Package ‘sf’

March 17, 2021

Version 0.9-8
Title Simple Features for R
Description Support for simple features, a standardized way to encode spatial vector data. Binds to ‘GDAL’ for reading and writing data, to ‘GEOS’ for geometrical operations, and to ‘PROJ’ for projection conversions and datum transformations. Optionally uses the 's2' package for spherical geometry operations on geographic coordinates.
License GPL-2 | MIT + file LICENSE
BugReports https://github.com/r-spatial/sf/issues/
Depends methods, R (>= 3.3.0)
Imports classInt (>= 0.4-1), DBI (>= 0.8), graphics, grDevices, grid, magrittr, Rcpp (>= 0.12.18), stats, tools, units (>= 0.6-0), utils
Suggests blob, covr, dplyr (>= 0.8-3), ggplot2, knitr, lwgeom (>= 0.2-1), maps, mapview, microbenchmark, odbc, pillar, pool, raster, rgdal, rgeos, rlang, rmarkdown, RPostgres (>= 1.1.0), RPostgreSQL, RSQLite, s2 (>= 1.0.1), sp (>= 1.2-4), spatstat (>= 1.6-0), spatstat.geom, spatstat.core, spatstat.linnet, spatstat.utils, stars (>= 0.2-0), terra, testthat, tibble (>= 1.4.1), tidyverse (>= 1.0.0), tidyselect (>= 1.0.0), tmap (>= 2.0), vctrs

LinkingTo Rcpp
VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.1.1
SystemRequirements C++11, GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0), sqlite3
R topics documented:

'transform.R' 'proj.R' 'sp.R' 'grid.R' 'arith.R' 'tidyverse.R'
'tidyverse-vctrs.R' 'cast_sfg.R' 'cast_sfc.R' 'graticule.R'
'datasets.R' 'aggregate.R' 'agr.R' 'maps.R' 'join.R' 'sample.R'
'valid.R' 'collection_extract.R' 'jitter.R' 'sgbp.R'
'spatstat.R' 'stars.R' 'crop.R' 'gdal_utils.R' 'nearest.R'
'normalize.R' 'defunct.R' 'z_range.R' 'm_range.R'
'shift_longitude.R' 'make_grid.R' 's2.R' 'terra.R'
'geos-overlayng.R'

NeedsCompilation yes

Author Edzer Pebesma [aut, cre] (<https://orcid.org/0000-0001-8049-7069>),
Roger Bivand [ctb] (<https://orcid.org/0000-0003-2392-6140>),
Etienne Racine [ctb],
Michael Sumner [ctb],
Ian Cook [ctb],
Tim Keitt [ctb],
Robin Lovelace [ctb],
Hadley Wickham [ctb],
Jeroen Ooms [ctb] (<https://orcid.org/0000-0002-4035-0289>),
Kirill Müller [ctb],
Thomas Lin Pedersen [ctb],
Dan Baston [ctb]

Maintainer Edzer Pebesma <edzer.pebesma@uni-muenster.de>

Repository CRAN

Date/Publication 2021-03-17 10:50:03 UTC

R topics documented:

aggregate.sf ... 4
as ... 5
bind ... 6
dbDataType,PostgreSQLConnection,sf-method 8
dbWriteTable,PostgreSQLConnection,character,sf-method .. 8
db_drivers .. 9
extension_map ... 10
gdal .. 10
gdal_utils ... 13
geos_binary_ops .. 14
geos_binary_pred .. 17
geos_combine .. 19
geos_measures ... 20
geos_query .. 22
geos_unary .. 23
internal ... 28
is_driver_available .. 28
is_driver_can .. 29
is_geometry_column .. 29
R topics documented:

- merge.sf .. 30
- nc .. 30
- Ops ... 31
- plot .. 32
- prefix_map .. 38
- proj_tools ... 38
- rawToHex ... 40
- s2 .. 40
- sf .. 41
- sf-defunct .. 43
- sfc .. 44
- sf_extSoftVersion 45
- sf_project ... 46
- sgbp .. 47
- st ... 47
- stars ... 50
- st_agr ... 52
- st_as_binary 52
- st_as_grob ... 54
- st_as_sf .. 54
- st_as_sfc ... 57
- st_as_text ... 59
- st_bbox ... 60
- st_cast .. 62
- st_cast_sfc_default 65
- st_collection_extract 65
- st_coordinates 67
- st_crop ... 68
- st_crs .. 69
- st_drivers .. 72
- st_geometry 72
- st_geometry_type 74
- st_graticule 74
- st_interpolate_aw 76
- st_is ... 77
- st_is_longlat 77
- st_jitter .. 78
- st_join ... 78
- st_layers .. 81
- st_line_sample 81
- st_make_grid 82
- st_m_range 83
- st_nearest_feature 85
- st_nearest_points 86
- st_normalize 88
- st_precision 88
- st_read ... 89
- st_relate ... 93
aggregate.an_sf_object

Description
aggregate an sf object, possibly union-ing geometries

Usage
S3 method for class 'sf'
aggregate(
 x,
 by,
 FUN,
 ...,
 do_union = TRUE,
 simplify = TRUE,
 join = st_intersects
)

Arguments
x object of class sf
by either a list of grouping vectors with length equal to nrow(x) (see aggregate), or an object of class sf or sfc with geometries that are used to generate groupings, using the binary predicate specified by the argument join
FUN function passed on to aggregate, in case ids was specified and attributes need to be grouped
... arguments passed on to FUN
do_union logical; should grouped geometries be unioned using st_union? See details.
simplify logical; see aggregate
Logical spatial predicate function to use if by is a simple features object or geometry; see `st_join`.

Details

In case `do_union` is `FALSE`, `aggregate` will simply combine geometries using `c.sfg`. When polygons sharing a boundary are combined, this leads to geometries that are invalid; see https://github.com/r-spatial/sf/issues/681.

Value

An `sf` object with aggregated attributes and geometries; additional grouping variables having the names of `names(ids)` or are named `Group.i` for `ids[[i]]`; see `aggregate`.

Note

Does not work using the formula notation involving `~` defined in `aggregate`.

Examples

```r
m1 = cbind(c(0, 0, 1, 0), c(0, 1, 1, 0))
m2 = cbind(c(0, 1, 1, 0), c(0, 0, 0, 0))
pol = st_sfc(st_polygon(list(m1)), st_polygon(list(m2)))
set.seed(1985)
d = data.frame(matrix(runif(15), ncol = 3))
p = st_as_sf(x = d, coords = 1:2)
plot(pol)
plot(p, add = TRUE)
(p_ag1 = aggregate(p, pol, mean))
plot(p_ag1) # geometry same as pol
# works when x overlaps multiple objects in 'by':
p_buff = st_buffer(p, 0.2)
plot(p_buff, add = TRUE)
(p_ag2 = aggregate(p_buff, pol, mean)) # increased mean of second
# with non-matching features
m3 = cbind(c(0, 0, -0.1, 0), c(0, 0.1, 0.1, 0))
pol = st_sfc(st_polygon(list(m3)), st_polygon(list(m1)), st_polygon(list(m2)))
(p_ag3 = aggregate(p, pol, mean))
plot(p_ag3)
# In case we need to pass an argument to the join function:
(p_ag4 = aggregate(p, pol, mean,
   join = function(x, y) st_is_within_distance(x, y, dist = 0.3)))
```

Methods to coerce simple features to Spatial* and Spatial*DataFrame objects
Description

`as_Spatial()` allows to convert sf and sfc to Spatial*DataFrame and Spatial* for sp compatibility. You can also use `as(x,"Spatial")` To transform sp objects to sf and sfc with `as(x,"sf")`.

Usage

```r
as_Spatial(from, cast = TRUE, IDs = paste0("ID", seq_along(from)))
```

Arguments

- `from` object of class sf, sfc_POINT, sfc_MULTIPOINT, sfc_LINestring, sfc_MULTILINESTRING, sfc_POLYGON, or sfc_MULTIPOLYGON.
- `cast` logical; if TRUE, `st_cast()` from before converting, so that e.g. GEOMETRY objects with a mix of POLYGON and MULTIPOLYGON are cast to MULTIPOLYGON.
- `IDs` character vector with IDs for the Spatial* geometries

Details

Package sp supports three dimensions for POINT and MULTIPOINT (SpatialPoint*). Other geometries must be two-dimensional (XY). Dimensions can be dropped using `st_zm()` with what = "M" or what = "ZM".

For converting simple features (i.e., sf objects) to their Spatial counterpart, use `as(obj,"Spatial")`

Value

geometry-only object deriving from Spatial, of the appropriate class

Examples

```r
nc <- st_read(system.file("shape/nc.shp", package="sf"))
# convert to SpatialPolygonsDataFrame
spdf <- as_Spatial(nc)
# identical to
spdf <- as(nc, "Spatial")
# convert to SpatialPolygons
as(st_geometry(nc), "Spatial")
# back to sf
as(spdf, "sf")
```

bind

Bind rows (features) of sf objects

Description

Bind rows (features) of sf objects

bind columns (variables) of sf objects
bind

Usage

S3 method for class 'sf'
rbind(..., deparse.level = 1)

S3 method for class 'sf'
cbind(..., deparse.level = 1, sf_column_name = NULL)

st_bind_cols(...)

Arguments

... objects to bind; note that for the rbind and cbind methods, all objects have to be of class sf; see dotsMethods
deparse.level integer; see rbind
sf_column_name character; specifies active geometry; passed on to st_sf

Details

both rbind and cbind have non-standard method dispatch (see cbind): the rbind or cbind method for sf objects is only called when all arguments to be binded are of class sf.

If you need to cbind e.g. a data.frame to an sf, use data.frame directly and use st_sf on its result, or use bind_cols; see examples.
st_bind_cols is deprecated; use cbind instead.

Value

cbind called with multiple sf objects warns about multiple geometry columns present when the geometry column to use is not specified by using argument sf_column_name; see also st_sf.

Examples

crs = st_crs(3857)
a = st_sf(a=1, geom = st_sfc(st_point(0:1)), crs = crs)
b = st_sf(a=1, geom = st_sfc(st_linestring(matrix(1:4,2))), crs = crs)
c = st_sf(a=4, geom = st_sfc(st_multilinestring(list(matrix(1:4,2)))), crs = crs)
rbind(a,b,c)
rbind(a,b)
rbind(a,b)
rbind(b,c)
cbind(a,b,c) # warns if (require(dplyr))
 dplyr::bind_cols(a,b)
c = st_sf(a=4, geomc = st_sfc(st_multilinestring(list(matrix(1:4,2)))), crs = crs)
cbind(a,b,c, sf_column_name = "geomc")
df = data.frame(x=3)
st_sf(data.frame(c, df))
dplyr::bind_cols(c, df)
dbDataType, PostgreSQLConnection, sf-method

Determine database type for R vector

Description

Determine database type for R vector

Usage

```r
## S4 method for signature 'PostgreSQLConnection, sf'
dbDataType(dbObj, obj)
```

```r
## S4 method for signature 'DBIObject, sf'
dbDataType(dbObj, obj)
```

Arguments

- `dbObj` : DBIObject driver or connection.
- `obj` : Object to convert

dbWriteTable, PostgreSQLConnection, character, sf-method

Write sf object to Database

Description

Write sf object to Database

Usage

```r
## S4 method for signature 'PostgreSQLConnection, character, sf'
dbWriteTable(
  conn,
  name,
  value,
  ...
  row.names = FALSE,
  overwrite = FALSE,
  append = FALSE,
  field.types = NULL,
  binary = TRUE
)```

---

*dbWriteTable, PostgreSQLConnection, character, sf-method*
## S4 method for signature 'DBIOObject,character,sf'

dbWriteTable(
    conn,
    name,
    value,
    ...
)

### Arguments

- **conn** (DBIOObject): The database connection object.
- **name** (character): A character vector of names (table names, fields, keywords).
- **value** (data.frame): The data to be written.
- **...**: Placeholder for future use.
- **row.names** (character): Add a row.name column, or a vector of length nrow(obj) containing row.names; default FALSE.
- **overwrite** (logical): Will try to drop table before writing; default FALSE.
- **append** (logical): Append rows to existing table; default FALSE.
- **field.types** (null): Default NULL. Allows to override type conversion from R to PostgreSQL. See `dbDataType()` for details.
- **binary** (logical): Send geometries serialized as Well-Known Binary (WKB); if FALSE, uses Well-Known Text (WKT). Defaults to TRUE (WKB).

### Description

Drivers for which update should be TRUE by default

### Usage

db_drivers

### Format

An object of class character of length 12.
extension_map

Map extension to driver

Description
Map extension to driver

Usage
extension_map

Format
An object of class list of length 25.

gdal

functions to interact with gdal not meant to be called directly by users (but e.g. by stars::read_stars)

Description
functions to interact with gdal not meant to be called directly by users (but e.g. by stars::read_stars)

Usage
gdal_read(
  x,
  ..., options = character(0),
  driver = character(0),
  read_data = TRUE,
  NA_value = NA_real_,
  RasterIO_parameters = list()
)

gdal_write(
  x,
  ..., file,
  driver = "GTiff",
  options = character(0),
  type = "Float32",
  NA_value = NA_real_,
  geotransform,
  update = FALSE
)
gdal

gdal_inv_geotransform(gt)

gdal_crs(file, options = character(0))

gdal_metadata(
  file,
  domain_item = character(0),
  options = character(0),
  parse = TRUE
)

gdal_subdatasets(file, options = character(0), name = TRUE)

gdal_polygonize(
  x,
  mask = NULL,
  file = tempfile(),
  driver = "GTiff",
  use_integer = TRUE,
  geotransform,
  breaks = classInt::classIntervals(na.omit(as.vector(x[1])))$brks,
  use_contours = FALSE,
  contour_lines = FALSE,
  connect8 = FALSE,
  ...
)

gdal_rasterize(sf, x, gt, file, driver = "GTiff", options = character())

gdal_extract(f, pts, bilinear = FALSE)

Arguments

x character vector, possibly of length larger than 1 when more than one raster is read

... ignored

options character; raster layer read options

driver character; when empty vector, driver is auto-detected.

read_data logical; if FALSE, only the imagery metadata is returned

NA_value (double) non-NA value to use for missing values; if NA, when writing missing values are not specially flagged in output dataset, when reading the default (dataset) missing values are used (if present / set).

RasterIO_parameters list with named parameters to GDAL’s RasterIO; see the stars::read_stars documentation.
file character; file name
type gdal write type
geotransform length 6 numeric vector with GDAL geotransform parameters.
update logical; TRUE if in an existing raster file pixel values shall be updated.
gt double vector of length 6
domain_item character vector of length 0, 1 (with domain), or 2 (with domain and item); use "" for the default domain, use NA_character_ to query the domain names..
parse logical; should metadata be parsed into a named list (TRUE) or returned as character data?
name logical; retrieve name of subdataset? If FALSE, retrieve description
mask stars object with NA mask (0 where NA), or NULL
use_integer boolean; if TRUE, raster values are read as (and rounded to) unsigned 32-bit integers values; if FALSE they are read as 32-bit floating points numbers. The former is supposedly faster.
breaks numeric vector with break values for contour polygons (or lines)
use_contours logical;
contour_lines logical;
connect8 logical; if TRUE use 8 connection algorithm, rather than 4
sf object of class sf
f gdal raster data source filename
pts points matrix
bilinear logical; use bilinear interpolation, rather than nearest neighbor?

Details

These functions are exported for the single purpose of being used by package stars, they are not meant to be used directly and may change or disappear without prior notice or deprecation warnings.
gdal_inv_geotransform returns the inverse geotransform
gdal_crs reads coordinate reference system from GDAL data set
get_metadata gets metadata of a raster layer
gdal_subdatasets returns the subdatasets of a gdal dataset

Value

object of class crs, see st_crs.
named list with metadata items
gdal_subdatasets returns a zero-length list if file does not have subdatasets, and else a named list with subdatasets.
Examples

```r
Not run:
f = system.file("tif/L7_ETMs.tif", package="stars")
f = system.file("nc/avhrr-only-v2.19810901.nc", package = "stars")
gdal_metadata(f)
gdal_metadata(f, NA_character_)
try(gdal_metadata(f, "wrongDomain"))
gdal_metadata(f, c("", "AREA_OR_POINT"))

End(Not run)
```

Description

Native interface to gdal utils

Usage

```r
gdal_utils(
 util = "info",
 source,
 destination,
 options = character(0),
 quiet = !(util %in% c("info", "mdiminfo")),
 processing = character(0),
 colorfilename = character(0)
)
```

Arguments

- **util**: character; one of info, warp, rasterize, translate, vectortranslate (for ogr2ogr), buildvrt, demprocessing, nearblack, grid, mdiminfo and mdimtranslate (the last two requiring GDAL 3.1)
- **source**: character; name of input layer(s); for warp, buildvrt or mdimtranslate this can be more than one
- **destination**: character; name of output layer
- **options**: character; options for the utility
- **quiet**: logical; if TRUE, suppress printing the output for info and mdiminfo, and suppress printing progress
- **processing**: character; processing options for demprocessing
- **colorfilename**: character; name of color file for demprocessing (mandatory if processing="color-relief")
Value

info returns a character vector with the raster metadata; all other utils return (invisibly) a logical indicating success (i.e., TRUE); in case of failure, an error is raised.

Examples

```r
if (sf_extSoftVersion()["GDAL"] > "2.1.0") {
 # info utils can be used to list information about a raster
 # dataset. More info: https://gdal.org/programs/gdalinfo.html
 in_file <- system.file("tif/geomatrix.tif", package = "sf")
 gdal_utils("info", in_file, options = c("-mm", "-proj4"))
 # vectortranslate utils can be used to convert simple features data between
 in_file <- system.file("shape/storms_xyz.shp", package="sf")
 out_file <- paste0(tempfile(), ".gpkg")
 gdal_utils(
 util = "vectortranslate",
 source = in_file,
 destination = out_file, # output format must be specified for GDAL < 2.3
 options = c("-f", "GPKG")
)
 # The parameters can be specified as c("name") or c("name", "value"). The
 # vectortranslate utils can perform also various operations during the
 # conversion process. For example we can reproject the features during the
 # translation.
 gdal_utils(
 util = "vectortranslate",
 source = in_file,
 destination = out_file,
 options = c("-s_srs", "EPSG:4326", # input file SRS
 "-t_srs", "EPSG:2264", # output file SRS
 "-overwrite"
)
)
 st_read(out_file)
 # The parameter s_srs had to be specified because, in this case, the in_file
 # has no associated SRS.
 st_read(in_file)
}
```

---

geos_binary_ops

**Geometric operations on pairs of simple feature geometry sets**

Description

Perform geometric set operations with simple feature geometry collections
Usage

```r
st_intersection(x, y, ...)
```

```r
S3 method for class 'sfc'
st_intersection(x, y, ...)
```

```r
S3 method for class 'sf'
st_intersection(x, y, ...)
```

```r
st_difference(x, y, ...)
```

```r
S3 method for class 'sfc'
st_difference(x, y, ...)
```

```r
st_sym_difference(x, y, ...)
```

```r
st_snap(x, y, tolerance)
```

Arguments

- `x`: object of class `sf`, `sfc` or `sfg`
- `y`: object of class `sf`, `sfc` or `sfg`
- `...`: arguments passed on to `s2_options`
- `tolerance`: tolerance values used for `st_snap`; numeric value or object of class `units`; may have tolerance values for each feature in `x`

Details


When called with missing `y`, the `sfc` method for `st_intersection` returns all non-empty intersections of the geometries of `x`; an attribute `idx` contains a list-column with the indexes of contributing geometries.

When called with a missing `y`, the `sf` method for `st_intersection` returns an `sf` object with attributes taken from the contributing feature with lowest index; two fields are added: `n.overlaps` with the number of overlapping features in `x`, and a list-column `origins` with indexes of all overlapping features.

When `st_difference` is called with a single argument, overlapping areas are erased from geometries that are indexed at greater numbers in the argument to `x`; geometries that are empty or contained fully inside geometries with higher priority are removed entirely. The `st_difference.sfc` method with a single argument returns an object with an “idx” attribute with the orginal index for returned geometries.
st_snap snaps the vertices and segments of a geometry to another geometry's vertices. If y contains more than one geometry, its geometries are merged into a collection before snapping to that collection.

(from the GEOS docs:) "A snap distance tolerance is used to control where snapping is performed. Snapping one geometry to another can improve robustness for overlay operations by eliminating nearly-coincident edges (which cause problems during noding and intersection calculation). Too much snapping can result in invalid topology being created, so the number and location of snapped vertices is decided using heuristics to determine when it is safe to snap. This can result in some potential snaps being omitted, however."

Value

The intersection, difference or symmetric difference between two sets of geometries. The returned object has the same class as that of the first argument (x) with the non-empty geometries resulting from applying the operation to all geometry pairs in x and y. In case x is of class sf, the matching attributes of the original object(s) are added. The sfc geometry list-column returned carries an attribute idx, which is an n-by-2 matrix with every row the index of the corresponding entries of x and y, respectively.

Note

To find whether pairs of simple feature geometries intersect, use the function st_intersects instead of st_intersection.

See Also

st_union for the union of simple features collections; intersect and setdiff for the base R set operations.

Examples

```r
set.seed(131)
library(sf)
m = rbind(c(0,0), c(1,0), c(1,1), c(0,1), c(0,0))
p = st_polygon(list(m))
n = 100
l = vector("list", n)
for (i in 1:n)
 l[[i]] = p + 10 * runif(2)
s = st_sfc(l)
plot(s, col = sf.colors(categorical = TRUE, alpha = .5))
title("overlapping squares")
d = st_difference(s) # sequential differences: s1, s2-s1, s3-s2-s1, ...
plot(d, col = sf.colors(categorical = TRUE, alpha = .5))
title("non-overlapping differences")
i = st_intersection(s) # all intersections
plot(i, col = sf.colors(categorical = TRUE, alpha = .5))
title("non-overlapping intersections")
summary(lengths(st_overlaps(s, s))) # includes self-counts!
summary(lengths(st_overlaps(d, d)))
summary(lengths(st_overlaps(i, i)))
```
sf = st_sf(s)
i = st_intersection(sf) # all intersections
plot(i["n.overlaps"])
summary(i$n.overlaps - lengths(i$origins))
# A helper function that erases all of y from x:
st_erase = function(x, y) st_difference(x, st_union(st_combine(y)))
poly = st_polygon(list(cbind(c(0, 0, 1, 1, 0), c(0, 1, 1, 0, 0))))
lines = st_multilinestring(list(
     cbind(c(0, 1), c(1, 1.05)),
     cbind(c(0, 1), c(0, -.05)),
     cbind(c(1, .95, 1), c(1.05, .5, -.05))
))
snapped = st_snap(poly, lines, tolerance=.1)
plot(snapped, col='red')
plot(poly, border='green', add=TRUE)
plot(lines, lwd=2, col='blue', add=TRUE)
y = x,
sparse = TRUE,
prepared = TRUE,
...,
s2_model = "closed"
)

st_equals_exact(x, y, par, sparse = TRUE, prepared = FALSE, ...)

st_is_within_distance(x, y = x, dist, sparse = TRUE, ...)

Arguments

x object of class sf, sfc or sfg
y object of class sf, sfc or sfg; if missing, x is used
sparse logical; should a sparse index list be returned (TRUE) or a dense logical matrix? See below.
... passed on to s2_options
prepared logical; prepare geometry for x, before looping over y? See Details.
s2_model character; polygon/polyline model; one of "open", "semi-open" or "closed"; see Details.
par numeric; parameter used for "equals_exact" (margin);
dist distance threshold; geometry indexes with distances smaller or equal to this value are returned; numeric value or units value having distance units.

Details

If prepared is TRUE, and x contains POINT geometries and y contains polygons, then the polygon geometries are prepared, rather than the points.

For most predicates, a spatial index is built on argument x: see https://www.r-spatial.org/r/2017/06/22/spatial-index.html. Specifically, st_intersects, st_disjoint, st_touches st_crosses, st_within, st_contains, st_contains_properly, st_overlaps, st_equals, st_covers and st_covered_by all build spatial indexes for more efficient geometry calculations. st_relate, st_equals_exact, and do not; st_is_within_distance uses a spatial index for geographic coordinates when sf_use_s2() is true.

If y is missing, ‘st_predicate(x, x)’ is effectively called, and a square matrix is returned with diagonal elements ‘st_predicate(x[i], x[i])’.

Sparse geometry binary predicate (sgbp) lists have the following attributes: region.id with the row.names of x (if any, else 1:n), ncol with the number of features in y, and predicate with the name of the predicate used.

for s2_model, see https://github.com/r-spatial/s2/issues/32

‘st_contains_properly(A,B)’ is true if A intersects B’s interior, but not its edges or exterior; A contains A, but A does not properly contain A.

See also st_relate and https://en.wikipedia.org/wiki/DE-9IM for a more detailed description of the underlying algorithms.
st_equals_exact returns true for two geometries of the same type and their vertices corresponding by index are equal up to a specified tolerance.

**Value**

If sparse=FALSE, st.Predicate (with predicate e.g. "intersects") returns a dense logical matrix with element i,j TRUE when predicate(x[i],y[j]) (e.g., when geometry of feature i and j intersect); if sparse=TRUE, an object of class sgbp with a sparse list representation of the same matrix, with list element i an integer vector with all indices j for which predicate(x[i],y[j]) is TRUE (and hence a zero-length integer vector if none of them is TRUE). From the dense matrix, one can find out if one or more elements intersect by apply(mat,1,any), and from the sparse list by lengths(lst) > 0, see examples below.

**Note**

For intersection on pairs of simple feature geometries, use the function st_intersection instead of st_intersects.

**Examples**

```r
pts = st_sfc(st_point(c(.5,.5)), st_point(c(1.5, 1.5)), st_point(c(2.5, 2.5)))
pol = st_polygon(list(rbind(c(0,0), c(2,0), c(2,2), c(0,2), c(0,0))))
(mat = st_intersects(pts, pol))
which points fall inside a polygon?
apply(mat, 1, any)
lengths(lst) > 0
which points fall inside the first polygon?
st_intersects(pol, pts)[[1]]
```

---

## geos_combine

**Combine or union feature geometries**

**Description**

Combine several feature geometries into one, without unioning or resolving internal boundaries

**Usage**

```r
st_combine(x)
```

```r
st_union(x, y, ..., by_feature = FALSE, is_coverage = FALSE)
```

**Arguments**

- **x**: object of class sf, sfc or sfg
- **y**: object of class sf, sfc or sfg (optional)
- **...**: ignored
by_feature logical; if TRUE, union each feature, if FALSE return a single feature that is the geometric union of the set of features

is_coverage logical; if TRUE, use an optimized algorithm for features that form a polygonal coverage (have no overlaps)

Details

st_combine combines geometries without resolving borders, using c.sfg (analogous to c for ordinary vectors).

If st_union is called with a single argument, x, (with y missing) and by_feature is FALSE all geometries are unioned together and an sfg or single-geometry sfc object is returned. If by_feature is TRUE each feature geometry is unioned. This can for instance be used to resolve internal boundaries after polygons were combined using st_combine. If y is provided, all elements of x and y are unioned, pairwise (and by_feature is ignored). The former corresponds to gUnaryUnion, the latter to gUnion.

Unioning a set of overlapping polygons has the effect of merging the areas (i.e. the same effect as iteratively unioning all individual polygons together). Unioning a set of LineStrings has the effect of fully noding and dissolving the input linework. In this context "fully noded" means that there will be a node or endpoint in the output for every endpoint or line segment crossing in the input. "Dissolved" means that any duplicate (e.g. coincident) line segments or portions of line segments will be reduced to a single line segment in the output. Unioning a set of Points has the effect of merging all identical points (producing a set with no duplicates).

Value

st_combine returns a single, combined geometry, with no resolved boundaries; returned geometries may well be invalid.

If y is missing, st_union(x) returns a single geometry with resolved boundaries, else the geometries for all unioned pairs of x[i] and y[j].

See Also

st_intersection, st_difference, st_sym_difference

Examples

nc = st_read(system.file("shape/nc.shp", package="sf"))
st_combine(nc)
plot(st_union(nc))

---

geos_measures Compute geometric measurements

Description

Compute Euclidian or great circle distance between pairs of geometries; compute, the area or the length of a set of geometries.
Usage

st_area(x, ...)

## S3 method for class 'sfc'
st_area(x, ...)

st_length(x, ...)

st_distance(
  x,
  y,
  ..., 
  dist_fun,
  by_element = FALSE,
  which = ifelse(st_is_longlat(x), "Great Circle", "Euclidean"),
  par = 0,
  tolerance = 0
)

Arguments

x           object of class sf, sfc or sfg
...
         ignored
y           object of class sf, sfc or sfg, defaults to x
dist_fun     deprecated
by_element   logical; if TRUE, return a vector with distance between the first elements of x and y, the second, etc.; if FALSE, return the dense matrix with all pairwise distances.
which       character; for Cartesian coordinates only: one of Euclidean, Hausdorff or Frechet; for geodetic coordinates, great circle distances are computed; see details
par         for which equal to Hausdorff or Frechet, optionally use a value between 0 and 1 to densify the geometry
tolerance   ignored if st_is_longlat(x) is FALSE; otherwise, if set to a positive value, the first distance smaller than tolerance will be returned, and true distance may be smaller; this may speed up computation. In meters, or a units object convertible to meters.

Details


Value

If the coordinate reference system of x was set, these functions return values with unit of measurement; see set_units.
st_area returns the area of a geometry, in the coordinate reference system used; in case x is in degrees longitude/latitude, st_geod_area is used for area calculation.

st_length returns the length of a LINESTRING or MULTILINESTRING geometry, using the coordinate reference system. POINT, MULTIPOINT, POLYGON or MULTIPOLYGON geometries return zero.

If by_element is FALSE st_distance returns a dense numeric matrix of dimension length(x) by length(y); otherwise it returns a numeric vector of length x or y, the shorter one being recycled. Distances involving empty geometries are NA.

See Also

st_dimension, st_cast to convert geometry types

Examples

```r
b0 = st_polygon(list(rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))))
b1 = b0 + 2
b2 = b0 + c(-0.2, 2)
x = st_sfc(b0, b1, b2)
st_area(x)
line = st_sfc(st_linestring(rbind(c(30,30), c(40,40))), crs = 4326)
st_length(line)

outer = matrix(c(0,0,10,0,10,0,10,0,0),ncol=2, byrow=TRUE)
hole1 = matrix(c(1,1,2,2,1,1,1),ncol=2, byrow=TRUE)
hole2 = matrix(c(5,5,5,6,6,6,5,5,5),ncol=2, byrow=TRUE)
poly = st_polygon(list(outer, hole1, hole2))
mpoly = st_multipolygon(list(
 list(outer, hole1, hole2),
 list(outer + 12, hole1 + 12))
))
st_length(st_sfc(poly, mpoly))
p = st_sfc(st_point(c(0,0)), st_point(c(0,1)), st_point(c(0,2)))
st_distance(p, p)
st_distance(p, p, by_element = TRUE)
```

---

## geos_query

Dimension, simplicity, validity or is_empty queries on simple feature geometries

### Description

Dimension, simplicity, validity or is_empty queries on simple feature geometries
Usage

st_dimension(x, NA_if_empty = TRUE)

st_is_simple(x)

st_is_empty(x)

Arguments

x object of class sf, sfc or sfg
NA_if_empty logical; if TRUE, return NA for empty geometries

Value

st_dimension returns a numeric vector with 0 for points, 1 for lines, 2 for surfaces, and, if NA_if_empty is TRUE, NA for empty geometries.

st_is_simple returns a logical vector, indicating for each geometry whether it is simple (e.g., not self-intersecting)

st_is_empty returns for each geometry whether it is empty

Examples

x = st_sfc(
  st_point(0:1),
  st_linestring(rbind(c(0,0),c(1,1))),
  st_polygon(list(rbind(c(0,0),c(1,0),c(0,1),c(0,0)))))
  st_multipoint(),
  st_linestring(),
  st_geometrycollection())

st_dimension(x)

st_dimension(x, FALSE)

ls = st_linestring(rbind(c(0,0), c(1,1), c(1,0), c(0,1)))

st_is_simple(st_sfc(ls, st_point(c(0,0))))

ls = st_linestring(rbind(c(0,0), c(1,1), c(1,0), c(0,1)))

st_is_empty(st_sfc(ls, st_point(), st_linestring()))

Description

Geometric unary operations on simple feature geometry sets. These are all generics, with methods for sfg, sfc and sf objects, returning an object of the same class. All operations work on a per-feature basis, ignoring all other features.
Usage

\[
\text{st_buffer}( \\
x, \\
dist, \\
nQuadSegs = 30, \\
endCapStyle = "ROUND", \\
joinStyle = "ROUND", \\
mitreLimit = 1, \\
singleSide = FALSE, \\
... \\
) \\
\]

\[
\text{st_boundary}(x) \\
\text{st_convex_hull}(x) \\
\text{st_simplify}(x, \text{preserveTopology} = \text{FALSE}, \text{dTolerance} = 0) \\
\text{st_triangulate}(x, \text{dTolerance} = 0, \text{bOnlyEdges} = \text{FALSE}) \\
\text{st_inscribed_circle}(x, \text{dTolerance}, ...) \\
\text{st_voronoi}(x, \text{envelope}, \text{dTolerance} = 0, \text{bOnlyEdges} = \text{FALSE}) \\
\text{st_polygonize}(x) \\
\text{st_line_merge}(x) \\
\text{st_centroid}(x, ..., \text{of_largest_polygon} = \text{FALSE}) \\
\text{st_point_on_surface}(x) \\
\text{st_reverse}(x) \\
\text{st_node}(x) \\
\text{st_segmentize}(x, \text{dfMaxLength}, ...) \\
\]

Arguments

- **x**: object of class sfg, sfc or sf
- **dist**: numeric; buffer distance for all, or for each of the elements in x; in case dist is a units object, it should be convertible to arc_degree if x has geographic coordinates, and to st_crs(x)$units otherwise
- **nQuadSegs**: integer; number of segments per quadrant (fourth of a circle), for all or per-feature
- **endCapStyle**: character; style of line ends, one of 'ROUND', 'FLAT', 'SQUARE'
joinStyle character; style of line joins, one of 'ROUND', 'MITRE', 'BEVEL'
mitreLimit numeric; limit of extension for a join if joinStyle 'MITRE' is used (default 1.0, minimum 0.0)
singleSide logical; if TRUE, single-sided buffers are returned for linear geometries, in which case negative dist values give buffers on the right-hand side, positive on the left.
... ignored
preserveTopology logical; carry out topology preserving simplification? May be specified for each, or for all feature geometries. Note that topology is preserved only for single feature geometries, not for sets of them.
dTolerance numeric; tolerance parameter, specified for all or for each feature geometry.
bOnlyEdges logical; if TRUE, return lines, else return polygons
envelope object of class sfc or sfg containing a POLYGON with the envelope for a voronoi diagram; this only takes effect when it is larger than the default envelope, chosen when envelope is an empty polygon
of_largest_polygon logical; for st_centroid: if TRUE, return centroid of the largest (sub)polygon of a MULTIPOLYGON rather than of the whole MULTIPOLYGON
dfMaxLength maximum length of a line segment. If x has geographical coordinates (long/lat), dfMaxLength is either a numeric expressed in meter, or an object of class units with length units rad or degree; segmentation in the long/lat case takes place along the great circle, using st_geod_segmentize.

Details

st_buffer computes a buffer around this geometry/each geometry. If any of endCapStyle, joinStyle, or mitreLimit are set to non-default values ('ROUND', 'ROUND', 1.0 respectively) then the underlying 'buffer with style' GEOS function is used. See postgis.net/docs/ST_Buffer.html for details.
st_boundary returns the boundary of a geometry
st_convex_hull creates the convex hull of a set of points
st_simplify simplifies lines by removing vertices
st_triangulate triangulates set of points (not constrained). st_triangulate requires GEOS version 3.4 or above
st_inscribed_circle returns the maximum inscribed circle for polygon geometries. For st_inscribed_circle, if nQuadSegs is 0 a 2-point LINESTRING is returned with the center point and a boundary point of every circle, otherwise a circle (buffer) is returned where nQuadSegs controls the number of points per quadrant to approximate the circle. st_inscribed_circle requires GEOS version 3.9 or above
st_voronoi creates voronoi tessellation. st_voronoi requires GEOS version 3.5 or above
st_polygonize creates polygon from lines that form a closed ring. In case of st_polygonize, x must be an object of class LINESTRING or MULTILINESTRING, or an sfc geometry list-column object containing these
st_line_merge merges lines. In case of st_line_merge, x must be an object of class MULTILINESTRING, or an sfc geometry list-column object containing these
st_centroid gives the centroid of a geometry
st_point_on_surface returns a point guaranteed to be on the (multi)surface.
st_reverse reverses the nodes in a line
st_node adds nodes to linear geometries at intersections without a node, and only works on individual linear geometries
st_segmentize adds points to straight lines

Value
an object of the same class of x, with manipulated geometry.

Examples

```r
st_buffer, style options (taken from rgeos gBuffer)
l1 = st_as_sfc("LINESTRING(0 0,1 5,5,5 2,8 2,9 4,4 6.5)")
op = par(mfrow=c(2,3))
plot(st_buffer(l1, dist = 1, endCapStyle="ROUND"), reset = FALSE, main = "endCapStyle: ROUND")
plot(l1,col="blue",add=TRUE)
plot(st_buffer(l1, dist = 1, endCapStyle="FLAT"), reset = FALSE, main = "endCapStyle: FLAT")
plot(l1,col="blue",add=TRUE)
plot(st_buffer(l1, dist = 1, endCapStyle="SQUARE"), reset = FALSE, main = "endCapStyle: SQUARE")
plot(l1,col="blue",add=TRUE)
plot(st_buffer(l1, dist = 1, nQuadSegs=1), reset = FALSE, main = "nQuadSegs: 1")
plot(l1,col="blue",add=TRUE)
plot(st_buffer(l1, dist = 1, nQuadSegs=2), reset = FALSE, main = "nQuadSegs: 2")
plot(l1,col="blue",add=TRUE)
plot(st_buffer(l1, dist = 1, nQuadSegs= 5), reset = FALSE, main = "nQuadSegs: 5")
plot(l1,col="blue",add=TRUE)
par(op)

l2 = st_as_sfc("LINESTRING(0 0,1 5,3 2)")
op = par(mfrow = c(2, 3))
plot(st_buffer(l2, dist = 1, joinStyle="ROUND"), reset = FALSE, main = "joinStyle: ROUND")
plot(l2, col = "blue", add = TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="MITRE"), reset = FALSE, main = "joinStyle: MITRE")
plot(l2, col = "blue", add = TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="BEVEL"), reset = FALSE, main = "joinStyle: BEVEL")
plot(l2, col = "blue", add=TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="MITRE", mitreLimit=0.5), reset = FALSE, main = "mitreLimit: 0.5")
plot(l2, col = "blue", add = TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="MITRE",mitreLimit=1), reset = FALSE, main = "mitreLimit: 1")
plot(l2, col = "blue", add = TRUE)
plot(st_buffer(l2, dist = 1, joinStyle="MITRE",mitreLimit=3), reset = FALSE, main = "mitreLimit: 3")
plot(l2, col = "blue", add = TRUE)
par(op)
nc = st_read(system.file("shape/nc.shp", package="sf"))
```
nc_g = st_geometry(nc)
plot(st_convex_hull(nc_g))
plot(nc_g, border = grey(.5), add = TRUE)
if (sf_extSoftVersion()["GEOS"] >= "3.9.0") {
  nc_t = st_transform(nc, 'EPSG:2264')
  x = st_inscribed_circle(st_geometry(nc_t))
  plot(st_geometry(nc_t), asp = 1, col = grey(.9))
  plot(x, add = TRUE, col = '#ff9999')
}
set.seed(1)
x = st_multipoint(matrix(runif(10),,2))
box = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0))))
if (sf_extSoftVersion()["GEOS"] >= "3.5.0") {
  v = st_sfc(st_voronoi(x, st_sfc(box)))
  plot(v, col = 0, border = 1, axes = TRUE)
  plot(box, add = TRUE, col = 0, border = 1)  # a larger box is returned, as documented
  plot(x, add = TRUE, col = 'red', cex=2, pch=16)
  plot(st_intersection(st_cast(v), box))  # clip to smaller box
  plot(x, add = TRUE, col = 'red', cex=2, pch=16)
  # matching Voronoi polygons to data points:
  # https://github.com/r-spatial/sf/issues/1030
  # generate 50 random unif points:
  n = 100
  pts = st_as_sf(data.frame(matrix(runif(n), , 2), id = 1:(n/2)), coords = c("X1", "X2"))
  # compute Voronoi polygons:
  pols = st_collection_extract(st_voronoi(do.call(c, st_geometry(pts))))
  # match them to points:
  pts$pols = pols[unlist(st_intersects(pts, pols))]
  plot(pts['id'], pch = 16)  # ID is color
  plot(st_set_geometry(pts, "pols")['id'], xlim = c(0,1), ylim = c(0,1), reset = FALSE)
}
mls = st_multilinestring(list(matrix(c(0,0,0,1,1,1,0,0),,2,byrow=TRUE)))
st_polygonize(st_sfc(mls))
mls = st_multilinestring(list(rbind(c(0,0), c(1,1)), rbind(c(2,0), c(1,1))))
st_line_merge(st_sfc(mls))
plot(nc_g, axes = TRUE)
plot(st_centroid(nc_g), add = TRUE, pch = 3, col = 'red')
mp = st_combine(st_buffer(st_sfc(lapply(1:3, function(x) st_point(c(x,x)))), 0.2 * 1:3))
plot(mp)
plot(st_centroid(mp), add = TRUE, col = 'red')  # centroid of combined geometry
if (sf_extSoftVersion()["GEOS"] >= "3.7.0") {
  st_reverse(st_linestring(rbind(c(1,1), c(2,2), c(3,3))))
}
(l = st_linestring(rbind(c(0,0), c(1,1), c(0,1), c(1,0), c(0,0))))
st_polygonize(st_node(l))
st_node(st_multilinestring(list(rbind(c(0,0), c(1,1), c(0,1), c(1,0), c(0,0)))))
sf = sf(a=1, geom=st_sfc(st_linestring(rbind(c(0,0),c(1,1)))))
seg = st_segmentize(sf, units::set_units(100, km))
```r
seg = st_segmentize(sf, units::set_units(0.01, rad))
nrow(seg$geom[[1]])
```

### Internal functions

#### Description

Internal functions

#### Usage

```r
.stop_geos(msg)
```

#### Arguments

- `msg` error message

---

### is_driver_available

#### Check if driver is available

#### Description

Search through the driver table if driver is listed

#### Usage

```r
is_driver_available(drv, drivers = st_drivers())
```

#### Arguments

- `drv` character. Name of driver
- `drivers` data.frame. Table containing driver names and support. Default is from `st_drivers`
is_driver_can

Check if a driver can perform an action

Description

Search through the driver table to match a driver name with an action (e.g. "write") and check if the action is supported.

Usage

```r
is_driver_can(drv, drivers = st_drivers(), operation = "write")
```

Arguments

- `drv`: character. Name of driver
- `drivers`: data.frame. Table containing driver names and support. Default is from `st_drivers`
- `operation`: character. What action to check

is_geometry_column

Check if the columns could be of a coercable type for sf

Description

Check if the columns could be of a coercable type for sf

Usage

```r
is_geometry_column(con, x, classes = "")
```

Arguments

- `con`: database connection
- `x`: inherits data.frame
- `classes`: classes inherited
merge.sf

merge method for sf and data.frame object

Description

merge method for sf and data.frame object

Usage

## S3 method for class 'sf'
merge(x, y, ...)

Arguments

x
   object of class sf
y
   object of class data.frame
... arguments passed on to merge.data.frame

Examples

a = data.frame(a = 1:3, b = 5:7)
st_geometry(a) = st_sfc(st_point(c(0,0)), st_point(c(1,1)), st_point(c(2,2)))
b = data.frame(x = c("a", "b", "c"), b = c(2,5,6))
merge(a, b)
merge(a, b, all = TRUE)

nc

North Carolina SIDS data

Description

Sudden Infant Death Syndrome (SIDS) sample data for North Carolina counties, two time periods (1974-78 and 1979-84). The details of the columns can be found on the seealso URL, spdep package’s vignette. Please note that, though this is basically the same as nc.sids dataset in spData package, nc only contains a subset of variables. The differences are also discussed on the vignette.

See Also

https://r-spatial.github.io/spdep/articles/sids.html
Ops

S3 Ops Group Generic Functions for simple feature geometries

Description

S3 Ops Group Generic Functions for simple feature geometries

Usage

## S3 method for class 'sfg'
Ops(e1, e2)

## S3 method for class 'sfc'
Ops(e1, e2)

Arguments

e1 object of class sfg or sfc
e2 numeric, or object of class sfg; in case e1 is of class sfc also an object of class sfc is allowed

Details

in case e2 is numeric, +, -, *, /,

If e1 is of class sfc, and e2 is a length 2 numeric, then it is considered a two-dimensional point (and if needed repeated as such) only for operations + and -, in other cases the individual numbers are repeated; see commented examples.

Value

object of class sfg

Examples

st_point(c(1,2,3)) + 4
st_point(c(1,2,3)) * 3 + 4
m = matrix(0, 2, 2)
diag(m) = c(1, 3)
# affine:
st_point(c(1,2)) * m + c(2,5)
# world in 0-360 range:
library(maps)
w = st_as_sf(map('world', plot = FALSE, fill = TRUE))
w2 = (st_geometry(w) + c(360,90)) %x% c(360) - c(0,90)
w3 = st_wrap_dateline(st_set_crs(w2 - c(180,0), 4326)) + c(180,0)
plot(st_set_crs(w3, 4326), axes = TRUE)
(mp <- st_point(c(1,2)) + st_point(c(3,4))) # MULTIPOINT (1 2, 3 4)
mp - st_point(c(3,4)) # POINT (1 2)
opar = par(mfrow = c(2,2), mar = c(0, 0, 1, 0))
a = st_buffer(st_point(c(0,0)), 2)
b = a + c(2, 0)
p = function(m) { plot(c(a,b)); plot(eval(parse(text=m)), col=grey(.9), add = TRUE); title(m) }
lapply(c('a | b', 'a / b', 'a & b', 'a %% b'), p)
par(opar)
sfc = st_sfc(st_point(0:1), st_point(2:3))
sfc + c(2,3) # added to EACH geometry
sfc * c(2,3) # first geometry multiplied by 2, second by 3
nc = st_transform(st_read(system.file("gpkg/nc.gpkg", package="sf"), 32119)) # nc state plane, m
b = st_buffer(st_centroid(st_union(nc)), units::set_units(50, km)) # shoot a hole in nc:
plot(st_geometry(nc) / b, col = grey(.9))

plot sf object

Description
plot one or more attributes of an sf object on a map Plot sf object

Usage
## S3 method for class 'sf'
plot(
x,
y,
....,
main,
pal = NULL,
nbreaks = 10,
breaks = "pretty",
max.plot = if (is.null(n <- options("sf_max.plot")[[1]])) 9 else n,
key.pos = get_key_pos(x, ...),
key.length = 0.618,
key.width = lcm(1.8),
reset = TRUE,
logz = FALSE,
extent = x,
xlim = st_bbbox(extent)[c(1, 3)],
ylim = st_bbbox(extent)[c(2, 4)]
)

get_key_pos(x, ...)

## S3 method for class 'sfc POINT'
plot(
x,
y,
...,
  pch = 1,
  cex = 1,
  col = 1,
  bg = 0,
  lwd = 1,
  lty = 1,
  type = "p",
  add = FALSE
)

## S3 method for class 'sfc_MULTIPOINT'
plot(
  x,
  y,
  ...
  pch = 1,
  cex = 1,
  col = 1,
  bg = 0,
  lwd = 1,
  lty = 1,
  type = "p",
  add = FALSE
)

## S3 method for class 'sfc_LINESTRING'
plot(x, y, ..., lty = 1, lwd = 1, col = 1, pch = 1, type = "l", add = FALSE)

## S3 method for class 'sfc_CIRCULARSTRING'
plot(x, y, ...)

## S3 method for class 'sfc_MULTILINESTRING'
plot(x, y, ..., lty = 1, lwd = 1, col = 1, pch = 1, type = "l", add = FALSE)

## S3 method for class 'sfc_POLYGON'
plot(
  x,
  y,
  ...
  lty = 1,
  lwd = 1,
  col = NA,
  cex = 1,
  pch = NA,
  border = 1,
  add = FALSE,
  rule = "evenodd"
## S3 method for class 'sfc_MULTIPOLYGON'
plot(
  x,
  y,
  ..., 
  lty = 1, 
  lwd = 1, 
  col = NA, 
  border = 1, 
  add = FALSE, 
  rule = "evenodd"
)

## S3 method for class 'sfc_GEOMETRYCOLLECTION'
plot(
  x,
  y,
  ..., 
  pch = 1, 
  cex = 1, 
  bg = 0, 
  lty = 1, 
  lwd = 1, 
  col = 1, 
  border = 1, 
  add = FALSE
)

## S3 method for class 'sfc_GEOMETRY'
plot(
  x,
  y,
  ..., 
  pch = 1, 
  cex = 1, 
  bg = 0, 
  lty = 1, 
  lwd = 1, 
  col = ifelse(st_dimension(x) == 2, NA, 1), 
  border = 1, 
  add = FALSE
)

## S3 method for class 'sfg'
plot(x, ...)

)
plot_sf(
  x,
  xlim = NULL,
  ylim = NULL,
  asp = NA,
  axes = FALSE,
  bgc = par("bg"),
  ...,
  xaxs,
  yaxs,
  lab,
  setParUsrBB = FALSE,
  bgMap = NULL,
  expandBB = c(0, 0, 0, 0),
  graticule = NA_crs_,
  col_graticule = "grey",
  border,
  extent = x
)

sf.colors(n = 10, cutoff.tails = c(0.35, 0.2), alpha = 1, categorical = FALSE)

Arguments

x  object of class sf
y  ignored
... further specifications, see plot_sf and plot and details.
main title for plot (NULL to remove)
pal palette function, similar to rainbow, or palette values; if omitted, sf.colors is used
nbreaks number of colors breaks (ignored for factor or character variables)
breaks either a numeric vector with the actual breaks, or a name of a method accepted by the style argument of classIntervals
max.plot integer; lower boundary to maximum number of attributes to plot; the default value (9) can be overridden by setting the global option sf_max.plot, e.g. options(sf_max.plot=2)
key.pos integer; side to plot a color key: 1 bottom, 2 left, 3 top, 4 right; set to NULL to omit key completely, 0 to only not plot the key, or -1 to select automatically. If multiple columns are plotted in a single function call by default no key is plotted and every subplot is stretched individually; if a key is requested (and col is missing) all maps are colored according to a single key. Auto select depends on plot size, map aspect, and, if set, parameter asp.
key.length amount of space reserved for the key along its axis, length of the scale bar
key.width amount of space reserved for the key (incl. labels), thickness/width of the scale bar
reset logical; if FALSE, keep the plot in a mode that allows adding further map elements; if TRUE restore original mode after plotting sf objects with attributes; see details.

logz logical; if TRUE, use log10-scale for the attribute variable. In that case, breaks and at need to be given as log10-values; see examples.

extent object with an st_bbox method to define plot extent; defaults to x

xlim see plot.window

ylim see plot.window

pch plotting symbol

cex symbol size

col color for plotting features; if length(col) does not equal 1 or nrow(x), a warning is emitted that colors will be recycled. Specifying col suppresses plotting the legend key.

bg symbol background color

lwd line width

lty line type

type plot type: 'p' for points, 'l' for lines, 'b' for both

add logical; add to current plot? Note that when using add=TRUE, you may have to set reset=FALSE in the first plot command.

border color of polygon border(s)

rule see polypath; for winding, exterior ring direction should be opposite that of the holes; with evenodd, plotting is robust against misspecified ring directions

asp see below, and see par

axes logical; should axes be plotted? (default FALSE)

bgc background color

xaxs see par

yaxs see par

lab see par

setParUsrBB default FALSE; set the par “usr” bounding box; see below

bgMap object of class ggmap, or returned by function RgoogleMaps::GetMap

expandBB numeric; fractional values to expand the bounding box with, in each direction (bottom, left, top, right)

graticule logical, or object of class crs (e.g., st_crs(4326) for a WGS84 graticule), or object created by st_graticule; TRUE will give the WGS84 graticule or object returned by st_graticule

col_graticule color to used for the graticule (if present)

n integer; number of colors

cutoff.tails numeric, in [0,0.5] start and end values

alpha numeric, in [0,1], transparency

categorical logical; do we want colors for a categorical variable? (see details)
Details

plot.sf maximally plots max.plot maps with colors following from attribute columns, one map per attribute. It uses sf.colors for default colors. For more control over placement of individual maps, set parameter `mfrow` with `par` prior to plotting, and plot single maps one by one; note that this only works in combination with setting parameters `key.pos=NULL` (no legend) and `reset=FALSE`.

plot.sfc plots the geometry, additional parameters can be passed on to control color, lines or symbols.

When setting `reset` to `FALSE`, the original device parameters are lost, and the device must be reset using `dev.off()` in order to reset it.

Parameter `at` can be set to specify where labels are placed along the key; see examples.

plot_sf sets up the plotting area, axes, graticule, or webmap background; it is called by all plot methods before anything is drawn.

The argument `setParUsrBB` may be used to pass the logical value `TRUE` to functions within `plot.Spatial`. When set to `TRUE`, `par("usr")` will be overwritten with `c(xlim, ylim)`, which defaults to the bounding box of the spatial object. This is only needed in the particular context of graphic output to a specified device with given width and height, to be matched to the spatial object, when using `par("xaxs")` and `par("yaxs")` in addition to `par(mar=c(0,0,0,0))`.

The default aspect for map plots is 1; if however data are not projected (coordinates are long/lat), the aspect is by default set to `1/cos(My * pi/180)` with `My` the y coordinate of the middle of the map (the mean of `ylim`, which defaults to the y range of bounding box). This implies an Equirectangular projection.

non-categorical colors from `sf.colors` were taken from `bpy.colors`, with modified `cutoff.tails` defaults. If categorical is `TRUE`, default colors are from `https://colorbrewer2.org/` (if `n < 9`, Set2, else Set3).

Examples

```r
nc = st_read(system.file("gpkg/nc.gpkg", package="sf"), quiet = TRUE)
plot single attribute, auto-legend:
plot(nc["SID74"])
plot multiple:
plot(nc[c("SID74", "SID79")]) # better use ggplot2::geom_sf to facet and get a single legend!
adding to a plot of an sf object only works when using reset=FALSE in the first plot:
plot(nc["SID74"], reset = FALSE)
plot(st_centroid(st_geometry(nc)), add = TRUE)
log10 z-scale:
plot(nc["SID74"], logz = TRUE, breaks = c(0,.5,1,1.5,2), at = c(0,.5,1,1.5,2))
and we need to reset the plotting device after that, e.g. by
layout(1)
when plotting only geometries, the reset=FALSE is not needed:
plot(st_geometry(nc))
plot(st_geometry(nc)[1], col = 'red', add = TRUE)
add a custom legend to an arbitrary plot:
layout(matrix(1:2, ncol = 2), widths = c(1, lcm(2)))
plot(1)
.image_scale(1:10, col = sf.colors(9), key.length = lcm(8), key.pos = 4, at = 1:10)
```

prefix_map  Map prefix to driver

Description
Map prefix to driver

Usage
prefix_map

Format
An object of class list of length 10.

proj_tools  Manage PROJ settings

Description
Manage PROJ search path and network settings

Usage
sf_proj_search_paths(paths = character(0))

sf_proj_network(enable = FALSE, url = character(0))

sf_proj_pipelines(
  source_crs,
  target_crs,
  authority = character(0),
  AOI = numeric(0),
  Use = "NONE",
  grid_availability = "USED",
  desired_accuracy = -1,
  strict_containment = FALSE,
  axis_order_authority_compliant = st_axis_order()
Arguments

- **paths**: the search path to be set; omit if no paths need to be set
- **enable**: logical; set this to enable (TRUE) or disable (FALSE) the proj network search facility
- **url**: character; use this to specify and override the default proj network CDN
- **source_crs**: object of class ‘crs’ or character
- **target_crs**: object of class ‘crs’ or character
- **authority**: character; constrain output pipelines to those of authority
- **AOI**: length four numeric; desired area of interest for the resulting coordinate transformations (west, south, east, north, in degrees). For an area of interest crossing the anti-meridian, west will be greater than east.
- **Use**: one of "NONE", "BOTH", "INTERSECTION", "SMALLEST", indicating how AOI’s of source_crs and target_crs are being used
- **grid_availability**: character; one of "USED" (Grid availability is only used for sorting results. Operations where some grids are missing will be sorted last), "DISCARD" (Completely discard an operation if a required grid is missing), "IGNORED" (Ignore grid availability at all. Results will be presented as if all grids were available.), or "AVAILABLE" (Results will be presented as if grids known to PROJ (that is registered in the grid_alternatives table of its database) were available. Used typically when networking is enabled.)
- **desired_accuracy**: numeric; only return pipelines with at least this accuracy
- **strict_containment**: logical; default FALSE; permit partial matching of the area of interest; if TRUE strictly contain the area of interest. The area of interest is either as given in AOI, or as implied by the source/target coordinate reference systems
- **axis_order_authority_compliant**: logical; if FALSE always choose ‘x’ or longitude for the first axis; if TRUE, follow the axis orders given by the coordinate reference systems when constructing the for the first axis; if FALSE, follow the axis orders given by

Value

- `sf_proj_search_paths()` returns the search path (possibly after setting it)
- `sf_proj_network` when called without arguments returns a logical indicating whether network search of datum grids is enabled, when called with arguments it returns a character vector with the URL of the CDN used (or specified with ‘url’).
- `sf_proj_pipelines` returns a table with candidate coordinate transformation pipelines along with their accuracy; ‘NA’ accuracy indicates ballpark accuracy.
rawToHex  

Convert raw vector(s) into hexadecimal character string(s)

Description

Convert raw vector(s) into hexadecimal character string(s)

Usage

rawToHex(x)

Arguments

x  

raw vector, or list with raw vectors

s2  

functions for spherical geometry, using s2 package

Description

functions for spherical geometry, using the s2 package based on the google s2geometry.io library

Usage

sf_use_s2(use_s2)

## S3 method for class 's2_geography'
st_as_sfc(
  x,
  ...,
  crs = st_crs(4326),
  endian = match(.Platform$endian, c("big", "little")) - 1L
)

## S3 method for class 's2_geography'
st_as_sf(x, ..., crs = st_crs(4326))

st_as_s2(x, ...)

## S3 method for class 'sf'
st_as_s2(x, ...)

## S3 method for class 'sfc'
st_as_s2(x, ..., oriented = FALSE)
Arguments

use_s2 logical; if TRUE, use the s2 spherical geometry package for geographical coordinate operations
x object of class sf, sfc or sfg
... passed on
crs coordinate reference system; object of class crs
endian integer; 0 or 1: defaults to the endian of the native machine
oriented logical; if FALSE, polygons that cover more than half of the globe are inverted; if TRUE, no reversal takes place and it is assumed that the inside of the polygon is to the left of the polygon’s path.

Details

st_as_s2 converts an sf POLYGON object into a form readable by s2.

Value

sf_use_s2 returns the value of this variable before (re)setting it, invisibly if use_s2 is not missing.

Examples

m = rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))
m1 = rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,0), c(-1,-1))
m0 = m[5:1,]
mp = st_multipolygon(list(
    list(m, 0.8 * m0, 0.01 * m1 + 0.9),
    list(0.7 * m, 0.6 * m0),
    list(0.5 * m0),
    list(m + 2),
    list(m + 4, (0.9 * m0) + 4)
))
sf = st_sfc(mp, mp, crs = 'EPSG:4326')
s2 = st_as_s2(sf)

sf Create sf object

Description

Create sf, which extends data.frame-like objects with a simple feature list column
Usage

```r
st_sf(
 ...,
 agr = NA_agr_,
 row.names,
 stringsAsFactors = sf_stringsAsFactors(),
 crs,
 precision,
 sf_column_name = NULL,
 check_ring_dir = FALSE,
 sfc_last = TRUE
)
```

## S3 method for class 'sf'
```r
x[i, j, ..., drop = FALSE, op = st_intersects]
```

## S3 method for class 'sf'
```r
print(x, ..., n = getOption("sf_max_print", default = 10))
```

Arguments

... column elements to be binded into an sf object or a single list or data.frame with such columns; at least one of these columns shall be a geometry list-column of class sfc or be a list-column that can be converted into an sfc by st_as_sfc.

agr character vector; see details below.

row.names row.names for the created sf object

stringsAsFactors logical; see st_read

crs coordinate reference system, something suitable as input to st_crs

precision numeric; see st_as_binary

sf_column_name character; name of the active list-column with simple feature geometries; in case there is more than one and sf_column_name is NULL, the first one is taken.

check_ring_dir see st_read

sfc_last logical; if TRUE, sfc columns are always put last, otherwise column order is left unmodified.

x object of class sf

i record selection, see [.data.frame

j variable selection, see [.data.frame

drop logical, default FALSE; if TRUE drop the geometry column and return a data.frame, else make the geometry sticky and return a sf object.

op function; geometrical binary predicate function to apply when i is a simple feature object

n maximum number of features to print; can be set globally by options(sf_max_print=...)
Details

 agr, attribute-geometry-relationship, specifies for each non-geometry attribute column how it relates to the geometry, and can have one of following values: "constant", "aggregate", "identity". "constant" is used for attributes that are constant throughout the geometry (e.g. land use), "aggregate" where the attribute is an aggregate value over the geometry (e.g. population density or population count), "identity" when the attributes uniquely identifies the geometry of particular "thing", such as a building ID or a city name. The default value, NA_agr_, implies we don’t know.

When a single value is provided to agr, it is cascaded across all input columns; otherwise, a named vector like c(feature1='constant',...) will set agr value to 'constant' for the input column named feature1. See demo(nc) for a worked example of this.

When confronted with a data.frame-like object, st_sf will try to find a geometry column of class sfc, and otherwise try to convert list-columns when available into a geometry column, using st_as_sfc.

[.sf will return a data.frame or vector if the geometry column (of class sfc) is dropped (drop=TRUE), an sfc object if only the geometry column is selected, and otherwise return an sf object; see also [.data.frame; for [.sf ... arguments are passed to op.

Examples

g = st_sfc(st_point(1:2))
st_sf(a=3,g)
st_sf(g, a=3)
st_sf(a=3, st_sfc(st_point(1:2))) # better to name it!
# create empty structure with preallocated empty geometries:
nrows <- 10
geometry = st_sfc(lapply(1:nrows, function(x) st_geometrycollection()))
df <- st_sf(id = 1:nrows, geometry = geometry)
g = st_sfc(st_point(1:2), st_point(3:4))
s = st_sf(a=3:4, g)
s[1,]
class(s[1,])
s[,1]
class(s[,1])
s[,2]
class(s[,2])
g = st_sf(a=2:3, g)
pol = st_sfc(st_polygon(list(cbind(c(0,3,3,0,0),c(0,0,3,3,0)))))
h = st_sf(r = 5, pol)
g[h,]
h[g,]

sf-defunct

Deprecated functions in sf

Description

These functions are provided for compatibility with older version of sf. They may eventually be completely removed.
Usage

st_read_db(
  conn = NULL,
  table = NULL,
  query = NULL,
  geom_column = NULL,
  EWKB = TRUE,
  ...
)

Arguments

  conn        open database connection
  table       table name
  query       SQL query to select records; see details
  geom_column deprecated. Geometry column name
  EWKB        logical; is the WKB of type EWKB? if missing, defaults to TRUE
  ...         parameter(s) passed on to st_as_sf

Details

The geom_column argument is deprecated. The function will automatically find the geometry type columns. For the RPostgreSQL drivers it will try to cast all the character columns, which can be long for very wide tables.

Details

  st_read_db now a synonym for st_read
  st_write_db now a synonym for st_write

sfc

Create simple feature geometry list column

Description

Create simple feature geometry list column, set class, and add coordinate reference system and precision

Usage

st_sfc(..., crs = NA_crs_, precision = 0, check_ring_dir = FALSE, dim)
Arguments

... zero or more simple feature geometries (objects of class sfg), or a single list of such objects; NULL values will get replaced by empty geometries.

crs coordinate reference system: integer with the EPSG code, or character with proj4string

precision numeric; see st_as_binary

check_ring_dir see st_read

dim character; if this function is called without valid geometries, this argument may carry the right dimension to set empty geometries

Details

A simple feature geometry list-column is a list of class c("stc_TYPE","sfc") which most often contains objects of identical type; in case of a mix of types or an empty set, TYPE is set to the superclass GEOMETRY.

Value

an object of class sfc, which is a classed list-column with simple feature geometries.

Examples

pt1 = st_point(c(0,1))
pt2 = st_point(c(1,1))
(sfc = st_sfc(pt1, pt2))
d = st_sf(data.frame(a=1:2, geom=sfc))

sf_extSoftVersion() Provide the external dependencies versions of the libraries linked to sf

Description

Provide the external dependencies versions of the libraries linked to sf

Usage

sf_extSoftVersion()
**sf_project**  
*directly transform a set of coordinates*

**Description**

directly transform a set of coordinates

**Usage**

```r
sf_add_proj_units()

sf_project(
 from = character(0),
 to = character(0),
 pts,
 keep = FALSE,
 warn = TRUE,
 authority_compliant = st_axis_order()
)
```

**Arguments**

- `from` character description of source CRS, or object of class `crs`, or pipeline describing a transformation
- `to` character description of target CRS, or object of class `crs`
- `pts` two-column numeric matrix, or object that can be coerced into a matrix
- `keep` logical value controlling the handling of unprojectable points. If `keep` is `TRUE`, then such points will yield `Inf` or `-Inf` in the return value; otherwise an error is reported and nothing is returned.
- `warn` logical; if `TRUE`, warn when non-finite values are generated
- `authority_compliant` logical; `TRUE` means handle axis order authority compliant (e.g. EPSG:4326 implying x=lat, y=lon), `FALSE` means use visualisation order (i.e. always x=lon, y=lat)

**Details**

`sf_add_proj_units` loads the PROJ units ‘link’, ‘us_in’, ‘ind_yd’, ‘ind_ft’, and ‘ind_ch’ into the udunits database, and returns `TRUE` invisibly on success.

**Value**

two-column numeric matrix with transformed/converted coordinates, returning invalid values as `Inf`
Methods for dealing with sparse geometry binary predicate lists

Description

Methods for dealing with sparse geometry binary predicate lists

Usage

```r
S3 method for class 'sgbp'
print(x, ..., n = 10, max_nb = 10)

S3 method for class 'sgbp'
t(x)

S3 method for class 'sgbp'
as.matrix(x, ...)

S3 method for class 'sgbp'
dim(x)
```

Arguments

- `x` object of class `sgbp`
- `...` ignored
- `n` integer; maximum number of items to print
- `max_nb` integer; maximum number of neighbours to print for each item

Details

sgbp are sparse matrices, stored as a list with integer vectors holding the ordered TRUE indices of each row. This means that for a dense, \( m \times n \) matrix \( Q \) and a list \( L \), if \( Q[i,j] \) is TRUE then \( j \) is an element of \( L[[i]] \). Reversed: when \( k \) is the value of \( L[[i]][j] \), then \( Q[i,k] \) is TRUE.

Create simple feature from a numeric vector, matrix or list

Description

Create simple feature from a numeric vector, matrix or list
Usage

```r
st_point(x = c(NA_real_, NA_real_), dim = "XYZ")

st_multipoint(x = matrix(numeric(0), 0, 2), dim = "XYZ")

st_linestring(x = matrix(numeric(0), 0, 2), dim = "XYZ")

st_polygon(x = list(), dim = if (length(x)) "XYZ" else "XY")

st_multilinestring(x = list(), dim = if (length(x)) "XYZ" else "XY")

st_multipolygon(x = list(), dim = if (length(x)) "XYZ" else "XY")

st_geometrycollection(x = list(), dims = "XY")
```

## S3 method for class 'sfg'

```r
print(x, ..., width = 0)
```

## S3 method for class 'sfg'

```r
head(x, n = 10L, ...)
```

## S3 method for class 'sfg'

```r
format(x, ..., width = 30)
```

## S3 method for class 'sfg'

```r
c(..., recursive = FALSE, flatten = TRUE)
```

## S3 method for class 'sfg'

```r
as.matrix(x, ...)
```

Arguments

- `x` for `st_point`, numeric vector (or one-row-matrix) of length 2, 3 or 4; for `st_linestring` and `st_multipoint`, numeric matrix with points in rows; for `st_polygon` and `st_multilinestring`, list with numeric matrices with points in rows; for `st_multipolygon`, list of lists with numeric matrices; for `st_geometrycollection` list with (non-geometrycollection) simple feature objects

- `dim` character, indicating dimensions: "XY", "XYZ", "XYM", or "XYZM"; only really needed for three-dimensional points (which can be either XYZ or XYM) or empty geometries; see details

- `dims` character; specify dimensionality in case of an empty (NULL) geometrycollection, in which case `x` is the empty `list()`.  

- `...` objects to be pasted together into a single simple feature

- `width` integer; number of characters to be printed (max 30; 0 means print everything)

- `n` integer; number of elements to be selected

- `recursive` logical; ignored
flatten logical; if TRUE, try to simplify results; if FALSE, return geometry collection containing all objects

Details

"XYZ" refers to coordinates where the third dimension represents altitude, "XYM" refers to three-dimensional coordinates where the third dimension refers to something else ("M" for measure); checking of the sanity of x may be only partial.

When flatten=TRUE, this method may merge points into a multipoint structure, and may not preserve order, and hence cannot be reverted. When given fish, it returns fish soup.

Value

object of the same nature as x, but with appropriate class attribute set

as.matrix returns the set of points that form a geometry as a single matrix, where each point is a row; use unlist(x, recursive = FALSE) to get sets of matrices.

Examples

```r
(p1 = st_point(c(1,2)))
class(p1)
st_bbox(p1)
(p2 = st_point(c(1,2,3)))
class(p2)
(p3 = st_point(c(1,2,3), "XYM"))
pts = matrix(1:10, , 2)
(mp1 = st_multipoint(pts))
pts = matrix(1:15, , 3)
(mp2 = st_multipoint(pts))
(mp3 = st_multipoint(pts, "XYM"))
pts = matrix(1:20, , 4)
(mp4 = st_multipoint(pts))
pts = matrix(1:10, , 2)
(ls1 = st_linestring(pts))
pts = matrix(1:15, , 3)
(ls2 = st_linestring(pts))
(ls3 = st_linestring(pts, "XYM"))
pts = matrix(1:20, , 4)
(ls4 = st_linestring(pts))
outer = matrix(c(0,0,10,0,10,0,10,0,0,0),ncol=2, byrow=TRUE)
hole1 = matrix(c(1,1,2,2,2,2,1,1,1,1),ncol=2, byrow=TRUE)
hole2 = matrix(c(5,5,5,6,6,6,6,5,5,5),ncol=2, byrow=TRUE)
pts = list(outer, hole1, hole2)
(ml1 = st_multilinestring(pts))
pts3 = lapply(pts, function(x) cbind(x, 0))
(ml2 = st_multilinestring(pts3))
(ml3 = st_multilinestring(pts3, "XYM"))
pts4 = lapply(pts3, function(x) cbind(x, 0))
(ml4 = st_multilinestring(pts4))
outer = matrix(c(0,0,10,0,10,0,10,0,0,0),ncol=2, byrow=TRUE)
hole1 = matrix(c(1,1,1,2,2,2,2,1,1,1),ncol=2, byrow=TRUE)
```
stars
functions only exported to be used internally by stars

Description
functions only exported to be used internally by stars

Usage
.get_layout(bb, n, total_size, key.pos, key.length, mfrow = NULL)

degAxis(side, at, labels, ..., lon, lat, ndiscr, reset)

.image_scale(z,
stars

\begin{verbatim}
col, breaks = NULL,
key.pos,
add.axis = TRUE,
at = NULL,
..., 
axes = FALSE,
key.length,
logz = FALSE

.image_scale_factor(
  z,
col,
key.pos,
add.axis = TRUE,
..., 
axes = FALSE,
key.width,
key.length
)
\end{verbatim}

Arguments

- **bb**: ignore
- **n**: ignore
- **total_size**: ignore
- **key.pos**: ignore
- **key.length**: ignore
- **mfrow**: length-2 integer vector with number of rows, columns
- **side**: ignore
- **at**: ignore
- **labels**: ignore
- **...**: ignore
- **lon**: ignore
- **lat**: ignore
- **ndiscr**: ignore
- **reset**: ignore
- **z**: ignore
- **col**: ignore
- **breaks**: ignore
- **add.axis**: ignore
- **axes**: ignore
- **logz**: ignore
- **key.width**: ignore
st_agr

get or set relation_to_geometry attribute of an sf object

Description

get or set relation_to_geometry attribute of an sf object

Usage

\[
\text{NA\_agr} \\
\text{st\_agr}(x, ...) \\
\text{st\_agr}(x) \leftarrow \text{value} \\
\text{st\_set\_agr}(x, \text{value})
\]

Arguments

- **x**: object of class sf
- **...**: ignored
- **value**: character, or factor with appropriate levels; if named, names should correspond to the non-geometry list-column columns of \(x\)

Format

An object of class factor of length 1.

Details

\(\text{NA\_agr}\) is the agr object with a missing value.

st_as_binary

Convert sfc object to an WKB object

Description

Convert sfc object to an WKB object
Usage

st_as_binary(x, ...)

## S3 method for class 'sfc'
st_as_binary(
  x,
  ...,
  EWKB = FALSE,
  endian = .Platform$endian,
  pureR = FALSE,
  precision = attr(x, "precision"),
  hex = FALSE
)

## S3 method for class 'sfg'
st_as_binary(
  x,
  ...,
  endian = .Platform$endian,
  EWKB = FALSE,
  pureR = FALSE,
  hex = FALSE,
  srid = 0
)

Arguments

x                 object to convert
...               ignored
EWKB              logical; use EWKB (PostGIS), or (default) ISO-WKB?
endian            character; either "big" or "little"; default: use that of platform
pureR             logical; use pure R solution, or C++?
precision         numeric; if zero, do not modify; to reduce precision: negative values convert to
                  float (4-byte real); positive values convert to round(x*precision)/precision. See
                  details.
hex               logical; return as (unclassed) hexadecimal encoded character vector?
srid              integer; override srid (can be used when the srid is unavailable locally).

Details

st_as_binary is called on sfc objects on their way to the GDAL or GEOS libraries, and hence does
rounding (if requested) on the fly before e.g. computing spatial predicates like st_intersects. The
examples show a round-trip of an sfc to and from binary.

For the precision model used, see also https://locationtech.github.io/jts/javadoc/org/
locationtech/jts/geom/PrecisionModel.html. There, it is written that: “... to specify 3 deci-
mal places of precision, use a scale factor of 1000. To specify -3 decimal places of precision (i.e.
rounding to the nearest 1000), use a scale factor of 0.001.". Note that ALL coordinates, so also Z or M values (if present) are affected.

**Examples**

```r
examples of setting precision:
st_point(c(1/3, 1/6)) %>% st_sfc(precision = 1000) %>% st_as_binary %>% st_as_sfc
st_point(c(1/3, 1/6)) %>% st_sfc(precision = 100) %>% st_as_binary %>% st_as_sfc
st_point(1e6 * c(1/3, 1/6)) %>% st_sfc(precision = 0.01) %>% st_as_binary %>% st_as_sfc
st_point(1e6 * c(1/3, 1/6)) %>% st_sfc(precision = 0.001) %>% st_as_binary %>% st_as_sfc
```

**st_as_grob**

Convert sf* object to a grob

**Description**

Convert sf* object to an grid graphics object (grob)

**Usage**

```r
st_as_grob(x, ...)
```

**Arguments**

- `x` object to be converted into an object class grob
- `...` passed on to the xxxGrob function, e.g. `gp = gpar(col = 'red')`

**st_as_sf**

Convert foreign object to an sf object

**Description**

Convert foreign object to an sf object

**Usage**

```r
st_as_sf(x, ...)
```

## S3 method for class 'data.frame'
```r
st_as_sf(
 x,
 ...,
 agr = NA_agr_,
 coords,
 wkt,
 dim = "XYZ",
```
`st_as_sf` arguments

- `x`: object to be converted into an object class `sf`
- `...`: passed on to `st_sf`, might included named arguments `crs` or `precision`
- `agr`: character vector; see details section of `st_sf`
- `coords`: in case of point data: names or numbers of the numeric columns holding coordinates
- `wkt`: name or number of the character column that holds WKT encoded geometries
- `dim`: passed on to `st_point` (only when argument `coords` is given)
- `remove`: logical; when `coords` or `wkt` is given, remove these columns from data.frame?
- `na.fail`: logical; if TRUE, raise an error if coordinates contain missing values
- `sf_column_name`: character; name of the active list-column with simple feature geometries; in case there is more than one and `sf_column_name` is NULL, the first one is taken.
- `fill`: logical; the value for `fill` that was used in the call to `map`.
- `group`: logical; if TRUE, group id labels from `map` by their prefix before :

Details

setting argument `wkt` annihilates the use of argument `coords`. If `x` contains a column called "geometry", `coords` will result in overwriting of this column by the `sfc` geometry list-column. Setting `wkt` will replace this column with the geometry list-column, unless `remove_coordinates` is FALSE.
Examples

```r
pt1 = st_point(c(0,1))
pt2 = st_point(c(1,1))
st_sfc(pt1, pt2)
d = data.frame(a = 1:2)
d$geom = st_sfc(pt1, pt2)
df = st_as_sf(d)
d$geom = c("POINT(0 0)", "POINT(0 1)")
df = st_as_sf(d, wkt = "geom")
d$geom2 = st_sfc(pt1, pt2)
st_as_sf(df) # should warn
data(meuse, package = "sp")
meuse_sf = st_as_sf(meuse, coords = c("x", "y"), crs = 28992, agr = "constant")
meuse_sf[1:3,]
sf = st_as_sf(meuse, coords = c("x", "y"), crs = 28992, agr = "constant")
sf[1:3,]
summary(sf)
library(sp)
x = rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1), c(-1,-1))
x1 = 0.1 * x + 0.1
x2 = 0.1 * x + 0.4
x3 = 0.1 * x + 0.7
y = x + 3
y1 = x1 + 3
y3 = x3 + 3
m = matrix(c(3, 0), 5, 2, byrow = TRUE)
z = x + m
z1 = x1 + m
z2 = x2 + m
z3 = x3 + m
p1 = Polygons(list(Polygon(x[5:1,]), Polygon(x2), Polygon(x3),
 Polygon(y[5:1,]), Polygon(y1), Polygon(x1), Polygon(y3)), "ID1")
p2 = Polygons(list(Polygon(z[5:1,]), Polygon(z2), Polygon(z3), Polygon(z1)),
 "ID2")
if (require("rgeos")) {
 r = createSPComment(SpatialPolygons(list(p1,p2)))
 comment(r)
 comment(r@polygons[[1]])
 scan(text = comment(r@polygons[[1]]), quiet = TRUE)
 library(sf)
a = st_as_sf(r)
 summary(a)
}
demo(meuse, ask = FALSE, echo = FALSE)
summary(st_as_sf(meuse))
summary(st_as_sf(meuse.grid))
summary(st_as_sf(meuse.area))
summary(st_as_sf(meuse.riv))
summary(st_as_sf(as(meuse.riv, "SpatialLines")))
pol.grd = as(meuse.grid, "SpatialPolygonsDataFrame")
summary(st_as_sf(pol.grd))
summary(st_as_sf(as(pol.grd, "SpatialLinesDataFrame")))
if (require(spatstat.geom)) {
g = st_as_sf(gorillas)
```
st_as_sfc

# select only the points:
g[st_is(g, "POINT"),]
}
if (require(spatstat.linnet)) {
data(chicago)
plot(st_as_sf(chicago)["label"])
plot(st_as_sf(chicago)[-1,"label"])
}

---

st_as_sfc  

Convert foreign geometry object to an sfc object

Description

Convert foreign geometry object to an sfc object

Usage

## S3 method for class 'pq_geometry'
st_as_sfc(n
  x,
  ...
  EWKB = TRUE,
  spatialite = FALSE,
  pureR = FALSE,
  crs = NA_crs_
)

## S3 method for class 'list'
st_as_sfc(x, ..., crs = NA_crs_)

## S3 method for class 'blob'
st_as_sfc(x, ...)

## S3 method for class 'bbox'
st_as_sfc(x, ...)

## S3 method for class 'WKB'
st_as_sfc(n
  x,
  ...
  EWKB = FALSE,
  spatialite = FALSE,
  pureR = FALSE,
  crs = NA_crs_
)

## S3 method for class 'raw'
st_as_sfc(x, ...)

## S3 method for class 'character'
st_as_sfc(x, crs = NA_integer_, ..., GeoJSON = FALSE)

## S3 method for class 'factor'
st_as_sfc(x, ...)

## S3 method for class 'SpatialPoints'
st_as_sfc(x, ..., precision = 0)

## S3 method for class 'SpatialPixel'
st_as_sfc(x, ..., precision = 0)

## S3 method for class 'SpatialMultiPoints'
st_as_sfc(x, ..., precision = 0)

## S3 method for class 'SpatialLines'
st_as_sfc(x, ..., precision = 0, forceMulti = FALSE)

## S3 method for class 'SpatialPolygons'
st_as_sfc(x, ..., precision = 0, forceMulti = FALSE)

## S3 method for class 'map'
st_as_sfc(x, ...)

Arguments

- **x**: object to convert
- **...**: further arguments
- **EWKB**: logical; if TRUE, parse as EWKB (extended WKB; PostGIS: ST_AsEWKB), otherwise as ISO WKB (PostGIS: ST_AsBinary)
- **spatialite**: logical; if TRUE, WKB is assumed to be in the spatialite dialect, see https://www.gaia-gis.it/gaia-sins/BL08-Geometry.html; this is only supported in native endian-ness (i.e., files written on system with the same endian-ness as that on which it is being read).
- **pureR**: logical; if TRUE, use only R code, if FALSE, use compiled (C++) code; use TRUE when the endian-ness of the binary differs from the host machine (.Platform$endian).
- **crs**: integer or character; coordinate reference system for the
- **GeoJSON**: logical; if TRUE, try to read geometries from GeoJSON text strings geometry, see st_crs()
- **precision**: precision value; see st_as_binary
- **forceMulti**: logical; if TRUE, force coercion into MULTIPOLYGON or MULTILINE objects, else autodetect
Details

When converting from WKB, the object x is either a character vector such as typically obtained from PostGIS (either with leading "0x" or without), or a list with raw vectors representing the features in binary (raw) form.

If x is a character vector, it should be a vector containing well-known-text, or Postgis EWKT or GeoJSON representations of a single geometry for each vector element.

If x is a factor, it is converted to character.

Examples

```r
wkb = structure(list("01010000204071000000000000801A0641000000000AC5C1441"), class = "WKB")
st_as_sfc(wkb, EWKB = TRUE)

wkb = structure(list("0x01010000204071000000000000801A0641000000000AC5C1441"), class = "WKB")
st_as_sfc(wkb, EWKB = TRUE)
st_as_sfc(st_as_binary(st_sfc(st_point(0:1)))[[1]], crs = 4326)
st_as_sfc("SRID=3978;LINESTRING(1663106 -105415,1664320 -104617)")
```

### st_as_text

Return Well-known Text representation of simple feature geometry or coordinate reference system

**Description**

Return Well-known Text representation of simple feature geometry or coordinate reference system

**Usage**

```r
S3 method for class 'crs'
st_as_text(x, ..., projjson = FALSE, pretty = FALSE)
st_as_text(x, ...)

S3 method for class 'sfg'
st_as_text(x, ...)

S3 method for class 'sfc'
st_as_text(x, ..., EWKT = FALSE)
```

**Arguments**

- `x` object of class sfg, sfc or crs
- `...` modifiers; in particular digits can be passed to control the number of digits used
- `projjson` logical; if TRUE, return projjson form (requires GDAL 3.1 and PROJ 6.2), else return well-known-text form
- `pretty` logical; if TRUE, print human-readable well-known-text representation of a co-ordinate reference system
- `EWKT` logical; if TRUE, print SRID=xxx; before the WKT string if epsg is available
Details
The returned WKT representation of simple feature geometry conforms to the simple features access specification and extensions, known as EWKT, supported by PostGIS and other simple features implementations for addition of SRID to a WKT string.

Examples

```r
st_as_text(st_point(1:2))
st_as_text(st_sfc(st_point(c(-90,40)), crs = 4326), EWKT = TRUE)
```

<table>
<thead>
<tr>
<th>st_bbox</th>
<th>Return bounding of a simple feature or simple feature set</th>
</tr>
</thead>
</table>

Description
Return bounding of a simple feature or simple feature set

Usage

```r
S3 method for class 'bbox'
is.na(x)

st_bbox(obj, ...)
S3 method for class 'POINT'
st_bbox(obj, ...)

S3 method for class 'MULTIPOINT'
st_bbox(obj, ...)

S3 method for class 'LINESTRING'
st_bbox(obj, ...)

S3 method for class 'POLYGON'
st_bbox(obj, ...)

S3 method for class 'MULTILINESTRING'
st_bbox(obj, ...)

S3 method for class 'MULTIPOLYGON'
st_bbox(obj, ...)

S3 method for class 'GEOMETRYCOLLECTION'
st_bbox(obj, ...)

S3 method for class 'MULTISURFACE'
st_bbox(obj, ...)
```
## S3 method for class 'MULTICURVE'
st_bbox(obj, ...)

## S3 method for class 'CURVEPOLYGON'
st_bbox(obj, ...)

## S3 method for class 'COMPOUNDCURVE'
st_bbox(obj, ...)

## S3 method for class 'POLYHEDRALSURFACE'
st_bbox(obj, ...)

## S3 method for class 'TIN'
st_bbox(obj, ...)

## S3 method for class 'TRIANGLE'
st_bbox(obj, ...)

## S3 method for class 'CIRCULARSTRING'
st_bbox(obj, ...)

## S3 method for class 'sfc'
st_bbox(obj, ...)

## S3 method for class 'sf'
st_bbox(obj, ...)

## S3 method for class 'Spatial'
st_bbox(obj, ...)

## S3 method for class 'Raster'
st_bbox(obj, ...)

## S3 method for class 'Extent'
st_bbox(obj, ..., crs = NA_crs_)

## S3 method for class 'numeric'
st_bbox(obj, ..., crs = NA_crs_)

NA_bbox_

## S3 method for class 'bbox'
format(x, ...)

### Arguments

x object of class bbox
obj object to compute the bounding box from
...
for format.bbox, passed on to format to format individual numbers
crs object of class crs, or argument to st_crs, specifying the CRS of this bounding box.

Format

An object of class bbox of length 4.

Details

NA_bbox_ represents the missing value for a bbox object

Value

a numeric vector of length four, with xmin, ymin, xmax and ymax values; if obj is of class sf, sfc, Spatial or Raster, the object returned has a class bbox, an attribute crs and a method to print the bbox and an st_crs method to retrieve the coordinate reference system corresponding to obj (and hence the bounding box). st_as_sfc has a methods for bbox objects to generate a polygon around the four bounding box points.

Examples

a = st_sf(a = 1:2, geom = st_sfc(st_point(0:1), st_point(1:2)), crs = 4326)
st_bbox(a)
st_as_sfc(st_bbox(a))
st_bbox(c(xmin = 16.1, xmax = 16.6, ymax = 48.6, ymin = 47.9), crs = st_crs(4326))

---

st_cast     Cast geometry to another type: either simplify, or cast explicitly

Description

Cast geometry to another type: either simplify, or cast explicitly

Usage

## S3 method for class 'MULTIPOLYGON'
st_cast(x, to, ...)

## S3 method for class 'MULTILINESTRING'
st_cast(x, to, ...)

## S3 method for class 'MULTIPOINT'
st_cast(x, to, ...)

## S3 method for class 'POLYGON'
st_cast(x, to, ...)

## S3 method for class 'LINESTRING'
st_cast(x, to, ...)

## S3 method for class 'POINT'
st_cast(x, to, ...)

## S3 method for class 'GEOMETRYCOLLECTION'
st_cast(x, to, ...)

## S3 method for class 'CIRCULARSTRING'
st_cast(x, to, ...)

## S3 method for class 'MULTISURFACE'
st_cast(x, to, ...)

## S3 method for class 'COMPOUNDCURVE'
st_cast(x, to, ...)

## S3 method for class 'MULTICURVE'
st_cast(x, to, ...)

## S3 method for class 'CURVE'
st_cast(x, to, ...)

st_cast(x, to, ...)

## S3 method for class 'sfc'
st_cast(x, to, ..., ids = seq_along(x), group_or_split = TRUE)

## S3 method for class 'sf'
st_cast(x, to, ..., warn = TRUE, do_split = TRUE)

## S3 method for class 'sfc_CIRCULARSTRING'
st_cast(x, to, ...)

**Arguments**

- **x** object of class sfg, sfc or sf
- **to** character; target type, if missing, simplification is tried; when x is of type sfg (i.e., a single geometry) then to needs to be specified.
- **...** ignored
- **ids** integer vector, denoting how geometries should be grouped (default: no grouping)
- **group_or_split** logical; if TRUE, group or split geometries; if FALSE, carry out a 1-1 per-geometry conversion.
warn logical; if TRUE, warn if attributes are assigned to sub-geometries

do_split logical; if TRUE, allow splitting of geometries in sub-geometries

Details

When converting a GEOMETRYCOLLECTION to COMPOUNDCURVE, MULTISURFACE or CURVEPOLYGON, the user is responsible for the validity of the resulting object: no checks are being carried out by the software.

the st_cast method for sf objects can only split geometries, e.g. cast MULTIPoint into multiple POINT features. In case of splitting, attributes are repeated and a warning is issued when non-constant attributes are assigned to sub-geometries. To merge feature geometries and attribute values, use aggregate or summarise.

Value

object of class to if successful, or unmodified object if unsuccessful. If information gets lost while type casting, a warning is raised.

In case to is missing, st_cast.sfc will coerce combinations of "POINT" and "MULTIPOINT", "LINESTRING" and "MULTILINESTRING", "POLYGON" and "MULTIPOLYGON" into their "MULTI..." form, or in case all geometries are "GEOMETRYCOLLECTION" will return a list of all the contents of the "GEOMETRYCOLLECTION" objects, or else do nothing. In case to is specified, if to is "GEOMETRY", geometries are not converted, else, st_cast will try to coerce all elements into to; ids may be specified to group e.g. "POINT" objects into a "MULTIPOINT", if not specified no grouping takes place. If e.g. a "sfc_MULTIPOINT" is cast to a "sfc_POINT", the objects are split, so no information gets lost, unless group_or_split is FALSE.

Examples

```r
example(st_read)
nc = st_read(system.file("shape/nc.shp", package="sf"))
mls <- nc$geometry[[4]]
mls <- st_cast(nc$geometry[[4]], "MULTILINESTRING")
#st_cast(x) ## error /quotesingle.Var argument "to" is missing, with no default/
#st_cast(x) ## error /quotesingle.Var argument "to" is missing, with no default/
cast_all <- function(xg) {
 lapply(c("MULTIPOLYGON", "MULTILINESTRING", "MULTIPOINT", "POLYGON", "LINESTRING", "POINT"),
 function(x) st_cast(xg, x))
}
st_sfc(cast_all(mls))
```

```r
any(duplicated(unclass(st_cast(mpl, "MULTIPOINT")))) ## should be FALSE
number of duplicated coordinates in the linestrings should equal the number of polygon rings
(... in this case, won't always be true)
sum(duplicated(do.call(rbind, unclass(st_cast(mpl, "MULTILINESTRING"))))
) == sum(unlist(lapply(mpl, length))) ## should be TRUE
```

```r
p1 <- structure(c(0, 1, 3, 2, 1, 0, 0, 0, 2, 4, 4, 0), .Dim = c(6L, 2L))
p2 <- structure(c(1, 1, 2, 1, 1, 2, 2, 1), .Dim = c(4L, 2L))
st_polygon(list(p1, p2))
mls <- st_cast(nc$geometry[[4]], "MULTILINESTRING")
st_sfc(cast_all(mls))
mpt <- st_cast(nc$geometry[[4]], "MULTIPOINT")
```
st_cast_sfc_default

st_sfc(cast_all(mpt))
pl <- st_cast(nc$geometry[[4]], "POLYGON")
st_sfc(cast_all(pl))
ls <- st_cast(nc$geometry[[4]], "LINESTRING")
st_sfc(cast_all(ls))
pt <- st_cast(nc$geometry[[4]], "POINT")
## st_sfc(cast_all(pt)) ## Error: cannot create MULTIPOLYGON from POINT
st_sfc(lapply(c("POINT", "MULTIPOINT"), function(x) st_cast(pt, x)))
s = st_multipoint(rbind(c(1,0)))
st_cast(s, "POINT")

st_cast_sfc_default Coerce geometry to MULTI* geometry

Description
Mixes of POINTS and MULTIPOINTS, LINESTRING and MULTILINESTRING, POLYGON and MULTIPOLYGON are returned as MULTIPOINTS, MULTILINESTRING and MULTIPOLYGON respectively

Usage
st_cast_sfc_default(x)

Arguments
x list of geometries or simple features

Details
Geometries that are already MULTI* are left unchanged. Features that can’t be cast to a single MULTI* geometry are return as a GEOMETRYCOLLECTION

st_collection_extract
Given an object with geometries of type GEOMETRY or GEOMETRYCOLLECTION, return an object consisting only of elements of the specified type.

Description
Similar to ST_CollectionExtract in PostGIS. If there are no sub-geometries of the specified type, an empty geometry is returned.
Usage

\begin{verbatim}
st_collection_extract(
    x,
    type = c("POLYGON", "POINT", "LINESTRING"),
    warn = FALSE
)
\end{verbatim}

\texttt{## S3 method for class 'sfg'

\begin{verbatim}
st_collection_extract(
    x,
    type = c("POLYGON", "POINT", "LINESTRING"),
    warn = FALSE
)
\end{verbatim}

\texttt{## S3 method for class 'sfc'

\begin{verbatim}
st_collection_extract(
    x,
    type = c("POLYGON", "POINT", "LINESTRING"),
    warn = FALSE
)
\end{verbatim}

\texttt{## S3 method for class 'sf'

\begin{verbatim}
st_collection_extract(
    x,
    type = c("POLYGON", "POINT", "LINESTRING"),
    warn = FALSE
)
\end{verbatim}

Arguments

\begin{verbatim}
x an object of class sf, sfc or sfg that has mixed geometry (GEOMETRY or GEOMETRYCOLLECTION).  
type character; one of "POLYGON", "POINT", "LINESTRING"  
warn logical; if TRUE, warn if attributes are assigned to sub-geometries when casting (see \texttt{st_cast})
\end{verbatim}

Value

An object having the same class as \texttt{x}, with geometries consisting only of elements of the specified type. For \texttt{sfg} objects, an \texttt{sfg} object is returned if there is only one geometry of the specified type, otherwise the geometries are combined into an \texttt{sfc} object of the relevant type. If any subgeometries in the input are MULTI, then all of the subgeometries in the output will be MULTI.

Examples

\begin{verbatim}
pt <- st_point(c(1, 0))
ls <- st_linestring(matrix(c(4, 3, 0, 0), ncol = 2))
poly1 <- st_polygon(list(matrix(c(5.5, 7, 7, 6, 5.5, 0, 0, -0.5, -0.5, 0), ncol = 2)))
poly2 <- st_polygon(list(matrix(c(6.6, 8, 8, 7, 6.6, 1, 1, 1.5, 1.5, 1), ncol = 2)))
\end{verbatim}
```r
multipoly <- st_multipolygon(list(poly1, poly2))
i <- st_geometrycollection(list(pt, ls, poly1, poly2))
j <- st_geometrycollection(list(pt, ls, poly1, poly2, multipoly))

st_collection_extract(i, "POLYGON")
st_collection_extract(i, "POINT")
st_collection_extract(i, "LINESTRING")

A GEOMETRYCOLLECTION
aa <- rbind(st_sf(a=1, geom = st_sfc(i)),
 st_sf(a=2, geom = st_sfc(j)))

With sf objects
st_collection_extract(aa, "POLYGON")
st_collection_extract(aa, "LINESTRING")
st_collection_extract(aa, "POINT")

With sfc objects
st_collection_extract(st_geometry(aa), "POLYGON")
st_collection_extract(st_geometry(aa), "LINESTRING")
st_collection_extract(st_geometry(aa), "POINT")

A GEOMETRY of single types
bb <- rbind(
 st_sf(a = 1, geom = st_sfc(pt)),
 st_sf(a = 2, geom = st_sfc(ls)),
 st_sf(a = 3, geom = st_sfc(poly1)),
 st_sf(a = 4, geom = st_sfc(multipoly))
)

st_collection_extract(bb, "POLYGON")

A GEOMETRY of mixed single types and GEOMETRYCOLLECTIONS
cc <- rbind(aa, bb)

st_collection_extract(cc, "POLYGON")
```

---

**st_coordinates**

*retrieve coordinates in matrix form*

**Description**

retrieve coordinates in matrix form

**Usage**

`st_coordinates(x, ...)"
Arguments

- `x`: object of class sf, sfc or sfg
- `...`: ignored

Value

A matrix with coordinates (X, Y, possibly Z and/or M) in rows, possibly followed by integer indicators L1,...,L3 that point out to which structure the coordinate belongs; for POINT this is absent (each coordinate is a feature), for LINESTRING L1 refers to the feature, for MULTIPOLYGON L1 refers to the main ring or holes, L2 to the ring id in the MULTIPOLYGON, and L3 to the simple feature.

Description

crop an sf object to a specific rectangle

Usage

```r
st_crop(x, y, ...)
```

```r
S3 method for class 'sfc'
st_crop(x, y, ..., xmin, ymin, xmax, ymax)
```

```r
S3 method for class 'sf'
st_crop(x, y, ...)
```

Arguments

- `x`: object of class sf or sfc
- `y`: numeric vector with named elements `xmin`, `ymin`, `xmax` and `ymax`, or object of class bbox, or object for which there is an `st_bbox` method to convert it to a bbox object
- `...`: ignored
- `xmin`: minimum x extent of cropping area
- `ymin`: minimum y extent of cropping area
- `xmax`: maximum x extent of cropping area
- `ymax`: maximum y extent of cropping area

Details

Setting arguments `xmin`, `ymin`, `xmax` and `ymax` implies that argument `y` gets ignored.
Examples

```r
box = c(xmin = 0, ymin = 0, xmax = 1, ymax = 1)
pol = st_sfc(st_buffer(st_point(c(.5, .5)), .6))
pol_sf = st_sf(a=1, geom=pol)
plot(st_crop(pol, box))
plot(st_crop(pol_sf, st_bbox(box)))
alternative:
plot(st_crop(pol, xmin = 0, ymin = 0, xmax = 1, ymax = 1))
```

---

**st_crs**  
*Retrieve coordinate reference system from object*

**Description**

Retrieve coordinate reference system from sf or sfc object  
Set or replace retrieve coordinate reference system from object

**Usage**

```r
st_crs(x, ...)
```

## S3 method for class 'sf'
```r
st_crs(x, ...)
```

## S3 method for class 'numeric'
```r
st_crs(x, ...)
```

## S3 method for class 'character'
```r
st_crs(x, ...)
```

## S3 method for class 'sfc'
```r
st_crs(x, ..., parameters = FALSE)
```

## S3 method for class 'bbox'
```r
st_crs(x, ...)
```

## S3 method for class 'CRS'
```r
st_crs(x, ...)
```

## S3 method for class 'crs'
```r
st_crs(x, ...)
```

```r
st_crs(x) <- value
```

## S3 replacement method for class 'sf'
```r
st_crs(x) <- value
```
## S3 replacement method for class 'sfc'

```r
st_crs(x) <- value
```

```r
st_set_crs(x, value)
```

## S3 method for class 'Var'

```r
NA_crs_
```

## S3 method for class 'Var'

```r
is.na(x)
```

## S3 method for class 'Var'

```r
x$name
```

## S3 method for class 'Var'

```r
format(x, ...)
```

```r
st_axis_order(authority_compliant = logical(0))
```

### Arguments

- `x` numeric, character, or object of class `sf` or `sfc`
- `...` ignored
- `parameters` logical; FALSE by default; if TRUE return a list of coordinate reference system parameters, with named elements `SemiMajor`, `InvFlattening`, `units_gdal`, `IsVertical`, `WktPretty`, and `Wkt`
- `value` one of (i) character: a string accepted by GDAL, (ii) integer, a valid EPSG value (numeric), or (iii) an object of class `crs`.
- `name` element name
- `authority_compliant` logical; specify whether axis order should be handled compliant to the authority; if omitted, the current value is printed.

### Format

An object of class `crs` of length 2.

### Details

The *crs* functions create, get, set or replace the `crs` attribute of a simple feature geometry list-column. This attribute is of class `crs`, and is a list consisting of input (user input, e.g. "EPSG:4326" or "WGS84" or a proj4string), and `wkt`, an automatically generated `wkt` representation of the `crs`. Comparison of two objects of class `crs` uses the GDAL function `OGRSpatialReference:::IsSame`. In case a coordinate reference system is replaced, no transformation takes place and a warning is raised to stress this.

`NA_crs_` is the `crs` object with missing values for `input` and `wkt`.

the `$` method for `crs` objects retrieves named elements using the GDAL interface; named elements include "SemiMajor", "SemiMinor", "InvFlattening", "IsGeographic", "units_gdal",...
"IsVertical","WktPretty","Wkt","Name","proj4string","epsg","yx" and "ud_unit" (this may be subject to changes in future GDAL versions).

format.crs returns NA if the crs is missing valued, or else the name of a crs if it is different from "unknown", or else the user input if it was set, or else its "proj4string" representation;

st_axis_order can be used to get and set the axis order: TRUE indicates axes order according to the authority (e.g. EPSG:4326 defining coordinates to be latitude,longitude pairs), FALSE indicates the usual GIS (display) order (longitude,latitude). This can be useful when data are read, or have to be written, with coordinates in authority compliant order. The return value is the current state of this (FALSE, by default).

Value

If x is numeric, return crs object for EPSG:x; if x is character, return crs object for x; if x is of class sf or sfc, return its crs object.

Object of class crs, which is a list with elements input (length-1 character) and wkt (length-1 character). Elements may be NA valued: if all elements are NA the CRS is missing valued, and coordinates are assumed to relate to an arbitrary Cartesian coordinate system.

st_axis_order returns the (logical) current value if called without argument, or (invisibly) the previous value if it is being set.

Examples

sfc = st_sfc(st_point(c(0,0)), st_point(c(1,1)))
sf = st_sf(a = 1:2, geom = sfc)
st_crs(sf) = 4326
st_geometry(sf) = 4326
sfc = st_sfc(st_point(c(0,0)), st_point(c(1,1)))
st_crs(sfc) = 4326
sfc
sfc = st_sfc(st_point(c(0,0)), st_point(c(1,1)))
library(dplyr)
x = sfc %>% st_set_crs(4326) %>% st_transform(3857)
x
st_crs("EPSG:3857")$input
st_crs(3857)$proj4string
st_crs(3857)$b # numeric
st_crs(3857)$units # character
pt = st_sfc(st_point(c(0, 60)), crs = 4326)
# st_axis_order() only has effect in GDAL >= 2.5.0:
# st_axis_order() # query default: FALSE means interpret pt as (longitude latitude)
st_transform(pt, 3857)[[1]]
old_value = FALSE
if (sf_extSoftVersion()["GDAL"] >= "2.5.0")
  (old_value = st_axis_order(TRUE))
# now interpret pt as (latitude longitude), as EPSG:4326 prescribes:
st_axis_order() # query current value
st_transform(pt, 3857)[[1]]
st_axis_order(old_value) # set back to old value
### st_drivers

*Get GDAL drivers*

**Description**

Get a list of the available GDAL drivers

**Usage**

```r
st_drivers(what = "vector")
```

**Arguments**

- `what` character: "vector" or "raster", anything else will return all drivers.

**Details**

The drivers available will depend on the installation of GDAL/OGR, and can vary; the `st_drivers()` function shows all the drivers that are readable, and which may be written. The field vsi refers to the driver's capability to read/create datasets through the VSI*L API. See GDAL website for additional details on driver support.

**Value**

A `data.frame` with driver metadata.

**Examples**

```r
st_drivers()
```

---

### st_geometry

*Get, set, or replace geometry from an sf object*

**Description**

Get, set, or replace geometry from an sf object

**Usage**

```r
S3 method for class 'sfc'
st_geometry(obj, ...)
```

```r
S3 method for class 'sf'
st_geometry(obj, ...)
```

**Examples**

```r
st_geometry()
```
st_geometry

## S3 method for class 'sfc'
st_geometry(obj, ...)

## S3 method for class 'sfg'
st_geometry(obj, ...)

st_geometry(x) <- value

st_set_geometry(x, value)
st_drop_geometry(x)

Arguments

obj object of class sf or sfc
...
ignored
x object of class data.frame
value object of class sfc, or character

Details

when applied to a data.frame and when value is an object of class sfc, st_set_geometry and st_geometry<- will first check for the existence of an attribute sf_column and overwrite that, or else look for list-columns of class sfc and overwrite the first of that, or else write the geometry list-column to a column named geometry. In case value is character and x is of class sf, the “active” geometry column is set to x[[value]].

the replacement function applied to sf objects will overwrite the geometry list-column, if value is NULL, it will remove it and coerce x to a data.frame.

st_drop_geometry drops the geometry of its argument, and reclasses it accordingly

Value

st_geometry returns an object of class sfc, a list-column with geometries

st_geometry returns an object of class sfc. Assigning geometry to a data.frame creates an sf object, assigning it to an sf object replaces the geometry list-column.

Examples

df = data.frame(a = 1:2)
sfc = st_sfc(st_point(c(3,4)), st_point(c(10,11)))
st_geometry(sfc)
st_geometry(df) <- sfc
class(df)
st_geometry(df)
st_geometry(df) <- sfc # replaces
st_geometry(df) <- NULL # remove geometry, coerce to data.frame
sf <- st_set_geometry(df, sfc) # set geometry, return sf
st_set_geometry(sf, NULL) # remove geometry, coerce to data.frame
st_geometry_type

Return geometry type of an object

Description

Return geometry type of an object, as a factor

Usage

st_geometry_type(x, by_geometry = TRUE)

Arguments

x  
object of class sf or sfc

by_geometry  
logical; if TRUE, return geometry type of each geometry, else return geometry type of the set

Value

a factor with the geometry type of each simple feature geometry in x, or that of the whole set

st_graticule

Compute graticules and their parameters

Description

Compute graticules and their parameters

Usage

st_graticule(
  x = c(-180, -90, 180, 90),
  crs = st_crs(x),
  datum = st_crs(4326),
  ..., 
  lon = NULL,
  lat = NULL,
  ndiscr = 100,
  margin = 0.001
)

Arguments

- **x**: object of class `sf`, `sfc` or `sfg` or numeric vector with bounding box given as `(minx, miny, maxx, maxy)`.
- **crs**: object of class `crs`, with the display coordinate reference system.
- **datum**: either an object of class `crs` with the coordinate reference system for the graticules, or `NULL` in which case a grid in the coordinate system of `x` is drawn, or `NA`, in which case an empty `sf` object is returned.
- **lon**: numeric; degrees east for the meridians.
- **lat**: numeric; degrees north for the parallels.
- **ndiscr**: integer; number of points to discretize a parallel or meridian.
- **margin**: numeric; small number to trim a longlat bounding box that touches or crosses +/-180 long or +/-90 latitude.

Value

an object of class `sf` with additional attributes describing the type (E: meridian, N: parallel) degree value, label, start and end coordinates and angle; see example.

Use of graticules

In cartographic visualization, the use of graticules is not advised, unless the graphical output will be used for measurement or navigation, or the direction of North is important for the interpretation of the content, or the content is intended to display distortions and artifacts created by projection. Unnecessary use of graticules only adds visual clutter but little relevant information. Use of coastlines, administrative boundaries or place names permits most viewers of the output to orient themselves better than a graticule.

Examples

```r
library(sf)
library(maps)

usa = st_as_sf(map('usa', plot = FALSE, fill = TRUE))
laea = st_crs("+proj=laea +lat_0=30 +lon_0=-95") # Lambert equal area
usa <- st_transform(usa, laea)
bb = st_bbox(usa)
bbox = st_linestring(rbind(c(bb[1],bb[2]),c(bb[3],bb[2]),
 c(bb[3],bb[4]),c(bb[1],bb[4]),c(bb[1],bb[2])))

g = st_graticule(usa)
plot(usa, xlim = 1.2 * c(-2450853.4, 2186391.9))
plot(g[1], add = TRUE, col = 'grey')
plot(bbox, add = TRUE)
points(gx_start, gy_start, col = 'red')
points(gx_end, gy_end, col = 'blue')
```
invisible(lapply(seq_len(nrow(g)), function(i) {
  if (g$type[i] == "N" && g$x_start[i] - min(g$x_start) < 1000)
    text(g[i,"x_start"], g[i,"y_start"], labels = parse(text = g[i,"degree_label"]),
         srt = g$angle_start[i], pos = 2, cex = .7)
  if (g$type[i] == "E" && g$y_start[i] - min(g$y_start) < 1000)
    text(g[i,"x_start"], g[i,"y_start"], labels = parse(text = g[i,"degree_label"])),
         srt = g$angle_start[i] - 90, pos = 1, cex = .7)
  if (g$type[i] == "N" && g$x_end[i] - max(g$x_end) > -1000)
    text(g[i,"x_end"], g[i,"y_end"], labels = parse(text = g[i,"degree_label"])),
         srt = g$angle_end[i] - 90, pos = 4, cex = .7)
  if (g$type[i] == "E" && g$y_end[i] - max(g$y_end) > -1000)
    text(g[i,"x_end"], g[i,"y_end"], labels = parse(text = g[i,"degree_label"])),
         srt = g$angle_end[i] - 90, pos = 3, cex = .7)
}))
plot(usa, graticule = st_crs(4326), axes = TRUE, lon = seq(-60,-130,by=-10))

---

**st_interpolate_aw**  
Areal-weighted interpolation of polygon data

**Description**
Areal-weighted interpolation of polygon data

**Usage**

```
st_interpolate_aw(x, to, extensive, ...)
```

**Arguments**

- `x`  
  object of class `sf`, for which we want to aggregate attributes

- `to`  
  object of class `sf` or `sfc`, with the target geometries

- `extensive`  
  logical; if TRUE, the attribute variables are assumed to be spatially extensive (like population) and the sum is preserved, otherwise, spatially intensive (like population density) and the mean is preserved.

- `...`  
  ignored

**Examples**

```r
nc = st_read(system.file("shape/nc.shp", package="sf"))
g = st_make_grid(nc, n = c(20,10))
a1 = st_interpolate_aw(nc["BIR74"], g, extensive = FALSE)
sum(a1$BIR74) / sum(nc$BIR74) # not close to one: property is assumed spatially intensive
a2 = st_interpolate_aw(nc["BIR74"], g, extensive = TRUE)
verify mass preservation (pycnophylactic) property:
sum(a2$BIR74) / sum(nc$BIR74)
a1$intensive = a1$BIR74
a1$extensive = a2$BIR74
plot(a1[c("intensive", "extensive")], key.pos = 4)
```
**st_is**

Test equality between the geometry type and a class or set of classes.

### Description

Test equality between the geometry type and a class or set of classes.

### Usage

```
st_is(x, type)
```

### Arguments

- **x**
  - Object of class `sf`, `sfc`, or `sfg`.

- **type**
  - Character; class, or set of classes, to test against.

### Examples

```
st_is(st_point(0:1), "POINT")
sfc = st_sfc(st_point(0:1), st_linestring(matrix(1:6,,2)))
st_is(sfc, "POINT")
st_is(sfc, "POLYGON")
st_is(sfc, "LINESTRING")
st_is(st_sf(a = 1:2, sfc), "LINESTRING")
st_is(sfc, c("POINT", "LINESTRING"))
```

---

**st_is_longlat**

Assert whether simple feature coordinates are longlat degrees.

### Description

Assert whether simple feature coordinates are longlat degrees.

### Usage

```
st_is_longlat(x)
```

### Arguments

- **x**
  - Object of class `sf` or `sfc`, or otherwise an object of a class that has an `st_crs` method returning a `crs` object.

### Value

TRUE if `x` has geographic coordinates, FALSE if it has projected coordinates, or NA if `is.na(st_crs(x))`. 
**st_jitter**

**jitter geometries**

**Description**

jitter geometries

**Usage**

```r
st_jitter(x, amount, factor = 0.002)
```

**Arguments**

- `x`: object of class `sf` or `sfc`
- `amount`: numeric; amount of jittering applied; if missing, the amount is set to factor * the bounding box diagonal; units of coordinates.
- `factor`: numeric; fractional amount of jittering to be applied

**Details**

jitters coordinates with an amount such that `runif(1,-amount,amount)` is added to the coordinates. x- and y-coordinates are jittered independently but all coordinates of a single geometry are jittered with the same amount, meaning that the geometry shape does not change. For longlat data, a latitude correction is made such that jittering in East and North directions are identical in distance in the center of the bounding box of `x`.

**Examples**

```r
c = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
pts = st_centroid(st_geometry(nc))
plot(pts)
plot(st_jitter(pts, .05), add = TRUE, col = 'red')
plot(st_geometry(nc))
plot(st_jitter(st_geometry(nc), factor = .01), add = TRUE, col = '#ff8888')
```

---

**st_join**

**spatial join, spatial filter**

**Description**

spatial join, spatial filter
Usage

st_join(x, y, join, ...)

## S3 method for class 'sf'
st_join(
  x,
  y,
  join = st_intersects,
  ...,  
  suffix = c(".x", ".y"),
  left = TRUE,
  largest = FALSE
)

st_filter(x, y, ...)

## S3 method for class 'sf'
st_filter(x, y, ..., .predicate = st_intersects)

Arguments

x object of class sf
y object of class sf
join geometry predicate function with the same profile as st_intersects; see details
... for st_join: arguments passed on to the join function or to st_intersection when largest is TRUE; for st_filter arguments passed on to the .predicate function, e.g. prepared, or a pattern for st_relate
suffix length 2 character vector; see merge
left logical; if TRUE return the left join, otherwise an inner join; see details. see also left_join
largest logical; if TRUE, return x features augmented with the fields of y that have the largest overlap with each of the features of x; see https://github.com/r-spatial/sf/issues/578
(predicate geometry predicate function with the same profile as st_intersects; see details

Details

alternative values for argument join are:

- st_contains_properly
- stContains
- st_covered_by
- stCovers
- st_crosses
- st_disjoint
- st_equals_exact
• \texttt{st\_equals}
• \texttt{st\_is\_within\_distance}
• \texttt{st\_nearest\_feature}
• \texttt{st\_overlaps}
• \texttt{st\_touches}
• \texttt{st\_within}
• any user-defined function of the same profile as the above

A left join returns all records of the \(x\) object with \(y\) fields for non-matched records filled with \texttt{NA} values; an inner join returns only records that spatially match.

**Value**

an object of class \texttt{sf}, joined based on geometry

**Examples**

```r
a = st_sf(a = 1:3,
 geom = st_sfc(st_point(c(1,1)), st_point(c(2,2)), st_point(c(3,3))))
b = st_sf(a = 11:14,
 geom = st_sfc(st_point(c(10,10)), st_point(c(2,2)), st_point(c(2,2)), st_point(c(3,3))))
st_join(a, b)
st_join(a, b, left = \texttt{FALSE})
two ways to aggregate \(y\)'s attribute values outcome over \(x\)'s geometries:
 st_join(a, b) %>% aggregate(list(.$a.x), mean)
library\(\texttt{dplyr}\)
 st_join(a, b) %>% group_by(a.x) %>% summarise(mean(a.y))
example of \texttt{largest} = \texttt{TRUE}:
nc <- st_transform(st_read(system_file("shape/nc_shp", package="sf")), 2264)
gr = st_sf(
 label = apply(expand_grid(1:10, LETTERS[10:1])[,2:1], 1, paste0, collapse = " "),
 geom = st_make_grid(st_as_sfc(st_bbox(nc))))
gr$col = sf_colors(10, categorical = \texttt{TRUE}, alpha = .3)
cut, to check, \texttt{NA}'s work out:
gr = gr[-(1:30),]
nc_j <- st_join(nc, gr, largest = \texttt{TRUE})
the two datasets:
opar = par(mfrow = c(2,1), mar = rep(0,4))
plot(st_geometry(nc_j))
plot(st_geometry(gr), add = \texttt{TRUE}, col = gr$col)
text(st_coordinates(st_centroid(gr)), labels = gr$label)
the joined dataset:
plot(st_geometry(nc_j), border = 'black', col = nc_j$col)
text(st_coordinates(st_centroid(nc_j)), labels = nc_j$label, cex = .8)
plot(st_geometry(gr), border = 'green', add = \texttt{TRUE})
par(opar)
```

**st_layers**  
*List layers in a datasource*

**Description**
List layers in a datasource

**Usage**

```r
st_layers(dsn, options = character(0), do_count = FALSE)
```

**Arguments**

- **dsn**
  - data source name (interpretation varies by driver - for some drivers, dsn is a file name, but may also be a folder, or contain the name and access credentials of a database)
- **options**
  - character; driver dependent dataset open options, multiple options supported.
- **do_count**
  - logical; if TRUE, count the features by reading them, even if their count is not reported by the driver

---

**st_line_sample**  
*Sample points on a linear geometry*

**Description**
Sample points on a linear geometry

**Usage**

```r
st_line_sample(x, n, density, type = "regular", sample = NULL)
```

**Arguments**

- **x**
  - object of class sf, sfc or sfg
- **n**
  - integer; number of points to choose per geometry; if missing, n will be computed as `round(density * st_length(geom))`.
- **density**
  - numeric; density (points per distance unit) of the sampling, possibly a vector of length equal to the number of features (otherwise recycled); density may be of class units.
- **type**
  - character; indicate the sampling type, either "regular" or "random"
- **sample**
  - numeric; a vector of numbers between 0 and 1 indicating the points to sample - if defined sample overrules n, density and type.
Examples

```r
ls = st_sfc(st_linestring(rbind(c(0,0),c(0,1))),
 st_linestring(rbind(c(0,0),c(10,0))))
st_line_sample(ls, density = 1)
ls = st_sfc(st_linestring(rbind(c(0,0),c(0,1))),
 st_linestring(rbind(c(0,0),c(.1,0))), crs = 4326)
try(st_line_sample(ls, density = 1/1000)) # error
st_line_sample(st_transform(ls, 3857), n = 5) # five points for each line
st_line_sample(st_transform(ls, 3857), n = c(1, 3)) # one and three points
st_line_sample(st_transform(ls, 3857), density = 1/1000) # one per km
st_line_sample(st_transform(ls, 3857), density = c(1/10000, 1/1000)) # one per km, one per 10 km
st_line_sample(st_transform(ls, 3857), density = units::set_units(1, 1/km)) # one per km
five equidistant points including start and end:
st_line_sample(st_transform(ls, 3857), sample = c(0, 0.25, 0.5, 0.75, 1))
```

---

**st_make_grid**

Create a regular tessellation over the bounding box of an sf or sfc object

**Description**

Create a square or hexagonal grid covering the bounding box of the geometry of an sf or sfc object

**Usage**

```r
st_make_grid(
 x,
 cellsize = c(diff(st_bbox(x)[c(1, 3)]), diff(st_bbox(x)[c(2, 4)]))/n,
 offset = st_bbox(x)[c("xmin", "ymin")],
 n = c(10, 10),
 crs = if (missing(x)) NA_crs_ else st_crs(x),
 what = "polygons",
 square = TRUE,
 flat_topped = FALSE
)
```

**Arguments**

- `x`: object of class sf or sfc
- `cellsize`: target cellsize
- `offset`: numeric of length 2; lower left corner coordinates (x, y) of the grid
- `n`: integer of length 1 or 2, number of grid cells in x and y direction (columns, rows)
- `crs`: object of class crs; coordinate reference system of the target of the target grid in case argument x is missing, if x is not missing, its crs is inherited.
- `what`: character; one of: "polygons", "corners", or "centers"
- `square`: logical; if FALSE, create hexagonal grid
- `flat_topped`: logical; if TRUE generate flat topped hexagons, else generate pointy topped
Value

Object of class sfc (simple feature geometry list column) with, depending on what and square, square or hexagonal polygons, corner points of these polygons, or center points of these polygons.

Examples

```r
plot(st_make_grid(what = "centers"), axes = TRUE)
plot(st_make_grid(what = "corners"), add = TRUE, col = 'green', pch=3)
sfc = st_sfc(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,0)))))
plot(st_make_grid(sfc, cellsize = .1, square = FALSE))
plot(sfc, add = TRUE)
non-default offset:
plot(st_make_grid(sfc, cellsize = .1, square = FALSE, offset = c(0, .05 / (sqrt(3)/2))))
plot(sfc, add = TRUE)
nc = read_sf(system.file("shape/nc.shp", package="sf"))
g = st_make_grid(nc)
plot(g)
plot(st_geometry(nc), add = TRUE)
g[nc] selects cells that intersect with nc:
plot(g[nc], col = '#ff000088', add = TRUE)
```

---

**st_m_range**

Return 'm' range of a simple feature or simple feature set

Description

Return 'm' range of a simple feature or simple feature set

Usage

```r
S3 method for class 'm_range'
is.na(x)

st_m_range(obj, ...)

S3 method for class 'POINT'
st_m_range(obj, ...)

S3 method for class 'MULTIPOINT'
st_m_range(obj, ...)

S3 method for class 'LINESTRING'
st_m_range(obj, ...)

S3 method for class 'POLYGON'
st_m_range(obj, ...)

S3 method for class 'MULTILINESTRING'
```
st_m_range(obj, ...)

## S3 method for class 'MULTIPOLYGON'
st_m_range(obj, ...)

## S3 method for class 'GEOMETRYCOLLECTION'
st_m_range(obj, ...)

## S3 method for class 'MULTISURFACE'
st_m_range(obj, ...)

## S3 method for class 'MULTICURVE'
st_m_range(obj, ...)

## S3 method for class 'CURVEPOLYGON'
st_m_range(obj, ...)

## S3 method for class 'COMPOUNDCURVE'
st_m_range(obj, ...)

## S3 method for class 'POLYHEDRALSURFACE'
st_m_range(obj, ...)

## S3 method for class 'TIN'
st_m_range(obj, ...)

## S3 method for class 'TRIANGLE'
st_m_range(obj, ...)

## S3 method for class 'CIRCULARSTRING'
st_m_range(obj, ...)

## S3 method for class 'sfc'
st_m_range(obj, ...)

## S3 method for class 'sf'
st_m_range(obj, ...)

## S3 method for class 'numeric'
st_m_range(obj, ..., crs = NA_crs_)

NA_m_range_

Arguments

x object of class m_range

obj object to compute the m range from

... ignored
st_nearest_feature

Description

generate index of nearest feature

Usage

st_nearest_feature(x, y)

Arguments

<table>
<thead>
<tr>
<th>x</th>
<th>object of class sfg, sfc or sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>object of class sfg, sfc or sf</td>
</tr>
</tbody>
</table>

Value

for each feature (geometry) in x the index of the nearest feature (geometry) in set y; empty geometries result in NA indexes

See Also

st_nearest_points for finding the nearest points for pairs of feature geometries
Examples

```r
ls1 = st_linestring(rbind(c(0,0), c(1,0)))
ls2 = st_linestring(rbind(c(0,0.1), c(1,0.1)))
ls3 = st_linestring(rbind(c(0,1), c(1,1)))
(l = st_sfc(ls1, ls2, ls3))

p1 = st_point(c(0.1, -0.1))
p2 = st_point(c(0.1, 0.11))
p3 = st_point(c(0.1, 0.09))
p4 = st_point(c(0.1, 0.9))

(p = st_sfc(p1, p2, p3, p4))
try(st_nearest_feature(p, l))
try(st_nearest_points(p, l[st_nearest_feature(p,l)], pairwise = TRUE))

r = sqrt(2)/10
b1 = st_buffer(st_point(c(.1,.1)), r)
b2 = st_buffer(st_point(c(.9,.9)), r)
b3 = st_buffer(st_point(c(.9,.1)), r)
circles = st_sfc(b1, b2, b3)
plot(circles, col = NA, border = 2:4)

pts = st_sfc(st_point(c(.3,.1)), st_point(c(.6,.2)), st_point(c(.6,.6)), st_point(c(.4,.8)))
plot(pts, add = TRUE, col = 1)
draw points to nearest circle:
nearest = try(st_nearest_feature(pts, circles))
if (inherits(nearest, "try-error")) # GEOS 3.6.1 not available
 nearest = c(1, 3, 2, 2)
ls = st_nearest_points(pts, circles[nearest], pairwise = TRUE)
plot(ls, col = 5:8, add = TRUE)
```

---

**st_nearest_points**

**get nearest points between pairs of geometries**

**Description**

get nearest points between pairs of geometries

**Usage**

```r
st_nearest_points(x, y, ...)
```

## S3 method for class 'sfc'
st_nearest_points(x, y, ..., pairwise = FALSE)

## S3 method for class 'sfg'
st_nearest_points(x, y, ...)

## S3 method for class 'sf'
st_nearest_points(x, y, ...)```
Arguments

- **x**: object of class sfg, sfc or sf
- **y**: object of class sfg, sfc or sf
- **pairwise**: logical; if FALSE (default) return nearest points between all pairs, if TRUE, return nearest points between subsequent pairs.

Details

in case x lies inside y, when using S2, the end points are on polygon boundaries, when using GEOS the end point are identical to x.

Value

an sfc object with all two-point LINestring geometries of point pairs from the first to the second geometry, of length x * y, with y cycling fastest. See examples for ideas how to convert these to POINT geometries.

See Also

st_nearest_feature for finding the nearest feature

Examples

```r
r = sqrt(2)/10
pt1 = st_point(c(.1,.1))
pt2 = st_point(c(.9,.9))
pt3 = st_point(c(.9,.1))
b1 = st_buffer(pt1, r)
b2 = st_buffer(pt2, r)
b3 = st_buffer(pt3, r)
(ls0 = st_nearest_points(b1, b2)) # sfg
(ls = st_nearest_points(st_sfc(b1), st_sfc(b2, b3))) # sfc
plot(b1, xlim = c(-.2,1.2), ylim = c(-.2,1.2), col = NA, border = 'green')
plot(st_sfc(b2, b3), add = TRUE, col = NA, border = 'blue')
plot(ls, add = TRUE, col = 'red')
nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
plot(st_geometry(nc))
ls = st_nearest_points(nc[1,], nc)
plot(ls, col = 'red', add = TRUE)
pts = st_cast(ls, "POINT") # gives all start & end points
starting, "from" points, corresponding to x:
plot(pts[seq(1, 200, 2)], add = TRUE, col = 'blue')
ending, "to" points, corresponding to y:
plot(pts[seq(2, 200, 2)], add = TRUE, col = 'green')
```
**st_normalize**  

*Normalize simple features*

**Description**

`st_normalize` transforms the coordinates in the input feature to fall between 0 and 1. By default the current domain is set to the bounding box of the input, but other domains can be used as well.

**Usage**

```r
st_normalize(x, domain = st_bbox(x), ...)
```

**Arguments**

- `x`: object of class sf, sfc or sfg
- `domain`: The domain `x` should be normalized from as a length 4 vector of the form `c(xmin, ymin, xmax, ymax)`. Defaults to the bounding box of `x`
- `...`: ignored

**Examples**

```r
p1 = st_point(c(7, 52))
st_normalize(p1, domain = c(0, 0, 10, 100))

p2 = st_point(c(-30, 20))
sfc = st_sfc(p1, p2, crs = 4326)
sfc
sfc_norm <- st_normalize(sfc)
st_bbox(sfc_norm)
```

---

**st_precision**  

*Get precision*

**Description**

Get precision

Set precision

**Usage**

```r
st_precision(x)

st_set_precision(x, precision)

st_precision(x) <- value
```
Arguments

- **x**: object of class `sfc` or `sf`
- **precision**: numeric, or object of class `units` with distance units (but see details); see `st_as_binary` for how to do this.
- **value**: precision value

Details

If `precision` is a `units` object, the object on which we set precision must have a coordinate reference system with compatible distance units.

Setting a precision has no direct effect on coordinates of geometries, but merely set an attribute tag to an `sfc` object. The effect takes place in `st_as_binary` or, more precise, in the C++ function `CPL_write_wkb`, where simple feature geometries are being serialized to well-known-binary (WKB). This happens always when routines are called in GEOS library (geometrical operations or predicates), for writing geometries using `st_write` or `write_sf`, `st_make_valid` in package `lwgeom`; also `aggregate` and `summarise` by default union geometries, which calls a GEOS library function. Routines in these libraries receive rounded coordinates, and possibly return results based on them. `st_as_binary` contains an example of a roundtrip of `sfc` geometries through WKB, in order to see the rounding happening to R data.

The reason to support precision is that geometrical operations in GEOS or liblwgeom may work better at reduced precision. For writing data from R to external resources it is harder to think of a good reason to limiting precision.

See Also

- `st_as_binary` for an explanation of what setting precision does, and the examples therein.

Examples

```r
x <- st_sfc(st_point(c(pi, pi)))
st_precision(x)
st_precision(x) <- 0.01
st_precision(x)
```

---

**st_read**

*Read simple features or layers from file or database*

Description

Read simple features from file or database, or retrieve layer names and their geometry type(s)

Read PostGIS table directly through DBI and RPostgreSQL interface, converting Well-Know Binary geometries to `sfc`
Usage

\texttt{st\_read(dsn, layer, ...)}

\texttt{## S3 method for class 'character'}
\texttt{st\_read(}
  \texttt{  dsn,}
  \texttt{  layer,}
  \texttt{  ...,}
  \texttt{  query = NA,}
  \texttt{  options = NULL,}
  \texttt{  quiet = FALSE,}
  \texttt{  geometry\_column = 1L,}
  \texttt{  type = 0,}
  \texttt{  promote\_to\_multi = TRUE,}
  \texttt{  stringsAsFactors = sf\_stringsAsFactors(),}
  \texttt{  int64\_as\_string = FALSE,}
  \texttt{  check\_ring\_dir = FALSE,}
  \texttt{  fid\_column\_name = character(0),}
  \texttt{  drivers = character(0),}
  \texttt{  wkt\_filter = character(0)}
\texttt{)}

\texttt{read\_sf(..., quiet = TRUE, stringsAsFactors = FALSE, as\_tibble = TRUE)}

\texttt{## S3 method for class 'DBIOObject'}
\texttt{st\_read(}
  \texttt{  dsn = NULL,}
  \texttt{  layer = NULL,}
  \texttt{  query = NULL,}
  \texttt{  EWKB = TRUE,}
  \texttt{  quiet = TRUE,}
  \texttt{  as\_tibble = FALSE,}
  \texttt{  geometry\_column = NULL,}
  \texttt{  ...}
\texttt{)}

Arguments

dsn data source name (interpretation varies by driver - for some drivers, dsn is a file name, but may also be a folder, or contain the name and access credentials of a database); in case of GeoJSON, dsn may be the character string holding the geojson data. It can also be an open database connection.

layer layer name (varies by driver, may be a file name without extension); in case layer is missing, st_read will read the first layer of dsn, give a warning and (unless quiet = TRUE) print a message when there are multiple layers, or give an error if there are no layers in dsn. If dsn is a database connection, then layer can be a table name or a database identifier (see \texttt{Id}). It is also possible to omit layer and rather use the query argument.
... parameter(s) passed on to \texttt{st\_as\_sf}

\textbf{query} \quad \texttt{SQL} query to select records; see details

\textbf{options} \quad \texttt{character}; driver dependent dataset open options, multiple options supported. For possible values, see the "Open options" section of the GDAL documentation of the corresponding driver, and \url{https://github.com/r-spatial/st/issues/1157} for an example.

\textbf{quiet} \quad \texttt{logical}; suppress info on name, driver, size and spatial reference, or signaling no or multiple layers

\textbf{geometry\_column} \quad \texttt{integer or character}; in case of multiple geometry fields, which one to take?

\textbf{type} \quad \texttt{integer}; ISO number of desired simple feature type; see details. If left zero, and \texttt{promote\_to\_multi} is \texttt{TRUE}, in case of mixed feature geometry types, conversion to the highest numeric type value found will be attempted. A vector with different values for each geometry column can be given.

\textbf{promote\_to\_multi} \quad \texttt{logical}; in case of a mix of Point and MultiPoint, or of LineString and MultiLineString, or of Polygon and MultiPolygon, convert all to the Multi variety; defaults to \texttt{TRUE}

\textbf{strings\_As\_Factors} \quad \texttt{logical}; \texttt{logical}: should character vectors be converted to factors? Default for \texttt{read\_sf} or R version $\geq$ 4.1.0 is \texttt{FALSE}, for \texttt{st\_read} and R version $< 4.1.0$ equal to \texttt{default\_strings\_As\_Factors()}

\textbf{int64\_as\_string} \quad \texttt{logical}; if \texttt{TRUE}, Int64 attributes are returned as string; if \texttt{FALSE}, they are returned as double and a warning is given when precision is lost (i.e., values are larger than $2^{53}$).

\textbf{check\_ring\_dir} \quad \texttt{logical}; if \texttt{TRUE}, polygon ring directions are checked and if necessary corrected (when seen from above: exterior ring counter clockwise, holes clockwise)

\textbf{fid\_column\_name} \quad \texttt{character}; name of column to write feature IDs to; defaults to not doing this

\textbf{drivers} \quad \texttt{character}; limited set of driver short names to be tried (default: try all)

\textbf{wkt\_filter} \quad \texttt{character}; WKT representation of a spatial filter (may be used as bounding box, selecting overlapping geometries); see examples

\textbf{as\_tibble} \quad \texttt{logical}; should the returned table be of class \texttt{tibble} or \texttt{data.frame}?

\textbf{EWKB} \quad \texttt{logical}; is the WKB of type EWKB? if missing, defaults to \texttt{TRUE}

\textbf{Details}

for \texttt{geometry\_column}, see also \url{https://trac.osgeo.org/gdal/wiki/rfc41_multiple_geometry_fields}

for values for \texttt{type} see \url{https://en.wikipedia.org/wiki/Well-known_text#Well-known_binary}, but note that not every target value may lead to successful conversion. The typical conversion from \texttt{POLYGON (3)} to \texttt{MULTIPOLYGON (6)} should work; the other way around (\texttt{type=3}), secondary rings from \texttt{MULTIPOLYGONS} may be dropped without warnings. \texttt{promote\_to\_multi} is handled on a per-geometry column basis; \texttt{type} may be specified for each geometry column.
Note that stray files in data source directories (such as *.dbf) may lead to spurious errors that accompanying *.shp are missing.

In case of problems reading shapefiles from USB drives on OSX, please see https://github.com/r-spatial/sf/issues/252.

For query with a character dsn the query text is handed to 'ExecuteSQL' on the GDAL/OGR data set and will result in the creation of a new layer (and layer is ignored). See 'OGRSQL' https://gdal.org/user/ogr_sql_dialect.html for details. Please note that the 'FID' special field is driver-dependent, and may be either 0-based (e.g. ESRI Shapefile), 1-based (e.g. MapInfo) or arbitrary (e.g. OSM). Other features of OGRSQL are also likely to be driver dependent. The available layer names may be obtained with st_layers. Care will be required to properly escape the use of some layer names.

read_sf and write_sf are aliases for st_read and st_write, respectively, with some modified default arguments. read_sf and write_sf are quiet by default: they do not print information about the data source. read_sf returns an sf-tibble rather than an sf-data.frame. write_sf delete layers by default: it overwrites existing files without asking or warning.

if table is not given but query is, the spatial reference system (crs) of the table queried is only available in case it has been stored into each geometry record (e.g., by PostGIS, when using EWKB)

The function will automatically find the 'geometry' type columns for drivers that support it. For the other drivers, it will try to cast all the character columns, which can be slow for very wide tables.

Value

object of class sf when a layer was successfully read; in case argument layer is missing and data source dsn does not contain a single layer, an object of class sf_layers is returned with the layer names, each with their geometry type(s). Note that the number of layers may also be zero.

Note

The use of system.file in examples make sure that examples run regardless where R is installed: typical users will not use system.file but give the file name directly, either with full path or relative to the current working directory (see getwd). "Shapefiles" consist of several files with the same basename that reside in the same directory, only one of them having extension .shp.

See Also

st_layers, st_drivers

Examples

nc = st_read(system.file("shape/nc.shp", package="sf"))
summary(nc) # note that AREA was computed using Euclidian area on lon/lat degrees

## only three fields by select clause
## only two features by where clause
nc_sql = st_read(system.file("shape/nc.shp", package="sf"),
    query = "SELECT NAME, SID74, FIPS FROM \"nc\" WHERE BIR74 > 20000")

## Not run:
library(sp)
example(meuse, ask = FALSE, echo = FALSE)
try(st_write(st_as_sf(meuse), "PG:dbname=postgis", "meuse", layer_options = "OVERWRITE=true"))
try(st_meuse <- st_read("PG:dbname=postgis", "meuse"))
if (exists("st_meuse"))
  summary(st_meuse)

## End(Not run)

## Not run:
## note that we need special escaping of layer within single quotes (nc.gpkg)
## and that geom needs to be included in the select, otherwise we don't detect it
layer <- st_layers(system.file("gpkg/nc.gpkg", package = "sf"))$name[1]
nc_gpkg_sql = st_read(system.file("gpkg/nc.gpkg", package = "sf"),
  query = sprintf("SELECT NAME, SID74, FIPS, geom FROM \"%s\" WHERE BIR74 > 20000", layer))

## End(Not run)

# spatial filter, as wkt:
wkt = st_as_text(st_geometry(nc[1,]))
# filter by (bbox overlaps of) first feature geometry:
read_sf(system.file("gpkg/nc.gpkg", package="sf"), wkt_filter = wkt)
# read geojson from string:
geojson_txt <- paste("\{"type":"MultiPoint","coordinates":",
   "[[3.2,4],[3.4,6],[3.8,4.4],[3.5,3.8],[3.4,3.6],[3.9,4.5]]\}"
)x = read_sf(geojson_txt)
x

## Not run:
library(RPostgreSQL)
try(conn <- dbConnect(PostgreSQL(), dbname = "postgis"))
if (exists("conn") && !inherits(conn, "try-error")) {
  x = st_read(conn, "meuse", query = "select * from meuse limit 3;")
  x = st_read(conn, table = "public.meuse")
  print(st_crs(x)) # SRID resolved by the database, not by GDAL!
  dbDisconnect(conn)
}

## End(Not run)

---

st_relate

| **st_relate** | Compute DE9-IM relation between pairs of geometries, or match it to a given pattern |

**Description**

Compute DE9-IM relation between pairs of geometries, or match it to a given pattern

**Usage**

`st_relate(x, y, pattern = NA_character_, sparse = !is.na(pattern))`
Arguments

x  
object of class sf, sfc or sfg

y  
object of class sf, sfc or sfg

pattern  
character; define the pattern to match to, see details.

sparse  
logical; should a sparse matrix be returned (TRUE) or a dense matrix?

Value

In case pattern is not given, st_relate returns a dense character matrix; element [i,j] has nine characters, referring to the DE9-IM relationship between x[i] and y[j], encoded as IxIy, IxBy, IxEy, BxIy, BxBy, BxEy, ExIy, ExBy, ExEy where I refers to interior, B to boundary, and E to exterior, and e.g. BxIy the dimensionality of the intersection of the the boundary of x[i] and the interior of y[j], which is one of 0,1,2,F, digits denoting dimensionality, F denoting not intersecting. When pattern is given, a dense logical matrix or sparse index list returned with matches to the given pattern; see st_intersection for a description of the returned matrix or list. See also https://en.wikipedia.org/wiki/DE-9IM for further explanation.

Examples

```r
p1 = st_point(c(0,0))
p2 = st_point(c(2,2))
pol1 = st_polygon(list(rbind(c(0,0),c(1,0),c(1,1),c(0,1),c(0,0)))) - 0.5
pol2 = pol1 + 1
pol3 = pol1 + 2
st_relate(st_sfc(p1, p2), st_sfc(pol1, pol2, pol3))
sfc = st_sfc(st_point(c(0,0)), st_point(c(3,3)))
grd = st_make_grid(sfc, n = c(3,3))
st_relate(grd)
```

st_relate(grd, pattern = "****1****") # sides, not corners, internals

st_relate(grd, pattern = "****0****") # only corners touch

st_rook = function(a, b = a) st_relate(a, b, pattern = "F****1****")
st_rook(grd)

# queen neighbours, see https://github.com/r-spatial/sf/issues/234#issuecomment-300511129

st_queen <- function(a, b = a) st_relate(a, b, pattern = "F****T****")
```

st_sample

sample points on or in (sets of) spatial features

Description

Sample points on or in (sets of) spatial features. By default, returns a pre-specified number of points that is equal to size (if type = "random" and exact = TRUE) or an approximation of size otherwise. spatstat methods are interfaced and do not use the size argument, see examples.
Usage

```r
st_sample(x, size, ...)
```

S3 method for class 'sf'
```r
st_sample(x, size, ...)
```

S3 method for class 'sfc'
```r
st_sample(
  x,
  size,
  ..., 
  type = "random",
  exact = TRUE,
  warn_if_not_integer = TRUE,
  by_polygon = FALSE
)
```

S3 method for class 'sfg'
```r
st_sample(x, size, ...)
```

Arguments

- `x` object of class `sf` or `sfc`
- `size` sample size(s) requested; either total size, or a numeric vector with sample sizes for each feature geometry. When sampling polygons, the returned sampling size may differ from the requested size, as the bounding box is sampled, and sampled points intersecting the polygon are returned.
- `...` passed on to `sample` for multipoint sampling, or to spatstat functions for spatstat sampling types (see details)
- `type` character; indicates the spatial sampling type; one of random, hexagonal (triangular really), regular, or one of the spatstat methods such as Thomas for calling `spatstat.core::rThomas` (see Details).
- `exact` logical; should the length of output be exactly
- `warn_if_not_integer` logical; if FALSE then no warning is emitted if size is not an integer
- `by_polygon` logical; for MULTIPOLYGON geometries, should the effort be split by POLYGON? See https://github.com/r-spatial/sf/issues/1480 the same as specified by size? TRUE by default. Only applies to polygons, and when type = "random".

Details

The function is vectorised: it samples size points across all geometries in the object if size is a single number, or the specified number of points in each feature if size is a vector of integers equal in length to the geometry of x.

if x has dimension 2 (polygons) and geographical coordinates (long/lat), uniform random sampling on the sphere is applied, see e.g. http://mathworld.wolfram.com/SpherePointPicking.html
For regular or hexagonal sampling of polygons, the resulting size is only an approximation.

As parameter called offset can be passed to control ("fix") regular or hexagonal sampling: for polygons a length 2 numeric vector (by default: a random point from st_bbox(x)); for lines use a number like runif(1).

Sampling methods from package spatstat are interfaced (see examples), and need their own parameters to be set. For instance, to use spatstat::rThomas(), set type = "Thomas".

Value
an sfc object containing the sampled POINT geometries

Examples

```r
nc = st_read(system.file("shape/nc.shp", package="sf"))
p1 = st_sample(nc[1:3,], 6)
p2 = st_sample(nc[1:3,], 1:3)
plot(st_geometry(nc)[1:3])
plot(p1, add = TRUE)
plot(p2, add = TRUE, pch = 2)
x = st_sfc(st_polygon(list(rbind(c(0,0),c(90,0),c(90,90),c(0,90),c(0,0)))), crs = st_crs(4326))
plot(x, axes = TRUE, graticule = TRUE)
if (sf_extSoftVersion()["proj.4"] >= "4.9.0")
  plot(p <- st_sample(x, 1000), add = TRUE)
x2 = st_transform(st_segmentize(x, 1e4), st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
g = st_transform(st_graticule(), st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
plot(x2, graticule = g)
if (sf_extSoftVersion()["proj.4"] >= "4.9.0") {
  p2 = st_transform(p, st_crs("+proj=ortho +lat_0=30 +lon_0=45"))
  plot(p2, add = TRUE)
}
x = st_sfc(st_polygon(list(rbind(c(0,0),c(90,0),c(90,10),c(0,90),c(0,0))))) # NOT long/lat:
plot(x)
p_exact = st_sample(x, 1000, exact = TRUE)
p_not_exact = st_sample(x, 1000, exact = FALSE)
length(p_exact); length(p_not_exact)
plot(st_sample(x, 1000), add = TRUE)
x = st_sfc(st_polygon(list(rbind(c(-180,-90),c(180,-90),c(180,90),c(-180,90),c(-180,-90)))),
crs=st_crs(4326))
# FIXME:
# if (sf_extSoftVersion()["proj.4"] >= "4.9.0") {
#  p = st_sample(x, 1000)
#  st_sample(p, 3)
#}
# hexagonal:
sfc = st_sfc(st_polygon(list(rbind(c(0,0), c(1,0), c(1,1), c(0,0)))))
plot(sfc)
h = st_sample(sfc, 100, type = "hexagonal")
h1 = st_sample(sfc, 100, type = "hexagonal")
plot(h, add = TRUE)
plot(h1, col = 'red', add = TRUE)
c(length(h), length(h1)) # approximate!
pt = st_multipoint(matrix(1:20,,2))
```
```r
ls = st_sfc(st_linestring(rbind(c(0,0),c(0,1))),
           st_linestring(rbind(c(0,0),c(.1,0))),
           st_linestring(rbind(c(0,1),c(.1,1))),
           st_linestring(rbind(c(2,2),c(2,2.00001))))
st_sample(ls, 80)
plot(st_sample(ls, 80))
# spatstat example:
if (require(spatstat.core)) {
x <- sf::st_sfc(sf::st_polygon(list(rbind(c(0, 0), c(10, 0), c(10, 10), c(0, 0)))))
  # for spatstat.core::rThomas(), set type = "Thomas":
  pts <- st_sample(x, kappa = 1, mu = 10, scale = 0.1, type = "Thomas")
}
```

st_shift_longitude

Shift or re-center geographical coordinates for a Pacific view

Description

All longitudes < 0 are added to 360, to avoid for instance parts of Alaska being represented on the far left and right of a plot because they have values straddling 180 degrees. In general, using a projected coordinate reference system is to be preferred, but this method permits a geographical coordinate reference system to be used. This is the sf equivalent of `recenter` in the sp package and ST_ShiftLongitude in PostGIS.

Usage

```r
st_shift_longitude(x)
```

S3 method for class 'sfc'

```r
st_shift_longitude(x, ...)
```

S3 method for class 'sf'

```r
st_shift_longitude(x, ...)
```

Arguments

- `x` object of class sf or sfc
- `...` ignored

Examples

```r
## sfc
pt1 = st_point(c(-170, 50))
pt2 = st_point(c(170, 50))
(sfc = st_sfc(pt1, pt2))
sfc = st_set_crs(sfc, 4326)
st_shift_longitude(sfc)

## sf
```
d = st_as_sf(data.frame(id = 1:2, geometry = sfc))
st_shift_longitude(d)

st_transform
Transform or convert coordinates of simple feature

Description

Transform or convert coordinates of simple feature

Usage

```r
st_transform(x, crs, ...)
```

```r
## S3 method for class 'sfc'

st_transform(
x,
crs = st_crs(x),
...

aoi = numeric(0),
pipeline = character(0),
reverse = FALSE,
desired_accuracy = -1,
allow_ballpark = TRUE,
partial = TRUE,
check = FALSE)
```

```r
## S3 method for class 'sf'

st_transform(x, crs = st_crs(x), ...)
```

```r
## S3 method for class 'sfg'

st_transform(x, crs = st_crs(x), ...)
```

```r
st_wrap_dateline(x, options, quiet)
```

```r
## S3 method for class 'sfc'

st_wrap_dateline(x, options = "WRAPDATELINE=YES", quiet = TRUE)
```

```r
## S3 method for class 'sf'

st_wrap_dateline(x, options = "WRAPDATELINE=YES", quiet = TRUE)
```

```r
## S3 method for class 'sfg'

st_wrap_dateline(x, options = "WRAPDATELINE=YES", quiet = TRUE)
```

```r
sf_proj_info(type = "proj", path)
```
Arguments

- **x**: object of class sf, sfc or sfg
- **crs**: target coordinate reference system; object of class 'crs', or input string for `st_crs`
- **...**: ignored
- **aoi**: area of interest, in degrees: WestLongitude, SouthLatitude, EastLongitude, NorthLatitude
- **pipeline**: character; coordinate operation pipeline, for overriding the default operation
- **reverse**: boolean; has only an effect when pipeline is defined: if TRUE, the inverse operation of the pipeline is applied
- **desired_accuracy**: numeric; Only coordinate operations that offer an accuracy of at least the one specified will be considered; a negative value disables this feature (requires GDAL >= 3.3)
- **allow_ballpark**: logical; are ballpark (low accuracy) transformations allowed? (requires GDAL >= 3.3)
- **partial**: logical; allow for partial projection, if not all points of a geometry can be projected (corresponds to setting environment variable OGR_ENABLE_PARTIAL_REPROJECTION to TRUE)
- **check**: logical; if TRUE, perform a sanity check on resulting polygons
- **options**: character; should have "WRAPDATELINE=YES" to function; another parameter that is used is "DATELINEOFFSET=10" (where 10 is the default value)
- **quiet**: logical; print options after they have been parsed?
- **type**: character; one of have_datum_files, proj, ellps, datum, units or prime_meridians; see Details.
- **path**: character; PROJ search path to be set

Details

Transforms coordinates of object to new projection. Features that cannot be transformed are returned as empty geometries.

The `st_transform` method for sfg objects assumes that the CRS of the object is available as an attribute of that name.

For a discussion of using options, see https://github.com/r-spatial/sf/issues/280 and https://github.com/r-spatial/sf/issues/541

`sf_proj_info` lists the available projections, ellipses, datums, units, or data search path of the PROJ library when type is equal to proj, ellps, datum, units or path; when type equals have_datum_files a boolean is returned indicating whether datum files are installed and accessible (checking for conus).

for PROJ >= 6, `sf_proj_info` does not provide option type = "datums". PROJ < 6 does not provide the option type = "prime_meridians".

for PROJ >= 7.1.0, the "units" query of `sf_proj_info` returns the to_meter variable as numeric, previous versions return a character vector containing a numeric expression.
See Also

Projecting simple feature geometries to projections not supported by GDAL may be done by \texttt{st_transform_proj}, part of package lwgeom.

\texttt{sf_project} projects a matrix of coordinates, bypassing GDAL altogether

Examples

\begin{verbatim}
pl = st_point(c(7,52))
p2 = st_point(c(-30,20))
sfc = st_sfc(pl, p2, crs = 4326)
sfc
st_transform(sfc, 3857)
st_transform(st_sf(a=2:1, geom=sfc), "+init=epsg:3857")
try(st_transform(sfc, 3857, aoi = c(-280,-90,180,90)))
if (sf_extSoftVersion()["GDAL"] >= "3.0.0") {
 st_transform(sfc, pipeline =
 "+proj=pipeline +step +proj=axisswap +order=2,1") # reverse axes
 st_transform(sfc, pipeline =
 "+proj=pipeline +step +proj=axisswap +order=2,1", reverse = TRUE) # also reverse axes
}
nc = st_read(system.file("shape/nc.shp", package="sf"))
st_area(nc[1,]) # area from long/lat
st_area(st_transform(nc[1,], 32119)) # NC state plane, m
st_area(st_transform(nc[1,], 2264)) # NC state plane, US foot
library(units)
set_units(st_area(st_transform(nc[1,], 2264)), m^2)
st_transform(structure(p1, proj4string = "+init=epsg:4326"), "+init=epsg:3857")
library(maps)
wrld <- st_as_sf(maps::map("world", fill = TRUE, plot = FALSE))
wrld_wrap <- st_wrap_dateline(wrld, options = c("WRAPPEDATLANTIC=180", "DATELINEOFFSET=180"),
quiet = TRUE)
wrld_moll <- st_transform(wrld_wrap, "+proj=moll")
plot(st_geometry(wrld_moll), col = "transparent")
sf_proj_info("datum")
\end{verbatim}

\begin{itemize}
 \item \texttt{st_viewport} \textit{Create viewport from sf, sfc or sfg object}
\end{itemize}

Description

Create viewport from sf, sfc or sfg object

Usage

\begin{verbatim}
st_viewport(x, ..., bbox = st_bbox(x), asp)
\end{verbatim}
Arguments

- **x**: object of class sf, sfc or sfg object
- **...**: parameters passed on to `viewport`
- **bbox**: the bounding box used for aspect ratio
- **asp**: numeric; target aspect ratio (y/x), see Details

Details

Parameters `width`, `height`, `xscale` and `yscale` are set such that aspect ratio is honoured and plot size is maximized in the current viewport; others can be passed as ...

If `asp` is missing, it is taken as 1, except when `isTRUE(st_is_longlat(x))`, in which case it is set to `1.0 /cos(y)`, with `y` the middle of the latitude bounding box.

Value

The output of the call to `viewport`

Examples

```r
library(grid)
nc = st_read(system.file("shape/nc.shp", package="sf"))
grid.newpage()
pushViewport(viewport(width = 0.8, height = 0.8))
pushViewport(st_viewport(nc))
invisible(lapply(st_geometry(nc), function(x) grid.draw(st_as_grob(x, gp = gpar(fill = "red")))))
```

st_write

Write simple features object to file or database

Description

Write simple features object to file or database

Usage

```r
st_write(obj, dsn, layer, ...)
```

```r
## S3 method for class 'sfc'
st_write(obj, dsn, layer, ...)
```

```r
## S3 method for class 'sf'
st_write(
    obj,
    dsn,
    layer = NULL,
    ...,  
)```
driver = guess_driver_can_write(dsn),
dataset_options = NULL,
layer_options = NULL,
quiet = FALSE,
factorsAsCharacter = TRUE,
append = NA,
delete_dsn = FALSE,
delete_layer = !is.na(append) && !append,
fid_column_name = NULL
)

## S3 method for class 'data.frame'
st_write(obj, dsn, layer = NULL, ...)
write_sf(..., quiet = TRUE, append = FALSE, delete_layer = !append)

Arguments

obj object of class sf or sfc
dsn data source name. Interpretation varies by driver: can be a filename, a folder, a
database name, or a Database Connection (we officially test support for RPostgres::Postgres()
connections).
layer layer name. Varies by driver, may be a file name without extension; for database
connection, it is the name of the table. If layer is missing, the basename of dsn is
taken.
... other arguments passed to dbWriteTable when dsn is a Database Connection
driver character; name of driver to be used; if missing and dsn is not a Database Con-
nection, a driver name is guessed from dsn; st_drivers() returns the drivers
that are available with their properties; links to full driver documentation are
found at https://gdal.org/ogr Formats.html.
dataset_options character; driver dependent dataset creation options; multiple options supported.
layer_options character; driver dependent layer creation options; multiple options supported.
quiet logical; suppress info on name, driver, size and spatial reference
factorsAsCharacter logical; convert factor levels to character strings (TRUE, default), otherwise into
numbers when factorsAsCharacter is FALSE. For database connections, factorsAsCharacter
is always TRUE.
append logical; should we append to an existing layer, or replace it? if TRUE append, if
FALSE replace. The default for st_write is NA which raises an error if the layer
exists. The default for write_sf is FALSE, which overwrites any existing data. See
also next two arguments for more control on overwrite behavior.
delete_dsn logical; delete data source dsn before attempting to write?
delete_layer logical; delete layer layer before attempting to write? The default for st_write
is FALSE which raises an error if the layer exists. The default for write_sf is
TRUE.
Drop or add Z and/or M dimensions from feature geometries

Description

Drop Z and/or M dimensions from feature geometries, resetting classes appropriately.
Usage

\texttt{st\_zm(x, ..., drop = TRUE, what = "ZM")}

Arguments

- \texttt{x}: object of class \texttt{sfg}, \texttt{sfc} or \texttt{sf}
- \texttt{...}: ignored
- \texttt{drop}: logical; drop, or (FALSE) add?
- \texttt{what}: character which dimensions to drop or add

Details

Only combinations \texttt{drop=TRUE, what = "ZM"}, and \texttt{drop=FALSE, what="Z"} are supported so far. In case \texttt{add=TRUE}, \texttt{x} should have \texttt{XY} geometry, and zero values are added for \texttt{Z}.

Examples

\begin{verbatim}
  st_zm(st_linestring(matrix(1:32,8)))
  x = st_sfc(st_linestring(matrix(1:32,8)), st_linestring(matrix(1:8,2)))
  st_zm(x)
  a = st_sf(a = 1:2, geom=x)
  st_zm(a)
\end{verbatim}

\texttt{st\_z\_range}

\textit{Return 'z' range of a simple feature or simple feature set}

Description

\textit{Return 'z' range of a simple feature or simple feature set}

Usage

\begin{verbatim}
  ## S3 method for class 'z_range'
  is.na(x)

  st_z_range(obj, ...)

  ## S3 method for class 'POINT'
  st_z_range(obj, ...)

  ## S3 method for class 'MULTIPOINT'
  st_z_range(obj, ...)

  ## S3 method for class 'LINESTRING'
  st_z_range(obj, ...)
\end{verbatim}
## S3 method for class 'POLYGON'
st_z_range(obj, ...)

## S3 method for class 'MULTILINESTRING'
st_z_range(obj, ...)

## S3 method for class 'MULTIPOLYGON'
st_z_range(obj, ...)

## S3 method for class 'GEOMETRYCOLLECTION'
st_z_range(obj, ...)

## S3 method for class 'MULTISURFACE'
st_z_range(obj, ...)

## S3 method for class 'MULTICURVE'
st_z_range(obj, ...)

## S3 method for class 'CURVEPOLYGON'
st_z_range(obj, ...)

## S3 method for class 'COMPOUNDCURVE'
st_z_range(obj, ...)

## S3 method for class 'POLYHEDRALSURFACE'
st_z_range(obj, ...)

## S3 method for class 'TIN'
st_z_range(obj, ...)

## S3 method for class 'TRIANGLE'
st_z_range(obj, ...)

## S3 method for class 'CIRCULARSTRING'
st_z_range(obj, ...)

## S3 method for class 'sfc'
st_z_range(obj, ...)

## S3 method for class 'sf'
st_z_range(obj, ...)

## S3 method for class 'numeric'
st_z_range(obj, ..., crs = NA_crs_)

NA_z_range_
Arguments

x  object of class z_range
obj object to compute the z range from
... ignored
crs object of class crs, or argument to st_crs, specifying the CRS of this bounding box.

Format

An object of class z_range of length 2.

Details

NA_z_range_represents the missing value for a z_range object

Value

a numeric vector of length two, with zmin and zmax values; if obj is of class sf or sfc the object returned has a class z_range

Examples

a = st_sf(a = 1:2, geom = st_sfc(st_point(0:2), st_point(1:3)), crs = 4326)
st_z_range(a)
st_z_range(c(zmin = 16.1, zmax = 16.6), crs = st_crs(4326))
**tibble**

*Summarize simple feature type for tibble*

**Description**

Summarize simple feature type for tibble

Summarize simple feature item for tibble

**Usage**

- `type_sum.sfc(x, ...)`
- `obj_sum.sfc(x)`
- `pillar_shaft.sfc(x, ...)`

**Arguments**

- `x`: object of class `sfc`
- `...`: ignored

**Details**

see `type_sum`

---

**tidyverse**

*Tidyverse methods for sf objects (remove .sf suffix!)*

**Description**

Tidyverse methods for sf objects. Geometries are sticky, use `as.data.frame` to let dplyr’s own methods drop them. Use these methods without the .sf suffix and after loading the tidyverse package with the generic (or after loading package tidyverse).

**Usage**

- `filter.sf(.data, ..., .dots)`
- `arrange.sf(.data, ..., .dots)`
- `group_by.sf(.data, ..., add = FALSE)`
- `ungroup.sf(x, ...)`
- `rowwise.sf(x, ...)"
mutate.sf(.data, ..., .dots)

transmute.sf(.data, ..., .dots)

select.sf(.data, ...)

rename.sf(.data, ...)

slice.sf(.data, ..., .dots)

summarise.sf(.data, ..., .dots, do_union = TRUE, is_coverage = FALSE)

distinct.sf(.data, ..., .keep_all = FALSE)

gather.sf(
  data,
  key,
  value,
  ...
  ,
  na.rm = FALSE,
  convert = FALSE,
  factor_key = FALSE
)

spread.sf(
  data,
  key,
  value,
  fill = NA,
  convert = FALSE,
  drop = TRUE,
  sep = NULL
)

sample_n.sf(tbl, size, replace = FALSE, weight = NULL, .env = parent.frame())

sample_frac.sf(
  tbl,
  size = 1,
  replace = FALSE,
  weight = NULL,
  .env = parent.frame()
)

nest.sf(.data, ...)

separate.sf(
data,       
col,       
into,       
    sep = "[^[:alnum:]]+",       
    remove = TRUE,       
    convert = FALSE,       
    extra = "warn",       
    fill = "warn",       
    ...       
)       

separate_rows.sf(data, ..., sep = "[^[:alnum:]]+", convert = FALSE)  

unite.sf(data, col, ..., sep = "_", remove = TRUE)  

unnest.sf(data, ..., .preserve = NULL)  

inner_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)  

left_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)  

right_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)  

full_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)  

semi_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)  

anti_join.sf(x, y, by = NULL, copy = FALSE, suffix = c(".x", ".y"), ...)  

Arguments  
  .data       data object of class sf  
  ...       other arguments  
  .dots       see corresponding function in package dplyr  
  add       see corresponding function in dplyr  
  x       A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames  
           (e.g. from dbplyr or dtplyr). See Methods, below, for more details.  
  do_union       logical; in case summary does not create a geometry column, should geometries  
                 be created by unioning using st_union, or simply by combining using  
                 st_combine? Using st_union resolves internal boundaries, but in case of unioning  
                 points, this will likely change the order of the points; see Details.  
  is_coverage       logical; if do_union is TRUE, use an optimized algorithm for features that form  
                    a polygonal coverage (have no overlaps)  
  .keep_all       see corresponding function in dplyr  
  data       see original function docs  
  key       see original function docs
A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames (e.g. from dbplyr or dplyr). See Methods, below, for more details.

by  A character vector of variables to join by. If NULL, the default, \_*_join() will perform a natural join, using all variables in common across \_x and \_y. A message lists the variables so that you can check they’re correct; suppress the message by supplying by explicitly. To join by different variables on \_x and \_y, use a named vector. For example, by = c("a" = "b") will match \_x$a to \_y$b. To join by multiple variables, use a vector with length > 1. For example, by = c("a","b") will match \_x$a to \_y$a and \_x$b to \_y$b. Use a named vector to match different variables in \_x and \_y. For example, by = c("a" = "b","c" = "d") will match \_x$a to \_y$b and \_x$c to \_y$d. To perform a cross-join, generating all combinations of \_x and \_y, use by = character().

copy  If \_x and \_y are not from the same data source, and copy is TRUE, then \_y will be copied into the same src as \_x. This allows you to join tables across srcs, but it is a potentially expensive operation so you must opt into it.

suffix  If there are non-joined duplicate variables in \_x and \_y, these suffixes will be added to the output to disambiguate them. Should be a character vector of length 2.

Details

select keeps the geometry regardless whether it is selected or not; to deselect it, first pipe through as.data.frame to let dplyr's own select drop it.

In case one or more of the arguments (expressions) in the summarise call creates a geometry list-column, the first of these will be the (active) geometry of the returned object. If this is not the case, a geometry column is created, depending on the value of do_union.
In case `do_union` is FALSE, `summarise` will simply combine geometries using `c.sfg`. When polygons sharing a boundary are combined, this leads to geometries that are invalid; see for instance https://github.com/r-spatial/sf/issues/681.

`distinct` gives distinct records for which all attributes and geometries are distinct; `st_equals` is used to find out which geometries are distinct.

`nest` assumes that a simple feature geometry list-column was among the columns that were nested.

### Value

an object of class `sf`

### Examples

```r
library(dplyr)
nc = st_read(system.file("shape/nc.shp", package="sf"))
nc %>% filter(AREA > .1) %>% plot()

plot 10 smallest counties in grey:
st_geometry(nc) %>% plot()
nc %>% filter(AREA > .1) %>% arrange(AREA) %>% slice(1:10) %>% plot(add = TRUE, col = 'grey')
title("the ten counties with smallest area")
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc %>% group_by(area_cl) %>% class()
nc2 <- nc %>% mutate(area10 = AREA/10)
nc2 %>% transmute(AREA = AREA/10, geometry = geometry) %>% class()
nc2 %>% select(SID74, SID79) %>% class()
nc2 <- nc %>% rename(area = AREA)
nc %>% slice(1:2)
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc.g <- nc %>% group_by(area_cl)
nc.g %>% summarise(mean(AREA))
nc2 %>% summarise(mean(AREA)) %>% plot(col = grey(3:6 / 7))
nc %>% as.data.frame %>% summarise(mean(AREA))
nc[c(1:100, 1:10),] %>% distinct() %>% nrow()
```

```r
title("the ten counties with smallest area")
nc$area_cl = cut(nc$AREA, c(0, .1, .12, .15, .25))
nc %>% group_by(area_cl) %>% summarise(mean(AREA))
nc %>% as.data.frame %>% summarise(mean(AREA))
```

```r
library(tidyr)
nc %>% select(SID74, SID79, geometry) %>% names()
nc %>% select(SID74, SID79, geometry) %>% class()
nc2 <- nc %>% rename(area = AREA)
nc %>% slice(1:2)
```

```r
storms.sf = st_as_sf(storms, coords = c("long", "lat"), crs = 4326)
x <- storms.sf %>% group_by(name, year) %>% nest
trs = lapply(x$data, function(tr) st_cast(st_combine(tr), "LINESTRING")[[1]]) %>%
 st_sfc(crs = 4326)
trs.sf = st_sf(x[,1:2], trs)
plot(trs.sf["year"], axes = TRUE)
```
transform.sf  

(transform method for sf objects)

Description
Can be used to create or modify attribute variables; for transforming geometries see st_transform, and all other functions starting with st_.

Usage
```r
S3 method for class 'sf'
transform(_data, ...)
```

Arguments
- `_data` object of class `sf`
- `...` Further arguments of the form `new_variable=expression`

Examples
```r
a = data.frame(x1 = 1:3, x2 = 5:7)
st_geometry(a) = st_sfc(st_point(c(0,0)), st_point(c(1,1)), st_point(c(2,2)))
transform(a, x1_sq = x1^2)
transform(a, x1_x2 = x1*x2)
```

valid  

( Check validity or make an invalid geometry valid)

Description
Checks whether a geometry is valid, or makes an invalid geometry valid

Usage
```r
st_is_valid(x, ...)
```

```r
S3 method for class 'sfc'
st_is_valid(x, ..., NA_on_exception = TRUE, reason = FALSE)
```

```r
S3 method for class 'sf'
st_is_valid(x, ...)
```

```r
S3 method for class 'sfg'
st_is_valid(x, ...)
```

```r
st_make_valid(x)
```
## S3 method for class 'sfg'

```r
st_make_valid(x)
```

### Arguments

- **x**: object of class sfg, sfg or sf
- **...**: passed on to sfc method
- **NA_on_exception**: logical; if TRUE, for polygons that would otherwise raise a GEOS error (exception, e.g. for a POLYGON having more than zero but less than 4 points, or a LINESTRING having one point) return an NA rather than raising an error, and suppress warning messages (e.g. about self-intersection); if FALSE, regular GEOS errors and warnings will be emitted.
- **reason**: logical; if TRUE, return a character with, for each geometry, the reason for invalidity, NA on exception, or "Valid Geometry" otherwise.

### Details

`st_make_valid` uses the `lwgeom_makevalid` method also used by the PostGIS command ST_makevalid if the GEOS version linked to is smaller than 3.8.0, and otherwise the version shipped in GEOS.

### Value

`st_is_valid` returns a logical vector indicating for each geometries of `x` whether it is valid.

- Object of the same class as `x`

### Examples

```r
p1 = st_as_sfc("POLYGON((0 0, 0 10, 10 0, 10 10, 0 0))")
st_is_valid(p1)
st_is_valid(st_sfc(st_point(0:1), p1[[1]]), reason = TRUE)
library(sf)
x = st_sfc(st_polygon(list(rbind(c(0,0),c(0.5,0),c(0.5,0.5),c(0.5,0),c(1,0),c(1,1),c(0,1),c(0,0)))))
suppressWarnings(st_is_valid(x))
y = st_make_valid(x)
st_is_valid(y)
y %>% st_cast()
```

---

**vctrs**

#### vctrs methods for sf objects

#### Description

vctrs methods for sf objects
Usage

vec_ptype2.sfc(x, y, ...)

## Default S3 method:
vec_ptype2.sfc(x, y, ..., x_arg = "x", y_arg = "y")

## S3 method for class 'sfc'
vec_ptype2.sfc(x, y, ...)

vec_cast.sfc(x, to, ...)

## S3 method for class 'sfc'
vec_cast.sfc(x, to, ...)

## Default S3 method:
vec_cast.sfc(x, to, ...)

Arguments

x Vector types.
y Vector types.
... These dots are for future extensions and must be empty.
x_arg, y_arg Argument names for x and y.
to Type to cast to. If NULL, x will be returned as is.
Index

* datasets
  - db_drivers, 9
  - extension_map, 10
  - prefix_map, 38
  - st_agr, 52
  - st_bbox, 60
  - st_crs, 69
  - st_m_range, 83
  - st_z_range, 104

* data
  - nc, 30
  - .degAxis (stars), 50
  - .get_layout (stars), 50
  - .image_scale (stars), 50
  - .image_scale_factor (stars), 50
  - .stop_geos (internal), 28
  - [.data.frame, 42, 43
  - [.sf (sf), 41
  - $.crs (st_crs), 69

aggregate, 4, 5, 64, 89
aggregate (aggregate.sf), 4
aggregate.sf, 4
anti_join.sf (tidyverse), 107
arrange.sf (tidyverse), 107
as, 5
as.data.frame, 107
as.matrix.sfg (st), 47
as.matrix.sgbp (sgbp), 47
as_Spatial (as), 5
as_Spatial(), 6

bind, 6
bind_cols, 7
bpy.colors, 37

c, 20
c.sfg, 5, 20, 111
c.sfg (st), 47
cbind, 7
cbind.sf (bind), 6
classIntervals, 35
coerce, crs, CRS-method (as), 5
coerce, sf, Spatial-method (as), 5
coerce, sfc, Spatial-method (as), 5
coerce, Spatial, sf-method (as), 5
coerce, Spatial, sfc-method (as), 5
data.frame, 7
db_drivers, 9
dbDataType, DBIObject, sf-method
  (dbDataType, PostgreSQLConnection, sf-method), 8
dbDataType, PostgreSQLConnection, sf-method, 8
dbWriteTable, 102, 103
dbWriteTable, DBIObject, character, sf-method
  (dbWriteTable, PostgreSQLConnection, character, sf-method), 8
dbWriteTable, PostgreSQLConnection, character, sf-method, 8
dim.sgbp (sgbp), 47
distinct.sf (tidyverse), 107
dotsMethods, 7

dateframe, 7
db_drivers, 9
dbDataType, DBIObject, sf-method
  (dbDataType, PostgreSQLConnection, sf-method), 8
dbDataType, PostgreSQLConnection, sf-method, 8
dbWriteTable, 102, 103
dbWriteTable, DBIObject, character, sf-method
  (dbWriteTable, PostgreSQLConnection, character, sf-method), 8
dbWriteTable, PostgreSQLConnection, character, sf-method, 8
dim.sgbp (sgbp), 47
distinct.sf (tidyverse), 107
dotsMethods, 7
extension_map, 10
filter.sf (tidyverse), 107
format, 62
format.bbox (st_bbox), 60
format.crs (st_crs), 69
format.sfg (st), 47
full_join.sf (tidyverse), 107
gather.sf (tidyverse), 107
gdal, 10
gdal_crs (gdal), 10
gdal_extract (gdal), 10
gdal_inv_geotransform (gdal), 10
gdal_metadata (gdal), 10
gdal_polygonize (gdal), 10
gdal_rasterize (gdal), 10
gdal_read (gdal), 10
gdal_subdatasets (gdal), 10
gdal_utils, 13
gdal_write (gdal), 10
geos_binary_ops, 14
geos_binary_pred, 17
geos_combine, 19
geos_measures, 20
geos_query, 22
geos_unary, 23
get_key_pos (plot), 32
getwd, 92
group_by.sf (tidyverse), 107
gUnaryUnion, 20
gUnion, 20
head.sfg (st), 47
Id, 90
inner_join.sf (tidyverse), 107
intersect, 16
is.na.bbox (st_bbox), 60
is.na.crs (st_crs), 69
is.na.m_range (st_m_range), 83
is.na.z_range (st_z_range), 104
is_driver_available, 28
is_driver_can, 29
is_geometry_column, 29
left_join, 79
left_join.sf (tidyverse), 107
map, 55
merge, 79
merge.sf, 30
mutate.sf (tidyverse), 107
NA_agr_ (st_agr), 52
NA_bbox_ (st_bbox), 60
NA_crs_ (st_crs), 69
NA_m_range_ (st_m_range), 83
NA_z_range_ (st_z_range), 104
nc, 30
nest.sf (tidyverse), 107
obj_sum.sfc (tibble), 107
Ops, 31
par, 36, 37
pillar_shaft.sfc (tibble), 107
plot, 32, 35
plot.window, 36
plot.sf, 35
plot_sf (plot), 32
polypath, 36
prefix_map, 38
print.sf (sf), 41
print.sfg (st), 47
print.sgbp (sgbp), 47
proj_tools, 38
rainbow, 35
rawToHex, 40
rbind, 7
rbind.sf (bind), 6
read_sf (st_read), 89
recenter, 97
rename.sf (tidyverse), 107
right_join.sf (tidyverse), 107
rowwise.sf (tidyverse), 107
RPostgres::Postgres(), 102
s2, 40
s2_options, 15, 18
sample, 95
sample_frac.sf (tidyverse), 107
sample_n.sf (tidyverse), 107
select.sf (tidyverse), 107
semi_join.sf (tidyverse), 107
separate, 110
separate.sf (tidyverse), 107
separate_rows, 110
separate_rows.sf (tidyverse), 107
set_units, 21
setdiff, 16
sf, 4, 41, 70, 73, 74, 77, 82, 92, 109, 111
sf-defunct, 43
sf.colors (plot), 32
sf_add_proj_units (sf_project), 46
sf_extSoftVersion, 45
sf_proj_info (st_transform), 98
sf_proj_network (proj_tools), 38
sf_proj_pipelines (proj_tools), 38
sf_proj_search_paths (proj_tools), 38
sf_project, 46, 100
sf_use_s2 (s2), 40
sfc, 44, 55, 70, 73, 74, 77, 82, 87
INDEX

sfc_GEOMETRYCOLLECTION (sfc), 44
sfc_LINESTRING (sfc), 44
sfc_MULTILINESTRING (sfc), 44
sfc_MULTIPOLYGON (sfc), 44
sfc_MULTIPOLY (sfc), 44
sfc_POINT (sfc), 44
sfc_POLYGON (sfc), 44
sgbp, 18, 19, 47
slice.sf (tidyverse), 107
spread.sf (tidyverse), 107
st, 47
st_agr, 52
st_agr<- (st_agr), 52
st_area (geos_measures), 20
st_as_binary, 42, 45, 52, 58, 89
st_as_grob, 54
st_as_s2 (s2), 40
st_as_sf, 44, 54, 91
st_as_sf_s2_geography (s2), 40
st_as_sfc, 42, 43, 57, 62
st_as_sfc_s2_geography (s2), 40
st_as_text, 59
st_axis_order (st_crs), 69
st_bbox, 60, 68
st_bound_cols (bind), 6
st_boundary (geos_unity), 23
st_buffer (geos_unity), 23
st_cast, 22, 62, 66
st_cast(), 6
st_cast_sfc_default, 65
st_centroid (geos_unity), 23
st_collection_extract, 65
st_combine, 109
st_combine (geos_combine), 19
st_contains, 79
st_contains (geos_binary_pred), 17
st_contains_properly, 79
st_contains_properly (geos_binary_pred), 17
st_convex_hull (geos_unity), 23
st_coordinates, 67
st_covered_by, 79
st_covered_by (geos_binary_pred), 17
st_covers, 79
st_covers (geos_binary_pred), 17
st_crop, 68
st_crosses, 79
st_crosses (geos_binary_pred), 17
st_crs, 12, 42, 62, 69, 77, 85, 99, 106
st_crs(), 58
st_crs<- (st_crs), 69
st_difference, 20
st_difference (geos_binary_ops), 14
st_dimension, 22
st_dimension (geos_query), 22
st_disjoint, 79
st_disjoint (geos_binary_pred), 17
st_distance (geos_measures), 20
st_drivers, 28, 29, 72, 92, 103
st_drop_geometry (st_geometry), 72
st_equals, 80, 111
st_equals (geos_binary_pred), 17
st_equals_exact, 79
st_equals_exact (geos_binary_pred), 17
st_filter (st_join), 78
st_geod_area, 22
st_geod_segmentize, 25
st_geometry, 72
st_geometry<- (st_geometry), 72
st Geometry_type, 74
st_geometrycollection (st), 47
st_graticule, 36, 74
st_inscribed_circle (geos_unity), 23
st_interpolate_aw, 76
st_intersection, 19, 20, 94
st_intersection (geos_binary_ops), 14
st_intersects, 16, 53, 79
st_intersects (geos_binary_pred), 17
st_is, 77
st_is_empty (geos_query), 22
st_is_longlat, 77
st_is_simple (geos_query), 22
st_is_valid (valid), 112
st_is_within_distance, 80
st_is_within_distance (geos_binary_pred), 17
st_jitter, 78
st_join, 5, 78
st_layers, 81, 92
st_length (geos_measures), 20
st_line_merge (geos_unity), 23
st_line_sample, 81
st_linestring (st), 47
st_m_range, 83
st_make_grid, 82
st_make_valid (valid), 112
st_multilinestring (st), 47
st_multipoint (st), 47
st_multipolygon (st), 47
st_nearest_feature, 80, 85, 87
st_nearest_points, 85, 86
st_node (geos_unary), 23
st_normalize, 88
st_overlaps, 80
st_overlaps (geos_binary_pred), 17
st_point, 55
st_point (st), 47
st_polygon_on_surface (geos_unary), 23
st_polygon (st), 47
st_polygonize (geos_unary), 23
st_precision, 88
st_precision<-(st_precision), 88
st_read, 42, 44, 45, 89
st_read_db (sf-defunct), 43
st_read_db, (sf-defunct), 43
st_relate, 18, 79, 93
st_reverse (geos_unary), 23
st_sample, 94
st_segmentize (geos_unary), 23
st_set_agr (st_agr), 52
st_set CRS (st_crs), 69
st_set_geometry (st_geometry), 72
st_set_precision (st_precision), 88
st_sf, 7, 55
st_sf (sf), 41
st_sfc (sfc), 44
st_shift_longitude, 97
st_simplify (geos_unary), 23
st_snap (geos_binary_ops), 14
st_sym_difference, 20
st_sym_difference (geos_binary_ops), 14
st_touches, 80
st_touches (geos_binary_pred), 17
st_transform, 98, 112
st_transform_proj, 100
st_triangulate (geos_unary), 23
st_union, 4, 16, 109
st_union (geos_combine), 19
st_viewport, 100
st_voronoi (geos_unary), 23
st_within, 80
st_within (geos_binary_pred), 17
st_wrap_dateline (st_transform), 98
st_write, 44, 89, 101
st_write_db (sf-defunct), 43
st_z_range, 104
st_zm, 103
st_zm(), 6
stars, 50
summarise, 64, 89
summarise (tidyverse), 107
summary.sfc, 106
t.sgbp (sgbp), 47
tibble, 107
tidyverse, 107
transform.sf, 112
transmute.sf (tidyverse), 107
type_sum, 107
type_sum.sfc (tibble), 107
unite.sf (tidyverse), 107
unnest, 110
unnest.sf (tidyverse), 107
valid, 112
vctrs, 113
vec_cast.sfc (vctrs), 113
vec_ptype2.sfc (vctrs), 113
viewport, 101
write_sf, 89
write_sf (st_write), 101