HDF4 Reference Manual

HDF4 Release 2.3 January 2008

|.u:

The HDF Group

The HDF Group

Copyright Notice and License Terms for Hierarchical Data Format (HDF)
Software Library and Utilities

Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 2006-2008 by The HDF Group (THG).

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2006 by the Board of Trustees of the University of Illinois.

All rights reserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata
Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment
Corporation (DEC).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commer-
cial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following dis-
claimer in the documentation and/or materials provided with the distribution.

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the
University of Illinois at Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse
or promote products derived from this software without specific prior written permission from THG, the University, or the
Contributor, respectively.

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS "AS IS" WITH NO WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Contributors be liable for any damages
suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Trademarks

Sun is a registered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun Microsystems Inc.

UNIX is a registered trademark of X/Open.

VAX and VMS are trademarks of Digital Equipment Corporation.

Macintosh is a trademark of Apple Computer, Inc.

CRAY and UNICOS are registered trademarks of Silicon Graphics , Inc.

IBM PC is a registered trademark of International Business Machines Corporation.

MS-DOS is a registered trademark of Microsoft Corporation.

The SZIP Science Data Lossless Compression Program is Copyright (C) 2001 Science & Technology Corporation @ UNM. All
rights released. Copyright (C) 2003 Lowell H. Miles and Jack A. Venbrux. Licensed to ICs Corp. for distribution by the University
of Illinois' National Center for Supercomputing Applications as a part of the HDF data storage and retrieval file format and soft-
ware libraryproducts package. All rights reserved. Do not modify or use for other purposes. See for further information regarding
terms of use.

THG and HDF Information and Contacts
Information regarding The HDF Group (THG) and HDF products is available from the THG website: http://www.hdfgroup.org
HDF Help Desk assistance is available via email: help@hdfgroup.org
Business queries and contacts can be made through the website or by mail:
http://www.hdfgroup.org/about/contact.html
The HDF Group
1901 South First Street, Suite C-2
Champaign, IL 61801
USA

ii

January 2008

Table of Contents HDF Reference Manual
Table of Contents
1.1 Overview of the HDF Interfaces e 1-1
1.2 Low-Level Interface 1-1
1.3 Multifile Application INterfacesttt e e 1-2
1.3.1 Scientific Data Sets: SD Interface. e 1-2
1.3.2 Annotations: AN Interface 1-2
1.3.3 General Raster Images: GR Interface 1-2
1.3.4 Scientific Data Sets: netCDF Interface 1-2
1.3.5 Vdata: The VS Interface 1-3
1.3.6 Vdata Query: VSQ Interface. 1-3
1.3.7 Vdata Fields: VF Interface e 1-3
1.3.8 Vgroups: VInterface. 1-3
1.3.9 Vdata/Vgroups: VH Interface 1-3
1.3.10 Vgroup Inquiry: VQ Interface 1-3
1.4 Single-File Application Interfaces i 1-3
1.4.1 24-bit Raster Image Sets: DF24 Interface. i 1-4
1.4.2 8-bit Raster Image Sets: DFR8 Interface i, 1-4
1.4.3 Palettes: DFP Interface 1-4
1.4.4 Scientific Data Sets: DFSD Interface 1-4
1.4.5 Annotations: DFAN Interface. 1-4
1.5 FORTRAN-77 and C Language ISSUESttt e e 1-5
1.5.1 FORTRAN-77-to-C Translation e e 1-5
1.5.2 Case SenSItiVITY . . . o oottt ettt e e 1-5
1.533 Name Length.o 1-5
1.5.4 Header Files. 1-5
1.5.5 Data Type Specifications.ottt e e 1-5
1.5.6 String and Array Specificationsttt 1-6
1.5.7 FORTRAN-77, ANSICand K&R C i 1-6
1.6 Error Codes. 1-7
2.1 Reference Section OVEIVIEW it e e e e 2-11
ANannlen/afannlen 2-13
ANannlist/afannlist e 2-14
ANatype2tag/afatypetagt t 2-15
ANcreate/afcreate 2-16
ANcreatef/affcreate e 2-17
ANend/afend 2-18
ANendaccess/afendaccess 2-19
ANfileinfo/affileinfo e 2-20
ANget _tagref/afgettagref 2-21
ANid2tagref/afidtagref 2-22
ANnumann/afnumann 2-23
ANreadann/afreadann 2-24
ANSselect/afSelect e 2-25
ANStart/afstart 2-26
ANtag2atype/aftagatypeottt 2-27
ANtagref2id/aftagrefid 2-28
ANwriteann/afwriteann 2-29
GRattrinfo/mgating 2-31
January 2008 ii

The HDF Group Table of Contents
GRCreate/mECreatttt e 2-32
GRend/mgend 2-34
GRendaccess/mgendac 2-35
GRfileinfo/mgfinfo 2-36
GRfindattr/mgfndat 2-37
GRgetattr/mggnatt/mggeatt 2-38
GRgetchunkinfo/mggichnk 2-39
GRgetcompinfo/mEECOMPIESSottt ettt et e 2-41
GRgetiminfo/mggiint 2-43
GRgetlutid/mggltid 2-44
GRgetlutinfo/mgglinf 2-45
GRgetnluts/mggnluts e 2-46
GRidtoref/mgid2rf 2-47
GRIuttoref/mglt2rt e 2-48
GRnametoindex/mgn2ndXottt 2-49
GRreadchunk/mgrchnk/mgrechnk 2-50
GRreadimage/mgrdimg/mg@reimgo vttt 2-51
GRreadlut/mgrdlut/mgrelut 2-53
GRreftoindex/mgr2idXot 2-54
GRreqgimageil/mgrimil 2-55
GRreqlutil/mgrltil 2-56
GRselect/MESeICto 2-57
GRsetattr/mgsnatt/m@SCatto\ttt 2-58
GRSEtCOMPIreSS/MESCOMPIESS . .« . v v vve e et e et e ettt et e e e e e et e ettt 2-60
GRsetchunk/mgschnk 2-62
GRsetchunkcache/mgscchnk 2-64
GRsetexternalfile/mgsxfil 2-65
GRSEArt/MESIArt . .. oo e 2-66
GRwritechunk/mgwchnk/mgwechnk 2-67
GRwriteimage/mgwrimg/MEWCIME . . . oottt t e ettt e ettt e e e et 2-68
GRwritelut/mgwrlut/mgwclut e 2-70
HCloSe/NCIOSE . . o oo 2-73
Hgetfileversion/hgfilver e e 2-74
Hgetlibversion/hglibver e e e 2-75
Hishdf/hishdff 2-76
Hopen/hopen 2-77
HCget config info i e 2-78
HDdont_atexit/hddontateXxitottt i e 2-80
HEprint/heprntf/heprnt 2-81
HEstring/hestringf 2-82
HXsetereatedir/hXiscdirot e 2-83
HXsetdir/hXisdir e 2-84
SDattrinfo/sfgainfo 2-85
SDcheckempty/sfchempty 2-86
SDcereate/sfereateo e 2-87
SDdiminfo/sfgdinfo 2-89
SDend/sfendot 2-90
SDendaccess/sfendacc 2-91
SDfileinfo/sffinfo 2-92
SDfindattr/sffattr 2-93
SDgetcal/sfgeal 2-94
SDgetchunkinfo/sfgichnk 2-95

iv

January 2008

Table of Contents HDF Reference Manual

SDgetcompinfo/sfZCOMPIESS oottt e 2-97

SDgetdatastrs/sTgdtstr 2-99

SDgetdimid/sfdimid 2-100
SDgetdimscale/sfgdscale 2-101
SDgetdimstrs/sfgdmstr 2-102
SDgetfilename/ 2-103
SDgetfillvalue/stfgfill/sfgctill 2-104
SDgetinfo/sfginfo 2-105
SDgetnamelen/ 2-106
SDgetnumvars DYNamettt e 2-107
SDgetrange/SfEranget 2-108
SDget maxopenfiles/ 2-109
SDget numopenfiles/ 2-110
SDidtoref/sfid2ref 2-111
N 16 1 o 2-112
SDISCOOrdvar/STISCVAr it 2-113
SDisdimval bwcomp/sfisdmve 2-114
SDisrecord/sfisrcrd e 2-115
SDnametoindeX/sfn2indeXttt e 2-116
SDNamMEtOINAICESottt ittt et e e e 2-117
SDreadattr/sfrnatt/sfrcatt 2-118
SDreadchunk/sfrchnk/sfrechnk 2-119
SDreaddata/sfrdata/sfredata 2-120
SDreftoindex/sfref2index e 2-123
SDreset maxopenfiles/t 2-124
SDselect/STSCleCto 2-125
SDsetattr/sfsnatt/sfscatt 2-126
SDsetblocksize/sfsbISz o 2-128
SDsetcal/sfscal 2-129
SDsetchunk/sfschnk 2-130
SDsetchunkcache/sfscchnk 2-133
SDSEtCOMPIESS/STSCOMPIESS . . . v v ottt et et e e e e e e et e e e ettt 2-134
SDsetdatastrs/sfsdtstr o 2-137
SDsetdimname/sfsdmname 2-138
SDsetdimscale/sfsdscale e 2-139
SDsetdimstrs/stsSdmstr 2-140
SDsetdimval _comp/sfSAMVC e 2-141
SDsetexternalfile/sfsextl 2-142
SDsetfillmode/sfsfimd 2-143
SDsetfillvalue/sfsfill/sfscill 2-144
SDsetnbitdataset/sfsnbit 2-145
SDSetrange/SISIangeo ottt 2-147
SDStart/STStart 2-148
SDwritechunk/sfwchnk/sfwechnk 2-149
SDwritedata/sfwdata/sfwedata 2-150
Vaddtagref/viadtr 2-153
Vattach/viatCh e 2-154
Vattrinfo/viainfo 2-155
Vdelete/Vdeleteo 2-156
Vdeletetagref/vEdtr 2-157
Vdetach/vidtch 2-158
Vend/viend 2-159

January 2008

The HDF Group Table of Contents

VEnd/vEInd ..o 2-160
VAndattr/vEfdatt 2-161
VAindelass/VIndelso e 2-162
VAlocate/VITIOC . . o oo e 2-163
Vgetattr/vignatt/vigeatt 2-164
Vgetclass/VEgels . ..o oo 2-165
Vgetid/vigid . . oo 2-166
Vgetname/VEignam 2-167
VEetneXt/VEZNXEo 2-168
Vgettag etV gtr . o 2-169
Vgettagrefs/VEgtIS . . . o 2-170
Vgetversion/VIGVer oo 2-171
Vingtagref/vEIngtr e 2-172
ViInquire/VEINGo 2-173
ViINSCrt/VEINSITot e 2-174
VISV g/ V IS ottt e e 2-175
VISV SV ISV Lottt e 2-176
VIone/VEIONE . ..o 2-177
VNattrs/VENAtts e 2-178
Vnrefs/VIre s 2-179
Vntagrefs/VINtr 2-180
Vsetattr/visnatt/viscatt 2-181
VSetClass/VESCIS . ..ot 2-182
Vsetname/VESNam 2-183
VS art/VEStart 2-184
VHmakegroup/vhimkgp 2-185
VQueryrel/Varet . ..o 2-186
VOQUEIYLAG/VALAZ . . ot ot ottt ettt et e e e e e 2-187
VFfieldesize/VITesizot 2-189
VEFfieldisize/VITISIZ o 2-190
VFfieldname/vifname 2-191
VFfieldorder/vifordr 2-192
VEfieldtype/VETtypeo e 2-193
VFEnfields/vinflds oo 2-194
VSQuerycount/vsqfnelt 2-195
VSQueryfields/vsqfflds 2-196
VSQueryinterlace/vsqiintr 2-197
VSQueryname/vsqiname e 2-198
VSQueryref/vsqrelo 2-199
VS QUETYtaZ/VSQEAE . . vt vttt ettt e e e e e e 2-200
VSQUeryvsize/VSQIVSIZttt 2-201
VHstoredata/vhisd/vhiscd 2-203
VHstoredatam/vhfsdm/vhfscdm 2-205
VSappendable/vsapp (ObSOLEte) oottt 2-207
VSattach/vsfatch 2-208
VSattrinfo/vsfaint 2-209
VSdelete/vstdlteo 2-210
VSdetach/vsfdtch 2-211
VS elts/ VSIS . . oo 2-212
VSfdefine/vsffdel 2-213
VS e XiSt VS X . ot 2-214
VSind/vstind 2-215

vi January 2008

Table of Contents HDF Reference Manual

VSfindattr/vstfdat e 2-216
VS indclass/VETCISo 2-217
VSfindex/vstfidx o 2-218
VS nattrs/vefinas e 2-219
VSipack/vsfepak/vstpako e 2-220
VSgetattr/vsfgnat/vsfgeat 2-222
VSgetblockinfo/vsfgetblinfo 2-223
VS getclass/ VS gClso 2-224
VSgetfields/vstgfld o 2-225
VSgetid/vstgid . ..o 2-226
VSgetinterlace/vsfgint 2-227
VSgetname/vsfgnam 2-228
VSEEUVEISION/VSZVET . . . ottt et et e e e e e e e e e e e e e e e e 2-229
VSInquire/Vsfingot 2-230
YV SiSattr/VSTISAL . . .ottt 2-231
VSIone/VSTIONEot 2-232
VSnattrs/VSInats 2-233
VSread/vsfrd/vsfrde/vsfread o 2-234
VSSeek/VSISEEK . . .ot 2-236
VSsetattr/vsfsnat/vsfscat 2-237
VSsetblocksize/VsfsetblSzot 2-238
VSSetelass/VSTSCLS . . .ot 2-239
VSsetexternalfile/vsfsextl 2-240
VSsetfields/vsfstld 2-241
VSsetinterlace/vstSint 2-242
VSsetname/vstSnam 2-243
VSsetnumblocks/vsfsetnmbl 2-244
VSSIZEOT/VSESIZ . o oot 2-245
VSwrite/vstwrt/vsfwrtc/VSEWrit 2-246
DF24addimage/d2aimgttt 2-249
DF24getdims/d2gdims ottt 2-250
DF24getimage/d2gimgottt 2-251
DF24lastref/d2lret 2-252
DF24nimages/d2nimgttt e e 2-253
DF24putimage/d2pimgottt 2-254
DF24readref/d2rret 2-255
DF24reqil/d2reqil 2-256
DEF24restart/d2firstottt 2-257
DF24setcompress/d2SCOMP . ..ottt ettt e e e 2-258
Q2SO . .ot e 2-260
QS P vttt e 2-261
DF24setdims/d2Sdimsttt e 2-262
DEF24setil/d2setilt e 2-263
DFR8addimage/d8aimgo. it 2-265
DFR8getdims/d8GdImsottt 2-266
DFR8getimage/d8gImgEottt e e 2-267
DERgetpalrel e 2-268
DFRS8lastref/d8lref e 2-269
DFR8NImMages/d8nimsttt e e e 2-270
DFR8putimage/d8pimgt 2-271
DFRS8readref/d8rref 2-272
DFRS8restart/d8firstottt 2-273

January 2008 vii

The HDF Group Table of Contents

DFR8setcompress/d8SCOMPottt et e 2-274
ABSCOMID . .ot e 2-276
A PO - o v ottt 2-277
DFRS8setpalette/d8spalot 2-278
DFR8writeref/d8wret 2-279
DFPaddpal/dpapal e 2-281
DFPgetpal/dpgpal 2-282
DEFPlastref/dplret e 2-283
DEFPnpals/dpnpals e 2-284
DFPputpal/dpppal 2-285
DFPreadref/dprref 2-286
DEFPrestart/dprestot 2-287
DFPwriteref/dpwret 2-288
DEKINTSIZE . .ottt ettt e e e e e e e e e e e e e e e e e e e 2-289
DFUfptoimage/duf2im 2-291
DFANaddfds/daafds 2-293
DFANaddfid/daafid 2-294
DFANClear/daclear i 2-295
DFANgetdesc/dagdescttt 2-296
DFANgetdesclen/dagdlen it 2-297
DFANgetfds/dagfds i 2-298
DFANgetfdslen/dagfds] 2-299
DFANgetfid/dagfid 2-300
DFANgetfidlen/dagfidl 2-301
DFANgetlabel/daglab 2-302
DFANgetlablen/dagllen 2-303
DFANIablist/dalliStot e e e e 2-304
DFANIlastref/dalref 2-305
DFANpUtdesc/dapdescottt e e 2-306
DFANputlabel/daplab 2-307
DFSDadddata/dsadatat e 2-309
DFSDeclear/dsclearot 2-310
DFSDendslab/dseslab 2-311
DFSDendslice/dseslct 2-312
DFSDgetcal/dsgeal i 2-313
DFSDgetdata/dsgdatao .t 2-314
DFSDgetdatalen/dsgdaln i 2-315
DFSDgetdatastrs/dsgdastttt 2-316
DFSDgetdimlen/dsgdiln 2-317
DFSDgetdims/dsgdimsttt 2-318
DFSDgetdimscale/dsgdiscottt 2-319
DFSDgetdimstrs/dsgdistot 2-320
DFSDgetfillvalue/dsgfill 2-321
DFSD@etNT/ASENt . . .ottt ettt e e e e e e e 2-322
DFSDgetrange/dSgrangout ittt e 2-323
DFSDgetslice/dsgslc . ..ot 2-324
DFSDIastref/dslref o 2-325
DFSDndatasets/dSnUmot e e e e 2-326
DFSDpre32sdg/dsp32sd . ..ottt 2-327
DFSDputdata/dspdatao .t 2-328
DFSDputslice/dspsicttt 2-329
DFSDreadref/dstref 2-330

viii January 2008

Table of Contents HDF Reference Manual

DFSDreadslab/dsrslab e 2-331
DFESDrestart/dsfirst 2-332
DFSDsetcal/dsscal 2-333
DFSDsetdatastrs/dssdast 2-335
DFSDsetdims/dssdims e 2-336
DFSDsetdimscale/dssdiSC e 2-337
DFSDsetdimstrs/dssdiSt 2-338
DFSDsetfillvalue/dssfill 2-339
DFSDsetlengths/dsslenso 2-340
DESDSetNT/ASSNLot e 2-341
DFSDsetrange/dsSrangttt 2-342
DFSDstartslab/dssslab e 2-343
DFESDstartslice/dssslc o 2-344
DESDwriteref/dswref 2-345
DFSDwriteslab/dswslab e 2-346
Happendable 2-347
Heache ... 2-348
Hdeldd e 2-349
HendacCess . ..ot 2-350
HendbitaCCesso vttt 2-351
HeeXiSt o o 2-352
HEdINQUITE . ..o e e e e e 2-353
HEnd . o e 2-354
Hgetbit ... 2-355
Hgetelement 2-356
Hinquire . ..o 2-357
Hlength ... 2-358
HnewWrel . e 2-359
Hnextread e 2-360
Hnumber/hnumber e 2-361
Ho T Set ..o 2-362
Hputbit .o 2-363
Hputelement 2-364
Hread ... o 2-365
HSEEK . o 2-366
Hsetlength 2-367
HShutdown e 2-368
Htagnewrel 2-369
HUrUNC .« .o 2-370
HW LIt oo 2-371
HDFCloSe/hdfCloSeo e e 2-373
HDFopen/hdfopen e e 2-374
HECIear 2-375
HEpPUSh .o 2-376
HErPOTt « .ot e 2-377
HEVAIUE . ..o 2-378
H Functions for Low-level Developmentttt 2-379
3.1 Definition LiSt OVEIVIEWo ottt e e et e e e e e e 3-381

January 2008

The HDF Group Table of Contents

X January 2008

Section

1

Introduction to the HDF APIs

1.1

Overview of the HDF Interfaces

The HDF library structure consists of two interface layers and one application layer built upon a
physical file format. (See Figure la.) The first layer, or the low-level interface, is generally
reserved for software developers because it provides support for low-level details such as file I/O,
error handling, and memory management. The second layer, containing the single and multifile
application interfaces, consists of a set of interfaces designed to simplify the process of storing
and accessing data. The single-file interfaces operate on one file at a time, whereas the multifile
interfaces can operate on several files simultaneously. The highest HDF layer includes various
NCSA and commercial applications and a collection of command-line utilities that operate on
HDF files or the data objects they contain.

FIGURE la

1.2

Three Levels of Interaction with the HDF File

General Applications

Utilities |7—| NCSA Applications |7—| Commercial Applications
[T | I]

Single-file APIs Multifile APIs
Scientific -Bit 24-Bit General Scientific

8)
Data l7| Palette |7|Annotati0ns|7| Raster |7| Raster |/— Raster |7| Vgroups |7|Annotauons|7| Vdata |7] Data
I T T T T I [T I I

i e U e U e e U e e U e

Low-level Interface (Routines starting with H)

Vi Vi

U U U

HDF File
File Header |7—| Data Descriptor Block |7—| Data Elements

Low-Level Interface

This is the layer of HDF reserved for software developers and provides routines for error han-
dling, file I/O, memory management, and physical storage. These routines are prefaced with "H’.
For a more detailed discussion of the low-level interface, consult the HDF Specifications and
Developer's Guide from the HDF WWW home page at http://hdf .ncsa.uiuc.edu/.

The low-level interface provides a collection of routines that are prefaced with either "H’, "HE’, or
"HX’. The H routines are for managing HDF files. The HE routines provide error handlings. The
HX routines are for managing HDF external files.

January 2008 1-1

The HDF Group

Section 1

1.3

Prior to HDF version 3.2, all low-level routines began with the prefix 'DF’. As of HDF version
3.3, the DF interface was no longer recommended for use. It is only supported to maintain back-
ward compatibility with programs and files created under earlier versions of the HDF library.

Multifile Application Interfaces

The HDF multifile interfaces are designed to allow operations on more than one file and more
than one data object at the same time. The multifile interfaces provided are AN, GR, SD, VS,
VSQ, VF, V, and VH. The AN interface is the multifile version of the DFAN annotation interface.
The GR interface is the multifile version of the 8- and 24-bit raster image interfaces. The SD inter-
face is the multifile version of the scientific data set interface. The VS, VSQ, and VF interfaces
support the vdata model. The V and VH interfaces provide support for the vgroup data model.

Like the single-file interfaces, the multifile interfaces are built upon the low-level H routines.
Unlike single-file operations, operations performed via a multifile interface are not implicitly pre-
ceded by Hopen and followed by Hclose. Instead, each series of operations on a file must be pre-
ceded by an explicit call to open and close the file. Once the file is opened, it remains open until
an explicit call is made to close it. This process allows operations on more than one file at a time.

1.3.1 Scientific Data Sets: SD Interface

The scientific data set interface provides a collection of routines for reading and writing arrays of
data. Multidimensional arrays accompanied by a record of their dimension and number type are
called scientific data sets. Under the multifile interface, scientific data sets may include predefined
or user defined attribute records. Each attribute record is optional and describes a particular facet
of the environment from which the scientific data was taken.

The names of the routines in the multifile scientific data set interface are prefaced by SD’. The
equivalent FORTRAN-77 routine names are prefaced by ’sf’.

1.3.2 Annotations: AN Interface

The purpose of the AN multifile annotation interface is to permit concurrent operations on a set of
annotations that exist in more than one file. Annotations consist of labels and descriptions.

The C routine names of the multifile annotation interface are prefaced by the string ’AN’ and the
FORTRAN-77 routine names are prefaced by ’af’.

1.3.3 General Raster Images: GR Interface
The routines in the GR interface provide multifile operations on general raster image data sets.

The C routine names in the general raster interface have the prefix ’GR’ and the equivalent FOR-
TRAN-77 routine names are prefaced by ‘'mg’.

1.3.4 Scientific Data Sets: netCDF Interface

The SD interface is designed to be as compatible as possible with netCDF, an interface developed
by the Unidata Program Center. Consequently, the SD interface can read files written by the
netCDF interface, and the netCDF interface (as implemented in HDF) can read both netCDF files
and HDF files that contain scientific data sets.

Further information regarding the netCDF interface routines and their equivalents in the HDF
interface can be found in the HDF User's Guide. Additional information on the netCDF interface
can be found in the netCDF User's Guide available by anonymous ftp from unidata.ucar.edu.

January 2008

Introduction to the HDF APIs HDF Reference Manual

1.4

1.3.5 Vdata: The VS Interface

The VS interface provides a collection of routines for reading and writing customized tables. Each
table is comprised of a series of records whose values are stored in fixed length fields. In addition
to its records, a vdata may contain four kinds of identifying information: a name, class, data type
and a number of field names.

Routines in the VS interface are prefaced by *VS’. The equivalent FORTRAN-77 routine names
are prefaced by vsf’.

1.3.6 Vdata Query: VSQ Interface

The VSQ interface provides a collection of routines for inquiring about existing vdata. These rou-
tines provide information such as the number of records in a vdata, its field names, number types,
and name. All routines in the VSQ interface are prefaced by *VSQ’. The equivalent FORTRAN-
77 routine names are prefaced by 'vsq’.

1.3.7 Vdata Fields: VF Interface

The VF interface provides a collection of routines for inquiring about the fields in an existing
vdata. These routines provide information such as the field name, size, order, and number type.

All routines in the VF interface are prefaced by *VF’. There are no equivalent FORTRAN-77
functions.

1.3.8 Vgroups: V Interface

The vgroup interface provides a collection of routines for grouping and manipulating HDF data
objects in the file. Each vgroup may contain one or more vdatas, vgroups, or other HDF data
objects. In addition to its members, a vgroup may also be given a name and a class.

Every routine name in the vgroup interface are prefaced by V’. The equivalent FORTRAN-77
routine names are prefaced by vf’.

1.3.9 Vdata/Vgroups: VH Interface

The high-level VH interface provides a collection of routines for creating simple vdatas and
vgroups with a single function call. All routines in this interface are prefaced by "VH’. The equiv-
alent FORTRAN-77 routine names are prefaced by *vh’.

1.3.10 Vgroup Inquiry: VQ Interface

The high-level VQ interface provides one routine that returns tag information from a specified
vgroup, and one routine that returns reference number information from a specified vgroup. All C
routine names in this interface are prefaced by "VQ’. The equivalent Fortran-77 routine names are
prefaced by ’vq’.

Single-File Application Interfaces

The HDF single-file application interfaces include several independent modules each is designed
to simplify the process of storing and accessing a specific type of data. These interfaces support
the 8-bit raster image(DFR8), 24-bit raster image (DF24), palette (DFP), scientific data (DFSD),
and annotation (DFAN) models. All single-file interfaces are built upon the H routines - unless
otherwise specified, all the low-level details can be ignored.

January 2008 1-3

The HDF Group

Section 1

1.4.1 24-bit Raster Image Sets: DF24 Interface

The HDF 24-bit raster interface provides a collection of routines for managing 24-bit raster image
sets. A 24-bit raster image set is comprised of a 24-bit raster image array and its accompanied
dimension record. Raster image sets may also include a palette.

The names of the routines in the 24-bit raster interface are prefaced by 'DF24°. The equivalent
FORTRAN-77 routine names are prefaced by *d2’.

1.4.2 8-bit Raster Image Sets: DFR8 Interface

The HDF 8-bit raster interface provides a collection of routines for managing 8-bit raster image
sets. An 8-bit raster image set is comprised of an 8-bit raster image array and its accompanied
dimension record. Raster image sets may also include a palette.

Every function in the 8-bit raster interface begins with the prefix "DFRS8’. The equivalent FOR-
TRAN-77 functions use the prefix *d8’.

1.4.3 Palettes: DFP Interface

The HDF palette interface provides a collection of routines for managing palette data. This inter-
face is most often used for working with multiple palettes stored in a single file or palettes not
specifically assigned to a raster image.

The names of the routines in the palette interface are prefaced by 'DFP’. The equivalent FOR-
TRAN-77 routine names are prefaced by ’dp’.

1.4.4 Scientific Data Sets: DFSD Interface

There are two HDF interfaces that support multidimensional arrays: the single-file DFSD inter-
face described here, which permits access to only one file at a time, and the newer multifile SD
interface, which permits simultaneous access to more than one file. The existence of the single-
file scientific data set interface is simply to support backward compatibility for previously created
files and applications. It is recommended that the multifile scientific data set interface is to be
used where possible.

The single-file scientific data set interface provides a collection of routines for reading and writing
arrays of data. A scientific data set is comprised of a scientific data array and its accompanied
rank, name and number type. Scientific data sets may also include predefined attribute records.

The names of the routines in the single-file scientific data set interface are prefaced by "DFSD’.
The equivalent FORTRAN-77 routine names are prefaced by ’ds’.

1.4.5 Annotations: DFAN Interface

The single-file annotation interface provides a collection of routines for reading and writing text
strings assigned to HDF data objects or files. Annotations consist of labels and descriptions.

The names of the routines in the single-file annotation interface are prefaced by "'DFAN’. The
equivalent FORTRAN-77 routine names are prefaced by ’da’.

January 2008

Introduction to the HDF APIs HDF Reference Manual

1.5

FORTRAN-77 and C Language Issues

In order to make the FORTRAN-77 and C versions of each routine as similar as possible, some
compromises have been made in the process of simplifying the interface for both programming
languages.

1.5.1 FORTRAN-77-to-C Translation

Nearly all of the HDF library code is written in C. The Fortran HDF API routines translate all
parameter data types to C data types, then call the C routine that performs the main function. For
example, d8aimg is the FORTRAN-77 equivalent for DFR8addimage. Calls to either routine
execute the same C code that adds an 8-bit raster image to an HDF file - see the following figure.

FIGURE 1b

Use of a Function Call Converter to Route FORTRAN-77 HDF Calls to the C Library

Your Your
C FORTRAN-77 to C FORTRAN-77
Program Program
DFR8addimage - d8aimg to DFR8addimage - d8aimg

1.5.2 Case Sensitivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without loss of meaning.

1.5.3 Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

1.5.4 Header Files

The inclusion of header files is not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processors ma and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, and values needed from the files dffunc. inc and
hdf . inc into the user application. If the capability is available, the files can be included in the For-
tran code. The files reside in the include/ subdirectory of the directory where the HDF library is
installed on the user’s system.

1.5.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
quantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF
library expects assigned names for all data types used in HDF routines. (See Table 1A.)

January 2008 1-5

The HDF Group

Section 1

TABLE 1A Data Type Definitions
Definition Name Definition Value Description

DFNT_CHARS 4 8-bit character type

DFNT_CHAR 4 Same as DFNT_CHARS

DFNT_UCHARS 3 8-bit unsigned character type

DFNT_UCHAR 3 Same as DFNT_UCHARS

DFNT_INT8 20 8-bit integer type

DFNT_UINTS8 21 8-bit unsigned integer type

DFNT_INT16 22 16-bit integer type

DFNT_UINT16 23 16-bit unsigned integer type

DFNT_INT32 24 32-bit integer type

DFNT_UINT32 25 32-bit unsigned integer type

DFNT_FLOAT32 5 32-bit floating-point type

DFNT_FLOAT64 6 64-bit floating-point type

DFNT_NINTS8 (DFNT_NATIVE | DFNT_INTS) 8-bit native integer type

DFNT_NUINT8 (DFNT_NATIVE | DFNT_UINTS) 8-bit native unsigned integer type

DFNT NINT16 (DFNT_NATIVE | DFNT_INT16) 16-bit native integer type

DFNT NUINT16 (DFNT_NATIVE | DFNT UINT16) 16-bit native unsigned integer type

DFNT_NINT32 (DFNT_NATIVE | DFNT_INT32) 32-bit native integer type

DFNT_NUINT32 (DFNT_NATIVE | DFNT_UINT32) 32-bit native unsigned integer type

DFNT_NFLOAT32 (DFNT_NATIVE | DFNT_FLOAT32) 32-bit native floating-point type

DFNT_NFLOAT64 (DFNT_NATIVE | DFNT_FLOATG64) 64-bit native floating-point type
When using a FORTRAN-77 data type that is not supported, the general practice is to use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable unless the code relies on a sign-specific operation.
1.5.6 String and Array Specifications
In the declarations contained in the headers of FORTRAN-77 functions, the following conven-
tions are followed:

* character* (*) xmeans that x refers to a string of an indefinite number of characters. It is
the responsibility of the calling program to allocate enough space to hold the data to be
stored in the string.

* real x(*) means that x refers to an array of reals of indefinite size and of indefinite rank. It
is the responsibility of the calling program to allocate an actual array with the correct num-
ber of dimensions and dimension sizes.

* <valid numeric data type > x means that x may have one of the numeric data types
listed in the Description column of Table 1A on page 6.

* <valid data type > x means that x may have any of the data types listed in the Descrip-
tion column of Table 1A on page 6.

1.5.7 FORTRAN-77, ANSI C and K&R C

As much as possible, we have conformed the HDF API routines to those implementations of For-

tran and C that are in most common use today, namely FORTRAN-77, ANSI C and K&R C. Due

to the increasing availability of ANSI C, future versions of HDF will no longer support K&R C.
1-6 January 2008

Introduction to the HDF APIs HDF Reference Manual

1.6

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler.

Error Codes

The error codes defined in the HDF library are listed in the following table.

TABLE 1B

HDF Error Codes
Error Code Code Definition

DFE_NONE No error.
DFE_FNF File not found.
DFE_DENIED Access to file denied.
DFE_ALROPEN File already open.
DFE_TOOMANY Too many AID' or files open.
DFE_BADNAME Bad file name on open.
DFE_BADACC Bad file access mode.
DFE_BADOPEN Miscellaneous open error.
DFE_NOTOPEN File can't be closed because it hasn’t been opened.
DFE_CANTCLOSE fclose error
DFE_READERROR Read error.
DFE_WRITEERROR Write error.
DFE_SEEKERROR Seck error.
DFE_RDONLY File is read only.
DFE_BADSEEK Attempt to seek past end of element.
DFE_PUTELEM Hputelement error.
DFE_GETELEM Hgetelement error.
DFE_CANTLINK Cannot initialize link information.
DFE_CANTSYNC Cannot synchronize memory with file.
DFE_BADGROUP Error from DFdiread in opening a group.
DFE_GROUPSETUP Error from DFdisetup in opening a group.
DFE_PUTGROUP Error on putting a tag/reference number pair into a group.
DFE_GROUPWRITE Error when writing group contents.
DFE_DFNULL Data file reference is a null pointer.
DFE_ILLTYPE Data file contains an illegal type: internal error.
DFE_BADDDLIST The DD list is non-existent: internal error.
DFE_NOTDFFILE The current file is not an HDF file and it is not zero length.
DFE_SEEDTWICE The DD list already seeded: internal error.
DFE_NOSUCHTAG No such tag in the file: search failed.
DFE_NOFREEDD There are no free DD's left: internal error.
DFE_BADTAG Tllegal WILDCARD tag.
DFE_BADREF Tllegal WILDCARD reference number.
DFE_NOMATCH No DDs (or no more DDs) that match the specified tag/reference number pair.
DFE_NOTINSET Warning: Set contained unknown tag. Ignored.
DFE_BADOFFSET Tllegal offset specified.
DFE_CORRUPT File is corrupted.
DFE_NOREF No more reference numbers are available.
DFE_DUPDD The new tag/reference number pair has been allocated.
DFE_CANTMOD Old element doesn’t exist. Cannot modify.

January 2008 1-7

The HDF Group

Section 1

Error Code

Code Definition

DFE_DIFFFILES

Attempt to merge objects in different files.

DFE_BADAID

An invalid ATD was received.

DFE_OPENAID

Active AIDs still exist.

DFE_CANTFLUSH

Cannot flush DD back to file.

DFE_CANTUPDATE

Cannot update the DD block.

DFE_CANTHASH

Cannot add a DD to the hash table.

DFE_CANTDELDD

Cannot delete a DD in the file.

DFE_CANTDELHASH

Cannot delete a DD from the hash table.

DFE_CANTACCESS

Cannot access specified tag/reference number pair.

DFE_CANTENDACCESS

Cannot end access to data element.

DFE_TABLEFULL

Access table is full.

DFE_NOTINTABLE

Cannot find element in table.

DFE_UNSUPPORTED

Feature not currently supported.

DFE_NOSPACE

malloc failed.

DFE_BADCALL

Routine calls were in the wrong order.

DFE_BADPTR

NULL pointer argument was specified.

DFE_BADLEN

Invalid length was specified.

DFE_NOTENOUGH

Not enough space for the data.

DFE_NOVALS

Values were not available.

DFE_ARGS

Invalid arguments passed to the routine.

DFE_INTERNAL

Serious internal error.

DFE_NORESET

Too late to modify this value.

DFE_GENAPP

Generic application level error.

DFE_UNINIT

Interface was not initialized correctly.

DFE_CANTINIT

Cannot initialize the interface the operation requires.

DFE_CANTSHUTDOWN

Cannot shut down the interface the operation requires.

DFE_BADDIM

Negative number of dimensions, or zero dimensions, was specified.

DFE_BADFP

File contained an illegal floating point number.

DFE_BADDATATYPE

Unknown or unavailable data type was specified.

DFE_BADMCTYPE

Unknown or unavailable machine type was specified.

DFE_BADNUMTYPE

Unknown or unavailable number type was specified.

DFE_BADORDER

Unknown or illegal array order was specified.

DFE_RANGE

Improper range for attempted access.

DFE_BADCONV

Invalid data type conversion was specified.

DFE_BADTYPE

Incompatible types were specified.

DFE_BADSCHEME

Unknown compression scheme was specified.

DFE_BADMODEL

Invalid compression model was specified.

DFE_BADCODER

Invalid compression encoder was specified.

DFE_MODEL Error in the modeling layer of the compression operation.
DFE_CODER Error in the encoding layer of the compression operation.
DFE_CINIT Error in encoding initialization.

DFE_CDECODE

Error in decoding compressed data.

DFE_CENCODE

Error in encoding compressed data.

DFE_CTERM Error in encoding termination.
DFE_CSEEK Error seeking in an encoded dataset.
DFE_MINIT Error in modeling initialization.

DFE_COMPINFO

Invalid compression header.

1-8

January 2008

Introduction to the HDF APIs

HDF Reference Manual

Error Code

Code Definition

DFE_CANTCOMP

Cannot compress an object.

DFE_CANTDECOMP

Cannot decompress an object.

DFE_NOENCODER

Encoder not available.

DFE_NOSZLIB

SZIP library not available.

DFE_COMPVERSION

Version error from zlib
Note: when Z_VERSION_ERROR (-6) returned from zlib.

DFE_READCOMP

Error in reading compressed data.

Note: when one of the following error codes returned from zlib:
Z_ERRNO -1

Z STREAM_ERROR (-2)

Z_DATA_ERROR (-3)

Z MEM _ERROR (-4)

Z_BUF_ERROR (-5)

DFE_NODIM

A dimension record was not associated with the image.

DFE_BADRIG

Error processing a RIG.

DFE_RINOTFOUND

Cannot find raster image.

DFE_BADATTR

Invalid attribute.

DFE_BADTABLE

The nsdg table has incorrect information.

DFE_BADSDG Error in processing an SDG.
DFE_BADNDG Error in processing an NDG.
DFE_VGSIZE Too many elements in the vgroup.
DFE_VTAB Element not in vtab [].

DFE_CANTADDELEM

Cannot add the tag/reference number pair to the vgroup.

DFE_BADVGNAME

Cannot set the vgroup name.

DFE_BADVGCLASS

Cannot set the vgroup class.

DFE_BADFIELDS

Invalid fields string passed to vset routine.

DFE_NOVS

Cannot find the vset in the file.

DFE_SYMSIZE

Too many symbols in the users table.

DFE_BADATTACH

Cannot write to a previously attached vdata.

DFE_BADVSNAME

Cannot set the vdata name.

DFE_BADVSCLASS

Cannot set the vdata class.

DFE_VSWRITE

Error writing to the vdata.

DFE_VSREAD

Error reading from the vdata.

DFE_BADVH

Error in the vdata header.

DFE_VSCANTCREATE

Cannot create the vdata.

DFE_VGCANTCREATE

Cannot create the vgroup.

DFE_CANTATTACH

Cannot attach to a vdata or vset.

DFE_CANTDETACH

Cannot detach a vdata or vset with write access.

DFE_BITREAD

A bit read error occurred.

DFE_BITWRITE

A bit write error occurred.

DFE_BITSEEK

A bit seek error occurred.

DFE_TBBTINS

Failed to insert the element into tree.

DFE_BVNEW Failed to create a bit vector.

DFE_BVSET Failed when setting a bit in a bit vector.
DFE_BVGET Failed when getting a bit in a bit vector.
DFE_BVFIND Failed when finding a bit in a bit vector.

January 2008

The HDF Group Section 1

1-10 January 2008

Section
2

HDF Routine Reference

2.1 Reference Section Overview

This section of the Reference Manual contains a listing of every routine contained in the HDF ver-
sion 4.1r4 library. For each interface, the pages are organized alphabetically according to the C
routine name. Each page addresses one C routine and the related FORTRAN-77 routines, and
takes the following form:

Routine_Name

return_type function_name(typel parameterl, type2 parameter?2, ... , typeN parameterN)
parameterl IN/ -
OUT: Definition of the first parameter
parameter?2 IN/ -
OUT: Definition of the second parameter
parameterN IN/

OUT Definition of the Nth parameter

Purpose Section containing the functionality of the routine.

Return value Section describing the return value, if any.

Description This optional section describes the proper use of the routine, the specifica-
tion of the parameters, and any special circumstances surrounding the use of
the routine. This section also identifies any prerequisite routines and pro-
vides appropriate references.

FORTRAN This section provides a synopsis of the equivalent FORTRAN-77

routine or routines.

January 2008 2-11

The HDF Group Section 2

2-12 January 2008

ANannlen/afannlen HDF Reference Manual
ANannlen/afannlen
int32 ANannlen(int32 ann_id)
ann_id IN: Annotation identifier returned by ANcreate, ANcreatef, or
ANselect
Purpose Returns the length of an annotation.

Return value

Description

FORTRAN

Returns the length of the annotation or FAIL (or -1) otherwise.

ANannlen returns the number of characters contained in the annotation
specified by the parameter ann_id. This function is commonly used to
determine the size of a buffer to store the annotation upon reading.

integer function afannlen(ann_id)

integer ann_ id

January 2008

2-13

The HDF Group

ANannlist/afannlist

ANannlist/afannlist

intn ANannlist(int32 an_id, ann_type annot_type, uintl6 obj tag, uintl6 obj ref, int32 *ann_lisf)

an_id
annot_type
obj tag
obj_ref

ann_list

Purpose
Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart
IN: Type of the annotation

IN: Tag of the object

IN: Reference number of the object

OUT: Buffer for the annotation identifiers

Retrieves the annotation identifiers of an object.
Returns succeep (or 0) or FAIL (or -1) otherwise.

ANannlist obtains a list of identifiers of the annotations that are of the type
specified by the parameter annot_type and are attached to the object identified
by its tag, obj tag, and its reference number, obj ref.

Since this routine is implemented only to obtain the identifiers of data
annotations and not file annotations, the valid values of annot type are
AN DATA LABEL (or 0) and an paTa pesc (or 1). To obtain file annotation
identifiers, use ANfileinfo to determine the number of file labels and
descriptions, and then use ANselect to obtain each file annotation identifier.

Sufficient space must be allocated for ann list to hold the list of annotation
identifiers. This can be done by using ANnumann to obtain the number of
annotation identifiers to be retrieved, and then allocating memory for ann_[ist
using this number.

integer function afannlist(an_id, annot_ type, obj tag, obj ref,
ann_list)

integer ann list (*)

integer an_id, obj_tag, obj ref, annot type

2-14

January 2008

ANatype2tag/afatypetag

HDF Reference Manual

ANatype2tag/afatypetag

uintl6 ANatype2tag(ann_type *annot_type)

annot_type

Purpose

Return value

Description

FORTRAN

IN: Type of the annotation

Returns the annotation tag corresponding to an annotation type.

Returns the annotation tag (ann_tag) if successful, and prTac NULL (or 0)

otherwise.

ANatype2tag returns the tag that corresponds to the annotation type specified
by the parameter annot_type.

The following table lists the valid values of annot_type in the left column and
the corresponding values for the returned annotation tag on the right.

Annotation Type

Annotation Tag

AN DATA IABEL (or 0)

DFTAG DIL (or 104)

AN DATA DESC (or 1)

DFTAG DIA (or 105)

AN FILE LABEL (or 2)

DFTAG FID (or 100)

AN FILE DESC (or 3)

DFTAG FD (or 101)

integer function afatypetag(annot_type)

integer annot_type

January 2008

2-15

The HDF Group

ANcreate/afcreate

ANcreate/afcreate

int32 ANcreate(int32 an_id, uintl6 obj tag, uintl6 obj ref, ann_type annot type)

an_id
obj tag
obj ref

annot_type

Purpose

Return value

Description

FORTRAN

IN:
IN:
IN:
IN:

AN interface identifier returned by ANstart
Tag of the object to be annotated
Reference number of the object to be annotated

Type of the data annotation

Creates a data annotation for an object.

Returns the data annotation identifier (ann_id) if successful and rFaIL (or -1)
otherwise.

ANcreate creates a data annotation of type annot_type for the object specified
by its tag, obj tag, and its reference number, obj ref. The returned data
annotation identifier can represent either a data label or a data description.

Valid values for annot type are AN_DATA_LABEL (Or 0) Of AN_DATA_DESC (Or 1).

Use ANcreatef to create a file annotation.

Currently, the user must write to a newly-created annotation before creating
another annotation of the same type. Creating two consecutive annotations of
the same type causes the second call to ANcreate to return FAIL (Or -1).

integer function afcreate(an_id, obj_tag, obj_ref, annot_type)

integer an_id, obj_tag, obj_ref, annot_type

2-16

January 2008

ANcreatef/affcreate

HDF Reference Manual

ANcreatef/affcreate

int32 ANcreatef(int32 an_id, ann_type annot_type)

an_id

annot_type

Purpose

Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart

IN: Type of the file annotation

Creates a file annotation.

Returns the file annotation identifier (ann_id) if successful and FaIL (or -1)
otherwise.

ANcreatef creates a file annotation of the type specified by the parameter
annot_type. The file annotation identifier returned can either represent a file
label or a file description.

Valid values for annot_type are aN_FILE LABEL (or 2) and AN FILE DESC (Or 3).
Use ANcreate to create a data annotation.

Currently, the user must write to a newly-created annotation before creating

another annotation of the same type. Creating two consecutive annotations of
the same type causes the second call to ANcreate to return FAIL (Or -1).

integer function affcreate(an_id, annot_ type)

integer an_id, annot_ type

January 2008

2-17

The HDF Group ANend/afend

ANend/afend

int32 ANend(int32 an_id)

an_id IN: AN interface identifier returned by ANstart

Purpose Terminates access to an AN interface.
Return value Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.
Description ANend terminates access to the AN interface identified by an_id, which is

previously initialized by a call to ANstart. Note that there must be one call to
ANend for each call to ANstart.

FORTRAN integer function afend(an id)

integer an_id

2-18 January 2008

ANendaccess/afendaccess HDF Reference Manual
ANendaccess/afendaccess
intn ANendaccess(int32 ann_id)
ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect
Purpose Terminates access to an annotation.

Return value

Description

FORTRAN

Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

ANendaccess terminates access to the annotation identified by the parameter
ann_id. Note that there must be one call to ANendaccess for every call to
ANselect, ANcreate or ANcreatef.

integer function afendaccess(ann_id)

integer ann_id

January 2008

2-19

The HDF Group

ANfileinfo/affileinfo

ANfileinfo/affileinfo

intn ANfileinfo(int32 an_id, int32 *n_file labels, int32 *n_file descs, int32 *n_data_labels, int32
*n_data_descs)

an_id

n_file labels
n_file descs
n_data_labels

n_data_descs

Purpose
Return value

Description

FORTRAN

IN:

OUT:
OUT:
OUT:
OUT:

AN interface identifier returned by ANstart
Number of file labels

Number of file descriptions

Number of data labels

Number of data descriptions

Retrieves the number of annotations of each type in a file.

Returns succeeD (or o) if successful or Fa1L (or -1) otherwise.

ANfileinfo retrieves the total number of the four kinds of annotations and
stores them in the appropriate parameters. The total number of data labels of all
data objects in the file is stored in n_data labels. The total number of data
descriptions of all data objects in the file is stored in n_data descs. The total
number of file labels is stored in n_file labels and the total number of file
descriptions in n_file_descs.

Note that the numbers of data labels and descriptions refer to the total number
of data labels and data descriptions in the file, not for a specific object. Use
ANnumann to determine these numbers for a specific object.

This routine is generally used to find the range of acceptable indices for
ANselect calls.

integer function affileinfo(an id, n file labels, n_file descs,

n _data labels, n data_descs)

integer an id, n file labels, n file descs

integer n_data labels, n _data descs

2-20

January 2008

ANget_tagref/afgettagref

HDF Reference Manual

ANget tagref/afgettagref

int32 ANget tagref(int32 an_id, int32 index, ann_type annot_type, uintl6 *ann_tag, uintl6 *ann_ref)

an_id
index
annot_type
ann_tag

ann_ref

Purpose

Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart
IN: Index of the annotation
IN: Type of the annotation

OUT: Tag of the annotation

OUT: Reference number of the annotation

Retrieves the tag/reference number pair of an annotation given its index and

type.

Returns succeep (or o) if successful or FaIL (or -1) otherwise.

ANget_tagref retrieves the tag and reference number of the annotation
identified by its index, the parameter index, and by its annotation type, the
parameter annot type. The tag is stored in the parameter ann_tag and the
reference number is stored in the parameter ann_ref.

The parameter index is a nonnegative integer and is less than the total number
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each type in the file.

The following table lists the valid values of the parameter annot _type in the left
column, and the corresponding values of the parameter ann tag in the right
column.

Annotation Type Annotation Tag

AN DATA IABEL (or 0) | DFTAG DIL (or 104)

AN DATA DESC (or 1) DFTAG DIA (or 105)

AN FILE IABEL (or 2) | DFTAG FID (or 100)

AN _FILE DESC (or 3) DFTAG FD (or 101)

integer function afgettagref (an_id, index, annot_type, ann_tag,
ann_ref)

integer an_id, index, annot_type

integer ann_tag, ann_ref

January 2008

2-21

The HDF Group ANid2tagref/afidtagref

ANid2tagref/afidtagref

int32 ANid2tagref(int32 ann_id, uintl6 *ann_tag, uintl6 *ann_ref)

ann_id IN: Annotation identifier returned by ANselect, ANcreate or ANcreatef
ann_tag OUT: Tag of the annotation

ann_ref OUT: Reference number of the annotation

Purpose Retrieves the tag/reference number pair of an annotation given its identifier.

Return value Returns succeep (or o) if successful or FaIL (or -1) otherwise.

Description ANid2tagref retrieves the tag/reference number pair of the annotation
identified by the parameter ann_id. The tag is stored in the parameter ann_tag
and the reference number is stored in the parameter ann_ref.

Possible values returned in ann_tag are prrac pIL (or 104) for a data label,

DFTAG_DIA (or 105) for a data description, prrac_rip (or 100) for a file label
and prTaG_FD (or 101) for a file description.

FORTRAN integer function afidtagref (ann_id, ann_tag, ann ref)

integer ann id, ann tag, ann ref

2-22 January 2008

ANnumann/afnumann

HDF Reference Manual

ANnumann/afnumann

intn ANnumann(int32 an_id, ann_type annot_type, uintl6 obj tag, uintl6 obj ref)

an_id
annot_type
obj tag

obj_ref

Purpose
Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart
IN: Type of the annotation

IN: Tag of the object

IN: Reference number of the object

Returns the number of annotations of a given type attached to an object.
Returns the number of annotations or FAIL (or -1) otherwise.

ANnumann returns the total number of annotations that are of type annot_type
and that are attached to the object identified by its tag, obj tag, and its
reference number, obj_ref.

Since this routine is implemented only to obtain the total number of data
annotations and not file annotations, the valid values of anmnot type are

AN DATA_LABEL (or 0) and aN_paTa_DESC (or 1). To obtain the total number of
file annotations or all data annotations, use ANfileinfo.

integer function afnumann(an_id, annot_ type, obj_tag, obj_ref)

integer an_id, obj_tag, obj_ref, annot type

January 2008

2-23

The HDF Group ANreadann/afreadann

ANreadann/afreadann

int32 ANreadann(int32 ann_id, char* ann_buf, int32 ann_length)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect
ann_buf OUT: Buffer for the annotation

ann_length IN: Length of the buffer ann_buf

Purpose Reads an annotation.

Return value Returns succeep (or o) if successful and Fa1L (or -1) otherwise.

Description ANreadann reads the annotation identified by the parameter ann_id and stores
the annotation in the parameter ann_buf.

The parameter ann_length specifies the size of the buffer ann_buf. If the length
of the file or data label to be read is greater than or equal to ann_length, the
label will be truncated to ann_length - 1 characters. If the length of the file or
data description is greater than ann_length, the description will be truncated to
ann_length characters. The HDF library adds a nurL character to the retrieved
label but not to the retrieved description. The user must add a nuLL character to
the retrieved description if the C library string functions are to operate on this
description.

FORTRAN integer function afreadann(ann_id, ann buf, ann_length)

integer ann_id, ann_length

character* (*) ann_buf

2-24 January 2008

ANselect/afselect HDF Reference Manual
ANselect/afselect
int32 ANselect(int32 an_id, int32 index, ann_type annot_type)
an_id IN: AN interface identifier returned by ANstart
index IN: Location of the annotation in the file
annot_type IN: Type of the annotation
Purpose Obtains an existing annotation.

Return value

Description

FORTRAN

Returns the annotation identifier (ann_id) if successful or rFaiL (or -1)
otherwise.

ANselect obtains the identifier of the annotation specified by its index, index,
and by its annotation type, annot_type.

The parameter index is a nonnegative integer and is less than the total number
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each type in the file.

Valid values of annot type are an paTa 1aBEL (or 0), AN DATA DESC (or 1),
AN_FILE_LABEL (or 2), and aN_FILE_DESC (or 3).

integer function afselect(an_id, index, annot_type)

integer an_id, index

integer annot_ type

January 2008

2-25

The HDF Group

ANstart/afstart

ANstart/afstart

int32 ANstart(int32 file_id)

file_id

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen

Initializes the AN interface.

Returns the AN interface identifier (an_id) if successful and rFa1L (or -1)
otherwise.

ANstart initializes the AN interface for the file identified by the parameter
file id. A call to ANstart is required before any AN functions can be invoked.

ANstart is used with the ANend function to define the extent of AN interface
session. A call to ANend is required for each call to ANstart.

integer function afstart(file_id)

integer file id

2-26

January 2008

ANtag2atype/aftagatype

HDF Reference Manual

ANtag2atype/aftagatype

ann_type ANtag2atype(uintl6 ann_tag)

ann_tag

Purpose
Return value

Description

FORTRAN

IN: Tag of the annotation

Returns the annotation type corresponding to an annotation tag.
Returns the annotation type if successful or aN_unNDEF (or -1) otherwise.

ANtag2atype returns the annotation type that corresponds to the annotation tag
specified by the parameter ann_tag.

The following table lists the valid values of ann_tag in the left column and the
corresponding values of the returned annotation type in the right column.

Annotation Tag Annotation Type
DFTAG DIL (or 104) AN DATA IABEL (or 0)
DFTAG DIA (or 105) AN DATA DESC (or 1)
DFTAG FID (or 100) AN FILE IABEL (or 2)
DFTAG FD (or 101) AN FILE DESC (or 3)

integer function aftagatype (ann_tag)

integer ann tag

January 2008

2-27

The HDF Group ANtagref2id/aftagrefid

ANtagref2id/aftagrefid

int32 ANtagref2id(int32 an_id, uint16 ann_tag, uintl6 ann_ref)

an_id IN: AN interface identifier returned by ANstart

ann_tag IN: Tag of the annotation

ann_ref IN: Reference number of the annotation

Purpose Returns the identifier of an annotation given its tag/reference number pair.

Return value Returns the annotation identifier (ann id) if successful and rarn (or -1)
otherwise.

Description ANtagref2id returns the identifier of the annotation specified by its tag,
ann_tag, and its reference number, ann_ref.

Valid values of ann_tag are prrac_p1L (or 104) for a data label, prTac _pIA (0r
105) for a data description, pFTac rID (or 100) for a file label, and pFTac FD
(or 101) for a file description.

FORTRAN integer function aftagrefid(an_id, ann tag, ann_ref)

integer an_id, ann_ tag, ann ref

2-28 January 2008

ANwriteann/afwriteann HDF Reference Manual
ANwriteann/afwriteann
int32 ANwriteann(int32 ann_id, char* ann, int32 ann_length)
ann_id IN: Annotation identifier returned by ANcreate, ANcreatef, or ANselect
ann IN: Text to be written to the annotation
ann_length IN: Length of the annotation text
Purpose Writes an annotation.

Return value

Description

FORTRAN

Returns succeep (or o) if successful and Fa1L (or -1) otherwise.

ANwriteann writes the annotation text provided in the parameter ann to the
annotation specified by the parameter ann_id. The parameter ann_length
specifies the number of characters in the annotation text.

If the annotation has already been written with text, ANwriteann will
overwrite the current text.

integer function afwriteann(ann id, ann, ann_ length)

integer ann id, ann_ length

character* (*) ann

January 2008

2-29

The HDF Group ANwriteann/afwriteann

2-30 January 2008

GRattrinfo/mgatinf

HDF Reference Manual

GRattrinfo/mgatinf

intn GRattrinfo(int32 [obj] id, int32 attr_index, char *name, int32 *data_type, int32 *count)

[obj] id

attr_index
name
data_type

count

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (vi_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

IN: Index of the attribute
OUT: Buffer for the name of the attribute
OUT: Data type of the attribute

OUT: Number of attribute values

Retrieves information about an attribute.
Returns succeeD (or o) if successful and Fa1L (or -1) otherwise.

GRattrinfo retrieves the name, data type, and number of values of the
attribute, specified by its index, attr_index, for the data object identified by the
parameter obj id. The name is stored in the parameter name, the data type is
stored in the parameter data type, and the number of values is stored in the
parameter count. If the value of any of the output parameters is NULL, the
corresponding information will not be retrieved.

The value of the parameter atfr index can be obtained using GRfindattr,
GRnametoindex or GRreftoindex, depending on available information. Valid
values of attr_index range from 0 to the total number of attributes attached to
the object - 1. The total number of attributes attached to the file can be obtained
using the routine GRfileinfo. The total number of attributes attached to an
image can be obtained using the routine GRgetiminfo .

integer function mgatinf ([obj] id, attr index, name, data_type,
count)

integer [obj]_id, data_type, attr index, count

character* (*) name

January 2008

2-31

The HDF Group GRcreate/mgcreat

GRcreate/mgcreat

int32 GRcreate(int32 gr _id, char *name, int32 ncomp, int32 data_type, int32 interlace_mode, int32
dim_sizes[2])

gr id IN: GR interface identifier returned by GRstart

name IN: Name of the raster image

ncomp IN: Number of pixel components in the image

data_type IN: Type of the image data

interlace_mode IN: Interlace mode of the image data

dim_sizes IN: Size of each dimension of the image

Purpose Creates a new raster image.

Return value Returns a raster image identifier if successful and Fa1z (or -1) otherwise.
Description GRcreate creates a raster image with the values provided in the parameters

name, ncomp, data_type, interlace_mode and dim_sizes.

The parameter name specifies the name of the image and must not be NULL.
The length of the name should not be longer than max_Gr NamE (or 256).

The parameter ncomp specifies the number of pixel components in the raster
image and must have a value of at least 1.

The parameter data_type specifies the type of the raster image data and can be
any of the data types supported by the HDF library. The data types supported
by HDF are listed in Table 1A in Section I of this manual.

The parameter interlace mode specifies the interlacing in which the raster
image is to be written. The wvalid values of interlace mode are:
MFGR_INTERLACE PIXEL (Or 0), MFGR_INTERLACE LINE (or 1) and
MFGR_INTERLACE COMPONENT (Of 2).

The array dimsizes specifies the size of the two dimensions of the image. The
dimensions must be specified and their values must be greater than o.

Once a raster image has been created, it is not possible to change its name, data
type, dimension sizes or number of pixel components. However, it is possible
to create a raster image and close the file before writing any data values to it.
Later, the values can be added to or modified in the raster image, which then
can be obtained using GRselect.

Images created with the GR interface are actually written to disk in pixel
interlace mode; any user-specified interlace mode is stored in the file with the
image and the image is automatically converted to that mode when it is read
with a GR interface function.

2-32 January 2008

GRcreate/mgcreat

HDF Reference Manual

Note

FORTRAN

Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start [0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start [0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

integer function mgcreat (gr_id, name, ncomp, data_ type,
interlace_mode, dim_sizes)

integer gr_id, data_type, interlace_mode, ncomp, dim sizes(2)

character* (*) name

January 2008

2-33

The HDF Group GRend/mgend

GRend/mgend

intn GRend(int32 gr _id)

gr id IN: GR interface identifier returned by GRstart

Purpose Terminates the GR interface session.

Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description GRend terminates the GR interface session identified by the parameter gr _id.

GRend, together with GRstart, defines the extent of a GR interface session.
GRend disposes of the internal structures initialized by the corresponding call
to GRstart. There must be a call to GRend for each call to GRstart; failing to
provide one may cause loss of data.

GRstart and GRend do not manage file access; use Hopen and Hclose to
open and close HDF files. Hopen must be called before GRstart and Hclose
must be called after GRend.

FORTRAN integer function mgend(gr_id)

integer gr id

2-34 January 2008

GRendaccess/mgendac HDF Reference Manual

GRendaccess/mgendac

intn GRendaccess(int32 ri_id)

ri_id IN: Raster image identifier returned by GRereate or GRselect

Purpose Terminates access to a raster image.

Return value Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

Description GRendaccess terminates access to the raster image identified by the parameter

ri_id and disposes of the raster image identifier. This access is initiated by
either GRselect or GRereate. There must be a call to GRendaccess for each
call to GRselect or GRereate; failing to provide this will result in loss of data.
Attempts to access a raster image identifier disposed of by GRendaccess will
result in an error condition.

FORTRAN integer function mgendac (ri_id)

integer ri_id

January 2008 2-35

The HDF Group GRfileinfo/mgfinfo

GRfileinfo/mgfinfo

intn GRfileinfo(int32 gr id, int32 *n_images, int32 *n_file_ attrs)

gr id IN: GR interface identifier returned by GRstart

n_images OUT: Number of raster images in the file

n_file attrs OUT: Number of global attributes in the file

Purpose Retrieves the number of raster images and the number of global attributes in
the file.

Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description GRfileinfo retrieves the number of raster images and the number of global

attributes for the GR interface identified by the parameter gr id, and stores
them into the parameters n_images and n_file_attrs, respectively.

The term “global attributes” refers to attributes that are assigned to the file
instead of individual raster images. These attributes are created by GRsetattr
with the object identifier parameter set to a GR interface identifier (gr id)
rather than a raster image identifier (ri_id).

GRfileinfo is useful in finding the range of acceptable indices for GRselect
calls.

FORTRAN integer function mgfinfo(gr_id, n_images, n_file attrs)

integer gr_id, n_images, n_file attrs

2-36 January 2008

GRfindattr/mgfndat

HDF Reference Manual

GRfindattr/mgfndat

int32 GRfindattr(int32 [obj] id, char *attr name)

[obj] id

attr_name

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

IN: Name of the attribute

Finds the index of a data object’s attribute given an attribute name.
Returns the index of the attribute if successful and Fa1L (or -1) otherwise.

GRfindattr returns the index of the attribute whose name is specified by the
parameter attr_name for the object identified by the parameter obj id.

integer function mgfndat ([obj]_id, attr name)

integer [obj] id

character* (*) attr_name

January 2008

2-37

The HDF Group

GRgetattr/mggnatt/mggcatt

GRgetattr/mggnatt/mggcatt

intn GRgetattr(int32 [obj] id, int32 attr_index, VOIDP values)

[obj] id

attr_index

values

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

IN: Index of the attribute

OUT: Buffer for the attribute values

Reads the values of an attribute for a data object.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.
GRgetattr obtains all values of the attribute that is specified by its index,

attr_index, and is attached to the object identified by the parameter obj id.
The values are stored in the buffer values.

The value of the parameter a#tr_index can be obtained by using GRfindattr,
GRnametoindex, or GRreftoindex, depending on available information.
Valid values of attr_index range from 0 to the total number of attributes of the
object - 1. The total number of attributes attached to the file can be obtained
using the routine GRfileinfo. The total number of attributes attached to the
image can be obtained using the routine GRgetiminfo.

GRgetattr only reads all values assigned to the attribute and not a subset.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mggnatt) and the other for character data (mggcatt).

integer function mggnatt ([obj] id, attr index, values)
integer [obj]_id, attr_index

<valid numeric data type> values (*)

integer function mggcatt ([obj] id, attr index, values)

integer [obj]_id, attr_index

character* (*) values

2-38

January 2008

GRgetchunkinfo/mggichnk HDF Reference Manual
GRgetchunkinfo/mggichnk
intn GRgetchunkinfo(int32 »i_id, HDF _CHUNK DEF *cdef, int32 *flag)
ri_id IN: Raster image identifier returned by GRereate or GRselect
C only:
cdef OUT: Pointer to the chunk definition
flag OUT: Pointer to the compression flag

Fortran only:

dim_length
flag

Purpose
Return value

Description

OUT: Array of chunk dimensions
OUT: Compression flag

Retrieves chunking information for a raster image.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRgetchunkinfo retrieves chunking information about the raster image
identified by the parameter i id into the parameters cdef and flags in C, and
into the parameters dim length and flag in Fortran. Note that only chunk
dimensions are retrieved, compression information is not available.

The value returned in the parameter flag indicates if the raster image is not
chunked, chunked, or chunked and compressed. The following table shows the
possible values of the parameter flag and the corresponding characteristics of
the raster image.

. Val f e
Values of flag in C ? ues of flag Raster Image Characteristics
in Fortran
HDF NONE -1 Not chunked
HDF CHUNK 0 Chunked and not compressed
1 Chunked and compressed

with either the run-length

HDF CHUNK | HDF COMP encoding (RLE), Skipping
Huffman or GZIP compres-
sion algorithms

In C, if the raster image is chunked and not compressed, GRgetchunkinfo fills
the array chunk_lengths in the union cdef with the values of the
corresponding chunk dimensions. If the raster image is chunked and
compressed, GRgetchunkinfo fills the array chunk lengths in the structure
comp of the union cdef with the values of the corresponding chunk
dimensions. Refer to the page on GRsetchunk in this manual for specific
information on the union #pr_cHunk DEF. In Fortran, chunk dimensions are
retrieved into the array dim_length. If the chunk length for each dimension is
not needed, NULL can be passed in as the value of the parameter cdef in C.

January 2008

2-39

The HDF Group GRgetchunkinfo/mggichnk

FORTRAN integer function mggichnk(ri id, dim length, flag)

integer ri id, dim length, flag

2-40 January 2008

GRgetcompinfo/mggcompress

HDF Reference Manual

GRgetcompinfo/mggcompress

intn GRgetcompinfo(int32 7i_id, comp_coder t *comp_type, comp_info *c_info)

ri_id
comp_type

C only:
c_info

Fortran only:

comp_prm

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier returned by GRereate or GRselect

OUT: Type of compression

OUT: Pointer to compression information structure

OUT: Compression parameters array

Retrieves raster image data compression type and compression information.
Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

GRgetcompinfo retrieves the compression type and compression information
for the specified raster image. GRgetcompinfo replaces GRgetcompress
because this function has flaws, causing failure for some chunked and
chunked/compressed data.

The compression method is returned in the parameter comp_type. Valid values
of comp_type are as follows:

COMP_CODE_NONE (or 0) for no compression

comp_copE_RLE (or 1) for RLE run-length encoding
comp_copE_skpPHUFF (or 3) for Skipping Huffman compression
comp_coDpE_DEFLATE (or 4) for GZIP compression
comp_copE_sz1p (or 5) for SZIP compression
comp_cope_JpEG (or 7) for JPEG compression

When a compression method requires additional parameters, those values are
returned in the ¢_info struct in C and the array parameter comp_prm in Fortran.

The c_info struct is of type comp_info, contains algorithm-specific information
for the library compression routines, and is described in the hcomp.h header
file and in the GRsetcompress entry in this reference manual..

The comp_prm parameter is an array of one element:

o With Skipping Huffman compression, comp prm(1) contains the skip
Value,skphuff_skp_size.

o In the case of GZIP compression, comp prm(1) contains the deflation
Value,deflate_value.

o comp_ prm is ignored with other compression methods. (There are no
relevant RLE parameters and the quality and force baseline data are
not available for JPEG images. If GRgetcompinfo is called for either
an RLE or a JPEG image, the function will return only the compression
type; c¢_info will contain only zeros.)

o Currently, Fortran GR interface doesn’t support Szip compression.

integer function mggcompress(ri_id, comp type, comp_prm)

January 2008

2-41

The HDF Group GRgetcompinfo/mggcompress

integer ri id, comp_type, comp prm(1l)

2-42 January 2008

GRgetiminfo/mggiinf

HDF Reference Manual

GRgetiminfo/mggiinf

intn GRgetiminfo(int32 »i_id, char *gr _name, int32 *ncomp, int32 *data_type, int32 *interlace_mode,

ri_id

gr_name
ncomp
data_type
interlace_mode
dim_sizes

num_attrs

Purpose
Return value

Description

FORTRAN

int32 dim_sizes[2], int32 *num_attrs)

IN: Raster image identifier returned by GRcreate or GRselect
OUT: Buffer for the name of the raster image

OUT: Number of components in the raster image

OUT: Data type of the raster image data

OUT: Interlace mode of the stored raster image data

OUT: Sizes of raster image dimension

OUT: Number of attributes attached to the raster image

Retrieves general information about a raster image.
Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

GRgetiminfo retrieves the name, number of components, data type, interlace
mode, dimension sizes, and number of attributes of the raster image identified
by the parameter i_id.

GRgetiminfo stores the name, number of components, data type, interlace
mode and dimension sizes of the image in the parameters gr name, ncomp,
data_type, interlace_mode, and dim_sizes, respectively. It also retrieves the
number of attributes attached to the image into the parameter num_attrs. If the
value of any of the output parameters are set to nurL in C, the corresponding
information will not be retrieved.

The buffer gr name is assumed to have sufficient space allocated to store the
entire name of the raster image.

The valid values of the parameter data_type are listed in Table 1A in Section I
of this manual.

integer function mggiinf (ri_ id, gr name, ncomp, data_type,
interlace_mode, dim_sizes, num_attrs)

integer ri_id, ncomp, data_type, interlace_mode, num_ attrs
integer dim sizes([2]

character* (*) gr name

January 2008

2-43

The HDF Group GRgetlutid/mggltid

GRgetlutid/mggltid

int32 GRgetlutid(int32 7i_id, int32 pal_index)

ri_id IN: Raster image identifier returned by GRereate or GRselect

pal_index IN: Index of the palette

Purpose Gets the identifier of a palette given its index.

Return value Returns the palette identifier if successful and Fa1z (or -1) otherwise.

Description GRgetlutid gets the identifier of the palette attached to the raster image
identified by the parameter ri id. The palette is identified by its index,
pal_index.

Currently, only one palette can be assigned to a raster image, which means that
pal_index should always be set to 0.

FORTRAN integer function mggltid(ri_id, pal_ index)

integer ri id, pal_ index

2-44 January 2008

GRgetlutinfo/mgglinf

HDF Reference Manual

GRgetlutinfo/mgglinf

intn GRgetlutinfo(int32 pal id, int32 *ncomp, int32 *data_type, int32 *interlace_mode, int32

pal_id

ncomp
data_type
interlace_mode

num_entries

Purpose
Return value

Description

FORTRAN

*num_entries)

IN: Palette identifier returned by GRgetlutid
OUT: Number of components in the palette
OUT: Data type of the palette

OUT: Interlace mode of the stored palette data

OUT: Number of color lookup table entries in the palette

Retrieves information about a palette.
Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

GRgetlutinfo retrieves the number of pixel components, data type, interlace
mode, and number of color lookup table entries of the palette identified by the
parameter pal_id. These values are stored in the parameters ncomp, data_type,
interlace_mode, and num_entries, respectively. In C if the value of any of the
output parameters are set to NULL, the corresponding information will not be
retrieved.

integer function mgglinf (pal_id, ncomp, data_type, interlace_mode,
num_entries)

integer pal id, ncomp, data_ type, interlace mode, num entries

January 2008

2-45

The HDF Group GRgetnluts/mggnluts
GRgetnluts/mggnluts
intn GRgetnluts(int32 ri_id)
ri_id IN: Data set identifier returned by GRereate or GRselect
Purpose Retrieves the number of palettes for an image.
Return value Returns number of palettes (1 or o) if successful and Fa1L (or -1) otherwise.
Description GRgetnluts retrieves the number of palettes (or color look-up tables,

commonly abbreviated as LUTs) available for the specified raster image.

There can currently be either 0 or 1 palettes assigned to an image. If multiple
palettes are supported in a future release, this function may return values
greater than 1.

FORTRAN integer function mggnluts(ri_id)

integer ri_id

2-46 January 2008

GRidtoref/mgid2rf HDF Reference Manual
GRidtoref/mgid2rf
uint16 GRidtoref(int32 ri_id)
ri_id IN: Raster image identifier returned by GRselect or GRcreate
Purpose Maps a raster image identifier to a reference number.

Return value

Description

FORTRAN

Returns the reference number of the raster image if successful and o otherwise.

GRidtoref returns the reference number of the raster image identified by the
parameter 7i_id.

This routine is commonly used for the purpose of annotating the raster image
or including the raster image within a vgroup.

integer function mgid2rf (ri_id)

integer ri id

January 2008

2-47

The HDF Group GRluttoref/mglt2rf

GRluttoref/mglt2rf

uint16 GRluttoref(int32 pal id)

pal_id IN: Palette identifier returned by GRgetlutid

Purpose Maps a palette identifier to a reference number.

Return value Returns the reference number of the palette if successful or o otherwise.
Description GRluttoref returns the reference number of the palette identified by the

parameter pal_id.

This routine is commonly used for the purpose of annotating the palette or
including the palette within a vgroup.

FORTRAN integer function mglt2rf (pal_id)

integer pal_ id

2-48 January 2008

GRnametoindex/mgn2ndx HDF Reference Manual
GRnametoindex/mgn2ndx
int32 GRnametoindex(int32 gr id, char *gr _name)
gr id IN: GR interface identifier returned by GRstart
ri_name IN: Name of the raster image
Purpose Maps the name of a raster image to an index.

Return value

Description

FORTRAN

Returns the index of the raster image if successful and Fa1L (or -1) otherwise.

GRnametoindex returns, for the GR interface identified by the parameter
gr_id, the index (index) of the raster image named gr name.

The value of index can be passed into GRselect to obtain the raster image
identifier (ri_id).

integer function mgn2ndx(gr_id, gr name)

integer gr id

character* (*) gr name

January 2008

2-49

The HDF Group

GRreadchunk/mgrchnk/mgrechnk

GRreadchunk/mgrchnk/mgrcchnk

intn GRreadchunk(int32 7i_id, int32 *origin, VOIDP datap)

ri_id IN: Raster image identifier returned by GRereate or GRselect
origin IN: Origin of the chunk to be read

datap IN: Buffer for the chunk to be read

Purpose Reads a data chunk from a chunked raster image (pixel-interlace only)

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description GRreadchunk reads the entire chunk of data from the chunked raster image
identified by the parameter 7i_id and stores it in the buffer datap. Chunk to be
read is specified by the parameter origin. This function has less overhead than
GRreadimage and should be used whenever an entire chunk of data is to be

read.

GRreadchunk will return FAIL (or -1) when an attempt is made to use it to

read from a non-chunked raster image.

The parameter origin is a two-dimensional array which specifies the
coordinates of the chunk according to the chunk position in the overall chunk
array. Refer to Chapter 8, "General Raster Images (GR API)," in the HDF

User s Guide.

The buffer datap contains the chunk data organized in pixel interlace mode.

FORTRAN integer mgrchnk (ri_id,

datap)

integer ri id, origin(2)

<valid numeric datatype> datap(*)

integer mgrcchnk(ri_id, origin, char datap)
integer ri id, origin(2)

character* (*) char_datap

2-50

January 2008

GRreadimage/mgrdimg/mgrcimg

HDF Reference Manual

GRreadimage/mgrdimg/mgrcimg

intn GRreadimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id

start

stride

edge

data

Purpose

Return value

Description

IN: Raster image identifier returned by GRereate or GRselect

IN: Array specifying the starting location from where raster image data
is read

IN: Array specifying the interval between the values that will be read

along each dimension

IN: Array specifying the number of values to be read along each
dimension

OUT: Buffer for the image data

Reads a raster image.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRreadimage reads the subsample of the raster image specified by the
parameter #i_id into the buffer data. The subsample is defined by the values of
the parameters start, stride and edge.

The array start specifies the starting location of the subsample to be read. Valid
values of each element in the array start are 0 to the size of the corresponding
raster image dimension - 1. The first element of the array start specifies an
offset from the beginning of the array data along the fastest-changing
dimension, which is the second dimension in C and the first dimension in
Fortran. The second element of the array start specifies an offset from the
beginning of the array data along the second fastest-changing dimension,
which is the first dimension in C and the second dimension in Fortran. For
example, if the first value of the array start is 2 and the second value is 3, the
starting location of the subsample to be read is at the fourth row and third
column in C, and at the third row and fourth column in Fortran.

The array stride specifies the reading pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be read. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the array data will be read, and so on. The
correspondence between elements of the array stride and the dimensions of the
array data is the same as described above for the array start.

Each element of the array edges specifies the number of data elements to be
read along the corresponding dimension. The correspondence between the
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgrdimg) and the other for character data (mgrcimg).

January 2008

2-51

The HDF Group

GRreadimage/mgrdimg/mgrcimg

Note

FORTRAN

Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start [0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start [0] is the starting point in the
X dimension and start [1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

integer function mgrdimg(ri_id, start, stride, edge, data)
integer ri_id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgrcimg(ri_id, start, stride, edge, data)

integer ri_id, start(2), stride(2), edge(2)

character* (*) data

2-52

January 2008

GRreadlut/mgrdlut/mgrclut

HDF Reference Manual

GRreadlut/mgrdlut/mgrclut

intn GRreadlut(int32 pal _id, VOIDP pal_data)

pal_id

pal_data

Purpose
Return value

Description

FORTRAN

IN: Palette identifier returned by GRgetlutid
OUT: Buffer for the palette data

Reads a palette.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRreadlut reads the palette specified by the parameter pal id into the buffer
pal_data.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgrdlut) and the other for character data (mgrclut).

integer function mgrdlut (pal_id, pal data)
integer pal id

<valid numeric data type> pal_data(*)
integer function mgrclut (pal_id, pal_data)

integer pal_id

character* (*) pal_data

January 2008

2-53

The HDF Group

GRreftoindex/mgr2idx

GRreftoindex/mgr2idx
int32 GRreftoindex(int32 gr id, uintl6 gr ref)

gr id IN: GR interface identifier returned by GRstart

gr ref IN: Reference number of the raster image

Purpose Maps the reference number of a raster image to an index.

Return value Returns the index of the image if successful and Fa1L (or -1) otherwise.

Description GRreftoindex returns the index of the raster image specified by the parameter

gr_ref.
FORTRAN integer function mgr2idx(gr_id, gr ref)

integer gr id, gr ref

2-54 January 2008

GRreqimageil/mgrimil

HDF Reference Manual

GRreqimageil/mgrimil

intn GRreqimageil(int32 ri_id, intn interlace_mode)

ri_id

interlace_mode

Purpose

Return value

Description

FORTRAN

IN: Raster image identifier returned by GRereate or GRselect

IN: Interlace mode

Specifies the interlace mode to be used in the subsequent raster image read
operation(s).

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRreqimageil requests that the subsequent read operations on the image
identified by the parameter ri id use the interlace mode specified by the
parameter interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the data
will be stored in memory when being read. Valid values of the parameter
interlace_mode are MFGR_INTERLACE PIXEL (Or 0), MFGR INTERLACE LINE (Or
1) and MFGR_INTERLACE_COMPONENT (OT 2).

In the file, the image is always stored in pixel interlace mode, i.e.
MFGR_INTERLACE PIXEL. The interlace mode of the raster image specified at
creation time is stored in the file along with the raster image. If GRreqimageil
is not called prior to the call to GRreadimage, the raster image will be read
and stored in memory according to the interlace mode specified at creation. If
GRreqimageil is called before GRreadimage, GRreadimage will read the
raster image and store it according to the interlace mode specified in the call to
GRreqimageil.

integer function mgrimil(ri_id, interlace_mode)

integer ri id, interlace_ mode

January 2008

2-55

The HDF Group GRreqlutil/mgrltil

GRreqlutil/mgriltil

intn GRreqlutil(int32 7i_id, intn interlace_mode)

ri_id IN: Raster image identifier returned by GRereate or GRselect
interlace_mode IN: Interlace mode

Purpose Specifies the interlace mode to be used in the next palette read operation(s).
Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description GRreqlutil requests that the subsequent read operations on the palette attached

to the image identified by the parameter ri id, use the interlace mode
interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the data
will be stored in memory when being read. Valid values of the parameter

interlace_mode are MFGR_INTERLACE PIXEL (Or 0), MFGR_INTERLACE LINE (Or
1) and MFGR_INTERLACE_COMPONENT (OT 2).

FORTRAN integer function mgrltil(ri_id, interlace_mode)

integer ri id, interlace mode

2-56 January 2008

GRselect/mgselct HDF Reference Manual
GRselect/mgselct
int32 GRselect(int32 gr id, int32 index)
gr id IN: GR interface identifier returned by GRstart
index IN: Index of the raster image in the file
Purpose Selects the existing raster image.

Return value

Description

FORTRAN

Returns the raster image identifier if successful or FaIL (or -1) otherwise.

GRselect obtains the identifier of the raster image specified by the its index,
index.

Valid values of the parameter index range from 0 to the total number of raster
images in the file - 1. The total number of the raster images in the file can be
obtained by using GRfileinfo.

integer function mgselct (gr_id, index)

integer gr id, index

January 2008

2-57

The HDF Group

GRsetattr/mgsnatt/mgscatt

GRsetattr/mgsnatt/mgscatt

intn GRsetattr(int32 fobj] id, char *attr name, int32 data_type, int32 count, VOIDP values)

[obj] id

attr_name
data_type
count

values

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (7i_id), returned by GRereate or GRselect or
GR interface identifier (gr_id), returned by GRstart

IN: Name of the attribute

IN: Data type of the attribute

IN: Number of values in the attribute

IN: Buffer for the attribute values

Assigns an attribute to a raster image or a file.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRsetattr attaches the attribute to the object specified by the parameter
obj id. The attribute is defined by its name, attr name, data type, data_type,
number of attribute values, count, and the attribute values, values. GRsetattr
provides a generic way for users to define metadata. It implements the label =
value data abstraction.

If an GR interface identifier (gr id) is specified as the parameter obj id, a
global attribute is created which applies to all objects in the file. If a raster
image identifier (ri_id) is specified as the parameter obj id, an attribute is
attached to the specified raster image.

The parameter attr _name can be any ASCII string.

The parameter data type can contain any data type supported by the HDF
library. These data types are listed in Table 1A in Section I of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the parameter count . If more than one value is stored, all
values must have the same data type. If an attribute with the given name, data
type and number of values exists, it will be overwritten. Currently, the only
predefined attribute is the fill value, identified by the F1rL1,_aTTR definition.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgsnatt) and the other for character data (mgscatt).

integer function mgsnatt ([obj]_id, attr name, data_type, count,
values)

integer ri_id, comp_type, comp_prm(*)
integer [obj]_id, data_type, count
character* (*) attr_name

<valid numeric data type> values (*)

2-58 January 2008

GRsetattr/mgsnatt/mgscatt HDF Reference Manual

integer function mgscatt([obj]_id, attr name, data_type, count,
values)

integer [obj]_id, data_type
integer count

character* (*) values, attr_name

January 2008 2-59

The HDF Group GRsetcompress/mgscompress

GRsetcompress/mgscompress

intn GRsetcompress(int32 ri_id, int32 comp_type, comp_info *c_info)

ri_id IN: Raster image identifier returned by GRereate or GRselect
comp_type IN: Compression method for the image data

C only:

c_info IN: Pointer to the comp _info union

Fortran only:

comp_prm IN: Compression parameters array

Purpose Specifies if the raster image will be stored in a file as a compressed raster
image.

Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description GRsetcompress specifies if the raster image specified by the parameter 7i_id

will be stored in the file in compressed format.

The compression method is specified by the parameter comp type. Valid
values of the parameter comp_type are:

COMP_CODE_NONE (or 0) for no compression

comp_copk_RLE (or 1) for RLE run-length encoding
comp_copE_skpHUFF (or 3) for Skipping Huffman compression
comp_coDE_DEFLATE (or 4) for GZIP compression
comp_cope_sz1P (or 5) for SZIP compression
comp_cope_JpEG (or 7) for JPEG compression

The compression method parameters are specified by the parameter ¢_info in C
and the parameter comp prm in Fortran. The parameter c info has type
comp_info, which is described in the hcomp.h header file. It contains
algorithm-specific information for the library compression routines.

The skipping size for the Skipping Huffman algorithm is specified in the field
c_info.skphuff.skp size in C and in the parameter comp prm(1) in
Fortran.

The deflate level for the GZIP algorithm is specified in the field
c_info.deflate.level in C and in the parameter comp prm(1)in Fortran.

2-60 January 2008

GRsetcompress/mgscompress

HDF Reference Manual

The parameter c_info is a pointer to a union structure of type comp_info. This
union structure is defined as follows:

typedef union tag comp_ info

{

struct

{

/* Not used by GRsetcompress */
} Jpeg;

struct

{

/* Not used by GRsetcompress */
} nbit;

struct

{ /* struct to contain info about how to compress size of the
elements when skipping */
intn skp size;

} skphuff;

struct
{ /* struct to contain info about how to compress or decom-
press
gzip encoded dataset how hard to work when compressing

data*/
intn level;
} deflate;
struct
{
int32 options_mask; /* IN */
int32 pixels per block; /* IN */

int32 pixels per scanline; /* OUT: computed */
int32 bits per pixel; /* OUT: size of NT */
int32 pixels; /* OUT: size of dataset or chunk */

}

szip; /* for szip encoding */

} comp info;

FORTRAN integer mgscompress(ri_id, comp_type, comp_ prm)

integer ri_id, comp_type, comp_prm(*)

January 2008

2-61

The HDF Group GRsetchunk/mgschnk
GRsetchunk/mgschnk
intn GRsetchunk(int32 ri_id, HDF_ CHUNK DEF cdef, int32 flags)
ri_id IN: Raster image identifier returned by GRereate or GRselect
C only:
cdef IN: Chunk definition
flags IN: Compression flags
Fortran only:
dim_length IN: Chunk dimensions array
comp_type IN: Type of compression
comp_prm IN: Compression parameters array
Purpose Makes a raster image a chunked raster image.

Return value

Description

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRsetchunk makes the raster image specified by the parameter i id a
chunked raster image according to the chunking and compression information
provided in the parameters cdef and flags in C, or in the parameters comp_type
and comp_prm in Fortran.

C only:

The parameter cdef is a union of type HDF_cHUNK DEF, which is defined as
follows:

typedef union hdf chunk def u

{

int32 chunk lengths[2]; /* chunk lengths along each dim */

struct
{
int32 chunk lengths([2];
int32 comp_type;
struct comp_info cinfo;
} comp;

/* compression type */

struct
/* is not used in GR interface */
} nbit;

} HDF_CHUNK DEF

2-62

January 2008

GRsetchunk/mgschnk

HDF Reference Manual

FORTRAN

Valid values of the parameter flags are HDF cHuNk for chunked and
uncompressed data and (#pF_crunk | uDF_comp) for chunked and compressed
data. Data can be compressed using run-length encoding (RLE), Skipping
Huffman, GZIP, or Szip compression algorithms.

If the parameter flags has a value of upr_cHuNK, the chunk dimensions must be
specified in the field cdef . chunk lengths[]. If the parameter flags has a value
of (upF_cuunk | #pF_comp), the following must be specified:

1) The chunk dimensions in the field cdef.comp.chunk lengths[] .
2) The compression type in the field cdef.comp.comp_type. Valid values of
compression type values are listed below.

coMP_CODE_NONE (or 0) for uncompressed data

comp_copE_RLE (or 1) for RLE compression
comp_copE_skpHUFF (or 3) for Skipping Huffman compression
coMP_CoDE_DEFLATE (or 4) for GZIP compression
comp_copE_szIP (or 5) for Szip compression

For Skipping Huffman and GZIP compression, parameters are passed in
corresponding fields of the structure cinfo.

o Specify skipping size for Skipping Huffman compression in the field
cdef.comp.cinfo.skphuff.skp size, which must be an integer of
value 1 or greater.

o Specify the deflate level for GZIP compression in the field
cdef.comp.cinfo.deflate level. Valid deflate level values are
integers between 0 and 9 inclusive.

o Specify the options mask and the number of pixels per block for Szip
COIan'CSSiOIl in the fields ¢ info.szip.options mask and
c_info.szip.pixels per block, respectively.

Refer to the SDsetcompress entry in this reference manual for details on these
parameters.

Fortran only:
The dim_length array specifies the chunk dimensions.

The parameter comp_type specifies the compression type. Valid compression
types and their values used are defined in the hdf.inc file, and are listed below.

coMP_CODE_NONE (or 0) for uncompressed data

comp_cope_RLE (or 1) for RLE compression
comp_copE_skpHUFF (or 3) for Skipping Huffman compression
coMp_CoDE_DEFLATE (or 4) for GZIP compression

The parameter comp prm specifies the compression parameters for the
Skipping Huffman and GZIP compression methods. It contains only one
element which is set to the skipping size for Skipping Huffman compression or
the deflate level for GZIP compression. Currently, Fortran GR interface does
not support Szip compression.

integer function mgschnk(ri_id, dim_length, comp_type, comp_ prm)

integer ri_id, dim_length, comp_ type, comp_prm

January 2008

2-63

The HDF Group GRsetchunkcache/mgscchnk

GRsetchunkcache/mgscchnk

intn GRsetchunkcache(int32 7i_id, int32 maxcache, int32 flags)

ri_id IN: Raster image identifier returned by GRereate or GRselect

maxcache IN: Maximum number of chunks to cache

Sflags IN: Flags determining the behavior of the routine

Purpose Specifies the maximum number of chunks to cache.

Return value Returns the value of the parameter maxcache if successful and rFaIL (or -1)
otherwise.

Description GRsetchunkcache sets the maximum number of chunks to be cached for the

chunked raster image specified by the parameter »i_id. The maximum number
of the chunks is specified by the parameter maxcache.

Currently, the only valid value of the parameter flags is o.
If GRsetchunkcache is not called, the maximum number of chunks in the
cache is set to the number of chunks along the fastest-changing dimension.

Refer to the discussion of the GRsetchunkcache routine in the HDF Users
Guide for more specific information on the routine’s behavior.

FORTRAN integer function mgscchnk(ri_id, maxcache, flags)

integer ri_id, maxcache, flags

2-64 January 2008

GRsetexternalfile/mgsxfil HDF Reference Manual
GRsetexternalfile/mgsxfil
intn GRsetexternalfile(int32 ri_id, char *filename, int32 offset)
ri_id IN: Raster image identifier returned by GRereate or GRselect
filename IN: Name of the external file
offset IN: Offset in bytes from the beginning of the external file to where the
data will be written
Purpose Specifies that the raster image will be written to an external file.

Return value

Description

FORTRAN

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRsetexternalfile specifies that the raster image identified by the parameter
ri_id will be written to the external file specified by the parameter filename at
the offset specified by the parameter offset.

Data can only be moved once for any given raster image, and it is the user's
responsibility to make sure the external data file is kept with the “original” file.

If the raster image already exists, its data will be moved to the external file .
Space occupied by the data in the primary file will not be released. To release
the space in the primary file use the hdfpack command-line utility. If the
raster image does not exist, its data will be written to the external file during
the subsequent calls to GRwritedata.

See the reference manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

integer function mgsxfil(ri_id, filename, offset)

integer ri id, offset

character* (*) filename

January 2008

2-65

The HDF Group

GRstart/mgstart

GRstart/mgstart
int32 GRstart(int32 file id)

file id IN: File identifier returned by Hopen

Purpose Initializes the GR interface.

Return value Returns the GR interface identifier if successful and Fa1L (or -1) otherwise.

Description GRstart initializes the GR interface for the file specified by the parameter

file_id.

This routine is used with the GRend routine to define the extent of the GR
interface session. As with the start routines in the other interfaces, GRstart
initializes the internal interface structures needed for the remaining GR
routines. Use the general purpose routines Hopen and Hclose to manage file
access. The GR routines will not open and close HDF files.

FORTRAN integer function mgstart (file id)

integer file id

2-66 January 2008

GRwritechunk/mgwchnk/mgwecchnk HDF Reference Manual

GRwritechunk/mgwchnk/mgwcchnk

intn GRwritechunk(int32 7i_id, int32 *origin, const VOIDP datap)

ri_id IN: Raster image identifier returned by GRereate or GRselect
origin IN: Origin of the chunk to be written
datap IN: Buffer for the chunk to be written
Purpose Writes a data chunk to a chunked raster image (pixel-interlace only)

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

GRwritechunk returns FAIL (or -1) when an attempt is made to use it to write
to a non-chunked raster image.

Description GRwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked raster image identified by the parameter ri_id. Writing starts at the
location specified by the parameter origin. This function has less overhead
than GRwriteimage and should be used whenever an entire chunk of data is to
be written.

The parameter origin is a two-dimensional array which specifies the
coordinates of the chunk according to the chunk position in the overall chunk
array. Refer to Chapter 8, "General Raster Images (GR API)," in the HDF
Users Guide.

The datap bufter contains the chunk’s data organized in a pixel interlace mode.

FORTRAN integer mgwchnk(ri_id, origin, datap)
integer ri_id, origin(2)

<valid numeric_datatype> datap(*)

integer mgwcchnk(ri_id, origin, char datap)
integer ri_id, origin(2)

character®(*) char_datap

January 2008 2-67

The HDF Group

GRwriteimage/mgwrimg/mgwcimg

GRwriteimage/mgwrimg/mgwcimg

intn GRwriteimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id

start

stride

edge

data

Purpose

Return value

Description

IN: Raster image identifier returned by GRereate or GRselect

IN: Array containing the two-dimensional coordinate of the initial
location for the write

IN: Array containing the number of data locations the current location is
to be moved forward before each write

IN: Array containing the number of data elements that will be written
along each dimension

IN: Buffer containing the image data

Writes a raster image.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

GRwriteimage writes the subsample of the raster image data stored in the
buffer data to the raster image specified by the parameter 7i_id. The subsample
is defined by the values of the parameters start, stride and edge.

The array start specifies the starting location of the subsample to be written.
Valid values of each element in the array start are o to the size of the
corresponding raster image dimension - 1. The first element of the array start
specifies an offset from the beginning of the array data along the fastest-
changing dimension, which is the second dimension in C and the first
dimension in Fortran. The second element of the array start specifies an offset
from the beginning of the array data along the second fastest-changing
dimension, which is the first dimension in C and the second dimension in
Fortran. For example, if the first value of the array start is 2 and the second
value is 3, the starting location of the subsample to be written is at the fourth
row and third column in C, and at the third row and fourth column in Fortran.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be written. If one of
the elements of the stride array is 2, then every other element along the
corresponding dimension of the array data will be written, and so on. The
correspondence between elements of the array stride and the dimensions of
the array data is the same as described above for the array start.

Each element of the array edges specifies the number of data elements to be
written along the corresponding dimension. The correspondence between the
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgwrimg) and the other for character data (mgwcimg).

2-68

January 2008

GRwriteimage/mgwrimg/mgwcimg

HDF Reference Manual

Note

FORTRAN

Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start [0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start [0] is the starting point in the
X dimension and start[1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

integer function mgwrimg(ri_id, start, stride, edge, data)
integer ri_id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgwcimg(ri_ id, start, stride, edge, data)

integer ri id, start(2), stride(2), edge(2)

character* (*) data

January 2008

2-69

The HDF Group GRwritelut/mgwrlut/mgwclut

GRwritelut/mgwrlut/mgwclut

intn GRwritetlut(int32 pal id, int32 ncomp, int32 data_type, int32 interlace_mode, int32 num_entries,
VOIDP pal data)

pal_id IN: Palette identifier returned by GRgetlutid

ncomp IN: Number of components in the palette

data_type IN: Data type of the palette data

interlace_mode IN: Interlace mode of the stored palette data

num_entries IN: Number of entries in the palette

pal_data IN: Buffer for the palette data to be written

Purpose Writes a palette.

Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description GRwritelut writes a palette with the number of pixel components specified by

the parameter ncomp, the data type of the palette data specified by the
parameter data_type, the interlace mode specified by the parameter
interlace_mode, and the number of entries in the palette specified by the
parameter num_entries. The palette data itself is stored in the pal data buffer.
Currently only “old-style” palettes are supported, i.e ncomp = 3,
num_entries = 256, data_type = uint8.

The parameter ncomp specifies the number of pixel components in the palette
and must have a value of at least 1.

The parameter data_type specifies the type of the palette data and can be any
of the data types supported by the HDF library. The data types supported by
HDF are listed in Table 1A in Section I of this manual.

The parameter interlace_mode specifies the interlacing in which the palette is
to be written. The valid values of interlace_mode are: MFGR _INTERLACE PIXEL
(or 0), MFGR_INTERLACE_LINE (Or 1) and MFGR_INTERLACE_COMPONENT (OT 2).

The buffer pal_data is assumed to have sufficient space allocated to store all of
the palette data.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgwrlut) and the other for character data (mgwclut).

FORTRAN integer function mgwrlut (pal_id, ncomp, data_ type, interlace mode,
num_entries, pal_data)

integer pal_id, ncomp, data_ type, interlace mode, num_entries

<valid numeric data type> pal_data(*)

2-70 January 2008

GRwritelut/mgwrlut/mgwclut HDF Reference Manual

integer function mgwclut (pal_id, ncomp, data_ type, interlace mode,
num_entries, pal data)

integer pal id, ncomp, data_type, interlace mode, num entries

character* (*) pal data

January 2008 2-71

The HDF Group GRwritelut/mgwrlut/mgwclut

2-72 January 2008

Hclose/hclose HDF Reference Manual

Hclose/hclose

intn Helose(int32 file_id)

file id IN: File identifier returned by Hopen

Purpose Closes the access path to the file.

Return value Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

Description The file identifier file id is validated before the file is closed. If the identifier is

valid, the function closes the access path to the file.
If there are still access identifiers attached to the file, the error DFE_OPENAID is
placed on the error stack, Fa1L (or -1) is returned, and the file remains open.

This is a common error when developing new interfaces. Refer to the
Reference Manual page on Hendaccess for a discussion of this problem.

FORTRAN integer function hclose(file_id)

integer file id

January 2008 2-73

The HDF Group

Hgetfileversion/hgfilver

Hgetfileversion/hgfilver

intn Hgetfileversion(int32 file id, vint32 *major v, uint32 *minor_v, uint32 *release, char string(])

file id
major_v
minor_v
release

string

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen
OUT: Major version number

OUT: Minor version number

OUT: Release number

OUT: Version number text string

Retrieves version information for an HDF file.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

It is still an open question as to what exactly the version number of a file
should mean, so we recommend that code not depend on this buffer. The string
argument is limited to a length of LIBVSTR LEN (or 80) characters as defined
inhfile.h.

integer function hgfilver(file_id, major_ v, minor_ v, release,
string)

integer file id, major_v, minor v, release

character* (*) string

2-74

January 2008

Hgetlibversion/hglibver

HDF Reference Manual

Hgetlibversion/hglibver

intn Hgetlibversion(uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

major_v
minor_v
release

string

Purpose
Return value

Description

FORTRAN

OUT:
OUT:
OUT:
OUT:

Major version number
Minor version number
Release number

Version number text string

Retrieves the version information of the current HDF library.

Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

The version information is compiled into the HDF library, so it is not necessary
to have any open files for this function to execute. The string buffer is limited
to a length of L1BvsTR LEN (0r 80) characters as defined in hfile.h.

integer function hglibver (major_ v, minor v, release, string)

integer major_ v, minor_v, release

character* (*) string

January 2008

2-75

The HDF Group

Hishdf/hishdff
Hishdf/hishdff
intn Hishdf(char *filename)
filename IN: Complete path and filename of the file to be checked
Purpose Determines if a file is an HDF file.
Return value Returns TrRUE (or 1) if the file is an HDF file and FaLsSE (or o) otherwise.
Description The first four bytes of a file identify it as an HDF file. It is possible that Hishdf

will identify a file as an HDF file but Hopen will be unable to open the file; for
example, if the data descriptor list is corrupt.

Fortran integer function hishdff (filename)

character* (*) filename

2-76 January 2008

Hopen/hopen HDF Reference Manual
Hopen/hopen
int32 Hopen(char *filename, intn access, int16 n_dds)
filename IN: Complete path and filename for the file to be opened
access IN: Access code definition (preceded by pracc)
n_dds IN: Number of data descriptors in a block if a new file is to be created
Purpose Provides an access path to an HDF file by reading all the data descriptor blocks

Return value

Description

FORTRAN

into memory.
Returns the file identifier if successful and rFa1L (or -1) otherwise.

If given a new file name, Hopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
Hopen will open the file using the specified access type and ignore the n_dds
argument.

The number of data descriptors in a block, n_dds, is a non-negative integer
with a default value of pEF_NDDs (or 16) and a minimum value of MIN_NDDS (or
4). If the specified value of n_dds is less than MIN_NDDS, then it will be set to
MIN_NDDS.

HDF provides several access code definitions:

pracc_creATE If file exists, delete it, then open a new file for read/write.
DFACC_READ Open for read only. If file does not exist, return an error.
DFACC_WRITE Open for read/write. If file does not exist, create it.

If a file is opened and an attempt is made to reopen the file using
prFacc crEATE, HDF will issue the error code pre arropen. If the file is
opened with read-only access and an attempt is made to reopen the file for
write access using brFacc_wrITE, HDF will attempt to reopen the file with read
and write permissions.

Upon successful exit, the specified file is opened with the relevant
permissions, the data descriptors are set up in memory, and the associated

file_id is returned. For new files, the appropriate file headers are also set up.

Note that it has been reported that opening/closing file in loops is very slow;
thus, it is not recommended to perform such operations too many times,
particularly, when data is being added to the file between opening/closing.

integer function hopen(filename, access, n_dds)

character* (*) filename

integer access, n_dds

January 2008

2-77

The HDF Group HCget config_info

HCget config_info

intn HCget config_info(comp coder t coder type, uint32 *compression_config_info)

coder_type IN: Type of compression

compression_config_info OUT: Flags indicating status of compression method

Purpose Retrieves information about the configuration of a compression method.
Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.
Description HCget_config_info retrieves the configuration status of the compression type

specified by coder type, returning that status information as flags in
compression_config_info.

Valid values of coder_type are as follows:

COMP_CODE_NONE no compression
COMP_CODE_RLE RLE run-length encoding
COMP_CODE_NBIT NBIT compression

comp_copt_skPHUFF Skipping Huffman compression
comMp_CopE DEFLATE GZIP compression
COMP_CODE_SZIP Szip compression
COMP_CODE_JPEG JPEG compression

The compression method, coder type, used for a data set can be obtained as
the returned value of the comp_type parameter in an SDgetcompinfo call.

The configuration flags returned in compression_config info include the

following:
0 Compression method is not enabled.
COMP_DECODER_ENABLED Decoding is enabled.
COMP_ENCODER_ENABLED Encoding is enabled.

If the returned value is cOMP_DECODER_ENABLED | COMP_ENCODER_ENABLED,
the compression method is enabled for both encoding and decoding.

In the general case, any available compression type can be configured in any
mode:

COMP_DECODER ENABLED

COMP_ENCODER ENABLED

COMP_DECODER ENABLED |COMP_ ENCODER ENABLED
As of this writing (HDF4 Release 2.1, February 2005), only the Szip
compression library is actually used with the HDF libraries in more than one
configuration (see immediately below.) As a third-party product, it is
distributed in both decode-only and encode/decode configurations. All other
compression methods are currently distributed or used in an encode/decode
configuration if they are available at all, and HCget_config_info returns either
0 Or COMP_DECODER ENABLED | COMP_ENCODER_ENABLED when they are used.

2-78 January 2008

HCget_config_info

HDF Reference Manual

Note

See also

FORTRAN

Due to licensing requirements, the Szip library is available in both decode-only
and encode/decode configurations. Therefore, the full range of values can be
returned for Szip compression.

o If the Szip version available on a system is decode-only,
HCget_config_info will return coMP_DECODER ENABLED in
compression_config_info.

o If the available Szip library is configured as encode/decode,
compression_config_info will contain the value
COMP_DECODER_ENABLED | COMP_ENCODER ENABLED Upon return.

Regarding Szip compression in HDF4:

Szip compression is available only through the SD interface and is documented
in the SDsetcompress and SDgetcompinfo reference manual entries. Aside
from the configuration discovery capability = documented in
HCget_config_info, Szip compression is not accessible through the HC
interface.

Regarding Szip usage and licensing:
Seehttp://hdf.ncsa.uiuc.edu/doc_resource/SZIP/fbrinﬂninaﬁon
regarding the use of Szip in HDF products and Szip licensing.

Regarding compression in HDF4:

See the SDsetcompress and SDgetcompinfo entries in this reference manual
for a more general description of dataset compression information.

currently unavailable

January 2008

2-79

The HDF Group

HDdont atexit/hddontatexit

HDdont_atexit/hddontatexit

intn HDdont_atexit(void)

Purpose
Return value

Description

FORTRAN

Indicates to the library that an 'atexit()' routine is _not_ to be installed.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

This routine indicates to the library that an atexit () cleanup routine
should not be installed. The purpose for this is in situations where the library is
dynamically linked into an application and is unlinked from the application
before exit () gets called. In those situations, a routine installed with
atexit () would jump to a routine which was no longer in memory,
causing errors.

In order to be effective, this routine must be called before any other HDF
function calls, and must be called each time the library is loaded/linked into the
application (the first time and after it has been unloaded).

If this routine is used, certain memory buffers will not be deallocated,
although in theory a user could call HPend on their own.

integer hddontatexit ()

2-80

January 2008

HEprint/heprntf/heprnt

HDF Reference Manual

HEprint/heprntf/heprnt

VOID HEprint(FILE *stream, int32 level)

Stream

level

Purpose

Return value

Description

FORTRAN

IN: Stream to print error message to

IN: Level of error stack to print

Prints information to the error stack.
None.
Fortran runction returns o (zero) on success or -1 on failure.

If level is o, all of the errors currently on the error stack are printed. Output
from this function is sent to the file pointed to by stream.

The following information is printed: the ASCII description of the error, the
reporting routine, the reporting routine as source file name, and the line at
which the error was reported. If the programmer has supplied extra information
by means of HEreport, this information is printed as well.

The FORTRAN-77 routine heprnt uses one less parameter than the C routine
because it doesn't allow the user to specify the print stream. Instead, it always
prints to stdout.

The FORTRAN-77 routine heprntf is available on all platforms; heprnt is not
supported on Microsoft Windows platforms.

The heprntf parameter filename is the name of the file to which error output is
to be written. If the value of filename is an empty string (*), error output will
be written to standard output, stdout.

integer function heprntf (filename, level)

character* (*) filename
integer level

integer function heprnt (level)

integer level

January 2008

2-81

The HDF Group HEstring/hestringf
HEstring/hestringf
const char *HEstring(hdf err code_t error code)
error_code IN: HDF error code
Purpose Returns the error message associated with specified error code.
Return value Returns a pointer to a string associated with the error code if successful.
Description Returns a text description of the given error code. These strings are statically

declared and should not be deallocated from memory (using the £ree routine)
by the user. If a defined text description cannot be found a generic default
message is returned.

FORTRAN integer function hestringf (error_code, error message)

integer error_code

character* (*) error_ message

2-82 January 2008

HXSsetcreatedir/hxiscdir HDF Reference Manual
HXsetcreatedir/hxiscdir
intn HXsetcreatedir(char *dir)
dir IN: Target directory of the external file to be written
Purpose Initializes the directory environment variable, identifying the location of the

Return value

Description

FORTRAN

external file to be written.
Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

The contents of dir is copied into the private memory of the HDF library. If dir
is NULL, the directory variable is unset. If HXsetcreatedir encounters an error
condition, the directory variable is not changed. When a new external element
is created (via the routines HXcreate or SDsetexternal), the HDF library
accesses the external file just like the open call by default. Refer to the
Reference Manual page on HXcreate for a description of when a new or an old
file should be opened.

Users may override the default action by calling HXsetcreatedir or by
defining the environment variable $uprExTCREATEDIR. The HDF library will
access the external file in the directory according to the environment variable
setting. The precedence is HXsetcreatedir, then $HDXEXTDIR, in the manner of
open.

Note that the above override does not apply to absolute pathnames - i.c.,
filenames starting with a forward slash. HDF will access the absolute
pathname without change. Also note that HXsetcreatedir and
$HDFEXTCREATEDIR are not symmetrical to HXsetdir and suprexTDIR. The
former pair permits only single directory values and is used to compose the
filename for access. The later pair permits multiple directory values which are
used for searching an existing file.

The dir_len parameter in the FORTRAN-77 routine specifies the length of the
dir character string.

integer function hxiscdir(dir, dir_ len)

character* (*) dir

integer dir len

January 2008

2-83

The HDF Group

HXsetdir/hxisdir

HXsetdir/hxisdir

intn HXsetdir(char *dir)

dir

Purpose

Return value

Description

FORTRAN

IN: Target directory of the external file to be located

Initializes the directory environment variable, identifying the location of the
external file to be located.

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

HXsetdir sets the directory variable for locating an external file according to
dir which may contain multiple directories separated by vertical bars (e.g.,
“dir1|dir2”). The content of dir is copied into the private memory of the HDF
library. If dir is NULL, the directory variable is unset.

If HXsetdir encounters any error, the directory variable is not changed. By
default, the HDF library locates the external file just like the open call. It also
searches for the external file in the directories specified by the user
environment variable $HDFEXTDIR, if defined, and the directory variable set by
HXsetdir. The searching precedence is directory variable, if set, then
$HDXEXTDIR, then in the manner of open.

The searching differs if the external filename is an absolute pathname - i.e.,
starting with a forward slash. HDF will try open first. If open fails and if
$HDFEXTDIR is defined or the directory variable is set via HXsetdir, HDF will
remove all directory components of the absolute pathname (e.g., “/usr/groupA/
projectB/Data001” becomes “Data001”) and search for that filename with the
strategy described in the previous paragraph.

The dir_len parameter in the FORTRAN-77 routine specifies the length of the
dir character string.

integer function hxisdir(dir, dir_ len)

character* (*) dir

integer dir len

2-84

January 2008

SDattrinfo/sfgainfo

HDF Reference Manual

SDattrinfo/sfgainfo

intn SDattrinfo(int32 obj id, int32 attr_index, char *attr name, int32 *data_type, int32 *count)

obj id

attr_index
attr_name
data_type

count

Purpose
Return value

Description

FORTRAN

IN: Identifier of the object to which the attribute is attached to
IN: Index of the attribute

OUT: Name of the attribute

OUT: Data type of the attribute values

OUT: Total number of values in the attribute

Retrieves information about an attribute.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDattrinfo retrieves the name, data type, and number of values of the attribute
specified by its index, attr index, and stores them in the parameters
attr_name, data_type, and count, respectively. This routine should be used
before reading the values of an attribute with SDreadattr.

The parameter obj id can be either an SD interface identifier (sd_id), returned
by SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Valid values of the parameter attr index range from o to the number of
attributes attached to the object - 1.

Valid values of the parameter data_type can be found in Table 1A of Section I
of this manual.

integer function sfgainfo(obj_id, attr_index, attr name,
data_type, count)

character* (*) attr_name

integer obj_id, attr index, data_type, count

January 2008

2-85

The HDF Group SDcheckempty/sfchempty

SDcheckempty/sfchempty

int32 SDcheckempty(int32 sds_id, intn *emptySDS')

sds_id IN: SDS identifier
emptySDS OUT: Boolean value indicating whether the SDS is empty
Purpose Determines whether a scientific dataset (an SDS) is empty.

Return value Returns SUCCEED (or 0) if successful and FAIL (or -1) otherwise.

Description SDcheckempty sets the parameter emptySDS to TRUE if the dataset identified
by sds_id has not been written with data, and to FALSE, otherwise.

The Fortran routine, sfchempty, returns 1 in emptySDS if the dataset is empty
and 0 otherwise.

FORTRAN integer function sfchempty(sds_id, emptySDS)

integer sds_id, emptySDS

2-86 January 2008

SDcreate/sfcreate

HDF Reference Manual

SDcreate/sfcreate

int32 SDcreate(int32 sd_id, char *name, int32 data_type, int32 rank, int32 dimsizes[])

sd_id
name
data_type
rank

dimsizes

Purpose
Return value

Description

IN: SD interface identifier returned by SDstart
IN: Name of the data set

IN: Data type for the values in the data set

IN: Number of the data set dimensions

IN: Array containing the size of each dimension

Creates a new data set.
Returns the data set identifier (sds_id) if successful and rFa1L (or -1) otherwise.

SDcreate creates a data set with the name specified by the parameter name, the
values of the data type specified by parameter data type, the number of
dimensions specified by the parameter rank, and the dimension sizes specified
by the array dimsizes.

Once a data set has been created, it is not possible to change its name, data
type, or rank. However, it is possible to create a data set and close the file
before writing any data values to it. The values can be added or modified at a
future time. To add data or modify an existing data set, use SDselect to get the
data set identifier instead of SDcreate.

If the parameter name is nULL in C or an empty string in Fortran, the default
name “Data Set” will be generated. The length of the name specified by the
name parameter is no longer limited to 64 characters starting in HDF 4.2r2.
Note that when an older version of the library reads a data set, which was
created by a library of version 4.2r2 or later and has the name that is longer
than 64 characters, the retrieved name will contain some garbage after 64
characters.

The calling program must ensure that the length of the dimsizes array is the
value of the rank parameter, which is between o and Max_var_Dims (or 32).
Note that, in order for HDF4 and NetCDF models to work together, HDF
allows SDS to have rank 0. However, there is no intention for data to be
written to this type of SDS, but only to store attribute as part of the data
description. Consequently, setting compression and setting chunk are
disallowed.

To create a data set with an unlimited dimension, assign the value of
SD_UNLIMITED (or 0) to dimsizes[0] in C and to dimsizes(rank) in Fortran.

The data_type parameter can contain any data type supported by the HDF
library. These data types are listed in Table 1A in Section I of this manual.

See the notes regarding the potential performance impact of unlimited
dimension data sets in the HDF User’s Guide Section 14.4.3, "Unlimited
Dimension Data Sets (SDSs and Vdatas) and Performance."

January 2008

2-87

The HDF Group

SDcreate/sfcreate

Note

FORTRAN

Regarding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the API parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start [0] is the starting point in the
Y dimension and start[1] is the starting point in the X dimension.
The same ordering holds true for all SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (x,y) or
[column,row] order. For example, start [0] is the starting point in the
X dimension and start [1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

integer function sfcreate(sd_id, name, data_type, rank,
dimsizes)

character* (*) name

integer sd_id, data_type, rank, dimsizes(*)

2-88

January 2008

SDdiminfo/sfgdinfo

HDF Reference Manual

SDdiminfo/sfgdinfo

intn SDdiminfo(int32 dim_id, char *name, int32 *size, int32 *data_type, int32 *num_attrs)

dim_id
name

size
data_type

num_attrs

Purpose
Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid
OUT: Name of the dimension

OUT: Size of the dimension

OUT: Data type of the dimension scale

OUT: Number of attributes assigned to the dimension

Retrieves information about a dimension.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDdiminfo retrieves the name, size, data type, and number of values of the
dimension specified by the parameter dim_id, and stores them in the
parameters name, size, data_type, and num_attrs, respectively.

If the output value of the parameter size is set to o, then the dimension
specified by the dim_id parameter is unlimited. To get the number of records of
an unlimited dimension, use SDgetinfo.

If scale information has been stored for this dimension via SDsetdimscale, the
data_type parameter will contain the data type. Valid data types can be found
in Table 1A of Section I of this manual. If no scale information has been stored
for this dimension, the value returned in the data_type parameter will be o.

If the user has not named the dimension via SDsetdimname, a default
dimension name of “fakepim[x]” will be generated by the library, where [x]
denotes the dimension index. If the name is not desired, the parameter name
can be set to nuLL in C and an empty string in Fortran.

integer function sfgdinfo(dim_ id, name, size, data_ type,
num_attrs)

character* (*) name

integer dim_id, size, data_type, num attrs

January 2008

2-89

The HDF Group SDend/sfend

SDend/sfend

intn SDend(int32 sd_id)

sd_id IN: SD interface identifier returned by SDstart

Purpose Terminates access to an SD interface.

Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description SDend closes the file and frees memory allocated by the library when SD

interface activities are completed. If the calling program exits without invoking
this routine, recent changes made to the in-core file data are likely not to be
flushed to the file. Note that each SDstart must have a matching SDend.

FORTRAN integer function sfend(sd_id)

integer sd_id

2-90 January 2008

SDendaccess/sfendacc HDF Reference Manual
SDendaccess/sfendacc
intn SDendaccess(int32 sds_id)
sds_id IN: Data set identifier returned by SDcreate or SDselect
Purpose Terminates access to a data set.

Return value

Description

FORTRAN

Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

SDendaccess frees the memory taken up by the HDF library’s data structures
devoted to the data set identified by the parameter sds_id.

Failing to call this routine after all operations on the specified data set are
complete may result in loss of data. This routine must be called once for each
call to SDcreate or SDselect.

integer function sfendacc(sds_id)

integer sds_id

January 2008

291

The HDF Group

SDfileinfo/sffinfo

SDfileinfo/sffinfo

intn SDfileinfo(int32 sd_id, int32 *num_datasets, int32 *num_global attrs)

sd_id
num_datasets

num_global_attrs

Purpose
Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
OUT: Number of data sets in the file

OUT: Number of global attributes in the file

Retrieves the number of data sets and the number of global attributes in a file.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDfileinfo returns the number of data sets in the parameter num_datasets and
the number of global attributes in the parameter num_global attrs. The term
“global attributes” refers to attributes that are assigned to the file. The global
attributes are created by SDsetattr using an SD interface identifier (sd_id)
rather than a data set identifier (sds_id).

The value returned by the parameter num_datasets includes the number of
coordinate variable data sets. To determine if the data set is a coordinate
variable, use SDiscoordvar.

integer function sffinfo(sd _id, num datasets, num global attrs)

integer sd_id, num datasets, num global attrs

2-92

January 2008

SDfindattr/sffattr HDF Reference Manual

SDfindattr/sffattr

int32 SDfindattr(int32 obj id, char *attr _name)

obj id IN: Identifier of the object to which the attribute is attached

attr_name IN: Name of the attribute

Purpose Finds the index of an attribute given its name.

Return value Returns the index if successful and Fa1L (or -1) otherwise.

Description SDfindattr retrieves the index of the object’s attribute with the name specified

by the parameter attr _name.

The attribute is attached to the object specified by the parameter obj id. The
parameter obj id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Wildcard characters are not allowed in the parameter atfr_name. SDfindattr

searches for the name specified in the parameter attr _name in a case-sensitive
manner.

FORTRAN integer function sffattr(obj_id, attr name)

integer obj_id

character* (*) attr_name

January 2008 2-93

The HDF Group

SDgetcal/sfgcal

SDgetcal/sfgcal

intn SDgetcal(int32 sds_id, float64 *cal, float64 *cal err, float64 *offset, float64 *offset_err, int32

sds_id
cal
cal_err
offset
offset_err

data_type

Purpose
Return value

Description

FORTRAN

*data_type)

IN: Data set identifier returned by SDcreate or SDselect
OUT: Calibration factor

OUT: Calibration error

OUT: Uncalibrated offset

OUT: Uncalibrated offset error

OUT: Data type of uncalibrated data

Retrieves the calibration information associated with a data set.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDgetcal reads the calibration record attached to the data set identified by the
parameter sds id. A calibration record is comprised of four 64-bit floating
point values followed by a 32-bit integer. The information is listed in the
following table:

cal calibration factor

cal err calibration error

offset uncalibrated offset

offset_err uncalibrated offset error
data_type data type of the uncalibrated data

The relationship between a calibrated value cal value and the original value
orig value is defined as orig value = cal * (cal value - offset).

The variable offset_err contains a potential error of offset, and cal err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

integer function sfgcal(sds_id, cal, cal_err, offset, offset_err,
data_type)

integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err

2-94 January 2008

SDgetchunkinfo/sfgichnk

HDF Reference Manual

SDgetchunkinfo/sfgichnk

intn SDgetchunkinfo(int32 sds_id, HDF_CHUNK DEF *cdef, int32 *flag)

sds_id

C only:
cdef
flag

Fortran only:

dim_length
flag

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect

OUT: Pointer to the chunk definition

OUT: Compression flag

OUT: Array of chunk dimensions
OUT: Compression flag

Retrieves chunking information for a data set.
Returns succeeD (or o) if successful and Fa1L (or -1) otherwise.

SDgetchunkinfo retrieves chunking information about the data set identified
by the parameter sds id into the parameters cdef and flag in C, and to the
parameters dim_length and flag in Fortran.

Currently, only information about chunk dimensions is retrieved into the
corresponding cdef structure element for each type of compression in C, and in
the dim_length array in Fortran. No information on compression parameters is
available in the comp structure of the upr_crunk_DEF union. Refer to the page
on SDsetchunk in this manual for specific information on the HDF_CHUNK DEF
union.

The value returned in the flag parameter indicates the data set type (i.e., if the
data set is not chunked, chunked, and chunked and compressed).

If the chunk length for each dimension is not needed, NnuLL can be passed in as
the value of the cdef parameter in C.

The following table shows the type of the data set, possible values of the flag
parameter, and the corresponding cdef structure element filled with the chunk’s
dimensions.

Values of fla Values of cdef Structure Ele-
Type of Data Set inC o flag in ment Filled with the
Fortran Chunk’s Dimensions
Not chunked HDF NONE -1 None
Chunked HDF _CHUNK 0 cdef.chunk lengths[]
January 2008 2-95

The HDF Group

SDgetchunkinfo/sfgichnk

FORTRAN

Values of cdef Structure Ele-
Values of flag . q q
Type of Data Set in C flag in ment Filled with the
Fortran Chunk’s Dimensions
Chunked and com- HDF_CHUNK | cdef.comp.chunk_lengths|
pressed with either the HDF_COMP]
run-length encoding
(RLE), Skipping Huft-
man, GZIP, or Szip
compression algorithms
Chunked and com- HDF _CHUNK | 2 cdef.nbit.chunk lengths[]
pressed with NBIT HDF_NBIT

compression

integer function sfgichnk(sds_id, dim_length,

integer sds_id, dim_length(*),

flag

flag)

2-96

January 2008

SDgetcompinfo/sfgcompress

HDF Reference Manual

SDgetcompinfo/sfgcompress

intn SDgetcompinfo(int32 sds_id, comp_coder t *comp_type, comp_info *c_info)

sds_id
comp_type

c_info

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect
OUT: Type of compression

OUT: Pointer to compression information structure

Retrieves data set compression type and compression information.
Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDgetcompinfo retrieves the compression type and compression information
for a data set, when the data is either compressed, chunked or chunked and
compressed. SDgetcompinfo replaces SDgetcompress because this function
has flaws, causing failure for some chunked and chunked/compressed data.

The compression method is returned in the parameter comp_type. Valid values
of comp_type are as follows:

COMP_CODE_NONE for no compression

comp_copk_RLE for RLE run-length encoding
comp_cope_NBIT for NBIT compression
comp_cope_skpHUFF for Skipping Huffman compression
comp_copE_DEFLATE for GZIP compression
comp_copE_sz1p for Szip compression

Additional compression method parameters are returned in the ¢_info struct in
C and the array parameter comp prm in Fortran. Note that c_info and
comp _prm come into place only with compression modes that require
additional parameters (i.e., other than comp_type); they are ignored in other
cases.

The c_info struct is of type comp_info, contains algorithm-specific information
for the library compression routines, and is described in the SDsetcompress
entry in this reference manual and in the hcomp . h header file.

The comp prm parameter is an array returning one or more parameters, as
required by the compression method in use. Each compression parameter is
returned as an element of the array, as follows:

o With Skipping Huffman compression, comp prm is a 1-element array
and comp _prm(1) contains the skip value, skphuff_skp_size.

o In the case of GZIP compression, comp prm is also a 1-element array
and comp_prm(1) contains the deflation value, deflate value.

o In the case of NBIT compression, comp prm is a 4-element array with
sign_ext in comp_prm(1l), £i11_one in comp prm(2), start bit in
comp_prm(3), and bit len in comp prm(4). The fields sign ext,
£i1ll one, start bit, and bit len are discussed in the
SDsetnbitdataset/sfsnbit entry of this reference manual.

o In the case of Szip compression, comp prm is a 5-element array with
option_mask in comp prm(l), pixels per_block in comp prm(2),
pixels_per scanline in comp_prm(3), bits_per pixel in
comp_prm(4), and pixels in comp _prm (5).

January 2008

2-97

The HDF Group

SDgetcompinfo/sfgcompress

Note

Note

FORTRAN

In the general case, any available compression type can be configured in any
mode:

COMP_DECODER_ENABLED Decode data only

coMp_ENCODER_ENABLED Encode data only

COMP_DECODER ENABLED |COMP_ENCODER ENABLED

Decode and encode data

As of this writing (HDF4 Release 2.1, February 2005), only the Szip
compression library is actually used with the HDF libraries in more than one
configuration (see immediately below). As a third-party product, it is
distributed in both decode-only and encode/decode configurations. All other
compression methods are currently distributed or used in an encode/decode
configuration if they are available at all. See also HCget_config_info.

SDgetcompinfo will succeed for an Szip-compressed dataset whether the
available Szip library is configured either for encoding/decoding or for
decoding-only.

If the Szip configuration is decode-only, i.e., an HCget_config_info call on
the dataset will return only COMP_DECODER_ENABLED in
compression_config_info. Note that in such a case the file must be opened in
read-only mode, i.e. with SDstart (filename, DFACC RDONLY).

If the Szip configuration is encode/decode, i.e., an HCget_config_info call on
the dataset will return cOMP_ENCODER ENABLED |COMP DECODER ENABLED in
compression_config_info. In this case, the file and dataset can be opened in
read/write mode.

Regarding uncompressed data or an empty data set:
SDgetcompinfo will succeed and the parameter comp_type will have the value
comp_cope_NoNE if either of the following conditions exists:

o The data set is not compressed.

o No data has been written to the SDS.

Regarding Szip usage and licensing:
See http://hdf .ncsa.uiuc. edu/doc_resource/SZIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

integer function sfgcompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)

2-98

January 2008

SDgetdatastrs/sfgdtstr

HDF Reference Manual

SDgetdatastrs/sfgdtstr

intn SDgetdatastrs(int32 sds_id, char *label, char *unit, char *format, char *coordsys, intn length)

sds_id
label
unit
format
coordsys

length

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
OUT: Label (predefined attribute)

OUT: Unit (predefined attribute)

OUT: Format (predefined attribute)

OUT: Coordinate system (predefined attribute)

IN: Maximum length of the above predefined attributes

Retrieves the predefined attributes of a data set.
Returns succeeD (or 0) if successful and Fa1L (or -1) otherwise.

SDgetdatastrs retrieves the predefined attributes for the data set specified by
the parameter sds_id. The predefined attributes are label, unit, format, and
coordinate system. They are then stored in the parameters label, unit, format,
and coordsys, respectively. Refer to Section 3.10 of the HDF User s Guide
for more information on predefined attributes.

If a particular data string is not stored, the first character of the corresponding
SDgetdatastrs parameter is '\ o' in C. In FORTRAN, the parameter contains an
empty string. Each string buffer must include the space to hold the null
termination character. In C, if a user does not want a string back, NULL can be
passed in for that string. Data strings are set by the SDsetdatastrs routine.

integer function sfgdtstr(sds_id, label, unit, format, coordsys,
length)

integer sds_id, length

character* (*) label, unit, format, coordsys

January 2008

2-99

The HDF Group SDgetdimid/sfdimid

SDgetdimid/sfdimid

int32 SDgetdimid(int32 sds_id, intn dim_index)

sds_id IN: Data set identifier returned by SDcreate or SDselect

dim_index IN: Index of the dimension

Purpose Returns the identifier of a dimension given its index.

Return value Returns the dimension identifier (dim id) if successful and rain (or -1)
otherwise.

Description SDgetdimid returns the identifier of the dimension specified by its index, the

parameter dim_index.

The dimension index is a nonnegative integer and is less than the total number
of data set dimensions returned by SDgetinfo.

FORTRAN integer function sfdimid(sds_id, dim_ index)

integer sds_id, dim_index

2-100 January 2008

SDgetdimscale/sfgdscale HDF Reference Manual
SDgetdimscale/sfgdscale
intn SDgetdimscale(int32 dim_id, VOIDP scale buf)
dim_id IN: Dimension identifier returned by SDgetdimid
scale_buf OUT: Buffer for the scale values
Purpose Retrieves the scale values for a dimension.

Return value

Description

FORTRAN

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDgetdimscale retrieves the scale values of the dimension identified by the
parameter dim_id and stores the values in the buffer scale buf.

SDdiminfo should be used to determine whether a scale has been set for the
dimension, i.e., that the dimension scale data type is a valid HDF data type (not o).
Also use SDdiminfo to obtain the number of scale values for space allocation
before calling SDgetdimscale.

It is not possible to read a subset of the scale values. SDgetdimscale returns all
of the scale values stored with the given dimension.

The fact that SDgetdimscale returns succeep should not be interpreted to
mean that scale values have been defined for the data set. This function should
always be used with SDdiminfo, which is used first to determine whether a
scale has been set, the number of scale values, their data type, etc. If
SDdiminfo indicates that no scale values have been set, the values returned by
SDgetdimscale in data should be ignored.

integer function sfgdscale(dim id, scale buf)

integer dim_ id

<valid numeric data type> scale buf (*)

January 2008

2-101

The HDF Group SDgetdimstrs/sfgdmstr

SDgetdimstrs/sfgdmstr

intn SDgetdimstrs(int32 dim_id, char *label, char *unit, char *format, intn length)

dim_id IN: Dimension identifier returned by SDgetdimid

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

length IN: Maximum length of the above predefined attributes

Purpose Retrieves the predefined attributes of a dimension.

Return value Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

Description SDgetdimstrs retrieves the predefined attributes associated with the dimension

identified by the parameter dim_id. The predefined attributes are label, unit,
and format. These predefined attributes are stored in the parameters label,
unit, and format, respectively. Refer to Section 3.10 of the HDF User s Guide
for more information on predefined attributes.

If a particular data string was not stored, the first character of the
corresponding SDgetdimstrs parameter is "\ o'. Each string buffer must include
space for the null termination character. If a user does not want a string
returned, the corresponding parameter can be set to NULL in C and an empty
string in Fortran. The predefined attributes are set by SDsetdimstrs.

FORTRAN integer function sfgdmstr(dim_id, label, unit, format, length)

integer dim_id, length

character* (*) label, unit, format

2-102 January 2008

SDgetfilename/

HDF Reference Manual

SDgetfilename/
intn SDgetfilename(int32 file id, char *filename)

file id IN: A file identifier

filename OUT: Name of the file

Purpose Given a file identifier, retrieves the name of the file.

Return value Returns the length of the file name, without '\o', on success, and FaIL,

otherwise.
FORTRAN Currently unavailable
January 2008

2-103

The HDF Group SDgetfillvalue/sfgfill/sfgcfill

SDgetfillvalue/sfgfill/sfgcfill

intn SDgetfillvalue(int32 sds_id, VOIDP fill value)

sds_id IN: Data set identifier returned by SDcreate or SDselect

Sfill value OUT: Buffer for the returned fill value

Purpose Reads the fill value of a data set, if the value has been set.

Return value Returns succeep (or o) if a fill value is retrieved and Fa1L (or -1) otherwise,

including when the fill value is not set.

Description SDgetfillvalue reads the fill value which has been set for the data set specified
by the parameter sds_id. It is assumed that the data type of the fill value is the
same as that of the data set.

Note that there are two FORTRAN-77 versions of this routine: sfgfill and

sfgefill. The sfgfill routine reads numeric fill value data and sfgefill reads
character fill value data.

FORTRAN integer function sfgfill(sds_id, £fill value)

integer sds_id

<valid numeric data type> fill value

integer function sfgcfill(sds_id, fill value)

integer sds_id

character* (*) fill value

2-104 January 2008

SDgetinfo/sfginfo

HDF Reference Manual

SDgetinfo/sfginfo

intn SDgetinfo(int32 sds_id, char *sds_name, int32 *rank, int32 dimsizes[], int32 *data_type, int32

sds_id
sds_name
rank
dimsizes
data_type

num_attrs

Purpose

Return value

Description

FORTRAN

*num_attrs)

IN: Data set identifier returned by SDcreate and SDselect
OUT: Name of the data set

OUT: Number of dimensions in the data set

OUT: Array containing the size of each dimension in the data set
OUT: Data type for the data stored in the data set

OUT: Number of attributes for the data set

Retrieves the name, rank, dimension sizes, data type and number of attributes
for a data set.

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDgetinfo retrieves the name, number of dimensions, sizes of dimensions, data
type, and number of attributes of the data set identified by sds id, and stores
them in the parameters sds_name, rank, dimsizes, data_type, and num_attrs,
respectively.

The buffer sds_name can have at most 64 characters. If the name of the data set
is not desired, then the parameter sds name can be set to nurL in C and an
empty string in Fortran.

The maximum value of the rank parameter is MAx VAR DIMS (Or 32).

If the data set is created with an unlimited dimension, then in the C interface,
the first element of the dimsizes array (corresponding to the slowest-changing
dimension) contains the number of records in the unlimited dimension; in the
FORTRAN-77 interface, the last element of the dimsizes array (corresponding
to the slowest-changing dimension) contains this information. Use SDisrecord
to determine if the data set has an unlimited dimension.

integer function sfginfo(sds_id, sds_name, rank, dimsizes,
data_type, num_attrs)

character* (*) sds_name
integer sds_id, rank, dimsizes(*)

integer data_type, num_attrs

January 2008

2-105

The HDF Group SDgetnamelen/

SDgetnamelen/

intn SDgetnamelen(int32 obj_id, uintl6 name_len)

obj id IN: Identifier of the object

name_len OUT: Length of the object’s name

Purpose Retrieves the length of the name of a file, a dataset, or a dimension.

Return value Returns the length of the object’s name on success, and FAIL, otherwise.
Description Given an identifier of a file, a dataset, or a dimension, SDgetnamelen retricves

the length of its name into name len. The length does not include the
character "\o'".

FORTRAN Currently unavailable

2-106 January 2008

SDgetnumvars_byname

HDF Reference Manual

SDgetnumvars_byname

intn SDgetnumvars_byname(int32 sd_id, char *sds_name, unsigned *n_vars)

sd_id
sds_name

n_vars

Purpose
Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
IN: Name of the data set

OUT: Number of variables named sds_name

Get the number of data sets having the same name.

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.
SDgetnumvars_byname retrieves the number of variables with the name
specified by the parameter sds_name. The variables may include both data sets

or coordinate variables. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner.

Currently unavailable

January 2008

2-107

The HDF Group SDgetrange/sfgrange
SDgetrange/sfgrange
intn SDgetrange(int32 sds_id, VOIDP max, VOIDP min)
sds_id IN: Data set identifier returned by SDcreate or SDselect
max OUT: Maximum value of the range
min OUT: Minimum value of the range
Purpose Retrieves the maximum and minimum values of the range.
Return value Returns succeep (or o) if successful and FaIL (or -1) otherwise.
Description SDgetrange retrieves the maximum value of the range into the parameter max

and the minimum value into the parameter min. The maximum and minimum
values must be previously set via a call to SDsetrange.

It is assumed that the data type for the maximum and minimum range values
are the same as that of the data.

FORTRAN integer function sfgrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min

2-108 January 2008

SDget_maxopenfiles/

HDF Reference Manual

SDget _maxopenfiles/

intn SDget maxopenfiles(intn *curr_max, intn *sys_limit)

cu
curr_max

sys_limit

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
OUT: Current number of open files

OUT: Maximum number of open files

Retrieves current and maximum number of open files.
Returns succeep (or o) if successful and FaIL (or -1) otherwise.
SDget_maxopenfiles retrieves the current number of open files allowed in

HDF, curr_max, and the maxinum number of open files allowed on the system,
sys_limit. 1f either of the values is not desired, then NuLL can be passed in.

Currently unavailable

January 2008

2-109

The HDF Group SDget_numopenfiles/

SDget numopenfiles/

intn SDget numopenfiles()

Purpose Returns the number of files currently being opened.
Return value Returns the number of files currently being opened.
FORTRAN Currently unavailable

2-110 January 2008

SDidtoref/sfid2ref HDF Reference Manual
SDidtoref/sfid2ref
int32 SDidtoref(int32 sds_id)
sds_id IN: Data set identifier returned by SDcreate or SDselect
Purpose Returns the reference number assigned to a data set.

Return value

Description

FORTRAN

Returns the data set reference number if successful and Fa1L (or -1) otherwise.

SDidtoref returns the reference number of the data set specified by the
parameter sds_id. The reference number is assigned by the HDF library when
the data set is created. The specified reference number can be used to add the
data set to a vgroup as well as a means of using the HDF annotations interface
to annotate the data set.

integer function sfid2ref (sds_id)

integer sds_id

January 2008

2-111

The HDF Group SDidtype/

SDidtype/

hdf idtype_t SDidtype(int32 obj_id)

obj id IN: Identifier of the object

Purpose Given an id, return the type of object the id represents.

Return value Returns a value of type hdf_idtype_t.

Description SDidtype returns a value of type hdf idtype t, which can be one of the
following:

e NOT spAPI 1D (or -1)not an SD APl id
e sp 1D (or 0)SDid

o sps_1D (or 1)SDSid

o DIM_ID (or 2)Dimension id

SDidtype returns noT_spap1_1D for either
+ when obj_id is not a valid HDF id, or
+ when obj id is a valid HDF id, but not one of the id types in
the SD interface, which are SD id, SDS id, and dimension id.

FORTRAN Currently unavailable

2-112 January 2008

SDiscoordvar/sfiscvar HDF Reference Manual
SDiscoordvar/sfiscvar
intn SDiscoordvar(int32 sds_id)
sds_id IN: Data set identifier returned by SDcreate or SDselect
Purpose Determines if a data set is a coordinate variable.

Return value

Description

FORTRAN

Returns TrRUE (or 1) if the data set is a coordinate variable, and FaLSE (or 0)
otherwise.

SDiscoordvar determines if the data set specified by the parameter sds_id is a
coordinate variable.

Coordinate variables are created to store metadata associated with dimensions.
To ensure compatibility with netCDF, coordinate variables are implemented as
data sets.

integer function sfiscvar(sds_id)

integer sds_id

January 2008

2-113

The HDF Group

SDisdimval _bwcomp/sfisdmvc

SDisdimval bwcomp/sfisdmvc

intn SDisdimval bwcomp(int32 dim_id)

dim_id

Purpose

Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid

Determines whether a dimension has the old and new representations or the
new representation only.

Refer to the HDF User's Guide, Chapter 3, titled SD Scientific Data Sets (SD
API), for information on old and new dimension representations.

Returns SD DIMVAL BW_COMP (or 1) if backward compatible,
SD_DIMVAL_BW_INCOMP (or 0) if incompatible, FAIL (or -1) if error.

SDisdimval_bwcomp will flag the dimension specified by the parameter
dim_id as backward-compatible if a vdata with a class name of “DimVal0.0”
does not exist in the vgroup for that dimension. If the vdata does exist, the
specified dimension will be identified by SDisdimval_bcomp as backward-
incompatible.

The compatibility mode can be changed by calls to SDsetdimval_comp at any
time between the calls to SDstart and SDend.

integer function sfisdmvc(dim_id)

integer dim_id

2-114

January 2008

SDisrecord/sfisrcrd HDF Reference Manual
SDisrecord/sfisrcrd
int32 SDisrecord(int32 sds_id)
sds_id IN: Data set identifier returned by SDcreate or SDselect
Purpose Determines whether a data set is appendable.

Return value

Returns TrRUE (or 1) if the data set is appendable, and FaLsE (or o) otherwise.

Description SDisrecord will determine if the data set specified by the parameter sds_id is
appendable, which means that the slowest-changing dimension was declared
unlimited when the data set was created.

FORTRAN integer sfisrcrd(sd_id)
integer sd_id

January 2008 2-115

The HDF Group

SDnametoindex/sfn2index

SDnametoindex/sfn2index

int32 SDnametoindex(int32 sd_id, char *sds_name)

sd_id

sds_name

Purpose

Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart

IN: Name of the data set

Determines the index of a data set given its name.

Returns the index of the data set (sds_index) if the data set is found and rFaTL
(or -1) otherwise.

SDnametoindex returns the index of the data set with the name specified by
the parameter sds_name. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner. If there
are more than one data set with the same name, the routine will return the index
of the first one.

Note that if there are more than one data set with the same name in the file,
writing to a data set returned by this function without verifying that it is the
desired data set could cause data corruption.

SDgetnumvars_byname can be used to get the number of data sets (or
variables, which includes both data sets and coordinate variables) with the

same name. SDnametoindices can be used to get a list of structures
containing the indices and the types of all the variables of that same name.

integer function sfn2index(sd_id, sds_name)

integer sd_id

character* (*) sds_name

2-116

January 2008

SDnametoindices HDF Reference Manual
SDnametoindices
intn SDnametoindices(int32 sd_id, char *sds_name, varlist t * var_list)
sd_id IN: SD interface identifier returned by SDstart
sds_name IN: Name of the data set
var_list OUT: List of all variables of same name
Purpose Retrieves indices of all variables with the same name.

Return value

Description

FORTRAN

Returns succeep (or 0) if successful and Fa1L (or -1) otherwise.

SDnametoindices retrieves a list of structures varlist t, containing the
indices and the types of all variables of the same name sds_name.

The structure varlist_t is defined as:

typedef struct varlist
int32 var index; /* index of a variable */

vartype t var_type; /* type of a variable
} varlist t;

The type of a variable vartype t is defined as:

IS _SDSVAR=0 : variable