
it appears in the nodel i st should be used. Otherwise, the value is negative
and it should be 1-complimented to get the face’s true id. In addition, the node
ordering for such a face is the opposite of how it appears in the nodelist. Finally,
node orders over a face should be specified such that a right-hand rule yields the
outward normal for the face relative to the zone it is being defined for.

origin Origin for indices in the nodelist array. Should be zero or one.

| 0- of f set Index of first real (e.g. non-ghost) zone in the list. All zones with index less than
(<) | o- of f set are treated as ghost-zones.

hi - of f set Index of last real (e.g. non-ghost) zone in the list. All zones with index greater

Silo User’s Guide

2-85

DBPutPHZonelist

than (>) hi - of f set are treated as ghost zones.
Returns:
DBPutPHZonelist returns zero on success or -1 on failure.
Description:

The DBPutPHZonelist function writes a polyhedral-zonelist object into a Silo file. The name
assigned to this object can in turn be used as the parameter in the DBOPT_PHZONELIST option
for the DBPutUcdmesh function.

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value
DBOPT_ZONENUM int* Array of global zone numbers, one per NULL
zone in this zonelist.
9 10 11
zone 0 9 rh !
| | |
| | ——— one 1
| | |
6] 7 [8 I
| |
l . .
| | |
Y | | |
3e 4if k5!
i I 4
e i
I/ - al - - b Z
0 1 2
X

In interpreting the diagram above, numbers correspond to nodes while letters correspond to faces.
In addition, the letters are drawn such that they will always be in the lower, right hand corner of a
face if you were standing outside the object looking towards the given face. In the example code
below, the list of nodes for a given face begin with the node nearest its corresponding letter.

2-86 Silo User’s Guide

DBPutPHZonelist

#defi ne NNODES 12
#defi ne NFACES 11
#defi ne NZONES 2

/* coordinate arrays */
float x[NNODES] = {0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0};
float y[NNODES] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
float z[NNODES] = {0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0};
/* facelist where we enunerate the nodes over each face */
int nodecnts[NFACES] = {4,4,4,4,4,4,4,4,4,4, 4};
int | nodelist = 4*NFACES;
/* a b c */
int nodelist[4*NFACES] = {1,7,6,0, 2,8,7,1 4,1,0, 3,
/* d e f */
52,1, 4, 3,9, 10,4, 4,10, 11, 5,
/* g h i */
9,6,7, 10, 10,7,8,11, 0,6,9,3,
/* j K */

1,7,10,4, 5,11, 8, 2};

/* zonelist where we enunerate the faces over each zone */
int facecnts[NZONES] = {6, 6};

int |facelist = 6*NZONES;

int facelist[6*NZONES] = {0,2,4,6,8,-9, 1,3,5,7,9,10};

Figure 0-4: Example of a polyhedral zonelist representation for two hexahedral elements.

Silo User’s Guide 2-87

DBGetPHZonelist

DBCGet PHZonel i st —Read a polyhedral-zonelist from a Silo database.

Synopsis:
DBphzonel i st *DBGet PHZonel i st (DBfile *dbfile, char *phzl nane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

phzl nane Name of the polyhedral-zonelist.
Returns:

DBGetPHZonelist returns a pointer to a DBphzonelist structure on success and NULL on failure.
Description:

The DBGetPHZonelist function allocates a DBphzonelist data structure, reads a polyhedral-zonel-
ist from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-88 Silo User’s Guide

DBPutFacelist

DBPut Facel i st —Write a facelist object into a Silo file.

Synopsis:

i nt DBPut Facelist (DBfile *dbfile,

Fortran Equivalent:

i nt eger function dbputfl (dbid,

Arguments:

dbfile
name

nf aces
ndi s
nodel i st
| nodel i st
origin
zoneno

shapesi ze

shapecnt

nshapes
types

typeli st

ntypes

Returns:

char *nane, int nfaces,

int ndinms, int nodelist[], int |Inodelist,
int origin, int zoneno[], int shapesize[],
int shapecnt[], int nshapes, int types[],
int typelist[], int ntypes)

nanme, | nanme, ndi ns nodeli st,
| nodelist, origin, zoneno, shapesize,
shapecnt, nshaps, types, typelist, ntypes,
st at us)

Database file pointer.

Name of the facelist structure.

Number of external faces in associated mesh.

Number of spatial dimensions represented by the associated mesh.

Array of length | nodel i st containing node indices describing mesh faces.
Length of nodelist array.

Origin for indices in nodelist array. Either zero or one.

Array of length nf aces containing the zone number from which each face
came. Use a NULL for this parameter if zone numbering info is not wanted.

Array of length nshapes containing the number of nodes used by each face
shape (for 3-D meshes only).

Array of length nshapes containing the number of faces having each shape
(for 3-D meshes only).

Number of face shapes (for 3-D meshes only).

Array of length nf aces containing information about each face. This
argument is ignored if Nt ypes is zero, or if this parameter is NULL.

Array of length nt ypes containing the identifiers for each type. This argument
is ignored if nt ypes is zero, or if this parameter is NULL.

Number of types, or zero if type information was not provided.

DBPutFacelist returns zero on success or -1 on failure.

Silo User’s Guide

2-89

DBPutFacelist

Description:

The DBPutFacelist function writes a facelist object into a Silo file. The name given to this object
can in turn be used as a parameter to the DBPutUcdmesh function.

Notes:

See the write-up of DBPutUcdmesh for a full description of the facelist data structures.

2-90 Silo User’s Guide

DBPutUcdvar

DBPut Ucdvar —Write a vector/tensor UCD variable object into a Silo file.

Synopsis:

i nt DBPut Ucdvar (DBfile *dbfile, char *nane, char *neshnane,

Fortran Equivalent:
None
Arguments:

dbfile
nane
meshnanme
nvars
var nanes
vars

nel s

m xvar s

nm xl en
dat at ype
centering

optli st

Returns:

int nvars, char *varnanes[], float *vars[],
int nels, float *mixvars[], int mxlen,

int datatype, int centering,

DBoptlist *optlist)

Database file pointer.
Name of the variable.
Name of the mesh associated with this variable (written with DBPutUcdmesh).

Number of sub-variables which comprise this variable. For a scalar array, this is
one. If writing a vector quantity, however, this would be two for a 2-D vector
and three for a 3-D vector.

Array of length nvar s containing pointers to character strings defining the
names associated with each subvariable.

Array of length nvar s containing pointers to arrays defining the values
associated with each subvariable.

Number of elements in this variable.

Array of length nvar s containing pointers to arrays defining the mixed-data
values associated with each subvariable. If no mixed values are present, this
should be NULL.

Length of mixed data arrays (i.e., m xvars).
Datatype of sub-variables. One of the predefined Silo data types.

Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT,
DB_ZONECENT or DB_ BLOCKCENT. See below for a discussion of
centering issues.

Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

DBPutUcdvar returns zero on success and -1 on failure.

Silo User’s Guide

2-91

DBPutUcdvar

Description:

The DBPutUcdvar function writes a variable associated with an UCD mesh into a Silo file. Note
that variables can be node-centered, zone-centered, edge-centered or face-centered.

For node- (or zone-) centered data, the question of which value in the var s array goes with which
node (or zone) is determined implicitly by a one-to-one correspondence with the list of nodes in
the DBPutUcdmesh call (or zones in the DBPut Zonel i st or DBPut Zonel i st 2 call). For
example, the 237th value in a zone-centered var s array passed here goes with the 237th zone in
the zonelist passed in the DBPut Zonel i st 2 (or DBPut Zonel i st) call.

Edge- and face-centered data require a little more explanation. Unlike node- and zone-centered
data, there does not exist in Silo an explicit list of edges or faces. As an aside, the DBPut -
Facel i st call is really for writing the external faces of a mesh so that a downstream visualiza-
tion tool need not have to compute them when it displays the mesh. Now, requiring the caller to
create explicit lists of edges and/or faces in order to handle edge- or face-centered data results in
unnecessary additional data being written to a Silo file. This increases file size as well as the time
to write and read the file. To avoid this, we rely upon implicit lists of edges and faces.

We define implicit lists of edges and faces in terms of a traversal of the zonelist structure of the
associated mesh. The position of an edge (or face) in its list is determined by the order of its first
occurrence in this traversal. The traversal algorithm is to visit each zone in the zonelist and, for
each zone, visit its edges (or faces) in local order. See Figure 0-2 on page 75. Because this traversal
will wind up visiting edges multiple times, the first time an edge (or face) is encountered is what
determines its position in the implicit edge (or face) list.

If the zonelist contains arbitrary polyhedra or the zonelist is a polyhedral zonelist (written with
DBPutPHZonelist), then the traversal algorithm involves visiting each zone, then each face for a
zone and finally each edge for a face.

Note that DBPutUcdvar() can also be used to define a block-centered variable on a multi-block
mesh by specifying a multi-block mesh name for the meshname and DB_BLOCKCENT for the
centering. This is useful in defining, for example, multi-block variable extents.

Other information can also be included. This function is useful for writing vector and tensor fields,
whereas the companion function, DBPutUcdvarl, is appropriate for writing scalar fields.

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of: DB_OTHER
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character strings defining the label asso- NULL
ciated with this variable.

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

2-92

Silo User’s Guide

DBPutUcdvar

Value
Option Name Data Type Option Meaning Default Value
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_UNITS char* Character string defining the units associ- | NULL
ated with this variable.
DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value DB_OFF
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.
DBOPT_ASCII_LABEL int Indicate if the variable should be treated 0
as single character, ascii values. A value
of 1 indicates yes, 0 no.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools
DBOPT_REGION_PNAMES | char** A null-pointer terminated array of pointers | NULL

to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“‘DBOPT_REGION_PNAMES” on

page 179.

Silo User’s Guide

2-93

DBPutUcdvarl

DBPut Ucdvar 1—Write a scalar UCD variable object into a Silo file.

Synopsis:

int DBPut Ucdvarl (DBfile *dbfile, char *name, char *meshnane,
float *var, int nels, float *m xvar,
int mxlen, int datatype, int centering,
DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbputuvl(dbid, nanme, |nanme, neshnane, | nmeshnane,
var, nels, nixvar, mxlen, datatype,
centering, optlist_id, staus)

Arguments:

dbfile Database file pointer.

nane Name of the variable.

nmeshnane Name of the mesh associated with this variable (written with either
DBPutUcdmesh).

var Array of length nel s containing the values associated with this variable.

nel s Number of elements in this variable.

m xvar Array of length mi x| en containing the mixed-data values associated with this
variable. If m x| en is zero, this value is ignored.

m x| en Length of mixvar array. If zero, no mixed data is present.

dat at ype Datatype of variable. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT or
DB_ZONECENT.

optli st Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:
DBPutUcdvarl returns zero on success and -1 on failure.
Description:

DBPutUcdvarl writes a variable associated with an UCD mesh into a Silo file. Note that variables
will be either node-centered or zone-centered. Other information can also be included. This func-

tion is useful for writing scalar fields, whereas the companion function, DBPutUcdvar, is appropri-
ate for writing vector and tensor fields.

2-94 Silo User’s Guide

DBPutUcdvarl

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value
DBOPT_COORDSYS int Coordinate system. One of: DB_OTHER
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_LABEL char * Character strings defining the label asso- | NULL
ciated with this variable.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_UNITS char * Character string defining the units associ- | NULL
ated with this variable.
DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value DB_OFF
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0

want this object to appear in menus of
downstream tools

Silo User’s Guide

2-95

DBGetUcdvar

DBGet Ucdvar —Read a UCD variable from a Silo database.

Synopsis:
DBucdvar *DBGet Ucdvar (DBfile *dbfile, char *varnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
var nanme Name of the variable.
Returns:

DBGetUcdvar returns a pointer to a DBucdvar structure on success and NULL on failure.
Description:

The DBGetUcdvar function allocates a DBucdvar data structure, reads a variable associated with a
UCD mesh from the Silo database, and returns a pointer to that structure. If an error occurs, NULL
is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-96 Silo User’s Guide

DBPutCsgmesh

DBPut Csgnesh—Write a CSG mesh object to a Silo file

Synopsis:
DBPut Csgnesh(DBfil e *dbfile, const char *nane, int ndimns,
i nt nbounds,
const int *typeflags, const int *bndids,
const void *coeffs, int |Icoeffs, int datatype,

const double *extents,
DBoptlist *optlist);

const char *zonel _nane,

Fortran Equivalent:

i nteger function dbputcsgnm(dbid, nane,
typefl ags, bndids,
extents, zonel nane,
st at us)

| name, ndi ns, nbounds,
coeffs, lcoeffs, datatype,
| zonel _name, optlist_id,

Arguments:

dbfile
name

ndi s
nbounds
typefl ags

bndi ds

coeffs

| coeffs
dat at ype
zonel _name

extents

Database file pointer

Name to associate with this DBcsgmesh object

Number of spatial and topological dimensions of the CSG mesh object
Number of boundaries in the CSG mesh description.

Integer array of length nbounds of type information for each boundary. This is
used to encode various information about the type of each boundary such as, for
example, plane, sphere, cone, general quadric, etc as well as the number of
coefficients in the representation of the boundary. For more information, see the
description, below.

Optional integer array of length nbounds which are the explicit integer
identifiers for each boundary. It is these identifiers that are used in expressions
defining a region of the CSG mesh. If the caller passes NULL for this argument,
a natural numbering of boundaries is assumed. That is, the boundary occurring
at position i , starting from zero, in the list of boundaries here is identified by
the integer i .

Array of length | coef f s of coefficients used in the representation of each
boundary or, if the boundary is a transformed copy of another boundary, the
coefficients of the transformation. In the case where a given boundary is a
transformation of another boundary, the first entry in the coef f s entries for the
boundary is the (integer) identifier for the referenced boundary. Consequently, if
the datatype for coeffs is DB_FLOAT, there is an upper limit of about 16.7
million (2724) boundaries that can be referenced in this way.

Length of the coef f s array.
The data type of the data in the coef f s array.
Name of CSG zonelist to be associated with this CSG mesh object

Array of length 2*ndi ns of spatial extents, xy(z)-minimums followed by

Silo User’s Guide

2-97

DBPutCsgmesh

xy(z)-maximums.

optli st Pointer to an option list structure containing additional information to be
included in the CSG mesh object written into the Silo file. Use NULL if there
are no options.

Returns:
DBPutCsgMesh returns zero on success and -1 on failure.
Description:

The word “mesh” in this function name is probably somewhat misleading because it suggests a
discretization of a domain into a “mesh”. In fact, a CSG (Constructive Solid Geometry) “mesh” in
Silo is a continuous, analytic representation of the geometry of some computational domain.
Nonetheless, most of Silo’s concepts for meshes, variables, materials, species and multi-block
objects apply equally well in the case of a CSG “mesh” and so that is what it is called, here. Pres-
ently, Silo does not have functions to discretize this kind of mesh. It has only the functions for stor-
ing and retrieving it. Nonetheless, a future version of Silo may include functions to discretize a
CSG mesh.

A CSG mesh is constructed by starting with a list of analytic boundaries, that is curves in 2D or
surfaces in 3D, such as planes, spheres and cones or general quadrics. Each boundary is defined by
an analytic expression (an equation) of the form f{x,),z)=0 (or, in 2D, f{x,y)=0) in which the high-
est exponent for x, y or z is 2. That is, all the boundaries are quadratic (or “quadric”) at most.

The table below describes how to use the t ypef | ags argument to define various kinds of bound-
aries in 3 dimensions.

typeflag L coefficients and equation
8
e
IS
5
c
DBCSG_QUADRIC_G 10 aox2 + aly2 + a222 +a,xy+ayyz+asxz+agx+a,y+agz+ag = 0
DBCSG_SPHERE_PR 4 (x—ay)’ +(y—a,)" +(z—a,)"—a,” = 0
DBCSG_ELLIPSOID_PRRR 6 (x—ay)’/a3+(y—a,) /a; +(z—a,) /as—1 = 0
DBCSG_PLANE_G 4 agx+a,y+ayz+a; = 0
DBCSG_PLANE_X 1 x—a; =0
DBCSG_PLANE_Y 1 y—a, =0
DBCSG_PLANE_Z 1 z—a, =0
DBCSG_PLANE_PN 6 (x—ag)ag+(y—aj)ay, +(z—ay)as = 0
DBCSG_PLANE_PPP 9
X—a, y—a; z-—a,
a3—aja,—a; az—a, | = 0
6 —ap a7 72 ag—d
DBCSG_CYLINDER_PNLR 8 to be completed

2-98 Silo User’s Guide

DBPutCsgmesh

typeflag L coefficients and equation

8

Q

€

>

c
DBCSG_CYLINDER_PPR 7 to be completed
DBCSG_BOX_XYZXYZ 6 to be completed
DBCSG_CONE_PNLA 8 to be completed
DBCSG_CONE_PPA to be completed
DBCSG_POLYHEDRON_KF | K | 6K to be completed
DBCSG_HEX_6F 36 to be completed
DBCSG_TET_4F 24 to be completed
DBCSG_PYRAMID_5F 30 to be completed
DBCSG_PRISM_5F 30 to be completed

The table below defines an analogous set of typeflags for creating boundaries in two dimensions..
typeflag L coefficients and equation
8
Q
IS
>
c
DBCSG_QUADRATIC_G 6 agx" +a,y" +a,xy +a;x+ay+a; = 0
DBCSG_CIRCLE_PR 3 (x—a,)" +(y—2a,)° —a," = 0
DBCSG_ELLIPSE_PRR 4 (x—a,)"/a3+(y—a,)"/ai—1 = 0
DBCSG_LINE_G 3 apx+a;y+a, =0
DBCSG_LINE_X 1 x—a, =0
DBCSG_LINE_Y 1 y—a, =0
DBCSG_LINE_PN 4 (x—ag)a, +(y—a;)ay = 0
DBCSG_LINE_PP 4 ay-a, y-a
az—ao_x—ao =0
DBCSG_BOX_XYXY 4 to be completed
DBCSG_POLYGON_KP | K 2K to be completed
DBCSG_TRI_3P 6 to be completed
DBCSG_QUAD_4P 8 to be completed

By replacing the ‘=’ in the equation for a boundary with either a ‘<‘ or a “>’, whole regions in 2 or
3D space can be defined using these boundaries. These regions represent the set of all points that
satisfy the inequality. In addition, regions can be combined to form new regions by unions, inter-
sections and differences as well other operations (See DBPutCSGZonelist).

Silo User’s Guide

2-99

DBPutCsgmesh

In this call, only the analytic boundaries used in the expressions to define the regions are written.
The expressions defining the regions themselves are written in a separate call, DBPut CSG-
Zonel i st.

If you compare this call to write a CSG mesh to a Silo file with a similar call to write a UCD mesh,
you will notice that the boundary list here plays a role similar to that of the nodal coordinates of a
UCD mesh. For the UCD mesh, the basic geometric primitives are points (nodes) and a separate
call, DBPut Zonel i st , is used to write out the information that defines how points (nodes) are
combined to form the zones of the mesh.

Similarly, here the basic geometric primitives are analytic boundaries and a separate call,
DBPut CSGZonel i st , is used to write out the information that defines how the boundaries are
combined to form regions of the mesh.

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of the DBopt | i st construct.

Value
Option Name Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XLABEL char * Character string defining the label associ- | NULL
ated with the X dimension.

DBOPT_YLABEL char * Character string defining the label associ- | NULL
ated with the Y dimension.

DBOPT_ZLABEL char * Character string defining the label associ- | NULL
ated with the Z dimension.

DBOPT_XUNITS char * Character string defining the units associ- | NULL
ated with the X dimension.

DBOPT_YUNITS char * Character string defining the units associ- | NULL
ated with the Y dimension.

DBOPT_ZUNITS char * Character string defining the units associ- | NULL
ated with the Z dimension.

DBOPT_BNDNAMES char ** Array of nboundar i es character strings NULL
defining the names of the individual
boundaries.

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools

DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to | NULL
be associated with this mesh.

DBOPT_TV_CONNECTIVTY | int A non-zero value indicates that the con- 0
nectivity of the mesh varies with time

2-100

Silo User’s Guide

DBPutCsgmesh

Option Name

Value
Data Type

Option Meaning

Default Value

DBOPT_DISJOINT_MODE

int

Indicates if any elements in the mesh are
disjoint. There are two possible modes.
One is DB_ABUTTING indicating that ele-
ments abut spatially but actually reference
different node ids (but spatially equivalent
nodal positions) in the node list. The other
is DB_FLOATING where elements neither
share nodes in the nodelist nor abut spa-
tially.

DB_NONE

The following options have been deprecated. Use MRG trees instead

DBOPT_GROUPNUM

int

The group number to which this quad-
mesh belongs.

-1 (notin a
group)

Silo User’s Guide

2-101

DBGetCsgmesh

DBGet Csgnmesh—Get a CSG mesh object from a Silo file

Synopsis:

DBcsgnesh *DBGet Csgnmesh(DBfile *dbfile, const char *meshnane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer

meshnane Name of the CSG mesh object to read
Returns:

A pointer to a DBcsgmesh structure on success and NULL on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,

silo.h, also attached to the end of this manual.

2-102

Silo User’s Guide

DBPutCSGZonelist

DBPut CSGZonel i st —Put a CSG zonelist object in a Silo file.

Synopsis:

i nt DBPut CSGZonel i st (DBfile *dbfile, const char *nane, int nregs,
const int *typefl ags,
const int *leftids, const int *rightids,
const void *xforms, int Ixforms, int datatype,
i nt nzones, const int *zonelist,
DBoptlist *optlist);

Fortran Equivalent:

i nteger function dbputcsgzl (dbid, nane, | nane, nregs, typeflags,
leftids, rightids, xfornms, |xforns, datatype,
nzones, zonelist, optlist_id, status)

Arguments:
dbfile Database file pointer
nane Name to associate with the DBcsgzonel i st object
nregs The number of regions in the regionlist.

typefl ags Integer array of length nr egs of type information for each region. Each entry
in this array is one of either DB_| NNER, DB_COUTER, DB_ON, DB_XFCORM
DB_SWEEP, DB_UNI ON, DB_| NTERSECT, and DB_DI FF.

The symbols, DB_| NNER, DB_OUTER, DB_QON, DB_XFORMand DB_ SWEEP
represent unary operators applied to the referenced region (or boundary). The
symbols DB_UNI ON, DB_| NTERSECT, and DB_DI FF represent binary
operators applied to two referenced regions.

For the unary operators, DB_| NNER forms a region from a boundary (See
DBPutCsgmesh) by replacing the ‘=’ in the equation representing the boundary
with ‘<. Likewise, DB_OUTER forms a region from a boundary by replacing
the ‘=’ in the equation representing the boundary with “>’. Finally, DB_ON
forms a region (of topological dimension one less than the mesh) by leaving the
‘=" in the equation representing the boundary as an ‘=". In the case of

DB_| NNER, DB_OUTER and DB_ON, the corresponding entry inthe | ef ti ds
array is a reference to a boundary in the boundary list (See DBPutCsgmesh).

For the unary operator, DB_XFORM the corresponding entry in the | ef ti ds
array is a reference to a region to be transformed while the corresponding entry
inthe ri ght i ds array is the index into the xf or marray of the row-by-row
coefficients of the affine transform.

The unary operator DB_ SVEEP is not yet implemented.

leftids Integer array of length nr egs of references to other regions in the regionlist or
boundaries in the boundary list (See DBPutCsgmesh). Each referenced region

Silo User’s Guide 2-103

DBPutCSGZonelist

rightids

xf orms

| xf orms
dat at ype
nzones

zonel i st

optli st

Returns:

inthe | ef ti ds array forms the left operand of a binary expression (or single
operand of a unary expression) involving the referenced region or boundary.

Integer array of length nr egs of references to other regions in the regionlist.
Each referenced region in the r i ght i ds array forms the right operand of a
binary expression involving the region or, for regions which are copies of other
regions with a transformation applied, the starting index into the Xf or s array
of the row-by-row, affine transform coefficients. If for a given region no right
reference is appropriate, put a value of ‘-1’ into this array for the given region.

Array of length | Xf or ms of row-by-row affine transform coefficients for those
regions that are copies of other regions except with a transformation applied. In
this case, the entry in the | ef t i ds array indicates the region being copied and
transformed and the entry in the r i ght i ds array is the starting index into this
xf or s array for the transform coefficients. This argument may be NULL.

Length of the Xf or s array. This argument may be zero if Xf or ms is NULL.
The data type of the values in the Xf or ns array. Ignored if Xf or s is NULL.

The number of zones in the CSG mesh. A zone is really just a completely
defined region.

Integer array of length nzones of the regions in the regionlist that form the
actual zones of the CSG mesh.

Pointer to an option list structure containing additional information to be
included in this object when it is written to the Silo file. Use NULL if there are
no options.

DBPut CSGZonel i st returns zero on success and -1 on failure.

Description:

A CSG mesh is a list of curves in 2D or surfaces in 3D. These are analytic expressions of the
boundaries of objects that can be expressed by quadratic equations in x, y and z.

The zonelist for a CSG mesh is constructed by first defining regions from the mesh boundaries. For
example, given the boundary for a sphere, we can create a region by taking the inside

(DB_I NNER) of that boundary or by taking the outside (DB_OUTER). In addition, regions can also
be created by boolean operations (union, intersect, diff) on other regions. The table below summa-
rizes how to construct regions using the t ypef | ags argument.

op. symbol name

type meaning

DBCSG_INNER

unary specifies the region created by all points satisfying the equa-
tion defining the boundary with ‘<‘ replacing ‘=".

left operand indicates the boundary, right operand ignored

DBCSG_OUTER

unary specifies the region created by all points satisfying the equa-
tion defining the boundary with *>‘ replacing ‘=".

left operand indicates the boundary, right operand ignored

2-104

Silo User’s Guide

DBPutCSGZonelist

op. symbol name type meaning
DBCSG_ON unary specifies the region created by all points satisfying the equa-

tion defining the boundary.

left operand indicates the boundary, right operand ignored
DBCSG_UNION binary take the union of left and right operands

left and right operands indicate the regions
DBCSG_INTERSECT binary take the intersection of left and right operands

left and right operands indicate the regions
DBCSG_DIFF binary subtract the right operand from the left

left and right operands indicate the regions
DBCSG_COMPLIMENT unary take the compliment of the left operand,

left operand indicates the region, right operand ignored
DBCSG_XFORM unary to be implemented
DBCSG_SWEEP unary to be implemented

However, not all regions in a CSG zonelist form the actual zones of a CSG mesh. Some regions
exist only to facilitate the construction of other regions. Only certain regions, those that are com-
pletely constructed, form the actual zones. Consequently, the zonelist for a CSG mesh involves
both a list of regions (as well as the definition of those regions) and then a list of zones (which are
really just completely defined regions).

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of the DBopt | i st construct.

Value
Option Name Data Type Option Meaning Default Value
DBOPT_REGNAMES char ** Array of nr egs character strings defining NULL
the names of the individual regions.
DBOPT_ZONENAMES char** Array of nzones character strings defining | NULL

the names of individual zones.

Silo User’s Guide

2-105

DBPutCSGZonelist

front side

top

Figure 0-5: A relatively simple object to represent as a CSG mesh. It models an A/C vent outlet for a 1994 Toyota
Tercel. It consists of two zones. One is a partially-spherical shaped ring housing (darker area). The other is a lens-
shaped fin used to direct airflow (lighter area).

The table below describes the contents of the boundary list (written in the DBPutCsgmesh call)

typeflags id coefficients name (optional)
DBCSG_SPHERE_PR 0 0.0, 0.0, 0.0, 5.0 “housing outer shell”
DBCSG_PLANE_X 1 -2.5 “housing front”
DBCSG_PLANE_X 2 25 “housing back”
DBCSG_CYLINDER_PPR 3 0.0, 0.0, 0.0, 1.0, 0.0. 0.0, 3.0 “housing cavity”
DBCSG_SPHERE_PR 4 0.0, 0.0, 49.5, 50.0 “fin top side”
DBCSG_SPHERE_PR 5 0.0. 0.0, -49.5, 50.0 “fin bottom side”

The code below writes this CSG mesh to a silo file

int *typefl ags={ DBCSG_SPHERE PR, DBCSG PLANE_X, DBCSG PLANE X,
DBCSG_CYLI NDER_PPR, DBCSG _SPHERE PR, DBCSG _SPHERE PR} ;

float *coeffs = { 1. 0, 0.0, -2.5,
1. 0, 0.0, 0.0,

0.0, -49.5, 5

0.
0.
0.

0.0, O. 0,
1.0, O. 5, :
0.0, 0 0.0,

cooo

3.0,
0. 0};

DBPut Csgnmesh(dbfile, “csgnmesh”, 3, typeflags, NULL,
coeffs, 25, DB FLQOAT, “csgzl”, NULL);

2-106 Silo User’s Guide

DBPutCSGZonelist

The table below describes the contents of the regionlist, written in the DBPutCSGZonelist call.

typeflags regid leftids rightids notes

DBCSG_INNER 0 0 -1 creates inner sphere region from boundary 0
DBCSG_INNER 1 1 -1 creates front half-space region from boundary 1
DBCSG_OUTER 2 2 -1 creates back half-space region from boundary 2
DBCSG_INNER 3 3 -1 creates inner cavity region from boundary 3
DBCSG_INTERSE | 4 0 1 cuts front of sphere by intersecting regions 0 &1

CT

DBCSG_INTERSE | 5 4 2 cuts back of sphere by intersecting regions 4 & 2

CT

DBCSG_DIFF 6 5 3 creates cavity in sphere by removing region 3
DBCSG_INNER 7 4 -1 creates large sphere region for fin upper surface from boundary 4
DBCSG_INNER 8 5 -1 creates large sphere region for fin lower surface from boundary 5
DBCSG_INTERSE | 9 7 8 creates lens-shaped fin with razor edge protruding from sphere
CT - housing by intersecting regions 7 & 8

DBCSG_INTERSE 10 9 0 cuts razor edge of lens-shaped fin to sphere housing

CT

The table above creates 11 regions, only 2 of which form the actual zones of the CSG mesh. The 2
complete zones are for the spherical ring housing and the lens-shaped fin that sits inside it. They
are identified by region ids 6 and 10. The other regions exist solely to facilitate the construction.
The code to write this CSG zonelist to a silo file is given below.

int nregs = 11;
int *typeflags={ DBCSG | NNER, DBCSG | NNER, DBCSG OUTER, DBCSG | NNER,
DBCSG_| NTERSECT, DBCSG | NTERSECT, DBCSG DI FF,

DBCSG_| NNER, DBCSG_| NNER, DBCSG | NTERSECT,
DBCSG | NTERSECT} ;

int *leftids={0,1,2,3,0,4,5,4,5,7,9};

int *rightids={-1,-1,-1,-1,1,2,3,-1,-1,8,0};

int nzones = 2;

int *zonelist = {6, 10};

DBPut CS&Zonel i st (dbfile, “csgzl”, nregs, typeflags,
leftids, rightids, NULL, O, DB_INT,
nzones, zonelist, NULL);

Silo User’s Guide 2-107

DBGetCSGZonelist

DBGet CSGZonel | st —Read a CSG mesh zonelist from a Silo file

Synopsis:

DBcsgzonel i st *DBGet CS&GZonel i st (DBfile *dbfil e,
const char *zl nane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer

zl nane Name of the CSG mesh zonelist object to read
Returns:

A pointer to a DBcsgzonelist structure on success and NULL on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,

silo.h, also attached to the end of this manual.

2-108

Silo User’s Guide

DBPutCsgvar

DBPut Csgvar —Write a CSG mesh variable to a Silo file

Synopsis:

i nt DBPut Csgvar (DBfile *dbfile, const char *vnane,
const char *neshnane, int nvars,
const char *varnames[], const void *vars[],
int nvals, int datatype, int centering,
DBoptlist *optlist);

Fortran Equivalent:

i nt eger function dbputcsgv(dbid, vnane, |vnane, neshnane,
| meshnane, nvars, var_ids, nvals, datatype,
centering, optlist_id, status)

integer* var_ids (array of “pointer ids” created using dbnkptr)

Arguments:
dbfile Database file pointer
vnanme The name to be associated with this DBcsgvar object
meshnanme The name of the CSG mesh this variable is associated with
nvars The number of subvariables comprising this CSG variable
var nanes Array of length nvar s containing the names of the subvariables
vars Array of pointers to variable data
nval s Number of values in each of the var s arrays

dat at ype The type of data in the var s arrays (e.g. DB_FLOAT, DB_DOUBLE)
centering The centering of the CSG variable (DB_ZONECENT or DB_BNDCENT)

optli st Pointer to an option list structure containing additional information to be
included in this object when it is written to the Silo file. Use NULL if there are
no options
Description:

The DBPutCsgvar function writes a variable associated with a CSG mesh into a Silo file. Note that
variables will be either zone-centered or boundary-centered.

Just as UCD variables can be zone-centered or node-centered, CSG variables can be zone-centered
or boundary-centered. For a zone-centered variable, the value(s) at index i in the vars array(s) are
associated with the i t h region (zone) in the DBcsgzonel i st object associated with the mesh.
For a boundary-centered variable, the value(s) at index i in the vars array(s) are associated with the
i t h boundary in the DBcsgbnd list associated with the mesh.

Silo User’s Guide 2-109

DBPutCsgvar

Other information can also be included via the optlist:

Value
Option Name Data Type Option Meaning Default Value
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_LABEL char * Character strings defining the label asso- | NULL
ciated with this variable.
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_UNITS char* Character string defining the units associ- | NULL
ated with this variable.
DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value DB_OFF
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.
DBOPT_ASCII_LABEL int Indicate if the variable should be treated 0
as single character, ascii values. A value
of 1 indicates yes, 0 no.
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools
DBOPT_REGION_PNAMES | char** A null-pointer terminated array of pointers | NULL

to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“‘DBOPT_REGION_PNAMES” on

page 179.

2-110

Silo User’s Guide

DBGetCsgvar

DBCGet Csgvar —Read a CSG mesh variable from a Silo file

Synopsis:
DBcsgvar *DBGet Csgvar (DBfile *dbfile, const char *varnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer
var nanme Name of CSG variable object to read

Returns:

A pointer to a DBcsgvar structure on success and NULL on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-111

DBPutMaterial

DBPut Mat er i al —Write a material data object into a Silo file.

Synopsis:

i nt DBPut Mat eri al

(DBfile *dbfile,
int nmat, int

char *nane,
mat nos[], int

char *neshnane,
matlist[],

int dims[], int ndinms, int mx_next[],
int mx_mat[], int mx_zone[], float m x_vf[],
int mxlen, int datatype, DBoptlist *optlist)
Fortran Equivalent:

i nt eger function dbput mat (dbi d, nanme, | nane, neshnane, | nmeshnane,
nmat, matnos, matlist, dinms, ndinms, mx_next,
m x_mat, mx_zone, mx_vf, mxlien, datatype,
optlist_id, status)

float* m x_vf

Arguments:

dbfile Database file pointer.

name Name of the material data object.

meshnane Name of the mesh associated with this information.

nmat Number of materials.

mat nos Array of length nmat containing material numbers.

mat | i st Array whose dimensions are defined by di s and ndi ns. It contains the
material numbers for each single-material (non-mixed) zone, and indices into
the mixed data arrays for each multi-material (mixed) zone. A negative value
indicates a mixed zone, and its absolute value is used as an index into the mixed
data arrays.

di ns Array of length ndi s which defines the dimensionality of the mat | i st
array.

ndi s Number of dimensions in mat | i st array.

m X_next Array of length mi x| en of indices into the mixed data arrays (one-origin).

m x_mat Array of length mi x| en of material numbers for the mixed zones.

m X_zone Optional array of length m x| en of back pointers to originating zones. The
origin is determined by DBOPT_CRI G N. Even if m x| en > 0, this argument
is optional.

m x_vf Array of length m x| en of volume fractions for the mixed zones. Note, this
can actually be either single- or double-precision. Specify actual type in
datatype.

m xl en Length of mixed data arrays (or zero if no mixed data is present). If mi x| en >
0, then the “mix_"" arguments describing the mixed data arrays must be non-
NULL.

dat at ype Volume fraction data type. One of the predefined Silo data types.

2-112 Silo User’s Guide

DBPutMaterial

optli st Pointer to an option list structure containing additional information to be
included in the material object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:
DBPutMaterial returns zero on success and -1 on failure.
Description:

Note that material functionality, even mixing materials, can now be handled, often more con-
veniently and efficiently, via a Mesh Region Grouping (MRG) tree. Users are encouraged to
consider an MRG tree as an alternative to DBPutMaterial(). See “DBMakeMrgtree” on
page 158.

The DBPutMaterial function writes a material data object into the current open Silo file. The min-
imum required information for a material data object is supplied via the standard arguments to this
function. The opt | i st argument must be used for supplying any information not requested
through the standard arguments.

Notes:
The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.
Value
Option Name Data Type Option Meaning Default Value
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_LABEL char * Character string defining the label associ- | NULL
ated with material data.
DBOPT_MAJORORDER int Indicator for row-major (0) or column- 0
major (1) storage for multidimensional
arrays.
DBOPT_ORIGIN int Origin for mix_zone. Zero or one. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_MATNAMES char** Array of strings defining the names of the | NULL
individual materials.
DBOPT_MATCOLORS char** Array of strings defining the names of col- | NULL
ors to be associated with each material.
The color names are taken from the X win-
dows color database. If a color name
begins with a'# symbol, the remaining 6
characters are interpreted as the hexa-
decimal RGB value for the color.

Silo User’s Guide 2-113

DBPutMaterial

Value
Option Name Data Type Option Meaning Default Value
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0
want this object to appear in menus of
downstream tools
DBOPT_ALLOWMATO int If set to non-zero, indicates that a zero 0

entry in the matlist array is actually not a
valid material number but is instead being
used to indicate an ‘unused’ zone.

The model used for storing material data is the most efficient for Vislt, and works as follows:

One zonal array, mat | i st , contains the material number for a clean zone or an index into the
mixed data arrays if the zone is mixed. Mixed zones are marked with negative entries in

mat | i st, so you must take ABS(mat | i st[i]) to getthe actual 1-origin mixed data index. A//
indices are 1-origin to allow mat | i St to use zero as a material number.

The mixed data arrays are essentially a linked list of information about the mixed elements within
a zone. Each mixed data array is of length m x| en. For a given index i, the following information
is known about the i’th element:

m x_zone[i]

mx_mat[i]
m x_vi[i]

m x_next[i]

The index of the zone which contains this element. The origin is determined by

DBOPT_ORI G N.

The material number of this element

The volume fraction of this element

The 1-origin index of the next material entry for this zone, else O if this is the

last entry.

2-114

Silo User’s Guide

DBPutMaterial

, Mesh ‘plot’
1 2 2 with material
11," o) o) numbers and
interface
-3 2 Corresponding
mat | i st array
-1 2
mix_zone mix_mat mix_vf mix_next
1: 2 e 1 1 - 1: 4 P 1 2
2: 2 e 2 2 e 2: 6 P 2: O:)
— 3: 5 = 3: 1] 3: g e 3 4:)
4: 5 I 4: 2 ¥ 4 3 P 4 0

Figure 0-6: Example using mixed data arrays for representing material information

Silo User’s Guide

2-115

DBGetMaterial

DBGet Mat er i al —Read material data from a Silo database.

Synopsis:
DBmaterial *DBCGetMaterial (DBfile *dbfile, char *mat_nane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
mat _nane Name of the material variable to read.

Returns:
DBGetMaterial returns a pointer to a DBmaterial structure on success and NULL on failure.
Description:

The DBGetMaterial function allocates a DBmaterial data structure, reads material data from the
Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-116 Silo User’s Guide

DBPutMatspecies

DBPut Mat speci eS—Write a material species data object into a Silo file.

Synopsis:

i nt DBPut Mat species (DBfile *dbfile, char *name, char *matnane,
int nmat, int nmatspec[], int speclist[],
int dins[], int ndinms, int nspecies_nf,
float species_nf[], int mix_ list[],
int mxlen, int datatype, DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbput nsp(dbid, nane, |nanme, matnane, | nmatnane,
nmat, nmatspec, speclist, dins, ndins,
species_nf, species_nf, mx_list, mxlen,
dat atype, optlist_id, status)

fl oat *species_nf

Arguments:

dbfile Database file pointer.

name Name of the material species data object.

mat name Name of the material object with which the material species object is
associated.

nmat Number of materials.

nmat spec Array of length nmat containing the number of material species associated
with each material.

specl i st Array of dimension defined by ndi ms and di ms of indices into the
speci es_nf array. Each entry corresponds to one zone. If the zone is clean,
the entry in this array must be positive or zero. A positive value is a 1-origin
index to the mass fractions of the zone’s material species. A zero can be used if
the material in this zone contains only one species. If the zone is mixed, this
value is ignored and the array m X_| i st is used instead.

di ns Array of length ndi s that defines the length of the specl i st array.

ndi s Number of dimensions in the specl i st array.

nspeci es_nf Number of material species mass fractions. Note, this can actually be either
single or double precision. Specify type in datatype argument.

speci es_nf Array of length nspeci es_nf containing mass fractions of the material
species.

mx_|ist Array of length mi x| en containing indices into the speci es_nf array.
These are used for mixed zones. For every index | in this array,
m x_|ist[j] corresponds to the DBrat eri al structure’s material
m x_mat [j] and zone m x_zone[j].

m x| en Length of the m x_| i st array.
dat at ype The datatype of the mass fraction data in speci es_nf . One of the predefined

Silo User’s Guide 2-117

DBPutMatspecies

Silo data types.

optli st Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMatspecies returns zero on success and -1 on failure.

Description:

The DBPutMatspecies function writes a material species data object into a Silo file. The minimum
required information for a material species data object is supplied via the standard arguments to

this function. The opt | i st argument must be used for supplying any information not requested
through the standard arguments.

Notes:

The following table describes the options accepted by this function:

Value
Option Name Data Type Option Meaning Default Value
DBOPT_MAJORORDER int Indicator for row-major (0) or column- 0
major (1) storage for multidimensional
arrays.
DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0

want this object to appear in menus of
downstream tools

2-118

Silo User’s Guide

DBGetMatspecies

DBGet Mat speci eS—Read material species data from a Silo database.

Synopsis:

DBmat speci es *DBGet Mat species (DBfile *dbfile, char *ns_nane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

nms_nanme Name of the material species data to read.
Returns:

DBGetMatspecies returns a pointer to a DBmatspecies structure on success and NULL on failure.

Description:

The DBGetMatspecies function allocates a DBmatspecies data structure, reads material species
data from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-119

DBPutDefvars

DBPut Def var s—Write a derived variable definition(s) object into a Silo file.

Synopsis:

i nt DBPut Defvars(DBfile *dbfile, const char *name, int ndefs,
const char *nanmes[], int *types,
const char *defns[], DBoptlist *optlist[]);

Fortran Equivalent:

i nt eger function dbputdefvars(dbid, nane, |name, ndefs, nanes,
| names, types, defns, ldefns, optlist_id,
st at us)

character*N nanes (See “dbset2dstrlen” on page 239.)

character*N defns (See “dbset2dstrlen” on page 239.)

Arguments:
dbfile Database file pointer.
nanme Name of the derived variable definition(s) object.
ndef s number of derived variable definitions.
names Array of length ndef s of derived variable names
types Array of length ndef s of derived variable types such as
DB_VARTYPE_SCALAR, DB VARTYPE_VECTCR,
DB_VARTYPE_TENSOR, DB_VARTYPE_SYMIENSOR,
DB_VARTYPE ARRAY, DB VARTYPE MATERI AL,
DB_VARTYPE_SPECI ES, DB_VARTYPE_LABEL
def ns Array of length ndef s of derived variable definitions.
optli st Array of length ndef s pointers to option list structures containing additional
information to be included with each derived variable. The options available are
the same as those available for the respective variables.
Returns:

DBPutDefvars returns zero on success and -1 on failure.
Description:

The DBPutDefvars function is used to put definitions of derived variables in the Silo file. That is
variables that are derived from other variables in the Silo file or other derived variable definitions.
One or more variable definitions can be written with this function. Note that only the definitions of
the derived variables are written to the file with this call. The variables themselves are not in any
way computed by Silo.

If variable references within the def ns strings do not have a leading slash (‘/”) (indicating an

absolute name), they are interpreted relative to the directory into which the Defvars object is writ-

ten. For the def ns string, in cases where a variable’s name includes special characters (such as /
{ } [1 + - =),theentire variable reference should be bracketed by < and > characters.

2-120 Silo User’s Guide

DBPutDefvars

The interpretation of the def ns strings written here is determined by the post-processing tool that
reads and interprets these definitions. Since in common practice that tool tends to be Vislt, the dis-
cussion that follows describes how Vislt would interpret this string.

The table below illustrates examples of the contents of the various array arguments to DBPutDef-
vars for a case that defines 6 derived variables.

names types defns

0 | “totaltemp” DB_VARTYPE_SCALAR “nodet+zonetemp”

1 | “<stress/sz>" | DB_VARTYPE_SCALAR “-<stress/sx>-<stress/sy>"

2 | “vel’ DB_VARTYPE_VECTOR “Vx, Vy, Vz}’

3 | “speed” DB_VARTYPE_SCALAR “magntidue(vel)”

4 | “dev_stress” | DB_VARTYPE_TENSOR “{{<stress/sx>,<stress/txy>,<stress/txz>},
{ 0, <stress/sy>,<stress/tyz>},
{ 0, 0, <stress/sz>}}’

The first entry (0) defines a derived scalar variable named “totaltemp” which is the sum of vari-
ables whose names are “nodet” and “zonetemp”. The next entry (1) defines a derived scalar vari-
able named “sz” in a group of variables named “stress” (the slash character (‘/”) is used to group
variable names much the way file pathnames are grouped in Linux). Note also that the definition of
“sz” uses the special bracketing characters (‘<‘) and (“>") for the variable references due to the fact
that these variable references have a slash character (‘/”) in them.

The third entry (2) defines a derived vector variable named “vel” from three scalar variables named
“Vx”, “Vy”, and “Vz” while the fourth entry (3) defines a scalar variable, “speed” to be the magni-
tude of the vector variable named “vel”. The last entry (4) defines a deviatoric stress tensor. These
last two cases demonstrate that derived variable definitions may reference other derived variables.

The last few examples demonstrate the use of two operators, { } , and magni t ude() . We call
these expression operators. In Vislt, there are numerous expression operators to help define
derived variables including such thingsassqrt (), round(), abs(), cos(), sin(),
dot (), cross() aswell as comparison operators, gt (), ge(), 1t(), le(), eq(),
and the conditional i f () . Furthermore, the list of expression operators in VisIt grows regularly.
Only a few examples are illustrated here. For a more complete list of the available expression oper-
ators and their syntax, the reader is referred to the Expressions portion of the Vislt user’s manual.

Silo User’s Guide 2-121

DBGetDefvars

DBGet Def var s—Get a derived variables definition object from a Silo file.

Synopsis:
DBdef vars DBGet Defvars(DBfile *dbfile, const char *nane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

name The name of the DBdefvars object to read
Returns:

DBGetDefvars returns a pointer to a DBdefvars structure on success and NULL on failure.
Description:

The DBGetDefvars function allocates a DBdefvars data structure, reads the object from the Silo
database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-122 Silo User’s Guide

DBIngMeshname

DBl ngMeshnane—Inquire the mesh name associated with a variable.

Synopsis:

i nt DBI ngMeshnanme (DBfile *dbfile, char *varnane, char *neshnamne)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
var nanme Variable name.
meshnane Returned mesh name. The caller must allocate space for the returned name. The
maximum space used is 256 characters, including the NULL terminator.
Returns:

DBIngMeshname returns zero on success and -1 on failure.

Description:

The DBIngMeshname function returns the name of a mesh associated with a mesh variable. Given
the name of a variable to access, one must call this function to find the name of the mesh before
calling DBGetQuadmesh or DBGetUcdmesh.

Silo User’s Guide 2-123

DBIngMeshtype

DBl ngMesht ype—Inquire the mesh type of a mesh.

Synopsis:

i nt DBI ngMeshtype (DBfile *dbfile, char *neshnane)

Fortran Equivalent:

None

Arguments:
dbfile Database file pointer.
meshnane Mesh name.

Returns:

DBIngMeshtype returns the mesh type on success and -1 on failure.

Description:

The DBIngMeshtype function returns the type of the given mesh. The value returned is described

in the following table:

Mesh Type Returned Value
Multi-Block DB_MULTIMESH
ucb DB_UCDMESH
Pointmesh DB_POINTMESH

Quad (Collinear)

DB_QUAD_RECT

Quad (Non-Collinear)

DB_QUAD_CURV

CsG

DB_CSGMESH

2-124

Silo User’s Guide

DBIngMeshtype

4 API Section Multi-Block Objects, Parallelism and
Poor-Man’s Parallel I/O

Individual pieces of mesh created with a number of DBPutXxxmesh() calls can be assembled
together into larger, multi-block objects. Likewise for variables and materials defined on these
meshes.

In Silo, multi-block objects are really just lists of all the individual pieces of a larger, coherent
object. For example, a multi-mesh object is really just a long list of object names, each name being
the string passed as the name argument to a DBPut Xxxmesh() call.

A key feature of multi-block object is that references to the individual pieces include the option of
specifying the name of the Silo file in which a piece is stored. This option is invoked when the
colon operator (‘:’) appears in the name of an individual piece. All characters before the colon
specify the name of a Silo file. All characters after a colon specify the directory path within the file
where the object lives.

The fact that multi-block objects can reference individual pieces that reside in different Silo files
means that Silo, a serial I/O library, can be used very effectively and scalably in parallel without
resorting to writing a file per processor. The “technique” used to affect parallel I/O in this manner
with Silo is affectionately called Poor Man’s Parallel 1/0 (PMPIO).

A separate convenience interface, PMPIO, is provided for this purpose. The PMPIO interface pro-
vides almost all of the functionality necessary to use Silo in a Poor Man’s Parallel way. The appli-
cation is required to implement a few callback functions. The PMPIO interface is described at the
end of this section.

The functions described in this section of the manual include...

DBPutMultimesh 126
DBGetMultimesh 130
DBPutMultimeshadj e 131
DBGetMultimeshadj. 134
DBPUtMUItIVAr 135
DBGetMUIIVAL 138
DBPutMultimat. 139
DBGetMultimat 142
DBPutMUltimatSpecies oottt et 143
DBGetMuUltimatsSpeCies. oottt ettt e e 145
PMPIO _Init. . . .o 146
PMPIO_CreateFileCallBack. e 149
PMPIO_OpenFileCallBack. e e e 150
PMPIO_CloseFileCallBack i 151
PMPIO_WaitForBatono 152
PMPIO _HandOffBaton. oottt e e e 153
PMPIO_Finish 154
PMPIO_GroupRank 155

Silo User’s Guide 2-125

DBPutMultimesh

PMPIO_RankInGroup156DBPut Mul t i mesh—Write a multi-block mesh object into a Silo
file.

Synopsis:

int DBPutMultinesh (DBfile *dbfile, char *name, int nnesh,
char *meshnanes[],int neshtypes|[],
DBoptlist *optlist)

Fortran Equivalent:

i nteger function dbput mesh(dbid, nane, |nanme, nmesh, neshnanes,
| meshnames, meshtypes, optlist_id, status)
character*N neshnanes (See “dbset2dstrlen” on page 239.)

Arguments:
dbfile Database file pointer.
name Name of the multi-block mesh structure.
nmesh Number of meshes provided.

meshnanes Array of length nmesh containing pointers to the names of each of the meshes.
Ordinarily, the meshes are stored in different sub-directories within a Silo file
and, optionally, even in different Silo files altogether. So, the name of each mesh
is specified using its fill Silo path name. The full Silo pathname is the form...

[<silo-fil ename>:] <pat h-to-nesh>

The existence of a colon (‘:”) anywhere in the name indicates that the name is
specified using both the Silo filename and the path in the file. All characters
before the colon are the Silo filename. All characters after the colon are the path
of the mesh object within the Silo file.

Finally, the individual mesh names referenced here CANNOT be the names of
other multi-block meshes. In other words, it is not valid to create a multi-mesh
that references other multi-meshes.

mesht ypes Array of length nmesh containing the type of each mesh. One of the predefined
types such as DB_QUAD_RECT, DB_QUAD_CURV, DB_UCDIVESH,
DB_PO NTMESH, and DB_CSGVESH.

optli st Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultimesh returns zero on success and -1 on failure.

2-126 Silo User’s Guide

DBPutMultimesh

Description:

The DBPutMultimesh function writes a multi-block mesh object into a Silo file. It accepts as input
descriptions of the various sub-meshes (blocks) which are part of this mesh.

For example, in the case where the are 6 blocks to be assembled into a larger mesh named ‘multi-
mesh’ in the file ‘foo.silo’ and the blocks are stored in three files as in the figure below,

file “foo.silo” file “bar.silo” file “gorfo.silo”
“/ meshl”
“/dirl/ mesh2”
“bar.silo:/dirl/ meshl” .
“bar.silo:/dir2/ mesh2” /mesh1 /d!rl/meshl /a/b/c/mesh1
“gorfo.silo:/alblc/meshl” /dirl/mesh2 /dir2/mesh2 /mesh2
“gorfo.silo:/nmesh2” /multi-mesh

Figure 0-7: Strings for multi-block objects.

the array of strings to be passed as the meshnanes argument of DBPutMultimesh are illustrated.
Note that the two pieces of mesh that are in the same file as the multi-mesh object itself, ‘multi-
mesh’, do NOT require the colon and filename option. Only those pieces of the multi-mesh object
that are in different files from the one the multi-block object itself resides in require the colon and
filename option.

Note also that what is described here for the mulitmesh object in the way of names of objects in
different files applies as well to all other multi-block objects.

Notes:
The following table describes the options accepted by this function:
Value Default
Option Name Data Type Option Meaning Value
DBOPT_BLOCKORIGIN int The origin of the block numbers. 1
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_EXTENTS_SIZE? int Number of values in each extent tuple 0
DBOPT_EXTENTS? double* Pointer to an array of length nmesh * NULL
DBOPT_EXTENTS_SI ZE doubles where
each group of DBOPT_EXTENTS_SI ZE
doubles is an extent tuple for the mesh
coordinates (see below).
DBOPT_EXTENTS_SI ZE must be set for
this option to work correctly.
DBOPT_ZONECOUNTS? int* Pointer to an array of length nmesh indi- NULL
cating the number of zones in each block.

Silo User’s Guide 2-127

DBPutMultimesh

Option Name

Value
Data Type

Option Meaning

Default
Value

DBOPT_HAS_EXTERNAL_ZONES?

int*

Pointer to an array of length nmesh indi-
cating for each block whether that block
has zones external to the whole multi-
mesh object. A non-zero value at index i
indicates block i has external zones. A
value of 0 (zero) indicates it does not.

NULL

DBOPT_HIDE_FROM_GUI

int

Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

DBOPT_MRGTREE_NAME

char *

Name of the mesh region grouping tree to
be associated with this multimesh.

NULL

DBOPT_TV_CONNECTIVTY

int

A non-zero value indicates that the con-
nectivity of the mesh varies with time.

DBOPT_DISJOINT_MODE

int

Indicates if any elements in the mesh are
disjoint. There are two possible modes.
One is DB_ABUTTING indicating that ele-
ments abut spatially but actually reference
different node ids (but spatially equivalent
nodal positions) in the node list. The other
is DB_FLOATING where elements neither
share nodes in the nodelist nor abut spa-
tially.

DB_NONE

The options specified below have been deprec

ated. Use Mesh Region Group (MRG) trees instead.

with each group in the groupings array

DBOPT_GROUPORIGIN int The origin of the group numbers. 1
DBOPT_NGROUPS int The total number of groups in this multi- 0
mesh object.
DBOPT_ADJACENCY_NAME? char * Name of a multi-mesh, nodal adjacency NULL
object written with a call to adj.
DBOPT_GROUPINGS_SIZE int Number of integer entries in the associ- 0
ated groupings array
DBOPT_GROUPINGS int * Integer array of length specified by NULL
DBOPT_GROUPINGS_SIZE containing
information on how different mesh blocks
are organized into, possibly hierarchical,
groups. See below for detailed discussion.
DBOPT_GROUPINGS_NAMES char ** Optional set of names to be associated NULL

a. Indicates a Down-stream Performance Option. See notes below.

There is a class of options for DBMulti- objects that is VERY IMPORTANT in helping to acceler-

ate performance in down-stream post-processing tools. We call these Down-stream Performance
Options. In order of utility, these options are DBOPT_EXTENTS, DBOPT_M XLENS and
DBOPT_MATLI STS and DBOPT_ZONECOUNTS. Although these options are creating redun-

dant data in the Silo database, the data is stored in a manner that is far more convenient to down-

2-128

Silo User’s Guide

DBPutMultimesh

stream applications that read Silo databases. Therefore, the user is strongly encouraged to make
use of these options.

Regarding the DBOPT_EXTENTS option, see the notes for DBPutMultivar. Note, however, that
here the extents are for the coordinates of the mesh.

Regarding the DBOPT_ZONECOUNTS option, this option will help down-stream post-processing
tools to select an appropriate static load balance of blocks to processors.

Regarding the DBOPT_HAS EXTERNAL _ZONES option, this option will help down-stream post-
processing tools accelerate computation of external boundaries. When a block is known not to
contain any external zones, it can be quickly skipped in the computation. Note that while false pos-
itives can negatively effect only performance during downstream external boundary calculations,
false negatives will result in serious errors.

In other words, it is ok for a block that does not have external zones to be flagged as though it does.
In this case, all that will happen in down-stream post-processing tools is that work to compute
external faces that could have been avoided will be wasted. However, it is not ok for a block that
has external zones to be flagged as though it does not. In this case, down-stream post-processing
tools will skip boundary computation when it should have been computed.

Three options, DBOPT_GROUPINGS_SIZE, DBOPT_GROUPINGS are deprecated. Instead, use
MRG trees to handle grouping. Also, see notes regarding _visit_domain_groups variable conven-
tion.

Silo User’s Guide 2-129

DBGetMultimesh

DBGet Mul t i mesh—Read a multi-block mesh from a Silo database.

Synopsis:
DBmul ti mesh *DBGet Mul ti mesh (DBfile *dbfile, char *meshnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
meshnane Name of the multi-block mesh.
Returns:

DBGetMultimesh returns a pointer to a DBmultimesh structure on success and NULL on failure.
Description:

The DBGetMultimesh function allocates a DBmultimesh data structure, reads a multi-block mesh
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-130 Silo User’s Guide

DBPutMultimeshadj

DBPut Mul t i meshadj —Write some or all of a multi-mesh adjacency object into a Silo
file.

Synopsis:

int DBPut Mul tineshadj (DBfile *dbfile, const char *nane,
int nmesh, const int *mesh_types, const int *nneighbors,
const int *neighbors, const int *back,
const int *nnodes, const int *nodelists[],
const int *nzones, const int *zonelists[],
DBoptlist *optlist)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
name Name of the multi-mesh adjacency object.
nmesh The number of mesh pieces in the corresponding multi-mesh object. This value

must be identical in repeated calls to DBPutMultimeshadj.

mesh_t ypes Integer array of length nmesh indicating the type of each mesh in the
corresponding multi-mesh object. This array must be identical to that which is
passed in the DBPutMultimesh call and in repeated calls to
DBPutMultimeshad,.

nnei ghbors Integer array of length nnmesh indicating the number of neighbors for each
mesh piece. This array must be identical in repeated calls to
DBPutMultimeshad,;.

In the argument descriptions to follow, let S, = f: o,nnei ghbors[i] . That is,
let S, be the sum of the first K entries in the nner ghbor s array.

nei ghbors Array of S, ., integers enumerating for each mesh piece all other mesh pieces
that neighbor it. Entries from index S, to index S, ,,—1 enumerate the
neighbors of mesh piece k. This array must be identical in repeated calls to
DBPutMultimeshad,;.

back Array of S, Integers enumerating for each mesh piece, the local index of that
mesh piece in each of its neighbors lists of neighbors. Entries from index S, to
index S, , , -1 enumerate the local indices of mesh piece K in each of the
neighbors of mesh piece K. This argument may be NULL. In any case, this array
must be identical in repeated calls to DBPutMultimeshadj.

nnodes Array of S, integers indicating for each mesh piece, the number of nodes
that it shares with each of its neighbors. Entries from index S, toindex S, ,, -1
indicate the number of nodes that mesh piece k shares with each of its
neighbors. This array must be identical in repeated calls to
DBPutMultimeshadj. This argument may be NULL.

Silo User’s Guide 2-131

DBPutMultimeshadj

nodel i sts Array of S_ ., pointers to arrays of integers. Entries from index S, to index
S+ — 1 enumerate the nodes that mesh piece k shares with each of its
neighbors. The contents of a specific nodelist array depend on the types of
meshes that are neighboring each other (See description below). nodelists|m]
may be NULL even if nnodes[m] is non-zero. See below for a description of
repeated calls to DBPutMultimeshadj. This argument must be NULL if nnodes
is NULL.

nzones Array of S, integers indicating for each mesh piece, the number of zones
that are adjacent with each of its neighbors. Entries from index S, to index
S+ — ! indicate the number of zones that mesh piece k has adjacent to each of
its neighbors. This array must be identical in repeated calls to
DBPutMultimeshadj. This argument may be NULL.

zonelists Array of S, pointers to arrays of integers. Entries from index S, to index
S, +1—1 enumerate the zones that mesh piece k has adjacent with each of its
neighbors. The contents of a specific zonelist array depend on the types of
meshes that are neighboring each other (See description below). zonelists[m]
may be NULL even if nzones[m] is non-zero. See below for a description of
repeated calls to DBPutMultimeshadj. This argument must be NULL if nzones
is NULL.

optli st Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Description:

Note that the functionality this object provides is now more efficiently and conveniently han-
dled via a Mesh Region Grouping (MRG) tree. Users are encouraged to use MRG trees as an
alternative to DBPutMultimeshadj(). See “DBMakeMrgtree” on page 158.

DBPutMultimeshadj is another Down-stream Performance Option (See “DBPutMultimesh” on
page 2-126). It is an alternative to including ghost-zones (See “DBPutMultimesh” on page 2-126)
in the mesh and can therefore help to reduce file size, particularly for unstructured meshes.

A multi-mesh adjacency object informs down-stream, post-processing tools such as Vislt how
nodes and/or zones, should be shared between neighboring mesh pieces to eliminate post-process-
ing discontinuity artifacts along the boundaries between the pieces. If neither this information is
provided nor ghost zones are stored in the file, post-processing tools must then infer this informa-
tion from global node or zone ids (if they exist) or, worse, by matching coordinates which is a
time-consuming process.

DBPutMultimeshadj is used to indicate how various mesh pieces in a multi-mesh object abut by
specifying for each mesh piece, the nodes it shares with other mesh pieces and/or the zones is has
adjacent to other mesh pieces. Note the important distinction in how nodes and zones are classified
here. Nodes are shared between mesh pieces while zones are merely adjacent between mesh
pieces. In a call to DBPutMultimeshadj, a caller may write information for either shared nodes or
adjacent zones, or both.

In practice, applications tend to use the same mesh type for every mesh piece. Thus, for ucd and
point meshes, the nodelist (or zonelist) arrays will consists of pairs of integers where the first of
the pair identifies a node (or zone) in the given mesh while the second identifies the shared node

2-132

Silo User’s Guide

DBPutMultimeshadj

(or adjacent zone) in a neighbor. Likewise, for quad meshes, the nodelist (or zonelist) arrays will
consists of 15 integers the first 6 of which identify a slab of nodes (or zones) in the given quad
mesh. The second set of 6 integers identify the slab of shared nodes (or zones) in a neighbor quad
mesh and the last 3 integers indicate the orientation of the neighbor quad mesh relative to the given
quad mesh. For example the entries (1,2,3) for these 3 integers mean that all axes are aligned. The
entries (-2,1,3) mean that the -J axis of the neighbor mesh piece aligns with the +I axis of the given
mesh piece, the +1 axis of the neighbor mesh piece aligns with the +J axis of the given mesh piece,
and the +K axes both align the same way.

The specific contents of a given nodelist array depend on the types of meshes between which it
enumerates shared nodes. The table below describes the contents of nodelist array mgiven the dif-
ferent mesh types that it may enumerate shared nodes for.

Neighbor mesh type
DB_POINT or DB_UCD DB_QUAD
8 nnodes[m]+6 integers.
3| The first nnodes[m] integers
GDJ identify the nodes in the given
= : : point or ucd mesh.
© nnodes[m] pairs of integers)) o
E The next 6 integers identify ijk
Ie) bounds of the corresponding
o D-l nodes in the quad mesh neigh-
ua)
% a bor.
@
OE) 15 integers
S 6+nnodes[m] integers.]’he first set of 6 inte.gers idgntify
.5 i)) o ijk bounds of nodes in the given
A The first 6 integers |dgnt|fy ul'(quad mesh.
5(bounds of the nodes in the given .
e} quad mesh. The §ec_9nd set of 6 |nteger§
o) identify ijk bounds of nodes in the
a The I?st nnodes[m] |nteger.s neighbor quad mesh
identify the nodes in the neighbor . .
point or ucd mesh. The ne)ft 3 integers §pe0|fy the
orientation of the neighbor quad
mesh relative to the given mesh.

This function is designed so that it may be called multiple times, each time writing a different por-
tion of multi-mesh adjacency information to the object. On the first call, space is allocated in the
Silo file for the entire object. The required space is determined by the contents of all but the
nodelists (and/or zonelists) arrays. The contents of the nodelists (and/or zonelists) arrays are the
only arguments that are permitted to vary from call to call and then they may vary only in which
entries are NULL and non-NULL. Whenever an entry is NULL and the corresponding entry in
nnodes (or nzones) array is non-zero, the assumption is that the information is provided in some
other call to DBPutMultimeshad,;.

Silo User’s Guide 2-133

DBGetMultimeshadj

DBCGet Mul t i meshadj —Get some or all of a multi-mesh nodal adjacency object

Synopsis:

DBmul ti meshad]j *DBGet Mul ti meshadj (DBfile *dbfile,
const char *nane,
i nt nmesh, const int *mesh_pieces)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer
name Name of the multi-mesh nodal adjacency object
nmesh Number of mesh pieces for which nodal adjacency information is being

obtained. Pass zero if you want to obtain all nodal adjacency information in a
single call.

nmesh_pi eces Integer array of length nmesh indicating which mesh pieces nodal adjacency
information is desired for. May pass NULL if nmesh is zero.

Returns:

A pointer to a fully or partially populated DBmultimeshadj object or NULL on failure.

Description:

Notes:

DBGetMultimeshadj returns a nodal adjacency object. This function is designed so that it may be
called multiple times to obtain information for different mesh pieces in different calls. The nmesh
and mesh_pieces arguments permit the caller to specify for which mesh pieces adjacency informa-
tion shall be obtained.

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-134

Silo User’s Guide

DBPutMultivar

DBPut Mul t 1 var —Write a multi-block variable object into a Silo file.

Synopsis:

int DBPutMultivar (DBfile *dbfile, char *nane, int nvar,
char *varnanes[], int vartypes[],
DBoptlist *optlist);

Fortran Equivalent:

i nt eger function dbputmar(dbid, nane, |nane, nvar, varnanes,
| varnanes, vartypes, optlist_id, status)
character*N varnanes (See “dbset 2dstrl en” on page 239.)

Arguments:
dbfile Database file pointer.
name Name of the multi-block variable.
nvar Number of variables associated with the multi-block variable.
var names Array of length nvar containing pointers to the names of the variables. These
are variables written with DBPutPointvar, DBPutQuadvar, and DBPutUcdvar.
vartypes Array of length nvar containing the types of the variables. Each entry must be
one of the following: DB_POINTVAR, DB_QUADVAR, or DB_UCDVAR.
optli st Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.
Returns:

DBPutMultivar returns zero on success and -1 on failure.
Description:

The DBPutMultivar function writes a multi-block variable object into a Silo file.

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value
DBOPT_BLOCKORIGIN int The origin of the block numbers. 1
DBOPT_CYCLE int Problem cycle value. 0
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0

Silo User’s Guide 2-135

DBPutPointmesh

Option Name

Value
Data Type

Option Meaning

Default Value

DBOPT_HIDE_FROM_GUI

int

Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_EXTENTS_SIZE?

int

Number of values in each extent tuple

DBOPT_EXTENTS?

double*

Pointer to an array of length nvar *
DBOPT_EXTENTS_SI ZE doubles where
each group of DBOPT_EXTENTS_SI ZE
doubles is an extent tuple (see below).
DBOPT_EXTENTS_SI ZE must be set for
this option to work correctly.

NULL

DBOPT_MMESH_NAME

char *

Name of the multimesh this variable is
associated with. Note, this option is very
important as down-stream post process-
ing tools are otherwise required to guess
as to the mesh a given variable is associ-
ated with. Sometimes, the tools can guess
wrong.

NULL

DBOPT_TENSOR_RANK

int

Specify the variable type; one of either
DB_VARTYPE_SCALAR,
DB_VARTYPE_VECTOR
DB_VARTYPE_TENSOR,
DB_VARTYPE_SYMTENSOR,

DB_VARTYPE_ARRAY
DB_VARTYPE_LABEL

DB_VARTYPE
_SCALAR

DBOPT_REGION_PNAMES

char**

A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names.See
“DBOPT_REGION_PNAMES” on

page 179.

NULL

The options below have been deprecated. Use MRG trees instead.

DBOPT_GROUPORIGIN

int

The origin of the group numbers.

DBOPT_NGROUPS

int

The total number of groups in this multi-
mesh object.

a. Indicates a Down-stream Performance Option. See notes for DBPutMultimesh.

Regarding the DBOPT_EXTENTS option, an extent tuple is a tuple of the variable’s minimum
value(s) followed by the variable’s maximum value(s). If the variable is a single, scalar variable,
each extent tuple will be 2 values of the form {min,max}. Thus, DBOPT_EXTENTS_SI ZE will be
2. If the variable consists of nvar s subvariables (e.g. the nvar s argument in any of DBPutPoint-

2-136 Silo User’s Guide

DBPutPointmesh

var, DBPutQuadvar, DBPutUcdvar is greater than 1), then each extent tuple is 2* nvar s values of

each subvariable’s minimum value followed by each subvariable’s maximum value. In this case,
DBOPT_EXTENTS_SI ZE will be 2* nvar s.

For example, if we have a multi-var object of a 3D velocity vector on 2 blocks, then
DBOPT_EXTENTS_SI ZE will be 2* 3=6 and the DBOPT_EXTENTS array will be an array of
2* 6 doubles organized as follows...

{Vx_mnO, WmnO, Vz mnO, Vx max 0, W max_0, Vz nax 0,
VW mn1l, VW mnl Vz mnl Vx mx_ 1, W max_ 1, Vz _max_1}

Note that if ghost zones are present in a block, the extents must be computed such that they include
contributions from data in the ghost zones. On the other hand, if a variable has mixed components,
that is component values on materials mixing within zones, then the extents should NOT include
contributions from the mixed variable values.

Silo User’s Guide 2-137

DBGetMultivar

DBGet Mul t i var —Read a multi-block variable definition from a Silo database.

Synopsis:
DBmul tivar *DBGetMultivar (DBfile *dbfile, char *varname)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

var nanme Name of the multi-block variable.
Returns:

DBGetMultivar returns a pointer to a DBmultivar structure on success and NULL on failure.
Description:

The DBGetMultivar function allocates a DBmultivar data structure, reads a multi-block variable
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-138 Silo User’s Guide

DBPutMultimat

DBPut Mul t 1 mat —Write a multi-block material object into a Silo file.

Synopsis:

int DBPutMultimat (DBfile *dbfile, char *nane, int nmat,
char *mat nanmes[], DBoptlist *optlist)

Fortran Equivalent:

i nt eger function dbput mat (dbid, nanme, |nane, nmat, matnanes,
| mat nanes, optlist_id, status)

Arguments:
dbfile Database file pointer.
name Name of the multi-material object.
nmat Number of materials provided.
mat names Array of length nmat containing pointers to the names of the materials to be
associated with the multi-material object.
optli st Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options
Returns:

DBPutMultimat returns zero on success and -1 on error.
Description:

The DBPutMultimat function writes a multi-material object into a Silo file.

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_NMATNOS int Number of material numbers stored inthe | 0
DBOPT_MATNGCS option.

DBOPT_MATNOS int * Pointer to an array of length NULL
DBOPT_NMATNGS containing a complete
list of the material numbers used in the
Multimat object. DBOPT_NMATNCS must
be set for this to work correctly.

Silo User’s Guide 2-139

DBPutMultimat

Option Name

Value
Data Type

Option Meaning

Default Value

DBOPT_MATNAMES

char**

Pointer to an array of length
DBOPT_NMATNGS containing a complete
list of the material names used in the Mul-
timat object. DBOPT_NVATNCS must be
set for this to work correctly.

NULL

DBOPT_MATCOLORS

char**

Array of strings defining the names of col-
ors to be associated with each material.
The color names are taken from the X win-
dows color database. If a color name
begins with a'# symbol, the remaining 6
characters are interpreted as the hexa-
decimal RGB value for the color.
DBOPT_NMATNOS must be set for this to
work correctly.

NULL

DBOPT_CYCLE

int

Problem cycle value.

DBOPT_TIME

float

Problem time value.

0.0

DBOPT_DTIME

double

Problem time value.

0.0

DBOPT_MIXLENS?

int*

Array of nmat ints which are the values of
the m x| en arguments in each of the indi-
vidual block’s material objects.

DBOPT_MATCOUNTS?

int*

Array of nmat counts indicating the num-
ber of materials actually in each block.

NULL

DBOPT_MATLISTS?

int*

Array of material numbers in each block.
Length is the sum of values in
DBOPT_MATCOUNTS. DBOPT_MATCOUNTS
must be set for this option to work cor-
rectly.

NULL

DBOPT_HIDE_FROM_GUI

int

Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

DBOPT_ALLOWMATO

int

If set to non-zero, indicates that a zero
entry in the matlist array is actually not a
valid material number but is instead being
used to indicate an ‘unused’ zone.

DBOPT_MMESH_NAME

char *

Name of the multimesh this material is
associated with. Note, this option is very
important as down-stream post process-
ing tools are otherwise required to guess
as to the mesh a given material is associ-
ated with. Sometimes, the tools can guess
wrong.

NULL

The options below have been deprecated. Use MRG trees instead.

DBOPT_GROUPORIGIN

int

The origin of the group numbers.

DBOPT_NGROUPS

int

The total number of groups in this multi-
mesh object.

2-140

Silo User’s Guide

DBPutMultimat

a. Indicates a Down-stream Performance Option. See notes for DBPutMultimesh.

Regarding the DBOPT_M XLENS option, this option will help down-stream post-processing tools
to select an appropriate load balance of blocks to processors. Material mixing and material inter-
face reconstruction have a big effect on cost of certain post-processing operations.

Regarding the DBOPT_MATLI STS options, this option will give down-stream post-processing
tools better knowledge of how materials are distributed among blocks.

Silo User’s Guide 2-141

DBGetMultimat

DBGet Mul t i mat —Read a multi-block material object from a Silo database

Synopsis:
DBrul timat *DBGetMultimat (DBfile *dbfile, char *nane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer

name Name of the multi-block material object
Returns:

DBGetMultimat returns a pointer to a DBmultimat structure on success and NULL on failure.
Description:

The DBGetMultimat function allocates a DBmultimat data structure, reads a multi-block material
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-142 Silo User’s Guide

DBPutMultimatspecies

DBPut Mul t i mat speci eS—Write a multi-block species object into a Silo file.

Synopsis:

int DBPut Multimat species (DBfile *dbfile, char *name, int nspec,
char *specnanes[], DBoptlist *optlist)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
name Name of the multi-block species structure.
nspec Number of species objects provided.

specnamnes Array of length nspec containing pointers to the names of each of the species.

optli st Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:
DBPutMultimatspecies returns zero on success and -1 on failure.
Description:

The DBPutMultimatspecies function writes a multi-block material species object into a Silo file. It
accepts as input descriptions of the various sub-species (blocks) which are part of this mesh.

Notes:
The following table describes the options accepted by this function:
Value
Option Name Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_MATNAME char * Character string defining the name of the NULL
multi-block material with which this object
is associated.

DBOPT_NMAT int The number of materials in the associated | 0
material object.

DBOPT_NMATSPEC int * Array of length DBOPT_NVAT containing NULL
the number of material species associated
with each material. DBOPT_NVMAT must be
set for this to work correctly.

DBOPT_CYCLE int Problem cycle value. 0

Silo User’s Guide 2-143

DBPutMultimatspecies

Option Name Da\tlglilj'jpe Option Meaning Default Value
DBOPT_TIME float Problem time value. 0.0
DBOPT_DTIME double Problem time value. 0.0
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not 0

want this object to appear in menus of
downstream tools

The options below have been deprecated. Use MRG trees instead.

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi- 0
mesh object.

2-144 Silo User’s Guide

DBGetMultimatspecies

DBGet Mul t i mat speci es—Read a multi-block species from a Silo database.

Synopsis:
DBmul ti mesh *DBGet Mul ti mat species (DBfile *dbfile, char *nane)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

name Name of the multi-block material species.
Returns:

DBGetMultimatspecies returns a pointer to a DBmultimatspecies structure on success and NULL
on failure.

Description:

The DBGetMultimatspecies function allocates a DBmultimatspecies data structure, reads a multi-
block material species from the Silo database, and returns a pointer to that structure. If an error
occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-145

PMPIO_Init

PMPI O _I ni t —Initialize a Poor Man’s Parallel I/O interaction with the Silo library

Synopsis:

PVMPI O baton_t *PMPIO Init(int nunFiles, PMPIO.ionode t ioMde
MPI _Conm npi Conm i nt npi Tag,
PMPI O CreateFil eCal | Back createCh,
PMPI O_OpenFi | eCal | Back openCh,
PMPI O O oseFi | eCal | Back cl oseCB
voi d *user Dat a)

Fortran Equivalent:
None
Arguments:

nunfi | es

i oMbde

npi Comm

npi Tag

createCb

openCh

cl oseCh

user Dat a

Returns:

The number of individual Silo files to generate. Note, this is the number of
parallel I/O streams that will be running simultaneously during I/O. A value of 1
cause PMPIO to behave serially. A value equal to the number of processors
causes PMPIO to create a file-per-processor. Both values are unwise. For most
parallel HPC platforms, values between 8 and 64 are appropriate.

Choose one of either PMPI O_READ or PMPI O_WRI TE. Note, you can not use
PMPIO to handle both read and write in the same interaction.

The MPI communicator you would like PMPIO to use when passing the tiny
baton messages it needs to coordinate access to the underlying Silo files. See
documentation on MPI for a description of MPI communicators.

The MPI message tag you would like PMPIO to use when passing the tiny baton
messages it needs to coordinate access to the underlying Silo files.

The file creation callback function. This is a function you implement that
PMPIO will call when the first processor in each group needs to create the Silo
file for the group. It is needed only for PMPI O_WRI TE operations. If default
behavior is acceptable, pass PMPI O_Def aul t Cr eat e here.

The file open callback function. This is a function you implement that PMPIO
will call when the second and subsequent processors in each group need to open
a Silo file. It is needed for both PMPI O_READ and PMPI O WRI TE operations.
If default behavior is acceptable, pass PMPI O_Def aul t Open here.

The file close callback function. This is a function you implement that PMPIO
will call when a processor in a group needs to close a Silo file. If default
behavior is acceptable, pass PMPI O_Def aul t Cl ose here.

[OPT] Arbitrary user data that will be passed back to the various callback
functions. Pass NULL(0) if this is not needed.

A pointer to a PMPIO_baton_t object to be used in subsequent PMPIO calls on success. NULL on

failure.

2-146

Silo User’s Guide

PMPIO_Init

Description:

The PMPIO interface was designed to be separate from the Silo library. To use it, you must
include the PMPIO header file, pmpio.h, after the MPI header file, mpi.h, in your applica-
tion. This interface was designed to work with any serial library and not Silo specifically. For
example, these same routines can be used with raw HDFS or PDB files if so desired.

The PMPIO interface decomposes a set of P processors into N groups and then provides access, in
parallel, to a separate Silo file per group. This is the essence of Poor Man’s Parallel 1/O.

For PMPIO_WRITE operations, each processor in a group creates its own Silo sub-directory
within the Silo file to write its data to. At any one moment, only one processor from each group
has a file open for writing. Hence, the 1/O is serial within a group. However, because a processor in
each of the N groups is writing to its own Silo file, simultaneously, the I/O is parallel across
groups.

The number of files, N, can be chosen wholly independently of the total number of processors per-
mitting the application to tune N to the underlying filesystem. If N is set to 1, the result will be
serial I/O to a single file. If N is set to P, the result is one file per processor. Both of these are poor
choices.

Typically, one chooses N based on the number of available I/O channels. For example, a parallel
application running on 2,000 processors and writing to a filesystem that supports 8 parallel I/O
channels could select N=8 and achieve nearly optimum I/O performance and create only 8 Silo
files.

On every processor, the sequence of PMPIO operations takes the following form...

PMPI O baton_ t *bat = PMPIO Init(...);
dbFile = (DBfile *) PMPI O WiitForBaton(bat, ...);

/* local work (e.g. DBPut XXX() calls) for this processor */

PMPI O_HandOf f Bat on(bat, ...);
PMPI O_Fi ni sh(bat);

For a given PMPIO group of processors, only one processor in the group is in the “local work”
block of the above code. All other processors have either completed it or are waiting their prede-
cessor to finish. However, every PMPIO group will have one processor working in the “local
work” block, concurrently, to different files.

After PMPI O_Fi ni sh(), there is still one final step that PMPIO DOES NOT HELP with. That
is the creation of the multi-block objects that reference the individual pieces written by all the pro-
cessors with DBPutXXX calls in the “local work™ part of the above sequence. It is the applica-
tion’s responsibility to correctly assembly the names of all these pieces and then create the multi-
block objects that reference them. Ordinarily, the application designates one processor to write
these multi-block objects and one of the N Silo files to write them to. Again, this last step is not
something PMPIO will help with.

Silo User’s Guide 2-147

PMPIO_Init

Poor Man’s Parallel I/0 is a simple and effective 1/O strategy that has been used by codes like
Ale3d and SAMRALI for many years and has shown excellent scaling behavior. A drawback of this
approach is, of course, that multiple files are generated. However, when used appropriately, this
number of files is typically small (e.g. 8 to 64). In addition, our experience has been that concur-
rent, parallel I/O to a single file which also supports sufficient variation in size, shape and pattern
of I/O requests from processor to processor is a daunting challenge to perform scalably. So, while
Poor Man’s Parallel 1/0 is not truly concurrent, parallel I/O, it has demonstrated that it is not only
highly flexible and highly scalable but also very easy to implement and for these reasons, often a
superior choice to true, concurrent, parallel 1/O.

2-148 Silo User’s Guide

PMPIO_CreateFileCallBack

PMPI O_Cr eat eFi | eCal | Back—The PMPIO file creation callback

Synopsis:

typedef void *(*PMPI O CreateFil eCal | Back) (const char *fnane,
const char *dnanme, void *udata);

Fortran Equivalent:

None
Arguments:
f name The name of the Silo file to create.
dnane The name of the directory within the Silo file to create.
udat a A pointer to any additional user data. This is the pointer passed as the
user Dat a argument to PMPI O_I nit ().
Returns:

A void pointer to the created file handle.
Description:

This defines the PMPIO file creation callback interface.

Your implementation of this file creation callback should minimally do the following things.

For PMPI O_WRI TE operation, your implementation should DBCr eat e() a Silo file of name
f nanme, DBVKDI r () a directory of name dnane for the first processor of a group to write to and
DBSet Di r () to that directory.

For PMPI O_READ operations, your implementation of this callback is never called.

The PMPI O_Def aul t Cr eat e function does only the minimal work, returning a void pointer to
the created DBf i | e Silo file handle.

Silo User’s Guide

2-149

PMPIO_OpenFileCallBack

PMPI O_OpenFi | eCal | Back—The PMPIO file open callback

Synopsis:

t ypedef void *(*PMPI O OpenFil eCal | Back) (const char *fnane,
const char *dnanme, PMPIO_ionpbde_t ionode, void *udata);

Fortran Equivalent:

None
Arguments:
f name The name of the Silo file to open.
dnane The name of the directory within the Silo file to work in.
i onode The iomode of this PMPIO interaction. This is the value passed as i ovbde
argument to PMPI O_I ni t ().
udat e A pointer to any additional user data. This is the pointer passed as the
user Dat a argument to PMPI O I nit ().
Returns:

A void pointer to the opened file handle that was.
Description:

This defines the PMPIO open file callback.
Your implementation of this open file callback should minimally do the following things.

For PMPI O_W\RI TE operations, it should DBOpen() the Silo file named f nane, DBMKDi r () a
directory named dnane and DBSet Di r () to directory dnane.

For PMPI O_READ operations, it should DBOpen() the Silo file named f nanme and then
DBSet Di r () to the directory named dnane.

The PMPI O_Def aul t Open function does only the minimal work, returning a void pointer to the
opened DBfile Silo handle.

2-150 Silo User’s Guide

PMPIO_CloseFileCallBack

PMPI O_C oseFi | eCal | Back—The PMPIO file close callback

Synopsis:
typedef void (*PMPIO C oseFileCallBack)(void *file, void *udata);

Fortran Equivalent:

None
Arguments:
file void pointer to the file handle (DBfile pointer).
udat a A pointer to any additional user data. This is the pointer passed as the
user Dat a argument to PMPI O_I nit ().
Returns:
None
Description:

This defines the PMPIO close file callback interface.

Your implementation of this callback function should simply close the file. It us up to the imple-
mentation to know the correct time of the file handle passed as the void pointer f i | e.

The PMPI O_Def aul t C ose function simply closes the Silo file.

Silo User’s Guide 2-151

PMPIO_WaitForBaton

PMPI O_Wai t For Bat on—Wait for exclusive access to a Silo file

Synopsis:

void *PMPI O Wi t For Bat on(PMPI O _baton_t *bat,
const char *fil enane, const char *dirnane)

Fortran Equivalent:

None
Arguments:

bat The PMPIO baton handle obtained via a call to PMPI O _I nit ().

fil ename The name of the Silo file this processor will create or open.

di r nane The name of the directory within the Silo file this processor will work in.
Returns:

NULL (0) on failure. Otherwise, for PMPIO_WRITE operations the return value is whatever the
create or open file callback functions return. For PMPIO_READ operations, the return value is
whatever the open file callback function returns.

Description:

All processors should call this function as the next PMPIO function to call following a call to
PVPIO Init().

For all processors that are the first processors in their groups, this function will return immediately
after having called the file creation callback specified in PMPI O _I ni t () . Typically, this callback
will have created a file with the name f i | ename and a directory in the file with the name

di r nane as well as having set the current working directory to di r nane.

For all processors that are not the first in their groups, this call will block, waiting for the processor
preceding it to finish its work on the Silo file for the group and pass the baton to the next proces-
SOr.

A typical naming convention for f i | enane is something like “my_file_%03d.silo” where the
“%03d” is replaced with the group rank (See “PMPIO_GroupRank” on page 155.) of the proces-
sor. Likewise, a typical naming convention for dirname is something like “domain_%03d” where
the “%03d” is replaced with the rank-in-group (See “PMPIO_RankInGroup” on page 156.) of the
processor.

2-152 Silo User’s Guide

PMPIO_HandOffBaton

PMPI O_HandOf f Bat on—Give up all access to a Silo file

Synopsis:
voi d PMPI O HandO f Bat on(const PMPI O baton_t *bat, void *file)

Fortran Equivalent:
None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().
file A void pointer to the Silo DBfile object.

Returns:
None
Description:

When a processor has completed all its work on a Silo file, it gives up access to the file by calling
this function. This has the effect of closing the Silo file and then passing the baton to the next pro-
cessor in the group.

Silo User’s Guide 2-153

PMPIO_Finish

PMPI O_Fi ni sh—Finish a Poor Man’s Parallel 1/O interaction with the Silo library

Synopsis:
voi d PMPI O _Fi ni sh(PMPI O _baton *bat)
Fortran Equivalent:
None
Arguments:
bat The PMPIO baton handle obtained via a call to PMPIO_Init().
Returns:
None.
Description:

After a processor has finished a PMPIO interaction with the Silo library, call this function to free
the baton object associated with the interaction.

2-154 Silo User’s Guide

PMPIO_GroupRank

PMPI O_G oupRank—Obtain ‘group rank’ of the calling processor

Synopsis:
int PMPI O GroupRank(const PMPI O baton_ t *bat, int ranklnConm

Fortran Equivalent:
None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().

rankl nComnm Rank of calling processor in the MPI communicator passed in
PMPIO Init().

Returns:

The ‘group rank’ of the calling processor. In other words, the group number of the calling proces-
sor, indexed from zero.

Description:

This is a convenience function to help applications identify which PMPIO group a given processor
belongs to.

Silo User’s Guide 2-155

PMPIO_RankInGroup

PMPI O_Rank| nGr oup—Obtain the rank of the calling processor within its PMPIO group

Synopsis:
i nt PMPI O Rankl nGroup(const PMPI O baton_t *bat, int ranklnComm

Fortran Equivalent:

None
Arguments:
bat The PMPIO baton handle obtained via a call to PMPIO_Init().
rankl nConm Rank of the calling processor in the MPI communicator used in
PVWPIO Init().
Returns:

The rank of the calling processor within its PMPIO group.
Description:

This is a convenience function for applications to determine which processor a given processor is
within its PMPIO group.

2-156 Silo User’s Guide

PMPIO_RankInGroup

5 API Section Part Assemblies, AMR, Slide Surfaces,
Nodesets and Other Arbitrary Mesh Subsets

This section of the API manual describes Mesh Region Grouping (MRG) trees and Groupel Maps.
MRG trees describe the decomposition of a mesh into various regions such as parts in an assembly,
materials (even mixing materials), element blocks, processor pieces, nodesets, slide surfaces,
boundary conditions, etc. Groupel maps describe the, problem sized, details of the subsetted
regions. MRG trees and groupel maps work hand-in-hand in efficiently (and scalably) characteriz-
ing the various subsets of a mesh.

MRG trees are associated with (e.g. bound to) the mesh they describe using the
DBOPT_MRGTREE_NAME optlist option in the DBPutXxxmesh() calls. MRG trees are used
both to describe a multi-mesh object and then again, to describe individual pieces of the multi-
mesh.

In addition, once an MRG tree has been defined for a mesh, variables to be associated with the
mesh can be defined on only specific subsets of the mesh using the DBOPT_REG ON_PNAMES
optlist option in the DBPutXxxvar() calls.

Because MRG trees can be used to represent a wide variety of subsetting functionality and because
applications have still to gain experience using MRG trees to describe their subsetting applica-
tions, the methods defined here are design to be as free-form as possible with few or no limitations
on, for example, naming conventions of the various types of subsets. It is simply impossible to
know a priori all the different ways in which applications may wish to apply MRG trees to con-
struct subsetting information.

For this reason, where a specific application of MRG trees is desired (to represent materials for
example), we document the naming convention an application must use to affect the representa-
tion.

The functions described in this section of the API manual are...

DBMaKEMIgIree. . . . oottt et e 158
DBAAAREZION.o 162
DBAAAREZIONAITAY oottt et e 164
DB St W . . o 167
DBGEtCWT . . .ottt 168
DBPULMIEIIEE. oot 169
DBGEtMIGLICE oottt 170
DBEFTeeMIgIree. . . . oot 171
DBPUtMIZVAr 172
DBGetMIgVar. . .o 174
DBPutGroupelmapot 175
DBGetGroupelmapot 177
DBFreeGroupelmapot 178
DBOPT_REGION_PNAMES e 179

Silo User’s Guide 2-157

DBMakeMrgtree

DBMakeM gt r ee—Create and initialize an empty mesh region grouping tree

Synopsis:

DBnr gt ree *DBMakeM gtree(int mesh type, int info_bits,
int max_children, DBoptlist *opts)

Fortran Equivalent:

i nt eger function dbnknrgtree(nmesh_type, info_bits, max_children,
optlist_id, tree_id)

Arguments:

mesh_type The type of mesh object the MRG tree will be associated with. An example
would be DB_MULTIMESH, DB_QUADMESH, DB_UCDMESH.

info_bits UNUSED
max_chi | dr en Maximum number of immediate children of the root.

opts Additional options
Returns:

A pointer to a new DBmrgtree object on success and NULL on failure
Description:

This function creates a Mesh Region Grouping Tree (MRG) tree used to define different regions in
a mesh.

An MRG tree is used to describe how a mesh is composed of regions such as materials, parts in an
assembly, levels in an adaptive refinement hierarchy, nodesets, slide surfaces, boundary conditions,
as well as many other kinds of regions. An example is shown in Figure 0-8 on page 158.

nodesets

[ns_a][ns_b] [copper | [zinc | [iron |
node-type legend
region-only node [cabin | [cockpit] [Teft] [right |

grouping-only node

region & grouping node

UL

Figure 0-8: Example of MRGTree

2-158 Silo User’s Guide

DBMakeMrgtree

In a multi-mesh setting, an MRG tree describing all of the subsets of the mesh is associated with
the top-level multimesh object. In addition, separate MRG trees representing the relevant portions
of the top-level MRG tree are also associated with each block.

MRG trees can be used to describe a wide variety of subsets of a mesh. In the paragraphs below,
we outline the use of MRG trees to describe a variety of common subsetting scenarios. In some
cases, a specific naming convention is required to fully specify the subsetting scenario.

The paragraphs below describe how to utilize an MRG tree to describe various common kinds of
decompositions and subsets.

Multi-Block Grouping (obsoletes DBOPT_GROUPING options for DBPutMultimesh,
_visit_domain_groups convention)

A multi-block grouping is the assignment of the blocks of a multi-block mesh (e.g. the mesh
objects created with DBPutXxxmesh() calls and enumerated by name in a DBPutMultimesh() call)
to one of several groups. Each group in the grouping represents several blocks of the multi-block
mesh. Historically, support for such a grouping in Silo has been limited in a couple of ways. First,
only a single grouping could be defined for a multi-block mesh. Second, the grouping could not be
hierarchically defined. MRG trees, however, support both multiple groupings and hierarchical
groupings.

In the MRG tree, define a child node of the root named “groupings.” All desired groupings shall be
placed under this node in the tree.

For each desired grouping, define a groupel map where the number of segments of the map is
equal to the number of desired groups. Map segment i will be of groupel type DB_BL OCKCENT
and will enumerate the blocks to be assigned to group i . Next, add regions (either an array of
regions or one at a time) to the MRG tree, one region for each group and specify the groupel map
name and other map parameters to be associated with these regions.

Multiple Groupings Single, Hierarchical Grouping

Coen Comen D
/5 Ceromwines>

— / 3
/' grouping A grouping B interior) (cxterior)
\ ﬁ\ N

\
[side][top |[bottom]|[front | skinny| [fat [deep | Ehallow]

[faces | [edges]|

A groupel map object
groupel map segments refs.

Figure 0-9: Examples of MRG trees for single and multiple groupings.

In the diagram above, for the multiple grouping case, two groupel map objects are defined; one for
each grouping. For the ‘A’ grouping, the groupel map consists of 4 segments (all of which are of

Silo User’s Guide 2-159

DBMakeMrgtree

groupel type DB_ BLOCKCENT) one for each grouping in ‘side’, ‘top’, ‘bottom’ and ‘front.” Each
segment identifies the blocks of the multi-mesh (at the root of the MRG tree) that are in each of the
4 groups. For the ‘B’ grouping, the groupel map consists of 2 segments (both of type
DB_BLOCKCENT), for each grouping in ‘skinny’ and ‘fat’. Each segment identifies the blocks of
the multi-mesh that are in each group.

If, in addition to defining which blocks are in which groups, an application wishes to specify spe-
cific nodes and/or zones of the group that comprise each block, additional groupel maps of type
DB_NCDECENT or DB_ZONECENT are required. However, because such groupel maps are speci-
fied in terms of nodes and/or zones, these groupel maps need to be defined on an MRG tree that is
associated with an individual mesh block. Nonetheless, the manner of representation is analogous.

Multi-Block Neighbor Connectivity (obsoletes DBPutMultimeshadj):

Multi-block neighbor connectivity information describes the details of how different blocks of a
multi-block mesh abut with shared nodes and/or adjacent zones. For a given block, multi-block
neighbor connectivity information lists the blocks that share nodes (or have adjacent zones) with
the given block and then, for each neighboring block, also lists the specific shared nodes (or adja-
cent zones).

If the underlying mesh type is structured (e.g. DBPutQuadmesh() calls were used to create the
individual mesh blocks), multi-block neighbor connectivity information can be scalably repre-
sented entirely at the multi-block level in an MRG tree. Otherwise, it cannot and it must be repre-
sented at the individual block level in the MRG tree. This section will describe both scenarios.
Note that these scenarios were previously handled with the now deprecated DBPutMultimeshadj()
call. That call, however, did not have favorable scalaing behavior for the unstructured case.

The first step in defining multi-block connectivity information is to define a top-level MRG tree
node named “neighbors.” Underneath this point in the MRG tree, all the information identifying
multi-block connectivity will be added.

Next, create a groupel map with number of segments equal to the number of blocks. Segment i of
the map will by of type DB_BLOCKCENT and will enumerate the neighboring blocks of block i .
Next, in the MRG tree define a child node of the root named “neighborhoods”. Underneath this
node, define an array of regions, one for each block of the multiblock mesh and associate the
groupel map with this array of regions.

For the structured grid case, define a second groupel map with number of segments equal to the
number of blocks. Segment i of the map will be of type DB_NODECENT and will enumerate the
slabs of nodes block i shares with each of its neighbors in the same order as those neighbors are
listed in the previous groupel map. Thus, segment i of the map will be of length equal to the num-
ber of neighbors of block i times 6 (2 ijk tuples specifying the lower and upper bounds of the slab
of shared nodes).

For the unstructured case, it is necessary to store groupel maps that enumerate shared nodes
between shared blocks on MRG trees that are associated with the individual blocks and NOT the
multi-block mesh itself. However, the process is otherwise the same.

In the MRG tree to be associated with a given mesh block, create a child of the root named “neigh-
bors.” For each neighboring block of the given mesh block, define a groupel map of type
DB_NODECENT, enumerating the nodes in the current block that are shared with another block
(or of type DB_ZONECENT enumerating the nodes in the current block that abut another block).

2-160

Silo User’s Guide

DBMakeMrgtree

Underneath this node in the MRG tree, create a region representing each neighboring block of the
given mesh block and associate the appropriate groupel map with each region.

Multi-Block, Structured Adaptive Mesh Refinement:

In a structured AMR setting, each AMR block (typically called a “patch” by the AMR commu-
nity), is written by a DBPut Quadnesh() call. A DBPut Mul ti mesh() call groups all these
blocks together, defining all the individual blocks of mesh that comprise the complete AMR mesh.

An MRG tree, or portion thereof, is used to define which blocks of the multi-block mesh comprise
which /evels in the AMR hierarchy as well as which blocks are refinements of other blocks.

First, the grouping of blocks into levels is identical to multi-block grouping, described previously.
For the specific purpose of grouping blocks into levels, a different top-level node in the MRG
needs to be defined named “amr-levels.” Below this node in the MRG tree, there should be a set of
regions, each region representing a separate refinement level. A groupel map of type
DB_BLOCKCENT with number of segments equal to number of levels needs to be defined and
associated with each of the regions defined under the “amr-levels’ region. The ith segment of the
map will enumerate those blocks that belong to the region representing level i. In addition, an
MRG variable defining the refinement ratios for each level named “amr-ratios” must be defined on
the regions defining the levels of the AMR mesh.

For the specific purpose of identifying which blocks of the multi-block mesh are refinements of a
given block, another top-level region node is added to the MRG tree called “amr-refinements”.
Below the “amr-refinements” region node, an array of regions representing each block in the
multi-block mesh should be defined. In addition, define a groupel map with a number of segments
equal to the number of blocks. Map segment i will be of groupel type DB_BLOCKCENT and will
define all those blocks which are immediate refinements of block i . Since some blocks, with finest
resolution do not have any refinements, the map segments defining the refinements for these
blocks will be of zero length.

Silo User’s Guide 2-161

DBAddRegion

DBAddRegi on—Add a region to an MRG tree

Synopsis:

i nt DBAddRegi on(DBnrgtree *tree, const char *reg_nane,
int info_bits, int max_children, const char *maps_nane,
int nsegs, int *seg_ids, int *seg lens, int *seg_ types,
DBopt i st *opts)

Fortran Equivalent:

i nt eger function dbaddregion(tree_id, reg _nane, |regnane,
info_bits, max_children, naps_nane,
| maps_nane, nsegs, seg ids, seg |lens,
seg_types, optlist_id, status)

Arguments:
tree The MRG tree object to add a region to.
reg_nane The name of the new region.

info bits UNUSED
max_chi | dr en Maximum number of immediate children this region will have.

maps_nane [OPT] Name of the groupel map object to associate with this region. Pass
NULL if none.

nsegs [OPT] Number of segments in the groupel map object specified by the
maps_name argument that are to be associated with this region. Pass zero if
none.

seg_i ds [OPT] Integer array of length nsegs of groupel map segment ids. Pass NULL (0)
if none.

seg_l ens [OPT] Integer array of length nsegs of groupel map segment lengths. Pass
NULL (0) if none.

seg_types [OPT] Integer array of length nsegs of groupel map segment element types. Pass
NULL (0) if none. These types are the same as the centering options for
variables; DB_ZONECENT, DB_NODECENT, DB_EDGECENT,
DB_FACECENT and DB_BLOCKCENT (for the blocks of a multimesh)

opts [OPT] Additional options. Pass NULL (0) if none.

Returns:

A positive number on success; -1 on failure

Description:

Adds a single region node to an MRG tree below the current working region (See “DBSetCwr” on
page 167.).

2-162

Silo User’s Guide

DBAddRegion

If you need to add a large number of similarly purposed region nodes to an MRG tree, consider
using the more efficient DBAddRegi onAr r ay() function although it does have some limita-
tions with respect to the kinds of groupel maps it can reference.

A region node in an MRG tree can represent either a specific region, a group of regions or both all
of which are determined by actual use by the application.

Often, a region node is introduced to an MRG tree to provide a separate namespace for regions to
be defined below it. For example, to define material decompositions of a mesh, a region named
“materials” is introduced as a top-level region node in the MRG tree. Note that in so doing, the
region node named “materials” does NOT really represent a distinct region of the mesh. In fact, it
represents the union of all material regions of the mesh and serves as a place to define one, or
more, material decompositions.

Because MRG trees are a new feature in Silo, their use in applications is not fully defined and the
implementation here is designed to be as free-form as possible, to permit the widest flexibility in
representing regions of a mesh. At the same time, in order to convey the semantic meaning of cer-
tain kinds of information in an MRG tree, a set of pre-defined region names is described below.

Region Naming Convention Meaning

“materials” Top-level region below which material decomposition information is

defined. There can be multiple material decompositions, if so desired.
Each such decomposition would be rooted at a region named
“material_<name>" underneath the “materials” region node.

“groupings” Top-level region below which multi-block grouping information is

defined. There can be multiple groupings, if so desired. Each such
grouping would be rooted at a region named “grouping_<name>"
underneath the “groupings” region node.

“amr-levels” Top-level region below which Adaptive Mesh Refinement /evel group-

ings are defined.

“amr-refinements” Top-level region below which Adaptive Mesh Refinment refinement

information is defined. This where the information indicating which
blocks are refinements of other blocks is defined.

“neighbors” Top-level region below which multi-block adjacency information is

defined.

When a region is being defined in an MRG tree to be associated with a multi-block mesh, often the
groupel type of the maps associated with the region are of type DB_BLOCKCENT.

Silo User’s Guide 2-163

DBAddRegionArray

DBAddRegi onAr r ay —Efficiently add multiple, like-kind regions to an MRG tree

Synopsis:

i nt DBAddRegi onArray(DBnrgtree *tree, int nregn
const char **regn_nanes, int info_bits,
const char *maps_nane, int nsegs, int *seg_ids,
int *seg_lens, int *seg_types, DBoptlist *opts)

Fortran Equivalent:

i nteger function dbaddregiona(tree_id, nregn, regn_nanes,
I regn_nanes, info_bits, maps_nane, | nmaps_nanme, nsegs
seg ids, seg lens, seg types, optlist_id, status)

Arguments:
tree The MRG tree object to add the regions to.
nregn The number of regions to add.

regn_names This is either an array of nregn pointers to character string names for each
region or it is an array of 1 pointer to a character string specifying a printf-style
naming scheme for the regions. The existence of a percent character (‘%”) (used
to introduce conversion specifications) anywhere in r egn_namnes|[0] will
indicate the latter mode.The latter mode is almost always preferable, especially
if ner gn is large (say more than 100). See below for the format of the printf-
style naming string.

info_bits UNUSED

maps_nane [OPT] Name of the groupel maps object to be associated with these regions.
Pass NULL (0) if none.

nsegs [OPT] The number of groupel map segments to be associated with each region.
Note, this is a per-region value. Pass 0 if none.

seg_ids [OPT] Integer array of length nsegs* nr egn groupel map segment ids. The
first nsegs ids are associated with the first region. The second nsegs ids are
associated with the second region and so fourth. In cases where some regions
will have fewer than nsegs groupel map segments associated with them, pass -
1 for the corresponding segment ids. Pass NULL (0) if none.

seg_l ens [OPT] Integer array of length nsegs™* nr egn indicating the lengths of each of
the groupel maps. In cases where some regions will have fewer than nsegs
groupel map segments associated with them, pass 0 for the corresponding
segment lengths. Pass NULL (0) if none.

seg_types [OPT] Integer array of length nsegs* nr egn specifying the groupel types of
each segment. In cases where some regions will have fewer than nsegs
groupel map segments associated with them, pass 0 for the corresponding
segment lengths. Pass NULL (0) if none.

opts [OPT] Additional options. Pass NULL (0) if none.

2-164 Silo User’s Guide

DBAddRegionArray

Returns:
A positive number on success; -1 on failure
Description:

Use this function instead of DBAddRegion() when you have a large number of similarly purposed
regions to add to an MRG tree AND you can deal with the limitations of the groupel maps associ-
ated with these regions.

The key limitation of the groupel map associated with a region created with DBAddRegionArray()
array and a groupel map associated with a region created with DBAddRegion() is that every region
in the region array must reference nseg map segments (some of which can of course be of zero
length).

Adding a region array is a substantially more efficient way to add regions to an MRG tree than
adding them one at a time especially when a printf-style naming convention is used to specify the
region names.

The format of a printf-style naming convention to specify region names is as follows. The exist-
ence of a percent character (‘%’) anywhere in regn_names[0] indicates that a printf-style naming
convention is to be used. Once it is known that regn_names[0] is a printf-style string, the first char-
acter of regn_names[0] is treated as delimiter character definition. Wherever this delimiter charac-
ter appears (except as the first character), this will indicate the end of one substring within
regn_names[0] and the beginning of a next substring. The delimiter character cannot be any of the
characters used in the expression language (see below) for defining expressions to generate region
names.

The first substring of regn_names[0] (that is the characters from position 1 to the first delimiter
character) will contain the complete printf-style format string. The remaining substrings will con-
tain simple expressions, one for each conversion specifier found in the format string, which when
evaluated will be used as the corresponding argument in an sprintf call to generate the actual
region name, when and if needed, on demand

The expression language for building up the arguments to be used along with the printf-style for-
mat string is pretty simple. It understands the “+’, <-*, “*’_</°, %’ (modulo), ‘|, ‘&’, *’ and a vari-
ant of the question-mark-colon operator, ‘? : :” (which requires an extra, terminating colon) integer
operators. It also understand the grouping operators ‘(‘ and ‘)’ and the string grouping operators
and . Any characters appearing between enclosing single quotes are treated as a literal string
suitable for an argument to be associated with a %s-type conversion specifier in the format string.
Otherwise, all other arguments are treated as evaluating to integer values suitable for any of the
integer conversion specifiers (%[ouxXdi]). Finally, the special operator ‘n’ appearing in an expres-
sion represents a region’s natural number within the region array (zero-origin region index). See
below for some examples...

Silo User’s Guide 2-165

DBAddRegionArray

regn_names|[0] Interpretation

“|slide_%s|(n%2)?'master’:’slave’:” The delimiter character is ‘|'. The format string is “slide_%s". The
expression for the argument to the first (and only in this case) conver-
sion specifier (%s) is “(n%2)?’'master’:’slave’:” When this expression is
evaluated for a given region, the region’s natural number will be
inserted for ‘n’. The modulo operation with 2 will be applied. If that
result is non-zero, the ?:: expression will evaluate to ‘master’. Other-
wise, it will evaluate to ‘slave’. Note the terminating colon for the ?::
operator. This naming scheme might be useful for an array of regions
representing, alternately, master and slave sides of slide surfaces.

“#block_%02dx%02d#n/16#n%16" The delimiter character is ‘#. The format string is
‘block_%02dx%02d”. The expression for the argument to the first con-
version specifier (%02d) is “n/256”. The expression for the argument
to the second conversion specifier (also %02d) is “n%16”. When this
expression is evaluated, the region’s natural number will be inserted
for ‘n’ and the div and mod operators will be evaluated. This naming
scheme might be useful for a region array of 256 regions to be named
as a 2D array of regions with names like “block_09x11”

“@domain_%03d@n” The delimiter character is ‘@’. The format string is “domain_%03d”.
The expression for the argument to the one and only conversion spec-
ifier is ‘n’. When this expression is evaluated, the region’s natural
number is inserted for ‘n’. This results in names like “domain_000",
“domain_001", etc.

“@domain_%03d@n+1” This is just like the case above except that region names begin with
“domain_001" instead of “domain_000". This might be useful to deal
with different indexing origins; Fortran vs. C.

Note that the names of regions within an MRG tree are not required to obey the same variable
naming conventions as ordinary Silo objects (See “DBVariableNameValid” on page 12.) except
that MRG region names can in no circumstance contain either a semi-colon character (‘;’) or a
new-line character (‘\n”).

2-166 Silo User’s Guide

DBSetCwr

DBSet Owr —Set the current working region for an MRG tree
Synopsis:
int DBSet Owm (DBnrgtree *tree, const char *path)

Fortran Equivalent:

i nteger function dbsetcw (tree, path, |path)

Arguments:
tree The MRG tree object.
pat h The path to set.
Returns:

Positive, depth in tree, on success, -1 on failure.

Description:

Sets the current working region of the MRG tree. The concept of the current working region is
completely analogous to the current working directory of a filesystem.

Notes:

Currently, this method is limited to settings up or down the MRG tree just one level. That is, it will
work only when the path is the name of a child of the current working region or is “..”. This limita-
tion will be relaxed in the next release.

Silo User’s Guide 2-167

DBGetCwr

DBGet QW —Get the current working region of an MRG tree

Synopsis:

const char *GetCOwr (DBnrgtree *tree)
Arguments:

tree The MRG tree.
Returns:

A pointer to a string representing the name of the current working region (not the full path name,
just current region name) on success; NULL (0) on failure.

Description:

2-168 Silo User’s Guide

DBPutMrgtree

DBPut M gt r ee—Write a completed MRG tree object to a Silo file

Synopsis:

int DBPut Mgtree(DBfile *file, const char *nane,
const char *nesh_name, DBnrgtree *tree, DBoptlist *opts)

Fortran Equivalent:

i nt dbputnrgtree(dbid, nane, |nanme, nesh_nane, |nesh_nane,
tree_id, optlist_id, status)

Arguments:
file The Silo file handle
name The name of the MRG tree object in the file.

mesh_nanme The name of the mesh the MRG tree object is associated with.
tree The MRG tree object to write.
opts [OPT] Additional options. Pass NULL (0) if none.

Returns:
Positive or zero on success, -1 on failure.

Description:

After using DBPutMrgtree to write the MRG tree to a Silo file, the MRG tree object itself must be
freed using DBFreeMrgtree().

Silo User’s Guide 2-169

DBGetMrgtree

DBCGet M gt r ee—Read an MRG tree object from a Silo file

Synopsis:
DBnrgtree *DBGet M gtree(DBfile *file, const char *name)

Fortran Equivalent:

None
Arguments:

file The Silo database file handle

name The name of the MRG tree object in the file.
Returns:

A pointer to a DBmrgtree object on success; NULL (0) on failure.
Description:
Notes:

For the details of the data structured returned by this function, see the Silo library
silo.h, also attached to the end of this manual.

header file,

2-170

Silo User’s Guide

DBFreeMrgtree

DBFr eeM gt r ee—Free the memory associated by an MRG tree object

Synopsis:

voi d DBFreeM gtree(DBnrgtree *tree)
Fortran Equivalent:

i nteger function dbfreenrgtree(tree_id)
Arguments:

tree The MRG tree object to free.
Returns:

None.
Description:

Frees all the memory associated with an MRG tree.

Silo User’s Guide

2-171

DBPutMrgvar

DBPut M gvar —Write variable data to be associated with (some) regions in an MRG tree

Synopsis:

int DBPut Mgvar(DBfile *file, const char *nane,
const char *nrgt_nane,
i nt nconps, const char **conpnanes,
i nt nregns, const char **reg_pnanes,
int datatype, void **data, DBoptlist *opts)

Fortran Equivalent:

i nt eger function dbputnrgv(dbid, name, |nane, nrgt_nane,
| nt gt _nane, nconps, conpnanes, |conpnanes,
nregns, reg_nanes, |reg_nanes, datatype,
data_ids, optlist_id, status)

character*N conpnanes (See “dbset2dstrlen” on page 239.)

character*N reg_nanes (See “dbset2dstrlen” on page 239.)

int* data_ids (use dbnkptr to get id for each pointer)

Arguments:
file Silo database file handle.
name Name of this mrgvar object.
t name name of the mrg tree this variable is associated with.
nconps An integer specifying the number of variable components.

conpnanes [OPT] Array of nconps pointers to character strings representing the names of
the individual components. Pass NULL(0) if no component names are to be
specified.

nregns The number of regions this variable is being written for.

reg_pnames Array of nr egns pointers to strings representing the pathnames of the regions
for which the variable is being written. If nr egns>1 and
reg_pnamnes[1] ==NULL, it is assumed that r eg_pnanmes[i] =NULL for
alli >0 and r eg_pnanes[0] contains either a printf-style naming
convention for all the regions to be named or, if r eg_pnames|[0] is found to
contain no printf-style conversion specifications, it is treated as the pathname of
a single region in the MRG tree that is the parent of all the regions for which
attributes are being written.

dat a Array of nconps pointers to variable data. The pointer, dat a[i] points to an
array of nr egns values of type dat at ype.
opts Additional options.
Returns:

Zero on success; -1 on failure.

2-172 Silo User’s Guide

DBPutMrgvar

Description:

Sometimes, it is necessary to associate variable data with regions in an MRG tree. This call allows
an application to associate variable data with a bunch of different regions in one of several ways all
of which are determined by the contents of the r eg_pnamnes argument.

Variable data can be associated with all of the immediate children of a given region. This is the
most common case. In this case, r eg_pnanes|[0] is the name of the parent region and
reg_pnames[i] issetto NULL foralli >0.

Alternatively, variable data can be associated with a bunch of regions whose names conform to a
common, printf-style naming scheme. This is typical of regions created with the DBPut Regi on-
Array() call. In this case, r eg_pnamnes|[0] is the name of the parent region and
reg_pnames[i] issetto NULL foralli >0 and, in addition, r eg_pnanes|[0] is a specially
formatted, printf-style string, for naming the regions. See “DBAddRegionArray” on page 164. for
a discussion of the r egn_namnes argument format.

Finally, variable data can be associated with a bunch of arbitrarily named regions. In this case,
each region’s name must be explicitly specified in the r eg_pnanes array.

Because MRG trees are a new feature in Silo, their use in applications is not fully defined and the
implementation here is designed to be as fiee-form as possible, to permit the widest flexibility in
representing regions of a mesh. At the same time, in order to convey the semantic meaning of cer-
tain kinds of information in an MRG tree, a set of pre-defined MRG variables is descirbed below.

Variable Naming Convention Meaning

“amr-ratios” An integer variable of 3 components defining the refinement ratios (rx,
ry, rz) for an AMR mesh. Typically, the refinement ratios can be speci-
fied on a level-by-level basis. In this case, this variable should be
defined for nregns=<# of levels> on the level regions underneath the
“amr-levels” grouping. However, if refinment ratios need to be defined
on an individual patch basis instead, this variable should be defined
on the individual patch regions under the “amr-refinements” group-
ings.

“ijk-orientations” An integer variable of 3 components defined on the individual blocks
of a multi-block mesh defining the orientations of the individual blocks
in a large, ijk indexing space (Ares convention)

“<var>-extents” A double precision variable defining the block-by-block extents of a
multi-block variable. If <var>=="coords”, then it defines the spatial
extents of the mesh itself. Note, this convention obsoletes the
DBOPT_XXX_EXTENTS options on DBPutMultivar/DBPutMultimesh
calls.

Don’t forget to associate the resulting region variable object(s) with the MRG tree by using the
DBOPT_MRGV_ONAMES and DBOPT_MRGV_RNAMES options in the DBPut M gt r ee() call.

Silo User’s Guide 2-173

DBGetMrgvar

DBCGet M gvar —Retrieve an MRG variable object from a silo file

Synopsis:
DBnr gvar *DBGet Mgvar (DBfile *file, const char *nane)

Fortran Equivalent:

None
Arguments:

file Silo database file handle.

name The name of the region variable object to retrieve.
Returns:

A pointer to a DBmrgvar object on success; NULL (0) on failure.
Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

2-174 Silo User’s Guide

DBPutGroupelmap

DBPut Gr oupel map—Write a groupel map object to a Silo file

Synopsis:

i nt DBPut G oupel map(DBfile *file, const char *nane, int num segs,
int *seg_types, int *seg lens, int *seg_ ids, int **seg_data,
void **seg fracs, int fracs_type, DBoptlist *opts)

Fortran Equivalent:

i nt eger function dbputgrpl map(dbi d, nane, |nanme, num segs,
seg_types, seg_lens, seg_ids, seg data_ids,
seg _fracs_ids, fracs type, optlist_id, status)

i nteger* seg data_ids (use dbnkptr to get id for each pointer)

i nteger* seg_fracs_ids (use dbnkptr to get id for each pointer)

Arguments:
file The Silo database file handle.
name The name of the groupel map object in the file.
nsegs The number of segments in the map.

seg_types Integer array of length nsegs indicating the groupel type associated with each
segment of the map; one of DB_BLOCKCENT, DB_NODECENT,
DB _ZONECENT, DB_EDGECENT, DB_FACECENT.

seg_| ens Integer array of length nsegs indicating the length of each segment

seg_ids [OPT] Integer array of length nsegs indicating the identifier to associate with
each segment. By default, segment identifiers are 0...negs-1. If default
identifiers are sufficient, pass NULL (0) here. Otherwise, pass an explicit list of
integer identifiers.

seg_data The groupel map data, itself. An array of nsegs pointers to arrays of integers
where array seg_dat a[i] isoflengthseg_l ens[i].

seg_fracs [OPT] Array of nsegs pointers to floating point values indicating fractional
inclusion for the associated groupels. Pass NULL (0) if fractional inclusions are
not required. If, however, fractional inclusions are required but on only some of
the segments, pass an array of pointers such that if segment i has no fractional
inclusions, seg_f racs[i] =NULL(O) . Fractional inclusions are useful for,
among other things, defining groupel maps involving mixing materials.

fracs_type [OPT] data type of the fractional parts of the segments. Ignored if seg_fracs
is NULL (0).

opts Additional options
Returns:

Zero on success; -1 on failure.

Silo User’s Guide 2-175

DBPutGroupelmap

Description:

By itself, an MRG tree is not sufficient to fully characterize the decomposition of a mesh into var-
ious regions. The MRG tree serves only to identify the regions and their relationships in gross
terms. This frees MRG trees from growing linearly (or worse) with problem size.

All regions in an MRG tree are ultimately defined, in detail, by enumerating a primitive set of
Grouping Elements (groupels) that comprise the regions. A groupel map is the object used for this
purpose. The problem-sized information needed to fully characterize the regions of a mesh is
stored in groupel maps.

The grouping elements or groupels are the individual pieces of mesh which, when enumerated,
define specific regions.

For a multi-mesh object, the groupels are whole blocks of the mesh. For Silo’s other mesh types
such as ucd or quad mesh objects, the groupels can be nodes (0d), zones (2d or 3d depending on
the mesh dimension), edges (1d) and faces (2d).

The groupel map concept is best illustrated by example. Here, we will define a groupel map for the
material case illustrated in Figure 0-6 on page 115.

! Mesh ‘plot’
1|1 /2] 2 o PO
0 1 2 with material
1 1," 2 2 numbers and
3 4/ 5 interface (zone #’s

in lower left)

num segs = 4;

seg_types[] = {DB_ZONECENT, DB _ZONECENT, DB ZONECENT, DB_ZONECENT}:
seg_lens[] = {2,2,2,2};
seg_ids[] ={1,1,2,2}; /* material nunbers used as ids */
seg_dat a[0] 03 seg_fracs[0] (NULL)

material “1”
seg_data[1] 1|4 seg_fracs[1] .4
seg_dat a[2] 215 seg_fracs[2] (NULL)

material “2”
seg_dat a[3] 1|4 seg_fracs[3] 3| .6

Figure 0-10: Example of using groupel map for (mixing) materials.

In the example in the above figure, the groupel map has the behavior of representing the clean and
mixed parts of the material decomposition by enumerating in alternating segments of the map, the
clean and mixed parts for each successive material.

2-176 Silo User’s Guide

DBGetGroupelmap

DBGet G oupel map—Read a groupel map object from a Silo file

Synopsis:
DBgr oupel map *DBGet G oupel map(DBfile *file, const char *nane)

Fortran Equivalent:

None
Arguments:

file The Silo database file handle.

name The name of the groupel map object to read.
Returns:

A pointer to a DBgroupelmap object on success. NULL (0) on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-177

DBFreeGroupelmap

DBFr eeG oupel map—Free memory associated with a groupel map object

Synopsis:
voi d DBFreeG oupel map(DBgr oupel map *map)

Fortran Equivalent:

None
Arguments:

map Pointer to a DBgroupel map object.
Returns:

None

Description:

2-178 Silo User’s Guide

DBFreeGroupelmap

DBOPT_REG ON_PNAMES—option for defining variables on specific regions of a mesh

Synopsis:

DBOPT_REGION_PNAMES | char** A null-pointer terminated array of pointers | NULL
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names.

All of Silo’s DBPut Xxxvar () calls support the DBOPT_REGQ ON_PNAMES option to specify
the variable on only some region(s) of the associated mesh. However, the use of the option has
implications regarding the ordering of the values in the var S[] arrays passed into the

DBPut Xxxvar () functions. This section explains the ordering requirements.

Ordinarily, when the DBOPT_REG ON_PNAMES option is not being used, the order of the values
in the var s arrays passed here is considered to be one-to-one with the order of the nodes (for
DB_NCODECENT centering) or zones (for DB_ ZONECENT centering) of the associated mesh. How-
ever, when the DBOPT_REG ON_PNANMES option is being used, the order of values in the

var s[] is determined by other conventions described below.

If the DBOPT_REG ON_PNANMES option references regions in an MRG tree, the ordering is one-
to-one with the groupel’s identified in the groupel map segment(s) (of the same groupel type as the
variable’s centering) associated with the region(s); all of the segment(s), in order, of the groupel
map of the first region, then all of the segment(s) of the groupel map of the second region, and so
on. If the set of groupel map segments for the regions specified include the same groupel multiple
times, then the var s[] arrays will wind up needing to include the same value, multiple times.

The preceding ordering convention works because the ordering is explicitly represented by the
order in which groupels are identified in the groupel maps. However, if the

DBOPT_REG ON_PNAMES option references material name(s) in a material object created by a
DBPut Mat eri al () call, then the ordering is not explicitly represented. Instead, it is based on a
traversal of the mesh zones restricted to the named materials. In this case, the ordering convention
requires further explanation and is described below.

For DB_ZONECENT variables, as one traverses the zones of a mesh from the first zone to the last,
if a zone contains a material listed in DBOPT_REQ ON_PNAMES (wholly or partially), that zone
is considered in the traversal and placed conceptually in an ordered list of traversed zones. In addi-
tion, if the zone contains the material only partially, that zone is also placed conceptually in an
ordered list of traversed mixed zones. In this case, the values in the var s[] array must be one-to-
one with this traversed zones list. Likewise, the values of the mi xvar s[] array must be one-to-
one with the traversed mixed zones list.

For DB_NODECENT variables, the situation is complicated by the fact that materials are zone-cen-
tric but the variable being defined is node-centered. So, an additional level of local traversal over a
zone’s nodes is required. In this case, as one traverses the zones of a mesh from the first zone to the

Silo User’s Guide 2-179

DBFreeGroupelmap

last, if a zone contains a material listed in DBOPT_REGQ ON_PNAMES (wholly or partially), then
that zone’s nodes are traversed according to the ordering specified in “Node, edge and face order-
ing for zoo-type UCD zone shapes.” on page 2-75. On the first encounter of a node, that node is
considered in the traversal and placed conceptually in an ordered list of traversed nodes. The val-
ues in the var s[] array must be one-to-one with this traversed nodes list. Because we are not
aware of any cases of node-centered variables that have mixed material components, there is no
analogous traversed mixed nodes list.

For DBOPT_EDGECENT and DBOPT_FACECENT variables, the traversal is handled similarly.
That is, the list of zones for the mesh is traversed and for each zone found to contain one of the
materials listed in DBOPT_REGQ ON_PNAMES, the zone’s edge’s (or face’s) are traversed in local
order specified in “Node, edge and face ordering for zoo-type UCD zone shapes.” on page 2-75.

For Quad meshes, there is no explicit list of zones (or nodes) comprising the mesh. So, the notion
of traversing the zones (or nodes) of a Quad mesh requires further explanation. If the mesh’s nodes
(or zones) were to be traversed, which would be the first? Which would be the second?

Unless the DBOPT_MAJ ORORDER option was used, the answer is that the traversal is identical to
the standard C programming language storage convention for multi-dimensional arrays often
called row-major storage order. That is, was we traverse through the list of nodes (or zones) of a
Quad mesh, we encounter first node with logical index [0,0,0], then [0,0,1], then
[0,0,2]...[0,1,0]...etc. A traversal of zones would behave similarly. Traversal of edges or faces of a
quad mesh would follow the description with “DBPutQuadvar” on page 2-66.

2-180

Silo User’s Guide

DBFreeGroupelmap

6 API Section Object Allocation and Free

This section describes methods to allocate and initialize many of Silo’s objects. The functions
described here are...

Silo User’s Guide 2-181

DBAlloc...

DBAI | oc...—Allocate and initialize a Silo structure.

Synopsis:
DBcompoundarray *DBAI | ocConpoundarray (void)
DBcsgnesh *DBAl | ocCsgnesh (voi d)
DBcsgvar *DBAI | ocCsgvar (void)
DBcur ve *DBAI | ocCurve (voi d)
DBcsgzonel i st *DBAI | ocCS&Zonel i st (voi d)
DBdef var s *DBAI | ocDefvars (void)
DBedgel i st *DBAl | ocEdgel i st (void)
DBf acel i st *DBAl | ocFacel i st (void)
DBnat eri al *DBAl | ocMateri al (void)
DBnat speci es *DBAI | ocMat speci es (voi d)
DBneshvar *DBAI | ocMeshvar (voi d)
DBmul t i mat *DBAl | ocMul ti mat (voi d)
DBul ti mat speci es *DBAI | ocMul ti mat speci es (voi d)
DBnul ti mesh *DBAl | ocMul ti nesh (voi d)
DBnul t i meshadij *DBAl | ocMul ti nmeshadj (void)
DBnul ti var *DBAI | ocMul tivar (void)
DBpoi nt nesh *DBAI | ocPoi nt nesh (voi d)
DBquadmnesh *DBAI | ocQuadnesh (voi d)
DBquadvar *DBAl | ocQuadvar (voi d)
DBucdnesh *DBAl | ocUcdnesh (voi d)
DBucdvar *DBAl | ocUcdvar (voi d)
DBzonel i st *DBAI | ocZonel i st (voi d)
DBphzonel i st *DBAI | ocPHZonel i st (voi d)

Fortran Equivalent:
None
Returns:

These allocation functions return a pointer to a newly allocated and initialized structure on success
and NULL on failure.

Description:

The allocation functions allocate a new structure of the requested type, and initialize all values to
NULL or zero. There are counterpart functions for freeing structures of a given type (see
DBFree....

2-182 Silo User’s Guide

DBFree...

DBFr ee..~—Release memory associated with a Silo structure.

Synopsis:

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

Arguments:

X

DBFr eeConpoundarray (DBconpoundarray *Xx)
DBFr eeCsgnmesh (DBcsgnmesh *x)

DBFr eeCsgvar (DBcsgvar *Xx)

DBFr eeCSGZonel i st (DBcsgzonel i st *x)
DBFr eeDef vars (DBdef vars *Xx)

DBFr eeEdgel i st (DBedgel i st *x)

DBFr eeFacel i st (DBf acelist *x)
DBFreeMateri al (DBmaterial *x)

DBFr eeMat speci es (DBmat speci es *Xx)
DBFr eeMeshvar (DBmeshvar *x)

DBFreeMul ti mesh (DBnul timesh *x)
DBFreeMul ti meshadj (DBmul ti neshadj *Xx)
DBFreeMul tivar (DBnul tivar *x)

DBFr eePoi nt mesh (DBpoi nt mesh *x)

DBFr eeQuadnesh (DBquadnesh *Xx)

DBFr eeQuadvar (DBquadvar *Xx)

DBFr eeUcdnmesh (DBucdnesh *x)

DBFr eeUcdvar (DBucdvar *Xx)

DBFr eeZonel i st (DBzoneli st *x)

DBFr eePHZonel i st (DBphzonelist *x)

A pointer to a structure which is to be freed. Its type must correspond to the type
in the function name.

Fortran Equivalent:

None

Returns:

These free functions return zero on success and -1 on failure.

Description:

The free functions release the given structure as well as all memory pointed to by these structures.
This is the preferred method for releasing these structures. There are counterpart functions for
allocating structures of a given type (see DBAlloc...).

The functions will not fail if a NULL pointer is passed to them.

Silo User’s Guide 2-183

DBFree...

7 API Section Calculational

This section of the API manual describes functions that can be used to compute things such as
Facelists. Currently, only functions for calculating facelists are described here.

DBCalcExternalFacelist
DBCalcExternalFacelist2o 187

2-184 Silo User’s Guide

DBCalcExternalFacelist

DBCal cExt er nal Facel i st —Calculate an external facelist for a UCD mesh.

Synopsis:

DBf acel i st *DBCal cExt ernal Facel ist (int nodelist[], int nnodes,
int origin, int shapesize[],
int shapecnt[], int nshapes, int matlist[],
i nt bnd_net hod)

Fortran Equivalent:

i nteger function dbcal cfl(nodelist, nnodes, origin, shapesize,
shapecnt, nshapes, matlist, bnd_net hod)
returns the pointer-id of the created object.

Arguments:
nodel i st Array of node indices describing mesh zones.
nnodes Number of nodes in associated mesh.
origin Origin for indices in the nodel i st array. Should be zero or one.
shapesi ze Array of length nshapes containing the number of nodes used by each zone
shape.
shapecnt Array of length nshapes containing the number of zones having each shape.
nshapes Number of zone shapes.
mat | i st Array containing material numbers for each zone (else NULL).

bnd_met hod Method to use for calculating external faces. See description below.
Returns:

DBCalcExternalFacelist returns a DBfacelist pointer on success and NULL on failure.
Description:

The DBCalcExternalFacelist function calculates an external facelist from the zonelist and zone
information describing a UCD mesh. The calculation of the external facelist is controlled by the
bnd_net hod parameter as defined in the table below:

bnd_method Meaning

0 Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with NULL.

1 In addition to true external faces, include faces on material boundaries
between zones. Faces get generated for both zones sharing a common
face. This setting should not be used with meshes that contain mixed
material zones. If this setting is used with meshes with mixed material
zones, all faces which border a mixed material zone will be include. The
matlist parameter must be provided.

Silo User’s Guide 2-185

DBCalcExternalFacelist

For a description of how to nodes for the allowed shares are enumerated, see “DBPutUcdmesh” on
page 2-72.

2-186 Silo User’s Guide

DBCalcExternalFacelist2

DBCal cExt er nal Facel i st 2—Calculate an external facelist for a UCD mesh

Synopsis:

containing ghost zones.

DBf acel i st *DBCal cExt ernal Facelist2 (int nodelist[], int nnodes,

Fortran Equivalent:
None
Arguments:

nodel i st
nnodes

| o_of fset
hi _of f set
origin
shapet ype

shapesi ze

shapecnt
nshapes
mat | i st
bnd_rmet hod

Returns:

int lowoffset, int hi_offset, int origin,
i nt shapetype[], int shapesize[],

int shapecnt[], int nshapes, int matlist[],
i nt bnd_net hod)

Array of node indices describing mesh zones.

Number of nodes in associated mesh.

The number of ghost zones at the beginning of the nodel i st .
The number of ghost zones at the end of the nodel i st .
Origin for indices in the nodelist array. Should be zero or one.

Array of length nshapes containing the type of each zone shape. See
description below.

Array of length nshapes containing the number of noes used by each zone
shape.

Array of length nshapes containing the number of zones having each shape.
Number of zone shapes.
Array containing material numbers for each zone (else NULL).

Method to use for calculating external faces. See description below.

DBCalcExternalFacelist2 returns a DBfacelist pointer on success and NULL on failure.

Silo User’s Guide

2-187

DBCalcExternalFacelist2

Description:

The DBCalcExternalFacelist2 function calculates an external facelist from the zonelist and zone
information describing a UCD mesh. The calculation of the external facelist is controlled by the
bnd_rmet hod parameter as defined in the table below:

bnd_net hod

Meaning

0

Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with NULL.

In addition to true external faces, include faces on material boundaries
between zones. Faces get generated for both zones sharing a com-
mon face. This setting should not be used with meshes that contain
mixed material zones. If this setting is used with meshes with mixed
material zones, all faces which border a mixed material zone will be
included. The matlist parameter must be provided.

The allowed shape types are described in the following table:

Type

Description

DB_ZONETYPE_BEAM

A line segment

DB_ZONETYPE_POLYGON

A polygon where nodes are enumerated to form a polygon

DB_ZONETYPE_TRIANGLE

A triangle

DB_ZONETYPE_QUAD

A quadrilateral

RON

DB_ZONETYPE_POLYHED

A polyhedron with nodes enumerated to form faces and
faces are enumerated to form a polyhedron

DB_ZONETYPE_TET

A tetrahedron

DB_ZONETYPE_PYRAMID

A pyramid

DB_ZONETYPE_PRISM

A prism

DB_ZONETYPE_HEX

A hexahedron

For a description of how the nodes for the allowed shapes are enumerated, see “DBPutUcdmesh”

on page 2-72.

2-188

Silo User’s Guide

DBCalcExternalFacelist2

8 API Section Optlists

Many Silo functions take as a last argument a pointer to an Options List or optlist. This is intended

to permit the Silo API to grow and evolve as necessary without requiring substantial changes to the
API itself.

In the documentation associated with each function, the list of available options and their meaning
is described.

This section of the manual describes only the functions to create and manage options lists. These

are...
DBMakeOptlist.o 190
DBAAAOPION. . . .ot 191
DBCIearOptionottt e 192
DBGEtOPLIONottt e 193
DBEFreeOPtlist. . .. oot 194
DBClearOptlist oo 195

Silo User’s Guide 2-189

DBMakeOptlist

DBMakeOpt | i st —Allocate an option list.

Synopsis:
DBopt | i st *DBMakeOptlist (int naxopts)
Fortran Equivalent:

i nt eger function dbnkoptlist(nmaxopts, optlist_id)
returns created optlist pointer-id in optlist_id

Arguments:

maxopt s Maximum number of options needed for this option list.
Returns:

DBMakeOptlist returns a pointer to an option list on success and NULL on failure.
Description:

The DBMakeOnptlist function allocates memory for an option list and initializes it. Use the func-
tion DBAddOption to populate the option list structure, and DBFreeOptlist to free it.

2-190 Silo User’s Guide

DBAddOption

DBAddOpt i on—Add an option to an option list.

Synopsis:
i nt DBAddOption (DBoptlist *optlist, int option, void *val ue)
Fortran Equivalent:

i nt eger function dbaddcopt (optlist_id, option, cvalue, |cvalue)
i nteger function dbadddopt (optlist_id, option, dval ue)
i nteger function dbaddi opt (optlist_id, option, ivalue)
i nteger function dbaddropt (optlist_id, option, rval ue)

integer ivalue, optlist_id, option, |cval ue

doubl e precision dval ue

real rval ue

character*N cval ue (See “dbset2dstrl en” on page 239.)

Arguments:
optli st Pointer to an option list structure containing option/value pairs. This structure is
created with the DBMakeOnptlist function.
option Option definition. One of the predefined values described in the table in the
notes section of each command which accepts an option list.
val ue Pointer to the value associated with the provided option description. The data
type is implied by opt i on.
Returns:

DBAddOption returns a zero on success and -1 on failure.
Description:

The DBAddOption function adds an option/value pair to an option list. Several of the output func-
tions accept option lists to provide information of an ancillary nature.

Silo User’s Guide 2-191

DBClearOption

DBCl ear Opt i 0n—Remove an option from an option list

Synopsis:
int DBCl earOption(DBoptlist *optlist, int optid)

Fortran Equivalent:

None
Arguments:
optli st The option list object for which you wish to remove an option
optid The option id of the option you would like to remove
Returns:

DBClearOption returns zero on success and -1 on failure.
Description:

This function can be used to remove options from an option list. If the option specified by opt i d
exists in the given option list, that option is removed from the list and the total number of options
in the list is reduced by one.

This method can be used together with DBAddOption to modify an existing option in an option
list. To modify an existing option in an option list, first call DBClearOption for the option to be
modified and then call DBAddOption to re-add it with a new definition.

There is also a function to query for the value of an option in an option list, DBGetOption.

2-192 Silo User’s Guide

DBGetOption

DBCGet Opt i on—Retrieve the value set for an option in an option list

Synopsis:
voi d *DBGet Opti on(DBoptlist *optlist, int optid)

Fortran Equivalent:
None
Arguments:

optli st The optlist to query
optid The option id to query the value for

Returns:

Returns the pointer value set for a given option or NULL if the option is not defined in the given
option list.

Description:

This function can be used to query the contents of an opt | i st . If the given opt | i st has an
option of the given opt i d, then this function will return the pointer associated with the given
opt i d. Otherwise, it will return NULL indicating the opt | i st does not contain an option with
the given opt i d.

Silo User’s Guide 2-193

DBFreeOptlist

DBFr eeOpt | i St —Free memory associated with an option list.

Synopsis:

int DBFreeOptlist (DBoptlist *optlist)
Fortran Equivalent:

i nteger function dbfreeoptlist(optlist_id)
Arguments:

optli st Pointer to an option list structure containing option/value pairs. This structure is
created with the DBMakeOptlist function.

Returns:
DBFreeOptlist returns a zero on success and -1 on failure.
Description:

The DBFreeOptlist function releases the memory associated with the given option list. The indi-
vidual option values are not freed.

DBFreeOptlist will not fail if a NULL pointer is passed to it.

2-194 Silo User’s Guide

DBClearOptlist

DBCl ear Opt | i St —Clear an optlist.

Synopsis:
int DBClearOptlist (DBoptlist *optlist)

Fortran Equivalent:

None
Arguments:
optli st Pointer to an option list structure containing option/value pairs. This structure is
created with the DBMakeOptlist function.
Returns:

DBClearOptlist returns zero on success and -1 on failure.

Description:

The DBClearOptlist function removes all options from the given option list.

Silo User’s Guide 2-195

DBClearOptlist

9 API Section User Defined (Generic) Data and Objects

If you want to create data that other applications (not written by you or someone working closely
with you) can read and understand, these are NOT the right functions to use. That is because the
data that these functions create is not self-describing and inherently non-shareable.

However, if you need to write data that only you (or someone working closely with you) will read
such as for restart purposes, the functions described here may be helpful. The functions described
here allow users to read and write arbitrary arrays of raw data as well as user-defined Silo objects.
These include...

DBWEIIte . . .ot 197
DBWIItESLICE . . . oottt 198
DBReadVar. 200
DBReadVarl. 201
DBReadVarSlice.o 202
DBGetVar. . ..o 203
DBINGVarEXistso 204
DBINgVarTypeo 205
DBGetVarByteLength e 207
DBGetVarDims.o 208
DBGetVarLength 209
DBGetVarType. . . oot 210
DBPutCompoundarrayou ittt 211
DBInqCompoundarrayt 212
DBGetCompoundarrayottt e e 213
DBMaKeObject.ot 214
DBEFTeeOb eCt oottt 215
DBChangeObjectot 216
DBClearObjectot 217
DBAdADDICOmMpPONent e 218
DBAdAAFItCOMPONENt.ottt 219
DBAdAINtCOmMPONENt.ottt e 220
DBAdAStrComponent. 221
DBAdAVarComponentttt e e 222
DBWriteComponentottt ettt e e e e 223
DBWIriteODbJectot 224
DBGEtODJECL. . . oottt 225
DBGetComponent.ttt 226
DBGetComponentTypeot 227

2-196 Silo User’s Guide

DBWrite

DBW i t e—Write a simple variable.

Synopsis:

int DBWite (DBfile *dbfile, char *varname, void *var, int *dins,
int ndins, int datatype)

Fortran Equivalent:

i nteger function dbwite(dbid, varnane, |varnane, var, dins,
ndi ms, dat atype

Arguments:
dbfile Database file pointer.
var nanme Name of the simple variable.
var Array defining the values associated with the variable.
di ns Array of length ndi s which describes the dimensionality of the variable.
Each value in the di s array indicates the number of elements contained in the
variable along that dimension.
ndi ms Number of dimensions.
dat at ype Datatype of the variable. One of the predefined Silo data types.
Returns:

DBWrite returns zero on success and -1 on failure.
Description:

The DBWrite function writes a simple variable into a Silo file.

Silo User’s Guide 2-197

DBWriteSlice

DBW i t eS| i ce—Write a (hyper)slab of a simple variable

Synopsis:

int DBWiteSlice (DBfile *dbfile, char *varnane, void *var,
int datatype, int *offset, int *length,
int *stride, int *dinms, int ndins)

Fortran Equivalent:

i nteger function dbwiteslice(dbid, varname, |varnane, var,
dat atype, offset, length, stride, dins, ndins)

Arguments:

dbfile Database file pointer.

var nane Name of the simple variable.

var Array defining the values associated with the slab.

dat at ype Datatype of the variable. One of the predefined Silo data types.

of f set Array of length ndi s of offsets in each dimension of the variable. This is the
0-origin position from which to begin writing the slice.

| engt h Array of length ndi s of lengths of data in each dimension to write to the
variable. All lengths must be positive.

stride Array of length ndi s of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

di ns Array of length ndi s which describes the dimensionality of the entire
variable. Each value in the di s array indicates the number of elements
contained in the entire variable along that dimension.

ndi s Number of dimensions.

Returns:

DBWriteSlice returns zero on success and -1 on failure.
Description:

The DBWriteSlice function writes a slab of data to a simple variable from the data provided in the
var pointer. Any hyperslab of data may be written.

The size of the entire variable (after all slabs have been written) must be known when the
DBWriteSlice function is called. The data in the var parameter is written into the entire variable
using the location specified in the of f set , | engt h, and st r i de parameters. The data that
makes up the entire variable may be written with one or more calls to DBWriteSlice.

The minimum | engt h value is 1 and the minimum St r i de value is one.

2-198 Silo User’s Guide

DBWriteSlice

A one-dimensional array slice:

Stride =1 Stride = 2
:l: :l =|:
Offset =51 Length =12 | Offset = 51 Length =12

Figure 0-11: Array slice

Silo User’s Guide 2-199

DBReadVar

DBReadVar —Read a simple Silo variable.

Synopsis:
i nt DBReadVar (DBfile *dbfile, char *varnanme, void *result)

Fortran Equivalent:

i nt eger function dbrdvar(dbid, varnane, |varnane, ptr)

Arguments:
dbfile Database file pointer.
var name Name of the simple variable.
resul t Pointer to memory into which the variable should be read. It is up to the
application to provide sufficient space in which to read the variable.
Returns:

DBReadVar returns zero on success and -1 on failure.
Description:

The DBReadVar function reads a simple variable into the given space.
Notes:

See DBGetVar for a memory-allocating version of this function.

2-200 Silo User’s Guide

DBReadVarl

DBReadVar 1—Read one element from a simple variable.

Synopsis:

int DBReadVarl (DBfile *dbfile, char *varnane, int offset,
void *result)

Fortran Equivalent:

None
Arguments:

dbfile Database file pointer.

var name Name of the simple variable.

of f set Offset of one element to read.

resul t Pointer to memory in which the element should be read. It is up to the

application to provide sufficient space in which to read the element.

Returns:

DBReadVarl returns zero on success and -1 on failure.
Description:

The DBReadVarl function reads one element from a simple variable into the provided space.

Silo User’s Guide 2-201

DBReadVarSlice

DBReadVar Sl i ce—Read a (hyper)slab of data from a simple variable.

Synopsis:

int DBReadVarSlice (DBfile *dbfile, char *varname, int *offset,
int *length, int *stride, int ndins,
void *result)

Fortran Equivalent:

i nteger function dbrdvarslice(dbid, varname, |varnane, offset,
I ength, stride, ndins, ptr)

Arguments:
dbfile Database file pointer.
var nane Name of the simple variable.
of f set Array of length ndi s of offsets in each dimension of the variable. This is the
0-origin position from which to begin reading the slice.
| engt h Array of length ndi s of lengths of data in each dimension to read from the
variable. All lengths must be positive.
stride Array of length ndi s of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.
ndi ns Number of dimensions in the variable.
resul t Pointer to location where the slice is to be written. It is up to the application to
provide sufficient space in which to read the variable.
Returns:

DBReadVarSlice returns zero on success and -1 on failure.
Description:

The DBReadVarSlice function reads a slab of data from a simple variable into a location provided
in the r esul t pointer. Any hyperslab of data may be read.

Note that the minimum | engt h value is 1 and the minimum St r i de value is one.

A one-dimensional array slice:

Stride = 1 Stride = 2
e) 0
Offset =51 Length = 12 | Offset =51 Length = 12

Figure 0-12: Array slice

2-202 Silo User’s Guide

DBGetVar

DBGet Var —Allocate space for, and return, a simple variable.

Synopsis:
void *DBGetVar (DBfile *dbfile, char *varnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
var nanme Name of the variable
Returns:

DBGetVar returns a pointer to newly allocated space on success and NULL on failure.

Description:

The DBGetVar function allocates space for a simple variable, reads the variable from the Silo data-
base, and returns a pointer to the new space. If an error occurs, NULL is returned. It is up to the
application to cast the returned pointer to the correct data type.

Notes:

See DBReadVar and DBReadVarl for non-memory allocating versions of this function.

Silo User’s Guide 2-203

DBIngVarExists

DBI ngVar Exi st S—Queries variable existence

Synopsis:
int DBIngVarExists (DBfile *dbfile, char *nane);

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
name Object name.
Returns:

DBIngVarExists returns non-zero if the object exists in the file. Zero otherwise.
Description:

The DBInqVarExists function is used to check for existence of an object in the given file.

If an object was written to a file, but the file has yet to be DBClose’d, the results of this function
querying that variable are undefined.

2-204 Silo User’s Guide

DBIngVarType

DBI ngVar Ty pe—Return the type of the given object

Synopsis:

DBhj ect Type DBI ngVvar Type (DBfile *dbfile,

Fortran Equivalent:
None
Arguments:

dbfile
name

Returns:

DBIngVarType returns the DBObjectType corresponding to the given object.

Description:

Database file pointer.

Object name.

char *nane);

The DBInqVarType function returns the DBObjectType of the given object. The value returned is
described in the following table:

Object Type

Returned Value

Invalid object or the object was

not found in the file.

DB_INVALID_OBJECT

Quadmesh DB_QUADMESH
Quadvar DB_QUADVAR
UCD mesh DB_UCDMESH
UCD variable DB_UCDVAR
CSG mesh DB_CSGMESH
CSG variable DB_CSGVAR

Multiblock mesh

DB_MULTIMESH

Multiblock variable

DB_MULTIVAR

Multiblock material

DB_MULTIMAT

Multiblock material species

DB_MULTIMATSPECIES

Material

DB_MATERIAL

Material species

DB_MATSPECIES

Facelist

DB_FACELIST

Zonelist

DB_ZONELIST

Polyhedral-Zonelist

DB_PHZONELIST

Silo User’s Guide

2-205

DBIngVarType

The function will signal an error if the given name does not exist in the file.

Notes:

Object Type Returned Value
CSG-Zonelist DB_CSGZONELIST
Edgelist DB_EDGELIST
Curve DB_CURVE
Pointmesh DB_POINTMESH
Pointvar DB_POINTVAR
Defvars DB_DEFVARS
Compound array DB_ARRAY
Directory DB_DIR
Other variable (one written out | DB_VARIABLE
using DBWrite.)

User-defined DB_USERDEF

For the details of the data structured returned by this function, see the Silo library header file,

silo.h, also attached to the end of this manual.

2-206

Silo User’s Guide

DBGetVarByteLength

DBGet Var Byt eLengt h—Return the byte length of a simple variable.

Synopsis:
i nt DBGet VarBytelLength (DBfile *dbfile, char *varnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
var nanme Variable name.
Returns:

DBGetVarByteLength returns the length of the given simple variable in bytes on success and -1 on
failure.

Description:

The DBGetVarByteLength function returns the length of the requested simple variable, in bytes.
This is useful for determining how much memory to allocate before reading a simple variable with
DBReadVar. Note that this would not be a concern if one used the DBGetVar function, which allo-
cates space itself.

Silo User’s Guide 2-207

DBGetVarByteLength

DBGet Var Di ns—Get dimension information of a variable in a Silo file

Synopsis:

int DBGetVarDins(DBfile *file, const char *name, int naxdins,
i nt *dins)

Fortran Equivalent:

None
Arguments:
file The Silo database file handle.
namne The name of the Silo object to obtain dimension information for.
maxdi nms The maximum size of dims.
di s An array of maxdims integer values to be populated with the dimension
information returned by this call.
Returns:

The number of dimensions on success; -1 on failure

Description:

This function will populate the dims array up to a maximum of maxdims values with dimension
information of the specified Silo variable (object) name. The number of dimensions is returned as
the function’s return value.

2-208

Silo User’s Guide

DBGetVarLength

DBGet Var Lengt h—Return the number of elements in a simple variable.
Synopsis:
i nt DBGetVarlLength (DBfile *dbfile, char *varnane)

Fortran Equivalent:

i nt eger function dbinglen(dbid, varnane, |varnanme, |en)

Arguments:
dbfile Database file pointer.
var nanme Variable name.
Returns:

DBGetVarLength returns the number of elements in the given simple variable on success and -1 on
failure.

Description:

The DBGetVarLength function returns the length of the requested simple variable, in number of
elements. For example a 16 byte array containing 4 floats has 4 elements.

Silo User’s Guide 2-209

DBGetVarType

DBCGet Var Ty pe—Return the Silo datatype of a simple variable.

Synopsis:
i nt DBGetVarType (DBfile *dbfile, char *varnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
var nanme Variable name.
Returns:

DBGetVarType returns the Silo datatype of the given simple variable on success and -1 on failure.
Description:

The DBGetVarType function returns the Silo datatype of the requested simple variable. For exam-
ple, DB_FLOAT for float variables.

Notes:

This only works for simple Silo variables (those written using DBWrite or DBWriteSlice). To
query the type of other variables, use DBInqVarType instead.

2-210 Silo User’s Guide

DBPutCompoundarray

DBPut Conpoundar r ay—Write a Compound Array object into a Silo file.

Synopsis:

i nt DBPut Conpoundarray (DBfile *dbfile, char *nane,
char *el etmanes[], int *el em engths,
int nelens, void *values, int nval ues,
i nt datatype, DBoptlist *optlist);

Fortran Equivalent:

i nt eger function dbputca(dbid, name, | name, el emmanes, |el emanes,
el em engt hs, nel ens, val ues, nval ues,
dat atype, optlist_id, status)

character*N el etnanes (See “dbset2dstrlen” on page 239.)

Arguments:
dbfile Database file pointer
name Name of the compound array structure.

el emmamnes Array of length nel ens containing pointers to the names of the elements.
el em engt hs Array of length nel ens containing the lengths of the elements.

nel ens Number of simple array elements.

val ues Array whose length is determined by nel ens and el erm engt hs containing
the values of the simple array elements.

nval ues Total length of the val ues array.

dat at ype Data type of the val ues array. One of the predefined Silo types.

optli st Pointer to an option list structure containing additional information to be

included in the compound array object written into the Silo file. Use NULL is
there are no options.

Returns:
DBPutCompoundarray returns zero on success and -1 on failure.
Description:

The DBPutCompoundarray function writes a compound array object into a Silo file. A compound
array is an array whose elements are simple arrays. All of the simple arrays have elements of the
same data type, and each have a name.

Often, an application will partition a block of memory into named pieces, but write the block to a
database as a single entity. Fortran common blocks are used in this way. The compound array
object is an abstraction of this partitioned memory block.

Silo User’s Guide 2-211

DBIngCompoundarray

DBI ngConpoundar r ay—Inquire Compound Array attributes.

Synopsis:

i nt DBI ngConpoundarray (DBfile *dbfile, char *nane,
char *el etmanes[], int *el em engths,
int nelens, int nvalues, int datatype)

Fortran Equivalent:

i nt eger function dbingca(dbid, nanme, |nane, nmaxw dth, nel emns,
nval ues, dat atype)

Arguments:
dbfile Database file pointer.
name Name of the compound array.
el etmanes Returned array of length nelems containing pointers to the names of the array

elements.

el em engt hs Returned array of length nel ens containing the lengths of the array elements.

nel ens Returned number of array elements.

nval ues Returned number of total values in the compound array.

dat at ype Datatype of the data values. One of the predefined Silo data types.
Returns:

DBIngCompoundarray returns zero on success and -1 on failure.
Description:

The DBInqCompoundarray function returns information about the compound array. It does not
return the data values themselves; use DBGetCompoundarray instead.

2-212 Silo User’s Guide

DBGetCompoundarray

DBGet Conpoundar r ay—Read a compound array from a Silo database.

Synopsis:

DBcompoundarray *DBCGet Conmpoundarray (DBfile *dbfile,
char *arraynane)

Fortran Equivalent:

i nt eger function dbgetca(dbid, nane, | name, | el etmanes, el emanes,
el em engt hs, nel ens, val ues, nval ues,
dat at ype)

Arguments:

dbfile Database file pointer.
arr ayname Name of the compound array.

Returns:

DBGetCompoundarray returns a pointer to a DBcompoundarray structure on success and NULL
on failure.

Description:

The DBGetCompoundarray function allocates a DBcompoundarray structure, reads a compound
array from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-213

DBMakeObject

DBMake(Cbj ect —Allocate an object of the specified length and initialize it.

Synopsis:
DBobj ect *DBMakeCbj ect (char *objnane, int objtype, int maxconps)

Fortran Equivalent:

None
Arguments:
obj nane Name of the object.
obj type Type of object. One of the predefined types: DB_QUADMESH,
DB_QUAD_RECT, DB_QUAD_CURYV, DB_DEFVARS, DB_QUADVAR,
DB_UCDMESH, DB_UCDVAR, DB_POINTMESH, DB_POINTVAR,
DB_CSGMESH, DB_CSGVAR, DB_MULTIMESH, DB_MULTIVAR,
DB_MULTIADIJ, DB_MATERIAL, DB_MATSPECIES, DB_FACELIST,
DB_ZONELIST, DB_PHZONELIST, DB_EDGELIST, DB_CURVE,
DB_ARRAY, or DB_USERDEEF.
maxconps Maximum number of components needed for this object.
Returns:

DBMakeObject returns a pointer to the newly allocated and initialized object on success and
NULL on failure.

Description:

The DBMakeObject function allocates space for an object of maxconps components.

2-214 Silo User’s Guide

DBFreeObject

DBFr ee(Cbj ect —Free memory associated with an object.

Synopsis:
i nt DBFree(hj ect (DBobject *object)

Fortran Equivalent:
None

Arguments:

obj ect Pointer to the object to be freed. This object is created with the DBMakeObject
function.

Returns:

DBFreeObject returns zero on success and -1 on failure.

Description:

The DBFreeObject function releases the memory associated with the given object. The data asso-
ciated with the object’s components is not released.

DBFreeObject will not fail if a NULL pointer is passed to it.

Silo User’s Guide 2-215

DBFreeObject

DBChangeQbj ect —Overwrite an existing object in a Silo file with a new object

Synopsis:
i nt DBChangeCbject(DBfile *file, DBobject *obj)

Fortran Equivalent:

None
Arguments:

file The Silo database file handle.

obj The new DBobject object (which knows its name) to write to the file.
Returns:

Zero on succes; -1 on failure
Description:

DBChangeObject writes a new DBobject object to a file, replacing the object in the file with the
same name.

2-216 Silo User’s Guide

DBClearObject

DBCl ear (bj ect —Clear an object.

Synopsis:

i nt DBCl ear Obj ect (DBobject *object)
Fortran Equivalent:

None

Arguments:

obj ect Pointer to the object to be cleared. This object is created with the
DBMakeObject function.

Returns:
DBClearObject returns zero on success and -1 on failure.

Description:

The DBClearObject function clears an existing object. The number of components associated with
the object is set to zero.

Silo User’s Guide 2-217

DBAddDbIComponent

DBAddDbl Conponent —Add a double precision floating point component to an object.

Synopsis:
i nt DBAddDbl Conponent (DBobject *object, char *conpnane, doubl e d)

Fortran Equivalent:

None
Arguments:
obj ect Pointer to an object. This object is created with the DBMakeObject function.
conpnane The component name.
d The value of the double precision floating point component.
Returns:

DBAddDblComponent returns zero on success and -1 on failure.
Description:

The DBAddDblComponent function adds a component of double precision floating point data to
an existing object.

2-218 Silo User’s Guide

DBAddFItComponent

DBAddFI t Conponent —Add a floating point component to an object.

Synopsis:
i nt DBAddFI t Conponent (DBobject *object, char *conpnane, double f)

Fortran Equivalent:

None
Arguments:
obj ect Pointer to an object. This object is created with the DBMakeObject function.
conmpnarne The component name.
f The value of the floating point component.

Returns:
DBAddFItComponent returns zero on success and -1 on failure.
Description:

The DBAddFItComponent function adds a component of floating point data to an existing object.

Silo User’s Guide 2-219

DBAddIntComponent

DBAddI nt Conponent —Add an integer component to an object.

Synopsis:
i nt DBAddI nt Conponent (DBobject *object, char *conpnane, int i)

Fortran Equivalent:

None
Arguments:
obj ect Pointer to an object. This object is created with the DBMakeObject function.
conmpnarne The component name.
[The value of the integer component.
Returns:

DBAddIntComponent returns zero on success and -1 on failure.
Description:

The DBAddIntComponent function adds a component of integer data to an existing object.

2-220 Silo User’s Guide

DBAddStrComponent

DBAddSt r Conponent —Add a string component to an object.

Synopsis:
i nt DBAddSt r Conrponent (DBobject *object, char *conpnane, char *s)

Fortran Equivalent:

None
Arguments:
obj ect Pointer to the object. This object is created with the DBMakeObject function.
conpnane The component name.
S The value of the string component. Silo copies the contents of the string.

Returns:
DBAddStrComponent returns zero on success and -1 on failure.
Description:

The DBAddStrComponent function adds a component of string data to an existing object.

Silo User’s Guide 2-221

DBAddVarComponent

DBAddVar Conponent —Add a variable component to an object.

Synopsis:

i nt DBAddVar Conponent (DBobject *object, char* conpnane,
char *vardata)

Fortran Equivalent:

None
Arguments:
obj ect Pointer to the object. This object is created with the DBMakeObject function.
conpnane Component name.
var dat a Name of the variable object associated with the component (see Description).

Returns:
DBAddVarComponent returns zero on success and -1 on failure.
Description:

The DBAddVarComponent function adds a component of the variable type to an existing object.

The variable in var dat a is stored verbatim into the object. No translation or typing is done on
the variable as it is added to the object.

2-222 Silo User’s Guide

DBWriteComponent

DBW i t eConponent —Add a variable component to an object and write the associated
data.

Synopsis:
int DBWiteConponent (DBfile *dbfile, DBobject *object,
char *conpnane, char *prefix, char *datatype,

void *var, int nd, long *count)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
obj ect Pointer to the object.
conpnane Component name.
prefix Path name prefix of the object.
dat at ype Data type of the component’s data. One of: “short”, “integer”, “long”, “float”,
“double”, “char”.
var Pointer to the component’s data.
nd Number of dimensions of the component.
count An array of length nd containing the length of the component in each of its
dimensions.
Returns:

DBWriteComponent returns zero on success and -1 on failure.
Description:

The DBWriteComponent function adds a component to an existing object and also writes the com-
ponent’s data to a Silo file.

Silo User’s Guide 2-223

DBWriteObject

DBW i t e(bj ect —Write an object into a Silo file.

Synopsis:
int DBWiteCObject (DBfile *dbfile, DBobject *object, int freenen

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
obj ect Object created with DBMakeObject and populated with DBAddFItComponent,
DBAddIntComponent, DBAddStrComponent, and DBAddVarComponent.
freemem If non-zero, then the object will be freed after writing.
Returns:

DBWriteObject returns zero on success and -1 on failure.
Description:

The DBWriteObject function writes an object into a Silo file. This is a user-defined object that
consists of various components. They are used when the basic Silo structures are not sufficient.

2-224 Silo User’s Guide

DBWriteObject

DBCGet Obj ect —Read an object from a Silo file as a generic object

Synopsis:
DBobj ect *DBGet Obj ect (DBfile *file, const char *objnane)

Fortran Equivalent:

None
Arguments:
file The Silo database file handle.
obj nane The name of the object to get.
Returns:

On success, a pointer to a DBobject struct containing the object’s data. NULL on failure.

Description:

Each of the object Silo supports has corresponding methods to both write them to a Silo database
file (DBPut...) and get them from a file (DBGet...).

However, Silo objects can also be accessed as generic objects through the generic object interface.
This is recommended only for objects that were written with DBWriteObject() method.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

Silo User’s Guide 2-225

DBGetComponent

DBGet Conponent —Allocate space for, and return, an object component.

Synopsis:

voi d *DBGet Conponent (DBfile *dbfile, char *objnane,
char *conpnane)

Fortran Equivalent:

None

Arguments:
dbfile Database file pointer.
obj nane Object name.
conpnane Component name.

Returns:

DBGetComponent returns a pointer to newly allocated space containing the component value on
success, and NULL on failure.

Description:

The DBGetComponent function allocates space for one object component, reads the component,
and returns a pointer to that space. If either the object or component does not exist, NULL is
returned. It is up to the application to cast the returned pointer to the appropriate type.

2-226 Silo User’s Guide

DBGetComponentType

DBCGet Conponent Ty pe—Return the type of an object component.

Synopsis:

i nt DBGet Conponent Type (DBfile *dbfile, char *objnane,
char *conpnane)

Fortran Equivalent:

None
Arguments:
dbfile Database file pointer.
obj nane Object name.
conpnane Component name.
Returns:

The values that are returned depend on the component’s type and how the component was written
into the object. The component types and their corresponding return values are listed in the table

below.

Component Type Return value

Integer DB_INT

Float DB_FLOAT

Double DB_DOUBLE

String DB_CHAR

Variable DB_VARIABLE

all others DB_NOTYPE
Description:

The DBGetComponentType function reads the component’s type and returns it. If either the object
or component does not exist, DB_NOTYPE is returned. This function allows the application to
process the component without having to know its type in advance.

Silo User’s Guide 2-227

DBGetComponentType

10 API Section Previously Undocumented Use Conventions

Silo is a relatively old library. It was originally developed in the early 1990’s. Over the years, a
number of use conventions have emerged and taken root and are now firmly entrenched in a variety
of applications using Silo.

This section of the API manual simply tries to enumerate all these conventions and their meanings.
In a few cases, a long-standing use convention has been subsumed by the recent introduction of
formalized Silo objects or options to implement the convention. These cases are documented and
the user is encouraged to use the formal Silo approach.

Since everything documented in this section of the Silo API is a convention on the use of Silo,
where one would ordinarily see a function call prototype, instead example call(s) to the Silo that
implement the convention are described.

CVISIE deTVATS .« o oo, 229
_visit_searchpath. 230
_VISIt_dOMAIN_GIOUPS. . . o vttt e ettt e e e e 231
AlphabetizeVariables e 232
ConnectivityISTImeVarying o 233
MultivarToMultimeshMap_vars. e e 234

2-228 Silo User’s Guide

_visit_defvars

MultivarToMultimeshMap_meshes23_Vi Si t _def var S—convention for derived variable
definitions

Synopsis:

int n;

char defs[1024];

sprintf(defs, “foo scalar x+y;bar vector {x,y,z};”
“gorfo scalar sqrt(x)”;

n = strlen(defs);

DBWite(dbfile, “_visit_defvars”, defs, &, 1, DB_CHAR);

Description:

Do not use this convention. Instead See “DBPutDefvars” on page 120.

_Vvisit_defvars is an array of characters. The contents of this array is a semi-colon separated
list of derived variable expressions of the form

<name of derived variable> <space> <name of type> <space> <definition>

If an array of characters by this name exists in a Silo file, its contents will be used to populate the
post-processor’s derived variables. For Vislt, this would mean Vislt’s expression system.

This was also known as the “_nmesht v_def var s convention too.

This named array of characters can be written at any subdirectory in the Silo file.

Silo User’s Guide 2-229

_visit_searchpath

_Vi sit_sear chpat h—directory order to search when opening a Silo file

Synopsis:

int n;

char dirs[1024];

sprintf(dirs, “nodesets;slides;”);

n = strlen(dirs);

DBWite(dbfile, “ _visit_searchpath”, dirs, &, 1, DB CHAR);

Description:

When opening a Silo file, an application is free to traverse directories in whatever order it wishes.
The _vi sit_sear chpat h convention is used by the data producer to control how downstream,
post-processing tools traverse a Silo file’s directory hierarchy.

_Visit_searchpat h is an array of characters representing a semi-colon separated list of
directory names. If a character array of this name is found at any directory in a Silo file, the direc-
tories it lists (which are considered to be relative to the directory in which this array is found
unless the directory names begin with a slash /) and only those directories are searched in the
order they are specified in the list.

2-230

Silo User’s Guide

_visit_domain_groups

_Visit_domai n_gr oups—method for grouping blocks in a multi-block mesh

Synopsis:

i nt donToG oupMap[16] ;

int j;

for (j =0; j < 16; j++) donlfoG oupMap[j] = | %4,

DBWite(dbfile, “_visit_domai n_groups”, donToG oupMap,
&, 1, DB_INT);

Description:

Do not use this convention. Instead use Mesh Region Grouping (MRG) trees. See
“DBMakeMrgtree” on page 158.

_Visit_domai n_groups is an array of integers equal in size to the number of blocks in an
associated multi-block mesh object specifying, for each block, a group the block is a member of.
In the example above, there are 16 blocks assigned to 4 groups.

Silo User’s Guide 2-231

AlphabetizeVariables

Al phabet i zeVari abl es—flag to tell post-processor to alphabetize variable lists

Synopsis:

i nt doAl pha = 1,
int n = 1;
DBWite(dbfile, “AlphabetizeVariables”, &doAl pha, &, 1, DB_INT);

Description:

The Al phabeti zeVari abl es convention is a simple integer value which, if non-zero, indi-
cates that the post-processor should alphabetize its variable lists. In Vislt, this would mean that
various menus in the GUI, for example, are constructed such that variable names placed near the
top of the menus come alphabetically before variable names near the bottom of the menus. Other-
wise, variable names are presented in the order they are encountered in the database which is often
the order they were written to the database by the data producer.

2-232 Silo User’s Guide

ConnectivitylsTimeVarying

Connecti vi tyl sTi meVar yi ng—flag telling post-processor if connectivity of
meshes in the Silo file is time varying or not

Synopsis:
int isTinmeVarying = 1,
int n =1;
DBWite(dbfile, “ConnectivitylsTinmeVarying”, & sTinmeVarying, &n,
1, DB_INT);
Description:

The Connecti vi t yl sTi meVar yi ng convention is a simple integer flag which, if non-zero,
indicates to post-processing tools that the connectivity for the mesh(s) in the database varies with
time. This has important performance implications and should only be specified if indeed it is nec-
essary as, for instance, in post-processors that assume connectivity is NOT time varying. This is an
assumption made by Vislt and the Connect i vi t yl sTi meVar yi ng convention is a way to tell
Vislt to NOT make this assumption.

Silo User’s Guide 2-233

MultivarToMultimeshMap_vars

Mul ti var ToMul ti meshMap_var s—list of multivars to be associated with

multimeshes

Synopsis:

int |en;

char tnpStr[256];

sprintf(tnpStr, "d;p;u;v;whist; mtl");

len = strlen(tnpStr);

DBWite(dbfile, "MiultivarToMilti meshMap_vars”, tnmpStr, & en, 1,
DB_CHAR) ;

Description:

Do not use this convention. Instead use the DBOPT_MMESH NAME optlist option for a
DBPut Mul ti var () call to associate a multimesh with a multivar.

The Mul ti var ToMul t i mneshMap_var s use convention goes hand-in-hand with the

Mul ti var ToMul ti meshMap_neshes use convention. The _var s portion is an array of
characters defining a semi-colon separated list of multivar object names to be associated with
multi-mesh names. The _nmesh portion is an array of characters defining a semi-colon separated
list of associated multimesh object names. This convention was introduced to deal with a short-
coming in Silo where multivar objects did not know the multimesh object they were associated
with. This has since been corrected by the DBOPT_MMVESH_NANME optlist option for a DBPut -
Mul tivar () call.

2-234

Silo User’s Guide

MultivarToMultimeshMap_meshes

Mul ti var ToMul t i meshMap_neshes—list of multimeshes to be associated with
multivars

Synopsis:

int |en;

char tnpStr[256];

sprintf(tnpStr, "meshl; meshl; meshl; neshl; neshl; neshl; meshl");

len = strlen(tnpStr);

DBWite(dbfile, "MiltivarToMul ti meshMap_meshes”, tnmpStr, & en, 1,
DB_CHAR) ;

Description:

See “MultivarToMultimeshMap_vars” on page 234.

Silo User’s Guide 2-235

MultivarToMultimeshMap_meshes

11 API Section Silo’s Fortran Interface

The functions described in this section are either unique to the Fortran interface or facilitate the
mixing of C/C++ and Fortran within a single application interacting with a Silo file. The functions
described here are...

AT, . . 237
AOrmMIPLr .« L 238
dbset2dstrlen 239
dbget2dstrlen. 240
DBFortranAllocPoInter. 241
DBFortranAccessPoINter 242
DBFortranRemovePointer 243

2-236 Silo User’s Guide

dbmkptr

dbnkpt r —create a pointer-id from a pointer

Synopsis:

i nteger function dbnkptr(void p)
Arguments:

p pointer for which a pointer-id is needed
Returns:

the integer pointer id to associate with the pointer
Description:

In cases where the C interface returns to the application a pointer to an abstract Silo object, in the
Fortran interface an integer pointer-id is created and returned instead. In addition, in cases where
the C interface would accept an array of pointers, such as in DBPut Csgvar (), the Fortran inter-
face accepts an array of pointer-ids. This function is used to create a pointer-id from a pointer.

A table of pointers is maintained internally in the Fortran wrapper library. The pointer-id is simply
the index into this table where the associated object’s pointer actually is. The caller can free up
space in this table using dbr npt r ()

Silo User’s Guide 2-237

dbrmptr

dbr npt r —remove an old and no longer needed pointer-id

Synopsis:

i nteger function dbrnptr(ptr_id)

Arguments:

ptr_id the pointer-id to remove
Returns:

always 0

2-238 Silo User’s Guide

dbset2dstrlen

dbset 2dst r | en—Set the size of a ‘row’ for pointers to ‘arrays’ of strings

Synopsis:
i nteger function dbset2dstrlen(int |en)
integer |en
Arguments:
I en The length to set
Returns:
Returns the previously set value.
Description:

A number of functions in the Fortran interface take a char* argument that is really treated inter-
nally in the Fortran interface as a 2D array of characters. Calling this function allows the caller to
specify the length of the rows in this 2D array of characters. If necessary, this setting can be varied
from call to call.

The default value is 32 characters.

Silo User’s Guide 2-239

dbget2dstrlen

dbget 2dst r | en—Get the size of a ‘row’ for pointers to ‘arrays’ of character strings

Synopsis:

i nteger function dbget2dstrlen()
Arguments:

None
Returns:

The current setting for the 2D string length.

2-240 Silo User’s Guide

DBFortranAllocPointer

DBFor t r anAl | ocPoi nt er —Facilitates accessing C objects through Fortran

Synopsis:

i nt DBFortranAll ocPointer (void *pointer)
Arguments:

poi nt er A pointer to a Silo object for which a Fortran identifier is needed
Returns:

DBFortranAllocPointer returns an integer that Fortran code can use to reference the given Silo
object.

Description:

The DBFortranAllocPointer function allows programs written in both C and Fortran to access the
same data structures. Many of the routines in the Fortran interface to Silo use an “object id”, an
integer which refers to a Silo object. DBFortanAllocPointer converts a pointer to a Silo object into
an integer that Fortran code can use. In some ways, this function is the inverse of DBFortranAcces-
sPointer.

The integer that DBFortranAllocPointer returns is used to index a table of Silo object pointers.
When done with the integer, the entry in the table may be freed for use later through the use of
DBFortranRemovePointer.

See “DBFortranAccessPointer” on page 2-242 and “DBFortranRemovePointer” on page 2-243 for
more information about how to use Silo objects in code that uses C and Fortran together.

Silo User’s Guide 2-241

DBFortranAccessPointer

DBFor t ranAccessPoi nt er —Access Silo objects created through the Fortran Silo
interface.

Synopsis:

voi d *DBFortranAccessPoi nter (int val ue)
Arguments:

val ue The value returned by a Silo Fortran function, referencing a Silo object.
Returns:

DBFortranAccessPointer returns a pointer to a Silo object (which must be cast to the appropriate
type) on success, and NULL on failure.

Description:

The DBFortranAccessPointer function allows programs written in both C and Fortran to access the
same data structures. Many of the routines in the Fortran interface to Silo return an “object id”, an
integer which refers to a Silo object. DBFortranAccessPointer converts this integer into a C pointer
so that the sections of code written in C can access the Silo object directly.

See “DBFortranAllocPointer” on page 2-241 and “DBFortranRemovePointer” on page 2-243 for
more information about how to use Silo objects in code that uses C and Fortran together.

2-242 Silo User’s Guide

DBFortranRemovePointer

DBFor t r anRenovePoi nt er —Removes a pointer from the Fortran-C index table

Synopsis:

voi d DBFortranRenovePoi nter (int val ue)
Arguments:

val ue An integer returned by DBFortranAllocPointer
Returns:

Nothing
Description:

The DBFortranRemovePointer function frees up the storage associated with Silo object pointers as
allocated by DBFortranAllocPointer.

Code that uses both C and Fortran may make use of DBFortranAllocPointer to allocate space in a
translation table so that the same Silo object may be referenced by both languages. DBFortranAc-
cessPointer provides access to this Silo object from the C side. Once the Fortran side of the code is
done referencing the object, the space in the translation table may be freed by calling DBFortran-
RemovePointer.

See “DBFortranAccessPointer” on page 2-242 and “DBFortranAllocPointer” on page 2-241 for
more information about how to use Silo objects in code that uses C and Fortran together.

Silo User’s Guide 2-243

DBFortranRemovePointer

12 API Section Deprecated Functions

The following functions were deprecated from Silo in version 4.6. Attempts to call these methods
in version 4.6 will still succeed. However, deprecation warnings will be generated on stderr (See
“DBSetDeprecateWarnings” on page 28.). There is no guarantee that these methods will exist in
versions of Silo after 4.6.

DBGetComponentNames
DBGetAtt

DBListDir

DBReadAtt
DBGetQuadvarl
DBcontinue

DBPause

DBPutZonelist
DBPutUcdsubmesh

2-244 Silo User’s Guide

A copy of the relevant parts of the Silo header file.

/* Major release nunber of silo library. */
#define SILO VERS MAJ 4

/* Mnor release nunber of silo library. */
#define SILO VERS MN 6

/* Patch rel ease nunber of silo library. Can be enpty. */
#define SILO VERS_PAT

/* Pre-rel ease rel ease nunber of silo library. Can be enpty. */
#define SILO VERS _PRE

/* The synbol Silo uses to enforce link-tine
header/ obj ect version conpatibility */
#define SILO VERS TAG Silo_version_ 4 6

/* Useful macro for conparing Silo versions */
#define SILO VERSI ON_ GE(Maj , M n, Pat) \
(((SILO_VERS MAJ==Maj) && (SILO VERS M N==M n) &&
(SI LO VERS PAT>=Pat)) || \
((SILO_VERS MAJ==Maj) && (SILO VERS MN>Mn)) || \
(SI LO_VERS_NAJ>Maj))

*

* Drivers. This is a list of every driver that a user could use. Not all of
* them are necessarily conpiled into the library. However, users are free
* to try without getting conpilation errors. They are |listed here so that
* silo.h doesn't have to be generated every tine the library is reconpiled.
#defi ne DB_NETCDF 0

#defi ne DB_PDB 2

#defi ne DB_TAURUS 3

#def i ne DB_UNKNOWN 5

#def i ne DB_DEBUG 6

#defi ne DB_HDF5 7 /* equivalent to DB HDF5 SEC2 */

/* special driver ids to affect which Virtual File Driver HDF5 uses */

#def i ne DB_HDF5_ SEC2 256 /* section 2 1/0O (open/read/wite/close) */
#define DB HDF5 STDIO 512 /* stdio (fopen/fread/fwite/fclose) */

#define DB HDF5 CORE 768 /* file in nenory. Mshits specify alloc. inc. */
#define DB HDF5 MPIO 1024 /* use MPI-10 on MPI _COW SELF */

#define DB HDF5 MPIOP 1280 /* use MPI for any nessaging, sec 2 for 1/0O */

#def i ne NO_FORTRAN_DEFI NE /*nki nc ignores these |lines. */
| % o L L L o o e e edeialooo-.
* Other library-wi de constants.
K L o o o e o o o e e e e o e e e e e o e */
#def i ne DB_NFI LES 256 /*Max sinultaneously open files */
#def i ne DB_NFI LTERS 32 /*Nunber of filters defined */

3-1

~

EE A B T T

/*
*

*

Constants. All of these constants are always defined in the application.

Each group of constants defined here are small integers used as an index
into an array. Many of the groups have a total count of itens in the
group that will be used for array allocation and error checking--don't

forget to increment the val ue when adding a newitemto a constant group.

The following identifiers are for use with the DBDataReadMask() call. They
speci fy what portions of the data beyond the netadata is allocated
and read. */

#defi ne DBAl | Oxffffffff
#def i ne DBNone 0x00000000
#defi ne DBCal c 0x00000001
#def i ne DBMat Mat nos 0x00000002
#defi ne DBMat Mat | i st 0x00000004
#defi ne DBMat M xLi st 0x00000008
#defi ne DBCurveArrays 0x00000010
#def i ne DBPMCoor ds 0x00000020
#def i ne DBPVDat a 0x00000040
#def i ne DBQWCoor ds 0x00000080
#def i ne DBQVDat a 0x00000100
#def i ne DBUMCoor ds 0x00000200
#def i ne DBUMFacel i st 0x00000400
#def i ne DBUMZonel i st 0x00000800
#def i ne DBUVDat a 0x00001000
#defi ne DBFacelistlnfo 0x00002000
#defi ne DBZonelistlnfo 0x00004000
#def i ne DBMat Mat nanes 0x00008000
#defi ne DBUMA obNodeNo 0x00010000
#def i ne DBZonel i st @ obZoneNo 0x00020000
#def i ne DBMat Mat col ors 0x00040000
#def i ne DBCSGvBoundaryl nfo 0x00080000
#def i ne DBCSGWZonel i st 0x00100000
#def i ne DBCSGvBoundar yNarmes 0x00200000

#def i ne DBCSGvDat a

0x00400000

#def i ne DBCSGZonel i st ZoneNanes 0x00800000
#defi ne DBCS&Zonel i st RegNarmes 0x01000000

#def i ne DBMVADJNodel i sts 0x02000000
#def i ne DBMMVADJZonel i sts 0x04000000
#def i ne DBPMA obNodeNo 0x08000000

/*

(bj ects that can be stored in a data file */

typedef enum {

DB | NVALI D_OBJECT= -1, /*causes enumto be signed, do not renpve,
space before mnus sign necessary for lint*/

DB_QUADMESH=500,

DB_QUADVAR=501,

DB_UCDMESH=510,

DB_UCDVAR=511,

DB_MJLTI MESH=520,

DB_MJLTI VAR=521,

DB_MULTI MAT=522,

3-2

DB_MULTI MATSPECI ES=523,
DB_MULTI BLOCKMESH=DB_MJLTI MESH,
DB_MJULTI BLOCKVAR=DB_MJULTI VAR,
DB_MULTI MESHADJ=524,
DB_MATERI AL=530,
DB_MATSPECI ES=531,
DB_FACELI ST=550,
DB_ZONELI ST=551,
DB_EDCGELI ST=552,
DB_PHZONELI ST=553,
DB_CSGZONELI ST=554,
DB_CSGMVESH=555,
DB_CSGVAR=556,
DB_CURVE=560,
DB_DEFVARS=565,
DB_PO NTMESH=570,
DB_PO NTVAR=571,
DB_ARRAY=580,
DB_DI R=600,
DB_VARI ABLE=610,
DB_MRGTREE=611,
DB_GROUPELMAP=612,
DB_MRGVAR=613,
DB_USERDEF=700

} DBhj ect Type;

/* Data types */
typedef enum {

DB_| NT=16,

DB_SHORT=17,

DB_LONG=18,

DB_FLOAT=19,

DB_DOUBLE=20,

DB_CHAR=21,

DB _NOTYPE=25 /*unknown type */
} DBdat at ype;

/* Flags for DBCreate */
#defi ne DB_CLOBBER 0
#defi ne DB_NOCLOBBER 1

/* Flags for DBOpen */
#defi ne DB _READ 1
#defi ne DB_APPEND 2

/* Target machine for DBCreate */

#defi ne DB _LOCAL 0

#defi ne DB _SUN3 10
#defi ne DB _SUM 11
#defi ne DB Ssd 12
#defi ne DB_RS6000 13
#defi ne DB _CRAY 14

#defi ne DB_| NTEL 15

/* Options */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

DBOPT_ALI GN 260

DBOPT_COORDSYS 262

DBOPT_CYCLE 263

DBOPT_FACETYPE 264

DBOPT_HI _OFFSET 265

DBOPT_LO_OFFSET 266

DBOPT_LABEL 267

DBOPT_XLABEL 268

DBOPT_YLABEL 269

DBOPT_ZLABEL 270

DBOPT_MAJ ORORDER 271

DBOPT_NSPACE 272

DBOPT_ORIG N 273

DBOPT_PLANAR 274

DBOPT_TI ME 275

DBOPT_UNI TS 276

DBOPT_XUNI TS 277

DBOPT_YUNI TS 278

DBOPT_ZUNI TS 279

DBOPT_DTI ME 280

DBOPT_USESPECMF 281

DBOPT_XVARNANVE 282

DBOPT_YVARNANME 283

DBOPT_ZVARNANVE 284

DBOPT_ASCI | _LABEL 285

DBOPT_MATNOS 286

DBOPT_NVATNOS 287

DBOPT_MATNANME 288

DBOPT_NVAT 289

DBOPT_NMATSPEC 290

DBOPT_BASEI NDEX 291 /* quad neshes for node and zone */
DBOPT_ZONENUM 292 /* ucd neshes for zone */
DBOPT_NODENUM 293 /* wucd/ poi nt neshes for node */
DBOPT_BLOCKORI G N 294

DBOPT_NGROUPS 297

DBOPT_MATNAMES 298

DBOPT_EXTENTS_SI ZE 299

DBOPT_EXTENTS 300

DBOPT_MATCOUNTS 301

DBOPT_MATLI STS 302

DBOPT_M XLENS 303

DBOPT_ZONECOUNTS 304

DBOPT_HAS EXTERNAL_ZONES 305

DBOPT_PHZONELI ST 306

DBOPT_MATCOLORS 307

DBOPT_BNDNAMES 308

DBOPT_REGNAMES 309

DBOPT_ZONENAMES 310

DBOPT_HI DE_FROM_GUI 311

DBOPT_TOPO DI M 312 /* TOPd ogi cal DI Mension */
DBOPT_REFERENCE 313 /* reference object */
DBOPT_ALLOWATO 317 /* Turn off material numer "0" warnings*/
DBOPT_MRGTREE_NAVE 318

3-4

#defi ne DBOPT_REQ ON_PNAMES 319

#def i ne DBOPT_TENSOR_RANK 320
#def i ne DBOPT_MVESH_NAVE 321
#defi ne DBOPT_TV_CONNECTIVITY 322
#def i ne DBOPT_DI SJO NT_MODE 323
#def i ne DBOPT_MRGV_ONAVES 324
#def i ne DBOPT_MRGV_RNAMES 325

[* Error trapping nmethod */

#def i ne DB_TOP O /*default--APl traps */

#def i ne DB_NONE 1 /*no errors trapped */

#defi ne DB ALL 2 /*all levels trap (traceback) */

#defi ne DB_ABORT 3 /*abort() is called */

#def i ne DB_SUSPEND 4 |*suspend error reporting tenporarily */
#defi ne DB _RESUVE 5 /*resume normal error reporting */

/* Errors */

#defi ne E NOERROR O /*No error */

#defi ne E BADFTYPE 1 /*Bad file type */

#def i ne E_NOTI MP 2 /*Cal | back not inplenmented */
#def i ne E NOFI LE 3 /*No data file specified */
#defi ne E I NTERNAL 5 /*Internal error */

#defi ne E_NOVEM 6 /*Not enough nenory */

#defi ne E BADARGS 7 /*Bad argunent to function */
#defi ne E CALLFAIL 8 /*Low | evel function failure */
#defi ne E NOTFOUND 9 /*Obj ect not found */

#defi ne E TAURSTATE 10 /*Taurus: database state error */
#defi ne E MSERVER 11 /*SDX: too many connections */
#def i ne E _PROTO 12 /*SDX: protocol error */
#defi ne E NOTDI R 13 /*Not a directory */

#defi ne E MAXOPEN 14 /*Too many open files */

#defi ne E NOTFI LTER 15 [*Filter(s) not found */

#defi ne E_MAXFI LTERS 16 /*Too many filters */

#defi ne E FEXI ST 17 /*File already exists */

#defi ne E FILEISDIR 18 /*File is actually a directory */
#def i ne E_FI LENOREAD 19 /*File |l acks read permssion. */
#defi ne E SYSTEMERR 20 /*System | evel error occured. */
#def i ne E _FI LENOARI TE 21 /*File lacks wite perm ssion. */
#defi ne E | NVALI DNAMVE 22 /* Variable name is invalid */
#def i ne E_NOOVERWRI TE 23 /[*OQverwite not permtted */
#defi ne E CHECKSUM 24 /*Checksum failed */

#def i ne E _COVWPRESSI ON 25 /*Conpression failed */

#defi ne E GRABBED 26 /*Low | evel driver enabled */
#defi ne E_NERRORS 50

/* Definitions for MAJOR ORDER */
#defi ne DB_ROAWAIOR 0
#define DB_COLMAJOR 1

/* Definitions for COORD TYPE */

#define DB_COLLI NEAR 130
#define DB_NONCOLLI NEAR 131
#define DB_QUAD RECT DB_COLLI NEAR

#define DB_QUAD CURV DB_NONCOLLI NEAR

/* Definitions for CENTERI NG */

#define DB_NOTCENT 0

#defi ne DB_NODECENT 110

#define DB_ZONECENT 111

#define DB_FACECENT 112

#defi ne DB_BNDCENT 113 /* for CSG neshes only */
#defi ne DB_EDGECENT 114

#defi ne DB_BLOCKCENT 115 /* for 'block-centered data on nultinmeshs
*/

/* Definitions for COORD _SYSTEM */

#defi ne DB_CARTESI AN 120

#define DB_CYLI NDRI CAL 121

#define DB_SPHERI CAL 122

#define DB_NUMERI CAL 123

#define DB_OTHER 124

/* Definitions for ZONE FACE TYPE */
#define DB_RECTI LI NEAR 100

#define DB_CURVI LI NEAR 101

/* Definitions for PLANAR */

#define DB_AREA 140

#define DB_VOLUME 141

/* Definitions for flag values */

#define DB_ON 1000

#defi ne DB_OFF - 1000

/* Definitions for disjoint flag */

#defi ne DB_ABUTTI NG 142

#defi ne DB_FLOATI NG 143

/* Definitions for derived variable types */
#defi ne DB_VARTYPE_SCALAR 200
#defi ne DB_VARTYPE_VECTOR 201
#defi ne DB_VARTYPE_TENSOR 202
#defi ne DB_VARTYPE_SYMIENSOR 203
#defi ne DB_VARTYPE_ARRAY 204
#defi ne DB_VARTYPE_MATERI AL 205
#defi ne DB_VARTYPE_SPECI ES 206
#defi ne DB_VARTYPE_LABEL 207

/* Definitions for CSG boundary types
Desi gned so |l oworder 16 bits are unused
and can be included in silo.inc for Fortran

The | ast few characters of the synbol are intended
to indicate the representational formof the surface type

generalized form (n values, depends on surface type)
point (3 values, x,y,z in 3D, 2 values in 2D x,Y)
n

G
P
N ormal (3 values, Nx,Ny,Nz in 3D, 2 values in 2D Nx, Ny)

TMTARAN<XXrT>»XD

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/* Definitions for 2D CSG boundary types */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

radi us (1 val ue)

angle (1 value in degrees)

length (1 val ue)

x-intercept (1 val ue)
y-intercept (1 val ue)
z-intercept (1 value)

arbitrary integer

pl anar face defined by point-normal

DBCSG_QUADRI C_G
DBCSG_SPHERE_PR

DBCSG_ELLI PSAO D_PRRR

DBCSG_PLANE_G
DBCSG_PLANE_X
DBCSG_PLANE_Y
DBCSG_PLANE_Z
DBCSG_PLANE_PN
DBCSG_PLANE_PPP

DBCSG_CYLI NDER_PNLR
DBCSG_CYLI NDER_PPR

DBCSG_BOX_XYZXYZ
DBCSG_CONE_PNLA
DBCSG_CONE_PPA

DBCSG_POLYHEDRON_KF

DBCSG_HEX_6F
DBCSG_TET_4F
DBCSG_PYRAM D_5F
DBCSG_PRI SM 5F

DBCSG_QUADRATI C_G
DBCSG_Cl RCLE_PR
DBCSG_ELLI PSE_PRR
DBCSG LI NE_G
DBCSG_LI NE_X
DBCSG LI NE_Y
DBCSG_LI NE_PN
DBCSG_LI NE_PP
DBCSG_BOX_XYXY
DBCSG_ANGLE_PNLA
DBCSG_ANGLE_PPA
DBCSG_POLYGON_KP
DBCSG TRl _3P
DBCSG_QUAD_4P

16777216
33619968
33685504
50331648
50397184
50462720
50528256
50593792
50659328
67108864
67174400
83886080
100663296
100728832
117440512
117506048
117571584
117637120
117702656

134217728
150994944
151060480
167772160
167837696
167903232
167968768
168034304
184549376
201326592
201392128
218103808
218169344
218234880

/* Definitions for CSG Regi on operators */

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne
ne
ne
ne
ne
ne
ne
ne

DBCSG_| NNER
DBCSG_OUTER
DBCSG_ON
DBCSG_UNI ON
DBCSG_| NTERSECT
DBCSG DI FF
DBCSG_COMPLI MENT
DBCSG_XFORM

2130706432
2130771968
2130837504
2130903040
2130968576
2131034112
2131099648
2131165184

pair

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*

0x01000000
0x02010000
0x02020000
0x03000000
0x03010000
0x03020000
0x03030000
0x03040000
0x03050000
0x04000000
0x04010000
0x05000000
0x06000000
0x06010000
0x07000000
0x07010000
0x07020000
0x07030000
0x07040000

0x08000000
0x09000000
0x09010000
0x0A000000
0x0A010000
0x0A020000
0x0A030000
0x0A040000
0x0B000000
0x0C000000
0x0C010000
0x0D000000
0x0D010000
0x0D020000

0x7F000000
0x7F010000
0x7F020000
0x7F030000
0x7F040000
0x7F050000
0x7F060000
0x7F070000

(6 val ues)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/

3-7

#defi ne DBCSG_SWEEP 2131230720 /* Ox7F080000 */

/* definitions for MRG Tree traversal flags */

#defi ne DB_PREORDER 1 /* 0x00000001 */
#defi ne DB_POSTORDER 2 /* 0x00000002 */
#defi ne DB_FROMCWR 4 [* 0x00000004 */

/* M scel |l aneous constants */

#defi ne DB F77NULL (-99) /*Fortran NULL pointer */

#defi ne DB_F77NULLSTRI NG "NULLSTRING' /* FORTRAN STRI NG */

| ® o e o e e o e m e me e
* Structures (just the public parts).
K o o o e o e .= -
*/

/*

* Dat abase table of contents for the current directory only.
*/
typedef struct {

char **curve_nanes;

i nt ncurve;

char **mul ti mesh_nanes;
i nt nmmul ti mesh;

char **mul ti meshadj _nanes;
i nt nmul ti meshad;j ;
char **mul ti var _nanes;

i nt nrul ti var;

char **mul ti mat _nanes;

i nt nmul ti mat ;

char **mul ti mat speci es_nanes;
i nt nmmul ti mat speci es;
char **csgnmesh_nanes;

i nt ncsgmesh;

char **csgvar _nanes;

i nt ncsgvar;

char **def var s_nanes;

i nt ndef vars;

char **gmesh_nanmes;

i nt ngnesh;

char **gvar _nanes;

i nt ngvar ;

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

char
i nt

} DBt oc;

*/

**ucdnmesh_nanes;
nucdmesh;

**ucdvar _nanes;
nucdvar ;

**pt mesh_nanes;
npt mesh;

**ptvar _nanes,
npt var;

**mat _nanes;
nmat ;

**mat speci es_nanes;
nmat speci es;

**var _nanes;
nvar ;

**0obj _nanes;
nobj ;

**di r _nanes;
ndir;

**array_nanes,;
narrays;

**nrgtree_nanes;
nnr gt r ees;

**gr oupel map_nanes;
ngr oupel maps;

**nrgvar _nanes;
nnr gvars;

Xvs. Y (Curve) Data ----------- */

id; /* ldentifier for this object */
dat at ype; /* Datatype for x and y (float, double)
origin; /[* "0 or "1 */

title; /[Title for curve */

Xxvar nare; / Name of domain (x) variable */

yvar nare; / Name of range (y) variable */

x| abel ; / Label for x-axis */

*/

3-9

char *y| abel ; /* Label for y-axis */

char *Xunits; /[* Units for domain */
char *yunits; /* Units for range */
fl oat *X; /* Domai n val ues for curve */
fl oat *ys /* Range values for curve */
i nt npts; /* Nunmber of points in curve */
i nt gui hi de; /* Flag to hide from post-processor's GU */
char *ref erence; /* Label to reference object */
} DBcurve;

typedef struct {

i nt ndef s; /* nunber of definitions */
char **names; /* [ndefs] derived variable names */
i nt *types; /* [ndefs] derived variable types */
char **def ns; /* [ndefs] derived variable definitions */
i nt *qgui hi des; /* [ndefs] flags to hide from
post - processor's GJ */
} DBdefvars;
typedef struct {
[* e - Point Mesh ----------- */
i nt id; /* ldentifier for this object */
i nt bl ock_no; /* Block nunmber for this nesh */
i nt gr oup_no; /* Bl ock group number for this nmesh */
char *nane; /* Nane associated with this nesh */
i nt cycl e; /* Problem cycl e nunber */
char *units[3]; /* Units for each axis */
char *| abel s[3]; /* Labels for each axis */
char *title; /[* Title for curve */
fl oat *coords|[3]; /* Coordinate val ues */
fl oat time; /* Problemtine */
doubl e dti me; /* Problemtine, double data type */
/*

* The following two fields really only contain 3 el enents. However, silo
* contains a bug in PJ_ReadVariable() as called by DBCGet Poi nt mesh() which
* can cause three doubles to be stored there instead of three floats.

*/

fl oat mn_extents[6]; /* Mn mesh extents [ndins] */

fl oat max_extents[6]; /* Max mesh extents [ndins] */

i nt dat at ype; /* Datatype for coords (float, double) */

i nt ndi 1s; /* Nunmber of conputational dinensions */

i nt nel s; /* Nunber of elenents in mesh */

i nt origin; /* "0 or "1 */

i nt gui hi de; /* Flag to hide from post-processor's GU */
i nt *gnodeno; /* gl obal node ids */

char *nrgtree_nane; /* optional name of assoc. nrgtree object */

} DBpoi nt nesh;

3-10

typedef struct {
R Mul
i nt
i nt
i nt
i nt
char
i nt
i nt
*/
i nt
i nt
i nt
doubl e
i nt
i nt
i nt
i nt
i nt
char
char
i nt
i nt
} DBnul tinesh;

ti-Block Mesh
i d;
nbl ocks;
ngr oups;
*meshi ds;
**meshnanes;
*mesht ypes;
*dirids;

bl ockori gi n;
groupori gi n;
ext ent ssi ze
*extents;
*zonecounts;
*has_ext erna
gui hi de;

| gr oupi ngs;
*groupi ngs;
**groupnanes;

/* ldentifier for this object */

/* Nunber of blocks in mesh */

/* Nunber of block groups in nesh */

/* Array of mesh-ids which conprise nmesh */
/* Array of mesh-nanes for neshids */

/* Array of mesh-type indicators [nblocks] */
/* Array of directory ID s which contain blk

/* Origin (0 or 1) of block nunbers */

/[* Oigin (0 or 1) of group numbers */

/* size of each extent tuple */

/* mn/max extents of coords of each bl ock */
/* array of zone counts for each block */

_zones; [/* external flags for each block */

/* Flag to hide from post-processor's GU */
/* size of groupings array */

/* Array of mesh-ids, group-ids, and counts */
/* Array of group-names for groupings */

nrgtree_nane; / optional name of assoc. nrgtree object */
tv_connectivity;
di sj oi nt _node;

[o e oo
* Multi-Block Variable Object
*
*/
typedef struct {
[* e - Multi-Block Variable ----------- */
i nt id; /* ldentifier for this object */
i nt nvars; /* Nunber of variables */
i nt ngr oups; /* Nunber of bl ock groups in nesh */
char **yar names; /* Vari abl e names */
i nt *vartypes; /* variabl e types */
i nt bl ockorigin; /* Origin (0 or 1) of block nunbers */
i nt grouporigin; /* Oigin (0 or 1) of group numbers */
i nt extentssize; /* size of each extent tuple */
doubl e *extents; /* m n/max extents of each block */
i nt gui hi de; /* Flag to hide from post-processor's GU */
char **regi on_pnanes;
char *mesh_narne;
i nt tensor _rank; /* DB_VARTYPE XXX */

} DBnul tivar;

* Multi-materia
*
*/
typedef struct {
i nt
i nt
i nt

id;
nmat s;
ngroups;

/* ldentifier for this object */
/* Nunber of materials */
/* Nunber of block groups in nesh */

char ** mat nanes; /* names of constiuent DBnaterial objects */

i nt bl ockorigin; /* Origin (0 or 1) of block nunbers */

i nt grouporigin; /* Oigin (0 or 1) of group numbers */

i nt *m x| ens; /* array of mxlen values in each mat */

i nt *mat count s; /* counts of unique materials in each bl ock */

i nt *matlists; /* list of materials in each block */

i nt gui hi de; /* Flag to hide from post-processor's GU */

i nt nmat nos; /* gl obal nunber of materials over all pieces
*/

i nt *mat nos; /* global Iist of material nunbers */

char **mat col ors; /* optional colors for materials */

char **materi al _names; /* optional nanes of the materials */

i nt al | ownat O; /* Flag to allow material "0" */

char *mesh_narne;

} DBnul timat;

| ® o e o e e o e m e me e
* Multi-species
K o o o e o e m e e e e e .- -
*/
typedef struct {
i nt id; /* ldentifier for this object */
i nt nspec; /* Nunber of species */
i nt ngr oups; /* Nunber of block groups in nesh */
char **gpechanes; /* Speci es nanes */
i nt bl ockorigin; /* Origin (0 or 1) of block nunbers */
i nt grouporigin; /* Oigin (0 or 1) of group numbers */
i nt gui hi de; /* Flag to hide from post-processor's GU */
i nt nmat ; /* equiv. to nmatnos of a DBrultimat */
i nt *nmat spec; /* equiv. to matnos of a DBmultimat */

} DBnul ti mat speci es;

[o e oo
* Definitions for the FaceList, ZoneList, and Edgeli st structures
* used for describing UCD neshes.
K o o o e .- -
*/
#defi ne DB_ZONETYPE_BEAM 10
#defi ne DB_ZONETYPE_POLYGON 20
#defi ne DB_ZONETYPE_TRI ANGLE 23
#defi ne DB_ZONETYPE_QUAD 24
#defi ne DB_ZONETYPE_POLYHEDRON 30
#defi ne DB_ZONETYPE_TET 34
#defi ne DB_ZONETYPE_PYRAM D 35
#defi ne DB_ZONETYPE_PRI SM 36
#defi ne DB_ZONETYPE_HEX 38
typedef struct {
i nt ndi ns; /* Nurmber of dinmensions (2,3) */
i nt nzones; /* Nunber of zones in list */
i nt nshapes; /* Nunmber of zone shapes */

3-12

nt *shapecnt ; /* [nshapes] occurences of each shape */

[

i nt *shapesi ze; /* [nshapes] Number of nodes per shape */

i nt *shapet ype; /* [nshapes] Type of shape */

i nt *nodel i st ; /* Sequent |st of nodes which conprise zones
*/

i nt I nodel i st; /* Nunber of nodes in nodelist */

i nt origin; /* "0 or "1 */

i nt m n_i ndex; /* Index of first real zone */

i nt max_i ndex; /* Index of last real zone */
A Optional zone attributes --------- */

i nt *zoneno; /* [nzones] zone nunber of each zone */

i nt *gzoneno; /* [nzones] gl obal zone nunber of each zone */

} DBzoneli st;

typedef struct {

i nt nf aces; /* Nunmber of faces in facelist "facetable") */
i nt *nodecnt ; /* Count of nodes in each face */
i nt | nodel i st ; /* Length of nodelist used */
i nt *nodel i st ; /* List of nodes used in all faces */
char *ext face; /* boolean flag indicating external face */
i nt nzones; /* Nunber of zones in this zonelist */
i nt *facecnt; /* Count of faces in each zone */
i nt | facelist; /* Length of facelist used to */
i nt *facelist; /* List of faces used in all zones */
i nt origin; /[* "0 or "1 */
i nt | o_offset; /* Index of first non-ghost zone */
i nt hi _offset; /* I ndex of |ast non-ghost zone */
A Optional zone attributes --------- */
i nt *zoneno; /* [nzones] zone nunber of each zone */
i nt *gzoneno; /* [nzones] gl obal zone nunber of each zone */

} DBphzoneli st;

typedef struct {

[* e - Requi red components ------------ */
i nt ndi ns; /* Nurber of dinmensions (2,3) */
i nt nf aces; /* Nunber of faces in list */
i nt origin; /[* 0" or "1 */
i nt *nodel i st ; /* Sequent |ist of nodes conprise faces */
i nt I nodel i st; /* Nunber of nodes in nodelist */
[* e - - 3D components ------------------ */
i nt nshapes; /* Nunmber of face shapes */
i nt *shapecnt ; /* [nshapes] Num of each shape */
i nt *shapesi ze; /* [nshapes] Number of nodes per shape */
[* e - - Optional type conmponent--------- */
i nt nt ypes; /* Nunmber of face types */
i nt *typelist; /* [ntypes] Type ID for each type */
i nt *types; /* [nfaces] Type info for each face */
A Optional node attributes --------- */
i nt *nodeno; /* [l nodelist] node nunmber of each node */

3-13

[* e - - Optional zone-reference component--------- */

i nt *zoneno; /* [nfaces] Zone nunber for each face */
} DBfacelist;
typedef struct {
i nt ndi ns; /* Number of dinensions (2,3) */
i nt nedges; /* Nunber of edges */
i nt *edge_beg; /* [nedges] */
i nt *edge_end; /* [nedges] */
i nt origin; /* "0 or "1 */
} DBedgeli st;
typedef struct {
A Quad Mesh ----------- */
i nt id; /* ldentifier for this object */
i nt bl ock_no; /* Block nunmber for this nesh */
i nt gr oup_no; /* Bl ock group number for this mesh */
char *nane; /* Nane associated with nesh */
i nt cycl e; /* Problem cycle nunber */
i nt coord_sys; /* Cartesian, cylindrical, spherical */
i nt maj or_order; /* 1 indicates rownmajor for nulti-d arrays */
i nt stride[3]; /[* Ofsets to adjacent elenents */
i nt coor dt ype; /* Coord array type: collinear
* non-col | i near */
i nt facet ype; /* Zone face type: rect, curv */
i nt pl anar; /* Sentinel: zones rep. area or volune? */
fl oat *coords|[3]; /* Mesh node coordinate ptrs [ndinms] */
i nt dat at ype; /* Type of coordinate arrays (double,float) */
fl oat time; /* Problemtine */
doubl e dti me; /* Problemtine, double data type */
/*

* The following two fields really only contain 3 el enents. However, silo
* contains a bug in PJ_ReadVariable() as called by DBGet Quadnesh() which
* can cause three doubles to be stored there instead of three floats.

*/
fl oat mn_extents[6]; /* Mn mesh extents [ndins] */
fl oat max_extents[6]; /* Max mesh extents [ndins] */
char *| abel s[3] ; /* Label associated with each di mension */
char *units[3]; /* Units for variable, e.g, 'nmns" */
i nt ndi 1s; /* Nunmber of conputational dinensions */
i nt nspace; /* Nunber of physical dinensions */
i nt nnodes; [* Total nunber of nodes */
i nt di ms[3] ; /* Nunber of nodes per dinension */
i nt origin; /[* "0 or "1 */
i nt m n_i ndex[3] ; /* Index in each di nension of 1st
* non- phoney */
i nt max_i ndex[3] ; /* 1ndex in each di nension of |ast
* non- phoney */
i nt base_index[3]; /* Lowest real i,j,k for this block */
i nt start_index[3]; /* i,j,k values corresponding to origina

3-14

* mesh */

i nt size_index[3]; [/* Number of nodes per dinmension for
* original mesh */
i nt gui hi de; /* Flag to hide from post-processor's GU */
char *nrgtree_nane; /* optional name of assoc. nrgtree object */
} DBquadnesh
typedef struct {
A Unstructured Cell Data (UCD) Mesh ----------- */
i nt id; /* ldentifier for this object */
i nt bl ock_no; /* Block nunmber for this nesh */
i nt gr oup_no; /* Bl ock group number for this nmesh */
char *nane; /* Nane associated with nesh */
i nt cycl e; /* Problem cycle nunber */
i nt coord_sys; /* Coordi nate system */
i nt topo_di m /* Topol ogi cal dinmensions */
char *units[3]; /* Units for variable, e.g, 'nmns" */
char *| abel s[3]; /* Label associated with each di nmension */
fl oat *coords|[3]; /* Mesh node coordi nates */
i nt dat at ype; /* Type of coordinate arrays (double,float) */
fl oat time; /* Problemtine */
doubl e dti me; /* Problemtine, double data type */
/*
* The following two fields really only contain 3 el enents. However, silo
* contains a bug in PJ_ReadVariable() as called by DBGet Ucdnmesh() which
* can cause three doubles to be stored there instead of three floats.
*/
fl oat mn_extents[6]; /* Mn mesh extents [ndins] */
fl oat max_extents[6]; /* Max mesh extents [ndins] */
i nt ndi 1s; /* Nunmber of conputational dinensions */
i nt nnodes; /* Total nunber of nodes */
i nt origin; /* 0" or "1 */
DBf acel i st *faces; /* Data structure describing nesh faces */
DBzonel i st *zones; /* Data structure describing nesh zones */
DBedgel i st *edges; /* Data struct describing mesh edges
* (option) */
A Optional node attributes --------- */
i nt *gnodeno; /* [nnodes] gl obal node nunber of each node */
A Optional zone attributes --------- */
i nt *nodeno; /* [nnodes] node nunber of each node */
A Opti onal pol yhedral zonelist --------- */
DBphzonel i st *phzones; /* Data structure describing nesh zones */
i nt gui hi de; /* Flag to hide from post-processor's GU */
char *nrgtree_nane; /* optional name of assoc. nrgtree object */
i nt tv_connectivity;
i nt di sj oi nt _node;
} DBucdmesh;

3-15

}

o
typedef struct {

i nt
char
char
char
i nt
i nt

fl oat
i nt
i nt
i nt
i nt
i nt

i nt
i nt
i nt
i nt
i nt
fl oat

doubl e
/*

* The following field really only contains 3 el enents.

Quad Variable ----

i d;
*name;
*units;
*| abel ;

cycl e;

nmeshi d;

**val s;
dat at ype
nel s;
nval s;
ndi ns;

di ns[3] ;

mej or _order;
stride[3];
m n_i ndex[3] ;

max_i ndex[3] ;
origin;

time;
dti ne;

/* ldentifier for this object

/* Nane of variable */
/* Units for variable, e.g, 'mmns" */

/* Label (perhaps for editing purposes) *
/* Problem cycle nunber */

/* ldentifier for assoc.

*/

/* Array of pointers to data arrays */
/* Type of data pointed to by 'val' */
/* Nunmber of elements in each array */
/* Nunber of arrays pointed to by 'vals'
/* Rank of variable */
/* Nunber of elenents in each dinmension */

/* 1 indicates row najor for
/* OfFfsets to adjacent elenents

*/

/* Index in each di nension of 1st

* non- phoney */

/* Index in each di nension of

* non- phoney */
[* 0" or "1 */
/* Problemtine */

ast

/* Problemtine, double data type */

However, silo

/

mesh (Deprecated) */

*/

multi-d arrays */

* contains a bug in PJ_ReadVariable() as called by DBGet Quadvar () which
* can cause three doubles to be stored there instead of three floats.

*/
fl oat

fl oat
i nt

char

i nt

char
DBquadvar ;

align[6];
**m xval s;

m x| en;

use_specnf;

ascii _| abel s;

*meshnanme;
gui hi de;

typedef struct {

Unstruct ured Cel

/* Centering and alignnment per

/* nvals ptrs to arrays for

di rensi on */

/* Num of elnts in each m xed zone data

* array */

m xed zones */

/* Flag indicating whether to apply species
* mass fractions to the variable. */

/* Treat variable values as ASCl

by rounding to the nearest

the range [0, 255] */
/* Nane of associated mesh */
/* Flag to hide from post-processor's GU
**regi on_pnanes;

Data (UCD) Vari abl e

val ues

integer in

*/

3-16

i nt id; /* ldentifier for this object */
char *nane; /* Nane of variable */
i nt cycl e; /* Problem cycle nunber */
char *units; /* Units for variable, e.g, 'mmns" */
char *| abel ; /* Label (perhaps for editing purposes) */
fl oat time; /* Problemtine */
doubl e dti me; /* Problemtine, double data type */
i nt nmeshi d; /* ldentifier for associ ated nesh (Deprecated
Sep2005) */
fl oat **val s; /* Array of pointers to data arrays */
i nt dat at ype; /* Type of data pointed to by 'vals' */
i nt nel s; /* Nunmber of elements in each array */
i nt nval s; /* Nunmber of arrays pointed to by 'vals' */
i nt ndi 1s; /* Rank of variable */
i nt origin; /[* "0 or "1 */
i nt centering; /* Centering within mesh (nodal or zonal) */
fl oat **m xval s; /* nvals ptrs to arrays for mxed zones */
i nt m x| en; /* Numof elnts in each m xed zone data
* array */
i nt use_specnf; [/* Flag indicating whether to apply species
* mass fractions to the variable. */
i nt ascii_labels;/* Treat variable values as ASCI | val ues
by rounding to the nearest integer in
the range [0, 255] */
char *meshnane; /* Nane of associated mesh */
i nt gui hi de; /* Flag to hide from post-processor's GU */
char **regi on_pnanes;
} DBucdvar;
typedef struct {
[* e - Ceneric Mesh-Data Variable ----------- */
i nt id; /* ldentifier for this object */
char *nane; /* Nane of variable */
char *units; /* Units for variable, e.g, 'mmns" */
char *| abel ; /* Label (perhaps for editing purposes) */
i nt cycl e; /* Problem cycl e nunber */
i nt nmeshi d; /* ldentifier for associated nesh (Deprecated
Sep2005) */
fl oat **val s; /* Array of pointers to data arrays */
i nt dat at ype; /* Type of data pointed to by 'val' */
i nt nel s; /* Nunmber of elements in each array */
i nt nval s; /* Nunmber of arrays pointed to by 'vals' */
i nt nspace; /* Spatial rank of variable */
i nt ndi ns; /* Rank of 'wvals' array(s) */
i nt origin; /[* "0 or "1 */
i nt centering; /* Centering within mesh (nodal, zonal,...) */
fl oat time; /* Problemtine */
doubl e dti me; /* Problemtine, double data type */
/*

3-17

* The following field really only contains 3 elenents. However, silo
* contains a bug in PJ_ReadVariable() as called by DBGet Poi ntvar() which
* can cause three doubles to be stored there instead of three floats.
*/
fl oat align[6]; /* Alignmt per dinmension if
* centering==ot her */

/* Stuff for nmulti-dinensional arrays (ndins > 1) */

i nt di ms[3] ; /* Nunber of elenents in each dinmension */
i nt mej or _order; /* 1 indicates rownmajor for nulti-d arrays */
i nt stride[3]; /[* Ofsets to adjacent elenents */

/*

* The following two fields really only contain 3 el enents. However, silo
* contains a bug in PJ_ReadVariable() as called by DBGet Ucdnmesh() which
* can cause three doubles to be stored there instead of three floats.

*/

i nt mn_index[6]; /* Index in each dinension of 1st
* non- phoney */

i nt max_index[6]; /* Index in each dinension of |ast

non- phoney */

i nt ascii_labels;/* Treat variable values as ASCI | val ues
by rounding to the nearest integer in
the range [0, 255] */

char *meshnane; /* Nane of associated mesh */

i nt gui hi de; /* Flag to hide from post-processor's GU */

char **regi on_pnanes;

} DBneshvar;

typedef struct {

[* e - Material Information ----------- */
i nt id; /* ldentifier */
char *nane; /* Nanme of this material information block */
i nt ndi 1s; /* Rank of 'matlist' variable */
i nt origin; /* 0" or "1 */
i nt di ms[3] ; /* Nunber of elenents in each dinmension */
i nt maj or _order; /* 1 indicates rownmajor for nulti-d arrays */
i nt stride[3]; /* Ofsets to adjacent elenents in matlist */
i nt nmat ; /* Nunmber of materials */
i nt *mat nos; /* Array [nmat] of valid material nunbers */
char ** mat nanes; /* Array of material nanes */
i nt *matlist; /* Array[nzone] w mat. nunber or m x index */
i nt m x| en; /* Length of m xed data arrays (m x_xxx) */
i nt dat at ype; /* Type of volume-fractions (double,float) */
fl oat *m x_vf; /* Array [m xlen] of volume fractions */
i nt *m x_next; /* Array [m xlen] of mxed data indeces */
i nt *m x_mat ; /* Array [m xlen] of material nunbers */
i nt *m x_zone; /* Array [m xlen] of back pointers to mesh */
char **mat col ors; /* Array of material colors */
char *meshnane; /* Nane of associated mesh */
i nt al | ownat O; /* Flag to allow material "0" */
i nt gui hi de; /* Flag to hide from post-processor's GU */

3-18

} DBmateri al

typedef struct {
Speci es Information

i nt
char
char

i nt
i nt
i nt
i nt
i nt
i nt
i nt
fl oat

i nt
i nt

i nt
i nt

id;
*nane;
*mat nane;

nmat ;
*nmat spec

ndi ns;
di ns[3];

mej or _order;
stride[3];

nspeci es_nf;
*speci es_nf

*specli st;

m x| en;

*m x_speclist;

} DBmat speci es;

typedef struct {

/*
/*
/*

*
/*
/*

*
/*
/*

*
/*
/*

~ ~

~

E I B R T R N N R T S R B

~

Identifier */

Nane of this matspeci es object */

Nanme of material object with which the

mat eri al species object is associated. */
Nunber of materials */

Array of Ingth nmat of the num of material
speci es associated with each material. */
Rank of 'speclist' variable */

Nunber of elenents in each di mension of the
"speclist' variable. */

1 indicates rowmajor for multi-d arrays */
Ofsts to adjacent elnts in "speclist' */

Total nunber of species nmass fractions. */
Array of |ength nspecies_nf of nass
frations of the material species. */

Zone array of dinensions described by ndins
and dinms. Each elenment of the array is an
i ndex into one of the species mass fraction
arrays. A positive value is the index in
the species_nf array of the mass fractions
of the clean zone's material species:
species_nf[speclist[i]] is the nass
fraction

of the first species of material matlist[i]
in zone i. A negative value neans that the
zone is a mxed zone and that the array

m x_speclist contains the index to the
species mas fractions: -speclist[i] is the
index in the "mx_speclist' array for zone
i.o*/

Length of 'm x_speclist' array. */

/* Array of Igth mixlen of 1l-orig indices

* into the 'species_nf' array.
species_nf[mx_speclist[j]] is the index
in array species_nf' of the first of the
mass fractions for materia

*
*
*
* mix_mat[j]. */

dat at ype; /* Datatype of mass fraction data. */
gui hi de; /* Flag to hide from post-processor's GU */
CSG Zonelist ----------- */
nregs; /* Number of regions in regionlist */
origin; /[* "0 or "1 */
typefl ags; / [nregs] type info about each region */
leftids; / [nregs] left operand region refs */

3-19

i nt *rightids;
void *xform

i nt I xform

i nt dat at ype;
i nt nzones;

i nt *zonel i st;
i nt m n_i ndex;
i nt max_i ndex;

%o Opt i onal

char **regnanes;
char **zonenanes;

} DBcsgzoneli st;

typedef struct {

/*
/*
/*
/*

/*
/*
/*
/*

zone attributes

ri ght operand region refs */
transformation coefficients */

[nregs]

[1 xforms]

length of xforms array */

type of data in xforms array */

nurmber of zones */
[nzones]

I ndex of first rea
I ndex of |ast rea

zone */
zone */

/* [nregs] nanes of each region */
/* [nzones] names of each zone */

/*

/*
/*

/*

/*
/*

/*
/*

/*

boundary attri butes

Bl ock nunber

for

this nesh */

region ids (conplete regions)

Bl ock group nunber for this nmesh */
Nane associated with nesh */
Probl em cycl e nunber */

Units for vari abl e,

Label

Tot al

nunber

e. g,

"m ns'

of boundaries */

*/

associ ated with each di nension */

nbounds boundary type info flags */

opt i onal

coefficients in the representation of

each boundary */

I ength of coeffs array */
array of nbounds offsets into coeffs
each boundary's coefficients */

for

nbounds explicit

ids */

data type of coeffs data */

Problemtime */
Problemtine, double data type */
/* Mn mesh extents [ndins] */
/* Max mesh extents [ndins] */

Nunber
0" or

Data structure describing nesh zones */

of spati al
"1/

& topo.

di rensi ons */

/* [nbounds] boundary nanes */

/* Flag to hide from post-processor's GU
name of assoc.

/* optiona

A R CSG Mesh -------
i nt bl ock_no;
i nt gr oup_no;
char *nane;
i nt cycl e;
char *units[3];
char *| abel s[3];
i nt nbounds;
i nt *typefl ags;
i nt *bndi ds;
voi d *coeffs;
i nt | coeffs;
i nt *coeffidx;
i nt dat at ype;
fl oat time;
doubl e dti me;
doubl e m n_extents[3];
doubl e max_ext ent s[3] ;
i nt ndi 1s;
i nt origin;
DBcsgzonel i st *zones;
A Opt i onal
char **pndnarnes;
i nt gui hi de;
char *nr gt ree_nane;
i nt tv_connectivity;
i nt di sj oi nt _node;
} DBcsgmesh

typedef struct {

nr gtree obj ect

*/

*/
*/

3-20

[Femeaea CSG variable ----------- */

char *nane; /* Nane of variable */

i nt cycl e; /* Problem cycle nunber */

char *units; /* Units for variable, e.g, 'mmns" */

char *| abel ; /* Label (perhaps for editing purposes) */

fl oat time; /* Problemtine */

doubl e dti me; /* Problemtine, double data type */

voi d **val s; /* Array of pointers to data arrays */

i nt dat at ype; /* Type of data pointed to by 'vals' */

i nt nel s; /* Nunmber of elements in each array */

i nt nval s; /* Nunmber of arrays pointed to by 'vals' */

i nt centering; /* Centering within mesh (nodal or zonal) */

i nt use_specnf; [/* Flag indicating whether to apply species
* mass fractions to the variable. */

i nt ascii_labels;/* Treat variable values as ASCI | val ues

by rounding to the nearest integer in
the range [0, 255] */

char *meshnane; /* Nane of associated mesh */
i nt gui hi de; /* Flag to hide from post-processor's GU */
char **regi on_pnanes;
} DBcsgvar;
e
* A conpound array is an array whose elenents are sinple arrays. A sinple
* array is an array whose elenents are all of the sanme primtive data
* type: float, double, integer, long... Al of the sinple arrays of
* a conpound array have elenents of the same data type
*
*/
typedef struct {
i nt id; /*identifier of the compound array */
char *nane; /*name of te compound array */
char **e| emarnes; /*names of the sinple array el enments */
i nt *elem engths; /*lengths of the sinple arrays */
i nt nel ens; [*nunber of sinple arrays */
voi d *val ues; [*sinmple array val ues */
i nt nval ues; /*sumreduction of “elemengths' vector */
i nt dat at ype; [*sinmple array el enent data type */

} DBconpoundarr ay;

typedef struct {

i nt *opti ons; /* Vector of option identifiers */

voi d **val ues; /* Vector of pointers to option values */

i nt nunopt s; /* Nunber of options defined */

i nt maxopt s; /* Total length of option/value arrays */
} DBoptlist;

typedef struct {

3-21

char *narme;

char *type; /* Type of group/object */
char **conp_nanes; /* Array of conmponent nanes */
char **pdb_nanes; /* Array of internal (PDB) variable nanes */
i nt nconmponents; /* Nunber of conponents */
i nt maxconponents; /* Max nunber of conponents */
} DBobj ect;

typedef struct _DBnrgtnode {
char *nane;
int narray;
char **nanes;
int type_info_bits;
int max_chil dren
char *maps_nane;
i nt nsegs;
int *seg_ ids;
int *seg | ens;
int *seg_types;
int numchildren
struct _DBnrgtnode **children

/* internal stuff to support updates, i/o, etc. */
i nt wal k_order;
struct _DBnrgtnode *parent;

} DBnr gt node;

typedef void (*DBnrgwal kcb) (DBnr gt node *tnode, int nat_node_num void *data);

typedef struct _DBnrgtree {
char *narme;
char *src_nesh_nane;
i nt src_nesh_type;
int type_info_bits;
i nt num _nodes;
DBnr gt node *r oot ;
DBnr gt node *cwr;

char **nrgvar_onanes;
char **nrgvar_rnanes;
} DBnrgtree;

typedef struct _DBnrgvar ({
char *nane;
char *nrgt_nane;
i nt nconps;
char **conpnanes;
i nt nregns;
char **reg_pnanes;
i nt datatype;
void **data
} DBnrgvar ;

3-22

typedef struct _DBgroupel map {
char *nanme;
i nt num segnents;
i nt *groupel _types;
i nt *segnent _| engt hs;
int *segment _ids;
i nt **segnent _dat a;
void **segnent _fracs;
int fracs_data_type;
} DBgroupel map

3-23

	Chapter 1 Introduction to Silo
	Chapter 2 C and Fortran Functions
	1 API Section Error Handling and Other Global Library Behavior
	DBErrFunc
	DBErrno
	DBErrString
	DBShowErrors
	DBVariableNameValid
	DBVersion
	DBSetAllowOverwrites
	DBGetAllowOverwrites
	DBForceSingle
	DBSetDataReadMask
	DBGetDataReadMask
	DBSetEnableChecksums
	DBGetEnableChecksums
	DBSetCompression
	DBGetCompression
	DBSetFriendlyHDF5Names
	DBGetFriendlyHDF5Names
	DBSetDeprecateWarnings
	DBGetDeprecateWarnings
	SILO_VERSION_GE

	2 API Section Files and File Structure
	DBCreate
	DBOpen
	DBClose
	DBGetToc
	DBMkDir
	DBSetDir
	DBGetDir
	DBCpDir
	DBGrabDriver
	DBUngrabDriver
	DBGetDriverType
	DBGetDriverTypeFromPath
	DBInqFile
	_silolibinfo
	_hdf5libinfo
	_was_grabbed

	3 API Section Meshes, Variables and Materials
	DBInqMeshtype 124DBPutCurve
	DBGetCurve
	DBPutPointmesh
	DBGetPointmesh
	DBPutPointvar
	DBPutPointvar1
	DBGetPointvar
	DBPutQuadmesh
	DBGetQuadmesh
	DBPutQuadvar
	DBPutQuadvar1
	DBGetQuadvar
	DBPutUcdmesh
	DBPutUcdsubmesh
	DBGetUcdmesh
	DBPutZonelist
	DBPutZonelist2
	DBPutPHZonelist
	DBGetPHZonelist
	DBPutFacelist
	DBPutUcdvar
	DBPutUcdvar1
	DBGetUcdvar
	DBPutCsgmesh
	DBGetCsgmesh
	DBPutCSGZonelist
	DBGetCSGZonelist
	DBPutCsgvar
	DBGetCsgvar
	DBPutMaterial
	DBGetMaterial
	DBPutMatspecies
	DBGetMatspecies
	DBPutDefvars
	DBGetDefvars
	DBInqMeshname
	DBInqMeshtype

	4 API Section Multi-Block Objects, Parallelism and Poor-Man’s Parallel I/O
	PMPIO_RankInGroup 156DBPutMultimesh
	DBGetMultimesh
	DBPutMultimeshadj
	DBGetMultimeshadj
	DBPutMultivar
	DBGetMultivar
	DBPutMultimat
	DBGetMultimat
	DBPutMultimatspecies
	DBGetMultimatspecies
	PMPIO_Init
	PMPIO_CreateFileCallBack
	PMPIO_OpenFileCallBack
	PMPIO_CloseFileCallBack
	PMPIO_WaitForBaton
	PMPIO_HandOffBaton
	PMPIO_Finish
	PMPIO_GroupRank
	PMPIO_RankInGroup

	5 API Section Part Assemblies, AMR, Slide Surfaces, Nodesets and Other Arbitrary Mesh Subsets
	DBMakeMrgtree
	DBAddRegion
	DBAddRegionArray
	DBSetCwr
	DBGetCwr
	DBPutMrgtree
	DBGetMrgtree
	DBFreeMrgtree
	DBPutMrgvar
	DBGetMrgvar
	DBPutGroupelmap
	DBGetGroupelmap
	DBFreeGroupelmap
	DBOPT_REGION_PNAMES

	6 API Section Object Allocation and Free
	DBAlloc…
	DBFree…

	7 API Section Calculational
	DBCalcExternalFacelist
	DBCalcExternalFacelist2

	8 API Section Optlists
	DBMakeOptlist
	DBAddOption
	DBClearOption
	DBGetOption
	DBFreeOptlist
	DBClearOptlist

	9 API Section User Defined (Generic) Data and Objects
	DBWrite
	DBWriteSlice
	DBReadVar
	DBReadVar1
	DBReadVarSlice
	DBGetVar
	DBInqVarExists
	DBInqVarType
	DBGetVarByteLength
	DBGetVarDims
	DBGetVarLength
	DBGetVarType
	DBPutCompoundarray
	DBInqCompoundarray
	DBGetCompoundarray
	DBMakeObject
	DBFreeObject
	DBChangeObject
	DBClearObject
	DBAddDblComponent
	DBAddFltComponent
	DBAddIntComponent
	DBAddStrComponent
	DBAddVarComponent
	DBWriteComponent
	DBWriteObject
	DBGetObject
	DBGetComponent
	DBGetComponentType

	10 API Section Previously Undocumented Use Conventions
	MultivarToMultimeshMap_meshes 23_visit_defvars
	_visit_searchpath
	_visit_domain_groups
	AlphabetizeVariables
	ConnectivityIsTimeVarying
	MultivarToMultimeshMap_vars
	MultivarToMultimeshMap_meshes

	11 API Section Silo’s Fortran Interface
	dbmkptr
	dbrmptr
	dbset2dstrlen
	dbget2dstrlen
	DBFortranAllocPointer
	DBFortranAccessPointer
	DBFortranRemovePointer

	12 API Section Deprecated Functions

