A person begins to show symptoms of COVID-19 on 28.12.2021. When has the person been infectious?
get_infectiousness_density
If the person shows symptoms, the function
get_infectiousness_density()
can be used to answer the
question. The function get_infectiousness_density()
creates
a dataframe containing the infectiousness at a particular date/time.
The following input arguments are needed for the function
get_infectiousness_density()
:
The symptom_begin_date
is the date when the person
started to have symptoms.
Then, the max_infectious_days
is needed, which defines
the interval length of the distribution output.
The other three inputs infectiousness_shift
,
shape_infectiousness_gamma
and
rate_infectiousness_gamma
are the parameters of the gamma
distribution for the infectiousness profile.
<- as.Date("2021-12-28")
symptom_begin_date <- 12.272481
infectiousness_shift <- 24
max_infectious_days <- 20.516508
shape_infectiousness_gamma <- 1.592124
rate_infectiousness_gamma
<- get_infectiousness_density(symptom_begin_date,
infectious_df
infectiousness_shift,
max_infectious_days,
shape_infectiousness_gamma, rate_infectiousness_gamma)
The default values of the gamma distribution are taken from the paper He et al [1]. In this paper an analysis of COVID-19 viral shedding and transmissibility was conducted and a gamma distribution for the infectious period of cases was estimated based on their symptom onset dates.
The function call returns the following data frame:
dates | distribution | |
---|---|---|
100 | 2021-12-19 21:27:37 | 0.0000353 |
101 | 2021-12-19 22:27:37 | 0.0000402 |
102 | 2021-12-19 23:27:37 | 0.0000457 |
103 | 2021-12-20 00:27:37 | 0.0000519 |
104 | 2021-12-20 01:27:37 | 0.0000587 |
105 | 2021-12-20 02:27:37 | 0.0000663 |
106 | 2021-12-20 03:27:37 | 0.0000748 |
107 | 2021-12-20 04:27:37 | 0.0000843 |
108 | 2021-12-20 05:27:37 | 0.0000947 |
109 | 2021-12-20 06:27:37 | 0.0001063 |
The function get_infectiousness_density()
creates an
interval of length max_infectious_days
and the resulting
data frame shows the resulting density of the gamma distribution for
each hour of the period. This density can be used for calculating the
most probable period to infect other people.
get_infectiousness_density
The following code generates a plot with the gamma distribution of the infectiousness profile and the 80% and 95% high density intervals.
<- function(probability, df) {
.calculate_qstart_qend <- hdr(den = data.frame(x = 1:length(df$distribution), y = df$distribution), p = probability * 100)$hdr
hdr_df <- (hdr_df[1, 1] - 1) / 24
qstart <- (hdr_df[1, 2] - 1) / 24
qend return(list("qstart" = qstart, "qend" = qend))
}
<- .calculate_qstart_qend(0.8, infectious_df)
period_80 <- .calculate_qstart_qend(0.95, infectious_df) period_95
<- function(df, qstart, qend, fill = "red", alpha = 0.4) {
.shade_curve <- df[floor(qstart * 24):ceiling(qend * 24), ]
subset_df geom_area(data = subset_df,
aes(x = x, y = y),
fill = fill,
color = NA,
alpha = alpha)
}
<- as.Date("2021-12-28")
symptom_begin_date
<- infectious_df
df
<- as.POSIXct(format(as.POSIXct(symptom_begin_date, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_start <- as.POSIXct(format(as.POSIXct(symptom_begin_date + 1, tz = "CET"), "%Y-%m-%d"))
symp_date_posixct_end <- symp_date_posixct_start - as.numeric(difftime(symp_date_posixct_start,
symp_date_posixct_mid units = "hours")) / 2 * 3600
symp_date_posixct_end,
<- ggplot() +
g
scale_x_datetime(breaks = scales::date_breaks("1 days"), labels = scales::date_format("%d-%m-%Y")) +
theme(axis.text.x = element_text(angle = 90)) +
# scale_x_continuous(breaks = x_tick,
# labels = x_label) +
# theme(axis.ticks.x = element_line(color = c(rbind(rep("black", length(x_label)/2), rep(NA, length(x_label)/2))), linetype = 2, size = 1))+
geom_path(aes(x = df$dates, y = df$distribution, color = "red")) +
.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
$qstart,
period_80$qend) +
period_80.shade_curve(df = data.frame(x = df$dates, y = df$distribution),
$qstart,
period_95$qend,
period_95alpha = 0.2) +
geom_rect(data = data.frame(xmin = symp_date_posixct_start,
xmax = symp_date_posixct_end,
ymin = -Inf,
ymax = Inf),
aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax),
fill = "brown", alpha = 0.3) +
geom_label(aes(x = symp_date_posixct_mid, y = 0.9*max(df$distribution), label = "symptom\nonset"),
colour = "brown", fill = "white", size = 5, label.size = NA) +
ylab("probability") +
xlab("timeline") +
labs(color = 'Verteilung') +
# ggtitle("Visualization of get_infection_density") +
theme(legend.position = "none", text = element_text(size = 16*5/5)) +
theme(axis.text.x = element_text(colour = "black", face = "bold", angle = 30, hjust = 1)) +
theme(axis.title.x = element_text(colour = "black", face = "bold")) +
theme(axis.text.y = element_text(colour = "gray50")) +
theme(axis.title.y = element_text(colour = "gray50"))
g
[1] He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, Lao YC, Wong JY, Guan Y, Tan X, Mo X, Chen Y, Liao B, Chen W, Hu F, Zhang Q, Zhong M, Wi Y, Zhao L, Zhang F, Cowling BJ, Li F, Leung GM. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine. 2020; 26: 672–675.