
BBCP

1 BBCP Syntax ... 2

1.1 Checksum Considerations (-e and –E) ...10

1.2 Tuning Considerations ...12

1.2.1 Window Size (-w) ...12

1.2.2 Streams (-s) ..13

1.2.3 I/O Buffer Size (-B) ..14

1.2.4 Output Ordering (-o and –b +) ..14

1.2.5 Input Blocking (-b) ..15

1.2.6 Compression (-c) ...15

1.2.7 Un-buffered I/O (-u) ...16

1.2.8 Routing (-z) ..16

1.3 Resuming Failed Copies (–a and –k or –K) ..17

1.4 Multi-Directory Copying (-d) ..18

1.5 Real-Time Copying (-R) ...19

1.5.1 Real-Time Copy Protocol ...20

1.5.2 Using an Alternate Lock File ...21

1.6 Modifying ssh Startup (-S and –T) ..23

1.7 Dealing With Firewalls (-z) ..24

1.8 Configuring New Defaults (-C) ...25

1.9 New Features ...26

1.10 Backward Compatibility ..27

1.11 Problem Reports & Enhancement Requests ..28

1.12 Downloading ...28

1.13 Legal Notice ...29

Download the pdf version of this document.

http://www.slac.stanford.edu/~abh/bbcp/bbcp.pdf

1 BBCP Syntax

bbcp [options] [srcspec [. . .]] snkspec

srcspec: [[sid@]shost:]sourcefile

snkspec: [tid@]thost:]target

options: [advanced] -c [lvl] -C fname -f -I fname -h -k

 -l logfn -m mode -o -p -P sec -r -v -w [=]wsz --

mode: dmode/ | fmode | dmode/fmode

advanced: -a [dir] -b [+]blkf -B bfsz -d path -D -e -E csarg

 -F -i fname -K -L lopts[@lurl] –n -q qos -R [rtargs]

 -s strms -S srccmd -T trgcmd -t tlim -u loc -U wsz

 -V -x rate -z

csarg: [%]{a32 | c32 | md5}[=[csval|csfile]]

lopts: a | b | c | I | o | r | w | x | [lopts]

lurl: file://path/filename | x-netlog://host:port |

 x-syslog://localhost

Function

Securely and quickly copy a file from source to target. Please refer to

known problems for a list of current defects and limitations.

Parameters

sid specifies the ssh loginid for the source host. The default is to use your

current loginid.

shost specifies the name of the host that holds the source file. By default, the

local host is assumed.

sourcefile

specifies the name of the file to be copied. Any number of source files from

any number of hosts may be specified on the command line. If the -I option

is specified, no source files need to be specified on the command line.

file://path/filename
http://www.slac.stanford.edu/~abh/bbcp/bbcp_bugs.html

tid specifies the ssh loginid for the target host. The default is to use your

current loginid.

thost specifies the name of the host to which the file is to be copied. By default,

the local host is assumed.

target specifies the name the target location of the file to be copied. If a single

source file is specified, target may be a filename or a directory. If more

than one source file is specified, target must be the name of a directory.

Options

-c [lvl] compresses the data prior to sending it across the network using zlib

written by Jean-loup Gailly and Mark Adler. Specify an integer value from

1 through 9 for lvl. A value of 1 gives the best speed while a value of 9

gives the best compression. The default value is 1. If lvl is omitted, -c may

not be the last option on the command line. See the section on

‚Compression‛ for a discussion of this option.

-C fname

specifies the name of the configuration file. The configuration file is

processed when it is encountered on the command line. See the section

‚Configuring New Defaults‛ for information about configuration files.

-f forces the copy by erasing the target prior to copying the source file. By

default, if the target already exists for the source file, the copy fails. See

also the –K option modifier.

-I fname

includes a list of source file specifications from the file identified by fname.

Each new-line terminated record in fname must contain a single source file

specification. If –I is specified, you need not specify any source files on the

command line.

-h prints usage and version information.

-k keeps any partially created target files and allows full recovery after a

copy failure. Refer to ‛Resuming Failed Copies‛ for details. The -o

becomes the default. Normally, partial files are removed after a copy fails.

-l logfn

logs standard error to the indicated file, logfn, By default, standard error

output is written to the terminal.

-m mode

sets the final mode for the target file. Specify a 3- or 4-digit mode in octal

for dmode or fmode (see the syntax diagram). The dmode specified the access

mode to be assigned to directories and the fmode to the file itself. The

default dmode is 0755 while fmode is 0644.

-o serializes the output stream to force ordered (i.e., sequential) output. The

default is to write blocks in the order that they arrive from the network,

which is usually somewhat random order. See the section ‚Output

Ordering‛ for more information. The –o becomes the default when –a, –k,

–E +st, –E +t, or –u t is specified.

-p preserves the source file’s mode, group name, access time, and

modification time. That is, the target file’s mode, group, access and

modification times are set to match that of the corresponding source file.

-P sec produces progress messages every sec seconds. Specify a sec value no less

than 1 second.

-r performs a recursive copy by copying all files starting at the source

directory. Empty directories and symbolic links are ignored. The –r option

is mutually exclusive with the –E option that specifies a known checksum

value.

-v produces additional output during execution.

-w wsz

sets the preferred size of the TCP window. Specify for wsz a value no less

that 8192 (i.e., 8k). Numbers suffixed by k, m, or g are multiplied by 210,

220, or 230, respectively. Prefixing wsz with an equals sign disables any

auto-tuning and attempts to use the specified window size. See the section

‛Window Size‛ to choose an appropriate non-default value. The default is

to use auto-tuning when available, otherwise a fixed size of 128K.

-- is a null option. Use – when an option with an optional argument would

be the last option on the command line.

Advanced Options

-a [dir]

appends data to the end of the target file if the target is found to be

incomplete due to a previously failed copy. The optional dir specifies the

directory on the target host where checkpoint information is to be written

(the default is home/.bbcp). The –a option is mutually exclusive with the –E

option. See the section ‚Resuming Failed Copies‛ for more details. If dir is

omitted, -a may not be the last option on the command line.

-b blkf

specifies the read blocking factor. That is, blkf data blocks are always read

from disk and then queued for sending across the network. The maximum

is determined by the maximum number of scatter/gather buffers allowed

in a readv() system call. See the section ‚Input Blocking‛ for cases where it

might help. The default is 1 and set to 1 if –u t is specified.

-b +blkf

adds blkf additional output buffers. This option is meant to be used when

ordered output is in effect (see –o). See the section ‚Output Ordering‛ for

cases where it might help. The default is 0.

-B bfsz

specifies the disk I/O buffer size and becomes the effective I/O transfer

unit. Specify for bfsz a value no less that 1024 (i.e., 1k). Numbers suffixed

by k, m, or g are multiplied by 210, 220, or 230, respectively. The bfsz is

always made a multiple of the page size, the minimum value possible. The

default is wsz*1.25 or 512K, whichever is smaller. See the section ‚I/O

Buffer Size‛ for cases where changing the default may help.

-d path

specifies source relative addressing. Each relative srcspec is prefixed by

path. When the file is copied to the target, then the destination path will

be snkspec/srcspec. That is, the relative path in srcspec will be created on the

target host relative to snkspec and then the file will be copied. See the

section ‚Multi-Target Copying‛ for more information.

-D turns on debugging.

-e calculates a checksum for each block of data sent using the algorithm

specified by the –E option and is equivalent to ‚–E md5‛ (see below).

-E [%]cstype[=[csval|csfile]]

 calculates a checksum either for the whole file and on a block level if –e is

specified. It also optionally checks the checksum against a known value

(see csval) or be reports it (see csfile and the –v option). –E usually implies

–o and disallows –a as well as –r if a value is specified. See the section

‚Checksum Considerations‛ for details. The arguments are:

% computes the checksum on the source node. By default, the

checksum is computed on the target node.

cstype specifies the checksum algorithm to be used. Supported types are:

 a32 Adler 32-bit checksum.

 c32 Cyclic Redundancy Check (CRC) 32 bit checksum.

 md5 Message Digest 128-bit checksum.

csval is the known checksum value specified as a hexadecimal ASCII

string with the correct number of digits relative to cstype. When

csval is specified, the calculated checksum is compared to this value

and the copy fails if they do not agree. If csval is not specified, the

computed checksum is written either to standard error or csfile.

csfile is the name of the file where the checksum information is to be

appended. The filename must not start with a hexadecimal digit. If

csfile is not specified, the value is written to standard error. The

output format is:

Checksum: cstype csval host:destfile

cstype checksum type (i.e., a32, c32, or md5).

csval computed checksum value.

host target host name.

destfile name of the file created at host.

 -F forces the copy by not checking if there is enough free space on the target

host. This option is especially useful for esoteric devices that do not report

the correct amount of free space.

-i fname

specifies the name of the ssh identity file if one has been specifically

created for bbcp. The identity filename, prefixed by –i, is included in the

ssh command line when starting the source and target nodes.

-K similar to –k but removes the ordering restriction unless another option

requires it. With –f the target file is truncated, not removed, prior to

copying. This option is only useful when the destination is a symbolic link

to a pre-created file place-holder. The –K option is mutually exclusive

with –k.

-L lopts[@lurl]

enables detailed logging of actions via the NetLogger interface. The lopts

specify what is to be logged while lurl determines how it is logged. For

lopts specify one or more of the following:

a – append to data file o – log network writes

b – buffer information in memory r – log disk reads

c – log data compression w – log disk writes

i – log network reads x – log data expansion

If lurl is not specified, the logging interface uses the value of

environmental variable ‚NETLOGGER_DEST‛. Specify one of three

destinations protocols:

file - data is written to the file identified by path/filename

x-netlog - data is sent to host listening on port

x-syslog - data is sent to the system log on the local host

-n does not use DNS to resolve IP addresses to host names. This option is

especially useful when the source or target machine is neither registered

in DNS nor has a valid entry in the /etc/hosts file.

-q qos specifies the quality of service to be used. This is router-implementation

dependent and may ignored. Specify a value between 0 and 255, inclusive.

-R rtargs

enables real-time copy mode. See the section ‚Real-Time Copying‛ for a

full description of this mode and rtargs. If rtargs is omitted, -R may not be

the last option on the command line.

-s strms

sets the number of parallel network streams to be used for the transfer.

The default is 4. See the section ‚Streams‛ for other possible values.

http://www-didc.lbl.gov/NetLogger/

-S srccmd

is the command to be used to start bbcp on the source host. The default is

‚ssh –x –a –oFallBackToRsh=no %I –l %U %H bbcp‛. See the usage notes

for more information.

-T srccmd

is the command to be used to start bbcp on the target host. The default is

‚ssh –x –a –oFallBackToRsh=no %I –l %U %H bbcp‛. See the usage notes

for more information.

-t tlim is the maximum amount of time that the copy may take before it is

aborted. The time limit applies to each source host regardless of the

number of files that host supplies. Specify a number greater than zero and

optionally suffixed by s (the default), m, or h for seconds, minutes, and

hours, respectively. By default, no time limit applies.

-u loc requests un-buffered (i.e., direct) I/O at the locations specified by loc. This

option may actually reduce performance. See the section ‚Un-buffered

I/O‛ for more information. The –u option forces –b 1 and the I/O buffer

size is set to a multiple of 8K. The –u t option forces –o. Specify one or

more of the following letters for loc:

s - source-side t - target-side

-U wsz

sets the size of all I/O buffers, including the TCP/IP socket buffer. This

option is identical to the –w option except that host limits are not checked

and buffers are set to the specified size whether or not the operating

system considers them valid. Improper use of this option may cause the

copy to fail. This option is only useful when dealing with experimental

TCP/IP stacks. Most users should use the –w option.

-V produces even more output than –v allows, including detailed transfer

speed statistics.

-x rate

sets the maximum transfer rate. Specify for rate a value no less that 1024

(i.e., 1k). Numbers suffixed by k, m, or g are multiplied by 210, 220, or 230,

respectively. Data is clocked out from the source at the specified rate per

second.

-z uses reverse connection protocol. See the section ‛Dealing with Firewalls

(-z)‛ for more information.

Success

 The program exists with a status code of 0.

Failure

The program exits with a non-zero status code.

Notes

1) A list of known problems is detailed on the following web page:

http://www.slac.stanford.edu/~abh/bbcp/bbcp_bugs.html

2) Files are copied in the order specified. To minimize start-up and

shutdown time, adjacent files are grouped by source host and treated as a

copy set (i.e., a related group of files). Avoid inter-mixing different source

locations. That is, always specify all the required files from one source

location before specifying files from another location.

3) The destination file system must have sufficient space to comfortably hold

all of the source files. If sufficient space does not exist at the start of a copy

set, the copy is terminated. Use the –F option to avoid this requirement.

4) While the copy is in progress, the target file has 0200 as its mode (i.e.,

owner write-only). The mode is changed only after the copy succeeds.

5) By default, bbcp uses ssh for authentication on every host that was

specified in the source and target specifications. The rules attending to

normal ssh use always apply to bbcp. When in doubt, simply ssh to the

host in question to validate your ability to copy files to or from that host

6) Because bbcp invokes ssh and itself without an absolute path, you must

make sure that bbcp and ssh can be found in one of the directories listed

in your PATH environmental variable. Otherwise, you must specify

where bbcp and ssh can be found (see the next note).

7) The –S and –T options allows you to specify different commands to start

bbcp on the source and sink nodes. Refer to the section ‚Modifying ssh

Startup‛ for details on how to change the default location of bbcp and ssh.

8) bbcp allows the source to be /dev/zero and the destination to be /dev/null.

This is very useful in measuring actual network bandwidth.

9) Refer to http://www-didc.lbl.gov/NetLogger/ for complete information on

NetLogger.

10) You can easily GRID enable bbcp from the security standpoint by

specifying GSI-OpenSSH as the authentication and launch vehicle using

the -S and -T options.

http://www.slac.stanford.edu/~abh/bbcp/bbcp_bugs.html
http://www-didc.lbl.gov/NetLogger/
http://www.ncsa.uiuc.edu/Divisions/ACES/GSI/openssh/

1.1 Checksum Considerations (-e and –E)

The –e and –E options allow you to verify the integrity of the copy but they

incur CPU costs. Certain option combinations require that two checksums be

calculated at the source node, further increasing the CPU cost but allowing for

more flexibility. When you specify a known value for the checksum, bbcp can

verify that no bit errors are introduced since the file was created. The –e and –E

options interact. Below is a table that describes checksum processing based on

various options an arguments and indicates whether or not ordered output (–o)

is enforced.

Specification –o Checksum Processing

 –E cstype

 –E %cstype

N Calculates block level checksums at the source and

target to detect block transmission errors.

–e –E cstype

–e –E %cstype

N Equivalent to the above.

 –E cstype=[csfile] Y Calculates and prints a file checksum at the target.

 –E %cstype=[csfile] N Calculates and prints a file checksum at the source.

–e –E cstype=[csfile] Y Calculates and prints a file checksum at the source

and target nodes and verifies that they are the same.

–e –E %cstype=[csfile] N Calculates and prints a file checksum at the source.

Additionally, block level checksums are calculated at

the source and target to detect transmission errors.

 –E cstype=csval Y Calculates the file checksum at the target and

compares it to csval.

 –E %cstype=csval N Calculates the file checksum at the source and

compares it to csval.

–e –E cstype=csval Y Calculates the file checksum at the source and target

nodes, verifies that they are the same, and compares it

to csval.

–e –E %cstype=csval N Calculates the file checksum at the source and

compares it to csval. Additionally, block level

checksums are calculated at the source and target to

detect transmission errors.

File checksums computed at the target always require ordered output while

independent block checksums and source-only checksums do not.

Ordered output is difficult to achieve on links with highly variable latency; and

may cause copy operations to stall. Even so, it is possible to validate or compute

a file checksum without ordering the output by prefixing the cstype by a percent

sign (%) and specifying –e. This combination requests transitive source

checksum mode. Here, the file checksum is computed and optionally validated at

the source; then independent checksums are computed for each block and sent to

the target where they are validated. A file checksum can be reported because if

the source checksum is correct and each block sent to the target suffered no

errors, then the same checksum should also exist at the target. Because two

checksums must be computed at the source node, the source may become

compute-heavy. While not a true end-to-end checksum, it may provide sufficient

integrity protection while avoiding output ordering.

If you do specify output ordering (–o) or if output ordering is forced by some

other option, along with source-only checksumming; bbcp automatically reverts

to source-target checksums to avoid computing two checksums on the source

node. Therefore, ‚–o –e –E %cstype=‛ is equivalent to specifying ‚–e –E cstype=‛.

If full end-to-end checksums are not needed, you can save substantial amount of

CPU time by not specifying the percent sign and –e. This combination requests

direct target checksum mode. Here, the file checksum is only computed at the

target node. If a csval is specified, it is only verified at the target. If incorrect, it is

impossible to know where the error was introduced. Merely printing a target

checksum, of course, is no guarantee that it is correct. Target verification mode

still requires ordered output but no additional source CPU resources.

1.2 Tuning Considerations

bbcp has many options for tuning a file transfer to achieve maximum possible

performance. Which to use and the appropriate values are completely

determined by the type of devices and file systems being used at the source and

target node as well as the network that joins them. This section describes what

the tuning options actually do and how you might use them.

1.2.1 Window Size (-w)

The first and most important option is –w. This determines the TCP window size

as well as the default I/O size. The default of 128Kis usually good enough for

LAN and larger values are likely to hurt performance.

For wide area networks, you must compute the bandwidth delay product. This is

the product of the network bandwidth and round trip time (RTT) between the

source and target nodes. The basic formula is:

window = netspeed/8*RTT

Where netspeed is network bandwidth in bits per second and RTT is the round-

trip time between the source and target; which can be determined using the ping

or traceroute commands. The result is the optimal window size in bytes.

For example, assume you have a 1Gb link and want to send a file from San

Francisco (SFO) to Geneva, Switzerland (GVA). The RTT is typically 175ms.

Using the formula above, the ideal window would be 20.85MB, much larger than

most operating systems allow. So, you will likely choose the largest value

allowed that also does not overwhelm the memory resources of the machines

being used.

Refer to http://www.speedguide.net/bdp.php for easily calculating the optimal

window size.

However, you may not need to calculate a window size at all if the receiving host

supports window auto-tuning. This relatively new addition to the TCP/IP stack

is fully available in Linux 2.6.17 and above. Auto-tuning is used by default when

it is available. While this mode does not require that you manually calculate the

window it also assumes that the system administrator has properly configured

the auto-tuning parameters and they are appropriate for your particular transfer.

That may not be the case and, if the –v option has been specified, bbcp will issue

http://www.speedguide.net/bdp.php

a warning if it detects settings that would likely compromise performance. Use

the –V option display the window settings for an actual transfer.

When auto-tuning is inappropriate or just wrong, you can disable its use by

prefixing the window size with an equals sign (e.g., –w =128k). This does not

mean the window will equal the specified value; as bbcp always negotiates the

actual window between the sending and receiving hosts.

Refer to http://www.psc.edu/networking/projects/tcptune/ for a good tutorial on

tuning TCP stacks for maximum data transfer performance.

1.2.2 Streams (-s)

The –s options is the second most important tuning parameter. This specifies the

number of parallel TCP streams. A naïve explanation would say that streams can

make up for not having a large enough window. The idea is that if you can’t get

enough packets moving in a single window, then create multiple windows and

run them simultaneously. This is only partially true. While multiple streams do

provide multiple windows, multiple windows also parallelize traffic with

independent time-outs, re-transmissions, and greatly improved I/O overlapping.

This is a cumulative effect that dramatically increases the overall bandwidth

utilization. But, too much of a good thing can also be bad, as you will see below.

The optimal number of streams can be calculated as:

Streams = window/actual

Where window is the calculated optimal window size and actual is the window

size that is actually being used. It follows that the smaller the actual window the

larger number of streams will be needed. Using the SFO-GVA example with a

window size of 512K would imply that about 42 streams would be optimal. In

practice, this is not a practical number and would likely reduce bandwidth

utilization. The reason is that each additional stream requires more CPU and

memory resources and the scaling is not linear. You can see this for yourself by

copying a file and successively increasing the number of streams. As the number

is increased the percentage improvement will gradually become successively

smaller and will eventually become negative.

As a rule of thumb, start with the optimal calculation divided by two. Then take

measurements 25% above and below that number and use whichever provides

http://www.psc.edu/networking/projects/tcptune/

the best performance. In the local area network the default of 4 streams is usually

sufficiently good for 1Gb LAN transfers; while 8 to 12 streams is good for WAN

transfers.

1.2.3 I/O Buffer Size (-B)

The third most important tuning parameter is the I/O buffer size. This is the

amount of data that will be read from disk, sent over the network in one request,

and then written to the target device. By default, the buffer size is set to be the

same as the window size. This is ideal to maximize parallelism but might not

always be the best value. The ideal buffer size is mostly determined by the file

systems being used and its underlying devices. To add more complications, file

systems can be tuned for various performance targets and they are rarely tuned

to provide the best network performance. Hence, defaulting for maximum

parallelism is a good default.

If you know the performance characteristics of source and destination file

systems then playing with the buffer size may improve overall network

bandwidth utilization. Typically, a larger buffer will make up for device seek-

time delays at the expense of reduced parallelism. However, this may still be a

win. Generally, faster inter-connects (e.g., 10Gb) fair much better with larger I/O

buffers than slower inter-connects; especially in the local area network. In the

wide area network try using a buffer size twice the window size to see if any

improvement can be realized.

1.2.4 Output Ordering (-o and –b +)

I/O ordering allows you to guarantee that the output stream is sequential in

nature. Disk devices work best doing sequential I/O. So, you may wonder why

ordering is not the default. The reason is that file systems tend to smooth out

unordered output via their memory cache and bbcp’s unordered output is

largely bounded (i.e., output tends to be more ordered than not). Furthermore,

guaranteeing ordered output is memory intensive since an out-of order block

must be buffered until its predecessor is received. Depending on how the parallel

streams are routed and network latency variability, ordered output may lead to

large demands for memory to the point that the copy stalls. The –b + option

exists solely to inform bbcp how much more memory it should use to try to

prevent stalls. There is no formula because the value depends on the network

being used and its performance at the time it is being used. If ordered output is

desired and copies stall, start with a value twice the number of streams being

used to see if that solves the problem.

You may need to worry about order tuning depending on which other options

are chosen. The –a (append mode), -c (compression), -k (keep), -E (checksum),

and –u t (un-buffered target) are sequential in nature and enforce an ordered

output stream. Some file systems (e.g., HDFS) also require an ordered output

stream. So, keep in mind these options and their side-effects.

1.2.5 Input Blocking (-b)

The I/O blocking option can provide some improvement in transfer rate by

reading several blocks from the input device before queuing the blocks for

transmission. Parallel queuing tends to smooth out variability when the TCP

streams differ greatly in latency. The cost is a higher initial latency since no

stream can start until the requested blocks are read from disk. Eventually, this

latency tends to disappear but only if the input device is much faster than the

network link. Additionally, there is somewhat less CPU utilization as there are

fewer kernel calls to transfer the data. That said, the default is 1 and normally

provides the best overall performance.

Consider increasing the blocking factor if the input device is much faster than the

network link and window sized transmission units (i.e., -B is not specified)

provide the best amount of parallelism.

1.2.6 Compression (-c)

One achieves the highest bandwidth utilization by not using any bandwidth at

all and still accomplishing the task. This is what compression tries to provide by

reducing the number of bytes sent over the network. Compression is hardly free

since it requires a significant amount of CPU resources at the source and target

nodes. Indeed, if there is insufficient CPU resources on either end, compression

will provide much worse performance. Performance will further degrade if the

data does not compress well.

You should considered compression if the data to be sent has a compression ratio

of 1.5 or better and the achievable network bandwidth utilization is less than 66%

of the stated bandwidth. Be aware of the usable CPU power of the source and

target nodes will ultimately determine if compression is a viable option.

1.2.7 Un-buffered I/O (-u)

The –u option provides a mechanism to bypass the normal file system memory

cache. It can be selectively employed at the source and target nodes. Bypassing

the file system cache limits the transfer to the raw speed of the underlying device

which, in practice, is usually slower than the network. Consequently, this option

should be used as the last resort in improving the transfer rate. There are,

however, some cases where un-buffered I/O makes sense either on the source or

target. For instance, when transferring a large file (i.e., several gigabytes) using

the file system cache may overwhelm the operating system and lead to a general

slow-down that is far worse than transferring the data directly from the slow

device. Un-buffered I/O also makes sense if the source device is much faster (e.g.,

1.5 times) than the network link. You should also consider using the –B option to

specify an appropriately large I/O transfer size for the device.

Un-buffered I/O places far more constraints on the copy than using a standard

file system interface, since bbcp must be cognizant of device sectors. When –u is

specified, all I/O buffers are automatically constrained to be multiples of 8K, the

common restriction in many operating systems and device drivers. When –u t is

specified, ordered output is enforced since many device drivers require it for

new files. Even with these constraints, un-buffered I/O may still fail because

either the source file is sparse (i.e., has holes) or the operating system does not

adequately support ‚direct I/O‛.

Consequently, this option is very sensitive to the particular system configuration

being used and the nature of the source file. Un-buffered I/O may, in fact, greatly

decrease the data transfer rate. It should be treated with care.

1.2.8 Routing (-z)

Ostensibly, the –z option is used to reverse connection initiation. It is meant to

get around firewall issues (see ‚Dealing With Firewalls‛). However, the option

may also cause the path between the source and target to use a different routing.

That alone may cause a large variation in transfer speed. If you see an

unexpectedly low transfer rate, and firewalls are not an issue, try the same copy

with –z to see if you are experiencing routing issues.

1.3 Resuming Failed Copies (–a and –k or –K)

You can resume failed copies in most cases by consistently using the –a option.

When –a is specified, the following occurs:

1) If the target file does not already exist, a new copy is initiated by

a. creating a checkpoint record to pair the source and target files

together,

b. transmitting all source bytes to the target location, and

c. upon successful transmission of the source file, erasing the

checkpoint file.

2) If the target file exists and is identical in size to the source file and a copy

checkpoint record is not found for the file, the copy is assumed to have

completed normally and the file is skipped.

3) If the target file is larger than the source file, is smaller in size and a

checkpoint record cannot be found, or if the checkpoint record does not

pair the source and target files together, bbcp terminates with an error

unless –f has been specified. In this case, the file is removed, or truncated

if –K has been specified, and the copy is continued as in step 1 above.

4) Otherwise, the copy is resumed by appending all un-transmitted source

file bytes to the target file.

The –k option maximizes bbcp’s ability to resume failed copies. If –k is not

specified and an error occurs, bbcp removes the partially transmitted file. The –a

option is still useful without –k, however, bbcp will merely skip over fully

copied files. Rarely will bbcp be able to resume copying where it left off. The –k

option forces partially completed files to remain on disk so that a partial copy

can be resumed after the fault condition that terminated the copy is corrected.

Proper resumption of partially transmitted files relies on a checkpoint record. By

default, this record is written in the command owner’s (i.e., the user running

bbcp) home directory in the ‚.bbcp‛ subdirectory. This subdirectory is

automatically created if it does not already exist. The file names in this

subdirectory have the format

bbcp.srchost.trgid.trgfn

Where srchost is the DNS name of the host that holds the source file, trgid is the

unique identification of the target location, and trgfn is the name of the target file.

The contents of the file uniquely identify the source file at srchost. Proper pairing

requires that the conditions that created the checkpoint file are still true at the

time the copy is resumed. This essentially means that the copy cannot be

resumed if any changes have occurred to the source file or if the source or target

files have changed location since the copy was terminated.

Users with home directories in AFS may wish to change the default location for

checkpoint files, especially should they run in batch-mode without an AFS

token. Refer to the section ‚Configuring New Defaults‛ on how to set a new

default location.

1.4 Multi-Directory Copying (-d)

You may use bbcp to copy source files to multiple directories. The –d option

enables source relative addressing that, in turn, allows multi-directory copying.

The following steps are taken when you specify –d path:

1) Each relative source file specification (i.e., one that does not start with a

slash) is prefixed by path. The source file must be found at the resulting

location.

2) The file is transferred to the sink (i.e., target) host along with its associated

relative path.

3) The sink host creates the source relative path, if it does not exist, prefixed

with the path in the sink specification.

4) The file is then created with a file name identical to the source file name.

For example,

bbcp –d /usr/abh/data dir1/data1 dir2/data2 batch:/usr/temp

would copy
/usr/abh/data/dir1/data1 to /usr/temp/dir1/data1

/usr/abh/data/dir2/data2 to /usr/temp/dir2/data2

The directories dir1 and dir2 are automatically created starting at path

/usr/temp on host batch should they not exist.

You may mix relative paths with absolute paths. Absolute source paths are not

prefixed by the –d path and are copied to the directory identified by the sink

specification.

1.5 Real-Time Copying (-R)

The –R option enables real-time copying mode. In this mode you can start

copying a source file while it is still being created by another program. This

allows you to implement a streaming copy model as opposed to the more

traditional store-and-forward copy model. Since bbcp needs to know when the

source file is complete, you must use a special file-creation protocol using file

locks. Below are the arguments that you can supply to the –R option to control

how real-time copying is performed. Subsequent sections provide examples.

-R [rtargs]

rtargs: {c=csec | b | h | i=sec | v | lfn}[,rtargs]

Where:

c=csec specifies the minimum interval between checks to see if the input file has

grown to sufficient size to continue the copy. File size checks are normally

minimized and few occur if the source file is created at least as fast as it

can be sent to the target node. The default is 3 seconds.

b blocks copy until there is sufficient data in the source file to utilize all

streams. By default, data is sent whenever there are sufficient bytes to

send on a single stream. This option may be useful for WAN links or

when the file grows relatively slowly in size.

h hides the file at the target node by making it inaccessible (i.e., making it

write-only) until the copy completes. By default, the file is accessible on

the target node while it is being created there and the s-mode bit is set

while the copy is in progress to indicate the file is not yet complete.

i=isec specifies the maximum number of seconds the source file may remain idle

(i.e., not grow in size) before the copy is aborted. The default does not

impose any limit.

v when used in conjunction with lfn, verifies the successful completion of

the source file by checking that lfn is non-zero size after the lock on lfn is

obtained. The default assumes the source file has been successfully

created the moment a shared lock on lfn is obtained.

lfn specifies the path to an external file to be used for locking. It must start

with dot or slash. This file co-ordinates the real-time copy. The default

uses the source file as the target for locking and co-ordination. See the

section ‚Using an Alternate Lock File‛ for more information.

1.5.1 Real-Time Copy Protocol

The following steps need to be followed to successfully use real-time copy mode:

1. An application opens the future source file in write mode and obtains an

exclusive lock on the file using the fcntl() system call.

2. The bbcp program is launched to copy the source file with the –R option.

With the –R option, bbcp opens the source file in read mode and starts the

copy while simultaneously trying to obtain a shared lock on the file.

3. When the application is done creating the source file it must close the file.

This removes the exclusive lock on the file which allows bbcp to obtain

the shared lock on the file. At this point, bbcp assumes that the source file

is complete and the copy continues by sending all outstanding bytes, at

the time the shared lock was obtained, to the target node.

Below is a sample snippet of C code that illustrates what the creating application

must do.

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

struct flock flk;

int rc, srcfd;

flk.l_type = F_WRLCK; flk.l_whence = SEEK_SET;

flk.l_start = 0; flk.l_len = 0;

srcfd = open(srcfn, O_WRONLY|O_CREAT|O_TRUNC,0600);

if (srcfd < 0) {/* Handle open error */}

do {rc = fcntl(srcfd, F_SETLKW, &flk);}

 while(rc < 0 && errno == EINTR);

if (rc < 0) {/* Handle fcntl error */}

/* bbcp can be started and the source file written */

Sample Application Code Using Source File Locking

1.5.2 Using an Alternate Lock File

The ability to specify a lock file that differs from the source file allows you to

enable real-time copy mode using unmodified application as well as positively

confirm that the source file was successfully created. An alternate lock name is

specified as an argument to the –R option. Other than using another file for

locking the real-time copy protocol steps are identical to those described in the

previous section.

However, with an alternate lock file you can also specify the v argument with –R

to indicate that bbcp must get a positive indication that the file was successfully

created in order for the copy to complete. The following steps need to be

followed to successfully use real-time copy mode with an alternate lock file and

the v argument:

1. A wrapper script opens the alternate lock file in write mode, truncating to

zero length, and obtains an exclusive lock on the file using the fcntl()

system call.

2. The script launches the application that is to create the source file. The

script must wait until the source file appears in the file system or the

creating application fails, whichever comes first.

3. When the source file appears in the file system, the script launches bbcp to

copy the source file with the –R option, specifying the alternate lock file

name and the v argument. When launched, bbcp opens the source and

lock files in read mode and starts the copy while simultaneously trying to

obtain a shared lock on the alternate lock file.

4. The script then waits for the creating application to complete. Should the

creating application end with an error, the script can exit as well. In this

case, bbcp aborts the copy.

5. Otherwise, the script must write at least one byte into the lock file. It may

then exit, implicitly closing the lock file, and let bbcp continue.

6. Closing the alternate lock file removes the script’s exclusive lock on the

file and allows bbcp to obtain the shared lock on the file.

7. Then, bbcp checks the size of the lock file. If it’s zero, the copy is aborted.

Otherwise, the copy continues by sending all outstanding bytes, at the

time the shared lock was obtained, to the target node.

What follows is a sample snippet of perl code that illustrates what the wrapper

script must do.

#!/bin/perl

Use Fcntl;

$LKfn = „/tmp/myLock‟;

$LKop = pack('sslllll', F_WRLCK, 0, 0, 0, 0, 0, 0);

Open lock file, truncating it to zero, and obtain lock

die "Unable to open $LKfn; $!\n"

 if !open(LKFD, "+>$LKfn");

die "Unable to lock $LKfn; $!\n"

 if !fcntl(LKFD, F_SETLKW, $LKop);

Launch application and wait for it to open source file

$appPID = &Launch_App_Wait_For_File();

exit(1) if !$appPID;# Exit if application failed to launch!

Now launch bbcp

system(„bbcp‟, „-R‟, “v,$LKfn”, srcfn, trgfn);

exit(1) if !$?;# Exit if bbcp failed to launch!

Wait for application to end

exit(8) if waitpid($appPID,0) <= 0;

Check for success (allow copy) or failure (abort copy)

print LKFD “OK” if $? == 0; # Copy will complete!

Sample Script Using Alternate Lock File With v Argument

1.6 Modifying ssh Startup (-S and –T)

By default, bbcp uses ssh, as determined by your PATH environmental variable,

for authentication on every host that was specified in the source and target

specifications. In order to speed ssh start-up, bbcp disables ssh X11 forwarding

(-x), disables the forwarding of the authentication agent connection (-a), and

disables the use of rsh when ssh authentication fails (-o).

bbcp executes a copy of itself on the source node as ‚bbcp SRC‛ and a mirror

copy on the target node as ‚bbcp SNK‛. Because the commands are well known,

you may restrict ssh usage to exactly these commands when a password-less

key-file is used to gain access to a host. The –I option provides a mechanism to

specify the location of the identity file should it not reside at the default location.

At times, you may need to specify different commands to start bbcp on the

source node, as well as the sink node. The –S and –T options allow you to do

this. You may also specify the default –S and –T options using a configuration

file. See ‚Configuring New Defaults‛ for more information.

Because certain information needs to be substituted in the command line, bbcp

defines certain character sequences to indicate the location of a substitution.

These are:

%I - substituted by the –i fname (i.e., ssh identify file option) should one exist,

%H - the source or target host name, and

%U - the source or target user name.

For instance, the command

bbcp -S „/bin/ssh %I –l %U %H /bin/bbcp‟ /tmp/fn abh@host:/tmp

would start bbcp on the source node using the command

/bin/ssh –l abh host /usr/bin/bbcp SRC

Since the ssh identity file was not specified, the %I was deleted. If the identity

file were specified as

bbcp -S „/bin/ssh %I –l %U %H /bin/bbcp‟ –i foo /tmp/fn abh@host:/tmp

then the command used to start bbcp on the source node would be

/bin/ssh –i foo –l abh host /usr/bin/bbcp SRC

mailto:abh@host:/tmp
mailto:abh@host:/tmp

Identical rules apply to the –T option which specifies the command to start bbcp

on the sink (i.e., target) node.

You should also add the ‚-a -x -oFallBackTo Rsh=no‛ options to your ssh

command to reduce start-up time.

1.7 Dealing With Firewalls (-z)

bbcp is a peer-to-peer application. Mainly, this means that copies of bbcp on the

source and sink nodes appear to be both client as well as server applications .

This may not be possible at some sites because of firewall restrictions.

Specifically, some installation may prohibit incoming TCP/IP connections at

arbitrary ports.

Normally, bbcp source nodes will connect to their counterpart running on the

target node. If the target host prohibits incoming connections, the copy will fail.

However, should the source host allow arbitrary connections, you can specify the

–z option. This option reverses the connection protocol so that the bbcp sink

node will always try to connect to its counterpart running on the source host.

When the source and target nodes prohibit arbitrary connections, you will need

assistance of an administrator at either node. By default, bbcp checks the

/etc/services file for the existence of two services: bbcpfirst and bbcplast. The

bbcpfirst service identifies the starting port number and bbcplast identifies the

ending port number that can be used for incoming connections. When neither

service name can be found, bbcp resorts to using an arbitrary port number. If the

services are found, bbcp restricts its port usage to one of the ports in the

indicated range.

Ask the administrator at the source or target nodes to allow a range of well-

known port numbers to be used for incoming connections (i.e., allowed to pass

through the firewall). This will require that the administrator register these port

numbers in the /etc/services file using the names bbcpfirst and bbcplast (the

default names can be changed). Make sure that at least 8 port numbers exist in

the range (more if possible). If restricted port access is only allowed in the source

site, you must specify the –z option when invoking bbcp.

1.8 Configuring New Defaults (-C)

When starting, bbcp checks the environmental variable bbcp_CONFIGFN.

When this variable is set, the contents are used as the location of the

configuration file. Otherwise, bbcp looks to see if the file .bbcp.cf exists in the

home directory. If it does, then this file is used as the initial configuration file. A

configuration file may also be specified on the command line using the –C

option. Command line configuration files are processed when they are

encountered. Thus, any option specified prior to –C may be overridden by the

configuration file and the file’s values may be overridden by subsequent options.

The –C option, when specified, should be the first option on the command line.

Each line in the configuration file may contain an option-value pair. The option

name is identical to that specified on the command line (e.g., -a,-b, -c, etc.). The

value is the value, if any, that would be specified along with the corresponding

option. The only difference between options specified on the command line and

those specified in the configuration file is that each option must be on a separate

line and option values must not be quoted.

It is critical to remember that bbcp is a peer-to-peer application. Therefore, it can

have up to three different execution locations at the same time: the host that

initiated the bbcp command (i.e., agent), the host that holds the source data (i.e.,

source), and the host that is to receive the source data (i.e., target). In order to

simplify the management of this environment, the configuration file is only read

on the agent’s host (i.e., the host that initiated the copy) and the values are

transmitted to the source and target hosts.

1.9 New Features

Version 10.08.13.01.0 of bbcp documented here has the following new feature:

 The new –R option enables real-time copy mode.

Version 10.08.04.00.0 of bbcp documented here has the following new features:

 The –a option is no longer mutually exclusive with –f or –K. Instead,

when –a is specified together with –f or –K , the latter option is applies if

the file cannot be appended to. This allows a file copy to restart from

scratch if an append copy cannot be executed.

 The –m option has been extended to allow the specification of a directory

mode to be used when directories are created.

Version 10.07.26.00.0 of bbcp introduced the following new features:

 Window auto-tuning is now supported as the default. The –w option

supports a mechanism to defeat auto-tuning when so desired.

 –B option now defines the overall I/O size and is not tied to the –c option.

 –b + option allows adding more output buffers to prevent stalls when –o

has been specified or forced.

 –E option that allows extensive checksum checking and reporting.

 –K option that removes some restrictions of the –k option in order to

handle pre-created symbolic links.

 –u option to specify un-buffered (i.e., direct) I/O at the source or target.

 The default window size has been increased to 128K for improved

performance on most current operating systems.

 Recursive name space indexing now happens in the background. This

allows large name spaces to be traversed without timing out the copy.

1.10 Backward Compatibility

Version 10.08.13.01.0 of bbcp documented here is backward compatible with the

following caveat:

 Older versions will fail if the new –R option is specified.

Version 10.08.04.00.0 of bbcp documented here is backward compatible with the

following caveats:

 Older version will fail if –a is combined with, –f or –K.

 Older version will fail if a directory mode is specified with the –m option.

Version 10.07.26.00.0 of bbcp is backward compatible with the following caveats:

 Older version will fail if –E, –K, –u , or ‘–w =’ is specified. These are new

options.

 The –b + option is converted to –b by older versions. While the conversion

is compatible, performance characteristics are not comparable.

 The default window size has been increased to 128K. This generally

increases performance on today’s systems. However, this is incompatible

with defective routers and packet firewalls that rewrite the window

scaling factor during transmission. When this happens, poor and erratic

bandwidth utilization will result. Should you see this, revert to using the

old default of 64K.

 The –W option is deprecated but still accepted. However, it has now the

same meaning as –w.

 The format and information provided by the –v option (verbose) has

changed.

1.11 Problem Reports & Enhancement Requests

Please direct all problem reports, modifications, and requests for enhancements

to:

Andrew Hanushevsky abh@stanford.edu

1.12 Downloading

First, please read the legal notice (see below). Use of this software implies that you

have read and agreed to all of the terms and conditions for use.

If you have access to AFS, you can find the platform-specific bbcp executable at

/afs/slac.stanford.edu/public/software/bbcp/bbcp

Otherwise, download (use the right button) one or more of the following bbcp

executables:

AIX (not available in binary but should compile from source)

BSD (not available in binary but should compile from source)

HP/UX (not yet available)

MacOS X86 (Darwin 8.11.1)

MacOS X86 (Darwin 10.4.0)

MacOS amd64 (Darwin 10.4.0)

Redhat Linux RHEL3 (2.4.21-63-ELsmp i386_linux24)

Redhat Linux RHEL4 (2.6.9-89.0.23.ELsmp i386_linux26)

Redhat Linux RHEL4 (2.6.9-89.0.23.ELsmp x86_64_linux26)

Redhat Linux RHEL5 (2.6.18-194.3.1.el5 i386_linux26)

Redhat Linux RHEL5 (2.6.18-194.3.1.el5 x86_64_linux26)

Solaris 5.9

Solaris 5.10

Solaris X86 5.10

mailto:abh@stanford.edu
http://www.slac.stanford.edu/~abh/bbcp/Legal_Notice.htm
http://www.slac.stanford.edu/~abh/bbcp/bbcp.x86_darwin_80
http://www.slac.stanford.edu/~abh/bbcp/bbcp.x86_darwin_100
http://www.slac.stanford.edu/~abh/bbcp/bbcp.amd64_darwin_100
http://www.slac.stanford.edu/~abh/bbcp/bbcp.i386_rhel30
http://www.slac.stanford.edu/~abh/bbcp/bbcp.i386_linux26
http://www.slac.stanford.edu/~abh/bbcp/bbcp.amd64_linux26
http://www.slac.stanford.edu/~abh/bbcp/bbcp.i386_rhel50
http://www.slac.stanford.edu/~abh/bbcp/bbcp.amd64_rhel50
http://www.slac.stanford.edu/~abh/bbcp/bbcp.sun4x_59
http://www.slac.stanford.edu/~abh/bbcp/bbcp.sun4x_510
http://www.slac.stanford.edu/~abh/bbcp/bbcp.sunx86_510

The previous are actual executable programs to retrieve and store a file. Each

program is compiled for the indicated operating system. The program may or

may not work in other versions of the same operating system. Should you run

into trouble or wish to extend the range of operating systems available, feel free

to download the source and send back any required modification.

1.13 Legal Notice

Copyright © 2002-2010, Board of Trustees of the Leland Stanford, Jr. University.

Produced under contract DE-AC02-76-SF00515 with the US Department of Energy.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in the

documentation and/or other materials provided with the distribution.

c. Neither the name of the Leland Stanford, Jr. University nor the names

of its contributors may be used to endorse or promote products

derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY

OF SUCH DAMAGE.

http://www.slac.stanford.edu/~abh/bbcp/bbcp.tgz

