
The bnumexpr package
Jean-François Burnol
jfbu (at) free (dot) fr

Package version: 1.5 (2021/05/17); documentation date: 2021/05/17.

From source file bnumexpr.dtx. Time-stamp: <17-05-2021 14:16:23 CEST>.

Contents

1 \bnumeval (\thebnumexpr), \evaltohex 1

2 Examples 2

3 The custom package option and \bnumsetup 3

4 \bnumprintone, \bnumprintonetohex, \bnumprintonesep 4

5 Example of customization: let the syntax handle fractions! 4

6 Differences from \numexpr 5

7 Printing big numbers 7

8 Expression syntax and its customizability 8

9 Precedences 8

10 \bnumdefinfix 9

11 \bnumdefpostfix 11

12 Readme 13

13 Changes 15

14 bnumexpr implementation 17

1 \bnumeval (\thebnumexpr), \evaltohex

LATEX Package bnumexpr provides \thebnumexpr⟨expression⟩\relax: it is analo-
gous to \the\numexpr⟨expression⟩\relax, with these extensions:

• it allows arbitrarily big integers,

• it computes powers (with either ** or ^ as infix operator),

• it computes factorials (with ! as postfix operator),

• it has an operator // for floored division and /: for the associated
modulo (like % in Python which we can't use for obvious reasons),

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/bnumexpr

2 Examples

• the space character is ignored1 and can thus be used to separate in the
source blocks of digits for better readability of long numbers,

• also the underscore _ may be used as visual digit separator,

• comma separated expressions are allowed,

• syntax is customizable and extendible.

There is also a more core-level \bnumexpr...\relax construct2, which expands

to a self-contained unit, rather than to explicit digit tokens (and commas).

See section 6 for some related information.

There is also the alternative interface \bnumeval{⟨expression⟩}, where the
expression is fetched as braced argument.

And there is \evaltohex{⟨expression⟩} which does the same as \bnumeval but
with a conversion to hexadecimal notation of the (possibly comma separated)

output. Hexadecimal input uses the " prefix.

This package parser is a scaled-down variant of \xintiiexpr from pack-

age xintexpr, dropping support for nested structures, functions, variables,

booleans, etc..., but incorporating by default support for hexadecimal input

as xintbinhex will be automatically loaded.

The ε-TEX extensions are required, this is the default on all modern instal-
lations for latex|pdflatex and also for xelatex|lualatex.

Further, at 1.4 (2021/05/12) the \expanded primitive is required. It is

available in all engines since TEXLive 2019.

2 Examples

With certain languages, Babel with PDFLATEX may make some characters active,

for example the ! with the French language. It must then be input as \string!.

\thebnumexpr ---1 208 637 867 * (2 187 917 891 - 3 109 197 072)\relax

1113492904235346927

\bnethe \bnumexpr (13_8089_1090-300_1890_2902)*(1083_1908_3901-109_8290_3⤸
890)\relax

-2787514672889976289932

\bnumeval {(92_874_927_979**5-31_9792_7979**6)/30!}

-4006240736596543944035189

\bnumeval {30!/20!/21/22/23/24/25/(26*27*28*29)}

30

\bnumeval {13^50//12^50, 13^50/:12^50}

54, 650556287901099025745221048683760161794567947140168553

1It is not completely ignored, \count 37<space> will automatically be prefixed by \number and the
space token delimits the integer indexing the count register. Also, devious inputs using nested braces
around spaces may create unexpected internal situations and even break the parser.

2Since 1.4, one can use \bnumexpr ...\relax directly in typesetting context, it is not mandatory to
prefix it with \bnethe or to use \thebnumexpr.

2

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint

3 The custom package option and \bnumsetup

\bnumeval {13^50/12^50, 12^50}

55, 910043815000214977332758527534256632492715260325658624

\bnumeval {(1^10+2^10+3^10+4^10+5^10+6^10+7^10+8^10+9^10)^3}

118685075462698981700620828125

\bnumeval {100!/36^100}

219

\bnumeval {"0010*"0100*"1000*"A0000, 16^(1+2+3+4)*10}

10995116277760, 10995116277760

\evaltohex {"7FFFFFFF+1, "0400^3, "ABCDEF*"0000FEDCBA, 1234}

80000000, 40000000, AB0A74EF03A6, 4D2

\bnumeval {"\evaltohex {12345678}FFFF, 000012345679*16**4-1}

809086418943, 809086418943

3 The custom package option and \bnumsetup

Package bnumexpr needs that some big integer engine provides the macros doing

the actual computations. By default, it loads package xintcore (a subset of

xint) and uses \bnumsetup in the following way:

\usepackage{xintcore}
\bnumsetup{add=\xintiiAdd, sub=\xintiiSub, mul=\xintiiMul,

divround=\xintiiDivRound, div=\xintiiDivFloor,
mod=\xintiiMod, pow=\xintiiPow, fac=\xintiiFac,
opp=\xintiiOpp}

If using \bnumsetup, it is not necessary to specify all keys, for exam-

ple one can do \bnumsetup{mul=\MySlowerMul}, and only multiplication will

be changed.

Naturally it is up to the user to load the appropriate package for the al-

ternative macros.

The macros serving as custom user replacements3 must be f-expandable, ex-

cept for the computation of factorials, which only has to be x-expandable.4

Macro \bnumsetup can be used multiple times in the same document, thus al-

lowing to switch math engines or to remap operators to some other arithmetic

macros of the same math engine. Its effect obeys the local scope.5

3The replacement macros will by default receive arguments composed of explicit digit tokens, with no
leading zeros, with at most one leading minus sign and no plus sign.

The format of these arguments will depend on what the other customized macros do. For example
if opp=\foo is used and the custom \foo inserts a + when taking the opposite of a negative number,
then the other custom macros for arithmetic (and the \foo macro itself) must be able to handle
arguments starting optionally with such a +.

4Prior to 1.4, only x-expandability was required. It is easy however to use an \expanded based wrapper
to convert x-expandable macros into f -expandable ones.

5The effect is global if under \xintglobaldefstrue setting.

3

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

4 \bnumprintone, \bnumprintonetohex, \bnumprintonesep

The hexadecimal input via the " prefix is converted internally to decimal

notation using \xintHexToDec from package xintbinhex, and customization is

possible via redefinition of \bnumhextodec, whose default is to be an alias

to \xintHexToDec.

The final conversion back to hexadecimal done by \evaltohex is handled by

\bnumprintonetohex which defaults to \xintDecToHex.

These two steps can thus be customized as will. But the loading of package

xintbinhex can not be canceled.

4 \bnumprintone, \bnumprintonetohex,
\bnumprintonesep

The computed values are printed one by one, separated by a comma and a space

(this is customizable as \bnumprintonesep), and each value being handed over

to \bnumprintone. By default this does nothing else than producing its ar-

gument as is, it can be redefined at will (perhaps using macros such as in

section 7 to handle the case of very long numbers).

There is also \bnumprintonetohex which is used by \evaltohex (this is its

sole difference from \bnumeval). Its default definition makes it an alias to

\xintDecToHex from package xintbinhex.

5 Example of customization: let the syntax handle
fractions!

I will show how to transform \bnumeval into a calculator with fractions! We

will use the xintfrac macros, but coerce them into always producing fractions

in lowest terms (except for powers). For optimization we use the [0] post-fix

which speeds-up the input parsing by the xintfrac macros. We remove it on

output via a custom \bnumprintone.

Note that the / operator is associated to divround key but of course here

the used macro will simply do an exact division of fractions, not a rounded-

to-an integer division. This is the whole point of using a macro of our own

choosing!

\usepackage{xintfrac}
\newcommand\myIrrAdd[2]{\xintIrr{\xintAdd{#1}{#2}}[0]}
\newcommand\myIrrSub[2]{\xintIrr{\xintSub{#1}{#2}}[0]}
\newcommand\myIrrMul[2]{\xintIrr{\xintMul{#1}{#2}}[0]}
\newcommand\myDiv[2]{\xintIrr{\xintDiv{#1}{#2}}[0]}
\newcommand\myDivFloor[2]{\xintDivFloor{#1}{#2}[0]}
\newcommand\myMod[2]{\xintIrr{\xintMod{#1}{#2}}[0]}
\newcommand\myPow[2]{\xintPow{#1}{#2}}% will have trailing [0]
\newcommand\myFac[1]{\xintFac{#1}}% produces trailing [0]
\bnumsetup{add=\myIrrAdd, sub=\myIrrSub, mul=\myIrrMul,

divround=\myDiv, div=\myDivFloor,
mod=\myMod, pow=\myPow, fac=\myFac}%

% % if any operation happened, the result is already irreducible

4

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

6 Differences from \numexpr

% % (except power of non-irreducible) so this is overhead:
% \let\bnumprintone\xintIrr
% % but it is safe way to get rid of the trailing [0]
% % else we have to take care of case with no [0] because of no operations
% % well let's do it:
\makeatletter
\def\myPrintOne#1{\@myPrintOne#1[0]\relax}
\def\@myPrintOne#1[0]#2\relax{#1}
\let\bnumprintone\myPrintOne
\makeatother

\bnumeval {1000000*(1/100+1/2^7-20/5^4)/(1/3-5/7+9/11)^2}

-1514118375/20402

\bnumeval {(1-1/2)(1-1/3)(1-1/4)(1-1/5)(1-1/6)(1-1/7)}

1/7

\bnumeval {(1-1/3+1/9-1/27-1/81+1/243-1/729+1/2187)^5}

10485760000000000/50031545098999707

\bnumeval {(1+1/10)^10 /: (1-1/10)^10}

764966897/5000000000

\bnumeval {2^-3^4}

1/2417851639229258349412352

This last example is computed differently than it would be with xintexpr 1.4⤸
f because bnumexpr 1.5 already applies right associativity to powers, whereas

xintexpr 1.4f still applies left associativity.

Note also that the above changes break \evaltohex whose output routine uses

by default \xintDecToHex which will choke on fractional input. However it is

not difficult to write a macro applying separately to numerator and denomi-

nator.

Computations with fractions quickly give birth to big results, see sec-

tion 7 on how to modify \bnumprintone to coerce TEX into wrapping numbers too

long for the available width.

6 Differences from \numexpr

Apart from the extension to big integers (i.e. exceeding the TEX limit at

2147483647), and the added operators, there are a number of important dif-

ferences between \bnumexpr and \numexpr:

1. contrarily to \numexpr, the \bnumexpr parser stops only after having

found (and swallowed) a mandatory ending \relax token (it can arise from

expansion),

2. in particular note that spaces between digits do not stop \bnumexpr, in

contrast with \numexpr:

\the\numexpr 3 5+79\relax expands (in one step) to 35+79\relax

\thebnumexpr 3 5+79\relax expands (in two steps) to 114

5

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr

6 Differences from \numexpr

3. with \edef\myVar{\thebnumexpr1+2\relax}, the computation is of course

done at time of the \edef. But one is also allowed to do \edef\myVar{\bn⤸
umexpr1+2\relax} which prepares \myVar as a macro which can be inserted

in other bnumexpr expressions and behave there as a self-contained pre-

computed unit triggering tacit multiplication, or be typeset directly

if inserted in the typesetting stream.6 There is no analog with \numexp⤸
r as \edef\myVar{\numexpr1+2\relax} does not pre-compute anything and

furthermore \the\numexpr2\myVar\relax in typesetting flow then trig-

gers the You can't use `\numexpr' in horizontal mode error.

4. expressions may be comma separated. On input, spaces are ignored, and

on output the values are comma separated with a space after each comma,

5. \bnumexpr -(1+1)\relax is legal contrarily to \numexpr -(1+1)\relax

which raises an error,

6. \numexpr 2\cnta\relax is illegal (with \cnta a \count-variable.) But

\bnumexpr 2\cnta\relax is perfectly legal and will do the tacit multi-

plication,

7. more generally, tacit multiplication applies in front of parenthesized

sub-expressions, or sub \bnumexpr...\relax (or \numexpr...\relax), or

also after parentheses in front of numbers,

8. the underscore _ is accepted within the digits composing a number and is

silently ignored by \bnumexpr.

As hinted above \bnumexpr...\relax differs from \thebnumexpr...\relax as

the latter expands to explicit digit tokens, but the former expands to a pri-

vate self-contained format which can serve as sub-unit in other expressions,

or be used inside \edef. Since 1.4 the former idiom can also be inserted di-

rectly inside the typesetting stream, or be written out to an external file

where it will expand to some control sequences, braces, and character tokens,

all with their standard catcodes.

One can use \numexpr...\relax as a sub-unit in \bnumexpr...\relax but the

reverse does not apply: it would either cause an error or an anticipated end

to the \numexpr which will think having hit a \relax.

An important thing to keep in mind is that if one has a calculation whose

result is a small integer, acceptable by TEX in \ifnum or count assignments,

this integer produced by \thebnumexpr is not self-delimiting, contrarily to

a \numexpr...\relax construct: the situation is exactly as with a \the\num⤸
expr...\relax, thus one may need to terminate the number to avoid premature

expansion of following tokens; for example with the \space control sequence.

When using \bnumeval{...} syntax as in

\ifnum\bnumeval{...}
...
\fi

6Prior to 1.4, one would have had to use \bnethe \myVar for typesetting, or \bnumeval {\myVar }.

6

http://www.ctan.org/pkg/bnumexpr

7 Printing big numbers

the end of line will (under the normal LATEX configuration) insert a terminat-

ing space token. Again, here \bnumeval{...} must produce an integer accept-

able to TEX, i.e. at most 2147483647 in absolute value.

7 Printing big numbers

LATEX will not split long numbers at the end of lines. I personally often use

helper macros (not in the package) of the following type:

\def\allowsplits #1{\ifx #1\relax \else #1\hskip 0pt plus 1pt\relax
\expandafter\allowsplits\fi}%

\def\printnumber #1{\expandafter\allowsplits \romannumeral-`0#1\relax }%
% \printnumber thus first ``fully'' expands its argument.

\thebnumexpr 1000!\relax= 4023872600770937735437024339230039857193748642

107146325437999104299385123986290205920442084869694048004799886101971960

586316668729948085589013238296699445909974245040870737599188236277271887

325197795059509952761208749754624970436014182780946464962910563938874378

864873371191810458257836478499770124766328898359557354325131853239584630

755574091142624174743493475534286465766116677973966688202912073791438537

195882498081268678383745597317461360853795345242215865932019280908782973

084313928444032812315586110369768013573042161687476096758713483120254785

893207671691324484262361314125087802080002616831510273418279777047846358

681701643650241536913982812648102130927612448963599287051149649754199093

422215668325720808213331861168115536158365469840467089756029009505376164

758477284218896796462449451607653534081989013854424879849599533191017233

555566021394503997362807501378376153071277619268490343526252000158885351

473316117021039681759215109077880193931781141945452572238655414610628921

879602238389714760885062768629671466746975629112340824392081601537808898

939645182632436716167621791689097799119037540312746222899880051954444142

820121873617459926429565817466283029555702990243241531816172104658320367

869061172601587835207515162842255402651704833042261439742869330616908979

684825901254583271682264580665267699586526822728070757813918581788896522

081643483448259932660433676601769996128318607883861502794659551311565520

360939881806121385586003014356945272242063446317974605946825731037900840

244324384656572450144028218852524709351906209290231364932734975655139587

205596542287497740114133469627154228458623773875382304838656889764619273

838149001407673104466402598994902222217659043399018860185665264850617997

023561938970178600408118897299183110211712298459016419210688843871218556

461249607987229085192968193723886426148396573822911231250241866493531439

701374285319266498753372189406942814341185201580141233448280150513996942

901534830776445690990731524332782882698646027898643211390835062170950025

973898635542771967428222487575867657523442202075736305694988250879689281

627538488633969099598262809561214509948717012445164612603790293091208890

869420285106401821543994571568059418727489980942547421735824010636774045

957417851608292301353580818400969963725242305608559037006242712434169090

041536901059339838357779394109700277534720000000000000000000000000000000

7

8 Expression syntax and its customizability

00

00

00

00

8 Expression syntax and its customizability

The implemented syntax is the expected one with infix operators and parenthe-

ses, the recognized operators being +, -, *, / (rounded division), ^ (power),

** (power), // (by default floored division), /: (the associated modulo) and

! (factorial). One can input hexadecimal numbers as in TEX syntax for number

assignments, i.e. using a " prefix and only uppercase letters ABCDEF.

Different computations may be separated by commas. The whole expression is

handled token by token, any component (digit, operator, parentheses... even

the ending \relax) may arise on the spot from macro expansions. The underscore

_ can be used to separate digits in long numbers, for readability of the input.

The precedence rules are as expected and detailed in the next section. Op-

erators on the same level of precedence (like *, /, //, /:) behave in a left-

associative way, and these examples behave as e.g. with Python analogous op-

erators:

\bnumeval {100//3*4, 100*4//3, 100/:3*4, 100*4/:3, 100//3/:5}

132, 133, 4, 1, 3

At 1.5 a change was made to the power operators which became right-

associative. Again, this matches the behaviour e.g. of Python:7

\bnumeval {2^3^4, 2^(3^4)}

2417851639229258349412352, 2417851639229258349412352

It is possible to customize completely the behaviour of the parser, in two

ways:

• via \bnumsetup which has a simple interface to replace the macros asso-
ciated to the operators +, -, *, /, //, /:, ** and ^ by custom macros,

• or even more completely via \bnumdefinfix and \bnumdefpostfix which al-
low to add new operators to the syntax! (or overwrite existing ones...)

9 Precedences

The parser implements precedence rules based on concepts which are summarized

below. I am providing them for users who will use the customizing macros.

• an infix operator has two associated precedence levels, say L and R,

7It had been announced at xintexpr 1.4 that probably in future power operator would become right-
associative, so we experiment it here in bnumexpr in advance.

8

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr

10 \bnumdefinfix

• the parser proceeds from left to right, pausing each time it has found a
new number and an operator following it,

• the parser compares the left-precedence L of the new found operator to
the right-precedence R_last of the last delayed operation (which al-

ready has one argument and would like to know if it can use the new found

one): if L is at most equal to it, the delayed operation is now executed,

else the new-found operation is kept around to be executed first, once

it will have gathered its arguments, of which only one is known at this

stage.

Although there is thus internally all the needed room for sophistication,

the implemented table of precedences simply puts all of multiplication and

division related operations at the same level, which means that left asso-

ciativity will apply with these operators. I could see that Python behaves

the same way for its analogous operators.

Here is the default table of precedences as implemented by the package:

Table of precedences

operator left right

+,- 12 12

*,/,//,/: 14 14

tacit * 16 14

**, ^ 18 17

! 20 n/a

Tacit multiplication applies in front of parentheses, and after them, also

in front of count variables or registers. As shown in the table it has an

elevated precedence compared to multiplication explicitly induced by *, so

100/4(9) is computed as 100/36 and not as 25*9:

\bnumeval {100/4(9), (100/4)9, 1000 // (100/4) 9 (1+1) * 13}

3, 225, 26

More generally A/B(C)(D)(E)*F will compute (A/(B*C*D*E))*F.
8

The unary -, as prefix, has a special behaviour: after an infix operator it

will acquire a right-precedence which is the minimum of 12 (i.e. the prece-

dence of addition and subtraction) and of the right-precedence of the infix

operator. For example 2^-3^4 will be parsed as 2^(-(3^4)), raising an error

because the parser is by default integer only, but see the section about \bn⤸
umsetup which explains how to let \bnumeval computes fractions!

10 \bnumdefinfix

It is possible to define infix binary operators of one's own choosing.9 The

syntax is

\bnumdefinfix{⟨operator⟩}{⟨\macro⟩}{⟨L-prec⟩}{⟨R-prec⟩}
8The B(C)(D)(E) product will be computed as B*(C*(D*E)) because the right-precedence of tacit

multiplication is 14 but its left-precedence is 16, creating right associativity. As the underlying
mathematical operation is associative this is irrelevant to final result.

9The effect of \bnumdefinfix is global if under \xintglobaldefstrue setting.

9

10 \bnumdefinfix

{⟨operator⟩} The characters for the operator, they may be letters or non-
letters, and must not be active or among the special characters \, {,

}, # and %. Also, spaces will be removed.10,11,12

{⟨\macro⟩} The expandable macro (expecting two mandatory arguments) which
is to assign to the infix operator. This macro must be f-expandable.

Also it must (if the default package configuration is not modified for

the core operators) produce integers in the ``strict'' format which is

expected by the xintcore macros for arithmetic: no leading zeros, at

most one minus sign, no plus sign, no spaces.

{⟨L-prec⟩} An integer, minimal 4, maximal 22, which governs the left-prece-
dence of the infix operator.

{⟨R-prec⟩} An integer, minimal 4, maximal 22, which governs the right-prece-
dence of the infix operator.

Generally, the two precedences are set to the same value.

Once a multi-character operator is defined, the first characters of its

name can be used if no ambiguity. In case of ambiguity, it is the earliest

defined shortcut which prevails, except for the full name. So for example if

$abc operator is defined, and $ab is defined next, then $ and $a will still

serve as shortcuts to the original $abc, but $ab will refer to the newly de-

fined operator.

Fully qualified names are never ambiguous, and a shortcut once defined will

change meaning under only these two possibilities:

• it is re-defined as the full name of a new operator,

• the original operator to which the shortcut refers is defined again;
then the shortcut is automatically updated to point to the new meaning.

\def\equals#1#2{\ifnum\pdfstrcmp{#1}{#2}=0 \expandafter1\else
\expandafter0\fi}

% or:
\def\equals#1#2{\expanded{\ifnum\pdfstrcmp{#1}{#2}=0 1\else0\fi}}
\def\differ#1#2{\expanded{\ifnum\pdfstrcmp{#1}{#2}=0 0\else1\fi}}
\bnumdefinfix{==}{\equals}{10}{10}
\bnumdefinfix{!=}{\differ}{10}{10}
\bnumdefinfix{times}{\xintiiMul}{14}{14}
\bnumdefinfix{++}{\xintiiAdd}{19}{19}

\bnumeval {2 + 3! = 5, 2 + (3!) == 8}

0, 1

10The _ can be used, but not as first character of the operator, as it would be mis-construed on usage
as part of the previous number, and ignored as such.

11It is actually possible to use # as an operator name or a character in such a name but the definition
with \bnumdefinfix must then be done either with \string# or ####...

12Active characters must be prefixed by \string both at the time of the definition and at the time of
use. It is probably better to use a toggle which will turn off the activity, both at time of definition
and at time of use.

10

http://www.ctan.org/pkg/xint

11 \bnumdefpostfix

Notice in the 2+3! = 5 example that the existence of != prevails on applying

the factorial, so this is test whether 2+3 and 5 differ; it is not a matter of

precedence here, but of input parsing ignoring spaces. And 2+3! == 8 would

create an error as after having found the != operator and now expecting a

digit (as there is no !== operator) the parser would find an unexpected = and

report an error. Hence the usage of parentheses in the input.13

\bnumeval {2^5 == 4 times 8, 11 t 14}

1, 154

\bnumeval {100 ++ -10 ^ 3, (100 - 10)^3, 2 ** 5 ++ 3, 2^(5+3)}

729000, 729000, 256, 256

11 \bnumdefpostfix

It is possible to define postfix unary operators of one's own choosing.14 The

syntax is

\bnumdefpostfix{⟨operator⟩}{⟨\macro⟩}{⟨L-prec⟩}

{⟨operator⟩} The characters for the operator name: same conditions as for ⤸
\bnumdefinfix. Postfix and infix operators share the same name-space,

regarding abbreviated names.

{⟨\macro⟩} The one argument expandable macro to assign to the postfix oper-
ator. This macro only needs to be x-expandable.

{⟨L-prec⟩} An integer, minimal 4, maximal 22, which governs the left-prece-
dence of the infix operator.

Examples below which use the maximal precedence are typical of what is ex-

pected of a ``function'' (and I even used .len() notation with parentheses

in one example, the parentheses are part of the postfix operator name). And

indeed such postfix operators are thus a way to implement functions in dis-

guise, circumventing the fact that the bnumexpr parser will never be extended

to work with functional syntax (for this, see xintexpr). With the convention

(followed in some examples) that such postfix operators start with a full

stop, but never contain another one, we can chain simply by using concatena-

tion (no need for parentheses), as there will be no ambiguity.

\usepackage{xint}% for \xintiiSum, \xintiiSqrt
\def\myRev#1{\xintNum{\xintReverseOrder{#1}}}% reverse and trim leading zeros
\bnumdefpostfix{$}{\myRev}{22}% the $ will have top precedence
\bnumdefpostfix{:}{\myRev}{4}% the : will have lowest precedence
\bnumdefpostfix{::}{\xintiiSqr}{4}% the :: is a completely different operator
\bnumdefpostfix{.len()}{\xintLength}{22}% () for fun but a single . will be enough!
\bnumdefpostfix{.sumdigits}{\xintiiSum}{22}% .s will abbreviate

13As != is indeed defined out-of-the-box in the xintexpr syntax, the 3! == 8 issue applies with \xinte⤸
val and perhaps I should add it to the user documentation, as warning.

14The effect of \bnumdefpostfix is global if under \xintglobaldefstrue setting.

11

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

11 \bnumdefpostfix

\bnumdefpostfix{.sqrt}{\xintiiSqrt}{22}% .sq will be unambiguous (but confusing)
\bnumdefpostfix{.rep}{\xintReplicate3}{22}% .r will be unambiguous

\bnumeval {(2^31).len(), (2^31)., 2^31$, 2^31:, (2^31)$}

10, 10, 8192, 8463847412, 8463847412

\bnumeval {(2^31).sqrt, 100000000.sq.sq}

46340, 100

\bnumeval {(2^31).sumdigits, 123456789.s, 123456789.s.s, 123456789.s.s.s}

47, 45, 9, 9

\bnumeval {10^10+10000+2000+300+40+5:}

54321000001

\bnumeval {1+2+3+4+5+6+7+8+9+10 :: +1 :: *2 :: :: :}

612716271751406378427089874211

\bnumeval {123456789.r}

123456789123456789123456789

\bnumdefpostfix{.rep}{\xintReplicate5}{22}% .rep modified --> .r too

\bnumeval {123456789.r}

123456789123456789123456789123456789123456789

12

12 Readme

12 Readme
| Source: bnumexpr.dtx
| Version: v1.5, 2021/05/17 (doc: 2021/05/17)
| Author: Jean-Francois Burnol
| Info: Expressions with big integers
| License: LPPL 1.3c

bnumexpr usage
==============

The LaTeX package `bnumexpr` allows expandable computations with
integers and the four infix operators `+`, `-`, `*`, `/` using the
expression syntax familiar from the `\numexpr` e-TeX parser, with
these extensions:

- arbitrarily big integers,
- floored division `//`,
- associated modulo `/:`,
- power operators `^` and `**`,
- factorial post-fix operator `!`,
- comma separated expressions,
- the space character as well as the underscore may serve
to separate groups of digits,

- optional conversion of output to hexadecimal,
- customizability and extendibility of the syntax.

The expression parser is a scaled-down variant from the
`\xintiiexpr...\relax`
parser from package [xintexpr](http://ctan.org/pkg/xintexpr).

To support hexadecimal input and output, the package
[xintbinhex](http://ctan.org/pkg/xint) is loaded automatically.

The package loads by default [xintcore](http://ctan.org/pkg/xint)
but the option _custom_ together with macro `\bnumexprsetup` allow to map
the syntax elements to macros from an alternative big integer
expandable engine of the user own choosing,
and then [xintcore](http://ctan.org/pkg/xint) is not loaded.

Installation
============

Use your installation manager to install or update `bnumexpr`.

Else, obtain `bnumexpr.dtx`, from CTAN:

> <http://www.ctan.org/pkg/bnumexpr>

Run `"etex bnumexpr.dtx"` to extract these files:

`bnumexpr.sty`
: this is the style file.

`README.md`

`bnumexprchanges.tex`
: change history.

`bnumexpr.tex`
: can be used to generate the documentation

To generate the documentation:

13

12 Readme

- with latex+dvipdfmx: `"latex bnumexpr.tex"` (thrice) then
`"dvipdfmx bnumexpr.dvi"`.

- with pdflatex: `"pdflatex bnumexpr.tex"` (thrice).

In both cases files `README.md` and `bnumexprchanges.tex` must
be located in the same repertory as `bnumexpr.tex` and `bnumexpr.dtx`.

Without `bnumexpr.tex`:

- `"pdflatex bnumexpr.dtx"` (thrice) extracts all files and
simultaneously generates the pdf documentation.

Final steps:

- move files to appropriate destination:

bnumexpr.sty --> TDS:tex/latex/bnumexpr/

bnumexpr.dtx --> TDS:source/latex/bnumexpr/

bnumexpr.pdf --> TDS:doc/latex/bnumexpr/
README.me --> TDS:doc/latex/bnumexpr/

- discard auxiliary files generated during compilation.

License
=======

Copyright (C) 2014-2021 by Jean-Francois Burnol

| This Work may be distributed and/or modified under the
| conditions of the LaTeX Project Public License 1.3c.
| This version of this license is in

> <http://www.latex-project.org/lppl/lppl-1-3c.txt>

| and version 1.3 or later is part of all distributions of
| LaTeX version 2005/12/01 or later.

This Work has the LPPL maintenance status "author-maintained".

The Author and Maintainer of this Work is Jean-Francois Burnol.

This Work consists of the main source file and its derived files

bnumexpr.dtx, bnumexpr.sty, bnumexpr.pdf, bnumexpr.tex,
bnumexprchanges.tex, README.md

14

13 Changes

13 Changes

1.5 (2021/05/17) • breaking change: the power operators act now in a
right associative way; this has been announced at xintexpr as a

probable future evolution, and is implemented in anticipation here

now.

• fix two bugs (imported from upstream xintexpr) regarding hexadec-
imal input: impossibility to use "\foo syntax (one had to do \exp⤸
andafter"\foo which is unexpected constraint; a very longstanding

xintexpr bug) and issues with leading zeros (since xintexpr 1.2m).

• renamed \bnumexprsetup into \bnumsetup; the former remains avail-
able but is deprecated.

• the customizability and extendibility is now total:

1. \bnumprintone, \bnumprintonetohex, \bnumprintonesep, \bnumhe⤸
xtodec,

2. \bnumdefinfix which allows to add extra infix operators,

3. \bnumdefpostfix which allows to add extra postfix operators.

• \bnumsetup, \bnumdefinfix, \bnumdefpostfix obey the \xintglobald⤸
efstrue and \xintverbosetrue settings.

• documentation is extended, providing details regarding the prece-
dence model of the parser, as inherited from upstream xintexpr;

also an example of usage of \bnumsetup is included on how to trans-

form \bnumeval into a calculator with fractions.

1.4a (2021/05/13) • fix undefined control sequences errors encountered
by the parser in case of either extra or missing closing parenthe-

sis (due to a problem in technology transfer at 1.4 from upstream

xintexpr).

• fix \BNE_Op_opp must now be f-expandable (also caused as a collat-
eral to the technology transfer).

• fix user documentation regarding the constraints applying to the
user replacement macros for the core algebra, as they have changed

at 1.4.

1.4 (2021/05/12) • technology transfer from xintexpr 1.4 of 2020/01/31.
The \expanded primitive is now required (TeXLive 2019).

• addition to the syntax of the " prefix for hexadecimal input.

• addition of \evaltohex which is like \bnumeval with an extra con-
version step to hexadecimal notation.

1.2e (2019/01/08) Fixes a documentation glitch (extra braces when mention-
ing \the\numexpr or \thebnumexpr).

1.2d (2019/01/07) • requires xintcore 1.3d or later (if not using option
custom).

15

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint

13 Changes

• adds \bnumeval{⟨expression⟩} user interface.

1.2c (2017/12/05) Breaking changes:

• requires xintcore 1.2p or later (if not using option custom).

• divtrunc key of \bnumexprsetup is renamed to div.

• the // and /: operators are now by default associated to the floored
division. This is to keep in sync with the change of xintcore at 1.⤸
2p.

• for backwards compatibility, one may add to existing document:
\bnumexprsetup{div=\xintiiDivTrunc, mod=\xintiiModTrunc}

1.2b (2017/07/09) • the _ may be used to separate visually blocks of dig-
its in long numbers.

1.2a (2015/10/14) • requires xintcore 1.2 or later (if not using option
custom).

• additions to the syntax: factorial !, truncated division //, its
associated modulo /: and ** as alternative to ^.

• all options removed except custom.

• new command \bnumexprsetup which replaces the commands such as \bn⤸
umexprusesbigintcalc.

• the parser is no more limited to numbers with at most 5000 digits.

1.1b (2014/10/28) • README converted to markdown/pandoc syntax,

• the package now loads only xintcore, which belongs to xint bundle
version 1.1 and extracts from the earlier xint package the core

arithmetic operations as used by bnumexpr.

1.1a (2014/09/22) • added l3bigint option to use experimental LATEX3 pack-
age of the same name,

• added Changes and Readme sections to the documentation,

• better \BNE_protect mechanism for use of \bnumexpr...\relax inside
an \edef (without \bnethe). Previous one, inherited from xintexp⤸
r.sty 1.09n, assumed that the \.=<digits> dummy control sequence

encapsulating the computation result had \relax meaning. But re-

moving this assumption was only a matter of letting \BNE_protect

protect two, not one, tokens. This will be backported to next ver-

sion of xintexpr, naturally (done with xintexpr.sty 1.1).

1.1 (2014/09/21) First release. This is down-scaled from the (development
version of) xintexpr. Motivation came the previous day from a chat

with Joseph Wright over big int status in LATEX3. The \bnumexpr...\relax

parser can be used on top of big int macros of one's choice. Functional-

ities limited to the basic operations. I leave the power operator ^ as

an option.

16

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xintexpr

14 bnumexpr implementation

14 bnumexpr implementation

Contents

Package identification . 14.1, p. 18
Load unconditionally xintbinhex . 14.2, p. 18
Package options . 14.3, p. 18
\bnumsetup and conditional loading of xintcore 14.4, p. 18
Activate usual xint catcodes for code source 14.5, p. 19
\bnumexpr, \thebnumexpr, \bnethe, \bnumeval 14.6, p. 19
\BNE_getnext . 14.7, p. 20
Parsing an integer in decimal or hexadecimal notation 14.8, p. 21
\BNE_getop . 14.9, p. 24
Expansion spanning; opening and closing parentheses 14.10, p. 25
The comma as binary operator . 14.11, p. 27
The minus as prefix operator of variable precedence level 14.12, p. 28
The infix operators. 14.13, p. 29
\bnumdefinfix: extending the syntax . 14.14, p. 31
\bnumdefpostfix . 14.15, p. 32
! as postfix factorial operator . 14.16, p. 32
Cleanup . 14.17, p. 32

I transferred mid-May 2021 from xintexpr its \expanded based infra-structure from

its own 1.4 release of January 2020 and bumped version to 1.4. Also I added support for

hexadecimal input and output, via unconditional loading of xintbinhex.

A few comments added here at 1.4a:

• It looked a bit costly and probably would have been mostly useless to end users
to integrate in bnumexpr support for nested structures via square brackets [,],

which is in xintexpr since its January 2020 1.4 release. But some of the related

architecture remains here; we could make some gains probably but diverging from

upstream code would make maintenance a nightmare.

• Formerly, the \csname...\endcsname encapsulation technique had the after-effect
to allow the macros supporting the infix operators to be only x-expandable. At 1.⤸
4, I could have still allowed support macros being only x-expandable, but, keeping

in sync with upstream, I have used only a \romannumeral trigger and did not insert

an \expanded, so now the support macros must be f-expandable. The 1.4a release

fixes the related user documentation of \bnumsetup which was not updated at 1.4.

The support macro for the factorial however needs only be x-expandable.

• Also, I simply do not understand why the legacy (1.2e) user documentation said
that the support macros were supposed to f-expand their arguments, as they are

used only with arguments being explicit digit tokens (and optional minus sign).

17

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

• The \bnumexpr\relax syntax creating an empty ople is by itself now legal, and can
be injected (comma separated) in an expression, keeping it invariant, however \b⤸
numeval{} ends in a File ended while scanning use of \BNE_print_c error because

\BNEprint makes the tacit requirement that the 1D ople to output has at least one

item.

At 1.5, right-associativity is implemented for powers in anticipation of upstream,

and the customizability and extendibility of the package is made total via added \bnum⤸
definfix and \bnumdefpostfix.

14.1 Package identification

1 \NeedsTeXFormat{LaTeX2e}%
2 \ProvidesPackage{bnumexpr}[2021/05/17 v1.5 Expressions with big integers (JFB)]%

14.2 Load unconditionally xintbinhex

Newly done at 1.4. Formerly, bnumexpr had no dependency if loaded with option custom.

But for 1.4 release I have decided to add unconditional support for hexadecimal nota-

tion.

Let's require the most recent xint date at time of writing. We should check for avail-

ability of \expanded but well.

3 \RequirePackage{xintbinhex}[2021/05/10]%

14.3 Package options

4 \def\BNEtmpa {0}%
5 \DeclareOption {custom}{\def\BNEtmpa {1}}%
6 \ProcessOptions\relax

14.4 \bnumsetup and conditional loading of xintcore

The keys should have been Add, Sub, ..., not add, sub, ..., so internally macros \BNE⤸
_Op_Add etc... macro names would be used, but well, let's simply live with this.

\bnumsetup replaces at 1.5 deprecated \bnumexprsetup which is kept as an alias.

7 {\catcode`! 3 \catcode`_ 11 %
8 \gdef\bnumsetup #1{\BNE_parsekeys #1,=!,}%
9 \gdef\BNE_parsekeys #1=#2#3,%

10 {%
11 \ifx!#2\expandafter\BNE_parsedone\fi
12 \XINT_global
13 \expandafter
14 \let\csname BNE_Op_\xint_zapspaces #1 \xint_gobble_i\endcsname%
15 =#2%
16 \ifxintverbose
17 \PackageInfo{bnumexpr}{assigned
18 \ifxintglobaldefs globally \fi
19 \string#2 to \xint_zapspaces #1 \xint_gobble_i\MessageBreak

18

http://www.ctan.org/pkg/bnumexpr
http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

bnumexpr implementation

Workaround the space inserted by \on@line.

20 \expandafter\xint_firstofone}%
21 \fi
22 \BNE_parsekeys
23 }%
24 \gdef\BNE_parsedone #1\BNE_parsekeys {}%
25 }%
26 \let\bnumexprsetup\bnumsetup
27 \if0\BNEtmpa\expandafter\@secondoftwo\fi
28 \@gobble{%
29 \RequirePackage{xintcore}[2021/05/10]%
30 \bnumsetup{add=\xintiiAdd, sub=\xintiiSub, mul=\xintiiMul,
31 divround=\xintiiDivRound, div=\xintiiDivFloor,
32 mod=\xintiiMod, pow=\xintiiPow, fac=\xintiiFac,
33 opp=\xintiiOpp}%
34 }%

14.5 Activate usual xint catcodes for code source

35 \edef\BNErestorecatcodes{\XINTrestorecatcodes}%
36 \XINTsetcatcodes%

Strangely those three are not defined in xintkernel.sty, but only in xint.sty

37 \long\def\xint_firstofthree #1#2#3{#1}%
38 \long\def\xint_secondofthree #1#2#3{#2}%
39 \long\def\xint_thirdofthree #1#2#3{#3}%

For the mechanism of \bnumdefinfix we need [1] precedence levels to be available as ⤸
\chardef's. xintkernel already provides 0-10, 12, 14, 16, 18, 20, 22. Admittedly they

could be created only dynamically, and then I would not have to set a cap at 22, but well,

that's already a large supported range for a functionality nobody will use, as nobody

probably uses the package to start with.

.. [1] left levels need to be represented by one token; right levels are hard-coded

into checkp_<op> macros and could have been there explicit digit tokens but we will use

the \xint_c_... \char-tokens.

40 \chardef\xint_c_xi 11
41 \chardef\xint_c_xiii 13
42 \chardef\xint_c_xv 15
43 \chardef\xint_c_xvii 17
44 \chardef\xint_c_xix 19
45 \chardef\xint_c_xxi 21

14.6 \bnumexpr, \thebnumexpr, \bnethe, \bnumeval

46 \def\XINTfstop {\noexpand\XINTfstop}%
47 \def\bnumexpr {\romannumeral0\bnumexpro}%
48 \def\bnumexpro {\expandafter\BNE_wrap\romannumeral0\bnebareeval }%
49 \def\BNE_wrap {\XINTfstop\BNEprint.}%
50 \def\bnumeval #1%
51 {\expanded\expandafter\BNEprint\expandafter.\romannumeral0\bnebareeval#1\relax}%
52 \def\evaltohex #1%
53 {\expanded\expandafter\BNEprinthex\expandafter.\romannumeral0\bnebareeval#1\relax}%

19

http://www.ctan.org/pkg/xint
http://www.ctan.org/pkg/xint

bnumexpr implementation

54 \def\thebnumexpr
55 {\expanded\expandafter\BNEprint\expandafter.\romannumeral0\bnebareeval}%
56 \def\bnebareeval{\BNE_start}%
57 \def\bnethe#1{\expanded\expandafter\xint_gobble_i\romannumeral`&&@#1}%
58 \protected\def\BNEprint.#1{{\BNE_print#1.}}%
59 \def\BNE_print#1{\bnumprintone{#1}\expandafter\BNE_print_a\string}%
60 \def\BNE_print_a#1{\unless\if#1.\expandafter\BNE_print_b\fi}%
61 \def\BNE_print_b
62 {\expandafter\BNE_print_c\expandafter{\expandafter\xint_gobble_i\string}}%
63 \def\BNE_print_c#1{\bnumprintonesep\bnumprintone{#1}\expandafter\BNE_print_a\string}%
64 \protected\def\BNEprinthex.#1{{\BNE_printhex#1.}}%
65 \def\BNE_printhex#1{\bnumprintonetohex{#1}\expandafter\BNE_printhex_a\string}%
66 \def\BNE_printhex_a#1{\unless\if#1.\expandafter\BNE_printhex_b\fi}%
67 \def\BNE_printhex_b
68 {\expandafter\BNE_printhex_c\expandafter{\expandafter\xint_gobble_i\string}}%
69 \def\BNE_printhex_c#1{\bnumprintonesep\bnumprintonetohex{#1}\expandafter\BNE_printhex_a\string}%
70 \let\bnumprintone\xint_firstofone
71 \let\bnumprintonetohex\xintDecToHex
72 \def\bnumprintonesep{, }%

14.7 \BNE_getnext

The upstream \BNE_put_op_first has a string of included \expandafter, which was im-

ported here at 1.4 and 1.4a but they serve nothing in our context. Removed this useless

overhead at 1.5.

73 \def\BNE_getnext #1%
74 {%
75 \expandafter\BNE_put_op_first\romannumeral`&&@%
76 \expandafter\BNE_getnext_a\romannumeral`&&@#1%
77 }%
78 \def\BNE_put_op_first #1#2#3{#2#3{#1}}%
79 \def\BNE_getnext_a #1%
80 {%
81 \ifx\relax #1\xint_dothis\BNE_foundprematureend\fi
82 \ifx\XINTfstop#1\xint_dothis\BNE_subexpr\fi
83 \ifcat\relax#1\xint_dothis\BNE_countetc\fi
84 \xint_orthat{}\BNE_getnextfork #1%
85 }%
86 \def\BNE_foundprematureend\BNE_getnextfork #1{{}\xint_c_\relax}%
87 \def\BNE_subexpr #1.#2%
88 {%
89 \expanded{\unexpanded{{#2}}\expandafter}\romannumeral`&&@\BNE_getop
90 }%
91 \def\BNE_countetc\BNE_getnextfork#1%
92 {%
93 \if0\ifx\count#11\fi
94 \ifx\dimen#11\fi
95 \ifx\numexpr#11\fi
96 \ifx\dimexpr#11\fi
97 \ifx\skip#11\fi
98 \ifx\glueexpr#11\fi
99 \ifx\fontdimen#11\fi

20

bnumexpr implementation

100 \ifx\ht#11\fi
101 \ifx\dp#11\fi
102 \ifx\wd#11\fi
103 \ifx\fontcharht#11\fi
104 \ifx\fontcharwd#11\fi
105 \ifx\fontchardp#11\fi
106 \ifx\fontcharic#11\fi 0\expandafter\BNE_fetch_as_number\fi
107 \expandafter\BNE_getnext_a\number #1%
108 }%
109 \def\BNE_fetch_as_number
110 \expandafter\BNE_getnext_a\number #1%
111 {%
112 \expanded{{{\number#1}}\expandafter}\romannumeral`&&@\BNE_getop
113 }%

In the case of hitting a (, previous release inserted directly a \BNE_oparen. But the

expansion architecture imported from upstream \xintiiexpr has been refactored, and the

..._oparen meaning and usage evolved. We stick with {}\xint_c_ii^v (from upstream.

114 \def\BNE_getnextfork #1{%
115 \if#1+\xint_dothis \BNE_getnext_a \fi
116 \if#1-\xint_dothis {{}{}-}\fi
117 \if#1(\xint_dothis {{}\xint_c_ii^v (}\fi
118 \xint_orthat {\BNE_scan_number #1}%
119 }%

14.8 Parsing an integer in decimal or hexadecimal notation

120 \def\BNE_scan_number #1%
121 {%
122 \if "#1\xint_dothis \BNE_scanhex\fi
123 \ifnum \xint_c_ix<1\string#1 \xint_dothis \BNE_startint\fi
124 \xint_orthat \BNE_notadigit #1%
125 }%

If user employs \bnumdefinfix with \string#, and then tries 100##3, the first # will be

interpreted as operator (assuming no operator starting with ## has actually been de-

fined) and the error "message" (which is not using \message or a \write) will then be

Digit? (got `##')

because the parser is actually looking for a digit but finds the second #, and TeX dis-

plays it doubled. This is doubly confusing, but well, let's not dwell on that.

126 \def\BNE_notadigit#1%
127 {%
128 \expandafter\BNE_scan_number
129 \romannumeral`&&@\XINT_expandableerror{Digit? (got `#1'). Hit I<RET><digit>}%
130 }%
131 \def\BNE_startint #1%
132 {%
133 \if #10\expandafter\BNE_gobz_a\else\expandafter\BNE_scanint_a\fi #1%
134 }%
135 \def\BNE_scanint_a #1#2%
136 {\expanded\bgroup{{\iffalse}}\fi #1%
137 \expandafter\BNE_scanint_main\romannumeral`&&@#2}%

21

bnumexpr implementation

138 \def\BNE_gobz_a #1#2%
139 {\expanded\bgroup{{\iffalse}}\fi
140 \expandafter\BNE_gobz_scanint_main\romannumeral`&&@#2}%
141 \def\BNE_scanint_main #1%
142 {%
143 \ifcat \relax #1\expandafter\BNE_scanint_hit_cs \fi
144 \ifnum\xint_c_ix<1\string#1 \else\expandafter\BNE_scanint_next\fi
145 #1\BNE_scanint_again
146 }%
147 \def\BNE_scanint_again #1%
148 {%
149 \expandafter\BNE_scanint_main\romannumeral`&&@#1%
150 }%

Upstream (at 1.4f) has _getop here, but let's jump directly to BNE_getop_a.

151 \def\BNE_scanint_hit_cs \ifnum#1\fi#2\BNE_scanint_again
152 {%
153 \iffalse{{{\fi}}\expandafter}\romannumeral`&&@\BNE_getop_a#2%
154 }%
155 \def\BNE_scanint_next #1\BNE_scanint_again
156 {%
157 \if _#1\xint_dothis\BNE_scanint_again\fi
158 \xint_orthat
159 {\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\BNE_getop_a#1}%
160 }%
161 \def\BNE_gobz_scanint_main #1%
162 {%
163 \ifcat \relax #1\expandafter\BNE_gobz_scanint_hit_cs\fi
164 \ifnum\xint_c_x<1\string#1 \else\expandafter\BNE_gobz_scanint_next\fi
165 #1\BNE_scanint_again
166 }%
167 \def\BNE_gobz_scanint_again #1%
168 {%
169 \expandafter\BNE_gobz_scanint_main\romannumeral`&&@#1%
170 }%

Upstream (at 1.4f) has _getop here, but let's jump directly to BNE_getop_a.

171 \def\BNE_gobz_scanint_hit_cs\ifnum#1\fi#2\BNE_scanint_again
172 {%
173 0\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\BNE_getop_a#2%
174 }%
175 \def\BNE_gobz_scanint_next #1\BNE_scanint_again
176 {%
177 \if _#1\xint_dothis\BNE_gobz_scanint_again\fi
178 \if 0#1\xint_dothis\BNE_gobz_scanint_again\fi
179 \xint_orthat
180 {0\iffalse{{{\fi}}\expandafter}\romannumeral`&&@\BNE_getop_a#1}%
181 }%
182 \def\BNE_hex_in #1.%
183 {%
184 \expanded{{{\bnumhextodec{#1}}}\expandafter}\romannumeral`&&@\BNE_getop
185 }%
186 \let\bnumhextodec\xintHexToDec

22

bnumexpr implementation

Upstream (until 1.4f) had a long-standing bug in its hexadecimal input, which was in-

herited here at 1.4: the \BNE_scanhex triggered \BNE_scanhex_a which then grabbed an

unexpanded token and used it as is in an \ifcat... this made syntax such as "\foo bro-

ken. Fixed here at 1.5.

And there was a further long-standing bug in upstream (from 1.2m to 1.4f) about lead-

ing hexadecimal zeros not being trimmed. This was inherited here at 1.4. Fixed also at

1.5.

187 \def\BNE_scanhex #1#2% #1="
188 {%
189 \expandafter\BNE_hex_in\expanded\bgroup
190 \expandafter\BNE_scanhexgobz_a\romannumeral`&&@#2%
191 }%
192 \def\BNE_scanhexgobz_a #1%
193 {%
194 \ifcat #1\relax0.\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi
195 \BNE_scanhexgobz_aa #1%
196 }%
197 \def\BNE_scanhexgobz_aa #1%
198 {%
199 \if\ifnum`#1>`0
200 \ifnum`#1>`9
201 \ifnum`#1>`@
202 \ifnum`#1>`F
203 0\else1\fi\else0\fi\else1\fi\else0\fi 1%
204 \xint_dothis\BNE_scanhex_b
205 \fi
206 \if 0#1\xint_dothis\BNE_scanhexgobz_bgob\fi
207 \if _#1\xint_dothis\BNE_scanhexgobz_bgob\fi
208 \if .#1\xint_dothis\BNE_scanhexgobz_toII\fi
209 \xint_orthat
210 {\XINT_expandableerror
211 {HexDigit was expected but saw `#1'. Using 0, hit <RET>}%
212 0.>;\iffalse{\fi}}%
213 #1%
214 }%
215 \def\BNE_scanhexgobz_bgob #1#2%
216 {%
217 \expandafter\BNE_scanhexgobz_a\romannumeral`&&@#2%
218 }%
219 \def\BNE_scanhex_a #1%
220 {%
221 \ifcat #1\relax.\iffalse{\fi\expandafter}\expandafter\xint_gobble_i\fi
222 \BNE_scanhex_aa #1%
223 }%
224 \def\BNE_scanhex_aa #1%
225 {%
226 \if\ifnum`#1>`/
227 \ifnum`#1>`9
228 \ifnum`#1>`@
229 \ifnum`#1>`F
230 0\else1\fi\else0\fi\else1\fi\else0\fi 1%

23

bnumexpr implementation

231 \expandafter\BNE_scanhex_b
232 \else
233 \if _#1\xint_dothis{\expandafter\BNE_scanhex_bgob}\fi
234 \xint_orthat {.\iffalse{\fi\expandafter}}%
235 \fi
236 #1%
237 }%
238 \def\BNE_scanhex_b #1#2%
239 {%
240 #1\expandafter\BNE_scanhex_a\romannumeral`&&@#2%
241 }%
242 \def\BNE_scanhex_bgob #1#2%
243 {%
244 \expandafter\BNE_scanhex_a\romannumeral`&&@#2%
245 }%

14.9 \BNE_getop

The upstream analog to \BNE_getop_a applies \string to #1 in its thirdofthree branch

before handing over to analog of \BNE_scanop_a, but I see no reason for doing it here

(and I do have to check if upstream has any valid reason to do it). Removed. First branch

was a \BNE_foundend, used only here, and expanding to \xint_c_\relax, let's move the #1

(which will be \relax) last and simply insert \xint_c_.

The _scanop macros have been refactored at upstream and here 1.5.

246 \def\BNE_getop #1%
247 {%
248 \expandafter\BNE_getop_a\romannumeral`&&@#1%
249 }%
250 \catcode`* 11
251 \def\BNE_getop_a #1%
252 {%
253 \ifx \relax #1\xint_dothis\xint_firstofthree\fi
254 \ifcat \relax #1\xint_dothis\xint_secondofthree\fi
255 \ifnum\xint_c_ix<1\string#1 \xint_dothis\xint_secondofthree\fi
256 \if (#1\xint_dothis \xint_secondofthree\fi %)
257 \xint_orthat \xint_thirdofthree
258 \xint_c_
259 {\BNE_prec_tacit *}%
260 \BNE_scanop_a
261 #1%
262 }%
263 \catcode`* 12
264 \def\BNE_scanop_a #1#2%
265 {%
266 \expandafter\BNE_scanop_b\expandafter#1\romannumeral`&&@#2%
267 }%
268 \def\BNE_scanop_b #1#2%
269 {%
270 \unless\ifcat#2\relax
271 \ifcsname BNE_itself_#1#2\endcsname
272 \BNE_scanop_c

24

bnumexpr implementation

273 \fi\fi
274 \BNE_foundop_a #1#2%
275 }%
276 \def\BNE_scanop_c #1#2#3#4#5% #1#2=\fi\fi
277 {%
278 #1#2%
279 \expandafter\BNE_scanop_d\csname BNE_itself_#4#5\expandafter\endcsname
280 \romannumeral`&&@%
281 }%
282 \def\BNE_scanop_d #1#2%
283 {%
284 \unless\ifcat#2\relax
285 \ifcsname BNE_itself_#1#2\endcsname
286 \BNE_scanop_c
287 \fi\fi
288 \BNE_foundop #1#2%
289 }%

If a postfix say ?s is defined and ?r is encountered the ? will have been interpreted

as a shortcut to ?s and then the r will be found with the parser (after having executed

the already found postfix) now looking for another operator so the error message will

be Operator? (got `r') which is doubly confusing... well, let's not dwell on that.

290 \def\BNE_foundop_a #1%
291 {%
292 \ifcsname BNE_precedence_#1\endcsname
293 \csname BNE_precedence_#1\expandafter\endcsname
294 \expandafter #1%
295 \else
296 \expandafter\BNE_getop_a\romannumeral`&&@%
297 \xint_afterfi{\XINT_expandableerror
298 {Operator? (got `#1'). Hit I<RET><operator>}}%
299 \fi
300 }%
301 \def\BNE_foundop #1{\csname BNE_precedence_#1\endcsname #1}%

14.10 Expansion spanning; opening and closing parentheses

302 \def\BNE_tmpa #1#2#3#4#5%
303 {%
304 \def#1% start
305 {%
306 \expandafter#2\romannumeral`&&@\BNE_getnext
307 }%
308 \def#2##1% check
309 {%
310 \xint_UDsignfork
311 ##1{\expandafter#3\romannumeral`&&@#4}%
312 -{#3##1}%
313 \krof
314 }%
315 \def#3##1##2% checkp
316 {%

25

bnumexpr implementation

317 \ifcase ##1%
318 \expandafter\BNE_done
319 \or\expandafter#5%
320 \else
321 \expandafter#3\romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
322 \fi
323 }%
324 \def#5%
325 {%
326 \XINT_expandableerror
327 {An extra) has been removed. Hit <RET>, fingers crossed.}%
328 \expandafter#2\romannumeral`&&@\expandafter\BNE_put_op_first
329 \romannumeral`&&@\BNE_getop_legacy
330 }%
331 }%
332 \let\BNE_done\space
333 \def\BNE_getop_legacy #1%
334 {%
335 \expanded{\unexpanded{{#1}}\expandafter}\romannumeral`&&@\BNE_getop
336 }%
337 \expandafter\BNE_tmpa
338 \csname BNE_start\expandafter\endcsname
339 \csname BNE_check\expandafter\endcsname
340 \csname BNE_checkp\expandafter\endcsname
341 \csname BNE_op_-xii\expandafter\endcsname
342 \csname BNE_extra_)\endcsname
343 \catcode`) 11
344 \def\BNE_tmpa #1#2#3#4#5#6%
345 {%
346 \def #1##1% op_(
347 {%
348 \expandafter #4\romannumeral`&&@\BNE_getnext
349 }%
350 \def #2##1% op_)
351 {%
352 \expanded{\unexpanded{\BNE_put_op_first{##1}}\expandafter}\romannumeral`&&@\BNE_getop
353 }%
354 \def #3% oparen
355 {%
356 \expandafter #4\romannumeral`&&@\BNE_getnext
357 }%
358 \def #4##1% check-
359 {%
360 \xint_UDsignfork
361 ##1{\expandafter#5\romannumeral`&&@#6}%
362 -{#5##1}%
363 \krof
364 }%
365 \def #5##1##2% checkp
366 {%
367 \ifcase ##1\expandafter\BNE_missing_)
368 \or \csname BNE_op_##2\expandafter\endcsname

26

bnumexpr implementation

369 \else
370 \expandafter #5\romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
371 \fi
372 }%
373 }%
374 \expandafter\BNE_tmpa
375 \csname BNE_op_(\expandafter\endcsname
376 \csname BNE_op_)\expandafter\endcsname
377 \csname BNE_oparen\expandafter\endcsname
378 \csname BNE_check-_)\expandafter\endcsname
379 \csname BNE_checkp_)\expandafter\endcsname
380 \csname BNE_op_-xii\endcsname
381 \let\BNE_precedence_)\xint_c_i
382 \def\BNE_missing_)
383 {\XINT_expandableerror{Missing). Hit <RET> to proceed}%
384 \xint_c_ \BNE_done }%
385 \catcode`) 12

14.11 The comma as binary operator

At 1.4, it is simply a union operator for 1D oples. Inserting directly here a <comma><s⤸
pace> separator (as in earlier releases) in accumulated result would avoid having to do

it on output but to the cost of diverging from xintexpr upstream code, and to have to let

the \evaltohex output routine handle comma separated values rather than braced values.

386 \def\BNE_tmpa #1#2#3#4#5%
387 {%
388 \def #1##1% \BNE_op_,
389 {%
390 \expanded{\unexpanded{#2{##1}}\expandafter}%
391 \romannumeral`&&@\expandafter#3\romannumeral`&&@\BNE_getnext
392 }%
393 \def #2##1##2##3##4{##2##3{##1##4}}% \BNE_exec_,
394 \def #3##1% \BNE_check-_,
395 {%
396 \xint_UDsignfork
397 ##1{\expandafter#4\romannumeral`&&@#5}%
398 -{#4##1}%
399 \krof
400 }%
401 \def #4##1##2% \BNE_checkp_,
402 {%
403 \ifnum ##1>\xint_c_iii
404 \expandafter#4%
405 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
406 \else
407 \expandafter##1\expandafter##2%
408 \fi
409 }%
410 }%
411 \expandafter\BNE_tmpa
412 \csname BNE_op_,\expandafter\endcsname
413 \csname BNE_exec_,\expandafter\endcsname

27

http://www.ctan.org/pkg/xintexpr

bnumexpr implementation

414 \csname BNE_check-_,\expandafter\endcsname
415 \csname BNE_checkp_,\expandafter\endcsname
416 \csname BNE_op_-xii\endcsname
417 \expandafter\let\csname BNE_precedence_,\endcsname\xint_c_iii

14.12 The minus as prefix operator of variable precedence level

This \BNE_Op_opp caused trouble at 1.4 as it must be f-expandable, whereas earlier it

expanded inside \csname...\endcsname context, so I could define it as

\if-#1\else\if0#10\else-#1\fi\fi

where #1 was the first token of unbraced argument but this meant at 1.4 an added \xint⤸
_firstofone here. Well let's return to sanity at 1.4a and not add the \xint_firstofone

and simply default \BNE_Op_opp to \xintiiOpp, which it should have been all along! And

on this occasion let's trim user documentation of complications.

The package used to need to define unary minus operator with precedences 12, 14, and

18. It also defined it at level 16 but this was unneedeed actually, no operator possibly

generating usage of an op_-xvi.

At 1.5 the right precedence of powers was lowered to 17, so we now need here only 12,

14, and 17.

Due to \bnumdefinfix it is needed to support also, perhaps, the other levels 13, 15,

16, 18, This will be done only if necessary and is the reason why the macros \BNE_de⤸
fminus_a and \BNE_defminus_b are given permanent names. In fact it is now \BNE_defbin_b

which will decide to invoke or not the \BNE_defminus_a, and we activate it here only for

the base precedence 12.

The \XINT_global are inexistent in upstream at 1.4f as it does not incorporate yet

some analog to \bnumdefinfix/\bnumdefpostfix.

418 \def\BNE_defminus_b #1#2#3#4#5%
419 {%
420 \XINT_global\def #1% \BNE_op_-<level>
421 {%
422 \expandafter #2\romannumeral`&&@\expandafter#3%
423 \romannumeral`&&@\BNE_getnext
424 }%
425 \XINT_global\def #2##1##2##3% \BNE_exec_-<level>
426 {%
427 \expandafter ##1\expandafter ##2\expandafter
428 {\expandafter{\romannumeral`&&@\BNE_Op_opp##3}}%
429 }%
430 \XINT_global\def #3##1% \BNE_check-_-<level>
431 {%
432 \xint_UDsignfork
433 ##1{\expandafter #4\romannumeral`&&@#1}%
434 -{#4##1}%
435 \krof
436 }%
437 \XINT_global\def #4##1##2% \BNE_checkp_-<level>
438 {%
439 \ifnum ##1>#5%
440 \expandafter #4%
441 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname

28

bnumexpr implementation

442 \else
443 \expandafter ##1\expandafter ##2%
444 \fi
445 }%
446 }%
447 \def\BNE_defminus_a #1%
448 {%
449 \expandafter\BNE_defminus_b
450 \csname BNE_op_-#1\expandafter\endcsname
451 \csname BNE_exec_-#1\expandafter\endcsname
452 \csname BNE_check-_-#1\expandafter\endcsname
453 \csname BNE_checkp_-#1\expandafter\endcsname
454 \csname xint_c_#1\endcsname
455 }%
456 \BNE_defminus_a {xii}%

14.13 The infix operators.

I could have at the 1.4 refactoring injected usage of \expanded here, but kept in sync

with upstream xintexpr code. Any x-expandable macro can easily be converted into an

f-expandable one using \expanded, so this is no serious limitation.

Macro names are somewhat bad and there is much risk of confusion in future maintenance

of \BNE_Op_ prefix (used for \BNE_Op_add etc...; besides this should have been \BNE_Op⤸
_Add) and \BNE_op_ prefix (used for \BNE_op_+ etc...).

At 1.5 decision is made to anticipate the announced upstream change to let the power

operators be right associative, matching Python behaviour. This change is simply im-

plemented by hardcoding in \BNE_checkp_<op> the right precedence which so far, for such

operators, had been identical with the left precedence (upstream has examples of direct

coding without formalization). In fact the right precedence existed already as argument

to \BNE_defbin_b as the precedence to assign to unary minus following <op>.

Note1: although it is easy to change the left precedence at user level, the right

precedence is now more inaccessible. But on the other hand bnumexpr provides \bnumdefi⤸
nfix so all is customizable at user level.

Note2: Tacit multiplication is not really a separate operator, it is the * with an

elevated left precedence, which costs nothing to create and this precedence is stored

in chardef token \BNE_prec_tacit.

Compared to upstream, we use here numbers as arguments to \BNE_defbin_b, and convert

to roman numerals internally, also the operator macro is passed as a control sequence

not as its name (and #6 and #7 are permuted in \BNE_defbin_c).

457 \def\BNE_defbin_c #1#2#3#4#5#6#7%
458 {%
459 \XINT_global\def #1##1% \BNE_op_<op>
460 {%
461 \expanded{\unexpanded{#2{##1}}\expandafter}%
462 \romannumeral`&&@\expandafter#3\romannumeral`&&@\BNE_getnext
463 }%
464 \XINT_global\def #2##1##2##3##4% \BNE_exec_<op>
465 {%
466 \expandafter##2\expandafter##3\expandafter

29

http://www.ctan.org/pkg/xintexpr
http://www.ctan.org/pkg/bnumexpr

bnumexpr implementation

467 {\expandafter{\romannumeral`&&@#7##1##4}}%
468 }%
469 \XINT_global\def #3##1% \BNE_check-_<op>
470 {%
471 \xint_UDsignfork
472 ##1{\expandafter#4\romannumeral`&&@#5}%
473 -{#4##1}%
474 \krof
475 }%
476 \XINT_global\def #4##1##2% \BNE_checkp_<op>
477 {%
478 \ifnum ##1>#6%
479 \expandafter#4%
480 \romannumeral`&&@\csname BNE_op_##2\expandafter\endcsname
481 \else
482 \expandafter ##1\expandafter ##2%
483 \fi
484 }%
485 }%
486 \def\BNE_defbin_b #1#2#3#4%
487 {%
488 \expandafter\BNE_defbin_c
489 \csname BNE_op_#1\expandafter\endcsname
490 \csname BNE_exec_#1\expandafter\endcsname
491 \csname BNE_check-_#1\expandafter\endcsname
492 \csname BNE_checkp_#1\expandafter\endcsname
493 \csname BNE_op_-\romannumeral\ifnum#3>12 #3\else 12\fi
494 \expandafter\endcsname
495 \csname xint_c_\romannumeral#3\endcsname #4%
496 \XINT_global
497 \expandafter
498 \let\csname BNE_precedence_#1\expandafter\endcsname
499 \csname xint_c_\romannumeral#2\endcsname
500 \unless
501 \ifcsname BNE_exec_-\romannumeral\ifnum#3>12 #3\else 12\fi\endcsname

This will execute only for #3>12 as \BNE_exec_-xii exists.

502 \expandafter\BNE_defminus_a\expandafter{\romannumeral#3}%
503 \fi
504 }%
505 \BNE_defbin_b + {12} {12} \BNE_Op_add
506 \BNE_defbin_b - {12} {12} \BNE_Op_sub
507 \BNE_defbin_b * {14} {14} \BNE_Op_mul
508 \BNE_defbin_b / {14} {14} \BNE_Op_divround
509 \BNE_defbin_b {//} {14} {14} \BNE_Op_div
510 \BNE_defbin_b {/:} {14} {14} \BNE_Op_mod
511 \BNE_defbin_b ^ {18} {17} \BNE_Op_pow

At upstream, we can use shortcut

\expandafter\def\csname BNE_itself_**\endcsname {^}

but it means then that any redefinition of ^ propagates to **, besides it creates a

special case which would need consideration by \BNE_dotheitselves, or special restric-

tions to add to user documentation. Better to simply handle ** as a full operator.

30

bnumexpr implementation

512 \BNE_defbin_b {**} {18} {17} \BNE_Op_pow
513 \expandafter\def\csname BNE_itself_**\endcsname {**}%
514 \expandafter\def\csname BNE_itself_//\endcsname {//}%
515 \expandafter\def\csname BNE_itself_/:\endcsname {/:}%
516 \let\BNE_prec_tacit\xint_c_xvi

14.14 \bnumdefinfix: extending the syntax

#1 gives the operator characters, #2 the associated macro, #3 its left-precedence and

#4 its right precedence (as integers).

The "itself" definitions are done in such a way that unambiguous abbreviations work;

but in case of ambiguity the first defined operator is used.

However, if for example operator $a was defined after $ab, then although $ will use

$ab which was defined first, $a will use as expected the second defined operator.

The mismatch \BNE_defminus_a vs \BNE_defbin_b is inherited from upstream, I keep it

to simplify maintenance.

517 \def\bnumdefinfix #1#2#3#4%
518 {%
519 \edef\BNE_tmpa{#1}%
520 \edef\BNE_tmpa{\xint_zapspaces_o\BNE_tmpa}%
521 \edef\BNE_tmpL{\the\numexpr#3\relax}%
522 \edef\BNE_tmpL{\ifnum\BNE_tmpL<4 4\else\ifnum\BNE_tmpL<23 \BNE_tmpL\else 22\fi\fi}%
523 \edef\BNE_tmpR{\the\numexpr#4\relax}%
524 \edef\BNE_tmpR{\ifnum\BNE_tmpR<4 4\else\ifnum\BNE_tmpR<23 \BNE_tmpR\else 22\fi\fi}%
525 \BNE_defbin_b \BNE_tmpa\BNE_tmpL\BNE_tmpR #2%
526 \expandafter\BNE_dotheitselves\BNE_tmpa\relax
527 \ifxintverbose
528 \PackageInfo{bnumexpr}{infix operator \BNE_tmpa\space
529 \ifxintglobaldefs globally \fi
530 does
531 \unexpanded{#2}\MessageBreak with precedences \BNE_tmpL, \BNE_tmpR;}%
532 \fi
533 }%
534 \def\BNE_dotheitselves#1#2%
535 {%
536 \if#2\relax\expandafter\xint_gobble_ii
537 \else
538 \XINT_global
539 \expandafter\edef\csname BNE_itself_#1#2\endcsname{#1#2}%
540 \unless\ifcsname BNE_precedence_#1\endcsname
541 \XINT_global
542 \expandafter\edef\csname BNE_precedence_#1\endcsname
543 {\csname BNE_precedence_\BNE_tmpa\endcsname}%
544 \XINT_global
545 \expandafter\odef\csname BNE_op_#1\endcsname
546 {\csname BNE_op_\BNE_tmpa\endcsname}%
547 \fi
548 \fi
549 \BNE_dotheitselves{#1#2}%
550 }%

31

bnumexpr implementation

14.15 \bnumdefpostfix

Support macros for postfix operators only need to be x-expandable.

551 \def\bnumdefpostfix #1#2#3%
552 {%
553 \edef\BNE_tmpa{#1}%
554 \edef\BNE_tmpa{\xint_zapspaces_o\BNE_tmpa}%
555 \edef\BNE_tmpL{\the\numexpr#3\relax}%
556 \edef\BNE_tmpL{\ifnum\BNE_tmpL<4 4\else\ifnum\BNE_tmpL<23 \BNE_tmpL\else 22\fi\fi}%
557 \XINT_global
558 \expandafter\let\csname BNE_precedence_\BNE_tmpa\expandafter\endcsname
559 \csname xint_c_\romannumeral\BNE_tmpL\endcsname
560 \XINT_global
561 \expandafter\def\csname BNE_op_\BNE_tmpa\endcsname ##1%
562 {%
563 \expandafter\BNE_put_op_first
564 \expanded{{{#2##1}}\expandafter}\romannumeral`&&@\BNE_getop
565 }%
566 \expandafter\BNE_dotheitselves\BNE_tmpa\relax
567 \ifxintverbose
568 \PackageInfo{bnumexpr}{postfix operator \BNE_tmpa\space
569 \ifxintglobaldefs globally \fi
570 does \unexpanded{#2}\MessageBreak
571 with precedence \BNE_tmpL;}%
572 \fi
573 }%

14.16 ! as postfix factorial operator

574 \bnumdefpostfix{!}{\BNE_Op_fac}{20}%

14.17 Cleanup

575 \let\BNEtmpa\relax
576 \let\BNE_tmpa\relax \let\BNE_tmpb\relax \let\BNE_tmpc\relax
577 \let\BNE_tmpR\relax \let\BNE_tmpL\relax
578 \BNErestorecatcodes%

32

	Title page
	\bnumeval (\thebnumexpr), \evaltohex
	Examples
	The custom package option and \bnumsetup
	\bnumprintone, \bnumprintonetohex, \bnumprintonesep
	Example of customization: let the syntax handle fractions!
	Differences from \numexpr
	Printing big numbers
	Expression syntax and its customizability
	Precedences
	\bnumdefinfix
	\bnumdefpostfix
	Readme
	Changes
	bnumexpr implementation
	Package identification
	Load unconditionally xintbinhex
	Package options
	\bnumsetup and conditional loading of xintcore
	Activate usual xint catcodes for code source
	\bnumexpr, \thebnumexpr, \bnethe, \bnumeval
	\BNE_getnext
	Parsing an integer in decimal or hexadecimal notation
	\BNE_getop
	Expansion spanning; opening and closing parentheses
	The comma as binary operator
	The minus as prefix operator of variable precedence level
	The infix operators.
	\bnumdefinfix: extending the syntax
	\bnumdefpostfix
	! as postfix factorial operator
	Cleanup

