
The tabularew package∗

Diego Saba

2009/06/01

Abstract

This article proposes an extended implementation of the LATEX tabular
environment. It adds a new command to gain access to a quantity, called here
the excess width, involved in the process of calculating the column widths.
This allows to modify the default algorithm, that produces undesirable ef-
fects in some circumstances.

Its principal merit is to solve the problem of centering multicolumn head-
ings when they are wider than the text underneath them.

The same extension can easily be added in the future to the similar array
environment and to the star forms of both.

This extension evaluates the whole table three times. It consumes more
resources than the standard environment and cannot be made 100% com-
patible, as it conceptually should.

1 Introduction

This package extends the implementation of the tabular environment contained in
the array package. More information can be found in [1].

Let us start with an example. Suppose that you have to modify the following
table, in order to align the decimal separators.

sez. σ τ βpl,σ βpl,τ Spl,σ Spl,τ Spl Spl,am
[MPa] [MPa]

1 7,4 2,9 0,83 0,83 37,0 54,7 30,7 1,2
2 59,9 8,9 0,83 0,83 4,61 17,9 4,46 1,2
3 64,0 7,5 0,83 0,83 4,31 21,1 4,22 1,2
4 46,3 4,8 0,83 0,83 5,95 33,5 5,86 1,2
5 48,4 6,8 0,83 0,83 5,70 23,3 5,53 1,2

This can be done using a well known stratagem: each number can be split so
that the integer part belongs to a column, and the separator sign and the fractional
part belong to the following column. The labels must now span two columns.

The code will change accordingly:
∗This file has version number v0.1, last revised 2009/06/01.

1

\begin{tabular}{*{9}{c}}
sez. &
σ &
τ &
. . .
\hline
1 & 7,4 & 2,9 & . . .
. . .

\end{tabular}

⇒

\begin{tabular}{c*{8}{r@{}l}}
sez. &
\multicolumn{2}{c}{σ} &
\multicolumn{2}{c}{τ} &
. . .
\hline
1 & 7&,4 & 2&,9 & . . .
. . .

\end{tabular}

The result is probably unexpected:

sez. σ τ βpl,σ βpl,τ Spl,σ Spl,τ Spl Spl,am
[MPa] [MPa]

1 7,4 2,9 0,83 0,83 37,0 54,7 30,7 1,2
2 59,9 8,9 0,83 0,83 4,61 17,9 4,46 1,2
3 64,0 7,5 0,83 0,83 4,31 21,1 4,22 1,2
4 46,3 4,8 0,83 0,83 5,95 33,5 5,86 1,2
5 48,4 6,8 0,83 0,83 5,70 23,3 5,53 1,2

Note that the last label is not centered on its data: it is aligned to the left
and hangs to the right. The same is true of the third label. Actually, seven of
the nine labels are wider than their data, though some of them by very little.
When a \multicolumn is wider than the columns it spans, it is aligned to the left,
disregarding the alignment directive.

The intent was to center all the labels, like this:

sez. σ τ βpl,σ βpl,τ Spl,σ Spl,τ Spl Spl,am
[MPa] [MPa]

1 7,4 2,9 0,83 0,83 37,0 54,7 30,7 1,2
2 59,9 8,9 0,83 0,83 4,61 17,9 4,46 1,2
3 64,0 7,5 0,83 0,83 4,31 21,1 4,22 1,2
4 46,3 4,8 0,83 0,83 5,95 33,5 5,86 1,2
5 48,4 6,8 0,83 0,83 5,70 23,3 5,53 1,2

To understand the reason of this behaviour, and the difficulty to “correct” it,
the algorithm used by LATEX and by the underlying TEX to compute the column
widths must be examined in greater detail.

The column widths are first calculated without considering the \multicolumn
cells, unless they span just one column and so are “fake” \multicolumns. Let
us call the result of this first computation the intrinsic width of a column. Then
each \multicolumn in turn is taken into consideration. If it is wider than the
columns it spans, comprehensive of the space between adjacent columns, the last
column is widened to accommodate the \multicolumn. The order matters: first
the \multicolumns that end at the second column are considered, then those that
end at the third column, and so on. Let us call the column widths so obtained

2

the extrinsic widths. The difference between the extrinsic width and the intrinsic
width is the excess width1.

The tabular environment relies on the TEX primitive \halign, from which it
inherits the algorithm. It is explained in a different and more formal way in
The TEXbook [2, page 235], but the result is the same.

This algorithm sometimes produces undesirable effects, as the example above
shows and Donald Knuth himself points out [2, ibidem].

2 Features

The tabularew environment has the same syntax as the tabular environment, and
should behave in the same way, except for the new features (and a new bunch of
incompatibilities and bugs . . .).

\begin{tabularew}{〈pream〉} . . . \end{tabularew}

In the body of the environment a new command is available.\GetExcessWidth

\GetExcessWidth{〈column〉}
〈column〉 −→ 〈optional sign〉 〈number〉

The 〈column〉 indication can be absolute or relative to the current position. It is
relative if the first character is ‘+’ or ‘-’, otherwise it is absolute2. Its effect is to\ExcessWidth

set the dimension register \ExcessWidth to the excess width of 〈column〉.
The command3\spew

\spew{〈factor〉}{〈column〉}
is just a shorthand for the idiom

\GetExcessWidth{〈column〉}\hspace{〈factor〉\ExcessWidth}
Since there is no way to access the widths directly during the evaluation of

a table, a trick must be used. The table is evaluated three times. During the
first pass every call to \GetExcessWidth sets \ExcessWidth to a null length and
every call to \multicolumn generates an empty cell; thus the intrinsic widths are
collected. The second pass restores the normal behaviour of \multicolumn; the
extrinsic widths are collected and the excess widths calculated. In the third and
last pass every call to \ExcessWidth returns the requested measure.

The column widths can change between the second and third pass, but the
total width of the table will not, if \spew is used in the following way, that is the
way I had in mind when this package was conceived.

When there is a \multicolumn cell, the columns crossed by it form a group. It
is sometimes useful to access the excess width of the last column of the group from

1Other names that I have considered are proper, inherent, implicit, essential, innate for
intrinsic and relational, explicit, accidental, acquired for extrinsic.

2I cannot see a useful application for the ‘-’ form, but it was natural to include it.
3The name stands for add a space proportional to the excess width, but the effect seems a

bit unfortunate.

3

within the preceding columns of the same group. Moreover, the sum of the spaces
\spewed in each of the preceding columns should not exceed the excess width of
the last column; that is, the sum of all the 〈factor〉 arguments should not exceed
one. In this way the net result is to redistribute the excess width in a flexible way
among the group of columns.

The two counters \CurrentColumn and \NumberOfColumns need not normally\CurrentColumn

\NumberOfColumns be used explicitly, since \GetExcessWidth makes use of them behind the scenes.
Nonetheless I decided to expose them too to the user. They should only be read
and not assigned to.

3 Example

The “correct” table shown in the introduction was obtained by

\begin{tabularew}{c*{8}{>{\spew{.5}{+1}}r@{}l}}
sez. &
\multicolumn{2}{c}{σ} &
\multicolumn{2}{c}{τ} &
. . .
\hline
1 & 7&,4 & 2&,9 & . . .
. . .

\end{tabularew}

4

4 The Code

I have succeeded in writing this code, thanks to David Carlisle’s tabulary envi-
ronment and his well-commented code. I have boldly and shamelessly copied it,
without even fully understanding it, and modified it to suite my needs.

To simplify things, I have eliminated the \verb and colortbl support (at least
for the moment).

1 〈∗package〉
2 \RequirePackage{array}

3 \catcode‘\Z=14

4 \DeclareOption{debugshow}{\catcode‘\Z=9\relax}

5 \ProcessOptions

\ExcessWidth

\CurrentColumn

\NumberOfColumns

Allocate the registers for the user interface.
6 \newdimen\ExcessWidth

7 \newcount\CurrentColumn

8 \newcount\NumberOfColumns

\tabularew

\TEW@get@body

\TEW@find@end

\endtabularew

The tabularew environment uses the same mechanism of grabbing its body as tabu-
lary, tabularx, and the AMS alignment environments. The use of {\ifnum0=‘}\fi
to begin a grouping and of \ifnum0=‘{\fi} to end it is discussed in tabularx. See
also The TEXbook [2, page 385]. It is needed to allow the environment inside an
alignment.
9 \def\tabularew{%

10 \edef\TEW@{\@currenvir}%

11 {\ifnum0=‘}\fi

12 \TEW@setup

13 \toks@{}\TEW@get@body}

14 \long\def\TEW@get@body#1\end

15 {\toks@\expandafter{\the\toks@#1}\TEW@find@end}

16 \def\TEW@find@end#1{%

17 \def\@tempa{#1}%

18 \ifx\@tempa\TEW@\def\@tempa{\end{#1}}\expandafter\@tempa

19 \else\toks@\expandafter

20 {\the\toks@\end{#1}}\expandafter\TEW@get@body\fi}

21 \def\endtabularew{%

22 Z \message{^^J^^JEW Table - first pass^^J}%

23 \TEW@firstpass

24 Z \message{\@spaces\@spaces\space - second pass^^J}%

25 \TEW@secondpass

26 Z \message{\@spaces\@spaces\space - last pass^^J}%

27 \TEW@lastpass

28 \TEW@cleanup

29 \ifnum0=‘{\fi}}

5

\TEW@setup Save locally all the things that tabularew will assign to globally. The values will
be restored at the end by \TEW@cleanup.
30 \def\TEW@setup{%

31 \edef\@restorecounters{%

32 \global\NumberOfColumns\the\NumberOfColumns

33 \global\CurrentColumn\the\NumberOfColumns\relax}%

The excess widths are stored as macro definitions because this way is easier, and
probably more efficient, than dealing with an “array” of dimension registers.
34 \count@\z@

35 \@tempswatrue

36 \@whilesw\if@tempswa\fi{%

37 \advance\count@\@ne

38 \expandafter\ifx\csname TEW@\the\count@\endcsname\relax

39 \@tempswafalse

40 \else

41 \expandafter\let\csname TEW@S\the\count@

42 \expandafter\endcsname\csname TEW@\the\count@\endcsname

43 \fi}%

These will only change locally.
44 \let\@arraycr\TEW@arraycr

45 \let\multicolumn\TEW@multicolumn

46 \ExcessWidth\z@

This will only exist locally. But I’m not sure of this choice.
47 \let\spew\TEW@spew

48 }

\TEW@cleanup

49 \def\TEW@cleanup{%

50 \count@\z@

51 \@tempswatrue

52 \@whilesw\if@tempswa\fi{%

53 \advance\count@\@ne

54 \expandafter\ifx\csname TEW@S\the\count@\endcsname\relax

55 \@tempswafalse

56 \else

57 \global\expandafter\let\csname TEW@\the\count@

58 \expandafter\endcsname\csname TEW@S\the\count@\endcsname

59 \fi}%

60 \@restorecounters

61 }

\TEW@firstpass Build a table that will never show up and is built in a special way with the
purpose of taking measures. \ExcessWidth is null and \multicolumns are empty.
The intrinsic widths are collected.
62 \def\TEW@firstpass{%

63 \let\multicolumn\TEW@multicolumnempty

64 \TEW@tabsample

6

65 \let\multicolumn\TEW@multicolumn

66 \let\@computation\TEW@firstcomp

67 \TEW@measure

68 }

\TEW@secondpass Now \multicolumns are honoured and the extrinsic widths are collected.
69 \def\TEW@secondpass{%

70 \TEW@tabsample

71 \let\@computation\TEW@secondcomp

72 \TEW@measure

73 }

\TEW@lastpass Just build the real table.
74 \def\TEW@lastpass{%

75 \TEW@tabfinal

76 }

\TEW@tabsample Add a row at the end of the table that won’t affect the column widths. This row
will later be analyzed to collect the widths. The last row provided by the user
can’t serve this purpose because it could contain multicolumns or be hidden by
an hline.
77 \def\TEW@tabsample{%

78 \let\GetExcessWidth\@GetExcessWidthz@

79 \let\@mkpream\TEW@mkpream

80 \setbox\z@\hbox{%

81 \gdef\@halignto{}%

82 \col@sep\tabcolsep

83 \let\d@llarbegin\begingroup\let\d@llarend\endgroup

84 \expandafter\TEW@tabarray\the\toks@

85 \crcr\omit

86 {\count@\NumberOfColumns

87 \xdef\TEW@save@row{}%

88 \loop

89 \advance\count@\m@ne

90 \ifnum\count@>\z@

91 \xdef\TEW@save@row{\TEW@save@row&\omit}%

92 \repeat}%

93 \TEW@save@row

94 \endarray

95 \global\setbox\@ne\lastbox

96 }%

97 }

\TEW@tabfinal This mimics a regular tabular, the only difference being that \CurrentColumn is up-
dated before evaluating the content of each cell and the command \GetExcessWidth
is made available.
98 \def\TEW@tabfinal{%

99 \leavevmode

100 \let\GetExcessWidth\@GetExcessWidth

7

101 \let\@mkpream\TEW@mkpream

102 \gdef\@halignto{}%

103 \col@sep\tabcolsep

104 \let\d@llarbegin\begingroup\let\d@llarend\endgroup

105 \expandafter\TEW@tabarray\the\toks@\endarray}

\TEW@tabarray

\TEW@array

Handle the optional position argument.
106 \def\TEW@tabarray{\@ifnextchar[{\TEW@array}{\@array[t]}}

107 \def\TEW@array[#1]{\@array[t]}

\TEW@@mkpream

\TEW@@arraycr

\TEW@@multicolumn

Saved versions.
108 \let\TEW@@mkpream\@mkpream

109 \let\TEW@@arraycr\@arraycr

110 \let\TEW@@multicolumn\multicolumn

\TEW@mkpream This is a one-shot customized version, that redifines itself to the regular version.
It’s not clear to me why this is needed. Maybe because the regular version is used
to process the multicolumns’ preambles?

111 \def\TEW@mkpream{%

112 \global\NumberOfColumns\@ne

113 \global\CurrentColumn\@ne

114 \let\@addamp\TEW@addamp

115 \global\let\@mkpream\TEW@@mkpream % needed!

116 \TEW@@mkpream}

\TEW@arraycr

117 \def\TEW@arraycr{%

118 \global\CurrentColumn\@ne

119 \TEW@@arraycr

120 }

\TEW@multicolumn For the multicolumn mechanism to work, the first token of the expansion must be
\omit.

121 \long\def\TEW@multicolumn#1#2#3{%

122 % Can’t place anything before \omit

123 \TEW@@multicolumn{#1}{#2}{\global\advance\CurrentColumn\@ne#3}%

124 \global\advance\CurrentColumn#1%

125 \global\advance\CurrentColumn\m@ne

126 \ignorespaces}

\TEW@multicolumnempty To behave exactly as explained in the introduction, the special case of a “fake”
multicolumn should be dealt with. I don’t think this would give any practical
advantage, though.

127 \long\def\TEW@multicolumnempty#1#2#3{\multispan#1\relax}

\TEW@addamp During the evaluation of \@mkpream, while processing the pramble, each ‘&’ in-
creases \NumberOfColumns. After that, it will keep it’s value. During the eval-
uation of \@preamble, while building a row, each ‘&’ increases \CurrentColumn.
The latter is reset at the end of each row when \@arraycr is evaluated.

8

128 \def\TEW@addamp{%

129 \if@firstamp\@firstampfalse

130 \else

131 \global\advance\NumberOfColumns\@ne

132 \expandafter\def\expandafter\@preamble\expandafter{\@preamble

133 &\global\advance\CurrentColumn\@ne}%

134 \fi

135 }%

\TEW@measure Take the last row apart, unbox it, take each cell in turn and note its width.
136 \def\TEW@measure{%

137 \setbox\z@\vbox{\unvbox\@ne\unskip\global\setbox\@ne\lastbox}%

138 \setbox\tw@\hbox{%

139 \count@\NumberOfColumns

140 \unhbox\@ne

141 \loop

142 \unskip

143 \setbox\tw@\lastbox

144 \ifhbox\tw@

145 \@computation{\wd\tw@}%

146 \advance\count@\m@ne

147 \repeat

148 }%

149 }

\TEW@firstcomp The argument is stored in the database.
150 \def\TEW@firstcomp#1{%

151 Z \message{Col \the\count@: Intrinsic Width=\the#1^^J}%

152 \TEW@width\xdef{\the#1}}

\TEW@secondcomp The argument is used to compute the excess width which is then stored in the
database.

153 \def\TEW@secondcomp#1{%

154 \TEW@width\dimen@

155 \advance\dimen@-#1%

156 \multiply\dimen@\m@ne

157 Z \message{Col \the\count@: Excess width=\the\dimen@^^J}%

158 \TEW@width\xdef{\the\dimen@}}

\TEW@width A shorthand.
159 \def\TEW@width#1{%

160 \expandafter#1\csname TEW@\the\count@\endcsname}

\@GetExcessWidth Look up the excess widths database.
161 \def\@GetExcessWidth#1{%

162 \count@\CurrentColumn

Process the optional sign. Need to \relax at the end of the assignment, to prevent
the following token from being expanded too early.

9

163 \@ifnextchar+{\advance\count@}{%

164 \@ifnextchar-{\advance\count@}{\count@}}#1\relax

Check that the column exists.
165 \@tempswafalse

166 \ifnum\count@>\z@

167 \ifnum\count@>\NumberOfColumns

168 \else\@tempswatrue

169 \fi\fi

Retrieve the datum.
170 \if@tempswa\TEW@width\ExcessWidth

171 \else\ExcessWidth\z@

172 \TEW@warn{nonexistent column \the\count@, assuming EW=0pt}%

173 \fi

174 Z \message{EW in col. \the\CurrentColumn\space references

175 Z col. \the\count@: \the\ExcessWidth^^J}%

176 }

\@GetExcessWidthz@ To be used in the first two passes, when the excess widths are still unknown.
177 \def\@GetExcessWidthz@#1{\ExcessWidth\z@}

\TEW@spew A useful shorthand.
178 \def\TEW@spew#1#2{\GetExcessWidth{#2}\hspace{#1\ExcessWidth}}

\TEW@warn Warning messages.
179 \def\TEW@warn{%

180 \PackageWarning{tabularew}}

181 \catcode‘\Z=11

182 〈/package〉

References

[1] M. Goossens, F. Mittelbach and A. Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[2] D. E. Knuth. The TEXbook (Computers & Typesetting Volume A). Addison-
Wesley, Reading, Massachusetts, 1986.

10

