Package 'LightLogR'

July 4, 2024

Title Process Data from Wearable Light Loggers and Optical Radiation Dosimeters

Version 0.3.8

Description Import, processing, validation, and visualization of personal light exposure measurement data from wearable devices. The package implements features such as the import of data and metadata files, conversion of common file formats, validation of light logging data, verification of crucial metadata, calculation of common parameters, and semi-automated analysis and visualization.

```
License GPL (>= 3)
Encoding UTF-8
RoxygenNote 7.3.2
URL https://github.com/tscnlab/LightLogR,
      https://tscnlab.github.io/LightLogR/,
      https://zenodo.org/doi/10.5281/zenodo.11562600
BugReports https://github.com/tscnlab/LightLogR/issues
Imports cowplot, dplyr, flextable, ggplot2, ggsci, ggtext, hms,
      lubridate, magrittr, pkgload, plotly, purrr, readr, rlang,
      rsconnect, scales, slider, stats, stringr, tibble, tidyr, utils
Depends R (>= 2.10)
LazyData true
Suggests covr, gghighlight, gt, gtsummary, knitr, patchwork,
      rmarkdown, testthat (>= 3.0.0), tidyverse
Config/testthat/edition 3
NeedsCompilation no
Author Johannes Zauner [aut, cre] (<a href="https://orcid.org/0000-0003-2171-4566">https://orcid.org/0000-0003-2171-4566</a>),
      Manuel Spitschan [aut] (<a href="https://orcid.org/0000-0002-8572-9268">https://orcid.org/0000-0002-8572-9268</a>),
      Steffen Hartmeyer [aut] (<a href="https://orcid.org/0000-0002-2813-2668">https://orcid.org/0000-0002-2813-2668</a>),
      MeLiDos [fnd],
      EURAMET [fnd] (European Association of National Metrology Institutes.
       Website: www.euramet.org. Grant Number: 22NRM05 MeLiDos. Grant
```

2 Contents

Statement: The project (22NRM05 MeLiDos) has received funding from the European Partnership on Metrology, co-financed from the European Union's Horizon Europe Research and Innovation Programme and by the Participating States.),

European Union [fnd] (Co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or EURAMET. Neither the European Union nor the granting authority can be held responsible for them.),

TSCN-Lab [cph] (www.tscnlab.org)

Maintainer Johannes Zauner < johannes . zauner@tum.de>

Repository CRAN

Date/Publication 2024-07-04 17:00:02 UTC

Contents

	3
aggregate_Datetime	5
barroso_lighting_metrics	6
bright_dark_period	8
Brown2reference	0
Brown_check	2
Brown_rec	3
centroidLE	4
count_difftime	6
create_Timedata	7
cut_Datetime	8
data2reference	9
Datetime_breaks	1
Datetime_limits	2
disparity_index	3
dominant_epoch	4
dst_change_handler	5
dst_change_summary	6
duration_above_threshold	7
exponential_moving_average	9
filter_Datetime	0
filter_Datetime_multiple	3
filter_Time	4
frequency_crossing_threshold	5
gapless_Datetimes	6
gap_finder	8
gap_handler	9
gg_day	1
gg_days	4
gg_doubleplot	6
gg_overview	9

aggregate_Date 3

import_adjustment
import_Dataset
import_Statechanges
interdaily_stability
interval2state
intradaily_variability
join_datasets
ll_import_expr
midpointCE
nvRC 60
nvRC_metrics
nvRD 69
nvRD_cumulative_response
period_above_threshold
pulses_above_threshold
sample.data.environment
sc2interval
sleep_int2Brown
supported.devices
symlog_trans
threshold_for_duration
timing_above_threshold
Q*

aggregate_Date

Aggregate dates to a single day

Description

Index

Condenses a dataset by aggregating the data to a single day per group, with a resolution of choice unit. aggregate_Date() is opinionated in the sense that it sets default handlers for each data type of numeric, character, logical, and factor. These can be overwritten by the user. Columns that do not fall into one of these categories need to be handled individually by the user (... argument) or will be removed during aggregation. If no unit is specified the data will simply be aggregated to the most common interval (dominant.epoch) in every group. aggregate_Date() is especially useful for summary plots that show an average day.

```
aggregate_Date(
  dataset,
  Datetime.colname = Datetime,
  unit = "none",
  type = c("round", "floor", "ceiling"),
  date.handler = stats::median,
  numeric.handler = mean,
  character.handler = function(x) names(which.max(table(x, useNA = "ifany"))),
```

4 aggregate_Date

```
logical.handler = function(x) mean(x) >= 0.5,
factor.handler = function(x) factor(names(which.max(table(x, useNA = "ifany")))),
...
)
```

Arguments

dataset A light logger dataset. Expects a dataframe. If not imported by LightLogR,

take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the date time. Defaults to "Datetime" which is auto-

matically correct for data imported with LightLogR. Expects a symbol. Needs

to be part of the dataset.

unit Unit of binning. See lubridate::round_date() for examples. The default

is "none", which will not aggregate the data at all, but is only recommended for regular data, as the condensation across different days will be performed by time. Another option is "dominant.epoch", which means everything will be aggregated to the most common interval. This is especially useful for slightly

irregular data, but can be computationally expensive.

type One of "round"(the default), "ceiling" or "floor". Setting chooses the rele-

vant function from lubridate.

date.handler A function that calculates the aggregated day for each group. By default, this is

set to median.

numeric.handler, character.handler, logical.handler, factor.handler

functions that handle the respective data types. The default handlers calculate the mean for numeric and the mode for character, factor and logical types.

... arguments given over to dplyr::summarize() to handle columns that do not

fall into one of the categories above.

Details

aggregate_Date() splits the Datetime column into a Date. data and a Time. data column. It will create subgroups for each Time. data present in a group and aggregate each group into a single day, then remove the sub grouping.

Use the . . . to create summary statistics for each group, e.g. maximum or minimum values for each time point group.

Performing aggregate_Datetime() with any unit and then aggregate_Date() with a unit of "none" is equivalent to just using aggregate_Date() with that unit directly (provided the other arguments are set the same between the functions). Disentangling the two functions can be useful to split the computational cost for very small instances of unit in large datasets. It can also be useful to apply different handlers when aggregating data to the desired unit of time, before further aggregation to a single day, as these handlers as well as . . . are used twice if the unit is not set to "none".

Value

A tibble with aggregated Datetime data, at maximum one day per group. If the handler arguments capture all column types, the number of columns will be the same as in the input dataset.

aggregate_Datetime 5

Examples

```
library(ggplot2)
#gg_days without aggregation
sample.data.environment %>%
gg_days()
#with daily aggregation
sample.data.environment %>%
 aggregate_Date() %>%
gg_days()
#with daily aggregation and a different time aggregation
sample.data.environment %>%
aggregate_Date(unit = "15 mins", type = "floor") %>%
 gg_days()
#adding further summary statistics about the range of MEDI
 sample.data.environment %>%
 aggregate_Date(unit = "15 mins", type = "floor",
               MEDI_max = max(MEDI),
               MEDI_min = min(MEDI)) %>%
 gg_days() +
 geom_ribbon(aes(ymin = MEDI_min, ymax = MEDI_max), alpha = 0.5)
```

aggregate_Datetime

Aggregate Datetime data

Description

Condenses a dataset by aggregating the data to a given (shorter) interval unit. aggregate_Datetime() is opinionated in the sense that it sets default handlers for each data type of numeric, character, logical, and factor. These can be overwritten by the user. Columns that do not fall into one of these categories need to be handled individually by the user (... argument) or will be removed during aggregation. If no unit is specified the data will simply be aggregated to the most common interval (dominant.epoch), which is most often not an aggregation but a rounding.)

```
aggregate_Datetime(
  dataset,
  Datetime.colname = Datetime,
  unit = "dominant.epoch",
  type = c("round", "floor", "ceiling"),
  numeric.handler = mean,
  character.handler = function(x) names(which.max(table(x, useNA = "ifany"))),
  logical.handler = function(x) mean(x) >= 0.5,
  factor.handler = function(x) factor(names(which.max(table(x, useNA = "ifany")))),
  ...
)
```

Arguments

dataset A light logger dataset. Expects a dataframe. If not imported by LightLogR,

take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs

to be part of the dataset.

unit Unit of binning. See lubridate::round_date() for examples. The default

is "dominant.epoch", which means everything will be aggregated to the most common interval. This is especially useful for slightly irregular data, but can be

computationally expensive. "none" will not aggregate the data at all.

type One of "round" (the default), "ceiling" or "floor". Setting chooses the rele-

vant function from lubridate.

numeric.handler, character.handler, logical.handler, factor.handler

functions that handle the respective data types. The default handlers calculate the mean for numeric and the mode for character, factor and logical types.

... arguments given over to dplyr::summarize() to handle columns that do not

fall into one of the categories above.

Value

A tibble with aggregated Datetime data. Usually the number of rows will be smaller than the input dataset. If the handler arguments capture all column types, the number of columns will be the same as in the input dataset.

Examples

```
#dominant epoch without aggregation
sample.data.environment %>%
   dominant_epoch()

#dominant epoch with 5 minute aggregation
sample.data.environment %>%
   aggregate_Datetime(unit = "5 mins") %>%
   dominant_epoch()

#dominant epoch with 1 day aggregation
sample.data.environment %>%
   aggregate_Datetime(unit = "1 day") %>%
   dominant_epoch()
```

barroso_lighting_metrics

Circadian lighting metrics from Barroso et al. (2014)

Description

This function calculates the metrics proposed by Barroso et al. (2014) for light-dosimetry in the context of research on the non-visual effects of light. The following metrics are calculated:

Usage

```
barroso_lighting_metrics(
  Light.vector,
  Time.vector,
  epoch = "dominant.epoch",
  loop = FALSE,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector	Numeric vector containing the light data.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
epoch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
loop	Logical. Should the data be looped? Defaults to FALSE.
na.rm	Logical. Should missing values (NA) be removed for the calculation? Defaults to FALSE. If TRUE, for the calculation of bright_cluster and dark_cluster, missing values will be replaced by 0 (see period_above_threshold).
as.df	Logical. Should a data frame be returned? If TRUE, a data frame with seven columns will be returned. Defaults to FALSE.

Details

bright_threshold The maximum light intensity for which at least six hours of measurements are at the same or higher level.

dark_threshold The minimum light intensity for which at least eight hours of measurements are at the same or lower level.

bright_mean_level The 20% trimmed mean of all light intensity measurements equal or above the bright_threshold.

dark_mean_level The 20% trimmed mean of all light intensity measurements equal or below the dark_threshold.

bright_cluster The longest continuous time interval above the bright_threshold.

dark_cluster The longest continuous time interval below the dark_threshold.

circadian_variation A measure of periodicity of the daily lighting schedule over a given set of days. Calculated as the coefficient of variation of input light data.

8 bright_dark_period

Value

List or dataframe with the seven values: bright_threshold, dark_threshold, bright_mean_level, dark_mean_level, bright_cluster, dark_cluster, circadian_variation. The output type of bright_cluster, dark_cluster, is a duration object.

References

Barroso, A., Simons, K., & Jager, P. de. (2014). Metrics of circadian lighting for clinical investigations. *Lighting Research & Technology*, 46(6), 637–649. doi:10.1177/1477153513502664

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

Examples

bright_dark_period

Brightest or darkest continuous period

Description

This function finds the brightest or darkest continuous period of a given timespan and calculates its mean light level, as well as the timing of the period's onset, midpoint, and offset. It is defined as the period with the maximum or minimum mean light level. Note that the data need to be regularly spaced (i.e., no gaps) for correct results.

```
bright_dark_period(
   Light.vector,
   Time.vector,
   period = c("brightest", "darkest"),
   timespan = "10 hours",
   epoch = "dominant.epoch",
   loop = FALSE,
   na.rm = FALSE,
   as.df = FALSE
)
```

bright_dark_period 9

Arguments

Light.vector	Numeric vector containing the light data.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
period	String indicating the type of period to look for. Can be either "brightest" (the default) or "darkest".
timespan	The timespan across which to calculate. Can be either a duration or a duration string, e.g., "1 day" or "10 sec".
epoch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
loop	Logical. Should the data be looped? If TRUE, a full copy of the data will be concatenated at the end of the data. Makes only sense for 24 h data. Defaults to FALSE.
na.rm	Logical. Should missing values be removed for the calculation? Defaults to FALSE.
as.df	Logical. Should the output be returned as a data frame? Defaults to TRUE.

Details

Assumes regular 24h light data. Otherwise, results may not be meaningful. Looping the data is recommended for finding the darkest period.

Value

A named list with the mean, onset, midpoint, and offset of the calculated brightest or darkest period, or if as.df == TRUE a data frame with columns named {period}_{timespan}_{metric}. The output type corresponds to the type of Time.vector, e.g., if Time.vector is HMS, the timing metrics will be also HMS, and vice versa for POSIXct.

References

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

```
# Dataset with light > 250lx between 06:00 and 18:00
dataset1 <-
  tibble::tibble(
   Id = rep("A", 24),</pre>
```

10 Brown2reference

```
Datetime = lubridate::as_datetime(0) + lubridate::hours(0:23),
   MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
dataset1 %>%
 dplyr::reframe(bright_dark_period(MEDI, Datetime, "brightest", "10 hours",
   as.df = TRUE))
dataset1 %>%
 dplyr::reframe(bright_dark_period(MEDI, Datetime, "darkest", "7 hours",
   loop = TRUE, as.df = TRUE))
# Dataset with duration as Time.vector
dataset2 <-
 tibble::tibble(
   Id = rep("A", 24),
   Datetime = lubridate::dhours(0:23),
   MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
 )
dataset2 %>%
 dplyr::reframe(bright_dark_period(MEDI, Datetime, "brightest", "10 hours",
                                    as.df = TRUE))
dataset2 %>%
 dplyr::reframe(bright_dark_period(MEDI, Datetime, "darkest", "5 hours",
                                    loop = TRUE, as.df = TRUE))
```

Brown2reference

Add Brown et al. (2022) reference illuminance to a dataset

Description

Adds several columns to a light logger dataset. It requires a column that contains the Brown states, e.g. "daytime", "evening", and "night". From that the function will add a column with the recommended illuminance, a column that checks if the illuminance of the dataset is within the recommended illuminance levels, and a column that gives a label to the reference.

```
Brown2reference(
  dataset,
  MEDI.colname = MEDI,
  Brown.state.colname = State.Brown,
  Brown.rec.colname = Reference,
  Reference.label = "Brown et al. (2022)",
  overwrite = FALSE,
  ...
)
```

Brown2reference 11

Arguments

dataset A dataframe that contains a column with the Brown states

MEDI.colname The name of the column that contains the MEDI values which are used for

checks against the Brown reference illuminance. Must be part of the dataset.

Brown.state.colname

The name of the column that contains the Brown states. Must be part of the

dataset.

Brown.rec.colname

The name of the column that will contain the recommended illuminance. Must

not be part of the dataset, otherwise it will throw an error.

Reference.label

The label that will be used for the reference. Expects a character scalar.

overwrite If TRUE (defaults to FALSE), the function will overwrite the Brown.rec.colname

column if it already exists.

.. Additional arguments that will be passed to Brown_rec() and Brown_check().

This is only relevant to correct the names of the daytime states or the thresholds used within these states. See the documentation of these functions for more

information.

Details

On a lower level, the function uses Brown_rec() and Brown_check() to create the required information.

Value

A dataframe on the basis of the dataset that contains the added columns.

References

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001571

See Also

```
Other Brown: Brown_check(), Brown_rec(), sleep_int2Brown()
```

12 Brown_check

Brown_check	Check whether a value is within the recommended illuminance/MEDI
	levels by Brown et al. (2022)

Description

This is a lower level function. It checks a given value against a threshold for the states given by Brown et al. (2022). The function is vectorized. For day the threshold is a lower limit, for evening and night the threshold is an upper limit.

Usage

```
Brown_check(
  value,
  state,
  Brown.day = "day",
  Brown.evening = "evening",
  Brown.night = "night",
  Brown.day.th = 250,
  Brown.evening.th = 10,
  Brown.night.th = 1
```

Arguments

value Illuminance value to check against the recommendation. needs to be numeric,

can be a vector.

state The state from Brown et al. (2022). Needs to be a character vector with the

same length as value.

Brown.day, Brown.evening, Brown.night

The names of the states from Brown et al. (2022). These are the default values ("day", "evening", "night"), but can be changed if the names in state are different. Needs to be a character scalar.

Brown.day.th, Brown.evening.th, Brown.night.th

The thresholds for the states from Brown et al. (2022). These are the default values (250, 10, 1), but can be changed if the thresholds should be different. Needs to be a numeric scalar.

Value

A logical vector with the same length as value that indicates whether the value is within the recommended illuminance levels.

References

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001571

Brown_rec 13

See Also

```
Other Brown: Brown2reference(), Brown_rec(), sleep_int2Brown()
```

Examples

```
states <- c("day", "evening", "night", "day")
values <- c(100, 10, 1, 300)
Brown_check(values, states)
Brown_check(values, states, Brown.day.th = 100)</pre>
```

Brown_rec

Set the recommended illuminance/MEDI levels by Brown et al. (2022)

Description

This is a lower level function. It sets the recommended illuminance/MEDI levels by Brown et al. (2022) for a given state. The function is vectorized.

Usage

```
Brown_rec(
   state,
   Brown.day = "day",
   Brown.evening = "evening",
   Brown.night = "night",
   Brown.day.th = 250,
   Brown.evening.th = 10,
   Brown.night.th = 1
```

Arguments

State The state from Brown et al. (2022). Needs to be a character vector.

Brown.day, Brown.evening, Brown.night

The names of the states from Brown et al. (2022). These are the default values ("day", "evening", "night"), but can be changed if the names in state are different. Needs to be a character scalar.

Brown.day.th, Brown.evening.th, Brown.night.th

The thresholds for the states from Brown et al. (2022). These are the default values (250, 10, 1), but can be changed if the thresholds should be different. Needs to be a numeric scalar.

Value

A dataframe with the same length as state that contains the recommended illuminance/MEDI levels.

14 centroidLE

References

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001571

See Also

```
Other Brown: Brown2reference(), Brown_check(), sleep_int2Brown()
```

Examples

```
states <- c("day", "evening", "night")
Brown_rec(states)
Brown_rec(states, Brown.day.th = 100)</pre>
```

 ${\tt centroidLE}$

Centroid of light exposure

Description

This function calculates the centroid of light exposure as the mean of the time vector weighted in proportion to the corresponding binned light intensity.

Usage

```
centroidLE(
  Light.vector,
  Time.vector,
  bin.size = NULL,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector	Numeric vector containing the light data.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
bin.size	Value specifying size of bins to average the light data over. Must be either a duration or a duration string, e.g., "1 day" or "10 sec". If nothing is provided, no binning will be performed.
na.rm	Logical. Should missing values be removed for the calculation? Defaults to FALSE.
as.df	Logical. Should the output be returned as a data frame? If TRUE, a data frame with a single column named centroidLE will be returned. Defaults to FALSE.

Value

Single column data frame or vector.

centroidLE 15

References

Phillips, A. J. K., Clerx, W. M., O'Brien, C. S., Sano, A., Barger, L. K., Picard, R. W., Lockley, S. W., Klerman, E. B., & Czeisler, C. A. (2017). Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. *Scientific Reports*, 7(1), 3216. doi:10.1038/s41598017031714

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: bright_dark_period(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

```
# Dataset with POSIXct time vector
dataset1 <-
  tibble::tibble(
   Id = rep("A", 24),
   Datetime = lubridate::as_datetime(0) + lubridate::hours(0:23),
   MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
  )
dataset1 %>%
  dplyr::reframe(
    "Centroid of light exposure" = centroidLE(MEDI, Datetime, "2 hours")
# Dataset with hms time vector
dataset2 <-
  tibble::tibble(
    Id = rep("A", 24),
    Time = hms::as_hms(lubridate::as_datetime(0) + lubridate::hours(0:23)),
   MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
  )
dataset2 %>%
  dplyr::reframe(
    "Centroid of light exposure" = centroidLE(MEDI, Time, "2 hours")
# Dataset with duration time vector
dataset3 <-
  tibble::tibble(
    Id = rep("A", 24),
   Hour = lubridate::duration(0:23, "hours"),
    MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
dataset3 %>%
  dplyr::reframe(
    "Centroid of light exposure" = centroidLE(MEDI, Hour, "2 hours")
```

16 count_difftime

)

count_difftime

Counts the Time differences (epochs) per group (in a grouped dataset)

Description

Counts the Time differences (epochs) per group (in a grouped dataset)

Usage

```
count_difftime(dataset, Datetime.colname = Datetime)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs to be part of the dataset.

Value

a tibble with the number of occurences of each time difference per group

```
#get a dataset with irregular intervals
filepath <- system.file("extdata/sample_data_LYS.csv", package = "LightLogR")
dataset <- import$LYS(filepath)

#count_difftime returns the number of occurences of each time difference
#and is more comprehensive in terms of a summary than `gap_finder` or
#`dominant_epoch`
count_difftime(dataset)
dominant_epoch(dataset)
gap_finder(dataset)

#irregular data can be regularized with `aggregate_Datetime`
dataset %>% aggregate_Datetime(unit = "15 secs") %>% count_difftime()
```

create_Timedata 17

create_Timedata

Create a Time-of-Day column in the dataset

Description

Create a Time-of-Day column in the dataset

Usage

```
create_Timedata(
  dataset,
  Datetime.colname = Datetime,
  Time.data = Time.data,
  output.dataset = TRUE
)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs

to be part of the dataset.

Time.data

Name of the newly created column. Expects a symbol. The default(Time.data)

works well with other functions in LightLogR.

output.dataset should the output be a data.frame (Default TRUE) or a vector with hms (FALSE)

times? Expects a logical scalar.

Value

a data.frame object identical to dataset but with the added column of Time-of-Day data, or a vector with the Time-of-Day-data

```
sample.data.environment %>% create_Timedata()
```

18 cut_Datetime

cut_Datetime

Create Datetime bins for visualization and calculation

Description

cut_Datetime is a wrapper around lubridate::round_date() (and friends) combined with dplyr::mutate(), to create a new column in a light logger dataset with a specified binsize. This can be "3 hours", "15 secs", or "0.5 days". It is a useful step between a dataset and a visualization or summary step.

Usage

```
cut_Datetime(
  dataset,
  unit = "3 hours",
  type = c("round", "floor", "ceiling"),
  Datetime.colname = Datetime,
  New.colname = Datetime.rounded,
  group_by = FALSE,
  ...
)
```

Arguments

dataset A light logger dataset. Expects a dataframe. If not imported by LightLogR,

take care to choose a sensible variable for the Datetime.colname.

unit Unit of binning. See lubridate::round_date() for examples. The default is

"3 hours".

type One of "round"(the default), "ceiling" or "floor". Setting chooses the rele-

vant function from lubridate.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs

to be part of the dataset.

New. colname Column name for the added column in the dataset.

group_by Should the data be grouped by the new column? Defaults to FALSE

... Parameter handed over to lubridate::round_date() and siblings

Value

a data.frame object identical to dataset but with the added column of binned datetimes.

data2reference 19

Examples

```
#compare Datetime and Datetime.rounded
sample.data.environment %>%
   cut_Datetime() %>%
   dplyr::slice_sample(n = 5)
```

data2reference

Create reference data from other data

Description

Create reference data from almost any other data that has a datetime column and a data column. The reference data can even be created from subsets of the same data. Examples are that one participant can be used as a reference for all other participants, or that the first (second,...) day of every participant data is the reference for any other day. This function needs to be carefully handled, when the reference data time intervals are shorter than the data time intervals. In that case, use aggregate_Datetime() on the reference data beforehand to lengthen the interval.

Usage

```
data2reference(
  dataset,
  Reference.data = dataset,
  Datetime.column = Datetime,
  Data.column = MEDI,
  Id.column = Id,
  Reference.column = Reference,
  overwrite = FALSE,
  filter.expression.reference = NULL,
  across.id = FALSE,
  shift.start = FALSE,
  length.restriction.seconds = 60,
  shift.intervals = "auto",
  Reference.label = NULL
)
```

Arguments

dataset A light logger dataset

Reference. data The data that should be used as reference. By default the dataset will be used

as reference.

Datetime.column

Datetime column of the dataset and Reference.data. Need to be the same in

both sets. Default is Datetime.

Data column in the Reference. data that is then converted to a reference. De-

fault is MEDI.

20 data2reference

Id.column Name of the Id.column in both the dataset and the Reference.data. Reference.column

Name of the reference column that will be added to the dataset. Default is Reference. Cannot be the same as any other column in the dataset and will throw an error if it is.

overwrite If TRUE (defaults to FALSE), the function will overwrite the Reference.colname column if it already exists.

filter.expression.reference

Expression that is used to filter the Reference. data before it is used as reference. Default is NULL. See

across.id Grouping variables that should be ignored when creating the reference data. Default is FALSE. If TRUE, all grouping variables are ignored. If FALSE, no grouping variables are ignored. If a vector of grouping variables is given, these are ignored.

shift.start If TRUE, the reference data is shifted to the start of the respective group. Default is FALSE. The shift ignores the groups specified in across.id.

length.restriction.seconds

Restricts the application of reference data to a maximum length in seconds. Default is 60 seconds. This is useful to avoid reference data being applied to long periods of time, e.g., when there are gaps in the reference data

shift.intervals

Time shift in seconds, that is applied to every data point in the reference data. Default is "auto". If "auto", the shift is calculated by halving the most frequent time difference between two data points in the reference data. If a number is given, this number in seconds is used as the shift. Can also use lubridate::duration() to specify the shift.

Reference.label

Label that is added to the reference data. If NULL, no label is added.

Details

To use subsets of data, use the filter.expression.reference argument to specify the subsets of data. The across.id argument specifies whether the reference data should be used across all or some grouping variables (e.g., across participants). The shift.start argument enables a shift of the reference data start time to the start of the respective group.

and @examples for more information. The expression is evaluated within dplyr::filter().

Value

A dataset with a new column Reference that contains the reference data.

Examples

library(dplyr)
library(lubridate)
library(ggplot2)

Datetime_breaks 21

```
gg_reference <- function(dataset) {</pre>
dataset %>%
ggplot(aes(x = Datetime, y = MEDI, color = Id)) +
geom\_line(linewidth = 1) +
geom_line(aes(y = Reference), color = "black", size = 0.25, linetype = "dashed") +
theme_minimal() + facet_wrap(~ Id, scales = "free_y")
#in this example, each data point is its own reference
sample.data.environment %>%
 data2reference() %>%
 gg_reference()
#in this example, the first day of each ID is the reference for the other days
#this requires grouping of the Data by Day, which is then specified in across.id
#also, shift.start needs to be set to TRUE, to shift the reference data to the
#start of the groupings
sample.data.environment %>% group_by(Id, Day = as_date(Datetime)) %>%
data2reference(
 filter.expression.reference = as_date(Datetime) == min(as_date(Datetime)),
 shift.start = TRUE,
 across.id = "Day") %>%
 gg_reference()
#in this example, the Environment Data will be used as a reference
sample.data.environment %>%
data2reference(
 filter.expression.reference = Id == "Environment",
 across.id = TRUE) %>%
 gg_reference()
```

Datetime_breaks

Create a (shifted) sequence of Datetimes for axis breaks

Description

Take a vector of Datetimes and create a sequence of Datetimes with a given shift and interval. This is a helper function to create breaks for plotting, e.g. in gg_days(), and is best used in conjunction with Datetime_limits(). The function is a thin wrapper around seq().

Usage

```
Datetime_breaks(x, shift = lubridate::duration(12, "hours"), by = "1 day")
```

Arguments

```
x a vector of Datetimes

shift a numeric giving the number of duration object, e.g. lubridate::duration(12, "hours")

by a character scalar giving the unit of the interval in base::seq()
```

22 Datetime_limits

Value

```
a vector of Datetimes
```

Examples

```
dataset <- c("2023-08-15", "2023-08-20")
Datetime_breaks(dataset)
Datetime_breaks(dataset, shift = 0)
Datetime_breaks(dataset, by = "12 hours")</pre>
```

Datetime_limits

Find or set sensible limits for Datetime axis

Description

Take a vector of Datetimes and return the start of the first and end of the last day of data. The start and the length can be adjusted by durations, like lubridate::ddays(). It is used in the gg_days() function to return a sensible x-axis. This function is a thin wrapper around lubridate::floor_date() and lubridate::ceiling_date().

Usage

```
Datetime_limits(
    x,
    start = NULL,
    length = NULL,
    unit = "1 day",
    midnight.rollover = FALSE,
    ...
)
```

Arguments

a vector of Datetimes Х start optional duration object, e.g. lubridate::ddays(1) that shifts the start of the Datetime vector by this amount. length optional duration object, e.g. lubridate::ddays(7) that shifts the end of the Datetime vector by this amount from the (adjusted) start. Depending on the data, you might have to subtract one day from the desired length to get the correct axis-scaling if you start at midnight. a character scalar giving the unit of rounding in lubridate::floor_date() unit and lubridate::ceiling_date() midnight.rollover a logical scalar indicating whether to rollover in cases of exact matches of rounded values and input values. Helpful if some cases fall exactly on the rounded values and others don't. other arguments passed to lubridate::floor_date() and lubridate::ceiling_date() disparity_index 23

Value

a 2 item vector of Datetimes with the (adjusted) start and end of the input vector.

Examples

```
dataset <- c("2023-08-15", "2023-08-20")
breaks <- Datetime_breaks(dataset)
Datetime_limits(breaks)
Datetime_limits(breaks, start = lubridate::ddays(1))
Datetime_limits(breaks, length = lubridate::ddays(2))</pre>
```

disparity_index

Disparity index

Description

This function calculates the continuous disparity index as described in Fernández-Martínez et al. (2018).

Usage

```
disparity_index(Light.vector, na.rm = FALSE, as.df = FALSE)
```

Arguments

Light.vector	Numeric vector containing the light data.
na.rm	Logical. Should missing values be removed? Defaults to FALSE
as.df	Logical. Should the output be returned as a data frame? If TRUE, a data frame with a single column named disparity_index will be returned. Defaults to FALSE.

Value

Single column data frame or vector.

References

Fernández-Martínez, M., Vicca, S., Janssens, I. A., Carnicer, J., Martín-Vide, J., & Peñuelas, J. (2018). The consecutive disparity index, D: A measure of temporal variability in ecological studies. *Ecosphere*, 9(12), e02527. doi:10.1002/ecs2.2527

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

24 dominant_epoch

See Also

```
Other metrics: bright_dark_period(), centroidLE(), duration_above_threshold(), exponential_moving_average-frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

Examples

```
dataset1 <-
  tibble::tibble(
    Id = rep("A", 24),
    Datetime = lubridate::as_datetime(0) + lubridate::hours(0:23),
    MEDI = sample(0:1000, 24),
  )
dataset1 %>%
  dplyr::reframe(
    "Disparity index" = disparity_index(MEDI)
  )
```

dominant_epoch

Determine the dominant epoch/interval of a dataset

Description

Calculate the dominant epoch/interval of a dataset. The dominant epoch/interval is the epoch/interval that is most frequent in the dataset. The calculation is done per group, so that you might get multiple variables. If two or more epochs/intervals are equally frequent, the first one (shortest one) is chosen.

Usage

```
dominant_epoch(dataset, Datetime.colname = Datetime)
```

Arguments

dataset A light logger dataset. Needs to be a dataframe. Datetime.colname

The column that contains the datetime. Needs to be a POSIXct and part of the dataset.

Value

A tibble with one row per group and a column with the dominant.epoch as a lubridate::duration(). Also a column with the group.indices, which is helpful for referencing the dominant.epoch across dataframes of equal grouping.

See Also

```
Other regularize: gap_finder(), gap_handler(), gapless_Datetimes()
```

dst_change_handler 25

Examples

dst_change_handler

Handle jumps in Daylight Savings (DST) that are missing in the data

Description

When data is imported through LightLogR and a timezone applied, it is assumed that the timestamps are correct - which is the case, e.g., if timestamps are stored in UTC, or they are in local time. Some if not most measurement devices are set to local time before a recording interval starts. If during the recording a daylight savings jump happens (in either direction), the device might not adjust timestamps for this change. This results in an unwanted shift in the data, starting at the time of the DST jump and likely continues until the end of a file. dst_change_handler is used to detect such jumps within a group and apply the correct shift in the data (i.e., the shift that should have been applied by the device).

important Note that this function is only useful if the time stamp in the raw data deviates from the actual date-time. Note also, that this function results in a gap during the DST jump, which should be handled by gap_handler() afterwards. It will also result in potentially double the timestamps during the jum back from DST to standard time. This will result in some inconsistencies with some functions, so we recommend to use aggregate_Datetime() afterwards with a unit equal to the dominant epoch. Finally, the function is not equipped to handle more than one jump per group. The jump is based on whether the group starts out with DST or not. **the function will remove datetime rows with** NA **values**.

```
dst_change_handler(
  dataset,
  Datetime.colname = Datetime,
  filename.colname = NULL
)
```

26 dst_change_summary

Arguments

```
dataset dataset to be summarized, must be a dataframe

Datetime.colname

name of the column that contains the Datetime data, expects a symbol filename.colname
```

(optional) column name that contains the filename. If provided, it will use this column as a temporary grouping variable additionally to the dataset grouping.

Details

The detection of a DST jump is based on the function lubridate::dst() and jumps are only applied within a group. During import, this function is used if dst_adjustment = TRUE is set and includes by default the filename as the grouping variable, additionally to Id.

Value

A tibble with the same columns as the input dataset, but shifted

See Also

```
Other DST: dst_change_summary()
```

Examples

dst_change_summary

Get a summary of groups where a daylight saving time change occurs.

Description

Get a summary of groups where a daylight saving time change occurs.

```
dst_change_summary(dataset, Datetime.colname = Datetime)
```

Arguments

```
dataset dataset to be summarized, must be a dataframe

Datetime.colname

name of the column that contains the Datetime data, expects a symbol
```

Value

a tibble with the groups where a dst change occurs. The column dst_start is a boolean that indicates whether the start of this group occurs during daylight savings.

See Also

```
Other DST: dst_change_handler()
```

Examples

```
sample.data.environment %>%
  dplyr::mutate(Datetime =
  lubridate::with_tz(Datetime, "Europe/Berlin") + lubridate::dweeks(10)) %>%
  dst_change_summary()
```

duration_above_threshold

Duration above/below threshold or within threshold range

Description

This function calculates the duration spent above/below a specified threshold light level or within a specified range of light levels.

```
duration_above_threshold(
  Light.vector,
  Time.vector,
  comparison = c("above", "below"),
  threshold,
  epoch = "dominant.epoch",
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector	Numeric vector containing the light data.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
comparison	String specifying whether the time above or below threshold should be calculated. Can be either "above" (the default) or "below". If two values are provided for threshold, this argument will be ignored.
threshold	Single numeric value or two numeric values specifying the threshold light level(s) to compare with. If a vector with two values is provided, the time within the two thresholds will be calculated.
epoch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
na.rm	Logical. Should missing values (NA) be removed for the calculation? Defaults to FALSE.
as.df	Logical. Should a data frame with be returned? If TRUE, a data frame with a single column named duration_{comparison}_{threshold} will be returned. Defaults to FALSE.

Value

A duration object as single value, or single column data frame.

References

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

```
N <- 60
# Dataset with epoch = 1min
dataset1 <-
    tibble::tibble(
    Id = rep("A", N),
    Datetime = lubridate::as_datetime(0) + lubridate::minutes(1:N),
    MEDI = sample(c(sample(1:249, N / 2), sample(250:1000, N / 2))),
)
# Dataset with epoch = 30s
dataset2 <-
    tibble::tibble(
    Id = rep("B", N),</pre>
```

```
Datetime = lubridate::as_datetime(0) + lubridate::seconds(seq(30, N * 30, 30)),
    MEDI = sample(c(sample(1:249, N / 2), sample(250:1000, N / 2))),
)
dataset.combined <- rbind(dataset1, dataset2)

dataset1 %>%
    dplyr::reframe("TAT >250lx" = duration_above_threshold(MEDI, Datetime, threshold = 250))

dataset1 %>%
    dplyr::reframe(duration_above_threshold(MEDI, Datetime, threshold = 250, as.df = TRUE))

# Group by Id to account for different epochs
dataset.combined %>%
    dplyr::group_by(Id) %>%
    dplyr::reframe("TAT >250lx" = duration_above_threshold(MEDI, Datetime, threshold = 250))
```

exponential_moving_average

Exponential moving average filter (EMA)

Description

This function smoothes the data using an exponential moving average filter with a specified decay half-life.

Usage

```
exponential_moving_average(
  Light.vector,
  Time.vector,
  decay = "90 min",
  epoch = "dominant.epoch"
)
```

Arguments

Numeric vector containing the light data. Missing values are replaced by 0.

Vector containing the time data. Can be POSIXct, hms, duration, or difftime.

The decay half-life controlling the exponential smoothing. Can be either a duration or a string. If it is a string, it needs to be a valid duration string, e.g., "1 day" or "10 sec". The default is set to "90 mins" for a biologically relevant estimate (see the reference paper).

The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".

30 filter_Datetime

Details

The timeseries is assumed to be regular. Missing values in the light data will be replaced by 0.

Value

A numeric vector containing the smoothed light data. The output has the same length as Light.vector.

References

Price, L. L. A. (2014). On the Role of Exponential Smoothing in Circadian Dosimetry. *Photochemistry and Photobiology*, 90(5), 1184-1192. doi:10.1111/php.12282

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

Examples

```
sample.data.environment.EMA = sample.data.environment %>%
    dplyr::filter(Id == "Participant") %>%
    filter_Datetime(length = lubridate::days(2)) %>%
    dplyr::mutate(MEDI.EMA = exponential_moving_average(MEDI, Datetime))

# Plot to compare results
sample.data.environment.EMA %>%
    ggplot2::ggplot(ggplot2::aes(x = Datetime)) +
    ggplot2::geom_line(ggplot2::aes(y = MEDI), colour = "black") +
    ggplot2::geom_line(ggplot2::aes(y = MEDI.EMA), colour = "red")
```

filter_Datetime

Filter Datetimes in a dataset.

Description

Filtering a dataset based on Dates or Datetimes may often be necessary prior to calcuation or visualization. The functions allow for a filtering based on simple strings or Datetime scalars, or by specifying a length. They also support prior **dplyr** grouping, which is useful, e.g., when you only want to filter the first two days of measurement data for every participant, regardless of the actual date. If you want to filter based on times of the day, look to filter_Time().

filter_Datetime 31

Usage

```
filter_Datetime(
  dataset,
  Datetime.colname = Datetime,
  start = NULL,
  end = NULL,
  length = NULL,
  length_from_start = TRUE,
  full.day = FALSE,
  tz = NULL,
  only_Id = NULL,
  filter.expr = NULL
)
filter_Date(..., start = NULL, end = NULL)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs to be part of the dataset.

start, end

For filter_Datetime() a POSIXct or character scalar in the form of "yyyy-mm-dd hh-mm-ss" giving the respective start and end time positions for the filtered dataframe. If you only want to provide dates in the form of "yyyy-mm-dd", use the wrapper function filter_Date().

- If one or both of start/end are not provided, the times will be taken from the respective extreme values of the dataset.
- If length is provided and one of start/end is not, the other will be calculated based on the given value.
- If length is provided and both of start/end are NULL, the time from the respective start is taken.

length

Either a Period or Duration from lubridate. E.g., days(2) + hours(12) will give a period of 2.5 days, whereas ddays(2) + dhours(12) will give a duration. For the difference between periods and durations look at the documentation from **lubridate**. Basically, periods model clocktimes, whereas durations model physical processes. This matters on several occasions, like leap years, or daylight savings. You can also provide a character scalar in the form of e.g. "1 day", which will be converted into a period.

length_from_start

A logical indicating whether the length argument should be applied to the start (default, TRUE) or the end of the data (FALSE). Only relevant if neither the start nor the end arguments are provided.

full.day

A logical indicating whether the start param should be rounded to a full day, when only the length argument is provided (Default is FALSE). This is useful,

32 filter_Datetime

e.g., when the first observation in the dataset is slightly after midnight. If TRUE, it will count the length from midnight on to avoid empty days in plotting with gg_day().

gg_uay()

Timezone of the start/end times. If NULL (the default), it will take the timezone

from the Datetime.colname column.

only_Id An expression of ids where the filtering should be applied to. If NULL (the

default), the filtering will be applied to all ids. Based on the this expression, the dataset will be split in two and only where the given expression evaluates to TRUE, will the filtering take place. Afterwards both sets are recombined and

sorted by Datetime.

filter.expr Advanced filtering conditions. If not NULL (default) and given an expression,

this is used to dplyr::filter() the results. This can be useful to filter, e.g. for group-specific conditions, like starting after the first two days of measurement

(see examples).

... Parameter handed over to lubridate::round_date() and siblings

Value

tz

a data.frame object identical to dataset but with only the specified Dates/Times.

See Also

```
Other filter: filter_Time()
Other filter: filter_Time()
```

```
library(lubridate)
library(dplyr)
#baseline
range.unfiltered <- sample.data.environment$Datetime %>% range()
range.unfiltered
#setting the start of a dataset
sample.data.environment %>%
filter_Datetime(start = "2023-08-18 12:00:00") %>%
pull(Datetime) %>%
range()
#setting the end of a dataset
sample.data.environment %>%
filter_Datetime(end = "2023-08-18 12:00:00") %>% pull(Datetime) %>% range()
#setting a period of a dataset
sample.data.environment %>%
filter_Datetime(end = "2023-08-18 12:00:00", length = days(2)) %>%
pull(Datetime) %>% range()
#setting only the period of a dataset
```

```
sample.data.environment %>%
filter_Datetime(length = days(2)) %>%
pull(Datetime) %>% range()

#advanced filtering based on grouping (second day of each group)
sample.data.environment %>%
#shift the "Environment" group by one day
mutate(
Datetime = ifelse(Id == "Environment", Datetime + ddays(1), Datetime) %>%
as_datetime()) -> sample
sample %>% summarize(Daterange = paste(min(Datetime), max(Datetime), sep = " - "))
#now we can use the `filter.expr` argument to filter from the second day of each group sample %>%
filter_Datetime(filter.expr = Datetime > Datetime[1] + days(1)) %>%
summarize(Daterange = paste(min(Datetime), max(Datetime), sep = " - "))
sample.data.environment %>% filter_Date(end = "2023-08-17")
```

filter_Datetime_multiple

Filter multiple times based on a list of arguments.

Description

filter_Datetime_multiple() is a wrapper around filter_Datetime() or filter_Date() that allows the cumulative filtering of Datetimes based on varying filter conditions. It is most useful in conjunction with the only_Id argument, e.g., to selectively cut off dates depending on participants (see examples)

Usage

```
filter_Datetime_multiple(
  dataset,
  arguments,
  filter_function = filter_Datetime,
  ...
)
```

Arguments

```
A light logger dataset

A light logger dataset

A list of arguments to be passed to filter_Datetime() or filter_Date().

each list entry must itself be a list of arguments, e.g, list(start = "2021-01-01",

only_Id = quote(Id == 216)). Expressions have to be quoted with quote() or

rlang::expr().

filter_function

The function to be used for filtering either filter Datating (the default) or
```

The function to be used for filtering, either filter_Datetime (the default) or filter_Date

34 filter_Time

... Additional arguments passed to the filter function. If the length argument is provided here instead of the argument, it has to be written as a string, e.g., length = "1 day", instead of length = lubridate::days(1).

Value

A dataframe with the filtered data

Examples

```
arguments <- list(
  list(start = "2023-08-17", only_Id = quote(Id == "Participant")),
  list(end = "2023-08-17", only_Id = quote(Id == "Environment")))
#compare the unfiltered dataset
  sample.data.environment %>% gg_overview(Id.colname = Id)
#compare the unfiltered dataset
  sample.data.environment %>%
  filter_Datetime_multiple(arguments = arguments, filter_Date) %>%
  gg_overview(Id.colname = Id)
```

filter_Time

Filter Times in a dataset.

Description

Filter Times in a dataset.

Usage

```
filter_Time(
  dataset,
  Datetime.colname = Datetime,
  start = NULL,
  end = NULL,
  length = NULL
)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs to be part of the dataset.

start, end, length

a character scalar in the form of "hh-mm-ss" giving the respective start, end, or length for the filtered dataframe. The input can also come from a POSIXct datetime, where only the time component will be used.

- If one or both of start/end are not provided, the times will be taken from the respective extreme values of the dataset.
- If length is provided and one of start/end is not, the other will be calculated based on the given value.
- If length is provided and both of start/end are not, the time from the respective start is taken.

Value

a data. frame object identical to dataset but with only the specified Times.

See Also

```
Other filter: filter_Datetime()
```

Examples

```
sample.data.environment %>%
filter_Time(start = "4:00:34", length = "12:00:00") %>%
dplyr::pull(Time.data) %>% range() %>% hms::as_hms()
```

frequency_crossing_threshold

Frequency of crossing light threshold

Description

This functions calculates the number of times a given threshold light level is crossed.

Usage

```
frequency_crossing_threshold(
  Light.vector,
  threshold,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector Numeric vector containing the light data.
 Single numeric value specifying the threshold light level to compare with.
 na.rm Logical. Should missing light values be removed? Defaults to FALSE.
 as.df Logical. Should the output be returned as a data frame? If TRUE, a data frame with a single column named frequency_crossing_{threshold} will be returned. Defaults to FALSE.

36 gapless_Datetimes

Value

Data frame or matrix with pairs of threshold and calculated values.

References

Alvarez, A. A., & Wildsoet, C. F. (2013). Quantifying light exposure patterns in young adult students. *Journal of Modern Optics*, 60(14), 1200–1208. doi:10.1080/09500340.2013.845700

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()

Examples

```
N = 60
dataset1 <-
   tibble::tibble(
   Id = rep("A", N),
   Datetime = lubridate::as_datetime(0) + lubridate::minutes(1:N),
   MEDI = sample(c(sample(1:249, N / 2), sample(250:1000, N / 2))),
)

dataset1 %>%
   dplyr::reframe("Frequency crossing 250lx" = frequency_crossing_threshold(MEDI, threshold = 250))

dataset1 %>%
   dplyr::reframe(frequency_crossing_threshold(MEDI, threshold = 250, as.df = TRUE))
```

gapless_Datetimes

Create a gapless sequence of Datetimes

Description

Create a gapless sequence of Datetimes. The Datetimes are determined by the minimum and maximum Datetime in the dataset and an epoch. The epoch can either be guessed from the dataset or specified by the user.

gapless_Datetimes 37

Usage

```
gapless_Datetimes(
  dataset,
  Datetime.colname = Datetime,
  epoch = "dominant.epoch",
  full.days = FALSE
)
```

Arguments

dataset A light logger dataset. Needs to be a dataframe.

Datetime.colname

The column that contains the datetime. Needs to be a POSIXct and part of the

dataset.

epoch The epoch to use for the gapless sequence. Can be either a lubridate::duration()

or a string. If it is a string, it needs to be either '"dominant.epoch"' (the default) for a guess based on the data or a valid lubridate::duration() string, e.g.,

"1 day" or "10 sec".

full.days If TRUE, the gapless sequence will include the whole first and last day where

there is data.

Value

A tibble with a gapless sequence of Datetime as specified by epoch.

See Also

```
Other regularize: dominant_epoch(), gap_finder(), gap_handler()
```

38 gap_finder

	£:l	
gap_	finder	

Check for and output gaps in a dataset

Description

Quickly check for implicit missing Datetime data. Outputs a message with a short summary, and can optionally return the gaps as a tibble. Uses gap_handler() internally.

Usage

```
gap_finder(
  dataset,
  Datetime.colname = Datetime,
  epoch = "dominant.epoch",
  gap.data = FALSE,
  silent = FALSE,
  full.days = FALSE
)
```

Arguments

dataset A light logger dataset. Needs to be a dataframe.

Datetime.colname

The column that contains the datetime. Needs to be a POSIXct and part of the

dataset.

epoch The epoch to use for the gapless sequence. Can be either a lubridate::duration()

or a string. If it is a string, it needs to be either '"dominant.epoch"' (the default) for a guess based on the data or a valid lubridate::duration() string, e.g.,

"1 day" or "10 sec".

gap. data Logical. If TRUE, returns a tibble of the gaps in the dataset. Default is FALSE.

silent Logical. If TRUE, suppresses the message with the summary of the gaps in the

dataset. Default is FALSE. Only used for unit tests.

full.days If TRUE, the gapless sequence will include the whole first and last day where

there is data.

Details

The gap_finder() function is a wrapper around gap_handler() with the behavior argument set to "gaps". The main difference is that gap_finder() returns a message with a short summary of the gaps in the dataset, and that the tibble with the gaps contains a column gap.id that indicates the gap number, which is useful to determine, e.g., the consecutive number of gaps between measurement data.

Value

Prints message with a short summary of the gaps in the dataset. If gap.data = TRUE, returns a tibble of the gaps in the dataset.

gap_handler 39

See Also

Other regularize: dominant_epoch(), gap_handler(), gapless_Datetimes()

Examples

gap_handler

Fill implicit gaps in a light logger dataset

Description

Datasets from light loggers often have implicit gaps. These gaps are implicit in the sense that consecutive timestamps (Datetimes) might not follow a regular epoch/interval. This function fills these implicit gaps by creating a gapless sequence of Datetimes and joining it to the dataset. The gapless sequence is determined by the minimum and maximum Datetime in the dataset (per group) and an epoch. The epoch can either be guessed from the dataset or specified by the user. A sequence of gapless Datetimes can be created with the gapless_Datetimes() function, whereas the dominant epoch in the data can be checked with the dominant_epoch() function. The behaviour argument specifies how the data is combined. By default, the data is joined with a full join, which means that all rows from the gapless sequence are kept, even if there is no matching row in the dataset.

Usage

```
gap_handler(
  dataset,
  Datetime.colname = Datetime,
  epoch = "dominant.epoch",
  behavior = c("full_sequence", "regulars", "irregulars", "gaps"),
  full.days = FALSE
)
```

40 gap_handler

Arguments

dataset A light logger dataset. Needs to be a dataframe.

Datetime.colname

The column that contains the datetime. Needs to be a POSIXct and part of the

dataset.

epoch The epoch to use for the gapless sequence. Can be either a lubridate::duration()

or a string. If it is a string, it needs to be either '"dominant.epoch"' (the default) for a guess based on the data or a valid lubridate::duration() string, e.g.,

"1 day" or "10 sec".

behavior The behavior of the join of the dataset with the gapless sequence. Can be one

of "full_sequence" (the default), "regulars", "irregulars", or "gaps".

See @return for details.

full.days If TRUE, the gapless sequence will include the whole first and last day where

there is data.

Value

A modified tibble similar to dataset but with handling of implicit gaps, depending on the behavior argument:

- "full_sequence" adds timestamps to the dataset that are missing based on a full sequence of Datetimes (i.e., the gapless sequence). The dataset is this equal (no gaps) or greater in the number of rows than the input. One column is added. is.implicit indicates whether the row was added (TRUE) or not (FALSE). This helps differentiating measurement values from values that might be imputed later on.
- "regulars" keeps only rows from the gapless sequence that have a matching row in the dataset. This can be interpreted as a row-reduced dataset with only regular timestamps according to the epoch. In case of no gaps this tibble has the same number of rows as the input.
- "irregulars" keeps only rows from the dataset that do not follow the regular sequence of Datetimes according to the epoch. In case of no gaps this tibble has 0 rows.
- "gaps" returns a tibble of all implicit gaps in the dataset. In case of no gaps this tibble has 0 rows.

See Also

```
Other regularize: dominant_epoch(), gap_finder(), gapless_Datetimes()
```

gg_day 41

```
dataset %>% gap_handler(epoch = "1 day")

#we can also check whether there are irregular Datetimes in our dataset
dataset %>% gap_handler(epoch = "1 day", behavior = "irregulars")

#to get to the gaps, we can use the "gaps" behavior
dataset %>% gap_handler(epoch = "1 day", behavior = "gaps")

#finally, we can also get just the regular Datetimes
dataset %>% gap_handler(epoch = "1 day", behavior = "regulars")
```

gg_day

Create a simple Time-of-Day plot of light logger data, faceted by Date

Description

gg_day() will create a simple ggplot for every data in a dataset. The result can further be manipulated like any ggplot. This will be sensible to refine styling or guides.

Usage

```
gg_day(
  dataset,
  start.date = NULL,
  end.date = NULL,
  x.axis = Datetime,
  y.axis = MEDI,
  aes_col = NULL,
  aes_fill = NULL,
  group = Id,
  geom = "point",
  scales = c("fixed", "free_x", "free_y", "free"),
  x.axis.breaks = hms::hms(hours = seq(0, 24, by = 3)),
  y.axis.breaks = c(-10^{\circ}(5:0), 0, 10^{\circ}(0:5)),
  y.scale = "symlog",
  y.scale.sc = FALSE,
  x.axis.label = "Time of Day",
  y.axis.label = "Illuminance (lx, MEDI)",
  format.day = "%d/%m",
  title = NULL,
  subtitle = NULL,
  interactive = FALSE,
  facetting = TRUE,
  jco_color = TRUE,
)
```

 gg_day

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the x.axis..

start.date, end.date

Choose an optional start or end date within your dataset. Expects a date, which can also be a character that is interpretable as a date, e.g., "2023-06-03". If you need a Datetime or want to cut specific times of each day, use the filter_Datetime() function. Defaults to NULL, which means that the plot starts/ends with the earliest/latest date within the dataset.

x.axis, y.axis

column name that contains the datetime (x, defaults to "Datetime" which is automatically correct for data imported with LightLogR) and the dependent variable (y, defaults to "MEDI", or melanopic EDI, which is a standard measure of stimulus strength for the nonvisual effects of light). Expects a symbol. Needs to be part of the dataset.

aes_col, aes_fill

optional arguments that define separate sets and colors or fills them. Expects anything that works with the layer data ggplot2::aes(). The default color palette can be overwritten outside the function (see examples).

group

Optional column name that defines separate sets. Useful for certain geoms like boxplot.Expects anything that works with the layer data ggplot2::aes()

geom

What geom should be used for visualization? Expects a character

- "point" for ggplot2::geom_point()
- "line" for ggplot2::geom_line()
- "ribbon" for ggplot2::geom_ribbon()
- as the value is just input into the geom_ function from **ggplot2**, other variants work as well, but are not extensively tested.

scales

For ggplot2::facet_wrap(), should scales be "fixed", "free" or free in one dimension ("free_y" is the default). Expects a character.

x.axis.breaks, y.axis.breaks

Where should breaks occur on the x and y.axis? Expects a numeric vector with all the breaks. If you want to activate the default behaviour of **ggplot2**, you need to put in ggplot2::waiver().

y.scale

How should the y-axis be scaled?

- Defaults to "symlog", which is a logarithmic scale that can also handle negative values.
- "log10" would be a straight logarithmic scale, but cannot handle negative values.
- "identity" does nothing (continuous scaling).
- a transforming function, such as symlog_trans() or scales::identity_trans(), which allow for more control.

y.scale.sc logical for whether scientific notation shall be used. Defaults to FALSE.

x.axis.label, y.axis.label

labels for the x- and y-axis. Expects a character.

gg_day 43

format.day	Label for each day. Default is %d/%m, which shows the day and month. Expects a character. For an overview of sensible options look at base::strptime()
title	Plot title. Expects a character.
subtitle	Plot subtitle. Expects a character.
interactive	Should the plot be interactive? Expects a logical. Defaults to FALSE.
facetting	Should an automated facet by day be applied? Default is TRUE and uses the Day. data variable that the function also creates if not present.
jco_color	Should the ggsci::scale_color_jco() color palette be used? Defaults to TRUE.
	Other options that get passed to the main geom function. Can be used to adjust to adjust size, linewidth, or linetype.

Details

Besides plotting, the function creates two new variables from the given Datetime:

- Day.data is a factor that is used for facetting with ggplot2::facet_wrap(). Make sure to use this variable, if you change the faceting manually. Also, the function checks, whether this variable already exists. If it does, it will only convert it to a factor and do the faceting on that variable.
- Time.data is an hms created with hms::as_hms() that is used for the x.axis

The default scaling of the y-axis is a symlog scale, which is a logarithmic scale that only starts scaling after a given threshold (default = 0). This enables values of 0 in the plot, which are common in light logger data, and even enables negative values, which might be sensible for non-light data. See symlog_trans() for details on tweaking this scale. The scale can also be changed to a normal or logarithmic scale - see the y.scale argument for more.

The default scaling of the color and fill scales is discrete, with the <code>ggsci::scale_color_jco()</code> and <code>ggsci::scale_fill_jco()</code> scales. To use a continuous scale, use the <code>jco_color = FALSE</code> setting. Both fill and color aesthetics are set to NULL by default. For most geoms, this is not important, but geoms that automatically use those aesthetics (like <code>geom_bin2d</code>, where fill = stat(count)) are affected by this. Manually adding the required aesthetic (like <code>aes_fill = ggplot2::stat(count)</code> will fix this).

Value

A ggplot object

```
#use `col`for separation of different sets
plot <- gg_day(
sample.data.environment,
scales = "fixed",
end.date = "2023-08-16",
y.axis.label = "mEDI (lx)",
aes_col = Id)
plot</pre>
```

44 gg_days

```
#you can easily overwrite the color scale afterwards
plot + ggplot2::scale_color_discrete()

#or change the facetting
plot + ggplot2::facet_wrap(~Day.data + Id)
```

gg_days

Create a simple datetime plot of light logger data, faceted by group

Description

gg_days() will create a simple ggplot along the timeline. The result can further be manipulated like any ggplot. This will be sensible to refine styling or guides. Through the x.axis.limits arguments, the plot can be much refined to align several groups of differing datetime ranges. It uses the Datetime_limits() function to calculate the limits of the x-axis. Another notable functions that are used are Datetime_breaks() to calculate the breaks of the x-axis.

Usage

```
gg_days(
  dataset,
  x.axis = Datetime,
  y.axis = MEDI,
  aes_col = NULL,
  aes_fill = NULL,
  group = NULL,
  geom = "line",
  scales = c("free_x", "free_y", "fixed", "free"),
  x.axis.breaks = Datetime_breaks,
  y.axis.breaks = c(-10^{\circ}(5:0), 0, 10^{\circ}(0:5)),
 y.scale = "symlog",
  y.scale.sc = FALSE,
  x.axis.label = "Datetime",
  y.axis.label = "Illuminance (lx, MEDI)",
  x.axis.limits = Datetime_limits,
  x.axis.format = "%a %D",
  title = NULL,
  subtitle = NULL,
  interactive = FALSE,
  facetting = TRUE,
  jco_color = FALSE,
)
```

45 gg_days

Arguments

dataset A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the x.axis..

column name that contains the datetime (x, defaults to "Datetime" which is aux.axis, y.axis tomatically correct for data imported with LightLogR) and the dependent variable (y, defaults to "MEDI", or melanopic EDI, which is a standard measure of

be part of the dataset.

aes_col, aes_fill

optional input that defines separate sets and colors or fills them. Expects anything that works with the layer data ggplot2::aes().

stimulus strength for the nonvisual effects of light). Expects a symbol. Needs to

Optional column name that defines separate sets. Useful for certain geoms like boxplot.Expects anything that works with the layer data ggplot2::aes()

What geom should be used for visualization? Expects a character

• "point" for ggplot2::geom_point()

• "line" for ggplot2::geom_line()

"ribbon" for ggplot2::geom_ribbon()

• as the value is just input into the geom_ function from ggplot2, other variants work as well, but are not extensively tested.

For ggplot2::facet_wrap(), should scales be "fixed", "free" or "free" in one dimension ("free_x" is the default). Expects a character.

> The (major) breaks of the x-axis. Defaults to Datetime_breaks(). The function has several options for adjustment. The default setting place a major break every 12 hours, starting at 12:00 of the first day.

Where should breaks occur on the y.axis? Expects a numeric vector with all the breaks or a function that calculates them based on the limits. If you want to activate the default behaviour of **ggplot2**, you need to put in ggplot2::waiver().

y.scale How should the y-axis be scaled?

> • Defaults to "symlog", which is a logarithmic scale that can also handle negative values.

> • "log10" would be a straight logarithmic scale, but cannot handle negative

• "identity" does nothing (continuous scaling).

 a transforming function, such as symlog_trans() or scales::identity_trans(), which allow for more control.

y.scale.sc logical for whether scientific notation shall be used. Defaults to FALSE.

x.axis.label, y.axis.label

labels for the x- and y-axis. Expects a character.

x.axis.limits The limits of the x-axis. Defaults to Datetime_limits(). Can and should be adjusted to shift the x-axis to align different groups of data.

The format of the x-axis labels. Defaults to "%a %D", which is the weekday and x.axis.format date. See base::strptime() for more options.

title Plot title. Expects a character.

geom

group

scales

y.axis.breaks

x.axis.breaks

46 gg_doubleplot

subtitle	Plot subtitle. Expects a character.
interactive	Should the plot be interactive? Expects a logical. Defaults to FALSE.
facetting	Should an automated facet by grouping be applied? Default is TRUE.
jco_color	Should the ggsci::scale_color_jco() color palette be used? Defaults to TRUE.
	Other options that get passed to the main geom function. Can be used to adjust to adjust size, linewidth, or linetype.

Details

The default scaling of the y-axis is a symlog scale, which is a logarithmic scale that only starts scaling after a given threshold (default = 0). This enables values of 0 in the plot, which are common in light logger data, and even enables negative values, which might be sensible for non-light data. See symlog_trans() for details on tweaking this scale. The scale can also be changed to a normal or logarithmic scale - see the y.scale argument for more.

Value

A ggplot object

Examples

```
dataset <-
sample.data.environment %>%
aggregate_Datetime(unit = "5 mins")

dataset %>% gg_days()
#restrict the x-axis to 3 days
dataset %>%
gg_days(
x.axis.limits = \(x) Datetime_limits(x, length = lubridate::ddays(3))
)
```

gg_doubleplot

Double Plots

Description

The function is by default opinionated, and will automatically select the best way to display the double date plot. However, the user can also manually select the type of double date plot to be displayed: repeating each day (default when there is only one day in all of the groups), or displaying consecutive days (default when there are multiple days in the groups).

gg_doubleplot 47

Usage

```
gg_doubleplot(
  dataset,
  Datetime.colname = Datetime,
  type = c("auto", "repeat", "next"),
  geom = "ribbon",
  alpha = 0.5,
  col = "grey40",
  fill = "#EFC000FF",
  linewidth = 0.4,
  x.axis.breaks.next = Datetime_breaks,
  x.axis.format.next = "%a %D",
  x.axis.breaks.repeat = ~Datetime_breaks(.x, by = "6 hours", shift =
    lubridate::duration(0, "hours")),
  x.axis.format.repeat = "%H:%M",
  ...
)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs to be part of the dataset.

type

One of "auto", "repeat", or "next". The default is "auto", which will automatically select the best way to display the double date plot based on the amount of days in the dataset (all = 1 >> "repeat", else "next). "repeat" will repeat each day in the plot, and "next" will display consecutive days.

geom

The type of geom to be used in the plot. The default is "ribbon".

alpha, linewidth

The alpha and linewidth setting of the geom. The default is 0.5 and 0.4, respectively.

col, fill

The color and fill of the geom. The default is "#EFC000FF". If the parameters aes_col or aes_fill are used through ..., these will override the respective col and fill parameters.

x.axis.breaks.next, x.axis.breaks.repeat

Datetime breaks when consecutive days are displayed (type = "next") or days are repeated (type = "repeat"). Must be a function. The default for next is a label at 12:00 am of each day, and for repeat is a label every 6 hours.

x.axis.format.next, x.axis.format.repeat

Datetime label format when consecutive days are displayed (type = "next") or days are repeated (type = "repeat"). The default for next is "%a %D", showing the date, and for repeat ist "%H:%M", showing hours and minutes. See base::strptime() for more options.

48 gg_doubleplot

... Arguments passed to gg_days(). When the arguments aes_col and aes_fill are used, they will invalidate the col and fill parameters.

Details

gg_doubleplot() is a wrapper function for gg_days(), combined with an internal function to duplicate and reorganize dates in a dataset for a *double plot* view. This means that the same day is displayed multiple times within the plot in order to reveal pattern across days.

Value

a ggplot object

```
#take only the Participant data from sample data, and three days
library(dplyr)
library(lubridate)
library(ggplot2)
sample.data <-
sample.data.environment %>%
dplyr::filter(Id == "Participant") %>%
filter_Date(length = ddays(3))
#create a double plot with the default settings
sample.data %>% gg_doubleplot()
#repeat the same day in the plot
sample.data %>% gg_doubleplot(type = "repeat")
#use the function with more than one Id
sample.data.environment %>%
filter_Date(length = ddays(3)) %>%
gg_doubleplot(aes_fill = Id, aes_col = Id) +
facet_wrap(~ Date.data, ncol = 1, scales = "free_x", strip.position = "left")
#if data is already grouped by days, type = "repeat" will be automatic
sample.data.environment %>%
dplyr::group_by(Date = date(Datetime), .add = TRUE) %>%
filter_Date(length = ddays(3)) %>%
gg_doubleplot(aes_fill = Id, aes_col = Id) +
guides(fill = "none", col = "none") + #remove the legend
facet_wrap(~ Date.data, ncol = 1, scales = "free_x", strip.position = "left")
#combining `aggregate_Date()` with `gg_doubleplot()` easily creates a good
#overview of the data
sample.data.environment %>%
aggregate_Date() %>%
gg_doubleplot()
```

gg_overview 49

gg_overview

Plot an overview of dataset intervals with implicit missing data

Description

Plot an overview of dataset intervals with implicit missing data

Usage

```
gg_overview(
  dataset,
  Datetime.colname = Datetime,
  Id.colname = Id,
  gap.data = NULL,
   ...,
  interactive = FALSE
)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR,

take care to choose a sensible variable for the x.axis..

Datetime.colname

to be part of the dataset.

Id.colname

The column name of the Id column (default is Id), needs to be in the dataset. This is also used as the y-axis variable and is the minimum grouping variable.

gap.data

Optionally provide a tibble with start and end Datetimes of gaps per group. If not provided, the function uses <code>gap_finder()</code> to calculate implicit missing data. This might be computationally intensive for large datasets and many missing data. In these cases it can make sense to calculate those gaps beforehand and provide them to the function. If an empty tibble (tibble::tibble()) is provided, the function will just plot the start and end dates of the dataset, which is computationally warm feet at the cost of additional info

is computationally very fast at the cost of additional info.

Additional arguments given to the main ggplot2::aes() used for styling de-

pending on data within the dataset

interactive

Should the plot be interactive? Expects a logical. Defaults to FALSE.

Value

. . .

A ggplot object

```
sample.data.environment %>% gg_overview()
```

50 import_adjustment

import_adjustment

Adjust device imports or make your own

Description

Adjust device imports or make your own

Usage

```
import_adjustment(import_expr)
```

Arguments

import_expr

A named list of import expressions. The basis for LightLogR's import functions is the included dataset ll_import_expr. If this function were to be given that exact dataset, and bound to a variable called import, it would be identical to the import function. See details.

Details

This function should only be used with some knowledge of how expressions work in R. The minimal required output for an expression to work as expected, it must lead to a data frame containing a Datetime column with the correct time zone. It has access to all arguments defined in the description of import_Dataset(). The . . . argument should be passed to whatever csv reader function is used, so that it works as expected. Look at ll_import_expr\$LYS for a quite minimal example.

Value

A list of import functions

```
#create a new import function for the LYS device, same as the old
new_import <- import_adjustment(ll_import_expr)
#the new one is identical to the old one in terms of the function body
identical(body(import$LYS), body(new_import$LYS))

#change the import expression for the LYS device to add a message at the top
ll_import_expr$LYS[[4]] <-
rlang::expr({ cat("**This is a new import function**\n")}
data
})
new_import <- import_adjustment(ll_import_expr)
filepath <- system.file("extdata/sample_data_LYS.csv", package = "LightLogR")
#Now, a message is printed when the import function is called
new_import <- new_import$LYS(filepath)</pre>
```

ıт	nort	112+	aset
TIII	DOI L	vat	aset

Import a light logger dataset or related data

Description

Imports a dataset and does the necessary transformations to get the right column formats. Unless specified otherwise, the function will set the timezone of the data to UTC. It will also enforce an Id to separate different datasets and will order/arrange the dataset within each Id by Datetime. See the Details and Devices section for more information and the full list of arguments.

Usage

```
import_Dataset(device, ...)
import
```

Arguments

device

From what device do you want to import? For a few devices, there is a sample data file that you can use to test the function (see the examples). See supported.devices for a list of supported devices and see below for more information on devices with specific requirements.

... Parameters that get handed down to the specific import functions

Format

An object of class list of length 10.

Details

There are specific and a general import function. The general import function is described below, whereas the specific import functions take the form of import\$device(). The general import function is a thin wrapper around the specific import functions. The specific import functions take the following arguments:

- filename: Filename(s) for the Dataset. Can also contain the filepath, but path must then be NULL. Expects a character. If the vector is longer than 1, multiple files will be read in into one Tibble.
- path: Optional path for the dataset(s). NULL is the default. Expects a character.
- n_max: maximum number of lines to read. Default is Inf.
- tz: Timezone of the data. "UTC" is the default. Expects a character. You can look up the supported timezones with OlsonNames().
- Id. colname: Lets you specify a column for the id of a dataset. Expects a symbol (Default is Id). This column will be used for grouping (dplyr::group_by()).

• auto.id: If the Id.colname column is not part of the dataset, the Id can be automatically extracted from the filename. The argument expects a regular expression regex and will by default just give the whole filename without file extension.

- manual.id: If this argument is not NULL, and no Id column is part of the dataset, this character scalar will be used. We discourage the use of this arguments when importing more than one file
- locale: The locale controls defaults that vary from place to place.
- dst_adjustment: If a file crosses daylight savings time, but the device does not adjust time stamps accordingly, you can set this argument to TRUE, to apply this shift manually. It is selective, so it will only be done in files that cross between DST and standard time. Default is FALSE. Uses dst_change_handler() to do the adjustment. Look there for more infos. It is not equipped to handle two jumps in one file (so back and forth between DST and standard time), but will work fine if jums occur in separate files.
- auto.plot: a logical on whether to call gg_overview() after import. Default is TRUE.
- ...: supply additional arguments to the **readr** import functions, like na. Might also be used to supply arguments to the specific import functions, like column_names for Actiwatch_Spectrum devices. Those devices will always throw a helpful error message if you forget to supply the necessary arguments. If the Id column is already part of the dataset it will just use this column. If the column is not present it will add this column and fill it with the filename of the importfile (see param auto.id). print_n can be used if you want to see more rows from the observation intervals

Value

Tibble/Dataframe with a POSIXct column for the datetime

Devices

The set of import functions provide a convenient way to import light logger data that is then perfectly formatted to add metadata, make visualizations and analyses. There are a number of devices supported, where import should just work out of the box. To get an overview, you can simply call the supported.devices dataset. The list will grow continuously as the package is maintained.

```
supported.devices
#> [1] "Actiwatch_Spectrum" "ActLumus" "ActTrust"
#> [4] "DeLux" "LiDo" "LightWatcher"
#> [7] "LYS" "nanoLambda" "Speccy"
#> [10] "SpectraWear"
```

ActLumus:

Manufacturer: Condor Instruments Model: ActLumus Implemented: 2023 A sample file is provided with the package, it can be accessed through system. file("extdata/205_actlumus_Log_1020_202309041017075 package = "LightLogR"). It does not need to be unzipped to be imported. This sample file is a good example for a regular dataset without gaps

LYS:

Manufacturer: LYS Technologies Model: LYS Button Implemented: 2023 A sample file is provided with the package, it can be accessed through system.file("extdata/sample_data_LYS.csv", package = "LightLogR"). This sample file is a good example for an irregular dataset.

Actiwatch_Spectrum:

Manufacturer: Philips Respironics Model: Actiwatch Spectrum Implemented: 2023 **Required Argument:** column_names A character vector containing column names in the order in which they appear in the file. This is necessary to find the starting point of actual data.

ActTrust:

Manufacturer: Condor Instruments Model: ActTrust1, ActTrust2 Implemented: 2024 This function works for both ActTrust 1 and 2 devices

Speccy:

Manufacturer: Monash University Model: Speccy Implemented: 2024

DeLux:

Manufacturer: Intelligent Automation Inc Model: DeLux Implemented: 2023

LiDo:

Manufacturer: University of Lucerne Model: LiDo Implemented: 2023

SpectraWear:

Manufacturer: Model: SpectraWear Implemented: 2024

NanoLambda:

Manufacturer: NanoLambda Model: XL-500 BLE Implemented: 2024

LightWatcher:

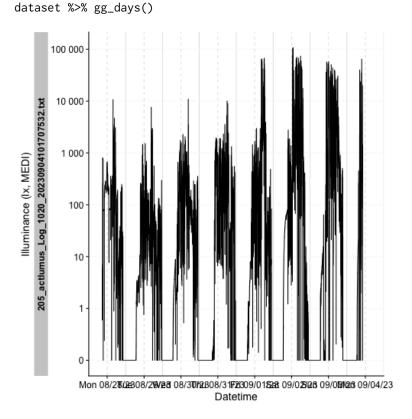
Manufacturer: Object-Tracker Model: LightWatcher Implemented: 2024

Examples

Imports made easy:

To import a file, simple specify the filename (and path) and feed it to the import_Dataset function. There are sample datasets for all devices.

The import functions provide a basic overview of the data after import, such as the intervals between measurements or the start and end dates.


```
#> 2 sample_data_LYS 16s 1367 11.969%

#> 3 sample_data_LYS 17s 23 0.201%

#> 4 sample_data_LYS 18s 16 0.140%
```

Import functions can also be called directly:

```
filepath <- system.file("extdata/205_actlumus_Log_1020_20230904101707532.txt.zip", package = "Lightl
dataset <- import$ActLumus(filepath, auto.plot = FALSE)</pre>
#>
#> Successfully read in 61'016 observations across 1 Ids from 1 ActLumus-file(s).
#> Timezone set is UTC.
#> The system timezone is Europe/Berlin. Please correct if necessary!
#>
#> First Observation: 2023-08-28 08:47:54
#> Last Observation: 2023-09-04 10:17:04
#> Timespan: 7.1 days
#>
#> Observation intervals:
#>
                                                  interval.time
                                                                     n pct
#> 1 205_actlumus_Log_1020_20230904101707532.txt 10s
                                                                 61015 100%
```


dataset %>%

dplyr::select(Datetime, TEMPERATURE, LIGHT, MEDI, Id) %>%

dplyr::slice(1500:1505)

import_Statechanges 55

```
#> # A tibble: 6 x 5
#> # Groups:
               Id [1]
    Datetime
                         TEMPERATURE LIGHT MEDI Id
#>
     <dttm>
                               <dbl> <dbl> <fct>
#> 1 2023-08-28 12:57:44
                            26.9 212. 202. 205_actlumus_Log_1020_20230904101~
#> 2 2023-08-28 12:57:54
                            26.9 208. 199. 205_actlumus_Log_1020_20230904101~
#> 3 2023-08-28 12:58:04
                            26.9 205. 196. 205_actlumus_Log_1020_20230904101~
#> 4 2023-08-28 12:58:14
                            26.8 204. 194. 205_actlumus_Log_1020_20230904101~
#> 5 2023-08-28 12:58:24
                            26.9 203. 194. 205_actlumus_Log_1020_20230904101~
#> 6 2023-08-28 12:58:34
                            26.8 204. 195. 205_actlumus_Log_1020_20230904101~
```

See Also

supported.devices

import_Statechanges

Import data that contain Datetimes of Statechanges

Description

Auxiliary data greatly enhances data analysis. This function allows the import of files that contain Statechanges, i.e., specific time points of when a State (like sleep or wake) starts.

Usage

```
import_Statechanges(
  filename,
  path = NULL,
  sep = ",".
  dec = ".",
  structure = c("wide", "long"),
 Datetime.format = "ymdHMS",
  tz = "UTC",
  State.colnames,
  State.encoding = State.colnames,
 Datetime.column = Datetime,
  Id.colname,
  State.newname = State,
  Id.newname = Id,
  keep.all = FALSE,
  silent = FALSE
)
```

Arguments

filename

Filename(s) for the Dataset. Can also contain the filepath, but path must then be NULL. Expects a character. If the vector is longer than 1, multiple files will be read in into one Tibble.

path Optional path for the dataset(s). NULL is the default. Expects a character.

sep String that separates columns in the import file. Defaults to ", ".

dec String that indicates a decimal separator in the import file. Defaults to ".".

structure String that specifies whether the import file is in the long or wide format. De-

faults to "wide".

Datetime.format

String that specifies the format of the Datetimes in the file. The default "ymdHMS"

specifies a format like "2023-07-10 10:00:00". In the function, lubridate::parse_date_time()

does the actual conversion - the documentation can be searched for valid inputs.

tz Timezone of the data. "UTC" is the default. Expects a character. You can look

up the supported timezones with OlsonNames().

State.colnames Column name or vector of column names (the latter only in the wide format). Expects a character.

In the wide format, the column names indicate the State and must contain Datetimes. The columns will be pivoted to the columns specified in Datetime.column and State.newname.

• In the long format, the column contains the State

State.encoding In the wide format, this enables recoding the column names to state names,

if there are any differences. The default uses the State.colnames argument. Expects a character (vector) with the same length as State.colnames.

Datetime.column

Symbol of the Datetime column (which is also the default).

 In the wide format, this is the newly created column from the Datetimes in the State.colnames.

• In the long format, this is the existing column that contains the Datetimes.

Id. colname Symbol of the column that contains the ID of the subject.

State.newname Symbol of the column that will contain the State of the subject. In the wide

format, this is the newly created column from the State.colnames. In the long

format, this argument is used to rename the State column.

Id. newname Column name used for renaming the Id. colname column.

keep.all Logical that specifies whether all columns should be kept in the output. Defaults

to FALSE.

silent Logical that specifies whether a summary of the imported data should be shown.

Defaults to FALSE.

Details

Data can be present in the long or wide format.

- In the wide format, multiple Datetime columns indicate the state through the column name. These get pivoted to the long format and can be recoded through the State.encoding argument.
- In the long format, one column indicates the State, while the other gives the Datetime.

interdaily_stability 57

Value

a dataset with the ID, State, and Datetime columns. May contain additional columns if keep.all is TRUF

Examples

```
#get the example file from within the package
path <- system.file("extdata/",</pre>
package = "LightLogR")
file.sleep <- "205_sleepdiary_all_20230904.csv"</pre>
#import Data in the wide format (sleep/wake times)
import_Statechanges(file.sleep, path,
Datetime.format = "dmyHM",
State.colnames = c("sleep", "offset"),
State.encoding = c("sleep", "wake"),
Id.colname = record_id,
sep = ";",
dec = ",")
#import in the long format (Comments on sleep)
import_Statechanges(file.sleep, path,
                   Datetime.format = "dmyHM",
                   State.colnames = "comments",
                   Datetime.column = sleep,
                   Id.colname = record_id,
                   sep = ";",
                   dec = ",", structure = "long")
```

interdaily_stability Interdaily stability (IS)

Description

This function calculates the variability of 24h light exposure patterns across multiple days. Calculated as the ratio of the variance of the average daily pattern to the total variance across all days. Calculated with mean hourly light levels. Ranges between 0 (Gaussian noise) and 1 (Perfect Stability).

Usage

```
interdaily_stability(
  Light.vector,
  Datetime.vector,
  na.rm = FALSE,
  as.df = FALSE
)
```

58 interdaily_stability

Arguments

Light.vector Numeric vector containing the light data.

Datetime.vector

Vector containing the time data. Must be POSIXct.

na.rm

Logical. Should missing values be removed? Defaults to FALSE.

Logical. Should the output be returned as a data frame? If TRUE, a data frame with a single column named interdaily_stability will be returned. Defaults to FALSE.

Details

Note that this metric will always be 1 if the data contains only one 24 h day.

Value

Numeric value or dataframe with column 'IS'.

References

Van Someren, E. J. W., Swaab, D. F., Colenda, C. C., Cohen, W., McCall, W. V., & Rosenquist, P. B. (1999). Bright Light Therapy: Improved Sensitivity to Its Effects on Rest-Activity Rhythms in Alzheimer Patients by Application of Nonparametric Methods. *Chronobiology International*, 16(4), 505–518. doi:10.3109/07420529908998724

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), intradaily_variability(), midpointCE(), nvRD(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

```
set.seed(1)
N <- 24 * 7
# Calculate metric for seven 24 h days with two measurements per hour
dataset1 <-
    tibble::tibble(
        Id = rep("A", N * 2),
        Datetime = lubridate::as_datetime(0) + c(lubridate::minutes(seq(0, N * 60 - 30, 30))),
        MEDI = sample(1:1000, N * 2)
    )
dataset1 %>%
dplyr::summarise(
    "Interdaily stability" = interdaily_stability(MEDI, Datetime)
```

interval2state 59

interval2state

Adds a state column to a dataset from interval data

Description

This function can make use of Interval data that contain States (like "sleep", "wake", "wear") and add a column to a light logger dataset, where the State of every Datetime is specified, based on the participant's Id.

Usage

```
interval2state(
  dataset,
  State.interval.dataset,
  Datetime.colname = Datetime,
  State.colname = State,
  Interval.colname = Interval,
  Id.colname.dataset = Id,
  Id.colname.interval = Id,
  overwrite = FALSE,
  output.dataset = TRUE
)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

State.interval.dataset

Name of the dataset that contains State and Interval columns. Interval data can be created, e.g., through sc2interval().

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs to be part of the dataset.

State.colname, Interval.colname

Column names of the State and Interval in the State.interval.dataset. Expects a symbol. State can't be in the dataset yet or the function will give an error. You can also set overwrite = TRUE.

Id.colname.dataset, Id.colname.interval

Column names of the participant's Id in both the dataset and the State.interval.dataset. On the off-chance that there are inconsistencies, the names can be different. If the datasets where imported and preprocessed with LightLogR, this just works. Both datasets need an Id, because the states will be added based not only on the Datetime, but also depending on the dataset.

overwrite

If TRUE (defaults to FALSE), the function will overwrite the State.colname column if it already exists.

60 interval2state

output.dataset should the output be a data.frame (Default TRUE) or a vector with hms (FALSE) times? Expects a logical scalar.

Value

One of

- a data. frame object identical to dataset but with the state column added
- a vector with the states

```
#create a interval dataset
library(tibble)
library(dplyr)
library(lubridate)
library(rlang)
library(purrr)
states <- tibble::tibble(Datetime = c("2023-08-15 6:00:00",
                                       "2023-08-15 23:00:00",
                                       "2023-08-16 6:00:00"
                                       "2023-08-16 22:00:00",
                                       "2023-08-17 6:30:00",
                                       "2023-08-18 1:00:00",
                                       "2023-08-18 6:00:00",
                                       "2023-08-18 22:00:00",
                                       "2023-08-19 6:00:00",
                                       "2023-08-19 23:00:00",
                                       "2023-08-20 6:00:00",
                                       "2023-08-20 22:00:00"),
                         State = rep(c("wake", "sleep"), 6),
                         Wear = rep(c("wear", "no wear"), 6),
                         Performance = rep(c(100, 0), 6),
                          Id = "Participant")
intervals <- sc2interval(states)</pre>
#create a dataset with states
dataset_with_states <-
sample.data.environment %>%
interval2state(State.interval.dataset = intervals)
#visualize the states - note that the states are only added to the respective ID in the dataset
library(ggplot2)
ggplot(dataset_with_states, aes(x = Datetime, y = MEDI, color = State)) +
 geom_point() +
 facet_wrap(\sim Id, ncol = 1)
#import multiple State columns from the interval dataset
#interval2state will only add a single State column to the dataset,
#which represents sleep/wake in our case
dataset_with_states[8278:8283,]
```

intradaily_variability 61

```
#if we want to add multiple columns we can either perfom the function
#multiple times with different states:
dataset_with_states2 <-</pre>
dataset_with_states %>%
interval2state(State.interval.dataset = intervals, State.colname = Wear)
dataset_with_states2[8278:8283,]
#or we can use `purrr::reduce` to add multiple columns at once
dataset_with_states3 <-
syms(c("State", "Wear", "Performance")) %>%
reduce(\(x,y\) interval2state(x, State.interval.dataset = intervals, State.colname = !!y),
.init = sample.data.environment)
#Note:
# - the State.colnames have to be provided as symbols (`rlang::syms`)
\# - the reduce function requires a two argument function `\(x,y)`, where `x`
   is the dataset to be continiously modified and `y` is the symbol of the
# State column name to be added
# - the `!!` operator from `rlang` is used to exchange `y` with each symbol
# - the `.init` argument is the initial dataset to be modified
#this results in all states being applied
dataset_with_states3[8278:8283,]
```

intradaily_variability

Intradaily variability (IV)

Description

This function calculates the variability of consecutive Light levels within a 24h day. Calculated as the ratio of the variance of the differences between consecutive Light levels to the total variance across the day. Calculated with mean hourly Light levels. Higher values indicate more fragmentation.

Usage

```
intradaily_variability(
  Light.vector,
  Datetime.vector,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector Numeric vector containing the light data. Datetime.vector

Vector containing the time data. Must be POSIXct.

62 join_datasets

na.rm Logical. Should missing values be removed? Defaults to FALSE.

as.df Logical. Should the output be returned as a data frame? If TRUE, a data frame with a single column named intradaily_variability will be returned. Defaults to FALSE.

Value

Numeric value or dataframe with column 'IV'.

References

Van Someren, E. J. W., Swaab, D. F., Colenda, C. C., Cohen, W., McCall, W. V., & Rosenquist, P. B. (1999). Bright Light Therapy: Improved Sensitivity to Its Effects on Rest-Activity Rhythms in Alzheimer Patients by Application of Nonparametric Methods. *Chronobiology International*, 16(4), 505–518. doi:10.3109/07420529908998724

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

Examples

```
set.seed(1)
N <- 24 * 2
# Calculate metric for two 24 h days with two measurements per hour
dataset1 <-
    tibble::tibble(
    Id = rep("A", N * 2),
    Datetime = lubridate::as_datetime(0) + c(lubridate::minutes(seq(0, N * 60 - 30, 30))),
    MEDI = sample(1:1000, N * 2)
    )
dataset1 %>%
    dplyr::summarise(
        "Intradaily variability" = intradaily_variability(MEDI, Datetime)
    )
```

join_datasets

Join similar Datasets

Description

Join Light logging datasets that have a common structure. The least commonality are identical columns for Datetime and Id across all sets.

join_datasets 63

Usage

```
join_datasets(
    ...,
    Datetime.column = Datetime,
    Id.column = Id,
    add.origin = FALSE,
    debug = FALSE
)
```

Arguments

... Object names of datasets that need to be joined.

Datetime.column, Id.column

Column names for the Datetime and id columns. The defaults (Datetime, Id)

are already set up for data imported with LightLogR.

add.origin Should a column named dataset in the joined data indicate from which dataset

each observation originated? Defaults to FALSE as the Id column should suffice.

Expects a logical.

debug Output changes to a tibble indicating which dataset is missing the respective

Datetime or Id column. Expects a logical and defaults to FALSE.

Value

One of

- a data. frame of joined datasets
- a tibble of datasets with missing columns. Only if debug = TRUE

```
#load in two datasets
path <- system.file("extdata",
package = "LightLogR")
file.LL <- "205_actlumus_Log_1020_20230904101707532.txt.zip"
file.env <- "cyepiamb_CW35_Log_1431_20230904081953614.txt.zip"
dataset.LL <- import$ActLumus(file.LL, path, auto.id = "^(\\d{3})")
dataset.env <- import$ActLumus(file.env, path, manual.id = "CW35")

#join the datasets
joined <- join_datasets(dataset.LL, dataset.env)

#compare the number of rows
nrow(dataset.LL) + nrow(dataset.env) == nrow(joined)

#debug, when set to TRUE, will output a tibble of datasets with missing necessary columns dataset.LL <- dataset.LL %>% dplyr::select(-Datetime)
join_datasets(dataset.LL, dataset.env, debug = TRUE)
```

64 midpointCE

11_import_expr A list of the specific device import functions	
---	--

Description

These expressions are used to import and prepare data from specific devices. The list is made explicit, so that a user, requiring slight changes to the import functions, (e.g., because a timestamp is formatted differently) can modify or add to the list. The list can be turned into a fully functional import function through import_adjustment().

Usage

```
ll_import_expr
```

Format

11_import_expr A list, with specific expressions for each supported device

ll_import_expr expressions

midpointCE	Midpoint of cumulative light exposure.

Description

This function calculates the timing corresponding to half of the cumulative light exposure within the given time series.

Usage

```
midpointCE(Light.vector, Time.vector, na.rm = FALSE, as.df = FALSE)
```

Arguments

Light.vector	Numeric vector containing the light data.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
na.rm	Logical. Should missing values be removed for the calculation? If TRUE, missing values will be replaced by zero. Defaults to FALSE.
as.df	Logical. Should the output be returned as a data frame? If TRUE, a data frame with a single column named midpoint CF will be returned. Defaults to FALSE

Value

Single column data frame or vector.

midpointCE 65

References

Shochat, T., Santhi, N., Herer, P., Flavell, S. A., Skeldon, A. C., & Dijk, D.-J. (2019). Sleep Timing in Late Autumn and Late Spring Associates With Light Exposure Rather Than Sun Time in College Students. *Frontiers in Neuroscience*, 13. doi:10.3389/fnins.2019.00882

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), nvRC(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()

```
dataset1 <-
  tibble::tibble(
    Id = rep("A", 24),
   Datetime = lubridate::as_datetime(0) + lubridate::hours(0:23),
   MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
dataset1 %>%
  dplyr::reframe(
    "Midpoint of cmulative exposure" = midpointCE(MEDI, Datetime)
# Dataset with HMS time vector
dataset2 <-
  tibble::tibble(
   Id = rep("A", 24),
   Time = hms::as_hms(lubridate::as_datetime(0) + lubridate::hours(0:23)),
   MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
dataset2 %>%
  dplyr::reframe(
    "Midpoint of cmulative exposure" = midpointCE(MEDI, Time)
  )
# Dataset with duration time vector
dataset3 <-
  tibble::tibble(
    Id = rep("A", 24),
   Hour = lubridate::duration(0:23, "hours"),
    MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
  )
dataset3 %>%
  dplyr::reframe(
    "Midpoint of cmulative exposure" = midpointCE(MEDI, Hour)
```

66 nvRC

nvRC

Non-visual circadian response

Description

This function calculates the non-visual circadian response (nvRC). It takes into account the assumed response dynamics of the non-visual system and the circadian rhythm and processes the light exposure signal to quantify the effective circadian-weighted input to the non-visual system (see Details).

Usage

```
nvRC(
   MEDI.vector,
   Illuminance.vector,
   Time.vector,
   epoch = "dominant.epoch",
   sleep.onset = NULL
)
```

Arguments

MEDI. vector Numeric vector containing the melanopic EDI data.

Illuminance.vector

Numeric vector containing the Illuminance data.

Time.vector Vector containing the time data. Can be POSIXct, hms, duration, or difftime.

epoch The epoch at which the data was sampled. Can be either a duration or a string.

If it is a string, it needs to be either "dominant.epoch" (the default) for a guess

based on the data, or a valid duration string, e.g., "1 day" or "10 sec".

sleep.onset The time of habitual sleep onset. Can be HMS, numeric, or NULL. If NULL (the

default), then the data is assumed to start at habitual sleep onset. If Time.vector is HMS or POSIXct, sleep.onset must be HMS. Likewise, if Time.vector is

numeric, sleep.onset must be numeric.

Details

The timeseries is assumed to be regular. Missing values in the light data will be replaced by 0.

Value

A numeric vector containing the nvRC data. The output has the same length as Time.vector.

References

Amundadottir, M.L. (2016). Light-driven model for identifying indicators of non-visual health potential in the built environment [Doctoral dissertation, EPFL]. EPFL infoscience. doi:10.5075/epflthesis7146

nvRC_metrics 67

See Also

Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()

Examples

```
dataset1 <-
 tibble::tibble(
   Id = rep("B", 60 * 48),
   Datetime = lubridate::as_datetime(0) + lubridate::minutes(0:(60*48-1)),
   Illuminance = c(rep(0, 60*8), rep(sample(1:1000, 16, replace = TRUE), each = 60),
                    rep(0, 60*8), rep(sample(1:1000, 16, replace = TRUE), each = 60)),
   MEDI = Illuminance * rep(sample(0.5:1.5, 48, replace = TRUE), each = 60)
# Time.vector as POSIXct
dataset1.nvRC <- dataset1 %>%
 dplyr::mutate(
   nvRC = nvRC(MEDI, Illuminance, Datetime, sleep.onset = hms::as_hms("22:00:00"))
# Time.vector as difftime
dataset2 <- dataset1 %>%
 dplyr::mutate(Datetime = Datetime - lubridate::as_datetime(lubridate::dhours(22)))
dataset2.nvRC <- dataset2 %>%
 dplyr::mutate(
   nvRC = nvRC(MEDI, Illuminance, Datetime, sleep.onset = lubridate::dhours(0))
```

nvRC_metrics

Performance metrics for circadian response

Description

These functions compare the non-visual circadian response (see nvRC) for measured personal light exposure to the nvRC for a reference light exposure pattern, such as daylight.

Usage

```
nvRC_circadianDisturbance(nvRC, nvRC.ref, as.df = FALSE)
nvRC_circadianBias(nvRC, nvRC.ref, as.df = FALSE)
nvRC_relativeAmplitudeError(nvRC, nvRC.ref, as.df = FALSE)
```

68 nvRC_metrics

Arguments

nvRC Time series of non-visual circadian response (see nvRC.

nvRC.ref Time series of non-visual circadian response circadian response (see nvRC for

a reference light exposure pattern (e.g., daylight). Must be the same length as

nvRC.

as . df Logical. Should the output be returned as a data frame? Defaults to TRUE.

Details

nvRC_circadianDisturbance() calculates the circadian disturbance (CD). It is expressed as

$$CD(i,T) = \frac{1}{T} \int_{t_i}^{t_i+T} |r_C(t) - r_C^{ref}(t)| dt,$$

and quantifies the total difference between the measured circadian response and the circadian response to a reference profile.

nvRC_circadianBias() calculates the circadian bias (CB). It is expressed as

$$CB(i,T) = \frac{1}{T} \int_{t_i}^{t_i+T} (r_C(t) - r_C^{ref}(t)) dt,$$

and provides a measure of the overall trend for the difference in circadian response, i.e. positive values for overestimating and negative for underestimating between the measured circadian response and the circadian response to a reference profile.

 ${\tt nvRC_relativeAmplitudeError()} \ calculates \ the \ relative \ amplitude \ error \ (RAE). \ It \ is \ expressed \ as$

$$RAE(i,T) = r_{C,max} - r_{C,max}^{ref},$$

and quantifies the difference between the maximum response achieved in a period to the reference signal.

Value

A numeric value or single column data frame.

References

Amundadottir, M.L. (2016). Light-driven model for identifying indicators of non-visual health potential in the built environment [Doctoral dissertation, EPFL]. EPFL infoscience. doi:10.5075/epflthesis7146

nvRD

Examples

```
dataset1 <-
 tibble::tibble(
   Id = rep("B", 60 * 24),
   Datetime = lubridate::as_datetime(0) + lubridate::minutes(0:(60*24-1)),
   Illuminance = c(rep(0, 60*8), rep(sample(1:1000, 16, replace = TRUE), each = 60)),
   MEDI = Illuminance * rep(sample(0.5:1.5, 24, replace = TRUE), each = 60),
 ) %>%
 dplyr::mutate(
   nvRC = nvRC(MEDI, Illuminance, Datetime, sleep.onset = hms::as_hms("22:00:00"))
dataset.reference <-
 tibble::tibble(
   Id = rep("Daylight", 60 * 24),
   Datetime = lubridate::as_datetime(0) + lubridate::minutes(0:(60*24-1)),
   Illuminance = c(rep(0, 60*6), rep(10000, 12*60), rep(0, 60*6)),
   MEDI = Illuminance
 ) %>%
 dplyr::mutate(
   nvRC = nvRC(MEDI, Illuminance, Datetime, sleep.onset = hms::as_hms("22:00:00"))
# Circadian disturbance
nvRC_circadianDisturbance(dataset1$nvRC, dataset.reference$nvRC)
# Circadian bias
nvRC_circadianBias(dataset1$nvRC, dataset.reference$nvRC)
# Relative amplitude error
nvRC_relativeAmplitudeError(dataset1$nvRC, dataset.reference$nvRC)
```

nvRD

Non-visual direct response

Description

This function calculates the non-visual direct response (nvRD). It takes into account the assumed response dynamics of the non-visual system and processes the light exposure signal to quantify the effective direct input to the non-visual system (see Details).

Usage

```
nvRD(MEDI.vector, Illuminance.vector, Time.vector, epoch = "dominant.epoch")
```

Arguments

MEDI. vector Numeric vector containing the melanopic EDI data.

70 nvRD

```
Illuminance.vector
```

Numeric vector containing the Illuminance data.

 $\label{time.vector} \textbf{Vector containing the time data. Can be POSIXct(), hms::hms(), lubridate::duration(), hms::hms(), hms(), hms(),$

difftime().

epoch The epoch at which the data was sampled. Can be either a lubridate::duration()

or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid lubridate::duration() string, e.g.,

"1 day" or "10 sec".

Details

The timeseries is assumed to be regular. Missing values in the light data will be replaced by 0.

Value

A numeric vector containing the nvRD data. The output has the same length as Time.vector.

References

Amundadottir, M.L. (2016). Light-driven model for identifying indicators of non-visual health potential in the built environment [Doctoral dissertation, EPFL]. EPFL infoscience. doi:10.5075/epflthesis7146

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

```
# Dataset 1 with 24h measurement
dataset1 <-
 tibble::tibble(
    Id = rep("A", 60 * 24),
   Datetime = lubridate::as_datetime(0) + lubridate::minutes(0:(60*24-1)),
   Illuminance = c(rep(0, 60*8), rep(sample(1:1000, 16, replace = TRUE), each = 60)),
   MEDI = Illuminance * rep(sample(0.5:1.5, 24, replace = TRUE), each = 60)
# Dataset 2 with 48h measurement
dataset2 <-
 tibble::tibble(
   Id = rep("B", 60 * 48),
   Datetime = lubridate::as_datetime(0) + lubridate::minutes(0:(60*48-1)),
   Illuminance = c(rep(0, 60*8), rep(sample(1:1000, 16, replace = TRUE), each = 60),
                    rep(0, 60*8), rep(sample(1:1000, 16, replace = TRUE), each = 60)),
   MEDI = Illuminance * rep(sample(0.5:1.5, 48, replace = TRUE), each = 60)
# Combined datasets
dataset.combined <- rbind(dataset1, dataset2)</pre>
```

```
# Calculate nvRD per ID
dataset.combined.nvRD <- dataset.combined %>%
    dplyr::group_by(Id) %>%
    dplyr::mutate(
        nvRD = nvRD(MEDI, Illuminance, Datetime)
    )
```

nvRD_cumulative_response

Cumulative non-visual direct response

Description

This function calculates the cumulative non-visual direct response (nvRD). This is basically the integral of the nvRD over the provided time period in hours. The unit of the resulting value thus is "nvRD*h".

Usage

```
nvRD_cumulative_response(
   nvRD,
   Time.vector,
   epoch = "dominant.epoch",
   as.df = FALSE
)
```

Arguments

nvRD	Numeric vector containing the non-visual direct response. See nvRD.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
epoch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
as.df	Logical. Should a data frame with be returned? If TRUE, a data frame with a single column named nvRD_cumulative will be returned. Defaults to FALSE.

Value

A numeric value or single column data frame.

References

Amundadottir, M.L. (2016). Light-driven model for identifying indicators of non-visual health potential in the built environment [Doctoral dissertation, EPFL]. EPFL infoscience. doi:10.5075/epflthesis7146

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), period_above_threshold(), pulses_above_threshold() threshold_for_duration(), timing_above_threshold()
```

Examples

```
dataset1 <-
  tibble::tibble(
   Id = rep("A", 60 * 24),
    Datetime = lubridate::as_datetime(0) + lubridate::minutes(0:(60*24-1)),
  Illuminance = c(rep(0, 60*8), rep(sample(1:1000, 14, replace = TRUE), each = 60), rep(0, 60*2)),
   MEDI = Illuminance * rep(sample(0.5:1.5, 24, replace = TRUE), each = 60)
  ) %>%
  dplyr::mutate(
    nvRD = nvRD(MEDI, Illuminance, Datetime)
  )
dataset1 %>%
  dplyr::summarise(
    "cumulative nvRD" = nvRD_cumulative_response(nvRD, Datetime)
  )
```

period_above_threshold

Length of longest continuous period above/below threshold

Description

This function finds the length of the longest continous period above/below a specified threshold light level or within a specified range of light levels.

Usage

```
period_above_threshold(
  Light.vector,
  Time.vector,
  comparison = c("above", "below"),
  threshold,
  epoch = "dominant.epoch",
  loop = FALSE,
  na.replace = FALSE,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Lig	ht.vector	Numeric vector containing the light data.
Time	e.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
com	parison	String specifying whether the period of light levels above or below threshold should be calculated. Can be either "above" (the default) or "below". If two values are provided for threshold, this argument will be ignored.
thre	eshold	Single numeric value or two numeric values specifying the threshold light level(s) to compare with. If a vector with two values is provided, the period of light levels within the two thresholds will be calculated.
epo	ch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
loop	р	Logical. Should the data be looped? Defaults to FALSE.
na.	replace	Logical. Should missing values (NA) be replaced for the calculation? If TRUE missing values will not be removed but will result in FALSE when comparing Light.vector with threshold. Defaults to FALSE.
na.	rm	Logical. Should missing values (NA) be removed for the calculation? If TRUE, this argument will override na.replace. Defaults to FALSE.
as.	df	Logical. Should a data frame be returned? If TRUE, a data frame with a single column named period_{comparison}_{threshold} will be returned. Defaults to FALSE.

Value

A duration object (see duration) as single value, or single column data frame.

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), pulses_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

pulses_above_threshold

Pulses above threshold

Description

This function clusters the light data into continuous clusters (pulses) of light above/below a given threshold. Clustering may be fine-tuned by setting the minimum length of the clusters and by allowing brief interruptions to be included in a single cluster, with a specified maximum length of interruption episodes and proportion of total amount of interruptions to light above threshold.

Usage

```
pulses_above_threshold(
  Light.vector,
  Time.vector,
  comparison = c("above", "below"),
  threshold,
  min.length = "8 mins",
  max.interrupt = "2 mins",
  prop.interrupt = 0.25,
  epoch = "dominant.epoch",
  return.indices = FALSE,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector	Numeric vector containing the light data. Missing values will be considered as FALSE when comparing light levels against the threshold.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
comparison	String specifying whether the time above or below threshold should be calculated. Can be either "above" (the default) or "below". If two values are provided for threshold, this argument will be ignored.
threshold	Single numeric value or two numeric values specifying the threshold light level(s) to compare with. If a vector with two values is provided, the timing corresponding to light levels between the two thresholds will be calculated.
min.length	The minimum length of a pulse. Can be either a duration or a string. If it is a string, it needs to be a valid duration string, e.g., "1 day" or "10 sec". Defaults to "8 mins" as in Wilson et al. (2018).
max.interrupt	Maximum length of each episode of interruptions. Can be either a duration or a string. If it is a string, it needs to be a valid duration string, e.g., "1 day" or "10 sec". Defaults to "2 mins" as in Wilson et al. (2018).
prop.interrupt	Numeric value between 0 and 1 specifying the maximum proportion of the total number of interruptions. Defaults to 0.25 as in Wilson et al. (2018).
epoch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
return.indices	Logical. Should the cluster indices be returned? Only works if as.df is FALSE. Defaults to FALSE.
na.rm	Logical. Should missing values be removed for the calculation of pulse metrics? Defaults to FALSE.
as.df	Logical. Should a data frame be returned? If TRUE, a data frame with seven columns ("n", "mean_level", "mean_duration", "total_duration", "mean_onset", "mean_midpoint", "mean_offset") and the threshold (e.g., _{threshold}) will be returned. Defaults to FALSE.

Details

The timeseries is assumed to be regular. Missing values in the light data will be replaced by 0.

Value

List or data frame with calculated values.

References

Wilson, J., Reid, K. J., Braun, R. I., Abbott, S. M., & Zee, P. C. (2018). Habitual light exposure relative to circadian timing in delayed sleep-wake phase disorder. *Sleep*, 41(11). doi:10.1093/sleep/zsy166

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), threshold_for_duration(), timing_above_threshold()
```

Examples

```
# Sample data
data = sample.data.environment %>%
 dplyr::filter(Id == "Participant") %>%
 filter_Datetime(length = lubridate::days(1)) %>%
 dplyr::mutate(
   Time = hms::as_hms(Datetime),
# Time vector as datetime
data %>%
 dplyr::reframe(pulses_above_threshold(MEDI, Datetime, threshold = 250, as.df = TRUE))
# Time vector as hms time
data %>%
 dplyr::reframe(pulses_above_threshold(MEDI, Time, threshold = 250, as.df = TRUE))
# Pulses below threshold
data %>%
 dplyr::reframe(pulses_above_threshold(MEDI, Datetime, "below", threshold = 250, as.df = TRUE))
# Pulses within threshold range
data %>%
 dplyr::reframe(pulses_above_threshold(MEDI, Datetime, threshold = c(250,1000), as.df = TRUE))
```

sample.data.environment

Sample of wearable data combined with environmental data

Description

A subset of data from a study at the TSCN-Lab using the ActLumus light logger. This dataset contains personal light exposure information for one participant over the course of five full days. The dataset is measured with a 10 second epoch and is complete (no missing values). Additionally environmental light data was captured with a second light logger mounted horizontally at the TUM university roof, without any obstructions (besides a transparent plastic halfdome). The epoch for this data is 30 seconds. This dataset allows for some interesting calculations based on *available* daylight at a given point in time.

Usage

```
sample.data.environment
```

sc2interval 77

Format

sample.data.environment A tibble with 69,120 rows and 3 columns:

Datetime POSIXct Datetime

MEDI melanopic EDI measurement data. Unit is lux.

Id A character vector indicating whether the data is from the Participant or from the Environment.

Source

```
https://www.tscnlab.org
```

sc2interval

Statechange (sc) Timestamps to Intervals

Description

Takes an input of datetimes and Statechanges and creates a column with Intervals. If full = TRUE, it will also create intervals for the day prior to the first state change and after the last. If output.dataset = FALSE it will give a named vector, otherwise a tibble. The state change info requires a description or name of the state (like "sleep" or "wake", or "wear") that goes into effect at the given Datetime. Works for grouped data so that it does not mix up intervals between participants. Missing data should be explicit if at all possible. Also, the maximum allowed length of an interval can be set, so that implicit missing timestamps after a set period of times can be enforced.

Usage

```
sc2interval(
  dataset,
  Datetime.colname = Datetime,
  Statechange.colname = State,
  State.colname = State,
  Interval.colname = Interval,
  full = TRUE,
  starting.state = NA,
  output.dataset = TRUE,
  Datetime.keep = FALSE,
  length.restriction = 60 * 60 * 24
)
```

Arguments

dataset

A light logger dataset. Expects a dataframe. If not imported by LightLogR, take care to choose a sensible variable for the Datetime.colname.

78 sc2interval

Datetime.colname

column name that contains the datetime. Defaults to "Datetime" which is automatically correct for data imported with LightLogR. Expects a symbol. Needs to be part of the dataset.

Statechange.colname, Interval.colname, State.colname

Column names that do contain the name/description of the state change and that will contain the Interval and State (which are also the default). Expects a symbol. The Statechange column needs do be part of the dataset.

full, starting.state

These arguments handle the state on the first day before the first state change and after the last state change on the last day. If full = TRUE(the default, expects a logical), it will create an interval on the first day from 00:00:00 up until the state change. This interval will be given the state specified in starting.state, which is NA by default, but can be any character scalar. It will further extend the interval for the last state change until the end of the last given day (more specifically until 00:00:00 the next day).

output.dataset should the output be a data.frame (Default TRUE) or a vector with hms (FALSE) times? Expects a logical scalar.

Datetime.keep If TRUE, the original Datetime column will be kept. length.restriction

If the length between intervals is too great, the interval state can be set to NA, which effectively produces a gap in the data. This makes sense when intervals are implausibly wrong (e.g. someone slept for 50 hours), because when this data is combined with light logger data, e.g., through interval2state(), metrics and visualizations will remove the interval.

Value

One of

- a data. frame object identical to dataset but with the interval instead of the datetime. The original Statechange column now indicates the State during the Interval.
- a named vector with the intervals, where the names are the states

79 sleep_int2Brown

```
#compare sample (y) and intervals (x)
sc2interval(sample) %>%
mutate(Datetime = int_start(Interval)) %>%
dplyr::left_join(sample, by = c("Id", "State"),
                  relationship = "many-to-many") %>%
head()
```

sleep_int2Brown

Recode Sleep/Wake intervals to Brown state intervals

Description

Takes a dataset with sleep/wake intervals and recodes them to Brown state intervals. Specifically, it recodes the sleep intervals to night, reduces wake intervals by a specified evening.length and recodes them to evening and day intervals. The evening length is the time between day and night. The result can be used as input for interval2state() and might be used subsequently with Brown2reference().

Usage

```
sleep_int2Brown(
  dataset,
  Interval.colname = Interval,
  Sleep.colname = State,
  wake.state = "wake",
  sleep.state = "sleep",
 Brown.day = "day",
  Brown.evening = "evening",
 Brown.night = "night",
  evening.length = lubridate::dhours(3),
  Brown.state.colname = State.Brown,
  output.dataset = TRUE
)
```

Arguments

dataset A dataset with sleep/wake intervals.

Interval.colname

The name of the column with the intervals. Defaults to Interval.

Sleep.colname The name of the column with the sleep/wake states. Defaults to State. wake.state, sleep.state

The names of the wake and sleep states in the Sleep.colname. Default to "wake" and "sleep". Expected to be a character scalar and must be an exact match.

sleep_int2Brown

```
Brown.day, Brown.evening, Brown.night
```

The names of the Brown states that will be used. Defaults to "day", "evening" and "night".

evening.length The length of the evening interval in seconds. Can also use **lubridate** duration or period objects. Defaults to 3 hours.

Brown.state.colname

The name of the column with the newly created Brown states. Works as a simple renaming of the Sleep.colname.

output.dataset Whether to return the whole dataset or a vector with the Brown states.

Details

The function will filter out any non-sleep intervals that are shorter than the specified evening.length. This prevents problematic behaviour when the evening.length is longer than the wake intervals or, e.g., when the first state is sleep after midnight and there is a prior NA interval from midnight till sleep. This behavior might, however, result in problematic results for specialized experimental setups with ultra short wake/sleep cycles. The sleep_int2Brown() function would not be applicable in those cases anyways.

Value

A dataset with the Brown states or a vector with the Brown states. The Brown states are created in a new column with the name specified in Brown.state.colname. The dataset will have more rows than the original dataset, because the wake intervals are split into day and evening intervals.

References

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001571

See Also

```
Other Brown: Brown2reference(), Brown_check(), Brown_rec()
```

supported.devices 81

supported.devices	A vector of all supported devices for import functions	
-------------------	--	--

Description

These are all supported devices where there is a dedicated import function. Import functions can be called either through import_Dataset() with the respective device = "device" argument, or directly, e.g., import\$ActLumus().

Usage

```
supported.devices
```

Format

 ${\tt supported.devices}\ A\ character\ vector,\ listing\ all\ supported\ devices$

suppored.devices strings

symlog_trans	Scale positive and negative values on a log scale
--------------	---

Description

To create a plot with positive and negative (unscaled) values on a log-transformed axis, the values need to be scaled accordingly. R or **ggplot2** do not have a built-in function for this, but the following function can be used to create a transformation function for this purpose. The function was coded based on a post on stack overflow. The symlog transformation is the standard transformation used e.g., in gg_day().

Usage

```
symlog_trans(base = 10, thr = 1, scale = 1)
```

Arguments

base	Base for the logarithmic transformation. The default is 10.
thr	Threshold after which a logarithmic transformation is applied. If the absolute value is below this threshold, the value is not transformed. The default is 1.
scale	Scaling factor for logarithmically transformed values above the threshold. The default is 1.

Details

The symlog transformation can be accessed either via the trans = "symlog" argument in a scaling function, or via trans = symlog_trans(). The latter allows setting the individual arguments.

Value

a transformation function that can be used in **ggplot2** or **plotly** to scale positive and negative values on a log scale.

References

This function's code is a straight copy from a post on stack overflow. The author of the answer is Julius Vainora, and the author of the question Brian B

Examples

```
dataset <-
sample.data.environment %>%
filter_Date(end = "2023-08-15") %>%
dplyr::mutate(MEDI = dplyr::case_when(
                                      Id == "Environment" ~ -MEDI,
                                      .default = MEDI))
#basic application where transformation, breaks and labels are set manually
dataset %>%
gg_day(aes_col = Id) +
ggplot2::scale_y_continuous(
trans = "symlog")
#the same plot, but with breaks and labels set manually
dataset %>%
gg_day(aes_col = Id) +
ggplot2::scale_y_continuous(
trans = "symlog",
breaks = c(-10^{(5:0)}, 0, 10^{(0:5)}),
labels = function(x) format(x, scientific = FALSE, big.mark = " "))
#setting individual arguments of the symlog function manually allows
#e.g., to emphasize values smaller than 1
dataset %>%
gg_day(aes_col = Id) +
ggplot2::scale_y_continuous(
trans = symlog_trans(thr = 0.01),
breaks = c(-10^{(5:-1)}, 0, 10^{(-1:5)}),
labels = function(x) format(x, scientific = FALSE, big.mark = " "))
```

threshold_for_duration

Find threshold for given duration

Description

This function finds the threshold for which light levels are above/below for a given duration. This function can be considered as the inverse of duration_above_threshold.

Usage

```
threshold_for_duration(
  Light.vector,
  Time.vector,
  duration,
  comparison = c("above", "below"),
  epoch = "dominant.epoch",
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector	Numeric vector containing the light data.
Time.vector	Vector containing the time data. Can be POSIXct, hms, duration, or difftime.
duration	The duration for which the threshold should be found. Can be either a duration or a string. If it is a string, it needs to be a valid duration string, e.g., "1 day" or "10 sec".
comparison	String specifying whether light levels above or below the threshold should be considered. Can be either "above" (the default) or "below".
epoch	The epoch at which the data was sampled. Can be either a duration or a string. If it is a string, it needs to be either "dominant.epoch" (the default) for a guess based on the data, or a valid duration string, e.g., "1 day" or "10 sec".
na.rm	Logical. Should missing values (NA) be removed for the calculation? Defaults to FALSE.
as.df	Logical. Should a data frame with be returned? If TRUE, a data frame with a single column named threshold_{comparison}_for_{duration} will be returned. Defaults to FALSE.

Value

Single numeric value or single column data frame.

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), timing_above_threshold()
```

```
N <- 60
# Dataset with 30 min < 250lx and 30min > 250lx
dataset1 <-
   tibble::tibble(
   Id = rep("A", N),</pre>
```

timing_above_threshold

Mean/first/last timing above/below threshold.

Description

This function calculates the mean, first, and last timepoint (MLiT, FLiT, LLiT) where light levels are above or below a given threshold intensity within the given time interval.

Usage

```
timing_above_threshold(
  Light.vector,
  Time.vector,
  comparison = c("above", "below"),
  threshold,
  na.rm = FALSE,
  as.df = FALSE
)
```

Arguments

Light.vector Numeric vector containing the light data.

Time.vector Vector containing the time data. Can be POSIXct, hms, duration, or difftime.

comparison String specifying whether the time above or below threshold should be calcu-

lated. Can be either "above" (the default) or "below". If two values are pro-

vided for threshold, this argument will be ignored.

threshold	Single numeric value or two numeric values specifying the threshold light level(s) to compare with. If a vector with two values is provided, the timing corresponding to light levels between the two thresholds will be calculated.
na.rm	Logical. Should missing values be removed for the calculation? Defaults to FALSE.
as.df	Logical. Should a data frame be returned? If TRUE, a data frame with three columns (MLiT, FLiT, LLiT) and the threshold (e.g., MLiT_{threshold}) will be returned. Defaults to FALSE.

Value

List or dataframe with the three values: mean, first, and last timing above threshold. The output type corresponds to the type of Time.vector, e.g., if Time.vector is HMS, the timing metrics will be also HMS, and vice versa for POSIXct and numeric.

References

Reid, K. J., Santostasi, G., Baron, K. G., Wilson, J., Kang, J., & Zee, P. C. (2014). Timing and Intensity of Light Correlate with Body Weight in Adults. *PLOS ONE*, 9(4), e92251. doi:10.1371/journal.pone.0092251

Hartmeyer, S.L., Andersen, M. (2023). Towards a framework for light-dosimetry studies: Quantification metrics. *Lighting Research & Technology*. doi:10.1177/14771535231170500

See Also

```
Other metrics: bright_dark_period(), centroidLE(), disparity_index(), duration_above_threshold(), exponential_moving_average(), frequency_crossing_threshold(), interdaily_stability(), intradaily_variability(), midpointCE(), nvRC(), nvRD(), nvRD_cumulative_response(), period_above_threshold(), pulses_above_threshold(), threshold_for_duration()
```

```
# Dataset with light > 250lx between 06:00 and 18:00
dataset1 <-
    tibble::tibble(
    Id = rep("A", 24),
    Datetime = lubridate::as_datetime(0) + lubridate::hours(0:23),
    MEDI = c(rep(1, 6), rep(250, 13), rep(1, 5))
)

# Above threshold
dataset1 %>%
    dplyr::reframe(timing_above_threshold(MEDI, Datetime, "above", 250, as.df = TRUE))

# Below threshold
dataset1 %>%
    dplyr::reframe(timing_above_threshold(MEDI, Datetime, "below", 10, as.df = TRUE))

# Input = HMS -> Output = HMS
dataset1 %>%
```

dplyr::reframe(timing_above_threshold(MEDI, hms::as_hms(Datetime), "above", 250, as.df = TRUE))

Index

*Brown Brown2reference, 10 Brown_check, 12 Brown_rec, 13 sleep_int2Brown, 79 *DST dst_change_handler, 25 dst_change_summary, 26 *datasets import_Dataset, 51 1l_import_expr, 64 supported.devices, 81 *filter filter_Datetime, 30 filter_Time, 34 *metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 nvRC, 66 brown_rec, 10 aggregate_Datetime, 5 aggregate_Datetime, 6 base::seq(), 21 base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 58 brown_rec(), 79 Brown_check, 11, 12, 14, 80 Brown_check(), 11 Brown_check(), 12 Br
Brown_check, 12 Brown_rec, 13 sleep_int2Brown, 79 * DST dst_change_handler, 25 dst_change_summary, 26 * datasets import_Dataset, 51 ll_import_expr, 64 sample.data.environment, 76 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_variability, 61 midpointCE, 64 base::seq(), 21 base::setptime(), 43, 45, 47 base::strptime(), 43, 45, 47 base::strptime(), 43, 45, 47 base::seq(), 21 base::seq(), 22 base::seq(), 22 base::seq(), 21 base::seq(), 21 base::seq(), 21 base::seq(), 21 base::seq(), 21 base::seq(), 22 base::seq(), 21 base::seq(), 21 base::seq(), 21 base::seq(), 22 base::seq(), 22 base::seq(), 2
Brown_rec, 13 sleep_int2Brown, 79 * DST dst_change_handler, 25 dst_change_summary, 26 * datasets import_Dataset, 51 ll_import_expr, 64 sample.data.environment, 76 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 barroso_lighting_metrics, 6 base::seq(), 21 base::seq(), 21 base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 58 bright_dark_period, 8, 17, 24, 27, 37, 76, 83, 85 brown_2reference(), 79 Brown_check(), 11 Brown_check(), 11 Brown_check(), 11 Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
sleep_int2Brown, 79 * DST dst_change_handler, 25 dst_change_summary, 26 * datasets import_Dataset, 51 ll_import_expr, 64 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 base::seq(), 21 base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 83, 85 bright_dark_period, 8, 11, 12, 14, 80 Brown_2reference(), 79 Brown_check, 11, 12, 14, 80 Brown_check, 11 Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 create_Timedata, 17 cut_Datetime, 16 create_Timedata, 17 cut_Datetime, 18 data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
* DST dst_change_handler, 25 dst_change_summary, 26 * datasets import_Dataset, 51 ll_import_expr, 64 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 Brown2reference, 10, 13, 14, 80 Brown_check, 11, 12, 14, 80 Brown_check(), 11 * filter Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 base::strptime(), 43, 45, 47 base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 83, 85 Enwin2reference, 10, 13, 14, 80 Brown_check(), 11 Brown_check(), 11 Brown_rec(), 11 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24
dst_change_handler, 25 dst_change_summary, 26 * datasets import_Dataset, 51 11_import_expr, 64 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 Brown2reference, 10, 13, 14, 80 Brown_check, 11, 12, 14, 80 Brown_check(), 11 * filter Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 * centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 base::strptime(), 43, 45, 47 bright_dark_period, 8, 15, 24, 28, 30, 36, 81, 80 Brown_rec(), 11 * centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 count_difftime, 16 create_Timedata, 17 cut_Datetime, 18 data2reference, 19 Datetime_breaks, 21 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
dst_change_summary, 26 * datasets import_Dataset, 51 ll_import_expr, 64 sample.data.environment, 76 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8, 15, 24, 28, 30, 36, 83, 85 Brown2reference, 10, 13, 14, 80 Brown2reference(), 79 Brown_check, 11, 12, 14, 80 Brown_check(), 11 Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 * metrics bright_dark_period, 8 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 count_difftime, 16 create_Timedata, 17 cut_Datetime, 18 data2reference, 19 patetime_breaks, 21 intradaily_variability, 61 midpointCE, 64
* datasets import_Dataset, 51 ll_import_expr, 64 sample.data.environment, 76 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 midpointCE, 64 Brown2reference, 10, 13, 14, 80 Brown2reference(), 79 Brown_check, 11, 12, 14, 80 Brown_rec, 11, 13, 13, 80 Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 Srown_rec(), 11 Brown2reference, 11, 12, 14, 80 Brown_rec, 11, 13, 13, 80 Brown_rec(), 11 Srown_rec(), 11 CentroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, 67, 70, 72, 73, 76, 83, 85 count_difftime, 16 create_Timedata, 17 cut_Datetime, 18 data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
<pre>import_Dataset, 51 ll_import_expr, 64 sample.data.environment, 76 supported.devices, 81 * filter</pre>
<pre>11_import_expr, 64 sample.data.environment, 76 supported.devices, 81 * filter</pre>
sample.data.environment, 76 supported.devices, 81 * filter filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 Brown_check(), 11 Brown_check(), 12 Brown_check(), 11 Brown_check(), 12 Brown_check
<pre>supported.devices, 81 * filter</pre>
* filter_Datetime, 30
<pre>filter_Datetime, 30 filter_Time, 34 * metrics bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64</pre> Brown_rec(), 11 sequency(), 12 sequency(), 13 se
<pre>filter_Time, 34 * metrics</pre>
* metrics centroidLE, 9, 14, 24, 28, 30, 36, 58, 62, 65, bright_dark_period, 8 67, 70, 72, 73, 76, 83, 85 centroidLE, 14 count_difftime, 16 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57
bright_dark_period, 8 centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 67, 70, 72, 73, 76, 83, 85 count_difftime, 16 create_Timedata, 17 cut_Datetime, 18 data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
centroidLE, 14 disparity_index, 23 duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 count_difftime, 16 create_Timedata, 17 cut_Datetime, 18 data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
disparity_index, 23 create_Timedata, 17 duration_above_threshold, 27 cut_Datetime, 18 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 Datetime_breaks, 21 intradaily_variability, 61 Datetime_breaks(), 44, 45 midpointCE, 64 Datetime_limits, 22
duration_above_threshold, 27 exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 cut_Datetime, 18 data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
exponential_moving_average, 29 frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 Datetime_breaks(), 44, 45 Datetime_limits, 22
frequency_crossing_threshold, 35 interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 data2reference, 19 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
interdaily_stability, 57 intradaily_variability, 61 midpointCE, 64 Datetime_breaks, 21 Datetime_breaks(), 44, 45 Datetime_limits, 22
intradaily_variability, 61 midpointCE, 64 Datetime_breaks(), 44, 45 Datetime_limits, 22
midpointCE, 64 Datetime_limits, 22
nvRC, 66 Datetime_limits(), 21, 44, 45
nvRD, 69 difftime, 7, 9, 14, 28, 29, 64, 66, 71, 73, 75,
nvRD_cumulative_response, 71 83, 84
period_above_threshold, 72 difftime(), 70
pulses_above_threshold, 74 disparity_index, 9, 15, 23, 28, 30, 36, 58,
threshold_for_duration, 82 62, 65, 67, 70, 72, 73, 76, 83, 85
timing_above_threshold, 84 dominant_epoch, 24, 37, 39, 40
* regularize dominant_epoch(), 39
dominant_epoch, 24 dplyr::filter(), 20, 32
<pre>gap_finder, 38</pre> <pre>dplyr::group_by(), 51</pre>
gap_handler, 39 dplyr::mutate(), 18
gapless_Datetimes, 36 dplyr::summarize(), 4, 6
dst_change_handler, 25, 27
aggregate_Date, 3 dst_change_summary, 26, 26

88 INDEX

duration, 7-9, 14, 28, 29, 64, 66, 71, 73, 75,	import_adjustment, 50
83, 84	import_Dataset, 51
duration_above_threshold, 9, 15, 24, 27,	<pre>import_Dataset(), 81</pre>
30, 36, 58, 62, 65, 67, 70, 72, 73, 76,	import_Statechanges, 55
82, 83, 85	interdaily_stability, 9, 15, 24, 28, 30, 36, 57, 62, 65, 67, 70, 72, 73, 76, 83, 85
exponential_moving_average, 9, 15, 24, 28,	interval2state, 59
29, 36, 58, 62, 65, 67, 70, 72, 73, 76,	interval2state(), 78, 79
83, 85	intradaily_variability, 9, 15, 24, 28, 30,
	36, 58, 61, 65, 67, 70, 72, 73, 76, 83,
filter_Date (filter_Datetime), 30	85
filter_Date(), <i>31</i> , <i>33</i>	
filter_Datetime, 30, 35	join_datasets,62
filter_Datetime(), 31, 33, 42	
filter_Datetime_multiple, 33	LightLogR, 4, 6, 16–18, 31, 34, 42, 45, 47, 49,
<pre>filter_Datetime_multiple(), 33</pre>	59, 63, 77, 78
filter_Time, <i>32</i> , 34	<pre>11_import_expr, 64</pre>
filter_Time(), 30	<pre>lubridate::ceiling_date(), 22</pre>
frequency_crossing_threshold, 9, 15, 24,	<pre>lubridate::ddays(), 22</pre>
28, 30, 35, 58, 62, 65, 67, 70, 72, 73,	lubridate::duration(), 20, 24, 70
76, 83, 85	<pre>lubridate::floor_date(), 22</pre>
	<pre>lubridate::parse_date_time(),56</pre>
gap_finder, 24, 37, 38, 40	lubridate::round_date(), 4, 6, 18, 32
<pre>gap_finder(), 49</pre>	
gap_handler, 24, 37, 39, 39	midpointCE, 9, 15, 24, 28, 30, 36, 58, 62, 64,
gapless_Datetimes, 24, 36, 39, 40	67, 70, 72, 73, 76, 83, 85
<pre>gapless_Datetimes(), 39</pre>	
gg_day, 41	nvRC, 9, 15, 24, 28, 30, 36, 58, 62, 65, 66, 67,
gg_day(), <i>32</i> , <i>41</i> , <i>81</i>	68, 70, 72, 73, 76, 83, 85
gg_days, 44	<pre>nvRC_circadianBias (nvRC_metrics), 67</pre>
gg_days(), 21, 22, 44, 48	nvRC_circadianDisturbance
gg_doubleplot, 46	(nvRC_metrics), 67
gg_doubleplot(), 48	nvRC_metrics, 67
gg_overview, 49	nvRC_relativeAmplitudeError
gg_overview(), 52	(nvRC_metrics), 67
ggplot2::aes(), 42, 45, 49	nvRD, 9, 15, 24, 28, 30, 36, 58, 62, 65, 67, 69,
ggplot2::facet_wrap(), 42, 43, 45	71–73, 76, 83, 85
ggplot2::geom_line(), 42, 45	nvRD_cumulative_response, 9, 15, 24, 28,
ggplot2::geom_point(), 42, 45	30, 36, 58, 62, 65, 67, 70, 71, 73, 76,
<pre>ggplot2::geom_ribbon(), 42, 45</pre>	83, 85
ggplot2::waiver(), 42, 45	
ggsci::scale_color_jco(), 43, 46	OlsonNames(), <i>51</i> , <i>56</i>
ggsci::scale_fill_jco(), 43	
25 ** (7) **	period_above_threshold, 7, 9, 15, 24, 28,
hms, 7, 9, 14, 28, 29, 64, 66, 71, 73, 75, 83, 84	30, 36, 58, 62, 65, 67, 70, 72, 72, 76,
hms::as_hms(), 43	83, 85
hms::hms(), 70	POSIXct, 7, 9, 14, 28, 29, 64, 66, 71, 73, 75, 83, 84
<pre>import (import_Dataset), 51</pre>	POSIXct(), 70
	**

INDEX 89

```
pulses_above_threshold, 9, 15, 24, 28, 30,
         36, 58, 62, 65, 67, 70, 72, 73, 74, 83,
         85
quote(), 33
regex, 52
rlang::expr(), 33
sample.data.environment, 76
sc2interval, 77
sc2interval(), 59
scales::identity_trans(), 42, 45
seq(), 21
sleep_int2Brown, 11, 13, 14, 79
supported.devices, 51, 55, 81
{\tt symlog\_trans}, \textcolor{red}{81}
symlog_trans(), 42, 43, 45, 46
threshold_for_duration, 9, 15, 24, 28, 30,
         36, 58, 62, 65, 67, 70, 72, 73, 76, 82,
         85
tibble::tibble(),49
timing_above_threshold, 9, 15, 24, 28, 30,
         36, 58, 62, 65, 67, 70, 72, 73, 76, 83,
         84
```