

JTS TOPOLOGY SUITE
TESTRUNNER & TESTBUILDER USER GUIDE

February 3, 2005

Prepared by:

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 2

Document Change Control

REVISION NUMBER DATE OF ISSUE AUTHOR(S) BRIEF DESCRIPTION OF CHANGE

1.0 13-Sep-2001 Jonathan Aquino Original Draft

1.1 17-Dec-2001 Jonathan Aquino Added TestBuilder documentation

1.2 30-Jan-2002 Jonathan Aquino Added Acme Licence

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 3

Table of Contents

1. OVERVIEW ...4

2. USING THE TESTRUNNER..5

2.1 STARTING IN GRAPHICAL MODE ...5

2.2 STARTING IN TEXT MODE...7

2.3 READING THE RESULTS ...7

2.3.1 Status Line ...8

2.3.2 Passed Test ..8

2.3.3 Failed Test ...8

2.3.4 Test Exception ..9

2.3.5 Parse Exception...9

2.4 SETTING SWITCHES.. 10

3. USING THE TESTBUILDER ... 11

3.1 STARTING THE TESTBUILDER .. 11

3.2 OPENING A TEST FILE ... 12

3.3 SETTING THE PRECISION MODEL .. 13

3.4 CREATING GEOMETRIES... 13

3.5 SPECIFYING EXPECTED INTERSECTION MATRIX VALUES 14

3.6 SPECIFYING EXPECTED SPATIAL FUNCTION VALUES 15

3.7 SAVING A TEST FILE ... 16

3.8 GENERATING HTML .. 16

4. APPENDIX: TEST FILE FORMAT .. 17

4.1 EXAMPLE .. 17

4.2 XML SPECIFICATION ... 18

5. APPENDIX: ACME LICENCE .. 21

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 4

1. OVERVIEW

This guide describes how to use:

the JTS TestRunner, a Java application that validates the JTS Topology Suite
the JTS TestBuilder, a Java application that creates test files for the TestRunner

The TestRunner and TestBuilder are used by people who are developing or evaluating JTS.

While similarly named, the JTS TestRunner is not the same as the JUnit TestRunner. Both
have their place. JUnit is a general Java testing framework that the JTS developer will find
useful for testing JTS’ various Java classes. However, the JTS TestRunner is easier for
testing JTS’ computations because, unlike JUnit, it requires no Java coding or compilation –
tests are specified using simple text files. These text files can easily be created by hand, or
generated by a graphical tool (like the TestBuilder).

The TestRunner and the TestBuilder require one of the following Java products:

Java 2 Runtime Environment (JRE), Standard Edition, v1.3
Java 2 Software Development Kit (SDK), Standard Edition, v 1.3.

Either may be freely downloaded from http://java.sun.com/products/.

This guide is divided into two main sections:

Using The TestRunner
Using The TestBuilder

At the end is an appendix detailing the structure of the XML test files.

For more information on JTS, see the JTS Technical Specifications.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 5

2. USING THE TESTRUNNER

This section describes how to use the TestRunner to run a test file that validates the JTS
Topology Suite. Test files are created using the TestBuilder (see 3 Using The TestBuilder on
page 11).

Sections 2.1 and 2.2 describe the two ways of using the TestRunner:

Graphical mode. Has file-chooser dialogs that make it easy to build a list of test files.
Text mode. Quicker to start up than graphical mode. Also, the –files switch can be used
to run all test files in a given directory (see Section 2.4).

Sections 2.3 and 2.4 describe:

how to read the results of the TestRunner
how to configure the TestRunner using switches

2.1 STARTING IN GRAPHICAL MODE
To start the TestRunner in graphical mode, Windows users can simply run testrunner.bat.
Users of other operating systems need only:

1. Add to the class path: jdom.jar, xerces.jar, jts.jar, jts_test.jar (these
files are supplied with JTS)

2. Execute at a command prompt:
java com.vividsolutions.jtstest.testrunner.TopologyTestApp -gui

Figure 2-1 below shows TestRunner’s graphical mode.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 6

Figure 2-1 – Graphical mode, on start up

To add test files to the TestRunner, use the [Add...] button. To run the test files, press
[Run All]. The test directory contains sample test files you can try. In Figure 2-2 below,
several test files have been added and run.

Figure 2-2 – Graphical mode, after running several test files

The test files are listed in the upper panel; the results, in the lower panel (results are
described in 2.3 Reading The Results on page 7). Various statistics are displayed in the
status line at the bottom.

Test Files

Results

Status Line

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 7

The difference between “cases” and “tests” is described in Appendix: Test File Format on
page 17.

2.2 STARTING IN TEXT MODE
To start the TestRunner in text mode:

1. Add to the class path: jdom.jar, xerces.jar, jts.jar, jts_test.jar (these
files are supplied with JTS)

3. Execute at a command prompt:
java com.vividsolutions.jtstest.testrunner.TopologyTestApp –files
C:\TestConvexHull.xml (Note that the –gui switch is omitted)

test.bat contains an example of starting the TestRunner in text mode.

Figure 2-3 below shows TestRunner’s text mode in action.

Figure 2-3 – Text mode

Text mode and graphics mode display results in the same format (see 2.3 Reading The
Results on page 7). The status line at the bottom summarizes the results.

2.3 READING THE RESULTS
This section discusses how to read TestRunner output:

the status line
passed tests
failed tests
test exceptions
parse exceptions

Test Files

Results

Status Line

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 8

2.3.1 Status Line
At the bottom of the results is a status line, such as the following:

386 cases, 386 tests
383 passed, 1 failed, 2 threw exceptions

Each statistic is described in Table 1 below.

Table 1 – Statistics reported on the status line

STATISTIC DESCRIPTION

Number of test cases Each test case specifies two geometries to test with e.g. two linestrings

Number of tests Each test specifies an operation to perform on the two geometries e.g. overlaps

Number of passed tests A test passes if the operation’s actual value matches its expected value

Number of failed tests A test fails if the operation’s actual value differs from its expected value

Number of tests throwing
exceptions

A test exception occurs if an error occurs within the TestRunner or JTS

Number of parsing exceptions
(not shown in the example)

A parse exception occurs if the test file contains a syntax error (see XML on
page 17)

2.3.2 Passed Test
Details of passed tests are displayed only if the –verbose switch is used (see Setting
Switches on page 10). Messages like the following are displayed for passed tests:

Case TestRelateLA.xml - #38: L/A2h-3-7 touches: dim(0){A.L.Int.V =

B.A.2iBdy1.NV}, dim(0){A.L.Int.V = B.2iBdy2.CP}
Test Passed (A relate B F01FF0212, true)
Test Passed (A intersection B)
Test Passed (A union B)

This message indicates that all three tests passed in test case #38 in the test file
TestRelateLA.xml:

the first test asserted that the statement “A relate B = F01FF0212” is true
the second test involved the intersection operation
the third test involved the union operation

The name of test case #38 is

L/A2h-3-7 touches: dim(0){A.L.Int.V = B.A.2iBdy1.NV}, dim(0){A.L.Int.V
= B.2iBdy2.CP}

2.3.3 Failed Test
If tests fail, you will see result messages like the following.

Case TestRelateLA.xml - #2: L/A-3-2 touches: dim(0){A.L.Bdy.EP = B.oBdy.CP}
Test Failed (A getBoundary B)

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 9

Case TestRelateLA.xml - #33: L/A2h 3-2 touches: dim(0){A.L.Int.SP =

B.A.2iBdy2.CP}, dim(1){A.L.Int = B.Ext.2h2}
Test Failed (A relate B FF1F00212, true)

The first message indicates a failure of a test involving the getBoundary operation in test
case #2 in the test file TestRelateLA.xml.

The second message indicates a failure of a test involving the relate operation in test case
#33 in the test file TestRelateLA.xml. The test asserted that the statement “A relate B =
FF1F00212” should be true, but evidently that was not so.

If a test fails, either:

fix the test, or
ask the JTS developers to fix the JTS code

2.3.4 Test Exception
If an error occurs within JTS or the TestRunner, you will see a message like the following.

Case TestRelateLA.xml - #18: L/A-5-4 within: dim(0){A.L.Bdy.SP =

B.A.oBdy.NV}, dim(1){A.L.Bdy.SP-Int.V = B.A.Int},
dim(1){A.L.Int.V-Int.V = B.oBdy.NV-oBdy.NV},
dim(1){A.L.Int.V-Bdy.EP = B.A.Int}

Test Threw Exception (A relate B 11F00F212, true)
java.lang.NullPointerException

This message indicates that an NullPointerException occurred during a test involving the
relate operation in test case #18 in the test file TestRelateLA.xml.

If you encounter a test exception such as the one above, please inform the JTS developers
so that they can fix the code.

2.3.5 Parse Exception
If a test file has a syntax error, you will see a message like the following.

An exception occurred while parsing <case> 2 in c:\TestRelateLA.xml:
com.vividsolutions.jts.io.ParseException: Expected word but encountered
number: 150.0

For example, this parse exception might have been caused by a missing comma:

 LINESTRING (40 230 150 150)

instead of

 LINESTRING (40 230, 150 150)

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 10

If you encounter a parse exception such as the one above, find the problem in your test file
and fix it.

2.4 SETTING SWITCHES
The TestRunner can be configured using a number of switches, such as –gui. They are
described in Table 2 below.

Table 2 – TestRunner Switches

SWITCH DESCRIPTION

-files [.xml files] Specifies a list of test files and directories containing test files. Separate list items with spaces.
Can be used with both graphical mode and text mode.

-properties
[.properties file]

Specifies a .properties file, which stores a list of test files. Enables graphical mode to
“remember” the last set of files it was working with. If the given .properties file does not exist,
it is created. Can be used with the –files switch.

-gui Runs the TestRunner in graphical mode. Omit this switch to run it in text mode.

-verbose Displays the results of tests that pass in addition to those that fail. Omit this switch to only
show those that fail (recommended).

Any combination of switches is permitted. If no switches are specified, a description of the
switches is displayed.

Tip: The easiest way to specify all the files in a directory is to specify the directory using the
–files switch.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 11

3. USING THE TESTBUILDER

The TestBuilder is an experimental application used to create basic test files. Because of its
experimental nature, its GUI has numerous minor defects. However, it has proven to be a
useful starting point for creating, visualizing, and running test files.

People who are interested in writing their own test-file generator are directed to 4.2 XML on
page 18.

The TestBuilder has the following useful features:

creating of test geometries either visually or by entering Well-known Text
snapping to a grid
specifying expected values for spatial functions and the intersection matrix
opening and saving XML test files
generating HTML documentation

The TestBuilder has problems with some unusual situations, including:

handling test files with very large numbers
opening/saving test files that with multiple tests for a function

These special tests must be created by hand (see Appendix: Test File Format) and run using
the TestRunner (see 2 Using The TestRunner).

3.1 STARTING THE TESTBUILDER
To start the TestBuilder, Windows users can simply run testbuilder.bat. Users of other
operating systems need only:

1. Add to the class path: jdom.jar, xerces.jar, jts.jar, jts_test.jar (these
files are supplied with JTS)

4. Execute at a command prompt:
java com.vividsolutions.jtstest.testbuilder.JTSTest

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 12

Figure 3-1 below shows the TestBuilder when first opened.

Figure 3-1 – TestBuilder on startup

3.2 OPENING A TEST FILE
To open an existing test XML file, click File / Open XML File(s). The test directory contains
sample files that you can try opening. In Figure 3-2 below, the TestBuilder has been used
to open TestRelateAA.xml.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 13

Figure 3-2 – The TestBuilder, after opening a file

The TestBuilder displays one test case at a time. A test case consists of a pair of
geometries and their tests. A test is an operation and its expected result, when performed
on the two geometries. Click on the Previous button or Next button to cycle between
test cases. To jump to a particular test, click it in the Tests tab at the bottom of the
TestBuilder.

Use the Pan , Zoom In/Out , Zoom 1:1 and Zoom to Full Extent tools to examine
the geometries. To see the Well-known Text for the geometries, click the WKT tab at the
bottom of the TestBuilder.

3.3 SETTING THE PRECISION MODEL
A test file’s precision model is set using Edit / Precision Model. The default setting is
Floating. For more information on precision models, see the JTS Technical Specifications
supplied with JTS.

3.4 CREATING GEOMETRIES
To create a new test case:

On the Edit tab, click on Edit A in the Edit Mode panel, then select a geometry type from
the Geometry Type panel
Click on the Edit button on the tool bar to start editing geometry A in the display window
Continue with Edit B and edit geometry B

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 14

Geometry A is shown in blue; geometry B, in red. The vector direction is indicated on each
line segment. For a polygon, the interior area is shaded.

The grid to which points snap can be set by entering a new number and clicking Set. An
entire geometry can be erased by clicking Erase. The Undo Point and Undo Part buttons
are used to undo a point or part of a geometry.

You can also create or edit geometries by entering text in the WKT tab, at the bottom of the
TestBuilder.

A test case can be deleted (permanently) using the button.

3.5 SPECIFYING EXPECTED INTERSECTION MATRIX VALUES
To set the expected intersection matrix, click the Predicates tab. Type the expected
intersection matrix in the Expected edit box (you can leave it blank if you merely wish to
view the actual intersection matrix). Click on Run to display the actual intersection matrix
(see Figure 3-3 below).

Figure 3-3 – The Intersection Matrix panel

If the actual intersection matrix matches the expected value, a green tick will appear;
otherwise, a red cross will appear. The expected value will be saved when you save the test
file.

The intersection matrix is displayed in three different ways:

A with respect to B, as a string of characters
B with respect to A, as a string of characters
A with respect to B, as a matrix

For more information on the intersection matrix see the OpenGIS® Simple Features
Specification for SQL (http://www.opengis.org/techno/specs.htm).

Below the Intersection Matrix panel is the Binary Predicates panel, which shows the values
of various binary predicates of A with respect to B, and B with respect to A (see Figure 3-4
below).

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 15

Figure 3-4 – The Binary Predicates panel

The TestBuilder cannot set the expected values of binary predicates; they must be set by
editing the test file (see the example in Appendix: Test File Format on page 17)

3.6 SPECIFYING EXPECTED SPATIAL FUNCTION VALUES
To set the expected values or view the actual values for spatial functions, begin by clicking
the Functions tab. Pick one of the items in the Spatial Functions panel e.g. Union. The
actual value of the function will be displayed in yellow (see Figure 3-5 below).

Figure 3-5 – Union of two geometries displayed in yellow

To set the expected value of the spatial function, enter its well known text in the Expected
Value edit box, and press Set. If the expected value matches the actual value, a green tick
will appear beside the spatial function name; otherwise, a red cross will appear. The
expected values you enter will be saved when you save the test file.

To quickly set the expected values of the spatial functions to their actual values, press Fill
In Expected Values. You should check that the generated values are correct.

To hide the blue A and the red B geometries while spatial functions are being displayed,
uncheck the Display Input Geometries checkbox.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 16

To view the Well-known Text of the spatial function’s actual value, click the Result tab at
the bottom of the TestBuilder.

3.7 SAVING A TEST FILE
To save the current tests, simply click File / Save As XML, and enter a filename.

3.8 GENERATING HTML
The TestBuilder can generate HTML documentation for your test cases. Simply load all your
test files into the TestBuilder, click File / Save As HTML, and pick an empty directory. HTML
generation can take 10 minutes for 300 test cases, creating hundreds of .gif and .html files.
The top-level file is index.html.

You will be prompted with the question, “Would you like the spatial function images to show
the A and B geometries?” If you answer Yes, the A and B geometries will appear on images
of spatial functions. Typically one would choose No.

The only predicates and spatial functions that will be documented are those for which you
have specified expected results in your test files. However, the HTML will display actual
results, not expected results.

To display the HTML files properly, place the jts.css file in the parent directory of the
directory containing the HTML files. The jts.css file is included with JTS.

For an example of HTML generated by the TestBuilder, see
http://www.vividsolutions.com/jts/tests/index.html.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 17

4. APPENDIX: TEST FILE FORMAT

The section describes the format of test files read by the TestRunner. Test files are XML
files that can be edited using any text editor. The easiest way to create a test file is to use
the TestBuilder (see 3 Using The TestBuilder on page 11).

A test file contains one or more test cases, each of which contains one or more tests. A
test case specifies two geometries to analyze e.g. two polygons. Each test specifies (1) an
operation to perform on the geometries and (2) its expected result e.g. that the intersects
operation returns true.

Section 4.1 provides an example of a simple test file. Section 4.2 defines the XML format of
a test file.

4.1 EXAMPLE
Below is a simple example of a test file.

Listing 4-1 – A simple JTS test file

<run>
 <desc>example</desc>
 <precisionModel type="FIXED" scale="1" offsetx="0" offsety="0" />
 <case>
 <desc>point in a polygon</desc>
 <a>POLYGON ((0 0, 10 0, 10 10, 0 10, 0 0))
 POINT (5 5)
 <test>
 <op name="contains">true</op>
 </test>
 <test>
 <op name="contains" arg1="b" arg2="a">false</op>
 </test>
 </case>
 <case>
 <desc>two lines that cross</desc>
 <a>LINESTRING (0 0, 10 10)
 LINESTRING (0 10, 10 0)
 <test>
 <op name="crosses">true</op>
 </test>
 </case>
</run>

This test file has two test cases:

point in a polygon
two lines that cross

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 18

The first test case has two tests:

that polygon A contains point B
that point B does not contain polygon A

The second test case has one test:

that line A and line B cross

Not shown here are spatial function tests, which return a geometry (e.g. POINT (5 5))
instead of true or false. For examples of spatial function tests, see the test files in the
test directory.

4.2 XML SPECIFICATION
Listing 4-2 below specifies the syntax of a JTS test file. The notation used is an extension of
Backus Naur Form.

Listing 4-2 – XML format of a JTS test file

testFile ::=
 <run>
 [<desc> text </desc>]
 [<workspace dir=”directory”/>]
 [<tolerance> double </tolerance>]
 <precisionModel
 type = “type” [scale="double" offsetx="double" offsetY="double"] />
 { caseText }
 </run>

caseText ::=
 <case>
 [<desc> text </desc>]
 <a> well-known-text |
 well-known-text | <b file=” filename”/>
 { testText }
 </case>

testText ::=
 <test>
 [<desc> text </desc>]
 <op name="opName"
 arg1="geometry-index"
 [arg2="arg"]
 [arg3 | pattern ="arg"] >
 result
 </op>
 </test>

opName ::=

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 19

 equals | disjoint | intersects | touches | crosses |
 within | contains | overlaps | relate | isSimple |
 convexHull | intersection | union | difference | symDifference |
 getBoundary| buffer | distance | getArea | isEmpty | isValid |
 isWithinDistance | getEnvelope | distance | getLength
 getDimension | getBoundaryDimension | getNumPoints | getSRID

result ::= boolean | integer | double | well-known-text

boolean ::= true | false

arg ::= geometry-index | null | integer | double | string

geometry-index ::= A | B

type ::= FIXED | FLOATING

A test file begins and ends with <run> and </run> tags. A run contains one or more test
cases. A test case contains one or more tests. Runs, test cases and tests can have a
description, enclosed in <desc> tags.

A run must specify a precision model. For more information on precision models, see the
JTS Technical Specifications supplied with JTS. The precision model can be either fixed
precision or floating-point precision. If fixed-precision, the precision model must specify a
scale and offset.

A test case specifies one or two geometries (e.g. POINT (5 5) and POINT (10 20)). Most
of the operations (e.g. overlaps) require two geometries. Some operations (isSimple,
convexhull, getBoundary) need only one geometry.

A test specifies an operation to validate (e.g. crosses) and its expected value (e.g. true or
POINT (5 10)). You can also specify the geometry to perform the operation on i.e. A or B
(in arg1), as well as any parameters to pass to the operation (in arg2 and arg3). The
default values for arg1 and arg2 are A and B.

“POINT (10 10)” is an example of Well-known Text. For more information on the Well-
known Text format, see SQL Textual Representation of Geometry in the OpenGIS® Simple
Features Specification for SQL1.

If desired, the Well-known Text for A or B may be stored in a separate file. The filename is
specified in the file attribute. The file’s directory may also be specified in the file attribute,
or in the workspace tag. If no directory is specified, it is taken to be the XML file’s
directory.

The relate operation’s arg3 must be a pattern e.g. 1010F0102. For backwards
compatibility, if the operation is relate, you can use the keyword pattern as an alternative
to the keyword arg3. For more information on the relate operation, see The Dimensionally
Extended Nine-Intersection Model in the OpenGIS® Simple Features Specification for SQL.

1 http://www.opengis.org/techno/specs.htm

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 20

The following operations return true or false: equals, disjoint, intersects, touches,
crosses, within, contains, overlaps, relate, isSimple, isEmpty, isValid,
isWithinDistance.

The following operations return a geometry: convexHull, intersection, union,
difference, symDifference, getBoundary, buffer, getEnvelope. buffer’s arg3 must be
a distance.

The following operations return a double: distance, getArea, getLength.

The following operations return an integer: getBoundaryDimension, getDimension,
getNumPoints, getSRID.

The optional <tolerance> tag specifies the tolerance used when comparing integer,
double, and geometry results to their expected values. A geometry result is considered to
match its expected value if the corresponding vertices are no farther than the tolerance.

Document converted by PDFMoto freeware version

 TestRunner & TestBuilder User Guide

3-Feb-2005 Page 21

5. APPENDIX: ACME LICENCE

Note: The TestBuilder uses the Acme GifEncoder, which requires that the licence below be
included in this documentation.

GifEncoder - write out an image as a GIF

Transparency handling and variable bit size courtesy of Jack Palevich.

Copyright (C)1996,1998 by Jef Poskanzer <jef@acme.com>. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS'” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Visit the ACME Labs Java page for up-to-date versions of this and other fine Java utilities:
http://www.acme.com/java/

Document converted by PDFMoto freeware version

