

JTS Topology Suite

Technical Specifications

Version 1.4

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 2

Document Change Control

REVISION
NUMBER

DATE OF ISSUE AUTHOR(S) BRIEF DESCRIPTION OF CHANGE

1.3 March 31, 2003 M. Davis Updated to cover changes in JTS 1.3

1.4 October 17, 2003 J. Aquino CoordinateSequences and the user-data field

1.4.1 M Davis • Fixed definition of contains

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 3

Table of Contents

1. OVERVIEW ...7

2. OTHER RESOURCES ..7

3. DESIGN GOALS ..7

4. TERMINOLOGY ..8

5. NOTATION ...8

6. JAVA IMPLEMENTATION...8

7. COMPUTATIONAL GEOMETRY ISSUES ...9

7.1 PRECISION MODEL ...9

7.1.1 Fixed Precision..9

7.1.2 Floating Precision... 10

7.2 CONSTRUCTED POINTS AND DIMENSIONAL COLLAPSE 10

7.3 ROBUSTNESS.. 11

7.4 NUMERICAL STABILITY .. 11

7.5 COMPUTATIONAL PERFORMANCE... 12

7.5.1 Monotone Chains.. 12

8. SPATIAL MODEL... 13

8.1 DESIGN DECISIONS FOR SPATIAL MODELS 13

8.2 GEOMETRIC DEFINITIONS... 14

8.2.1 Geometry... 15

8.2.2 Empty Geometry .. 15

8.2.3 GeometryCollection .. 15

8.2.4 Curve.. 15

8.2.5 MultiCurve ... 15

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 4

8.2.6 LineString .. 16

8.2.7 LinearRing.. 16

8.2.8 Polygon ... 16

8.2.9 MultiPolygon ... 18

8.3 SIMPLE FEATURE CLASSES ... 18

8.3.1 Geometry... 18

8.3.2 GeometryCollection .. 18

8.3.3 Point .. 18

8.3.4 MultiPoint .. 18

8.3.5 Curve.. 18

8.3.6 LineString .. 18

8.3.7 Line.. 18

8.3.8 LinearRing.. 18

8.3.9 MultiCurve ... 18

8.3.10MultiLineString.. 18

8.3.11Surface ... 18

8.3.12Polygon... 18

8.3.13MultiSurface ... 19

8.3.14MultiPolygon... 19

8.4 NORMAL FORM FOR GEOMETRY... 19

8.5 SUPPORT CLASSES ... 19

8.5.1 Coordinate ... 19

8.5.2 CoordinateSequence ... 20

8.5.3 Envelope.. 20

8.5.4 IntersectionMatrix.. 20

8.5.5 GeometryFactory ... 20

8.5.6 CoordinateFilter .. 20

8.5.7 GeometryFilter.. 20

8.6 SPATIAL REFERENCE SYSTEM.. 20

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 5

9. BASIC GEOMETRIC ALGORITHMS AND STRUCTURES................................ 21

9.1 POINT-LINE ORIENTATION TEST... 21

9.2 LINE INTERSECTION TEST .. 21

9.3 LINE INTERSECTION COMPUTATION .. 21

9.4 POINT-IN-RING TEST... 22

9.5 RING ORIENTATION TEST... 22

10. TOPOLOGICAL COMPUTATION ... 22

10.1 TOPOLOGY GRAPHS ... 22

10.2 LABELS ... 22

10.3 COMPUTING THE INTERSECTION MATRIX FROM A LABELING............... 23

10.4 THE RELATE ALGORITHM ... 24

10.4.1Labeling isolated components ... 24

10.5 THE OVERLAY ALGORITHM ... 24

11. BINARY PREDICATES ... 25

11.1 GENERAL DISCUSSION ... 25

11.2 METHOD SPECIFICATIONS... 26

11.2.1Equals... 26

11.2.2Disjoint ... 26

11.2.3Intersects .. 26

11.2.4Touches .. 26

11.2.5Crosses ... 27

11.2.6Within .. 27

11.2.7Contains.. 27

11.2.8Overlaps.. 27

12. SPATIAL ANALYSIS METHODS... 27

12.1 GENERAL DISCUSSION ... 27

1.1.1 Representation of Computed Geometries 27

12.2 CONSTRUCTIVE METHODS .. 28

12.3 SET-THEORETIC METHODS ... 28

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 6

12.4 METHOD SPECIFICATIONS... 29

12.4.1Buffer... 29

12.4.2ConvexHull .. 31

12.4.3Intersection ... 31

12.4.4Union ... 31

12.4.5Difference ... 31

12.4.6SymDifference .. 31

13. OTHER METHODS ... 31

13.1.1Boundary... 31

13.1.2IsClosed .. 32

13.1.3IsSimple .. 32

13.1.4IsValid .. 33

14. WELL-KNOWN TEXT INPUT/OUTPUT.. 33

14.1 WELL-KNOWN TEXT SYNTAX... 34

14.2 WELL-KNOWN TEXT READER... 35

14.3 WELL-KNOWN TEXT WRITER ... 35

15. REFERENCES... 36

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 7

1. OVERVIEW

The JTS Topology Suite is a Java API that implements a core set of spatial data operations
using an explicit precision model and robust geometric algorithms. JTS is intended to be
used in the development of applications that support the validation, cleaning, integration
and querying of spatial datasets. This document is the design specification for the classes,
methods and algorithms implemented in the JTS Topology Suite.

JTS attempts to implement the OpenGIS Simple Features Specification (SFS) as accurately
as possible. In some cases the SFS is unclear or omits a specification; in this case JTS
attempts to choose a reasonable and consistent alternative. Differences from and
elaborations of the SFS are documented in this specification.

The detailed documentation of the class hierarchy and methods will be presented in the
form of JavaDoc for the source code.

2. OTHER RESOURCES

• OpenGIS Simple Features Specification For SQL Revision 1.1 (referred to as SFS in this
document). This document provides the master specification for the spatial data model
and the definitions of the spatial predicates and functions implemented by JTS.

3. DESIGN GOALS

The design of JTS is intended to fulfil the following goals:

• The spatial model and method definitions will conform to the OpenGIS Simple Features

Specification as accurately as possible, consistent with correct implementation.

• The API design will follow Java conventions wherever possible. For instance:

Ø accessor functions will use the Java getX and setX convention

Ø predicates will use the isX convention

Ø methods will start with a lowercase letter

• JTS functions will support a user-defined precision model. JTS algorithms will be robust
under that precision model.

• Methods will return topologically and geometrically correct results within the defined
precision model wherever possible.

• Correctness is the highest priority; space and time efficiency is important but secondary.

• JTS will be fast enough to be used in a production environment.

• The algorithms and code used in JTS will be clear and well-structured, to facilitate
understanding by other developers.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 8

4. TERMINOLOGY

Term Definition
Coordinate A point in space which is exactly representable under

the defined precision model
Exact Computation Numerical computation which maintains all digits of

numbers through all operations. Usually requires
computionally expensive algorithms

Node A point where two lines within the same or different
geometries intersect. This point is not necessarily
representable by a coordinate, since the output of the
computation of the intersection point in general
requires greater precision than the input points.

Noding (also Noded) The process of computing the nodes where one or more
geometries intersect.

Non-coordinate A point which is not representable as a coordinate
Numerical Stability The stability of an numerical algorithm is determined

by the maximum bound on the error in its outputs. An
algorithm is considered to be stable if this bound is
small.

Point An arbitrary point in R3. In general, not finitely
representable.

Proper intersection An intersection between two line segments where the
intersection is a single point and is internal to both
segments

Robust Computation Numerical computation which is guaranteed to return
the correct answer for all inputs. Usually requires
algorithms which are specially designed to handle
round-off error.

SFS OGC Simple Features Specification

Unit of Resolution The smallest representable distance under the defined
precision model.

Vertex (pl. vertices) A “corner point” of a geometric object. These are the
coordinates explicitly stored to locate a geometric
object.

5. NOTATION

• Items in the specification which adhere to the SFS are indicated by referring to the
relevant section in the SFS in parentheses: (SFS 1.0)

• Items in the specification which elaborate on or differ from the SFS will be indicated by
the term “JTS” in parentheses: (JTS)

6. JAVA IMPLEMENTATION

Java coding style is in some cases different to the coding style used in the SFS. Where the
two are different in general JTS follows Java conventions. JTS coding style differs from SFS
coding style in the following ways:

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 9

• the SFS sometimes uses Integer to represent a boolean value. JTS will use a boolean in
this case

• method names in the SFS start with an uppercase letter. In JTS all method names start
with a lowercase letter

• method names in JTS sometimes have the prefix “get” or “set” added to them, to
conform to the conventions for Java Beans.

7. COMPUTATIONAL GEOMETRY ISSUES

7.1 PRECISION MODEL
All numerical computation takes place under some form of precision model. There are
several possible types of precision model:

Fixed Coordinates are represented as points on a grid with uniform spacing.

Computed coordinates are rounded to this grid.
Floating Coordinates are represented as floating-point numbers. Computed

coordinates may have more digits of precision than the input values (up the
maximum allowed by the finite floating-point representation).

Exact Coordinates are represented exactly (often as rational numbers with integral
numerator and denominator). Implementing this model carries a penalty in
space and time performance, which is often considered unacceptable.

Often the precision model of a computation is not stated explicitly, but is implied by the
model used for representing the values (such as floating point or integer). A limitation in
this approach is that the user is unable to work in a precision model with lower precision. It
is often the case that computed results are of higher precision than the inputs. The higher
precision values may not be acceptable either for further computation or for storage in a
format with the original (or lower) precision.

JTS deals with this problem by allowing the user to specify an explicit precision model. The
precision model allows the client to state how many bits of precision are to be assumed in
the input coordinate values, and maintained in any computed coordinates.

In JTS methods input Geometries may have different precision models. In the case of
methods which return Geometrys, the precision model of the returned result is the
maximum of the two input precision models (i.e. the one with largest precision). Note that
this only works if the two precision models are compatible. Two precision models are
compatible if the scale factor of one is an integer multiple of the scale factor of the other.
No attempt is made to reconcile incompatible precision models.

JTS supports two basic types of precision model: Fixed and Floating.

7.1.1 Fixed Precision
In the Fixed precision model, coordinates are assumed to fall exactly on the intersections of
a discrete grid. The size of the grid is determined by a scale factor. The grid size is the
inverse of the scale factor. The scale factor can also be thought of as determining how
many decimal places of precision are maintained. The scale factor may be either greater or
less than 1, depending on whether the “precision point” is to the right or left of the decimal
point.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 10

Coordinates are made precise according to the following equations:

jtsPt.x = round(inputPt.x * scale) / scale
jtsPt.y = round(inputPt.y * scale) / scale

Precise coordinates will be represented internally as double-precision values. This is known
as the “precise internal representation”. Since Java uses the IEEE-754 floating point
standard, this provides 53 bits of precision. (Thus the maximum precisely representable
value is 9,007,199,254,740,992).

Input routines are responsible for rounding coordinates to the precision model before
creating JTS structures. (The input routines supplied with JTS will perform this rounding
automatically.)

7.1.2 Floating Precision
There are two types of Floating precision model supported, double and single precision.
Both of these are based on the Java floating point model, which in turn is based on the
IEEE-754 floating point standard. This provides approximately 16 digits of precision for
double precision and 6 digits of precision for single precision.

In the Floating Double Precision Model, coordinates can have the full precision available with
Java double-precision floating point numbers. Input coordinates are not assumed to be
rounded off, and internal operations which compute constructed points do not round off the
computed coordinates. Note that this does not mean that constructed points are exact;
they are still limited to the precision of double-precision numbers, and hence may still be
only an approximation to the exact point.

In the Floating Single Precision Model, computed coordinates are rounded to single
precision. This supports situations where the eventual destination of computed geometry is
a single-precision format (e.g. such as Java2D).

7.2 CONSTRUCTED POINTS AND DIMENSIONAL COLLAPSE
Geometries computed by spatial analysis methods may contain constructed points which are
not present in the input Geometries. These new points arise from intersections between
line segments in the edges of the input Geometries. In the general case it is not possible to
represent constructed points exactly. This is due to the fact that the coordinates of an
intersection point may contain as much as twice as many bits of precision as the
coordinates of the input line segments. In order to represent these constructed points
explicitly, JTS must round them to fit the given Precision Model.

Unfortunately, rounding coordinates moves them slightly. Line segments which would not
be coincident in the exact result may become coincident in the truncated representation.
For Line-Line combinations, this can produce result Geometries containing points which
were not in the interior of the input Geometries. More seriously, for Line-Area
combinations, this can lead to dimensional collapses, which are situations where a
computed component has a lower dimension than it would in the exact result.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 11

1
un

it

A

B

A.difference(B)

Figure
1 - An example of dimensional collapse

JTS handles dimensional collapses as gracefully as possible, by forming the lower-dimension
Geometry resulting from the collapse. For instance, an Area-Area intersection with a
dimensional collapse would return a Line or Point Geometry as a component of the result.

7.3 ROBUSTNESS
Geometric algorithms involve a combination of combinatorial and numerical computation.
As with all numerical computation using finite-precision numbers, the algorithms chosen are
susceptible to problems of robustness. A robustness problem occurs when a numerical
calculation produces an inexact answer due to round-off errors. Robustness problems are
especially serious in geometric computation, since the numerical errors can propagate into
the combinatorial computations and result in complete failure of the algorithm. (See
[Bri98], [Sch91].)

There are many approaches to dealing with the problem of robustness in geometric
computation. Not surprisingly, most robust algorithms are substantially more complex and
less performant than the non-robust versions. JTS attempts to deal with the problem of
robustness in two ways:

• The important fundamental geometric algorithms (such as Line Orientation, Line
Intersection and the Point-In-Polygon test) have been implemented using robust
algorithms. In particular, the implementation of several algorithms relies on the
robust determinant evaluation presented in [Ava97]).

• The algorithms used to implement the SFS predicates and functions have been
developed to eliminate or minimize robustness problems. The binary predicate
algorithm is completely robust. The spatial overlay and buffer algorithms are non-
robust, but will return correct answers in the majority of cases.

7.4 NUMERICAL STABILITY
A desirable feature of numerical algorithms is that they exhibit stability. The stability of a
numerical algorithm is determined by the bound on the maximum error in its outputs. An
algorithm is considered to be stable if this bound is small.

The primary numerical algorithm used in JTS is the computation of the intersection point
between two segments. This algorithm is inherently inexact, since the bits of precision
required to represent the intersection point is several times greater than the precision of the
inputs. A stable algorithm for this computation will always produce approximate answers
that are close to the exact answer. In particular, the computed points should at least lie
within the bounding box of the input line segments! Ideally, the computed points will lie
within a single precision model grid unit of the exact answer.

One way to increase the stability of numerical algorithms is to condition their inputs.
Conditioning inputs involves numerically manipulating them in some way that produces the

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 12

same answer while preserving more precision during the calculations. JTS uses a technique
of “normalizing” the input line segments to the line intersection computation. Normalized
line segments have been translated to be as close to the origin as possible. This has the
effect of removing common significant digits from each ordinate, and thus increases the bits
of precision available to maintain the accuracy of the line intersection computation.

7.5 COMPUTATIONAL PERFORMANCE
Runtime performance is an important consideration for a production-quality implementation
of geometric algorithms. The most computationally intensive algorithm used in JTS is
intersection detection. Many JTS methods need to determine both all intersection between
the line segments in a single Geometry (self-intersection) and all intersections between the
line segments of two different Geometries.

The obvious algorithm for intersection detection, that of comparing every segment with
every other, has unacceptably slow performance. There is a large literature of efficient
algorithms for intersection detection. Unfortunately, many of them involve substantial code
complexity. JTS tries to balance code simplicity with performance gains. It uses some
special techniques to produce substantial performance gains for common types of input
data. These techniques include in-memory spatial indexes of various types, and
sophisticated methods for structuring data such as the technique of Monotone Chains.

7.5.1 Monotone Chains
JTS uses the technique of “Monotone Chains” to obtain substantial performance
improvements with minimal additional code complexity. This technique involves dividing
edges into monotone chains of segments. A monotone chain consists of a sequence of
segments whose direction vectors all lie in the same quadrant. Monotone chains have two
important properties:

Non-Intersection Property: the segments within a monotone chain do not intersect.

Endpoint Envelope Property: the envelope of any contiguous subset of the segments in a
monotone chain is the envelope of the endpoints of the subset.

The Non-Intersection Property means that there is no need to test pairs of segments from
within the same monotone chain for intersection. The Endpoint Envelope Property allows
binary search to be used to find the intersection points along a monotone chain. In addition,
the larger bounding boxes of monotone chains relative to individual segments act as a form
of “clustering” of segments, which reduces the overall number of intersection tests required.

For data with a significant percentage of monotone chains, these properties eliminate a
large number of segment comparisons. Monotone chains are common in data that has been
generated by stream digitizing along natural features. Performance improvements of up to
100 times over the naive algorithm have been observed.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 13

(1)
The Monotone Chains for a

Polygon

(1)
The bisection process used to find an intersection

between two monotone chains

Figure 2 - Monotone Chains

8. SPATIAL MODEL

8.1 DESIGN DECISIONS FOR SPATIAL MODELS
The SFS is just one of several spatial models in use in existing spatial databases and APIs.
These models are for the most part quite similar. Generally, they all support representing
2-dimensional points, lines and polygons. There are some subtle differences between the
ways Geometrys are represented, however. These differences represent design decisions
made by the designers of the spatial API. Some important design choices are listed below
(in each case, the choice made in the SFS and JTS is indicated).

Design Decision Repeated Points allowed in Geometries
SFS Choice Repeated Points are allowed
JTS Choice Same as SFS
Comments In general spatial algorithms are not tolerant of repeated points.

Allowing repeated points causes a performance and space penalty,
since every spatial method must check for repeated points and remove
them. JTS does support repeated points, since not doing so is a major
point of incompatibility with the OGC model. However, there is a small
memory and performance cost to doing so.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 14

Design Decision Linestrings allowed to self-intersect (i.e. can be non-simple)
SFS Choice Linestrings are allowed to self-intersect
JTS Choice Same as SFS
Comments Allowing non-simple linestrings exacts a small performance penalty,

since it means that linestrings must be noded before being used in
spatial methods. However, it is desirable to be able to represent non-
simple linestrings, so if the LineString class itself is defined to be
simple, another class must be introduced to represent non-simple lines
(sometimes referred to as “Spaghetti”).

Design Decision Polygon rings can self-touch at single points.
SFS Choice Polygon rings can NOT self-touch at single points
JTS Choice Same as SFS
Comments This decision arises from the need to support representing polygons

containing holes which touch the shell at a single point (“inverted”
polygons). It also covers the case of representing a single hole which
contains an exterior area which is disconnected (an “exverted” hole).
In order to represent inverted polygons and exverted holes, either
polygon rings must be allowed to self-touch at a single point OR rings
must be allowed to mutually touch at single points.

This design decision is a sense the dual of the choice of whether
polygon rings can mutually touch at single points

Unfortunately, making the choice that polygon rings can NOT self-
touch results in slightly more complex algorithms, since the usual
polygon-building algorithm results in shells which self-touch. It is
necessary to perform a further step to convert the boundaries of the
areas isolated by the self-touch into a hole.

Design Decision Polygon rings can mutually touch at single points
SFS Choice Polygon rings can mutually touch at single points
JTS Choice Same as SFS
Comments This design decision is the dual of the decision about whether polygon

rings can self-touch at single points.

In most cases these design choices are of no consequence to the users of the API, since
they do not change the set of Geometrys that can be represented. However, they do have
implications for the performance and complexity of the algorithms implemented in the API.
Also, it is generally non-trivial to convert between the representations of two APIs that have
made different design choices (in particular, if two APIs make different choices for whether
polygon rings can self-touch, some relatively complex processing is necessary to convert the
polygonal representations).

8.2 GEOMETRIC DEFINITIONS
All JTS methods assume that their arguments are valid Geometric objects, according to the
definitions given in the SFS.

The following definitions elaborate or clarify the definitions given in the SFS.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 15

8.2.1 Geometry
A Precision Model object will be a member of every Geometry object.

According to the SFS Geometry objects can represent only closed sets. This is a reasonable
decision which allows for practical implementation. However, there are some implications
for the semantics of the spatial analysis methods (see Section 12 Spatial Analysis Methods).

JTS has a simple scheme for adding attributes to a Geometry: applications may set a
Geometry’s user data field to any object.

8.2.2 Empty Geometry
The SFS specifies that objects of each Geometry subclass may be empty. It is sometimes
necessary to construct an generic empty object of class Geometry (e.g. if the exact type of
the Geometry to be returned is not known). The SFS does not define an specific class or
object to represent this generic empty Geometry. JTS uses the convention that an empty
GeometryCollection will be returned.

8.2.3 GeometryCollection
The dimension of a heterogeneous GeometryCollection is the maximum dimension of its
elements.

8.2.4 Curve
Curves may not be degenerate. That is, non-empty Curves must have at least 2 points, and
no two consecutive points may be equal.

8.2.5 MultiCurve
The SFS specifies using a “Mod-2” rule for determining the boundary of a MultiCurve. A
point is on the boundary of the MultiCurve iff it is on the boundary of an odd number of
elements of the MultiCurve. It should be noted that this leads to cases where the set of
points in the SFS boundary is larger than either intuition or point-set topology would
indicate. That is, a point with an odd number > 1 of edges incident on it is on the boundary
according to the SFS rule, but might not intuitively be considered as part of the boundary.
This also is inconsistent with the topological definition of boundary, which is “the set of
points which are not contained in any open subset of the set of points in the Geometry”.
For example, in Figure 3 (3), the point B is in the boundary according to SFS, but is an
interior point according to point-set topology.

(1) (2) (3) (4)

Boundary = { A, B }

A A A AC C C

B B
B B

D D

E

Boundary = { A, C } Boundary = { A, B, C, D } Boundary = { A, C, D, E }

Figure 3 - Effect of the Mod-2 rule in MultiLineStrings

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 16

Additional logic is required in JTS to implement the Mod-2 rule.

8.2.6 LineString
We are using the definition of LineString given in the OGC SFS. This differs in an important
way from some other spatial models (e.g. the one use by ESRI ArcSDE). The difference is
that LineStrings may be non-simple. They may self-intersect in points or line segments.

In fact boundary points of a curve (e.g. the endpoints) may intersect the interior of the
curve, resulting in a curve that is technically topologically closed but not closed according to
the SFS. In this case topologically the point of intersection would not be on the boundary of
the curve. However, according to the SFS definition the point is considered to be on the
boundary. JTS follows the SFS definition.

A

B

LineString: Boundary = { A, B }

B is a boundary point, not an
interior point

Figure 4 - A LineString with a boundary point intersecting an interior point

8.2.7 LinearRing
LinearRings are the fundamental building block for Polygons. LinearRings may not be
degenerate; that is, a LinearRing must have at least 3 points. Other non-degeneracy
criteria are implied by the requirement that LinearRings be simple. For instance, not all the
points may be collinear, and the ring may not self-intersect. The SFS does not specify a
requirement on the orientation of a LinearRing. JTS follows this by allowing LinearRings to
be oriented either clockwise or counter-clockwise.

8.2.8 Polygon
The shell and holes of a Polygon are LinearRings. The SFS definition of Polygon has the
following implications:
• The shell and holes cannot self-intersect (this is implied by the fact that they are

LinearRings)
• Holes can touch the shell or another hole at a single point only. This means that holes

cannot intersect one another at multiple points or in a line segment.
• Polygon interiors must be connected (This is implied by the previous statement).
• There is no requirement that a point where a hole touches the shell be a vertex.

Note that the SFS definition of Polygon differs from that in some other commonly used
spatial models. For instance, the ESRI ArcSDE spatial model allows shells to self-intersect
at vertices, but does not allow holes to touch the shell. The SFS and the ArcSDE model are
equivalent in the sense that they describe exactly the same set of areas. However, they
may require different polygon structures to describe the same area.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 17

This hole touches the shell at a
non-vertex

This hole touches the
shell at a vertex

A Polygon with 4 holes

Figure 5 - An example of a Polygon containing holes

(3)
Hole touches shell in

line segment

(4)
The polygon interior is

disconnected

(2)
Hole touches shell at
more than one point

(1)
Hole crosses shell

(7)
Shell self-intersects

(6)
Holes touch in line

segment

(5)
Holes cross

Figure 6 - Examples of objects not representable as polygons

Empty Polygons may not contain holes.

Since the shell and holes of Polygons are LinearRings, there is no requirement on their
orientation. They may be oriented either clockwise or counterclockwise.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 18

8.2.9 MultiPolygon
The element Polygons in a MultiPolygon may touch at only a finite number of points (e.g.
they may not touch in a line segment). The interiors of the elements must be disjoint (e.g.
they may not cross). There is no requirement that a point of intersection be a vertex.

8.3 SIMPLE FEATURE CLASSES
All Geometry classes allow empty objects to be created, and support the isEmpty method.
Empty Geometries will be represented by their internal arrays having zero length.

All Geometry classes support the equalsExact() method, which returns true if two Geometry
subclasses are equivalent and have identical sequence(s) of coordinates. Two objects are
“equivalent” if their classes are identical. The only exception is LinearRing and LineString,
which JTS considers to be equivalent.

All Geometry classes support the clone() method, which will return a deep copy of the
object.

8.3.1 Geometry
Geometry is non-instantiable and is implemented as an abstract class.

8.3.2 GeometryCollection
A GeometryCollection is implemented as an array of Geometry objects.

8.3.3 Point
A Point is implemented as a single Coordinate.

8.3.4 MultiPoint
A MultiPoint inherits the implementation of GeometryCollection, but contains only Points.

8.3.5 Curve
Curve is non-instantiable and is implemented as an interface.

8.3.6 LineString
A LineString is implemented as an array of coordinates.

8.3.7 Line
JTS does not implement the Line class, since LineString offers equivalent functionality.

8.3.8 LinearRing
A LinearRing containing n coordinates is implemented with an array of Coordinates
containing n+1 points, and coord[0] = coord[n].

8.3.9 MultiCurve
MultiCurve is non-instantiable and is implemented as an interface.

8.3.10 MultiLineString
A MultiLineString inherits the implementation of GeometryCollection, but contains only
LineStrings.

8.3.11 Surface
Surface is non-instantiable and is implemented as an interface.

8.3.12 Polygon
A Polygon is implemented as a single LinearRing for the outer shell, and an array of
LinearRings for the holes. The outer shell is oriented CW and the holes are oriented CCW.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 19

8.3.13 MultiSurface
MultiSurface is non-instantiable and is implemented as an interface.

8.3.14 MultiPolygon
A MultiPolygon inherits the implementation of GeometryCollection, but contains only
Polygons.

8.4 NORMAL FORM FOR GEOMETRY
JTS defines a normal (or canonical) form for representing Geometrys. Normal form is a
unique representation for Geometrys. It can be used to test whether two Geometries are
equal in a way that is independent of the ordering of the coordinates within them. Normal
form equality is a stronger condition than topological equality, but weaker than pointwise
equality.
The definitions for normal form use the standard lexicographical ordering for coordinates.
“Sorted in order of coordinates” means the obvious extension of this ordering to sequences
of coordinates.

Geometry Class Definition of normal form
Point Points are always in normal form
MultiPoint Element Points are sorted in order of their coordinates
LineString Obeys the following condition:

If there is an i such that coord[i] != coord [n – i – 1]
then coord [i] < coord [n – i –1]

LinearRing same as LineString
MultiLineString Element LineStrings are in normal form, and are sorted in

order of their coordinates
Polygon The LinearRings of the Polygon are ordered such that the

smallest point is first. The shell is ordered clockwise, and
holes are ordered counterclockwise. Holes are sorted in
order of their coordinates

MultiPolygon Element Polygons are in normal form, and are sorted in
order of their coordinates

GeometryCollection Element Geometrys are in normal form.
The list of elements is ordered by class (using the order of
this list). Within each subsequence of like class, elements
are sorted in order of coordinates.

8.5 SUPPORT CLASSES

8.5.1 Coordinate
Coordinate is the lightweight class used to store coordinates. It is distinct from Point, which
is a subclass of Geometry. Unlike objects of type Point (which contain additional information
such as an envelope, a precision model, and spatial reference system information), a
Coordinate only contains ordinate values and accessor methods.

Coordinates are two-dimensional points, with an additional z-coordinate. JTS does not
support any operations on the z-coordinate except the basic accessor functions. Constructed
coordinates will have a z-coordinate of NaN.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 20

Coordinate implements the standard Java interface Comparable. The implementation uses
the usual lexicographic comparison. That is,

c1.compareTo(c2) =
-1 : c1.x < c2.x Ú ((c1.x = c2.x) Ù (c1.y < c2.y))
0 : (c1.x = c2.x) Ù (c1.y = c2.y)
1 : c1.x > c2.x Ú ((c1.x = c2.x) Ù (c1.y > c2.y))

Coordinate implements equals() using the obvious implementation of pointwise comparison.

8.5.2 CoordinateSequence
A CoordinateSequence is the internal representation of a list of Coordinates inside a
Geometry. Because it is an interface, it is possible to create alternatives to the default
implementation (an array of Coordinates). For example, one may choose to store the data
as an array of some entirely different coordinate class, or as an array of x’s and an array of
y’s. Note that non-Coordinate-array implementations will pay a performance penalty when
the #toArray method is called.

8.5.3 Envelope
A concrete class containing a maximum and minimum x and y value.

8.5.4 IntersectionMatrix
An implementation of the Dimensionally Extended 9-Intersection Model (DE-9IM) matrix.
The class can be used to represent both actual instances of a DE-9IM matrix as well as
patterns for matching them. Methods are provided to:
• set and query the elements of the matrix in a convenient fashion
• convert to and from the standard string representation (specified in SFS Section

2.1.13.2).
• test to see if a matrix matches a given pattern string.

8.5.5 GeometryFactory
A GeometryFactory supplies a set of utility methods for building Geometry objects from lists
of Coordinates.

8.5.6 CoordinateFilter
GeometryImpl classes support the concept of applying a coordinate filter to every
coordinate in the Geometry. A coordinate filter can either record information about each
coordinate or change the coordinate in some way. Coordinate filters implement the
interface CoordinateFilter. (CoordinateFilter is an example of the Gang-of-Four Visitor
pattern). Coordinate filters can be used to implement such things as coordinate
transformations, centroid and envelope computation, and many other functions.

8.5.7 GeometryFilter
GeometryImpl classes support the concept of applying a Geometry filter to the Geometry.
In the case of GeometryCollection subclasses, the filter is applied to every element
Geometry. A Geometry filter can either record information about the Geometry or change
the Geometry in some way. Geometry filters implement the interface GeometryFilter.
(GeometryFilter is an example of the Gang-of-Four Visitor pattern.)

8.6 SPATIAL REFERENCE SYSTEM
JTS will support Spatial Reference System information in the simple way defined in the SFS.
A Spatial Reference System ID (SRID) will be present in each Geometry object. Geometry
will provide basic accessor operations for this field, but no others. The SRID will be
represented as an integer.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 21

The SRID of constructed objects will be copied from the SRID of one of the input objects if
possible, or will be 0.

9. BASIC GEOMETRIC ALGORITHMS AND STRUCTURES

9.1 POINT-LINE ORIENTATION TEST
This function is fundamental to operations such as ordering edges around a node. Since it
is essentially a geometric calculation, it is susceptible to robustness problems unless
implemented using robust algorithms. JTS implements this method using a robust
algorithm which returns the correct result for all input values. The algorithm used is based
on the robust method of evaluating signs of determinants developed by Avanim et. al.
([Ava97]).

[diagram of point-line orientation]

9.2 LINE INTERSECTION TEST
This function tests whether two line segments intersect. It uses the robust Point-Line
Orientation function specified above. It does not actually compute the point of intersection,
and thus returns an exact answer. The function computes full information about the
topology of the intersection, including the following data:

HasIntersection() True if the line segments intersect
getIntersectionNum() The number of intersection points found (0, 1, or 2)
IsProper() True if the intersection point is proper (i.e. is not equal

to one of the endpoints)

9.3 LINE INTERSECTION COMPUTATION
This function computes the intersection of two line segments. Two line segments may
intersect in a single point, a line segment, or not at all. If the intersection is representable
with coordinates in the Precision Model, it will be computed exactly. Otherwise, an
approximation will be computed.

Intersections which are line segments will always be representable with coordinates, since
each endpoint of the intersection segment must be equal to an endpoint of one of the input
segments. Obviously, null intersections can also be computed exactly (although the
intersection test must be performed with robust code to be correct). Intersections which
are points may or may not be representable, since in general computed intersections
require greater precision than the input points, and will not necessarily fall exactly on the
precision model grid.

An important property of the line intersection algorithm is that it is numerically stable.
Computed approximate points should be within the Precision Model tolerance of the exact
intersection point.

In addition to the information computed by the Line Intersection test, the Line Intersection
Computation computes information about the actual points of intersection:

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 22

GetIntersection(int i) The coordinate for the I’th intersection point

Determining the edge graph requires further information about the precise order of
intersection points along each line segment. The Line Intersection class provides other
functions to determine the order of intersection points along each segment, and to compute
the (approximate) distance of a given intersection point along a segment.

9.4 POINT-IN-RING TEST
The Point-In-Ring predicate is implemented in a robust fashion by using the usual stabbing-
line algorithm and making use of the robust Line Intersection Test.

In some cases it is necessary to test for the inclusion of multiple points in a given ring (e.g.
in the IsValid predicate to test for the correct inclusion of holes). In this case performance
can be gained by using a spatial index for the line segments of the ring. JTS implements a
1-dimensional Interval Tree to speed up the intersection tests made in the stabbing-line
algorithm.

9.5 RING ORIENTATION TEST
This test returns true if a ring of coordinates is oriented in a clockwise direction. The test is
used to determine on which side of the rings of the shell and holes of a Polygon the interior
and exterior of the Polygon lie.

10. TOPOLOGICAL COMPUTATION

10.1 TOPOLOGY GRAPHS
The computation of the Intersection Matrix relies on the use of a structure called a “topology
graph”. The topology graph contains nodes and edges corresponding to the nodes and line
segments of a Geometry. Each node and edge in the graph is labeled with its topological
location relative to the source geometry.

Note that there is no requirement that points of self-intersection be a vertex. Thus to obtain
a correct topology graph, Geometries must be self-noded before constructing their graphs.

Two fundamental operations are supported by topology graphs:

• Computing the intersections between all the edges and nodes of a single graph
• Computing the intersections between the edges and nodes of two different graphs

10.2 LABELS
Topology graphs support the concept of labeling nodes and edges in the graph. The label of
a node or edge specifies its topological relationship to one or more geometries. (In fact,
since JTS operations have only two arguments labels are required for only two geometries).
A label for a node or edge has one or two elements, depending on whether the node or edge
occurs in one or both of the input Geometries. Elements contain attributes which categorize
the topological location of the node or edge relative to the parent Geometry; that is,
whether the node or edge is in the interior, boundary or exterior of the Geometry.
Attributes have a value from the set {Interior, Boundary, Exterior}. In a node each

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 23

element has a single attribute <On>. For an edge each element has a triplet of attributes
<Left, On, Right>.

Example 1

If A and B are simple polygons and A contains B, the labels on their edges are:

 A A: < Left = Exterior, On = Boundary, Right = Interior >
 B: < Left = Exterior, On = Exterior, Right = Exterior >

 B A: < Left = Interior, On = Interior, Right = Interior >
 B: < Left = Exterior, On = Boundary, Right = Interior >

10.3 COMPUTING THE INTERSECTION MATRIX FROM A LABELING
The Intersection Matrix (IM) for an overlay graph is computed from the labeling of nodes
and edges in the graph. To compute the IM, we sum the contributions to the IM of each
node and edge whose label contains elements for both Geometries. The IM contribution for
a node is dim >= 0 for the IM entry corresponding to the topological location of the node in
the parent Geometries. (For example, a node which is in the Interior of Geometry A and in
the Boundary of Geometry B would have label[0][On] = Interior and label[1][On] =
Boundary, and IM(Interior, Boundary) = 0.) The IM contribution for an edge is dim >= 1
for the IM entry corresponding to the topological location of the edge itself in the parent
Geometries, and dim >= 2 for the entries corresponding to the topological locations of the
areas on the left and right sides of the edge.

The algorithmic expression of these rules is:

function Node.computeIM(im : IntersectionMatrix)
 if (label[0] != null and label[1] != null) then
 im.setAtLeast(label[0][On], label[1][On], 0)
 end if
end function

function Edge.computeIM(im : IntersectionMatrix)
 if (label[0] != null and label[1] != null) then
 im.setAtLeast(label[0][On], label[1][On], 1)
 im.setAtLeast(label[0][Left], label[1][Left], 2)
 im.setAtLeast(label[0][Right], label[1][Right], 2)
 end if
end function

For each combination of Geometries there is a maximum possible IM value. For efficiency
this maximum value can be tested after each IM summation and the computation
terminated if the value is obtained.

It is always the case that dim(Ext(A) n Ext(B)) = 2.

Example 2

Using the labels in Example 1 we have

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 24

 for the labeling of the edge of A
 IM(Boundary, Exterior) = 1
 IM(Exterior, Exterior) = 2
 IM(Interior, Exterior) = 2

 for the labeling of the edge of B
 IM(Interior, Boundary) = 1
 IM(Interior, Exterior) = 2
 IM(Interior, Interior) = 2

The full IM is: 2 1 2
 F F 1
 F F 2

10.4 THE RELATE ALGORITHM
The relate algorithm computes the Intersection Matrix describing the relationship of two
Geometries. The algorithm for computing relate uses the intersection operations supported
by topology graphs. Although the relate result depends on the resultant graph formed by
the computed intersections, there is no need to explicitly compute the entire graph. Instead
the structure of the graph is computed locally at each intersection node.

The relate algorithm is robust, by virtue of the robustness of the underlying operations. It
is not subject to dimensional collapse problems, since it avoids calculating intersection
points which might not lie on precise coordinates.

The algorithm to compute relate has the following steps:

1. Build topology graphs of the two input geometries. For each geometry all self-

intersection nodes are computed and added to the graph.
2. Compute nodes for all intersections between edges and nodes of the graphs.
3. Compute the labeling for the computed nodes by merging the labels from the input

graphs.
4. Compute the labeling for isolated components of the graph (see below)
5. Compute the Intersection Matrix from the labels on the nodes and edges.

10.4.1 Labeling isolated components
Isolated components are components (edges or nodes) of an input Geometry which do not
contain any intersections with the other input Geometry. The topological relationship of
these components to the other input Geometry must be computed in order to determine the
complete labeling of the component. This can be done by testing whether the component
lies in the interior or exterior of the other Geometry. If the other Geometry is 1-
dimensional, the isolated component must lie in the exterior (since otherwise it would have
an intersection with an edge of the Geometry). If the other Geometry is 2-dimensional, a
Point-In-Polygon test can be used to determine whether the isolated component is in the
interior or exterior.

10.5 THE OVERLAY ALGORITHM
The Overlay Algorithm is used in spatial analysis methods for computing set-theoretic
operations (boolean combinations) of input Geometries. The algorithm for computing the
overlay uses the intersection operations supported by topology graphs. To compute an

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 25

overlay it is necessary to explicitly compute the resultant graph formed by the computed
intersections.

The algorithm to compute a set-theoretic spatial analysis method has the following steps:

1. Build topology graphs of the two input geometries. For each geometry all self-

intersection nodes are computed and added to the graph.
2. Compute nodes for all intersections between edges and nodes of the graphs.
3. Compute the labeling for the computed nodes by merging the labels from the input

graphs.
4. Compute new edges between the compute intersection nodes. Label the edges

appropriately
5. Build the resultant graph from the new nodes and edges.
6. Compute the labeling for isolated components of the graph. Add the isolated

components to the resultant graph.
7. Compute the result of the boolean combination by selecting the node and edges with the

appropriate labels. Polygonize areas and sew linear geometries together.

11. BINARY PREDICATES

11.1 GENERAL DISCUSSION
The binary predicates can be completely specified in terms of an Intersection Matrix pattern.
In fact, their implementation is simply a call to relate with the appropriate pattern.

It is important to note that binary predicates are topological operations rather than
pointwise operations. Even for apparently straightforward predicates such as Equals it is
easy to find cases where a pointwise comparison does not produce the same result as a
topological comparison. (for instance: A and B are MultiPoints with the same point repeated
different numbers of times; A is a LineString with two collinear line segments and B is a
single line segment with the same start and endpoints; A and B are rings with identical sets
of points but which start at different points). The algorithm used for the relate method is a
topology-based algorithm which produces a topologically correct result.

(1)
LINESTRING (10 10, 20 20)

(2)
LINESTRING (20 20, 15 15, 10 10)

Figure 7 - Two Geometries that are pointwise unequal but topologically equal

As in the SFS, the term P is used to refer to 0-dimensional Geometries (Point and
MultiPoint), L to 1-dimensional Geometries (LineString, and MultiLineString), and A to 2-

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 26

dimensional Geometries (Polygon and MultiPolygon). The dimension of a
GeometryCollection is equal to the maximum dimension of its components.

In the SFS some binary predicates are stated to be undefined for some combinations of
dimensions (e.g. touches is undefined for P/P). In the interests of simplifying the API,
combinations of argument Geometries which are not in the domain of a predicate will return
false (e.g. touches(Point, Point) => false).

If either argument to a predicate is an empty Geometry the predicate will return false.

Because it is not clear at this time what semantics for spatial analysis methods involving
GeometryCollections would be useful, GeometryCollections are not supported as arguments
to binary predicates or the relate method.

11.2 METHOD SPECIFICATIONS
Binary predicates are implemented as calls to relate, with the appropriate pattern supplied
for the input Geometries. The specifications for most of the binary predicates are well
described in the SFS, and are here simply specified by their relate pattern(s). Equals is not
described in the SFS, however, so it is specified symbolically as well.

11.2.1 Equals
The Equals relation applies to all combinations of Geometries. Two Geometries are
topologically equal iff their interiors intersect and no part of the interior or boundary of one
Geometry intersects the exterior of the other. Symbolically,

a.equals(b) Ü I(a) » I(b) µ ¸ Ù (I(a) ¼ B(a)) » E(b) = ¸ Ù (I(b) ¼ B(b)) » E(a) = ¸
Ü a.relate(b, “T*F**FFF*”)

Equals() is a topological relationship, and does not imply that the Geometries have the
same points or even that they are of the same class. (This more restrictive form of equality
is implemented in the equalsExact() method.)

Argument Dimensions Relate Pattern
all T*F**FFF*

11.2.2 Disjoint
Argument Dimensions Relate Pattern

all FF*FF****

11.2.3 Intersects
A.intersects(B) = ! A.disjoint(B)

11.2.4 Touches
Argument Dimensions Relate Pattern

P/L, P/A, L/L, L/A, A/A

FT*******
or F**T*****
or F***T****

P/P undefined

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 27

11.2.5 Crosses
Argument Dimensions Relate Pattern

P/L, P/A, L/A T*T******
L/L 0********

P/P, A/A undefined

11.2.6 Within
Argument Dimensions Relate Pattern

all T*F**F***

11.2.7 Contains
A.contains(B) = B.within(A)

11.2.8 Overlaps
Argument Dimensions Relate Pattern

P/P, A/A T*T***T**
L/L 1*T***T**

P/L, P/A, L/A undefined

12. SPATIAL ANALYSIS METHODS

12.1 GENERAL DISCUSSION
The SFS lists a number of spatial analysis methods including both constructive operations
(buffer, convex hull) and set-theoretic operations (intersection, union, difference, symmetric
difference).

1.1.1 Representation of Computed Geometries
The SFS states that the result of a set-theoretic method is the “point-set” result of the usual
set-theoretic definition of the operation (SFS 3.2.21.1). However, there are sometimes
many ways of representing a point set as a Geometry.

A

B

(1)
Topologically equivalent

representations for the point-set
A.union(B)

(2)
The canonical form of

A.union(B) returned by JTS

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 28

 Figure 8 - Representation of computed Geometries

The SFS does not specify an unambiguous representation for point sets returned from a
spatial analysis method. One goal of JTS is to make this specification precise and
unambiguous. JTS uses a canonical form for Geometries returned from spatial analysis
methods. The canonical form is a Geometry which is simple and noded:

• Simple means that the Geometry returned will be simple according to the definition in

Section 13.1.3
• Noded applies only to overlays involving LineStrings. It means that all intersection

points between the argument LineStrings will be present as endpoints of LineStrings in
the result.

This definition implies that for non-simple geometries which are arguments to spatial
analysis methods, a line-dissolve process is performed on them to ensure that the results
are simple.

12.2 CONSTRUCTIVE METHODS
Because the convexHull() method does not introduce any new coordinates, it is
guaranteed to return a precisely correct result. Since it is not possible to represent curved
arcs exactly in JTS, the buffer() method returns a (close) approximation to the correct
answer.

GeometryCollections are supported as arguments to the convexHull() method, but not to
the buffer() method.

A

(1)
A.convexHull()

(2)
A.buffer(dist)

Figure 9 - The constructive spatial analysis methods

12.3 SET-THEORETIC METHODS
The spatial analysis methods will return the most specific class possible to represent the
result. If the result is homogeneous, a Point, LineString, or Polygon will be returned if the
result contains a single element; otherwise, a MultiPoint, MultiLineString, or MultiPolygon
will be returned. If the result is heterogeneous a GeometryCollection will be returned.

Because it is not clear at this time what semantics for set-theoretic methods involving
GeometryCollections would be useful, GeometryCollections are not supported as arguments
to the set-theoretic methods.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 29

(2)
A.intersection(B)

(3)
A.union(B)

(4)
A.difference(B)

(5)
B.difference(A)

(6)
A.symDifference(B)

A

B

Figure 10 - The set-theoretic spatial analysis methods

For certain inputs, the Difference and SymDifference methods may compute non-closed
sets. This can happen when the arguments overlap and have different dimensions. Since
JTS Geometry objects can represent only closed sets, the spatial analysis methods are
specified to return the closure of the point-set-theoretic result.

A

B

(1)
A - B : the set-theoretic result

(a non-closed set)

(2)
A.difference(B)
(a closed set)

Figure 11 - JTS always returns closed Geometries

12.4 METHOD SPECIFICATIONS

12.4.1 Buffer
The buffer of a Geometry at a distance d is the Polygon or MultiPolygon which contains all
points within a distance d of the Geometry. The distance d is interpreted according to the
Precision Model of the Geometry. Both positive and negative distances are supported.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 30

a.buffer(d) =

d > 0 : { x ³ ¥2 | dist(x, a) ã d }
d < 0 : { x ³ ¥2 | x ³ a Ù dist(x, boundary(a)) > d }

In mathematical terms, buffering is defined as taking the Minkowski sum or difference of
the Geometry with a disc of radius equal to the absolute value of the buffer distance.
Positive and negative buffering is also referred to as dilation or erosion. In CAD/CAM
terms, buffering is referred to as computing an offset curve.

Figure 12 – Positive and Negative buffers

JTS allows specifying different end cap styles for buffers of lines. The end cap style is
available when using the BufferOp class directly. The following end cap styles are
supported:

Style Name Description
CAP_ROUND The usual round end caps
CAP_BUTT End caps are truncated flat at the line ends
CAP_SQUARE End caps are squared off at the buffer distance beyond the line ends

The following diagrams illustrate the effects of specifying different end cap styles:

CAP_ROUND CAP_BUTT CAP_SQUARE

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 31

12.4.2 ConvexHull
The convex hull of a Geometry is the smallest convex Polygon that contains all the points in
the Geometry. If the convex hull contains fewer than 3 points, a lower dimension Geometry
is returned, specified as follows:

Number of Points in
convex hull

Geometry Class of result

0 empty GeometryCollection
1 Point
2 LineString
3 or more Polygon

JTS will return a Geometry with the minimal number of points needed to represent the
convex hull. In particular, no more than two consecutive points will be collinear.

12.4.3 Intersection
The intersection of two Geometries A and B is the set of all points which lie in both A and B.

a.intersection(b) = { x ³ ¥2 | x ³ a Ù x ³ b }

12.4.4 Union
The union of two Geometries A and B is the set of all points which lie in A or B.

a.union(b) = { x ³ ¥2 | x ³ a Ú x ³ b }

12.4.5 Difference
The difference between two Geometries A and B is the set of all points which lie in A but not
in B. This method returns the closure of the resultant Geometry.

a.difference(b) = closure({ x ³ ¥2 | x ³ a Ú x ´ b })

12.4.6 SymDifference
The symmetric difference of two Geometries A and B is the set of all points which lie in
either A or B but not both. This method returns the closure of the resultant Geometry.

a.symDifference(b) = closure({ x ³ ¥2 | (x ³ a Ù x ´ b) Ú (x ´ a Ù x ³ b) })

13. OTHER METHODS

13.1.1 Boundary
As stated in SFS Section 2.1.13.1, “the boundary of a Geometry is a set of Geometries of
the next lower dimension.” JTS uses GeometryCollections to represent sets of Geometries.

For all empty Geometrys, boundary(G) = empty GeometryCollection (JTS).

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 32

For non-empty Geometries, the boundaries are defined as follows:

Geometry Class Definition of boundary()
Point empty GeometryCollection
MultiPoint empty GeometryCollection
LineString if closed: empty MultiPoint

if not closed: MultiPoint containing the two endpoints.
LinearRing empty MultiPoint
MultiLineString MultiPoint obtained by applying the Mod-2 rule to the

boundaries of the element LineStrings
Polygon MultiLineString containing the LinearRings of the shell and

holes, in that order (SFS 2.1.10)
MultiPolygon MultiLineString containing the LinearRings for the

boundaries of the element polygons, in the same order as
they occur in the MultiPolygon (SFS 2.1.12/JTS)

GeometryCollection (SFS Section 2.1.13.1) “The boundary of an arbitrary
collection of geometries whose interiors are disjoint
consist of geometries drawn from the boundaries of the
element geometries by application of the Mod-2 rule.”

13.1.2 IsClosed
The SFS meaning of “closed” is different to the topological meaning of closed. The SFS
“isClosed” method applies to Curves only. It tests whether the start point and end point of
the Curve are the same point. In contrast, topological closure depends on whether a
geometry contains its boundary. As discussed earlier, all instances of SFS geometry classes
are topologically closed by definition.

For empty Curves, isClosed is defined to have the value false.

13.1.3 IsSimple
In general, the SFS specifications of simplicity seem to follow the rule:

A Geometry is simple if and only if the only self-intersections are at boundary points.

For Point, MultiPolygon and GeometryCollection the SFS does not provide a specification for
simplicity. JTS provides a specification for these Geometry types based on the above rule.

For all empty Geometrys, isSimple = true. (JTS)

Geometry Class Definition of isSimple()
Point true (JTS)
MultiPoint true if no two Points in the MultiPoint are equal (SFS

2.1.4)
LineString true if the curve does not pass through the same point

twice (excepting the endpoints, which may be identical)
(SFS 2.1.5)

LinearRing true (SFS 2.1.6)
MultiLineString true iff all of its element LineStrings are simple and the

only intersections between any two elements occur at
points that are on the boundaries of both LineStrings.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 33

(SFS 2.1.7)
Polygon true (SFS 2.1.10)
MultiPolygon true (JTS)
GeometryCollection true if all its elements are simple and the only

intersections between any two elements occur at points
that are on the boundaries of both elements. (JTS)

13.1.4 IsValid
Since JTS Geometry objects are constructed out of user-supplied point sequences, it is
possible that a Geometry object does not in fact specify a topologically valid Geometry
according to the SFS. JTS does not validate Geometries when they are constructed, for
reasons of efficiency. The isValid() method is provided to test whether a Geometry is
valid according to the SFS spec.

The validation rules checked are as follows:

Rule Description Applies

To
Valid Coordinates Coordinates must contain valid numeric values All
Valid Point Count Coordinate sequences must contain a valid number of points

for their containing geometry:
LineString – 0 or 2 or more
LinearRing – 0 or 4 or more

All

No Invalid Self-
Intersections

Any two rings may intersect in at most a single point. A

No Duplicate Rings

Rings within an area must not be duplicated. Duplicate rings
are rings which have identical point sequences up to order.

A

No Self-Intersecting
Rings

Rings must not self-intersect. LR, A

Holes Contained In
Shell

Holes must be contained within their parent shell. A

Holes Not Nested Holes must not be nested. A
Shells Not Nested Shells must not be nested. mA
Interiors Connected The interior of a Polygon must be connected. A
Interiors Connected The interior of a Polygon must be connected. A
Invalid Coordinates The interior of a Polygon must be connected. A

JTS also provides the IsValidOp class, which performs the same checks as isValid but
which returns the exact nature and location of a validation failure.

14. WELL-KNOWN TEXT INPUT/OUTPUT

The Well-Known Text format for SFS Features is defined in SFS Section 3.2.5. The Well-
Known Text Reader and Writer will parse and output this format.

Note that there is an inconsistency in the SFS. The WKT grammar states that MultiPoints
are represented by “MULTIPOINT ((x y), (x y))”, but the examples show MultiPoints as
“MULTIPOINT (x y, x y)”. Other implementations follow the latter syntax, so JTS will adopt
it as well.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 34

The SFS does not define a WKT representation for Linear Rings. JTS has extended the WKT
syntax to support these, using the keyword LINEARRING.
d

14.1 SYNTAX FOR WELL-KNOWN TEXT
The syntax for the Well-known Text representation of Geometry is defined below.

The notation {}* denotes 0 or more repetitions of the tokens within the braces. The
braces do not appear in the output token list.

<Geometry Tagged Text> :=
 <Point Tagged Text>
 | <LineString Tagged Text>
 | <LinearRing Tagged Text>
 | <Polygon Tagged Text>
 | <MultiPoint Tagged Text>
 | <MultiLineString Tagged Text>
 | <MultiPolygon Tagged Text>
 | <GeometryCollection Tagged Text>

<Point Tagged Text> :=
 POINT <Point Text>

<LineString Tagged Text> :=
 LINESTRING <LineString Text>

<LinearRing Tagged Text> :=
 LINEARRING <LineString Text>

<Polygon Tagged Text> :=
 POLYGON <Polygon Text>

<MultiPoint Tagged Text> :=
 MULTIPOINT <Multipoint Text>

<MultiLineString Tagged Text> :=
 MULTILINESTRING <MultiLineString Text>

<MultiPolygon Tagged Text> :=
MULTIPOLYGON <MultiPolygon Text>

<GeometryCollection Tagged Text> :=
GEOMETRYCOLLECTION <GeometryCollection Text>

<Point Text> := EMPTY | (<Point>)

<Point> := <x> <y>

<x> := double precision literal

<y> := double precision literal

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 35

<LineString Text> := EMPTY
 | (<Point> {, <Point> }*)

<Polygon Text> := EMPTY
 | (<LineString Text> {, <LineString Text> }*)

<Multipoint Text> := EMPTY
 | (<Point > {, <Point > }*)

<MultiLineString Text> := EMPTY
 | (<LineString Text> {, <LineString Text> }*)

<MultiPolygon Text> := EMPTY
 | (<Polygon Text> {, <Polygon Text> }*)

<GeometryCollection Text> := EMPTY
 | (<Geometry Tagged Text>

14.2 WELL-KNOWN TEXT READER
The Well-Known Text reader (WKTReader) is designed to allow extracting Geometry objects
from either input streams or internal strings. This allows it to function as a parser to read
Geometry objects from text blocks embedded in other data formats (e.g. XML).

A WKTReader is parameterized by a GeometryFactory, to allow it to create Geometry
objects of the appropriate implementation. In particular, the GeometryFactory will
determine the PrecisionModel and SRID that is used.

The WKTReader will convert the input numbers to the precise internal representation.

14.3 WELL-KNOWN TEXT WRITER
The Well-Known Text writer outputs the textual representation of a Geometry object to a
Java Writer.
The WKTWriter will output coordinates rounded to the precision model. No more than the
maximum number of necessary decimal places will be output.

Document converted by PDFMoto freeware version

GDBC/CTI-S
GeoConnections

JTS Topology Suite - Version 1.3
Technical Specifications

 Page 36

15. REFERENCES

[AS] The OpenGIS Abstract Specification: An Object Model for Interoperable

Geoprocessing, Revision 1, OpenGIS Consortium, Inc, OpenGIS Project
Document Number 96-015R1, 1996.

 [Ava97] F. Avnaim, J-D. Boissonnat, O. Devillers, F. Preparata and M. Yvinec.

“Evaluating signs of determinants using single-precision arithmetic” [prisme-
2306a. In Algorithmica, Vol. 17, pp. 111-132, 1997. http://www-
sop.inria.fr/prisme/publis/abdpy-esdus-97.ps.gz

[Bri98] A. Brinkmann, K. Hinrichs. “Implementing exact line segment intersection in

map overlay”. In Proceedings of the 8th International Symposium on Spatial
Data Handling Vancouver, July 11-15, 1998, pp. 569-579, 1998.

[Sch97] Stefan Schirra. "Precision and robustness in geometric computations". In

Algorithmic Foundations of Geographic Information Systems, M. van Kreveld,
J. Nievergelt, T. Roos, and P. Widmayer Eds., LNCS 1340, Springer, pp. 255-
287, 1997.

[SFS] OpenGIS Simple Features Specification For SQL Revision 1.1. Open GIS

Consortium, Inc. OpenGIS project Document 99-049.
http://www.opengis.org/techno/specs/99-049.pdf

Document converted by PDFMoto freeware version

