
Vector Math Library 
Overview  

 

 

 
 
 

 

© 2007 Sony Computer Entertainment Inc. 
All Rights Reserved. 

 



 

 
©SCEI Vector Math Library 
 

- 2 - 

Table of Contents 
Library Overview ............................................................................................................................... 3 

Features ...............................................................................................................................................3 
Files......................................................................................................................................................3 

How to Use the Library...................................................................................................................... 5 
Vector Representation Convention ......................................................................................................5 
AoS and SoA Formats..........................................................................................................................5 
Alignment and Padding ........................................................................................................................6 
Floating-Point Behavior........................................................................................................................7 
C++ API ................................................................................................................................................7 
C APIs ................................................................................................................................................10 

 



 

 
©SCEI Vector Math Library 
 

- 3 - 

Library Overview 

Features 
The Vector Math library mainly provides functions used in 3-D graphics for 3-D and 4-D vector operations, 
matrix operations, and quaternion operations. APIs for both the C and C++ programming languages are 
provided, along with three formats according to the data layout: 

• The AoS (Array of Structures) SIMD format, which can easily and quickly be adapted to handle 
different situations 

• The SoA (Structure of Arrays) SIMD format, which allows for maximum throughput 
• The scalar format, which is useful for porting and testing 

All three formats provide implementations for the PPU and SPU. 

Files 
The following files are required to use the Vector Math library: 

Table 1  Required Files for PPU 
File Name with Relative Path Description 
vectormath/c/vectormath_aos.h Header file for pass-by-reference API  

(C language for PPU AoS format) 
vectormath/c/vectormath_aos_v.h Header file for pass-by-value API  

(C language for PPU AoS format) 
vectormath/c/vectormath_soa.h Header file for pass-by-reference API  

(C language for PPU SoA format) 
vectormath/c/vectormath_soa_v.h Header file for pass-by-value API  

(C language for PPU SoA format) 
vectormath/cpp/vectormath_aos.h Header file for API  

(C++ language for PPU AoS format) 
vectormath/cpp/vectormath_soa.h Header file for API  

(C++ language for PPU SoA format) 

Table 2  Required Files for SPU 
File Name with Relative Path Description 
vectormath/c/vectormath_aos.h Header file for pass-by-reference API  

(C language for SPU AoS format) 
vectormath/c/vectormath_aos_v.h Header file for pass-by-value API  

(C language for SPU AoS format) 
vectormath/c/vectormath_soa.h Header file for pass-by-reference API  

(C language for SPU SoA format) 
vectormath/c/vectormath_soa_v.h Header file for pass-by-value API  

(C language for SPU SoA format) 
vectormath/cpp/vectormath_aos.h Header file for API  

(C++ language for SPU AoS format) 
vectormath/cpp/vectormath_soa.h Header file for API  

(C++ language for SPU SoA format) 



 

 
©SCEI Vector Math Library 
 

- 4 - 

Table 3  Required Files for Scalar 
File Name with Relative Path Description 
common/vectormath/scalar/c/vectormath_aos.h Header file for pass-by-reference API  

(C language scalar format) 
common/vectormath/scalar/c/vectormath_aos_v.h Header file for pass-by-value API  

(C language scalar format) 
common/vectormath/scalar/cpp/vectormath_aos.h Header file for API  

(C++ language scalar format)  

Note: All functions are inlined in this library; therefore, there are no .a files. 

In addition to the above, each directory contains the vec_aos.h, quat_aos.h, mat_aos.h, vec_soa.h, 
quat_soa.h, mat_soa.h, vec_aos_v.h, quat_aos_v.h, mat_aos_v.h, vec_soa_v.h, quat_soa_v.h, and 
mat_soa_v.h header files, but the user should not directly include these; they are included from the 
vectormath_aos.h, vectormath_aos_v.h, vectormath_soa.h, and vectormath_soa_v.h header files. 



 

 
©SCEI Vector Math Library 
 

- 5 - 

How to Use the Library 

Vector Representation Convention 
In the Vector Math library, vectors are handled as column vectors (vectors in which the elements are 
arranged vertically). This is the same convention used in many computer graphics textbooks. According to 
this convention, the basis vectors and translation vector of the transformation matrix are matrix columns, 
and the multiplication sequence is “(matrix)(vector)”. 

The row-vector convention is also often used in computer graphics. In the row-vector convention, all 
matrix and vector objects are transposed as compared with the column-vector convention, and thus an 
opposite order is used for multiplying matrices and matrices with vectors. Although there are various 
opinions regarding which arrangement is the best, the operations are fundamentally identical and neither 
is superior in terms of performance. 

AoS and SoA Formats 
The Vector Math library uses two types of data layout in the SIMD implementation: the AoS format and the 
SoA format. Both the PPU and the SPU can use these two types of data layout. 

In the AoS (Array of Structures) format data layout, each object element is stored contiguously in memory. 
In the SoA (Structure of Arrays) format data layout, four objects are packed together, and the groups made 
up of the four elements are stored contiguously in memory. 

Figure 1  AoS Format and SoA Format Data Layouts 

x1 y1 z1 w1 

x2 y2 z2 w2 

x3 y3 z3 w3 

x4 y4 z4 w4 

AoS Format Layout 

x1

y1

z1

w1

x2

y2

z2

w2

x3

y3

z3

w3

x4 

y4 

z4 

w4 

SoA Format Layout 

Objects can be handled 
independently, flexible 

Processing is very efficient 
due to use of parallel 

operations 
 

The AoS format data layout’s parallel operations are inefficient because: 
• The data to be processed may include padding. For example, in a 3-D vector addition, only the three 

words x, y, z (32 bits x 3) are valid, but a quadword (128 bits) operation that includes w (padding) is 
performed. 

• For some operations, the data must be reorganized. For example, the dot product of a 4-D vector must 
be shifted to align the x, y, z, and w fields. 

However, in this case “efficiency” refers to throughput. AoS format processing frequently has less latency 
than the corresponding SoA format processing; this format is also more familiar to many programmers. For 
applications handling data that cannot be grouped and processed uniformly, the AoS format is the better 
choice. 



 

 
©SCEI Vector Math Library 
 

- 6 - 

The SoA format layout is effective when using uniform sets of data to process with the same code. For 
example, if you have an array of vertex coordinates and if each vertex requires the same processing, all four 
vertices could be grouped into one SoA object and could then be processed in parallel using four-way 
SIMD instructions. This can maximize calculation throughput because each arithmetic instruction 
generally performs four valid calculations. 

However, one of the restrictions of processing SoA objects is that any conditional branch that applies to 
each object must be transformed to a conditional move. In other words, it is possible that when 
simultaneously processing four objects, some may meet the conditions and some may not. Therefore, the 
only option is to calculate the results of both and then to select the results for each object by a mask. The 
API includes selection functions for this purpose; for example, vmathV3Select() and various selection 
functions within the Aos and Soa namespaces. 

The Vector Math library API includes functions to place four copies of the same AoS object into an SoA 
object, or to convert between an SoA object and four AoS objects. 

Alignment and Padding 
In order to make them convenient for use with quadword load/store instructions and SIMD instructions, 
all data types defined in the Vector Math library have quadword (128 bits) alignment for both the PPU and 
the SPU. As a result, in the AoS format data layout, one word of free space is created in each quadword 
because 3-D vectors (Vector3 type) and 3-D Coordinates (Point3 type) use only three words for their x, y, 
and z elements. The fourth word is padding and is never explicitly set to a value or used.  

Figure 2  Padding in the AoS Format 

x1 y1 z1 --

x2 y2 z2 --

x3 y3 z3 --

x4 y4 z4 --

1 word is not used in 3D vectors 
and vertex coordinates 

Quadword 

 

In other words, when handling this data, one third more memory and bandwidth are used than is 
necessary. 

To avoid this problem, you could store and transfer 3-D data in a more compact format and convert to and 
from AoS format data in quadword alignment as necessary. The APIs provide functions for this purpose; 
for example, the C++ API includes loadXYZArray() and storeXYZArray() functions. 

Similarly, note that the AoS format Transform3 type and the Matrix3 type also contain one word of 
padding for each column. 

The scalar format implementation of AoS vectors uses the GCC alignment attribute to perform the same 
quadword alignment and padding. (When not compiled with GCC, Vector3 type and Point3 type 
padding does take place, but alignment is not guaranteed for any type.) Consistent size and alignment is 
helpful for porting prototype code. 



 

 
©SCEI Vector Math Library 
 

- 7 - 

Floating-Point Behavior 
For the PPU and the SPU, the floating-point behavior of Vector Math library functions follows the behavior 
of processor intrinsics for SIMD arithmetic and standard-library functions. Notable examples are the C++ 
divPerElem() and recipPerElem() functions that behave exactly like the SIMD Math library 
functions divf4() and recipf4(). 

C++ API 
The Vector Math library’s API for C++ is defined by the Vectormath namespace. This namespace 
contains two additional namespaces, Aos and Soa, which implement different data layouts as described 
previously. 

Classes 

The C++ classes that are available within the Vector Math library are listed below: 

Table 4  Available C++ Classes 
Class Description 
Vector3 3-D vector. 
Vector4 4-D vector. 
Point3 3-D point. This 3-D point has different properties from a 3-D vector:  

 - The difference between two 3-D points is a vector. 
 - Two 3-D points cannot be added. 
 - A 3-D point cannot be scalar-multiplied. 

Quat Quaternion. 
When methods or functions require a unit-length quaternion, the user must clearly 
provide a normalized quaternion. 

Matrix3 3x3 matrix. 
Matrix4 4x4 matrix. 
Transform3 3-D transformation.  

This is a 3x4 matrix representing a 3-D affine transformation, consisting of a 3x3 
matrix and 3-D translation. When multiplied with a “Vector3”, it applies the 3x3 
matrix; when multiplied with a “Point3”, it applies both the 3x3 matrix and 
translation. 

Constructors and Type Conversion 

Every class has a constructor with a single float argument, and this float is written to every element of 
the class. For example, Vector3(5) results in a 3-D vector equal to (5,5,5). 

There are also alternate constructors for Vector3, Vector4, Point3, and Quat with enough float 
arguments to set every element of the class. For example, Vector3(1,2,3) results in (1,2,3). However, 
Matrix3, Matrix4, and Transform3 do not have such constructors. 

As shown in the following tables, various constructors are provided to convert between the specified types. 

Table 5  Type Conversion to Vector3 
Constructor Description 
Vector3(Point3) Type converts from Point3 to Vector3. 



 

 
©SCEI Vector Math Library 
 

- 8 - 

Table 6  Type Conversion to Vector4 
Constructor Description 
Vector4(Vector3) Type converts from Vector3 to Vector4. 

Copies x, y, z elements and sets the w element to 0. 
Vector4(Point3) Type converts from Point3 to Vector4. 

Copies x, y, z elements and sets the w element to 1. 
Vector4(Vector3,float) Type converts from the Vector3 and float class to Vector4. 

Copies Vector3 x, y, z elements and the w element from float.  

The Vector4->setXYZ(Vector3) method can be used when type converting from Vector3 to Vector4. 
Matrix4->getTranslation() or Transform3->getTranslation() can be used to get the 
translation component of Matrix4 or Transform3 as Vector3. 

Table 7  Type Conversion to Point3 
Constructor Description 
Point3(Vector3) Type converts from Vector3 to Point3. 

Table 8  Type Conversion to Quat 
Constructor Description 
Quat(Vector3,float) Type converts from Vector3 and float class to Quat. 

Copies Vector3 x, y, z elements and the w element of float. 
Quat(Vector4) Type converts from Vector4 to Quat. 
Quat(Matrix3) Converts a 3x3 rotation matrix to unit quaternion. 

To get a valid result, Matrix3 must be a rotation matrix.  

The Quat->setXYZ(Vector3) method can be used to type convert from Vector3 to Quat. 

Table 9  Type Conversion to Matrix3 
Constructor Description 
Matrix3(Quat) Converts from a unit quaternion to a 3x3 rotation matrix. 

To get a valid result, Quat must be a unit-length quaternion. 

Matrix4->getUpper3x3() or Transform3->getUpper3x3() can be used to get the Matrix4 or 
Transform3 upper left 3x3 matrix as Matrix3. 

Table 10  Type Conversion to Matrix4 
Constructor Description 
Matrix4(Transform3) Type converts from Transform3 to Matrix4. 

Copies the top 3x4 elements and sets the bottom row to (0,0,0,1). 
Matrix4(Matrix3,Vector3) Converts the affine transform represented by a 3x3 matrix and 

translation to a matrix. 
Sets the bottom row to (0,0,0,1). 

Matrix4(Quat,Vector3) Converts the affine transform represented by unit quaternion 
and translation to a matrix. 
Sets the bottom row to (0,0,0,1). 
The Quat argument must be normalized. 

Matrix4->setUpper3x3() can be used to write Matrix3 to the upper left 3x3 matrix of Matrix4. Also, 
Matrix4->setTranslation() can be used to write Vector3 to the translation component. In either 
case, the bottom row value does not change. 



 

 
©SCEI Vector Math Library 
 

- 9 - 

Table 11  Type Conversion to Transform3 
Constructor Description 
Transform3(Matrix3,Vector3) Converts from a 3x3 matrix and translation class to 

Transform3. 
Transform3(Quat,Vector3) Converts from a unit quaternion and translation class to 

Transform3. 
The Quat argument must be normalized. 

Transform3->setUpper3x3() can be used to write Matrix3 to the upper left 3x3 matrix of 
Transform3. Also, Transform3->setTranslation() can be used to write Vector3 to the translation 
component. 

Operators 

The operators “*”, “/”, “+”, and “-“ are overloaded for performing vector, matrix and quaternion 
operations.  

The dot product and cross product operations are defined as dot() and cross() functions. The “*” 
operator is not overloaded for either operation. 

As shown in the following table, multiplication operators for different classes of objects are provided: 

Table 12  Multiplication Operators 
Operator Description 
Transform3 * Vector3 Multiplies a Vector3 by the 3x3 matrix component of a Transform3. 
Transform3 * Point3 Multiplies a Point3 by both the 3x3 matrix component and translation 

component of a Transform3. 
Matrix4 * Vector3 Multiplies a Matrix4 by a Vector3 treated as if it were a Vector4 

with a value of  (x,y,z,0). 
Matrix4 * Point3 Multiplies a Matrix4 by a Point3 treated as if it were a Vector4 with 

a value of (x,y,z,1). 
Matrix4 * Transform3 Multiplies a Matrix4 by a Transform3 treated as if it were a Matrix4 

with a bottom row of (0,0,0,1). 

When using these operators, Vector3, Point3, and Transform3 require alternate 
homogeneous-coordinate meanings to be mathematically valid. In other words, the Vector3 class can be 
considered a 4-D vector with a w element of 0; the Point3 class can be considered a 4-D vector with a w 
element of 1; and the Transform3 class can be considered a 4x4 matrix with a bottom row of (0,0,0,1). 

Constants 

Some constant values can be accessed by using constructors and static methods. For example: 

v3 = Vector3(0.0f);          // zero vector = (0,0,0) 
v3 = Vector3::xAxis();       // unit vector = (1,0,0) 
v4 = Vector4::wAxis();       // unit vector = (0,0,0,1) 
m3 = Matrix3::identity();    // 3x3 matrix identity 
quat = Quat::identity();     // identity quaternion = (0,0,0,1) 

Coordinate Transformations 

The following static methods are provided to generate an object to perform a coordinate transformation: 
• A rotation (for all matrices and for Quat) 
• A scale transformation (for all matrices)  
• A translation (Matrix4 and Transform3 only) 



 

 
©SCEI Vector Math Library 
 

- 10 - 

For example: 

Quat q; 
Vector3 s, t; 
Transform3 m; 
 
m = Transform3::rotation(q);    // rotation from unit quaternion 
m = Transform3::scale(s);       // scale matrix from 3 scale components 
m = Transform3::translation(t); // translation from vector 

Matrix transformations can be performed by multiplying; however, it is faster to set rotation and 
translation components, and to then use the appendScale() and prependScale() functions, which 
scale columns and rows, respectively. For example: 

m = Transform3 (q,t); 
m = appendScale(m,s); 

PPU “InVec” Types 

The C++ API for the PPU provides two “InVec” data types: 
• floatInVec 
• boolInVec 

On the PPU, copying between VMX registers and floating-point registers can result in a stall. To minimize 
such problems, float return values in the C++ API have been replaced with a return value of type 
“floatInVec”. floatInVec is a class with quadword size that implements standard floating-point 
operators using VMX operations. To make this type invisible to the user, floatInVec can be implicitly 
cast to a float by the compiler, so that a result of this type can be used as a float value in most cases. 

Additionally, PPU C++ methods and functions that have float arguments have been overloaded to also 
accept floatInVec arguments. If you use a floatInVec result as an input to another Vector Math 
function, the data can remain in a VMX register. However, assigning the result to a temporary float value 
will not provide any benefit. To avoid accidental casts to float, you can use: 

#define _VECTORMATH_NO_SCALAR_CAST 

The floatInVec interface includes comparison operators that return a “boolInVec”. Using this result as 
an input to a “select” function avoids a move. The boolInVec data type implicitly casts to bool and can 
be used in conditional statements. 

Note: The “InVec” types are not provided in the C API. C++ allows you to take advantage of these types 
but to avoid explicit use of them, and to therefore maintain more portable code. These classes have also 
been implemented for the SPU, although the Vector Math API for the SPU does not currently use them. 

C APIs 
The Vector Math library APIs for C provide functionality similar to the API for C++. As described later in 
this section, a C API is provided for passing by reference and a second API is provided for passing by 
value.  

Support for AoS and SoA Formats 

As with C++, both the AoS format and the SoA format are supported, but in C there is no namespace. 
Therefore, as shown in the following table, the ”Soa” prefix is included in SoA format type names and 
function names to differentiate them. 

Table 13  Naming Conventions 
Data Type AoS Format Type Name SoA Format Type Name 
3-D Vector VmathVector3 VmathSoaVector3 
4-D Vector VmathVector4 VmathSoaVector4 



 

 
©SCEI Vector Math Library 
 

- 11 - 

Data Type AoS Format Type Name SoA Format Type Name 
3-D Point VmathPoint3 VmathSoaPoint3 
Quaternion VmathQuat VmathSoaQuat 
3x3 Matrix VmathMatrix3 VmathSoaMatrix3 
4x4 Matrix VmathMatrix4 VmathSoaMatrix4 
3-D Conversion Matrix VmathTransform3 VmathSoaTransform3 

Using Functions That Have Identical Usage But Different Arguments 

C does not have the concept of function overload. Therefore, when it is necessary to define functions that 
have identical usage but different arguments, include an argument type abbreviation in the function name.  

For example: 

void vmathV4MakeFromV3( VmathVector4 *result, const VmathVector3 *vec ); 
void vmathV4MakeFromP3( VmathVector4 *result, const VmathPoint3 *pnt ); 
void vmathV4MakeFromQ( VmathVector4 *result, const VmathQuat *quat );  

The type name abbreviations are as follows: 

Table 14  Type Name Abbreviations 
Type Name Abbreviation 
VmathVector3  V3 
VmathVector4  V4 
VmathPoint3  P3 
VmathQuat  Q 
VmathMatrix3  M3 
VmathMatrix4  M4 
VmathTransform3  T3 
VmathSoaVector3  SoaV3 
VmathSoaVector4  SoaV4 
VmathSoaPoint3  SoaP3 
VmathSoaQuat  SoaQ 
VmathSoaMatrix3  SoaM3 
VmathSoaMatrix4  SoaM4 
VmathSoaTransform3 SoaT3 

APIs for Passing by Reference or Passing by Value  

Two APIs are provided in C, a “pass-by-value” API and a “pass-by-reference” API. The former API 
typically passes struct arguments by value and returns a struct result by value. The latter API passes all 
struct arguments by pointer, and passes a pointer to a struct result as the first argument. The pass-by-value 
API is distinguished by function names that contain the suffix “_V”. 

For example: 

VmathVector3 vmathV3Add_V(VmathVector3 vec0, VmathVector3 vec1); 
void vmathV3Add(VmathVector3 *result, 
                const VmathVector3 *vec0, 
                const VmathVector3 *vec1); 

Fundamental data types are passed by value in either API.   

For example: 

float vmathV3Dot_V(VmathVector3 vec0, VmathVector3 vec1); 
float vmathV3Dot(const VmathVector3 *vec0, const VmathVector3 *vec1); 



 

 
©SCEI Vector Math Library 
 

- 12 - 

Due to its convenience, some users may prefer the pass-by-value API.  However the pass-by-reference API 
may improve performance.  Even when the pass-by-value functions are inlined, unnecessary copying of 
structs may occur. 

The pass-by-reference API also contains functions that can be used to copy Vector Math struct types.  Code 
that uses these functions may run more quickly than code that uses the assignment operator. 

For example: 

void vmathSoaV3Copy(VmathSoaVector3 *result, const VmathSoaVector3 *vec); 


	Vector Math Library�Overview
	Library Overview
	Features
	Files

	How to Use the Library
	Vector Representation Convention
	AoS and SoA Formats
	Alignment and Padding
	Floating-Point Behavior
	C++ API
	C APIs



