Radeox Developer Guide

Stephan Schmidt
February 2004

Contact:

Stephan]. Schmidt
stephan@mud.de

Radeox
http:/ /www.radeox.org

Contents

1 Introduction 3
2 Dependencies 3
3 Radeox Architecture 3
4 Using Radeox 3
5 Changing input and output patterns 4
51 Usingyourownlocale 4
5.2 Using different input and output locales 5
5.3 Changing the propertiesfile, 5
54 Natural languagelocale 6
6 Radeox and PicoContainer 7
6.1 Basic PicoContainerusage 7
6.2 Example with anotherlocale 7
7 Extending Radeox 8
71 WritingMacros L oo 8
711 MacroClasso 8
712 Deployment 9
713 Description 10
714 Parameters. 10
7.1.5 Named parameters 11
716 Contentblock 11
7.1.7 Reading the InitialRenderContext 11
7.1.8 Macros with XML closing syntax 12
72 WritingFilters o o L 12
721 |FilterInterface. 12
722 ExampleFilter. o L 13
723 Caching 13
724 Deployment 14
725 Using RegexTokenFilter 14

7.2.6 Using the locale versions of RegexTokenFilter and RegexRe-
placeFilter L L. 15
8 Using Radeox in your Wiki 15
8.1 Wikiarchitecture 15
8.2 Creatingwikilinks 16
8.2.1 WikiRenderEngine 16
822 Makingitwork 0L 17
8.3 Changing the linking style to WikiLinkingStyle 18
84 PortingtoRadeox 18
9 Writing your own RenderEngine 18
9.1 Write a Radeox RenderEngine 19

10 Using Radeox from other languages
10.1 Writing Macros with Groovy
10.1.1 Loading Macros with Groovy at runtime

Page 4 of 21

1 Introduction

Radeox is a rendering engine which renders text markup like __bold__ to XHTML.
Radeox uses the Java programming language. It is used in wiki engines and
applications to render wiki markup. To try radeox type (you need to have
commons-logging jar in the same directory for this to work) into your shell or
DOS prompt

> java -jar lib/radeox.jar
And then at the prompt enter
> radeox__

This should render the markup to XHTML and show
<b class="bold">radeox

The latest version and information on how to use it can be found at http:/ /radeox.org/.
Radeox is available under the terms and conditions of the GNU Lesser General
Public License (see license.txt). Enjoy Radeox.

2 Dependencies
Radeox has the following dependencies:
e commons-logging.jar

All other JAR files are needed to run the examples and the unit tests.

3 Radeox Architecture

Radeox uses a two stage architecture. The first stage consists of a set of filters,
which take the input and turn it into some output.
For example the BoldFilter takes as input something like

This is some _ bold__ text.
and turns this into XHTML like

This is some <b class="bold">bold text.

4 Using Radeox

All Examples can be found in the examples/ directory. The examples are
wrapped as JUnit tests and can be executed with

> ant test

Using the Radeox RenderEngine in your Java applications is very simple.
You just have to call render() on a RenderEngine object:

Radeox Developer Guide February 2004

Page 5 of 21

Filter :
Radeox © Pipe © Macros

Architecture @ [~ TTiTTTTTTTToTmTToTmmmmem

Render

: Macro -
: Filter :

/ Engine
Component !
(PicoContainer, | : :
Spring, ...) ! : :
] : :

\ FilterContext MacroParameter

Render
Engine

Figure 1: Radeox Render Architecture

RenderContext context = new BaseRenderContext();
RenderEngine engine = new BaseRenderEngine();
String result = engine.render("__Radeox__", context);

The RenderEngine needs a context object which is of Type RenderContext
and contains the enviroment for the RenderEngine. RenderContext can be im-
plemented by yourself to pass additional parameters and enviroment variables
to your filters and macros. Usually you only use BaseRenderContext:

RenderContext context = new BaseRenderContext();

That’s it. Place radeox.jar into your classpath and your done.

5 Changing input and output patterns

5.1 Using your own locale

The patterns and the generated output is not hardwired into Radeox. They can
easily be changed to represent your own wiki markup. Radeox uses locale files
for the regular expression patterns and the generated output (e.g. XHTML).
These locale files have key and value pairs

key=value

To adapt the mapping to your needs you have to create our yown property
file with the mappings you want to change. All the mappings we don’t want
to change are read from the standard Radeox properties locale. The standard
locale is named radeox_markup.properties and part of the radeox.jar. Create a new
file radeox_markup_mywiki.properties with the content

Radeox Developer Guide February 2004

© ® N G ok W N =

Page 6 of 21

filter.bold.print=\$1<b class=\"mybold\">\$2\$3

and place the properties locale file in the classpath. Every filter reads it’s
output from a property

filter.<name>.print

where different filters get parameters from the pattern matches. BoldFilter
gets three parameters $1, $2 and $3. $1 and $3 are the matches before and after
the pattern, $2 is the match between the __.

To change the locale the RenderEngine is using for patterns and output, you
can pass the RenderEngine an InitialRenderContext:

InitialRenderContext initialContext =

new BaselnitialRenderContext();
initialContext.set(RenderContext.INPUT_LOCALE,

new Locale("mywiki", "mywiki"));
RenderEngine engineWithContext =
new BaseRenderEngine(initialContext);

String result = engineWithContext.render(

" Radeox__",

new BaseRenderContext());

The string result should now contain

<b class="mybold">Radeox

5.2 Using different input and output locales

Radeox uses different input and output locales, which can be accessed and set
in the InitialRenderContext with

RenderContext. OUTPUT_LOCALE
RenderContext.INPUT_LOCALE

The input locale patterns follow the same schema as the output locale and
are value and key pairs. The input is a regular expression pattern which is used
to find matches in the input text. The bold filter contains

filter.bold.match=
M= IMNp{Puncti\p{Space}]+)__(.*?)__([\p{Puncti\\p{Space}]+|<|$)

All filter keys end with match for the regular expression. This regex can
be changed to fit a different wiki markup. The OUTPUT_LOCALE and the
INPUT_LOCALE can be changed independently.

5.3 Changing the properties file

By default the locales are read from a file named radeox_markup.properties in the
classpath. You can set the name of the file with

Radeox Developer Guide February 2004

Page 7 of 21

initialContext.set(
RenderContext.INPUT_BUNDLE_NAME,
"myown_markup");

Radeox then tries to load the input patterns from myown_markup.properties.
The name of the output properties file can be set accordingly with

initialContext.set(
RenderContext. OUTPUT_BUNDLE_NAME,
"myown_markup");

Input and output properties may be loaded from different files.

5.4 Natural language locale

Messages for the user which are generated by macros and filters are read from
radeox_messages.properties. The language locale is set with the default language
locale of the JDK but can be overriden with

initialContext.set(
RenderContext. LANGUAGE_LOCALE,
new Locale("de", "DE");

This forces Radeox to use a German locale. To translate the macros or your
own macros to a new language, you should copy radeox_messages.properties to
e.g. radeox_messages_de.properties and then translate the values. The locale looks
like
#Macros
macro.table.description=Displays a table.

The name of the messages bundle file is set with

initialContext.set(
RenderContext. LANGUAGE_BUNDLE_NAME,
"radeox_messages")

Another way is to inherit from BaselnitialRenderContext and create your
own InitialRenderContext where you set the appropriate values to the context.
For example you can write a class called MyInitialRenderContext

public class MylnitialRenderContext
extends BaseRenderContext
implements InitialRenderContext {

public MyinitialRenderContext() {
Locale languagelLocale = Locale.getDefault();
Locale locale = new Locale("mywiki", "mywiki");
set(RenderContext.INPUT_LOCALE, locale);
set(RenderContext. OUTPUT_LOCALE, locale);
set(RenderContext. LANGUAGE_LOCALE, languagelocale);
set(RenderContext.INPUT_BUNDLE_NAME, "my_markup");
set(RenderContext. OUTPUT_BUNDLE_NAME, "my_markup");
set(RenderContext. LANGUAGE_BUNDLE_NAME, "my_messages");

Radeox Developer Guide February 2004

oW N =

Page 8 of 21

6 Radeox and PicoContainer

Sometimes it is desired to make the RenderEngine exchangeable. This can be
done with a factory pattern. But it is much more flexible to use a component
container which manages the different components of an application. There
are several easy to use containers like Spring[3] or PicoContainer[2]. The ap-
plication puts class and interface mappings into the container and later gets
the implementation of an interface from the container without knowing which
implementation it gets. This makes it easy to change implementations of com-
ponents in the application.

6.1 Basic PicoContainer usage

The prefered way to use Radeox is to treat the RenderEngine as a component
in PicoContainer. Using Radeox this way, you can replace the RenderEngine in
Radeox easily with few changes to your code .

DefaultPicoContainer dc = new DefaultPicoContainer();
try {
/I Register BaseRenderEngine as an Implementation
/I of RenderEngine
dc.registerComponentimplementation(
RenderEngine.class,
BaseRenderEngine.class);
} catch (Exception e) {
System.err.printin("Could not register component.");

}

/I now only work with container
PicoContainer container = dc;

/I Only ask for RenderEngine, we automatically

/I get an available object

/I that implements RenderEngine

RenderEngine engine = (RenderEngine)
container.getComponentinstance(RenderEngine.class);

RenderContext context = new BaseRenderContext();

String result = engine.render("__SnipSnap__", context);

6.2 [Example with another locale

If we want to change the locale that the RenderEngine gets at startup time,
we have to tell PicoContainer which InitialRenderContext to use. Basically
the same as above, but we add an InitialRenderContext to the PicoContainer.
PicoContainer then automatically configures RenderEngine with the available
InitialRenderContext object.

DefaultPicoContainer dc = new DefaultPicoContainer();

try {
InitialRenderContext initialContext =

new BaselnitialRenderContext();

Radeox Developer Guide February 2004

Page 9 of 21

A
|
1
1
v R] M
Initial Base Render
Render -----» Render — Engine
Context Engine 9

Wired by PicoContainer

PicoContainer

Figure 2: InitialRenderContext in PicoContainer

initialContext.set(RenderContext. OUTPUT_LOCALE,
new Locale("mywiki", "mywiki"));
dc.registerComponentinstance(InitialRenderContext.class,
initialContext);
dc.registerComponentimplementation(RenderEngine.class,

} catch (Exception e) {

BaseRenderEngine.class);

System.err.printin("Could not register component.”);

}

7 Extending Radeox

7.1 Writing Macros

There are several ways to extend and customize Radeox with your own ideas.
The easiest and most powerful way to extend Radeox is to write macros. Macros
are implemented as a filter (MacroFilter). A macro in Radeox is a command
that does something, like show the number of users, search for a string, dis-
play a list of recently changed wiki pages, render source code or change the
font color. Macros have the form {macroname} and can have none or several
arguments. For example {user-count} will display the number of registered
readers in SnipSnap. This tutorial teaches you the basics about macros. Macros
may surround content like

{code}
Example code
{code}

is rendered as

Example code

7.1.1 Macro Class

The easiest way to write a macro is to inherit from org.radeox.macro.BaseMacro
and implement

Radeox Developer Guide February 2004

Page 10 of 21

public abstract void execute(Writer writer, MacroParameter params)
throws lllegalArgumentException, IOException;

Writer is a java.io.Writer object. To output something from your macro just
use

writer.write("hello world");

If you have to output other objects than Strings then you can encapsulate
the writer with java.io.PrintWriter which supports print and println for several
other types. Especially do not use write(i); with an int.

As an example let’s write a HelloWorld macro.

package examples;

import org.radeox.macro.BaseMacro;
import org.radeox.macro.parameter.MacroParameter;

import java.io.|[OException;
import java.io.Writer;

public class HelloWorldMacro extends BaseMacro {
public void execute(Writer writer, MacroParameter params)
throws lllegalArgumentException, IOException {
writer.write("hello world");

}

This macro just writes "hello world" to the output stream. Usually it’s a
good idea to write XHTML, for example

writer.write("Hello World");

7.1.2 Deployment

To make this macro run you have to first give your macro a command name.
We take "hello" for this one. Add a getName method to the macro:

public String getName() {
return "hello";

}

so you can call the macro with {hello} from your input text. Create a jar file
with two files:

META-INF/services/org.radeox.macro.Macro
examples/HelloWorldMacro.class

META-INEF/services/org.radeox.macro.Macro should contain lines with the
class names of your macros, for example examples.HelloWorldMacro
Put this jar somewhere in the classpath and Radeox should find your macro.

Radeox Developer Guide February 2004

Page 11 of 21

7.1.3 Description

Every macro has to document itself. There is a method called getDescription.
Add

public String getDescription() {
return "Say hello.";

}

to give the HelloWorldMacro a description. This description is used by {list-
of-macros}. The MacroListMacro displays all known macros with their name
and their description.

7.1.4 Parameters

The execute method of Macro gets a MacroParameter object. The MacroParam-
eter object is created within Radeox. The RenderContext is passed from your
appication to the MacroParameter object in your macro call.

Application Radeox

RenderEngine

FilterPipe Macro
RenderContext g O >
Filter Macro
Context Parameter

RenderContext FilterContext MacroParameter

Figure 3: MacroParameter creation

This object encapsulates useful information about the execution context.
With params.get('0"); you can get the first un-named parameter from the macro
call. To extend the macro to read a parameter and output the parameter after
the "hello" instead of "world" rewrite execute to:

public void execute(Writer writer, MacroParameter params)

throws lllegalArgumentException, I0OException {

if (params != null && params.getLength() == 1) {
writer.write("Hello ");
writer.write(params.get("0"));
writer.write("");

} else {
throw new lllegalArgumentException(

"Number of arguments does not match");

The macro can now be used with a parameter: {hello:Stephan} which pro-
duces

Radeox Developer Guide February 2004

[R

Page 12 of 21

Hello Stephan

7.1.5 Named parameters

Arguments can be without a name, so {image:Stephan} displays the image with

the name "Stephan" and {image:img=Stephan} will do the same. The named
version is useful when there are several optional arguments. If a macro is given

several arguments, they are sperated witha " | " like in {image:img=Stephan | align=left}.
To make the previous HelloWorld example a named parameter, just use

writer.write(params.get("name"));

which makes the macro usable as {hello:name=Stephan}
7.1.6 Content block
The content between two macro tags as in

{hello}
Stephan is so funny.
{hello}

is also part of the MacroParameter object and can be accessed with
params.getContent();

This might be Null when there is no content. A ContentHelloWorldMacro
could read the name from the content and turn

{hello}stephan{hello}
into
hello stephan

The code is almost the same but reads the name from the content block.

public void execute(Writer writer, MacroParameter params)
throws lllegalArgumentException, I0Exception {
writer.write("hello " + params.getContent());

}

7.1.7 Reading the InitialRenderContext

If you want to read initial parameters in your Macro you need access to the Ini-
tialRenderContext object. The Macro interface has a method setInitialContext
which is implemented in BaseMacro like this

public void setlnitialContext(InitialRenderContext context) {
this.initialContext = context;

}

Radeox Developer Guide February 2004

Page 13 of 21

The same method signature is defined in the Filter interface. At creation
time the RenderEngine implementation in Radeox calls setInitialContext on
all Macros and Filters. You can then read a value from your own InitialRen-
derContext. We extend the HelloWorldMacro to read the name from the Ini-
tialRenderContext. First we have to create a InitialRenderContext and set the
name as a value.

initialContext.set(
"hello.name",
"stephan™);

The InitialRenderContextHelloWorldMacro then reads the name from the
InitialRenderContext

private String name;

public void setlnitialContext(InitialRenderContext context) {
super.setlnitialContext(context);
name = (String) context.get("hello.name");

}

public void execute(Writer writer, MacroParameter params)
throws lllegalArgumentException, IOException {
writer.write("hello "+name);

}

This macro, called with {hello} returns

hello stephan

7.1.8 Macros with XML closing syntax
7.2 Writing Filters

While Macros are commands, filters instead replace special text markup with
XHTML, for example the BoldFilter replaces __bold__ with bold. You
should also be familiar with regular expressions[4] to follow this trail.

Input Output

Filter

Figure 4: Filter principle

7.2.1 Filter Interface

The basis for all filters is the Filter interface. All classes that want to act as filters
have to implement Filter.

Radeox Developer Guide February 2004

LS O

Page 14 of 21

public interface Filter {
public String filter(String input, FilterContext context);

public String[] before();
}

The important method is filter(). This method gets a string as an input and
a FilterContext object. It takes the input string, applies its filtering and then
returns the filtered string. FilterContext holds attributes and references, e.g. to
the rendering engine.

7.2.2 Example Filter

To write your own filter and implement Filter there are some support classes
available. The most basic is FilterSupport which does not much, but implement
the before() method so you do not have to care. Most of the time though you
want to use regular expressions (regex) to filter your content. For this there are
two classes you can inherit from

e RegexReplaceFilter

o RegexTokenFilter

RegexReplaceFilter takes a regex and replaces it with some output like sed
or perlss/.../.../g does. RegexTokenFilter calls a subroutine for every match.

Here is a smily replace filter as an example. Suppose you want to replace
every Frowny :-(with a smiley :-). The only thing you have to do is to supply
the regular expressions:

public class SmileyFilter extends RegexReplaceFilter {
public SmileyFilter() {
super(":-\(", "-)");
5

}

The two backslashes are for quoting the (in the regular expression. The
SmileyFilter now replaces every occurence of :-(in the input with :-).

7.2.3 Caching

Radeox supports caching. To tell the engine that the output from your filter is
cachable (= produces the same output for the same input which is usually the
case with static filters) add the marker interface CacheFilter to your filter:

public class SmileyFilter
extends RegexReplaceFilter
implements CacheFilter {

You can then ask the RenderContext after a render() call, if the render result
is cacheable

Radeox Developer Guide February 2004

Page 15 of 21

public boolean isCacheable();

and cache the result. As a rule of thumb, if the input contained macros,
the result will not be cacheable, if it only contained filters, the result will be
cacheable.

7.24 Deployment

To make this filter work you have to create a jar file with

META-INF/services/org.radeox.filter.Filter
examples/SmileyFilter.class

META-INEF/services/org.radeox.filter.Filter should contain lines with the
class names of your filters, for example examples.SmileyFilter. Put this jar into
the classpath and Radeox should find your filters.

7.2.5 Using RegexTokenFilter

Suppose we want to do something more complicated with our filter than just
replace something statically from the input. We want to write a filter which
searches for a $ sign followed by a number in its input e.g.

$3

and then replaces this with the square of the number, e.g. 9. RegexReplace-
Filter fails to do this, but luckily there is a Filter which exactly does this. Regex-
TokenFilter takes the input and splits it into tokens. For every found match,
handleMatch() is called. In the handleMatch() method you can do whatever
you like with the match and write something to the output. The SquareFilter
example takes the input, converts it to an int and returns the square.

public class SquareFilter extends RegexTokenFilter {
public SquareFilter() {
super("\$[0-9]+", true);
2

public void handleMatch(StringBuffer buffer,
MatchResult result,
FilterContext context) {
/I group(0) will e.g. return "$3" so we have to cut the $
int number = Integer.parselnt(
result.group(0).substring(1));
buffer.append(number*number);

}

The second parameter in the super() call is whether the match is singleline
or not.

Radeox Developer Guide February 2004

N g R W N =

Page 16 of 21

7.2.6 Using thelocale versions of RegexTokenFilter and RegexReplaceFilter

Suppose someone does not agree with your former definition of a Smiley and
thinks the smiley should look like

->

To change the smiley he has to modify your Java code, recompile and de-
ploy the jar. It's much easier for him if the smiley would be defined in a
properties file. Simply add the lines for a matcher and a output format to the
radeox_markup_mywiki.properties file (or the default Radeox properties file)

filter.smiley.match=:-\\(
filter.smiley.print=:->

The standard RegexReplaceFilter does not read from a locale. While you
can write the code to read from the locale by hand, there is a helper Filter class
which does this for you. LocaleRegexReplaceFilter reads the input and output
from locales. Write a LocaleSmileyFilter which extends LocaleRegexReplace-
Filter:

public class LocaleSmileyFilter
extends LocaleRegexReplaceFilter {

protected String getLocaleKey() {
return “filter.smiley";

}
}

The only thing you have to do is supply a key for the locale properties file.
The key is then expanded to <key>.match and <key>.print. If you add the locale
to your InitialRenderContext, the SmileyFilter should now render :-(to :->

InitialRenderContext context = new BaselnitialRenderContext();
Locale locale = new Locale("mywiki", "mywiki")
context.set(RenderContext.INPUT_LOCALE, locale);
context.set(RenderContext. OUTPUT_LOCALE, locale);

Similar to LocaleRegexReplaceFilter there is a LocaleRegexTokenFiler which

reads its parameters from the locale. This filter only reads a match key.

8 Using Radeox in your Wiki
8.1 Wiki architecture
A Wiki system usually consists of:

e Storage Backend (JDBC, Files)
e Some Wiki logic to determine if a page exists

e Some glue that takes input form the user, stores pages to the backend etc.

Radeox Developer Guide February 2004

Page 17 of 21

e A HTML frontend, often with a web framework (WebWork, Struts, Web-
Macro)

e A render engine that turns wiki markup into XHTML / XML

JSP, WebMacro,

WebWork, Struts Web Framework
Radeox Markup
Rendering Engine Glue

Wiki Existence
Manager

Files, JDBC Storage Backend

Figure 5: Wiki Architecture

Although people use frameworks for the backend and the frontend, they
mostly do not yet use a framework for the rendering engine. Radeox fills this

&ap-

8.2 Creating wiki links

Radeox is a wiki render engine which can be used out of the box. There is a
render engine called BaseRenderEngine which can be used for rendering. This
engine though does not know about you wiki backend, so you have to write
your own engine. This backend tells Radeox if a wiki page exists, if it should
link to a wiki page or instead a creation form and so on.

8.2.1 WikiRenderEngine

For your own renderer engine you can extend BaseRenderEngine from Radeox.
Then you have to implement the interface WikiRenderEngine. This tells the
renderer in Radeox that your use the renderer in a wiki enviroment and not for
another application.

public interface WikiRenderEngine {

public boolean exists(String name);

public boolean showCreate();

public void appendLink(StringBuffer buffer,
String name,
String view,
String anchor);

public void appendLink(StringBuffer buffer,
String name,
String view);

public void appendCreateLink(StringBuffer buffer,

Radeox Developer Guide February 2004

Page 18 of 21

String name,
String view);

o cxists takes the name of a wiki page and returns true if the wiki page
exists

e showCreate returns true if radeox should render links to a creation form.
This can be used to only link ’create wiki’ pages if the user is logged in

e appendLink appends e.g. the <A HREF> HTML code for linking to a wiki
page with the given name to StringBuffer. View is the text that should be
shown to the user.

o appendCreateLink appends the HTML code for linking to the 'create wiki’
page

8.2.2 Making it work

A small WikiRenderEngine, which only knows "SnipSnap” and ’stephan’ as
wiki entries could look like this:

public class MyWikiRenderEngine

extends BaseRenderEngine
implements WikiRenderEngine {

public boolean exists(String name) {
/I make a lookup in your wiki if the page exists
return name.equals("SnipSnap") || name.equals("stephan");

}

public boolean showCreate() {
/I we always want to show a create link, not only e.g.
/I if a user is registered
return true;

}

public void appendLink(StringBuffer buffer,

String name,
String view) {

buffer.append("<a href=\"/show?wiki=");

buffer.append(name);

buffer.append("\">");

buffer.append(view);

buffer.append("");

}

public void appendLink(StringBuffer buffer,
String name,
String view,
String anchor) {
buffer.append("<a href=\"/show?wiki=");
buffer.append(name);
buffer.append("#");

Radeox Developer Guide February 2004

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Page 19 of 21

buffer.append(anchor);
buffer.append("\">");
buffer.append(view);
buffer.append("");

}

public void appendCreatelLink(StringBuffer buffer,

String name,
String view) {

buffer.append(name);

buffer.append("<a href=\"/create?wiki=");

buffer.append(name);

buffer.append("\">");

buffer.append("?");

}

public String getName() {
return "my-wiki";
}
}

Then use the render engine as described before. You have to set your engine
in BaseRenderContext though, so Radeox does use your engine to determine if
wiki pages exist. The LinkFilter in Radeox takes a look at your RenderEngine
and if it implements WikiRenderEngine, Radeox uses your WikiRenderEngine
to look for existing wiki pages and for creating XHTML links.

RenderEngine myEngine = new MyWikiRenderEngine();
RenderContext context = new BaseRenderContext();
context.setRenderEngine(myEngine);

String result = myEngine.render("My String", context);

Alternativly you could create your own RenderContext that returns your
engine. That’s it.

8.3 Changing the linking style to WikiLinkingStyle
8.4 Porting to Radeox

For example, WikiLand uses Cocoon for rendering. To change their architec-
ture to use Radeox they would have to insert the Radeox API between their
application and their wiki markup renderer.

9 Writing your own RenderEngine

You want to write a completely different RenderEngine for Radeox (or Snip-
Snap). Perhaps you want to render XML to XHML using XSLT or you want
to support other wiki markup and your goal cannot be achived with writing
macros or filters. Perhaps you want to use a parser instead of regular expres-
sions.

Radeox Developer Guide February 2004

N G R W N =

Page 20 of 21

< XHTML

Wiki ML

WikiLand

Radeox API

getComponent(RenderEngine.class) _
Radeox

Interface
return

String or
Component directly
container write to a
Writer

XHTML

Chaperon »| Cocoon

Figure 6: WikiLand and Radeox integration

9.1 Write a Radeox RenderEngine
The RenderEngine interface looks like this:

public interface RenderEngine {
public String getName();
public String render(String content, RenderContext context);

}

You write your own Implementation of RenderEngine, say MyRenderEngine
where getName() returns "my" and

render(content, context);

does the actual rendering, for example replace all "X" with "Y":

public class MyRenderEngine implements RenderEngine {
public String getName() {
return "my";
}
public String render(String content, RenderContext context) {
return content.replace(’X’, 'Y’);

}

Radeox Developer Guide February 2004

Page 21 of 21

10 Using Radeox from other languages

10.1 Writing Macros with Groovy

Groovy[1] is a scripting language which directly compiles to byte code for the
Java VM. There are two ways to use Groovy with Radeox

e compiling Macros to .class files

e loading Groovy Macros from Java

package examples;

import java.io.Writer
import org.radeox.macro.parameter.MacroParameter

class GroovyMacro extends org.radeox.macro.BaseMacro {
void execute(Writer writer, MacroParameter params) {
writer.write("Yipee ay ey, schweinebacke")
}
String getName() {
return "groovy"

}

}

You can use ant to compile the Groovy Macro to Java code. It’s easier first
compile all Groovy scripts to a destination directory and after that your Java
files, because otherwise the Java compiler won't find the Groovy .class files.

<target name="compile-groovy" depends="prepare">
<groovyc destdir="${pre-out}" srcdir="${src}" listfiles="true">
<classpath refid="classpath"/>
</groovyc>
</target>

<target name="compile" depends="prepare, compile-groovy">
<javac srcdir="${src}" destdir="${out}" classpathref="classpath"/>
</target>

The pre-out directory is in the classpath, so the javac task finds the com-
piled Groovy files. See the build.xml in the examples directory for a working
example. To make the groovyc task working, you jave to first add

<taskdef name="groovyc" classname="org.codehaus.groovy.ant.Groovyc" classpathref="classpath"/>

to your build.xml

10.1.1 Loading Macros with Groovy at runtime

A Java class which compiles this macro source code to a Macro is Groovy-
MacroCompiler

Radeox Developer Guide February 2004

Page 22 of 21

public class GroovyMacroCompiler {
public Macro compileMacro(String macroSource) {
Macro macro = null;
try {
GroovyClassLoader gcl = new GroovyClassLoader();
InputStream is = new ByteArraylnputStream(
macroSource.getBytes());
Class clazz = gcl.parseClass(is, "Macro.groovy");
Object aScript = clazz.newlnstance();
macro = (Macro) aScript;
} catch (Exception e) {
System.err.printin("Cannot compile groovy macro.");
}
return macro;
}
}

References

[1] Groovy programming language, http://groovy.codehaus.org
[2] Component container, http:/ /www.picocontainer.org/

[3] Spring Framework with component container,
http:/ /www.springframework.org/

[4] Jeffrey E. F. Friedl, Mastering Regular Expressions, ISBN: 0596002890

Radeox Developer Guide February 2004

