pyglet Programming Guide

pyglet Programming Guide

Table of Contents

RTAT= [To 4= PSPPSRI Vi
0= o 0 LS PP Vi
Tl OF CONENES ..vuiieiit e et e e s Vi

TS = 1 = o) o PSP 1
INSEAlING USING SEIUP.PY +rnneerteeiieeit e et e e e e e e e e e e e e e et e et e e et e e et e e et eeaneeaenas 1
Installation from the FUNTIME ©00S ..vv.eveiniei e e e e e e 1

Writing a pyglet appliCationc.uiiiiiieii e 2
HEIO, WOITA .. 2
T gT=0 IR T= T 2
Handling mouse and Keyboard BVENLSc.uiiiiiiiiii i e e 3
Playing SOUNAS aNd MUSICcvveiiiiiiee e e e e e e e e e e e e e e e eanas 4
TS (o (o TN L= PP 4

Creating an OPENGL CONEXLEuuiiitieei e e e e e e e e e e e e e e et e e e e e st e e e e eeaneeaen 6
Displays, screens, configs and CONEXEScvvuniiiiieiiiei e e e e e e e 6

(0001 (X ESTE= 10 I w0 01T o 6
ISPl AYS . evniei et 7
o (= = 0SSP OTPPTRPPRRRPN 7
OpenGL configuration OPtIONScvuuiiii e e e e e e e e e e e e et e e eaneees 8
The default CoNfigUIrationoveiiiiii e 10
Simple context CONFIGUIAIONccuuiiiii e e e e e e eees 10
Selecting the best configurationco.uiiiiiiiii e 11
Sharing 0bjects DEtWEEN CONLEXLSvvviieii e e 11

The OPENGL INTEITACE ..vu i e e e e e e e ees 13
LU LS T T N o= o P 13
RESIZING the WINAOWiiieiiii e e e e e r e e e 14
g oot 0= o 14
UsiNg eXtension TUNCLIONSiiii i e e e e 15
Using MUILIPIE WINAOWSuieeiiiiii e e e e e e e 15
AGL, GLX 8N WEGL ..ottt et e e s 15

L =0 o 111 17
Drawing PrimitIVES .. .cue i e e e e e e e e e e e e e r e 17
VEIEX @ITDULES ...oeveiieeii e e et e e 18
VEIEX LSS ettt 19

Updating VEMEX Qatalevveieiiiiei e e e e e aa s 20
[0 7= TR (= 21
INAEXEA VEIEX TISES ...eiiiiiieeiii e 21
2 (1= o B =0T (= T 0T 21
Setting the OPENGL Stccvviiiei e e e 22
HIEIarChiCal SLALEceevveieeeii e e et eees 22
S0 (] a0 Y= 1 (Gl T = 23
Batches and groups in other MOAUIESccvviiiiiiiiiie e 24

KA 2T [0 7 o 25

Creating @ WINAOWoiuiiiii e e e e e e e e e e e et e e e e e et e e eaeeeanees 25
(©0]01 (q oo 01 To = 1 o] o P 25
FUITSCIEEN WINAOWS ...oevieiiiiie ettt e e 26

S 2= To [70 o) o 26

N 0] 1= = o 27
WINAOW SEYIE ..o e e e e aan s 27
(o1 1 o 1 1 28
ot] T PP PTTUPTR PPN 28

VISIDIITY e e 28

ST T =55 T o AT/ T o (oY 29

Windows and OPENGL CONEEXESvvvuiieiieeiieeie e e e e e e e et e e e e e e e e e e eanaeeaen 29
[o100 Y= o U 1= 11 oo [P 29
Vertical retrace SynChroniSationveiuieiiieiie e e e e e 29

pyglet Programming Guide

The application EVENE TOOPuuiieiiii e 31
CustomiSiNg the @VENE 100Dcceeren it eees 31
EVENL 100D BVENES ... 31

Overriding the default idle POIICYocvvniiiiii e 31
Dispatching events ManUallycooouuiiiiiiiei e 32

The pyglet event fFramewWOorKooouiiii e 33
Setting event NANAIEIS ... e 33
Stacking event hanNdIErS oo 33
Creating your own event diSPatChercoouuuiiiiiiiiei e 35
Implementing the ODSEIVEr PaITENNccouueiiiiii e 36
DOCUMENLING BVENES ...ttt ettt e ettt e e et e e e e et e e e enba e eeees 36

Working With the KEYDOardcoouuiiiiiii e 38
KEYDOAID BVENLS ... 38
Defined key symbolsoiiii 38

MOTITIENS .ttt e 39
User-defined Key SymbOIScoouiiiiiiii e 40
ReMemMDbEring KEY StALEcoovuiiiiii e 40

TexXt and MOLION EVENEScoviieeeii ettt ettt e e et e e et e e e eaa e eees 40
IMOLION BVENES ...ttt e e e e 41

Keyboard EXCIUSIVITYuiiiiiiei et 42
WOrking With the MOUSEcooiiiii e 43
IMIOUSE BVENTS ...ttt ettt et et e e e e e e e e e e ees 43
Changing the MOUSE CUISOEceuuuieiiiii ettt e e e e et e e e e eeees 44
MOUSE EXCIUSIVITY .ottt e e e e eeaans 46
Keeping traCk OF TIME ...t e e et e et e e e e 47
Calling functions PEriodiCAllYu i 47
ANIMation tECNIQUES ... 48

THE TFaME FAE ...t et eeeas 48
Displaying the frame rateco.uiiiiiiii e 48
USEr-defined ClOCKS ...t e e e 49
DISPIYING TEX ...ttt ettt e 50
SIMPIE tEXE FENAEIING ...oeeei ittt 50

The document/layout MOELcoouiiiiiii e 50
DOCUMENLS ...ttt ettt ettt ettt e e e ene e 51

LLBYOULS ..ottt 51

FOPMEELEA TEXT ...ttt et e e e e e e s 52
CharaCter SEYIES ... 52

Paragraph SLYIES ... 53

ATITDULEA TEXE ...t e 53

[1 PSP PP PPPPT 55

CUSIOM EIEIMENLES ...ttt et et e e e e eeeas 55
USEr-e0itAhl € TEXE ...oeeee et 55
L0ading SYSLEM FONESuieiii e 56

FONE SIZES .t 57

FONE FESOIULION ...ttt 57
Determining fONE SIZEuiiiiii e 57

L0ading CUSLOM FONES ...t 57
Supported FONt FOMMEEScieeei e 58

OpenGL fONt CONSIAEIALONSuiiiiiiie et 58
Context AfINITYvneeeii e 59

BIENG ST ... 59

MBS ...ttt ea e 60
LOBAING 8N IMAJE ...ttt et e e et e e et e e e et e eeena e aees 60
Supported iIMage FOMMELSuuiiiiie e 61
WOrKIiNG With TMBOES ... ittt 62

The Abstractimage hierarchyooooiiii e 62
Accessing or providing PIXEl dalal...........veveeiiiiiiii e 63
PerfOrmManCe CONCEINSiiiiiiiee et e s 64

pyglet Programming Guide

Image Sequences and aHIASESuu i 65
IMBOE OIS ..ttt e e e e e 65

D TEXIUIES ...ttt ettt et 66
Texture bins and @laSESuiiiii e 67
ANIMEBLIONS ...ttt ettt e ettt e e e e e e anaas 67
BUFFEr IMAGES ... e 68
DiSPlaying IMBOESceeeiieieit ettt et e e s 69
S o1 (= T TP TUPPPTTRPPPIN 69
Simple image BItNGoieei e 70

(@01 (€] I 111="o [oo PP PPPPT 71
TEXIUNE dIMENSIONS ...ttt ettt 71
Texture internal FOrMaLoooiiiii e 72
SAVING @N TMBOE ...ttt et et 73
S o 0o I= 0o IR Lo (<o PP PPTRTPPPPT 74
AUIO IVEIS ..t e et e e 74
DITECISOUNG ...ttt ettt eeeaan s 74
OPENAL e 75
AL S A e 75
LINUX TSSUBS ..ttt ettt e e e et e e e e e e e s 75
SUPPOrtEd MEIA TYPES ..oeeve ettt 75
LOBAING MEAIA ... ettt e e 76
Simple audio Playbackccoouiiiii 77
Controlling PlAYDACKcoiiii e 77
[NCOIPOFELING VIAEOceveeieieiii ettt 79
POSITIONE] BUAIO ...evveeeeei e 79
APPHICALTON FESOUITES ...ttt ettt ettt ettt ettt ettt e e et e ettt e et e bt r e e e eab e e eentnaeaees 80
LOBAING FESOUICES ...ttt ettt ettt e e et e e e e e e aaa e e eenans 80
RESOUICE 1OCALTONS ... ceeeet ettt 81
Specifying the reSource Pathcoouueiiiiiii e 81
MUIIPIE TOBOENS ...t 82
SAVING USEr PIrEFEIEINCES ..ottt ettt eaaas 82
DEDUGING TOOIS ...ttt ettt 84
DebUGGING OPENGL ...ttt e e et 84
Error CNECKINGceeeiieieii e 85

LI @1 1o [PPSR 85
TraCING EXECULION ...ttt ettt e et e et e e e e e e era s 85
Platform-specific debUGOING veeeii e 85
LITIUX ettt et 85
WWINOOWS .ottt e e ettt e e ettt e e e e ab e e e enaneeees 85
Appendix: Migrating to PYGIEL 1.1iiiii e 86
Compatibility and depreCationiieiiiiiiiiiii e 86
Deprecated MELNOOSuniiiii e 86
New features replacing standard PraCliCevveeveieiiiiiieiei e 86
IMPOrtING PYGIEL ...ttt et e e e e era e e 86
APPHICALTON BVENE 100D ...t 87
LOBAING FESOUICES ...ttt ettt ettt e e e e eenans 88

NEW graphiCS FEBIUIESceeii ettt e e e e e e ena e e 88
NEW tEXE TEAIUINES ...ooee ettt e eeeeas 89
Other NEW FEAIUMNESee e et ettt e e e et e e e e e eees 89

Welcome

The pyglet Programming Guide provides in-depth documentation for writing applications that use
pyglet. Many topics described here reference the pyglet API reference, provided separately.

If thisisyour first time reading about pyglet, we suggest you start at Writing a pyglet application.

Sections

o Installation

» Writing apyglet application
 Creating an OpenGL context
* The OpenGL interface

e Graphics

* Windowing

» The application event loop

» The pyglet event framework
» Working with the keyboard

» Working with the mouse

» Keeping track of time
 Displaying text

e |mages

+ Sound and video

» Application resources
 Debugging tools

» Appendix: Migrating to pyglet 1.1

Table of contents

* Installation
 Installing using setup.py
« Installation from the runtime eggs
» Writing apyglet application
* Hello, World
* Image viewer
» Handling mouse and keyboard events
« Playing sounds and music

¢ Whereto next?

Vi

Welcome

* Creating an OpenGL context
 Digplays, screens, configs and contexts
» Contexts and configs
» Displays
* Screens
« OpenGL configuration options
 Thedefault configuration

« Simple context configuration

Selecting the best configuration
 Sharing objects between contexts
* The OpenGL interface
» Using OpenGL
* Resizing the window
 Error checking
» Using extension functions
 Using multiple windows
¢ AGL, GLX and WGL
» Graphics

» Drawing primitives

Vertex attributes

* Vertex lists

» Updating vertex data
» Datausage

* |ndexed vertex lists

L]

Batched rendering
 Setting the OpenGL state
» Hierarchical state

 Sorting vertex lists

Batches and groups in other modules
* Windowing
 Creating a window

 Context configuration

Vi

Welcome

* Fullscreen windows
¢ Size and position
e Appearance

* Window style

» Caption

e |con

Visihility
* Subclassing Window
« Windows and OpenGL contexts
» Double-buffering
» Vertical retrace synchronisation
» The application event loop
» Customising the event loop
» Event loop events
» Overriding the default idle policy
« Dispatching events manually
» The pyglet event framework
e Setting event handlers
 Stacking event handlers
 Creating your own event dispatcher
* Implementing the Observer pattern
« Documenting events
» Working with the keyboard
« Keyboard events
» Defined key symbols
* Modifiers
* User-defined key symbols
* Remembering key state
» Text and motion events
* Motion events
« Keyboard exclusivity

» Working with the mouse

viii

Welcome

Mouse events
Changing the mouse cursor

Mouse exclusivity

» Keeping track of time

Calling functions periodically
Animation techniques

The frame rate

* Displaying the frame rate

User-defined clocks

 Displaying text

Simple text rendering

The document/layout model
» Documents

« Layouts

Formatted text

e Character styles
 Paragraph styles

* Attributed text

e HTML

Custom elements
User-editable text

Loading system fonts

Font sizes

* Font resolution

» Determining font size
Loading custom fonts

* Supported font formats
OpenGL font considerations
» Context affinity

* Blend state

* Images

Welcome

* Loading animage
* Supported image formats
* Working with images
* The Abstractlmage hierarchy
» Accessing or providing pixel data
* Performance concerns
* Image sequences and atlases
* Imagegrids
» 3D textures
» Texture bins and atlases
e Animations
« Buffer images
 Displaying images
 Sprites
» Simpleimage blitting
* OpenGL imaging
» Texture dimensions
» Textureinternal format
* Saving animage
Sound and video
e Audio drivers
* DirectSound
¢ OpenAL
« ALSA
 Linux Issues
¢ Supported media types
« Loading media
e Simple audio playback
» Controlling playback
* Incorporating video

» Positional audio

Welcome

» Application resources

L]

L]

L oading resources

* Resource locations
Specifying the resource path
Multiple loaders

Saving user preferences

» Debugging tools

L]

L]

Debugging OpenGL

« Error checking

» Tracing

Tracing execution
Platform-specific debugging
* Linux

* Windows

» Appendix: Migrating to pyglet 1.1

Compatibility and deprecation
Deprecated methods

New features replacing standard practice
* Importing pyglet

» Application event loop

« Loading resources

New graphics features

New text features

Other new features

Xi

Installation

pyglet does not need to beinstalled. Because it uses no external libraries or compiled binaries, you can
run it in-place. You can distribute the pyglet source code or runtime eggs alongside your application
code (see Distribution).

You might want to experiment with pyglet and run the example programs before you install it on
your development machine. To do this, add either the extracted pyglet source archive directory or the
compressed runtime egg to your PYTHONPATH.

On Windows you can specify this from a command line:
set PYTHONPATH c:\ path\to\pygl et-1.1\; %YTHONPATHY%
On Mac OS X, Linux or on Windows under cygwin using bash:

set PYTHONPATH / pat h/ t o/ pygl et - 1. 1/ : $SPYTHONPATH
export PYTHONPATH

or, using tcsh or avariant:
set env PYTHONPATH / pat h/ t o/ pygl et - 1. 1/ : $PYTHONPATH

If you have downloaded a runtime egg instead of the source archive, you would specify the filename
of theegg in place of pygl et - 1. 1/ .

Installing using setup.py

To make pyglet available to all users, or to avoid having to set the PYTHONPATH for each session,
you can install it into your Python'ssi t e- packages directory.

From acommand prompt on Windows, change into the extracted pyglet source archive directory and
type:

pyt hon setup.py install
On Mac OS X and Linux you will need to do the above as a priveleged user; for example using sudo:
sudo python setup.py install

Once ingtalled you should be able to i mport pygl et from any terminal without setting the
PYTHONPATH.

Installation from the runtime eggs

If you have setuptools installed, you can install or upgrade to the latest version of pyglet using
easy_install:

easy_install -U pyglet
On Mac OS X and Linux you may need to run the above as a priveleged user; for example:

sudo easy_install -U pyglet

Writing a pyglet application

Getting started with a new library or framework can be daunting, especially when presented with a
large amount of reference materia to read. This chapter gives a very quick introduction to pyglet
without covering any of the details.

Hello, World

WEe'l begin with the requisite "Hello, World" introduction. This program will open a window
with some text in it and wait to be closed. You can find the entire program in the examples/
programming_guide/hello_world.py file.

Begin by importing the pyglet package:
i mport pygl et

Create aWindow by calling its default constructor. The window will be visible as soon asiit's created,
and will have reasonable default values for all its parameters:

wi ndow = pygl et.w ndow. W ndow()

To display the text, we'll create a Label. Keyword arguments are used to set the font, position and
anchorage of the label:

| abel = pyglet.text.Label ('Hello, world",
font _nanme='Ti mes New Roman',
font _si ze=36,
x=wi ndow. wi dt h//2, y=wi ndow. hei ght//2,
anchor_x='center', anchor_y='center')

An on_draw event is dispatched to the window to give it a chance to redraw its contents. pyglet
provides several ways to attach event handlersto objects; a simple way is to use a decorator:

@ ndow. event

def on_draw():
wi ndow. cl ear ()
| abel . draw()

Within the on_dr aw handler the window is cleared to the default background color (black), and the
[abel is drawn.

Finaly, call:
pygl et . app. run()

To let pyglet respond to application events such as the mouse and keyboard. Y our event handlers will
now be called as required, and the run method will return only when all application windows have
been closed.

Notethat earlier versions of pyglet required the application devel oper to writetheir own event-handling
runloop. Thisisstill possible, but discouraged; see The application event loop for details.

Image viewer

Most games will need to load and display images on the screen. In this example well load an image
from the application's directory and display it within the window:

i mport pygl et

Writing a pyglet application

wi ndow = pygl et.w ndow. Wndow()
i mage = pygl et.resource.imge('kitten.jpg')

@ ndow. event
def on_draw():
wi ndow. cl ear ()
i mage.blit(0, 0)

pygl et. app. run()

We used the pyglet.resource.image function to load the image, which automatically locates the file
relative to the source file (rather than the working directory). To load an image not bundled with the
application (for example, specified on the command line, you would use pyglet.image.load).

The Abstractimage.blit method drawstheimage. Thearguments(0, 0) tell pyglet to draw theimage
at pixel coordinates 0, O in the window (the lower-left corner).

The complete code for this exampleislocated in examples/programming_guide/image _viewer.py.

Handling mouse and keyboard events

So far the only event used isthe on_draw event. To react to keyboard and mouse events, it's necessary
to write and attach event handlers for these events as well:

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_key press(synmbol, nodifiers):
print 'A key was pressed

@ ndow. event
def on_draw():
wi ndow. cl ear ()

pygl et . app. run()

Keyboard events have two parameters: the virtua key symbol that was pressed, and a bitwise
combination of any modifiers that are present (for example, the CTRL and SHI FT keys).

The key symbols are defined in pyglet.window.key:

from pygl et. wi ndow i nport key

@i ndow. event
def on_key press(synmbol, nodifiers):

if symbol == key. A

print 'The "A" key was pressed."'
elif synbol == key.LEFT:

print 'The |eft arrow key was pressed.’
elif synmbol == key. ENTER

print 'The enter key was pressed.’
See the pyglet.window.key documentation for a complete list of key symbols.
Mouse events are handled in asimilar way:

from pygl et. wi ndow i nmport nouse

Writing a pyglet application

@ ndow. event
def on_npuse_press(x, y, button, nodifiers):
i f button == nopuse. LEFT:
print 'The | eft nouse button was pressed.'

The x and y parameters give the position of the mouse when the button was pressed, relative to the
lower-left corner of the window.

There are more than 20 event typesthat you can handle on awindow. The easiest way to find the event
name and parameters you need is to add the following line to your program:

wi ndow. push_handl er s(pygl et . wi ndow. event . W ndowEvent Logger ())
Thiswill cause all events received on the window to be printed to the console.

An example program using keyboard and mouse eventsisin examples/programming_guide/events.py

Playing sounds and music

pyglet makesit easy to play and mix multiple sounds together in your game. The following example
plays an MP3file®:

i mport pygl et

nmusi ¢ = pygl et.resource. nmedi a(' nusi c. np3')
nmusi c. pl ay()

pygl et . app. run()

Aswith the image loading example presented earlier, pyglet.resource.media locates the sound file in
the application's directory (not the working directory). If you know the actual filesystem path (either
relative or absolute), use pyglet.media.load.

Short sounds, such as a gunfire shot used in a game, should be decoded in memory before they are
used, so that they play more immediately and incur less of a CPU performance penalty. Specify
st r eam ng=Fal se inthiscase

sound = pygl et. resource. nedi a(' shot.wav', stream ng=Fal se)
sound. pl ay()

The examples/media_player.py example demonstrates playback of streaming audio and video using
pyglet. The examples/noisy/noisy.py example demonstrates playing many short audio samples
simultaneously, asin agame.

Where to next?

The examples presented in this chapter should have given you enough information to get started
writing simple arcade and point-and-click-based games.

The remainder of this programming guide goes into quite technical detail regarding some of pyglet's
features. While getting started, it's recommended that you skim the beginning of each chapter but not
attempt to read through the entire guide from start to finish.

To write 3D applications or achieve optimal performance in your 2D
applications you'll need to work with OpenGL directly. The canonica references

SMP3 and other compressed audio formats require AVhin to be installed (this is the default for the Windows and Mac OS X installers).
Uncompressed WAV files can be played without AVbin.

Writing a pyglet application

for OpenGL are The OpenGL Programming Guide [http://opengl.org/documentation/
books/#the opengl_programming_guide _the officia_guide to_learning_opengl_version] and The
OpenGL Shading Language [http://opengl.org/documentation/books/
#the opengl_shading_language 2nd_edition].

There are numerous examples of pyglet applications in the exanpl es/ directory of the
documentation and source distributions. Keep checking http://www.pyglet.org/ for more examples
and tutorials as they are written.

http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://www.pyglet.org/

Creating an OpenGL context

This section describes how to configure an OpenGL context. For most applications the information
described hereisfar too low-level to be of any concern, however more advanced applications can take
advantage of the complete control pyglet provides.

Displays, screens, configs and contexts

Screen Template Config

double_buffer = True

i

|

|

|

|

| red_size =

| green_size =

| blue_size =
Platform |

|

|

|

|

aux_buffers =

double_buffer = True
Window red_size = 8
green_size = 8
blue_size = 8
aux_buffers = 4
Context

Flow of construction, from the singleton Platform to a newly created Window with
its Context.

Contexts and configs

When you draw on awindow in pyglet, you are drawing to an OpenGL context. Every window has
its own context, which is created when the window is created. Y ou can access the window's context
viaits context attribute.

The context is created from an OpenGL configuration (or "config"), which describesvariousproperties
of the context such as what color format to use, how many buffers are available, and so on. You can
access the config that was used to create a context via the context's config attribute.

For example, here we create awindow using the default config and examine some of its properties:

>>> jnport pygl et
>>> wi ndow = pygl et.w ndow. W ndow()

>>> cont ext = wi ndow. cont ext
>>> config = context.config
>>> confi g. doubl e_buffer
c_int(1)

>>> config.stereo

c_int(0)

>>> config. sanmpl e_buffers
c_int(0)

Note that the values of the config's attributes are all ctypes instances. Thisis because the config was
not specified by pyglet. Rather, it has been selected by pyglet from alist of configs supported by the
system. Y ou can make no guarantee that a given config is valid on a system unless it was provided
to you by the system.

pyglet simplifies the process of selecting one of the system's configs by allowing you to create
a "template" config which specifies only the values you are interested in. See Smple context
configuration for details.

Creating an OpenGL context

Displays

The system may actually support several different sets of configs, depending on which display device
isbeing used. For example, acomputer with two video cards would have not support the same configs
on each card. Another example is using X11 remotely: the display device will support different
configurations than the local driver. Even a single video card on the local computer may support
different configs for the two monitors plugged in.

In pyglet, a"display" is a collection of "screens' attached to a single display device. On Linux, the
display device correspondsto the X11 display being used. On Windows and Mac OS X, thereisonly
one display (as these operating systems present multiple video cards as asingle virtual device).

Thereisasingleton class Platformwhich providesaccessto the display(s); thisrepresentsthe computer
on which your application is running. It is usually sufficient to use the default display:

>>> platform = pygl et.w ndow. get_platform)
>>> display = platformget default display()

On X 11, you can specify the display string to use, for example to use a remotely connected display.
The display string isin the same format as used by the DI SPLAY environment variable:

>>> di splay = platformget_display('renpte:1.0")
Y ou use the same string to specify a separate X11 screen 6.

>>> display = platformget _display(':0.1")
Screens

Once you have obtained a display, you can enumerate the screens that are connected. A screen is
the physical display medium connected to the display device; for example a computer monitor, TV
or projector. Most computers will have a single screen, however dual-head workstations and laptops
connected to a projector are common cases where more than one screen will be present.

In the following example the screens of a dual-head workstation are listed:

>>> for screen in display.get_screens():
print screen

Xl'i bScreen(screen=0, x=1280, y=0, wi dth=1280, height=1024, xinerama=1)
Xl'i bScreen(screen=0, x=0, y=0, w dth=1280, hei ght=1024, xinerana=1)

Because this workstation is running Linux, the returned screens are Xl i bScr een, a subclass of
Screen. The scr een and xi ner ana attributes are specific to Linux, but the x, y, wi dt h and
hei ght attributes are present on all screens, and describe the screen’'s geometry, as shown below.

Xx=0,y=0 x = 1280,y=0

2 1

height = 1024
height = 1024

width = 1280 width = 1280

5Assumi ng Xineramais not being used to combine the screens. If Xinerama s enabled, use screen 0 in the display string, and select a screen
in the same manner as for Windows and Mac OS X.

Creating an OpenGL context

Example arrangement of screens and their reported geometry. Note that the primary
display (marked "1") is positioned on the right, according to this particular user's
preference.

There is dways a "default" screen, which is the first screen returned by get_screens. Depending on
the operating system, the default screen is usually the one that contains the taskbar (on Windows) or
menu bar (on OS X). Y ou can access this screen directly using get_default_screen.

OpenGL configuration options

When configuring or selecting a Config, you do so based on the properties of that config. pyglet
supportsafixed subset of the optionsprovided by AGL, GLX, WGL andtheir extensions. In particular,
these constraints are placed on all OpenGL configs:

» Buffers are always component (RGB or RGBA) color, never palette indexed.

» The"level" of abufferisalwaysO (this parameter islargely unsupported by modern OpenGL drivers
anyway).

» Thereisno way to set the transparent color of a buffer (again, this GL X-specific option is not well
supported).

» Thereis no support for pbuffers (equivalent functionality can be achieved much more simply and
efficiently using framebuffer objects).

The visible portion of the buffer, sometimes called the color buffer, is configured with the following
attributes:

buf f er _si ze Number of bits per sample. Common values
are 24 and 32, which each dedicate 8 bits
per color component. A buffer size of 16
is also possible, which usually corresponds
to 5, 6, and 5 bits of red, green and blue,
respectively.

Usually thereis no need to set this property,
as the device driver will select a buffer size
compatible with the current display mode by
default.

red_size, blue_size, These each give the number of bits dedicated
green_si ze, al pha_size to their respective color component. You
should avoid setting any of the red, green
or blue sizes, as these are determined by
the driver based on the buf fer_size

property.

If you require an alpha channel in your color
buffer (for example, if you are compositing
in multiple passes) you should specify
al pha_si ze=8 to ensurethat this channel

is created.
sanpl e_buffers and Configures the buffer for multisampling, in
sanpl es which more than one color sampleis used to

determine the color of each pixel, leading to
ahigher quality, antialiased image.

Enable multisampling by setting
sanpl e_buffers=1, then give the

Creating an OpenGL context

number of samples per pixel to use
in sanpl es. For example, sanpl es=2
is the fastest, lowest-quality multisample
configuration. A higher-quality buffer (with
a compromise in performance) is possible
with sanpl es=4.

Not al video hardware supports
multisampling; you may need to make this
a user-selectable option, or be prepared to
automatically downgrade the configuration
if the requested oneis not available.

stereo Creates separate left and right buffers, for
use with stereo hardware. Only specialised
video hardware such as stereoscopic glasses
will support this option. When used, you will
need to manually render to each buffer, for
example using gl DrawBuffers.

doubl e_buffer Create separate front and back
buffers. Without double-buffering, drawing
commands are immediately visible on the
screen, and the user will notice a visible
flicker as the image is redrawn in front of
them.

It is recommended to set
doubl e_buf f er =Tr ue, which creates a
separate hidden buffer to which drawing is
performed. When the Window.flip is called,
the buffers are swapped, making the new
drawing visible virtually instantaneously.

In addition to the color buffer, several other buffers can optionally be created based on the values of
these properties:

dept h_si ze A depth buffer is usually required for 3D
rendering. The typical depth size is 24 hits.
Specify 0 if you do not require a depth
buffer.

stencil _size The stencil buffer is required for masking
the other buffers and implementing certain
volumetric shadowing algorithms. The
typical stencil size is 8 bits; or specify O if
you do not requireit.

accumred_size, The accumulation buffer can be used for
accum bl ue_si ze, simple antialiasing, depth-of-field, motion
accum green_si ze, blur and other compositing operations. Its
accum al pha_si ze use nowadaysis being superceded by the use

of floating-point textures, however it is still
a practical solution for implementing these
effects on older hardware.

If you require an accumulation buffer,
specify 8 for each of these attributes (the
apha component is optional, of course).

Creating an OpenGL context

aux_buffers Each auxilliary buffer is configured the same
as the colour buffer. Up to four auxilliary
buffers can typically be created. Specify O if
you do not require any auxilliary buffers.

Like the accumulation buffer, auxilliary
buffers are used | ess often nowadays as more
efficient techniques such asrender-to-texture
are available. They are almost universally
available on older hardware, though, where
the newer techniques are not possible.

The default configuration

If you create a Window without specifying the context or config, pyglet will use a template config
with the following properties:

Attribute Value
double buffer True
depth_size 24

Simple context configuration

A context can only be created from a config that was provided by the system. Enumerating and
comparing the attributes of all the possible configs is a complicated process, so pyglet provides a
simpler interface based on "template" configs.

To get the config with the attributes you need, construct a Config and set only the attributes you are
interested in. Y ou can then supply this config to the Window constructor to creste the context.

For example, to create a window with an alpha channel:

config
wi ndow

= pygl et. gl . Config(al pha_si ze=8)

= pygl et . wi ndow. W ndow confi g=confi g)

It is sometimes necessary to create the context yourself, rather than letting the Window constructor
do thisfor you. In this case use Screen.get_best_config to obtain a"complete” config, which you can
then use to create the context:

pl at form = pygl et. wi ndow. get _pl atform()
di splay = platform get_defaul t_display()
screen = di splay.get_default_screen()

tenpl ate = pyglet.gl.Config(al pha_size=8)
config = screen.get_best_config(tenpl ate)
context = config.create_context(None)

wi ndow = pygl et.w ndow. W ndow(cont ext =cont ext)

Note that you cannot create a context directly from atemplate (any Config you constructed yourself).
The Window constructor performs a similar process to the above to create the context if a template
config is given.

Not al configs will be possible on al machines. The call to get_best_config will raise
NoSuchConfigException if the hardware does not support the requested attributes. It will never return
aconfig that does not meet or exceed the attributes you specify in the template.

Y ou can use this to support newer hardware features where available, but also accept alesser config
if necessary. For example, the following code creates a window with multisampling if possible,
otherwise leaves multisampling off:

10

Creating an OpenGL context

tenmplate = gl . Config(sanpl e_buffers=1, sanpl es=4)
try:
config = screen.get_best _config(tenpl ate)
except pygl et.wi ndow. NoSuchConfi gExcepti on:
template = gl . Config()
config = screen.get_best _config(tenpl ate)
wi ndow = pygl et.w ndow. Wndow(confi g=confi g)

Selecting the best configuration

Allowing pyglet to select the best configuration based on atemplate is sufficient for most applications,
however some complex programs may want to specify their own agorithm for selecting a set of
OpenGL attributes.

You can enumerate a screen's configs using the get_matching_configs method. Y ou must supply a
template as a minimum specification, but you can supply an "empty" template (one with no attributes
set) to get alist of all configurations supported by the screen.

In thefollowing example, all configurations with either an auxilliary buffer or an accumulation buffer
are printed:

pl at form = pygl et. wi ndow. get _pl atformn()

di splay = platform get_defaul t_display()
screen = di splay.get_default_screen()

for config in screen.get_natching_configs(gl.Config()):
if config.aux_buffers or config.accumred_size:
print config

As well as supporting more complex configuration selection agorithms, enumeration allows you to
efficiently find the maximum value of an attribute (for example, the maximum samples per pixel), or
present alist of possible configurations to the user.

Sharing objects between contexts

Every window in pyglet has its own OpenGL context. Each context has its own OpenGL state,
including the matrix stacks and current flags. However, contexts can optionally share their objects
with one or more other contexts. Shareable objects include:

» Textures

» Digplay lists

» Shader programs

» Vertex and pixel buffer objects
» Framebuffer objects

There are two reasons for sharing objects. The first is to allow objects to be stored on the video card
only once, even if used by more than one window. For example, you could have one window showing
the actual game, with other "debug" windows showing the various objects asthey are manipulated. Or,
aset of widget textures required for aGUI could be shared between all the windows in an application.

The second reason is to avoid having to recreate the objects when a context needs to be recreated. For
example, if the user wishes to turn on multisampling, it is necessary to recreate the context. Rather
than destroy the old one and lose all the objects aready created, you can

1. Create the new context, sharing object space with the old context, then

11

Creating an OpenGL context

2. Destroy the old context. The new context retains all the old objects.

pyglet defines an ObjectSpace: arepresentation of acollection of objects used by one or more contexts.
Each context has a single object space, accessible viaits object_space attribute.

By default, all contexts share the same object space aslong as at |east one context usingitis"alive". If
all the contexts sharing an object space are lost or destroyed, the object space will be destroyed also.
Thisiswhy it is necessary to follow the steps outlined above for retaining objects when a context is
recreated.

pyglet creates a hidden "shadow" context as soon as pyglet.gl is imported. By default, all windows
will share object space with this shadow context, so the above steps are generally not needed. The
shadow context also allows objects such as textures to be loaded before awindow is created.

When you create a Context, you tell pyglet which other context it will obtain an object space from. By
default (when using the Window constructor to create the context) the most recently created context
will be used. You can specify another context, or specify no context (to create a new object space)
in the Context constructor.

It can be useful to keep track of which object space an object was created in. For example, when you
load afont, pyglet caches the textures used and reuses them; but only if the font is being loaded on the
same object space. The easiest way to do thisisto set your own attributes on the ObjectSpace object.

In the following example, an attribute is set on the object space indicating that game obj ects have been
loaded. Thisway, if the context is recreated, you can check for this attribute to determine if you need
to load them again:

context = pyglet.gl.get_current_context()
obj ect _space = context.object_space
obj ect _space. my_ganme_obj ects_| oaded = True

Avoid using attribute names on ObjectSpace that begin with " pygl et ", they may conflict with an
internal module.

12

The OpenGL interface

pydlet provides an interface to OpenGL and GLU. Theinterface is used by all of pyglet's higher-level
API's, so that all rendering is done efficiently by the graphics card, rather than the operating system.
Y ou can access thisinterface directly; using it is much like using OpenGL from C.

The interface is a "thin-wrapper" around | i bG.. so on Linux, opengl 32. dl I on Windows and
Open@.. f ramewor k on OS X. The pyglet maintainers regenerate the interface from the latest
specifications, so it is aways up-to-date with the latest version and almost all extensions.

The interface is provided by the pygl et. gl package. To use it you will need a good
knowledge of OpenGL, C and ctypes. You may prefer to use OpenGL without using ctypes, in
which case you should investigate PyOpenGL [http://pyopengl.sourceforge.net/]. PyOpenGL [http:/
pyopengl.sourceforge.net/] provides similar functionality with a more "Pythonic" interface, and will
work with pyglet without any modification.

Using OpenGL

Documentation of OpenGL and GLU are provided at the OpenGL website [http://www.opengl.org]
and (more comprehensively) in the OpenGL Programming Guide [http://opengl.org/documentation/
red_book/].

Importing the package gives access to OpenGL, GLU, and all OpenGL registered extensions. Thisis
sufficient for all but the most advanced uses of OpenGL.:

frompyglet.gl inport *

All function names and constants are identical to the C counterparts. For example, the following
program draws atriangle on the screen:

frompyglet.gl inport *

Direct Open@ commands to this w ndow.
wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_draw():
gl O ear (GL_COLOR _BUFFER_BI T)
gl Loadl dentity()
gl Begi n(G._TRI ANGLES)
gl Vertex2f (0, O0)
gl Vert ex2f (wi ndow. wi dt h, 0)
gl Vert ex2f (wi ndow. wi dt h, w ndow. hei ght)
gl End()

pygl et. app. run()

Some OpenGL functions require an array of data. These arrays must be constructed as ct ypes
arrays of the correct type. The following example draw the same triangle as above, but uses a vertex
array instead of the immediate-mode functions. Note the construction of the vertex array using a one-
dimensional ct ypes array of GLf | oat :

frompyglet.gl inport *

wi ndow = pygl et.w ndow. Wndow()

vertices = [

13

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://www.opengl.org
http://www.opengl.org
http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

The OpenGL interface

0, O,
wi ndow. wi dt h, O,
wi ndow. wi dt h, wi ndow. hei ght]
vertices gl = (G.float * len(vertices))(*vertices)

gl Enabl ed i ent St at e(GL_VERTEX_ARRAY)
gl VertexPointer (2, G._FLQAT, 0, vertices_gl)

@ ndow. event
def on_draw():
gl d ear (GL_COLOR_BUFFER_BI T)
gl Loadl dentity()
gl DrawArrays(GL_TRI ANGLES, 0, len(vertices) // 2)

pygl et. app. run()

Similar array constructions can be used to create data for vertex buffer objects, texture data, polygon
stipple data and the map functions.

Resizing the window

pyglet sets up the viewport and an orthographic projection on each window automatically. It doesthis
in adefault on_resize handler defined on Window:

@ ndow. event
def on_resize(w dth, height):
gl Viewport (0, 0, width, height)
gl Mat ri xMode(gl . GL_PRQIECTI ON)
gl Loadl dentity()
gl Otho(0, width, 0, height, -1, 1)
gl Matri xMode(gl . GL_MODELVI EW

If you need to define your own projection (for example, to use a 3-dimensional perspective projection),
you should override this event with your own; for example:

@ ndow. event
def on_resize(wi dth, height):
gl Viewport (0, 0, width, height)
gl Mat ri xMode(GL_PRQIECTI ON)
gl Loadl dentity()
gl uPer spective(65, width / float(height), .1, 1000)
gl Mat ri xMode(GL_MODELVI EW
return pygl et.event. EVENT_HANDLED

Note that the on_resize handler is called for a window the first time it is displayed, as well as any
timeit islater resized.

Error checking

By default, pyglet callsgl Get Er r or after every GL function call (except where such a check would
beinvalid). If anerror isreported, pyglet raisesG_Except i on withtheresultof gl uError Stri ng
as the message.

Thisisvery handy during development, asit catches common coding errors early on. However, it has
a significant impact on performance, and is disabled when python is run with the - Ooption.

Y ou can also disable this error check by setting the following option before importing pygl et . gl
or pygl et . wi ndow.

14

The OpenGL interface

Disable error checking for increased performance
pygl et . options[' debug gl'] = Fal se

frompyglet.gl inport *

Setting the option after importing pygl et . gl will have no effect. Once disabled, thereis no error-
checking overhead in each GL call.

Using extension functions

Before using an extension function, you should check that the extension is implemented by the
current driver. Typicaly thisis done using gl Get St ri ng(GL_EXTENSI ONS) , but pyglet has a
convenience module, pyglet.gl.gl_info that does this for you:

if pyglet.gl.gl_info.have_extension(' G._ARB_shadow):
... do shadowrel ated code.

el se:
... raise an exception, or use a fallback nethod

You can aso easily check the version of OpenGL:

if pyglet.gl.gl_info.have_version(l,5):
W can assune all OpenG. 1.5 functions are inplenented.

Remember to only call thegl _i nf o functions after creating a window.
Thereisacorresponding gl u_i nf o module for checking the version and extensions of GLU.

nVidia often release hardware with extensions before having them registered officially. When you
import * from pyglet. gl youimport only the registered extensions. You can import the
latest nVidia extensions with:

frompyglet.gl.glext_nv inport *

Using multiple windows

pyglet allows you to create and display any number of windows simultaneously. Each will be created
with its own OpenGL context, however all contexts will share the same texture objects, display lists,
shader programs, and so on, by default 7. Each context has its own state and framebuffers.

There is always an active context (unless there are no windows). When using pyglet.app.run for the
application event loop, pyglet ensures that the correct window isthe active context before dispatching
the on_draw or on_resize events.

In other cases, you can explicitly set the active context with Window.switch_to.

AGL, GLX and WGL

The OpenGL context itself is managed by an operating-system specific library: AGL on OS X, GLX
under X11 and WGL on Windows. pyglet handles these details when a window is created, but you
may need to use the functions directly (for example, to use pbuffers) or an extension function.

The modules are named pygl et . gl . agl , pygl et. gl . gl x and pygl et . gl . wgl . You must
only import the correct module for the running operating system:

if sys.platform== "1inux2':

"Sometimes objects and lists cannot be shared between contexts; for example, when the contexts are provided by different video devices. This
will usually only occur if you explicitly select different screens driven by different devices.

15

The OpenGL interface

frompyglet.gl.glx inport *
gl xCreat ePbuffer(...)

elif sys.platform=="darwin':
frompyglet.gl.agl inport *
agl CreatePbuffer(...)

There are convenience modules for querying the version and extensions of WGL and GLX named
pygl et. gl . wgl _i nfo and pygl et. gl . gl x_i nf o, respectively. AGL does not have such a
module, just query the version of OS X instead.

If using GLX extensions, you can import pygl et . gl . gl xext _ar b for the registered extensions
orpygl et. gl . gl xext _nv for the latest nVidia extensions.

Similarly, if usng WGL extensions, import pyglet.gl.wgylext_arb or
pygl et. gl . wgl ext _nv.

16

Graphics

At the lowest level, pyglet uses OpenGL to draw in windows. The OpenGL interface is exposed via
the pyglet.gl module (see The OpenGL interface).

However, using the OpenGL interface directly for drawing graphicsis difficult and inefficient. The

pyglet.graphics module provides a simpler means for drawing graphics that uses vertex arrays and
vertex buffer objectsinternally to deliver better performance.

Drawing primitives

The pyglet.graphics module draws the OpenGL primitive objects by amode denoted by the constants
* pyglet.gl.G_PONTS

* pyglet.gl.d _LINES

* pyglet.gl.d_LINE LOOP

* pyglet.gl.G_LINE_STRIP

* pyglet.gl.G_TR ANGLES

* pyglet.gl.G_TRI ANGLE_STRI P
* pyglet.gl.G_TRI ANGLE_FAN

e pyglet.gl.d_QUADS

« pyglet.gl.G_QUAD STRI P

* pyglet.gl.G _POLYGON

See the OpenGL Programming Guide [http://opengl.org/documentation/red_book/] for a description
of each of mode.

Each primitive is made up of one or more vertices. Each vertex is specified with either 2, 3 or 4
components (for 2D, 3D, or non-homogeneous coordinates). The data type of each component can
be either int or float.

Use pyglet.graphics.draw to draw aprimitive. Thefollowing example draws two points at coordinates
(20, 15) and (30, 35):

pygl et. graphi cs.drawm 2, pyglet.gl.G _PO NTS,
(‘v2i', (10, 15, 30, 35))
)
The first and second arguments to the function give the number of vertices to draw and the primitive

mode, respectively. The third argument is a"dataitem", and gives the actual vertex data.

Because vertex data can be supplied in several forms, a "format string” is required. In this case, the
format stringis” v2i ", meaning the vertex position data has two components (2D) and int type.

The following example has the same effect as the previous one, but uses floating point data and 3
components per vertex:

pygl et. graphi cs. draw(2, pyglet.gl.G. _PO NTS,
("v3f', (10.0, 15.0, 0.0, 30.0, 35.0, 0.0))

17

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Graphics

)

Vertices can a so bedrawn out of order and morethan once by using the pyglet.graphics.draw_indexed
function. Thisrequiresalist of integers giving the indicesinto the vertex data. The following example
draws the same two points as above, but indexes the vertices (sequentialy):

pygl et . graphi cs. draw_i ndexed(2, pyglet.gl.G _PO NTS,
[01 11 21 3]1
("v2i', (10, 15, 30, 35))

)

This second example is more typical; two adjacent triangles are drawn, and the shared vertices are
reused with indexing:

pygl et . graphi cs. draw_i ndexed(4, pyglet.gl.G._TRI ANGLES,
[0, 1, 2, O, 2, 3],
("v2i', (100, 100,
150, 100,
150, 150,
100, 150))

)

Note that the first argument gives the number of verticesin the data, not the number of indices (which
isimplicit on the length of the index list given in the third argument).

Vertex attributes

Besides the required vertex position, vertices can have several other numeric attributes. Each is
specified in the format string with aletter, the number of components and the data type.

Each of the attributes is described in the table below with the set of valid format strings written as a
regular expression (for example, "v[234] [i f]" means"v2f", "v3i ", "v4f" etc. aredl valid
formats).

Some attributes have a "recommended” format string, which is the most efficient form for the video
driver asit reguires less conversion.

Attribute Formats Recommended

Vertex position "v[234] "v[234]f"
[sifd]"

Color "c[34] "c[34] B"
[bBsSilfd]"

Edgeflag "el[bB] "

Fog coordinate "f[1234]
[bBsSilfd]"

Normal "n3[bsifd]" "n3f"

Secondary color "s[34] "s[34] B"
[bBsSilfd]"

Texture coordinate "t[234] "t[234]f"
[sifd]"

Generic attribute "[0-15]g(n)?
[1234]
[bBsSilfd]"

The possible data types that can be specified in the format string are described below.

18

Graphics

Format Type Python type

"b" Signed byte int

" B" Unsigned byte int

"s" Signed short int

" s Unsigned short int

i Signed int int

e Unsigned int int

" Single precision|float
float

"d" Double precision|float
float

The following attributes are normalised to the range [0, 1] . The value is used as-is if the data
type is floating-point. If the data type is byte, short or int, the valueis divided by the maximum value
representable by that type. For example, unsigned bytesare divided by 255 to get the normalised value.

» Color
» Secondary color
» Generic attributeswith the " n" format given.

Up to 16 generic attributes can be specified per vertex, and can be used by shader programs for any
purpose (they areignored in the fixed-function pipeline). For the other attributes, consult the OpenGL
programming guide for details on their effects.

When using the pyglet.graphics.draw and related functions, attribute data is specified aongside the
vertex position data. The following example reproduces the two points from the previous page, except
that the first point is blue and the second green:

pygl et. graphi cs. draw(2, pyglet.gl.G _PO NTS,
("v2i', (10, 15, 30, 35)),
("c3B, (0, 0, 255, 0, 255, 0))

)

Itisan error to provide more than one set of datafor any attribute, or to mismatch the size of the initial
data with the number of vertices specified in the first argument.

Vertex lists

Thereisasignificant overhead in using pyglet.graphics.draw and pyglet.graphics.draw_indexed due
to pyglet interpreting and formatting the vertex data for the video device. Usually the data drawn in
each frame (of an animation) is identical or very similar to the previous frame, so this overhead is
unnecessarily repeated.

A VertexList isalist of vertices and their attributes, stored in an efficient manner that's suitable for
direct upload to the video card. On newer video cards (supporting OpenGL 1.5 or later) the data is
actually stored in video memory.

CreateaVertexList for aset of attributesand initial datawith pyglet.graphics.vertex_list. Thefollowing
exampl e creates a vertex list with the two coloured points used in the previous page:

vertex_list = pyglet.graphics.vertex_list(2,
("v2i', (10, 15, 30, 35)),
("c3B, (0, 0, 255, 0, 255, 0))

19

Graphics

)

To draw the vertex list, cal its VertexList.draw method:

vertex_list.drawpyglet.gl.G _ PO NTS)

Note that the primitive mode is given to the draw method, not the vertex list constructor. Otherwise
the vertex_list method takes the same arguments as pyglet.graphics.draw, including any number of
vertex attributes.

Because vertex lists can reside in video memory, it is necessary to call the delete method to release

video resources if the vertex list isn't going to be used any more (there's no need to do thisif you're
just exiting the process).

Updating vertex data

The datain avertex list can be modified. Each vertex attribute (including the vertex position) appears
as an attribute on the VertexList object. The attribute names are given in the following table.

Vertex attribute Object attribute
Vertex position vertices

Color colors

Edge flag edge_fl ags

Fog coordinate f og_coords

Normal nor mal s

Secondary color secondary_col ors
Texture coordinate t ex_coords

Generic attribute Inaccessible

In the following example, the vertex positions of the vertex list are updated by replacing the
verti ces dtribute:

vertex_list.vertices = [20, 25, 40, 45]
The attributes can also be selectively updated in-place:
vertex_list.vertices[:2] = [30, 35]
Similarly, the color attribute of the vertex can be updated:
vertex list.colors[:3] = [255, 0, 0]

For large vertex lists, updating only the modified vertices can have a perfomance benefit, especially
on newer graphics cards.

Attempting to set the attribute list to a different size will cause an error (not necessarily immediately,
either). Toresizethe vertex list, call VertexList.resize with the new vertex count. Be suretofill in any
newly uninitialised data after resizing the vertex list.

Since vertex lists are mutable, you may not necessarily want to initialise them with any particular data.
Y ou can specify just the format string in place of the (f or mat, dat a) tuplein the dataarguments
vertex_list function. Thefollowing example createsavertex list of 1024 verticeswith positional, color,
texture coordinate and normal attributes:

vertex_list = pyglet.graphics.vertex_list(1024, 'v3f', 'c4B, "t2f', 'n3f")

20

Graphics

Data usage

By default, pyglet assumes vertex data will be updated less often than it is drawn, but more often
than just during initialisation. Y ou can override this assumption for each attribute by affixing a usage
specification onto the end of the format string, detailed in the following table:

Usage Description

"/static" Data is never or
rarely modified after
initialisation

"/ dynam c" Data is occasionaly
modified (default)

"/ streant Data is updated every
frame

In the following example a vertex list is created in which the positional data is expected to change
every frame, but the color data is expected to remain relatively constant:

vertex_list = pyglet.graphics.vertex_|ist(1024, 'v3f/stream, 'c4B/static')

The usage specification affects how pyglet laysout vertex datain memory, whether or not it's stored on
thevideo card, and is used asahint to OpenGL. Specifying ausage does not affect what operationsare
possiblewith avertex list (ast at i ¢ attribute can still be modified), and may only have performance
benefits on some hardware.

Indexed vertex lists

IndexedVertexList performs the same role as VertexList, but for indexed vertices. Use
pyglet.graphics.vertex_list_indexed to construct an indexed vertex list, and update the
IndexedVertexList.indices sequence to change the indices.

Batched rendering

For optimal OpenGL performance, you should render asmany vertex listsaspossibleinasingledr aw
cal. Internaly, pyglet uses VertexDomain and IndexedVertexDomain to keep vertex lists that share
the same attribute formats in adjacent areas of memory. The entire domain of vertex lists can then be
drawn at once, without calling VertexList.draw on each individual list.

It is quite difficult and tedious to write an application that manages vertex domains itself, though.
In addition to maintaining a vertex domain for each set of attribute formats, domains must also be
separated by primitive mode and required OpenGL state.

The Batch class implements this functionality, grouping related vertex lists together and sorting by
OpenGL state automatically. A batch is created with no arguments:

batch = pygl et. graphics. Bat ch()

Vertex lists can now be created with the Batch.add and Batch.add indexed methods instead of
pyglet.graphics.vertex list and pyglet.graphics.vertex_list_indexed functions. Unlike the module
functions, these methods accept a node parameter (the primitive mode) and a gr oup parameter
(described below).

The two coloured points from previous pages can be added to a batch as a single vertex list with:

vertex_ list = batch.add(2, pyglet.gl.G _ PO NTS, None,
("v2i', (10, 15, 30, 35)),
("ec3B, (0, 0, 255, 0, 255, 0))

21

Graphics

)

The resulting vertex_list can be modified as described in the previous section. However, instead of
calling VertexList.draw to draw it, call Batch.draw to draw al vertex lists contained in the batch at
once:

bat ch. draw()

For batches containing many vertex lists this gives a significant performance improvement over
drawing individual vertex lists.

To remove avertex list from abatch, call VertexList.delete.

Setting the OpenGL state

In order to achieve many effects in OpenGL one or more global state parameters must be set. For
example, to enable and bind atexture requires:

frompyglet.gl inport *
gl Enabl e(texture. target)
gl BindTexture(texture.target, texture.id)

before drawing vertex lists, and then:
gl Di sabl e(texture.target)
afterwards to avoid interfering with later drawing commands.

With a Group these state changes can be encapsul ated and associated with the vertex lists they affect.
Subclass Group and override the Group.set_state and Group.unset_state methods to perform the
required state changes:

cl ass CustomG oup(pygl et. graphics. Goup):
def set _state(self):
gl Enabl e(texture. target)
gl BindTexture(texture.target, texture.id)

def unset_state(self):
gl Di sabl e(texture.target)

An instance of this group can now be attached to vertex lists in the batch:

custom group = Custontoup()

vertex list = batch.add(2, pyglet.gl.G PO NTS, custom group,
("v2i', (10, 15, 30, 35)),
("c3B, (0, 0, 255, 0, 255, 0))

)

The Batch ensures that the appropriate set _st at e and unset _st at e methods are called before
and after the vertex lists that use them.

Hierarchical state

Groups have a parent attribute that allows them to beimplicitly organised in atree structure. If groups
B and C have parent A, then the order of set _st at e and unset _st at e callsfor vertex listsin
abatch will be:

A set_state()
Draw A vertices
B. set _state()

22

Graphics

Draw B vertices
.unset _state()
.set_state()

Draw C vertices
.unset _state()
.unset _state()

POHFEOIHE

Thisisuseful to group state changesinto as few calls as possible. For example, if you have a number
of vertex liststhat all need texturing enabled, but have different bound textures, you could enable and
disable texturing in the parent group and bind each texturein the child groups. The following example
demonstrates this:

cl ass TextureEnabl eG oup(pygl et. graphi cs. G oup):
def set_state(self):
gl Enabl e(GL_TEXTURE_2D)

def unset_state(self):
gl D sabl e(G_._TEXTURE_2D)

texture_enabl e_group = Text ureEnabl eG oup()

cl ass TextureBi ndG oup(pygl et. graphi cs. G oup):
def __init_ (self, texture):
super (Text ureBi ndG oup, self).__init__(parent=texture_enabl e_group)
assert texture.target = G_TEXTURE 2D
self.texture = texture

def set_state(self):
gl Bi ndTexture(GL_TEXTURE 2D, self.texture.id)

No unset_state met hod required.

def __eq_ (self, other):
return (self._class__ is other._ class__ and
self.texture == other.__class_)

bat ch. add(4, G._QUADS, TextureBi ndG oup(texturel), 'v2f', "t2f")
bat ch. add(4, G._QUADS, TextureBi ndG oup(texture2), 'v2f', "t2f")
bat ch. add(4, G._QUADS, TextureBi ndG oup(texturel), 'v2f', "t2f")

Note the use of an _ _eq__ method on the group to allow Batch to merge the two
Text ur eBi ndGr oup identical instances.

Sorting vertex lists

VertexDomain does not attempt to keep vertex listsin any particular order. So, any vertex lists sharing
the same primitive mode, attribute formats and group will be drawn in an arbitrary order. However,
Batch will sort Group objects sharing the same parent by their __cnp__ method. This allows groups
to be ordered.

The OrderedGroup class is a convenience group that does not set any OpenGL state, but is
parameterised by an integer giving its draw order. In the following example a number of vertex lists
are grouped into a"background" group that is drawn before the vertex listsin the "foreground" group:

backgr ound
f or eground

= pygl et. graphi cs. OrderedG oup(0)
= pygl et. graphi cs. OrderedG oup(1)
bat ch. add(4, G._QUADS, foreground, 'v2f')
bat ch. add(4, G._QUADS, background, 'v2f')

23

Graphics

bat ch. add(4, G._QUADS, foreground, 'v2f')
bat ch. add(4, G._QUADS, background, 'v2f', 'c4B')

By combining hierarchical groupswith ordered groupsit is possible to describe an entire scene within
asingle Batch, which then rendersit as efficiently as possible.

Batches and groups in other modules

The Sorite, Label and TextLayout classes all accept bat ch and gr oup parameters in their
constructors. This allows you to add any of these higher-level pyglet drawables into arbitrary places
in your rendering code.

For example, multiple sprites can be grouped into a single batch and then drawn at once, instead of
calling Sorite.draw on each one individually:

batch = pygl et. graphics. Bat ch()
sprites = [pyglet.sprite. Sprite(imge, batch=batch) for i in range(100)]

bat ch. draw()

The gr oup parameter can be used to set the drawing order (and hence which objects overlap others)
within asingle batch, as described on the previous page.

In general you should batch al drawing objects into as few batches as possible, and use groups to
manage the draw order and other OpenGL state changes for optimal performance. If you are creating
your own drawable classes, consider adding bat ch and gr oup parametersin asimilar way.

24

Windowing

A Window in pyglet corresponds to a top-level window provided by the operating system. Windows
can be floating (overlapped with other application windows) or fullscreen.

Creating a window

If the Window constructor is called with no arguments, defaults will be assumed for all parameters:
wi ndow = pygl et.w ndow. W ndow()

The default parameters used are;

» Thewindow will have a size of 640x480, and not be resizable.

A default context will be created using template config described in OpenGL configuration options.
» Thewindow caption will be the name of the executing Python script (i.e., sys. ar gv[0]).

Windows are visible as soon as they are created, unlessyou givethevi si bl e=Fal se argument to
the constructor. The following example shows how to create and display a window in two steps:

wi ndow = pygl et.w ndow. Wndow(vi si bl e=Fal se)
... performsone additional initialisation
wi ndow. set _vi si bl e()

Context configuration

The context of awindow cannot be changed once created. There are several waysto control the context
that is created:

» Supply an aready-created Context using the cont ext argument:

context = config.create_context(share)
wi ndow = pygl et.w ndow. W ndow(cont ext =cont ext)

» Supply acomplete Config obtained from a Screen using theconf i g argument. The context will be
created from this config and will share object space with the most recently created existing context:

config
wi ndow

= screen. get _best _config(tenplate)

= pygl et . wi ndow. W ndow confi g=confi g)

» Supply atemplate Config usingtheconf i g argument. The context will usethe best config obtained
from the default screen of the default display:

config = gl. Config(doubl e_buffer=True)
wi ndow = pygl et. wi ndow. W ndow(confi g=confi g)

 Specify a Screen using the scr een argument. The context will use a config created from default
template configuration and this screen:

screen
w ndow

= di spl ay. get _screens()[screen_nunber]

= pygl et. wi ndow. W ndow scr een=scr een)

» Specify aDisplay using thedi spl ay argument. The default screen on this display will be used to
obtain a context using the default template configuration:

di splay = platform get _display(di spl ay_nane)
wi ndow = pygl et.w ndow. Wndow di spl ay=di spl ay)

25

Windowing

If a template Config is given, a Screen or Display may aso be specified; however any other
combination of parameters overconstrains the configuration and some parameters will be ignored.

Fullscreen windows

Size

If theful | screen=Tr ue argument is given to the window constructor, the window will draw to
an entire screen rather than a floating window. No window border or controls will be shown, so you
must ensure you provide some other means to exit the application.

By default, the default screen on the default display will be used, however you can optionally specify
another screen to use instead. For example, the following code creates a fullscreen window on the
secondary screen:

screens = display.get _screens()
wi ndow = pygl et.w ndow. Wndow(full screen=True, screens[1])

There is no way to create a fullscreen window that spans more than one window (for example, if you
wanted to create an immersive 3D environment across multiple monitors). Instead, you should create
a separate fullscreen window for each screen and attach identical event handlersto all windows.

Windows can be toggled in and out of fullscreen mode with the set_full screen method. For example,
to return to windowed mode from fullscreen:

wi ndow. set _ful | screen(Fal se)

The previous window size and location, if any, will attempt to be restored, however the operating
system does not always permit this, and the window may have relocated.

and position

This section applies only to windows that are not fullscreen. Fullscreen windows always have the
width and height of the screen they fill.

You can specify the size of a window as the first two arguments to the window constructor. In the
following example, awindow is created with a width of 800 pixels and a height of 600 pixels:

wi ndow = pygl et.w ndow. Wndow(800, 600)

The"size" of awindow refersto the drawable space within it, excluding any additional bordersor title
bar drawn by the operating system.

Y ou can allow the user to resize your window by specifying r esi zabl e=Tr ue in the constructor.
If you do this, you may also want to handle the on_resize event:

wi ndow = pygl et.wi ndow. W ndow(r esi zabl e=Tr ue)

@M ndow. event
def on_resize(wi dth, height):
print ' The wi ndow was resized to %dx%' % (wi dth, height)

Y ou can specify a minimum and maximum size that the window can be resized to by the user with
the set_ minimum_size and set_maximum_size methods:

Wi ndow. set _ni ni mum si ze(320, 200)
Wi ndow. set _naxi mum si ze(1024, 768)

The window can also be resized programatically (even if the window is not user-resizable) with the
set_size method:

wi ndow. set _si ze(800, 600)

26

Windowing

The window will initially be positioned by the operating system. Typicaly, it will use its own
algorithm to locate the window in a place that does not block other application windows, or cascades
with them. Y ou can manually adjust the position of thewindow using the get_position and set_position
methods:

X, Yy = wi ndow. get | ocation()
wi ndow. set | ocation(x + 20, y + 20)

Note that unlike the usual coordinate system in pyglet, the window location is relative to the top-left
corner of the desktop, as shown in the following diagram:

height

</
width

C —r—

The position and size of the window relative to the desktop.

Appearance
Window style

Non-fullscreen windows can be created in one of four styles. default, dialog, tool or borderless.
Examples of the appearances of each of these styles under Windows XP and Mac OS X 10.4 are

shown below.
Style Windows XP Mac OS X
WINDOW _STYLE_DEFAULT —
V\/l NDOW_SI—YL E_D I AL OG © O © WINDOW_STYLE_DIALOG

000 WNDOW.STYLETOOL

WINDOW_STYLE_TOOL

Non-resizable variants of these window styles may appear dightly different (for example, the
maximize button will either be disabled or absent).

Besides the change in appearance, the window styles affect how the window behaves. For example,
tool windows do not usually appear in the task bar and cannot receive keyboard focus. Dialog
windows cannot be minimized. Selecting the appropriate window style for your windows means your
application will behave correctly for the platform on which it is running, however that behaviour may
not be consistent across Windows, Linux and Mac OS X.

The appearance and behaviour of windows in Linux will vary greatly depending on the distribution,
window manager and user preferences.

Borderless windows (WINDOW _STYLE BORDERLESS) are not decorated by the operating system
at all, and have no way to be resized or moved around the desktop. These are useful for implementing
splash screens or custom window borders.

27

Windowing

Y ou can specify the style of the window in the Window constructor. Once created, the window style
cannot be altered:

wi ndow = pygl et. wi ndow. W ndow(styl e=wi ndow. W ndow. W NDOW STYLE_DI ALOG)
Caption

The window's caption appears in itstitle bar and task bar icon (on Windows and some Linux window
managers). Y ou can set the caption during window creation or at any later time using the set_caption
method:

wi ndow = pygl et.w ndow. Wndow(caption="Initial caption')
wi ndow. set _caption(' A different caption')

lcon

The window icon appears in the title bar and task bar icon on Windows and Linux, and in the dock
icon on Mac OS X. Dialog and tool windows do not necessarily show their icon.

Windows, Mac OS X and the Linux window managers each have their own preferred icon sizes:
W ndows XP e« A 16x16icon for thetitle bar and task bar.
e A 32x32icon for the Alt+Tab switcher.

Mac OS X e Any number of icons of resolutions 16x16, 24x24, 32x32,
48x48, 72x72 and 128x128. The actual image displayed will
be interpolated to the correct size from those provided.

Li nux « No constraints, however most window managers will use a
16x16 and a 32x32 icon in the same way as Windows XP.

The Window.set_icon method allows you to set any number of images as the icon. pyglet will select
the most appropriate ones to use and apply them to the window. If an alternate size is required but not
provided, pyglet will scale the image to the correct size using a simple interpolation algorithm.

The following example provides both a 16x16 and a 32x32 image as the window icon:

wi ndow = pygl et.w ndow. W ndow()

i conl pygl et. i mage. | oad(' 16x16. png')
i con2 pygl et. i mage. | oad(' 32x32. png')
wi ndow. set i con(iconl, icon2)

You can use images in any format supported by pyglet, however it is recommended to use a format
that supports alphatransparency such as PNG. Windows .ico files are supported only on Windows, so
their useis discouraged. Mac OS X .icons files are not supported at al.

Note that the icon that you set at runtime need not have anything to do with the application icon, which
must be encoded specially in the application binary (see Self-contained executables).

Visibility
Windows have several states of visibility. Already shown isthe visible property which shows or hides
the window.

Windows can be minimized, which is equivalent to hiding them except that they still appear on the
taskbar (or are minimised to the dock, on OS X). The user can minimize a window by clicking the
appropriate button in the title bar. You can also programmatically minimize a window using the
minimize method (there is also a corresponding maximize method).

28

Windowing

When awindow is made visible the on_show event istriggered. When it is hidden the on_hide event
is triggered. On Windows and Linux these events will only occur when you manually change the
visibility of the window or when the window is minimized or restored. On Mac OS X the user can
also hide or show the window (affecting visibility) using the Command+H shortcut.

Subclassing Window

A useful patternin pyglet is to subclass Window for each type of window you will display, or as your
main application class. There are several benefits:

* You can load font and other resources from the constructor, ensuring the OpenGL context has
aready been created.

* You can add event handlers simply be defining them on the class. Theon_resize event will be called
as soon asthe window is created (this doesn't usually happen, asyou must create the window before
you can attach event handlers).

» Thereisreduced need for global variables, as you can maintain application state on the window.

The following example shows the same "Hello World" application as presented in Writing a pyglet
application, using a subclass of Window:

cl ass Hel | oWor | dW ndow pygl et . wi ndow. W ndow) :
def __init_ (self):
super (Hel | oWor I dW ndow, self). init__ ()

sel f.label = pyglet.text.Label ('Hello, world!")

def on_draw(sel f):
sel f.clear()
sel f.l abel . draw()

if nane_ =="'_main__"':
wi ndow = Hel | oWor | dW ndow()
pygl et. app. run()

This example program is located in examples/programming_guide/window_subclass.py.

Windows and OpenGL contexts

Every window in pyglet has an associated OpenGL context. Specifying the configuration of this
context has already been covered in Creating a window. Drawing into the OpenGL context isthe only
way to draw into the window's client area.

Double-buffering

If the window is double-buffered (i.e., the configuration specified doubl e_buf f er =Tr ue, the
default), OpenGL commands are applied to a hidden back buffer. Thisback buffer can be copied to the
window using the flip method. If you are using the standard pyglet.app.run or pyglet.app.EventLoop
event loop, thisistaken care of automatically after each on_draw event.

If the window is not double-buffered, the flip operation is unnecessary, and you should remember only
to call glFlush to ensure buffered commands are executed.

Vertical retrace synchronisation

Double-buffering eliminates one cause of flickering: the user is unable to see the image as it painted,
only the final rendering. However, it does introduce another source of flicker known as "tearing"”.

29

Windowing

Tearing becomes apparent when displaying fast-moving objectsin an animation. The buffer flip occurs
while the video display is still reading data from the framebuffer, causing the top half of the display
to show the previous frame while the bottom half shows the updated frame. If you are updating the
framebuffer particularly quickly you may notice three or more such "tears" in the display.

pyglet provides a way to avoid tearing by synchronising buffer flips to the video refresh rate. This
is enabled by default, but can be set or unset manually at any time with the vsync (vertical retrace
synchronisation) property. A window is created with vsyncinitially disabled in thefollowing example:

wi ndow = pygl et.w ndow. W ndow(vsync=Fal se)

It is usually desirable to leave vsync enabled, as it results in flicker-free animation. There are some
use-cases where you may want to disable it, for example:

* Profiling an application. Measuring the time taken to perform an operation will be affected by the
time spent waiting for the video device to refresh, which can throw off results. Y ou should disable
vsync if you are measuring the performance of your application.

« If you cannot afford for your application to block. If your application run loop needsto quickly poll
a hardware device, for example, you may want to avoid blocking with vsync.

Note that some older video cards do not support the required extensions to implement vsync; thiswill
appear as awarning on the console but is otherwise ignored.

30

The application event loop

Inorder to let pyglet process operating system events such as mouse and keyboard events, applications
need to enter an application event loop. The event loop continuously checksfor new events, dispatches
those events, and updates the contents of all open windows.

pyglet provides an application event loop that is tuned for performance and low power usage on
Windows, Linux and Mac OS X. Most applications need only call:

pygl et. app. run()

to enter the event loop after creating their initial set of windows and attaching event handlers. Therun
function does not return until all open windows have been closed, or until pygl et . app. exit ()
iscaled.

The pyglet application event loop dispatches window events (such as for mouse and keyboard input)
asthey occur and dispatchesthe on_draw event to each window after every iteration through the loop.

To have additional code run periodically or every iteration through the loop, schedule functions on
the clock (see Scheduling functions for future execution). pyglet ensures that the loop iterates only as
often as necessary to fulfil all scheduled functions and user input.

Customising the event loop

The pyglet event loop is encapsulated in the EventLoop class, which provides several hooks that can
be overridden for customising its behaviour. This is recommended only for advanced users -- typical
applications and games are unlikely to require this functionality.

To use the EventLoop class directly, instantiate it and call run:
pygl et . app. Event Loop() . run()

Only one EventLoop can be running at a time; when the run method is called the module variable
pyglet.app.event_loop is set to the running instance. Other pyglet modules such as pyglet.window
depend on this.

Event loop events

You can listen for several events on the event loop instance. The most useful of these is
on_window_close, whichisdispatched whenever awindow isclosed. Thedefault handler for thisevent
exitsthe event loop if there are no more windows. The following example overrides this behaviour to
exit the application whenever any window is closed:

event _| oop = pygl et. app. Event Loop()
@vent | oop. event
def on_wi ndow_cl ose(w ndow) :

event | oop. exit()

return pygl et.event. EVENT _HANDLED

event _| oop. run()

Overriding the default idle policy

The EventLoop.idle method is called every iteration of the event loop. It is responsible for calling
scheduled clock functions, redrawing windows, and deciding how idle the application is. You can

31

The application event loop

overridethis method if you have specific requirementsfor tuning the performance of your application;
especidly if it uses many windows.

The default implementation has the following algorithm:

1. Cal clock.tick with pol | =Tr ue to call any scheduled functions.
2. Dispatch the on_draw event and call flip on every open window.
3. Return the value of clock.get_sleep_time.

The return value of the method is the number of seconds until the event loop needs to iterate again
(unlessthereis an earlier user-input event); or None if the loop can wait for input indefinitely.

Note that this default policy causes every window to be redrawn during every user event -- if you
have more knowledge about which events have an effect on which windows you can improve on the
performance of this method.

Dispatching events manually

Earlier versions of pyglet and certain other windowing toolkits such as PyGame and SDL require
the application developer to write their own event loop. This "manua” event loop is usualy just an
inconvenience compared to pyglet.app.run, but can be necessary in some situations when combining
pyglet with other toolkits.

A simple event loop usually has the following form:

whil e True:
pygl et . cl ock. tick()

for window in pyglet.app.w ndows:
wi ndow. swi tch_to()
wi ndow. di spat ch_event s()
wi ndow. di spatch_event (' on_draw)
wi ndow. fli p()

The dispatch_events method checks the window's operating system event queue for user input and
dispatches any events found. The method does not wait for input -- if ther are no events pending,
control isreturned to the program immediately.

The call to pyglet.clock.tick() is required for ensuring scheduled functions are called, including the
internal data pump functions for playing sounds and video.

Developers are strongly discouraged from writing pyglet applications with event loops like this:

» The EventLoop class provides plenty of hooks for most toolkits to be integrated without needing
to resort to amanual event loop.

» Because EventLoop is tuned for specific operating systems, it is more responsive to user events,
and continues calling clock functions while windows are being resized, and (on Mac OS X) the
menu bar is being tracked.

* Itisdifficult to write a manua event loop that does not consume 100% CPU while still remaining
responsive to user input.

The capability for writing manual event loops remains for legacy support and extreme circumstances.

32

The pyglet event framework

The pyglet.window, pyglet.media, pyglet.app and pyglet.text modules make use of a consistent event
pattern, which provides several waysto attach event handlersto objects. Y ou can a so reuse this pattern
in your own classes easily.

Throughout this documentation, an "event dispatcher" is an object that has events it needs to notify
other objects about, and an "event handler" is some code that can be attached to a dispatcher.

Setting event handlers

Anevent handler issimply afunction with aformal parameter list corresponding to the event type. For
example, the Window.on_resize event has the parameters (wi dt h, hei ght), so an event handler
for this event could be:

def on_resize(w dth, height):
pass

The Window class subclasses EventDispatcher, which enablesit to have event handlers attached to it.
The simplest way to attach an event handler isto set the corresponding attribute on the object:

wi ndow = pygl et.w ndow. W ndow()

def on_resize(w dth, height):
pass
w ndow. on_resi ze = on_resize

While this technique is straight-forward, it requires you to write the name of the event three times for
the one function, which can get tiresome. pyglet provides a shortcut using the event decorator:

wi ndow = wi ndow. W ndow()

@ ndow. event
def on_resize(wi dth, height):
pass

Thisis not entirely equivalent to setting the event handler directly on the object. If the object already
had an event handler, using @vent will add the handler to the object, rather than replacing it. The
next section describes this functionality in detail.

As shown in Subclassing Window, you can also attach event handlers by subclassing the event
dispatcher and adding the event handler as a method:

cl ass MyW ndow pygl et . w ndow. W ndow) :

def on_resize(self, width, height):
pass

Stacking event handlers

It is often convenient to attach more than one event handler for an event. EventDispatcher allows you
to stack event handlers upon one another, rather than repl acing them outright. The event will propogate
from the top of the stack to the bottom, but can be stopped by any handler along the way.

To push an event handler onto the stack, use the push_handlers method:

def on_key press(synmbol, nodifiers):

33

The pyglet event framework

if symbol == key.SPACE
fire_laser()

wi ndow. push_handl ers(on_key_press)
Asaconvenience, the @vent decorator can be used as an aternative to push_handlers:

@ ndow. event
def on_key press(synbol, nodifiers):
i f synbol == key. SPACE
fire_laser()

One use for pushing handlersinstead of setting them isto handle different parameterisations of events
in different functions. In the above example, if the spacebar is pressed, the laser will be fired. After
the event handler returns control is passed to the next handler on the stack, which on aWindow is a
function that checks for the ESC key and setsthehas_exi t attributeif itis pressed. By pushing the
event handler instead of setting it, the application keeps the default behaviour while adding additional
functionality.

You can prevent the remaining event handlers in the stack from receiving the event by returning a
true value. The following event handler, when pushed onto the window, will prevent the escape key
from exiting the program:

def on_key press(synbol, nodifiers):
i f symbol == key.ESCAPE:
return True

wi ndow. push_handl ers(on_key_press)

Y ou can push more than one event handler at a time, which is especially useful when coupled with
thepop_handl er s function. In the following example, when the game starts some additional event
handlers are pushed onto the stack. When the game ends (perhaps returning to some menu screen) the
handlers are popped off in one go:

def start_ganme():
def on_key_press(synbol, nodifiers):
print 'Key pressed in gang'
return True

def on_npuse_press(x, y, button, nodifiers):
print 'Muse button pressed in gane'
return True

wi ndow. push_handl ers(on_key_press, on_nbuse_press)

def end_gane():
wi ndow. pop_handl ers()

Note that you do not specify which handlers to pop off the stack -- the entire top "level" (consisting
of al handlers specified in asingle call to push_handlers) is popped.

Y ou can apply the same pattern in an object-oriented fashion by grouping related event handlersin a
single class. In the following example, a GaneEvent Handl er classisdefined. An instance of that
class can be pushed on and popped off of awindow:

cl ass GameEvent Handl er (obj ect):
def on_key press(self, synbol, nodifiers):
print 'Key pressed in gane'
return True

The pyglet event framework

def on_nopuse_press(self, x, y, button, nodifiers):
print 'Muse button pressed in gane'
return True
gane_handl ers = GaneEvent Handl er ()

def start_gane()
wi ndow. push_handl er s(gane_handl er s)

def stop_gane()
wi ndow. pop_handl er s()

Creating your own event dispatcher

pyglet provides only the Window and Player event dispatchers, but exposes a public interface for
creating and dispatching your own events.

The steps for creating an event dispatcher are:
1. Subclass EventDispatcher

2. Call the register_event_type class method on your subclass for each event your subclass will
recognise.

3. Call dispatch_event to create and dispatch an event as needed.

In the following example, a hypothetical GUI widget provides several events:

cl ass O anki ngW dget (pygl et. event . Event Di spat cher):
def clank(self):

sel f. di spatch_event (' on_cl ank")

def click(self, clicks):
sel f.dispatch_event('on_clicked' , clicks)

def on_cl ank(self):
print 'Default clank handler.'

G anki ngW dget . regi ster _event _type(' on_cl ank')
G anki ngW dget . regi ster_event _type(' on_clicked")

Event handlers can then be attached as described in the preceding sections:
wi dget = C anki ngW dget ()
@\ dget . event
def on_cl ank():
pass
@\ dget . event
def on_clicked(clicks):

pass

def override_on_clicked(clicks):
pass

wi dget . push_handl ers(on_cl i cked=overri de_on_clicked)

35

The pyglet event framework

The EventDispatcher takes care of propogating the event to all attached handlersor ignoring it if there
are no handlers for that event.

There is zero instance overhead on objects that have no event handlers attached (the event stack is
created only when required). Thismakes EventDispatcher suitablefor use even on light-weight objects
that may not always have handlers. For example, Player isan EventDispatcher even though potentially
hundreds of these objects may be created and destroyed each second, and most will not need an event
handler.

Implementing the Observer pattern

The Observer design pattern [Gamma,etal.,” DesignPatterns Addison-Wesley1994], also known as
Publisher/Subscriber, isasimple way to decoupl e software components. It isused extensively in many
large software projects; for example, Java's AWT and Swing GUI toolkits and the Python | oggi ng
module; and is fundamental to any Model-View-Controller architecture.

EventDispatcher can be used to easily add observerabl e componentsto your application. Thefollowing
exampl e recreates the ClockTimer example from Design Patterns (pages 300-301), though without
needing the bulky At t ach, Det ach and Not i f y methods:

The subj ect
cl ass O ockTi mer (pygl et. event. Event Di spat cher):
def tick(self):
sel f. di spatch_events(' on_update')
Cl ockTi ner.regi ster_event (' on_update')

Abstract observer class
cl ass Cbserver(object):
def __init__ (self, subject):
subj ect. push_handl ers(sel)

Concrete observer
class Digital O ock(Cbserver):
def on_update(self):
pass

Concrete observer
cl ass Anal ogC ock(Qoserver):
def on_update(self):
pass

timer = d ockTinmer()
digital _clock = Digital G ock(timer)
anal og_cl ock = Anal ogd ock(ti mer)

The two clock abjects will be notified whenever the timer is "ticked", though neither the timer nor
the clocks needed prior knowledge of the other. During object construction any relationships between
subjects and observers can be created.

Documenting events

pyglet uses a modified version of Epydoc [http://epydoc.sourceforge.net/] to construct its AP
documentation. One of these modifications is the inclusion of an "Events’ summary for event
dispatchers. If you plan on releasing your code asalibrary for othersto use, you may want to consider
using the sametool to document code.

The patched version of Epydoc isincluded in the pyglet repository under t r unk/ t ool s/ epydoc
(it is not included in distributions). It has special notation for document event methods, and allows
conditional execution when introspecting source code.

36

Gamma,etal.,`DesignPatterns`Addison-Wesley1994
Gamma,etal.,`DesignPatterns`Addison-Wesley1994
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/

The pyglet event framework

If thesys. i s_epydoc attribute existsand is Tr ue, the moduleis currently being introspected for
documentation. pyglet places event documentation only within this conditional, to prevent extraneous
methods appearing on the class.

To document an event, create a method with the event's signature and add a blank event field to
the docstring:

i mport sys

cl ass MyDi spat cher (obj ect):
if getattr(sys, 'is_epydoc'):
def on_update():
""" The obj ect was updated.

revent:

Note that the event parameters should not include sel f . The function will appear in the "Events'
table and not as a method.

37

Working with the keyboard

pyglet has support for low-level keyboard input suitable for games as well as locale- and device-
independent Unicode text entry.

Keyboard input requires a window which has focus. The operating system usually decides which
application window has keyboard focus. Typically this window appears above al others and may
be decorated differently, though this is platform-specific (for example, Unix window managers
sometimes couple keyboard focus with the mouse pointer).

Y ou can request keyboard focus for a window with the activate method, but you should not rely on
this -- it may ssimply provide a visual cue to the user indicating that the window requires user input,
without actually getting focus.

Windows created with the WINDOW_STYLE_BORDERLESS or WINDOW_STYLE _TOOL style
cannot receive keyboard focus.

It is not possible to use pyglet's keyboard or text events without a window; consider using Python
built-in functions such asr aw_i nput instead.

Keyboard events

The Window.on_key press and Window.on key release events are fired when any key on the
keyboard is pressed or released, respectively. These events are not affected by "key repeat” -- once a
key is pressed there are no more events for that key until it is released.

Both events are parameterised by the same arguments:

def on_key press(synmbol, nodifiers):
pass

def on_key rel ease(synbol, nodifiers):
pass

Defined key symbols

The symbol argument is an integer that represents a "virtual" key code. It does //not// correspond to
any particular numbering scheme; in particular the symbol is//not// an ASCII character code.

pyglet haskey symbolsthat are hardware and platform independent for many types of keyboard. These
are defined in pyglet.window.key as constants. For example, the Latin-1 alphabet is simply the letter
itself:

key. A
key. B
key. C

The numeric keys have an underscore to make them valid identifiers:

key. 1
key. 2

key. 3

Various control and directional keys are identified by name:

key. ENTER or key. RETURN
key. SPACE

38

Working with the keyboard

key. BACKSPACE
key. DELETE
key. M NUS
key. EQUAL

key. BACKSLASH

key. LEFT
key. Rl GHT
key. UP

key. DOMN
key. HOVE
key. END

key. PAGEUP
key. PAGEDOMWN

key. F1
key. F2

Keys on the number pad have separate symbols:

key. NUM 1
key. NUM 2

key. NUM_EQUAL
key. NUM DI VI DE
key. NUM_ MULTI PLY
key. NUM M NUS
key. NUM_PLUS
key. NUM _DECI MAL
key. NUM_ENTER

Some modifier keys have separate symbols for their left and right sides (however they cannot all be
distinguished on al platforms):

key. LCTRL
key. RCTRL
key. LSH FT
key. RSHI FT

Key symbols are independent of any modifiers being held down. For example, lower-case and upper-
case |etters both generate the A symbol. Thisis also true of the number keypad.

Modifiers

The modifiers that are held down when the event is generated are combined in a bitwise fashion and
provided inthenodi f i er s parameter. The modifier constants defined in pyglet.window.key are:

MOD_SHI FT

MOD_CTRL

MOD_ALT Not available on Mac OS X

MOD_W NDOWS Avai | abl e on W ndows only

MOD_COMVAND Avai |l able on Mac OS X only

MOD_OPTI ON Avai |l able on Mac OS X only

MOD_CAPSLOCK

MOD_NUMLOCK

MOD_SCROLLLOCK

MOD_ACCEL Equi val ent to MOD CTRL, or MOD COVMAND on Mac OS X

39

Working with the keyboard

For example, to test if the shift key is held down:

if nodifiers & MOD_SH FT:
pass

Unlikethe corresponding key symbals, it isnot possibleto determine whether theleft or right modifier
is held down (though you could emulate this behaviour by keeping track of the key states yourself).

User-defined key symbols

pyglet does not define key symbolsfor every keyboard ever made. For example, non-Latin languages
will have many keys not recognised by pyglet (however, their Unicoderepresentation will still bevalid,
see Text and motion events). Even English keyboards often have additiona so-called "OEM" keys
added by the manufacturer, which might be labelled "Media’, "Volume" or " Shopping", for example.

In these cases pyglet will create akey symbol at runtime based on the hardware scancode of the key.
This is guaranteed to be unique for that model of keyboard, but may not be consistent across other
keyboards with the same labelled key.

The best way to use these keys is to record what the user presses after a prompt, and then check for
that same key symbol. Many commercial games have similar functionality in allowing playersto set
up their own key bindings.

Remembering key state

Text

pyglet provides the convenience class KeySateHandler for storing the current keyboard state. This
can be pushed onto the event handler stack of any window and subsequently queried as adict:

from pygl et.w ndow i mport key

wi ndow = pygl et.w ndow. W ndow()
keys = key. KeySt at eHandl er ()
wi ndow. push_handl er s(keys)

Check if the spacebar is currently pressed:
i f keys[key. SPACE] :
pass

and motion events

pyglet decouples the keys that the user presses from the Unicode text that is input. There are several
benefitsto this:

» The complex task of mapping modifiers and key symbols to Unicode characters is taken care of
automatically and correctly.

» Key repeat is applied to keys held down according to the user's operating system preferences.

» Dead keys and compose keys are automatically interpreted to produce diacritic marks or combining
characters.

» Keyboard input can be routed via an input palette, for example to input characters from Asian
languages.

» Text input can come from other user-defined sources, such as handwriting or voice recognition.

The actual source of input (i.e., which keys were pressed, or what input method was used) should
be considered outside of the scope of the application -- the operating system provides the necessary
services.

40

Working with the keyboard

When text is entered into a window, the on_text event isfired:

def on_text(text):
pass

The only parameter provided isaUnicode string. For keyboard input thiswill usually be one character
long, however more complex input methods such as an input palette may provide an entire word or
phrase at once.

Y ou should always use the on_text event when you need to determine a string from a sequence of
keystrokes. Conversely, you never use on_text when you reguire keys to be pressed (for example, to
control the movement of the player in a game).

Motion events

In addition to entering text, users press keys on the keyboard to navigate around text widgets according
towell-ingrained conventions. For exampl e, pressing theleft arrow key movesthe cursor one character
to the left.

While you might be tempted to use the on_key press event to capture these events, there are a couple
of problems:

» Key repeat events are not generated for on_key press, yet users expect that holding down the left
arrow key will eventually move the character to the beginning of theline.

+ Different operating systems have different conventions for the behaviour of keys. For example, on
Windowsit is customary for the Home key to move the cursor to the beginning of the line, whereas
on Mac OS X the same key moves to the beginning of the document.

pyglet windows provide the on_text_motion event, which takes care of these problems by abstracting
away the key presses and providing your application only with the intended cursor motion:

def on_text _notion(notion):
pass

motion is an integer which is a constant defined in pyglet.window.key. The following table shows the
defined text motions and their keyboard mapping on each operating system.

Constant Behaviour Windows/ Mac OS X
Linux

MOTI ON_UP Move the|Up Up
Cursor up

MOTI ON_DOWN Move the| Down Down
cursor down

MOTI ON_LEFT Move the|Left Left
cursor left

MOTI ON_RI GHT Move the| Right Right
cursor right

MOTI ON_PREVI QUS_ WORD |Move the| Ctrl + Left Option + Left
cursor to the
previuos word

MOTI ON_NEXT_WORD Move the|Ctrl + Right |Option + Right
cursor to the
next word

MOTI ON_BEA NNI NG_OF_LI|NEve the|Home Command +
cursor to the Left

41

Working with the keyboard

Constant Behaviour Windows Mac OS X
Linux

beginning of
the current line

MOTI ON_END_OF LI NE Move the|End Command +
cursor to the Right

end of the
current line

MOTI ON_PREVI QUS_PAGE |Move to the|lPageUp Page Up
previous page
MOT1 ON_NEXT_PAGE Move to the|PageDown Page Down
next page
MOTI ON_ BEA NNI NG_OF_FI|Move to the|Ctrl + Home |Home
beginning of
the document

MOTI ON_END _OF _FI LE Move to the|Ctrl + End End
end of the

document

MOT1 ON_BACKSPACE Delete the| Backspace Backspace
previous
character

MOTI ON_DELETE Delete the next| Delete Delete

character, or
the current
character

Keyboard exclusivity

Some keystrokes or key combinations normally bypass applications and are handled by the operating
system. Some examples are Alt+Tab (Command+Tab on Mac OS X) to switch applications and the
keys mapped to Expose on Mac OS X.

You can disable these hot keys and have them behave as ordinary keystrokes for your application.
This can be useful if you are devel oping a kiosk application which should not be closed, or agamein
which it is possible for a user to accidentally press one of these keys.

To enable this mode, call set_exclusive keyboard for the window on which it should apply. On Mac
OS X the dock and menu bar will slide out of view while exclusive keyboard is activated.

The following restrictions apply on Windows:

* Most keys are not disabled: a user can still switch away from your application using Ctrl+Escape,
Alt+Escape, the Windows key or Ctrl+Alt+Delete. Only the Alt+Tab combination is disabled.

The following restrictions apply on Mac OS X:
e The power key is not disabled.

Use of thisfunction is not recommended for general release applications or games as it violates user-
interface conventions.

42

Working with the mouse

All pyglet windows can recieve input from a 3 button mouse with a 2 dimensional scroll wheel. The
mouse pointer istypically drawn by the operating system, but you can override this and request either
adifferent cursor shape or provide your own image or animation.

Mouse events

All mouse events are dispatched by the window which receives the event from the operating system.
Typically this is the window over which the mouse cursor is, however mouse exclusivity and drag
operations mean thisis not always the case.

The coordinate space for the mouse pointer's location is relative to the bottom-left corner of the
window, with increasing Y values approaching the top of the screen (note that this is "upside-down"
compared with many other windowing toolkits, but is consistent with the default OpenGL projection

in pyglet).

The coordinate space for the mouse pointer.
The most basic mouse event is on_mouse_motion which is dispatched every time the mouse moves:

def on_nouse notion(x, y, dx, dy):
pass

The x and y parameters give the coordinates of the mouse pointer, relative to the bottom-left corner
of the window.

The event is dispatched every time the operating system registers a mouse movement. This is not
necessarily once for every pixel moved -- the operating system typically samples the mouse at afixed
frequency, and it is easy to move the mouse faster than this. Conversely, if your application is not
processing events fast enough you may find that several queued-up mouse events are dispatched in a
single Window.dispatch_events call. There is no need to concern yourself with either of these issues;
the latter rarely causes problems, and the former can not be avoided.

Many games are not concerned with the actual position of the mouse cursor, and only need to know
in which direction the mouse has moved. For example, the mouse in a first-person game typically
controls the direction the player 1ooks, but the mouse pointer itself is not displayed.

The dx and dy parameters are for this purpose: they give the distance the mouse travelled along each
axis to get to its present position. This can be computed naively by storing the previous x and y
parameters after every mouse event, but besides being tiresome to code, it does not take into account
the effects of other obscuring windows. It is best to use the dx and dy parameters instead.

The following events are dispatched when a mouse button is pressed or released, or the mouse is
moved while any button is held down:

def on_npuse_press(x, y, button, nodifiers):
pass

43

Working with the mouse

def on_nouse_rel ease(x, y, button, nodifiers):
pass

def on_nopuse_drag(x, y, dx, dy, buttons, nodifiers):
pass

The x, y, dx and dy parameters are as for the on_mouse_motion event. The press and release events
do not require dx and dy parameters as they would be zero in this case. The modifiers parameter is as
for the keyboard events, see Working with the keyboard.

The button parameter signifieswhich mouse button was pressed, and is one of the following constants:

pygl et . wi ndow. mouse. LEFT
pygl et . wi ndow. mrouse. M DDLE
pygl et . wi ndow. mouse. Rl GHT

The buttons parameter in on_mouse _drag is a bitwise combination of all the mouse buttons currently
held down. For example, to test if the user is performing a drag gesture with the left button:

from pygl et. w ndow i nport nouse

def on_nobuse_drag(x, y, dx, dy, buttons, nodifiers):
if buttons & nouse. LEFT:
pass

When the user begins adrag operation (i.e., pressing and holding a mouse button and then moving the
mouse), the window in which they began the drag will continue to receive the on_mouse_drag event
as long as the button is held down. Thisis true even if the mouse leaves the window. Y ou generally
do not need to handle this specially: it is a convention among all operating systems that dragging is a
gesture rather than a direct manipulation of the user interface widget.

There are events for when the mouse enters or leaves a window:

def on_npbuse_enter(x, Yy):
pass

def on_nobuse_| eave(x, Y):
pass

The coordinatesfor on_mouse |eavewill lie outside of your window. These events are not dispatched
while adrag operation is taking place.

The mouse scroll wheel generates the on_mouse_scroll event:

def on_nouse_scroll (x, vy, scroll_x, scroll_y):
pass

The scroll_y parameter gives the number of "clicks' the wheel moved, with positive humbers
indicating the wheel was pushed forward. The scroll_x parameter is 0 for most mice, however some
new mice such asthe Apple Mighty Mouse use aball instead of awhedl; the scroll_x parameter gives
the horizontal movement in this case. The scale of these numbersis not known; it is typically set by
the user in their operating system preferences.

Changing the mouse cursor

The mouse cursor can be set to one of the operating system cursors, a custom image, or hidden
completely. The change to the cursor will be applicable only to the window you make the change to.
To hide the mouse cursor, call Window.set_mouse visible:

wi ndow = pygl et.w ndow. W ndow()

Working with the mouse

wi ndow. set _nouse_vi si bl e(Fal se)

This can be useful if the mouse would obscure text that the user is typing. If you are hiding the
mouse cursor for usein agame environment, consider making the mouse exclusive instead; see Mouse
exclusivity, below.

Use Window.set_mouse cursor to change the appearance of the mouse cursor. A mouse cursor
is an instance of MouseCursor. You can obtain the operating system-defined cursors with
Window.get_system mouse cursor:

cursor = wi ndow. get_system nmouse_cur sor (w n. CURSOR_HELP)
Wi ndow. set _nouse_cur sor (cursor)

The cursors that pyglet defines are listed below, along with their typical appearance on Windows and
Mac OS X. The pointer image on Linux is dependent on the window manager.

Constant Windows XP Mac OS X
CURSOR DEFAULT [y 3
CURSOR _CROSHAIR + +
CURSOR_HAND {m &
CURSOR HELP N N
CURSOR_NO S R
CURSOR_SIZE N X
CURSOR_SIZE_DOWN 1 -+
CURSOR SIZE DOWN_LEFT N N
CURSOR SIZE_ DOWN_RIGHT " N
CURSOR _SZE LEFT — q
CURSOR SIZE_LEFT RIGHT o o+
CURSOR _SZE RIGHT — b
CURSOR SIZE_UP 1 +
CURSOR_SIZE_UP_DOWN 1 +
CURSOR SZE_UP_LEFT " N
CURSOR SIZE_UP_RIGHT > N
CURSOR_TEXT I i
CURSOR WAIT % 2
CURSOR WAIT_ARROW NE N

Alternatively, you can use your own image as the mouse cursor. Use pyglet.image.load to load the
image, then create an ImageMouseCursor with the image and "hot-spot" of the cursor. The hot-spot
is the point of the image that corresponds to the actual pointer location on screen, for example, the
point of the arrow:

i mge = pygl et.imge. | oad(' cursor.png')
cursor = pygl et.w ndow. | rageMouseCur sor (i nage, 16, 8)
w ndow. set _nouse_cursor (cursor)

Y ou can even render a mouse cursor directly with OpenGL. Y ou could draw a 3-dimensional cursor,
or a particle trail, for example. To do this, subclass MouseCursor and implement your own draw

45

Working with the mouse

method. The draw method will be called with the default pyglet window projection, even if you are
using another projection in the rest of your application.

Mouse exclusivity

It is possible to take compl ete control of the mouse for your own application, preventing it being used
to activate other applications. Thisis most useful for immersive games such as first-person shooters.

When you enable mouse-exclusive mode, the mouse cursor is no longer available. It is not merely
hidden -- no amount of mouse movement will make it leave your application. Because there is no
longer a mouse cursor, the x and y parameters of the mouse events are meaningless; you should use
only the dx and dy parameters to determine how the mouse was moved.

Activate mouse exclusive mode with set_exclusive_mouse:

wi ndow = pygl et.w ndow. W ndow()
wi ndow. set _excl usi ve_nouse(Tr ue)

You should activate mouse exclusive mode even if your window is full-screen: it will prevent
the window "hitting" the edges of the screen, and behave correctly in multi-monitor setups (a
common problem with commercial full-screen gamesisthat the mouse is only hidden, meaning it can
accidentally travel onto the other monitor where applications are till visible).

Note that on Linux setting exclusive mouse also disables Alt+Tab and other hotkeys for switching
applications. No workaround for this has yet been discovered.

46

Keeping track of time

pyglet's clock module provides functionality for scheduling functions for periodic or one-shot future
execution and for calculating and displaying the application frame rate.

Calling functions periodically

pydlet applications begin execution with:

pygl et. app. run()

Once called, this function doesn't return until the application windows have been closed. This may
leave you wondering how to execute code while the application is running.

Typical applications need to execute code in only three circumstances:

» A user input event (such as a mouse movement or key press) has been generated. In this case the
appropriate code can be attached as an event handler to the window.

e An animation or other time-dependent system needs to update the position or parameters of an
object. We'll call thisa"periodic" event.

A certain amount of time has passed, perhaps indicating that an operation has timed out, or that a
dialog can be automatically dismissed. We'll call thisa"one-shot" event.

To have afunction called periodically, for example, once every 0.1 seconds:

def update(dt):
...
pygl et. cl ock. schedul e_i nt erval (update, 0.1)

The dt parameter gives the number of seconds (due to latency, load and timer inprecision, this might
be slightly more or less than the requested interval).

Scheduling functions with a set interval is ideal for animation, physics smulation, and game state
updates. pyglet ensuresthat the application does not consume moreresourcesthan necessary to execute
the scheduled functionsin time.

Rather than "limiting the frame rate", as required in other toolkits, smply schedule al your update
functions for no less than the minimum period your application or game requires. For example, most
games need not run at more than 60Hz (60 times a second) for imperceptibly smooth animation, so
the interval given to schedule_interval would be 1/ 60. O (or more).

If you are writing a benchmarking program or otherwise wish to simply run at the highest possible
frequency, use schedule:

def update(dt):
#o.o..
pygl et . cl ock. schedul e(updat e)

By default pyglet window buffer swaps are synchronised to the display refresh rate, so you may also
want to disable set_vsync.

For one-shot events, use schedule_once:

def dismiss_dialog(dt):
...

Dismss the dialog after 5 seconds.

47

Keeping track of time

pygl et . cl ock. schedul e_once(di sm ss_di al og, 5.0)

To stop a scheduled function from being called, including cancelling a periodic function, use
pyglet.clock.unschedule.

Animation techniques

Every scheduled function takes a dt parameter, giving the actual "wall clock” time that passed since
the previousinvocation (or the time the function was scheduled, if it'sthe first period). This parameter
can be used for numerical integration.

For example, a non-accelerating particle with velocity v will travel some distance over a change in
timedt . Thisdistanceiscalculated asv * dt. Similarly, a particle under constant acceleration a
will have achangeinvelocity of a * dt.

The following example demonstrates a simple way to move a sprite across the screen at exactly 10
pixels per second:

sprite = pyglet.sprite.Sprite(inmage)
sprite.dx = 10.0

def update(dt):
sprite.x += sprite.dx * dt
pygl et. cl ock. schedul e_i nterval (update, 1/60.0) # update at 60Hz

Thisisarobust technique for simple animation, as the velocity will remain constant regardless of the
speed or load of the compulter.

Some examples of other common animation variables are given in the table below.

Animation parameter Distance Velocity

Rotation Degrees Degrees per second
Position Pixels Pixels per second
Keyframes Frame number Frames per second

The frame rate

Game performance is often measured in terms of the number of times the display is updated every
second; that is, the frames-per-second or FPS. Y ou can determine your application's FPSwith asingle
function call:

pygl et. cl ock. get _fps()

The vaue returned is more useful than simply taking the reciprocal of dt from a period function, as
it is averaged over adliding window of several frames.

Displaying the frame rate

A simple way to profile your application performance isto display the frame rate while it is running.
Printing it to the consoleis not ideal asthiswill have a severeimpact on performance. pyglet provides
the ClockDisplay class for displaying the frame rate with very little effort:

fps_di splay = pyglet.clock. d ockDi spl ay()

@ ndow. event
def on_draw():

48

Keeping track of time

wi ndow. cl ear ()
f ps_di splay. draw()

By default the frame rate will be drawn in the bottom-right corner of the window in a semi-translucent
large font. See the ClockDisplay documentation for details on how to customise this, or even display
another clock value (such as the current time) atogether.

User-defined clocks

The default clock used by pyglet uses the system clock to determinethetime (i.e.,ti me. ti ne()).
Separate clocks can be created, however, allowing you to use another time source. This can be useful
for implementing a separate "game time" to the real-world time, or for synchronising to a network
time source or a sound device.

Each of the clock functions are aliases for the methods on a global instance of clock.Clock. You
can construct or subclass your own Clock, which can then maintain its own schedule and framerate
calculation. See the class documentation for more details.

49

Displaying text

pyglet provides the font module for rendering high-quality antialiased Unicode glyphs efficiently.
Any installed font on the operating system can be used, or you can supply your own font with your
application.

Text rendering is performed with the text module, which can display word-wrapped formatted text.
Thereis also support for interactive editing of text on-screen with a caret.

Simple text rendering

The following complete example creates a window that displays "Hello, World" centered vertically
and horizontally:

wi ndow = pygl et.w ndow. W ndow()
| abel = pyglet.text.Label ('Hello, world",
font _name="'Ti nes New Roman',
font _si ze=36,
x=wi ndow. wi dt h/ /2, y=wi ndow. hei ght//2,
anchor_x='center', anchor_y='center')

@ ndow. event

def on_draw():
wi ndow. cl ear ()
| abel . draw()

pygl et. app. run()

The example demonstrates the most common uses of text rendering:

» The font name and size are specified directly in the constructor. Additional parameters exist for
setting the bold and italic styles and the color of the text.

» The position of the text is given by the x and y coordinates. The meaning of these coordinates is
given by theanchor _x andanchor _y parameters.

» Theactua text isdrawn with the Label.draw method. Labels can also be added to a graphics batch;
see Graphics for details.

TheHTMLLabel classisused similarly, but accepts an HTML formatted string instead of parameters
describing the style. This allows the label to display text with mixed style:

| abel = pygl et.text.HTM.Label (
"Hell o, <i>world</i>",
x=wi ndow. wi dt h/ /2, y=wi ndow. hei ght//2,
anchor_x='center', anchor_y='center')

See Formatted text for details on the subset of HTML that is supported.

The document/layout model

The Label class demonstrated above presentsasimplified interface to pyglet's complete text rendering
capabilities. The underlying TextLayout and AbstractDocument classes provide a "model/view"
interface to all of pyglet's text features.

50

Displaying text

TextLayout AbstractDocument

T T

ScrollableTextLayout

T

Incremental TextLayout

UnformattedDocument FormattedDocument

Documents

A document is the "model" part of the architecture, and describes the content and style of
the text to be displayed. There are two concrete document classes. UnformattedDocument and
FormattedDocument. UnformattedDocument models a document containing text in just one style,
whereas FormattedDocument allows the style to change within the text.

An empty, unstyled document can be created by constructing either of the classes directly. Usually
you will want to initialise the document with some text, however. The decode_text, decode_attributed
and decode_html functions return a document given a source string. For decode_text, thisis simply a
plain text string, and the return value is an UnformattedDocument:

docunent = pyglet.text.decode text('Hello, world.")
decode attributed and decode_html are described in detail in the next section.
The text of adocument can be modified directly as a property on the object:
docunent . text = ' Goodbye, cruel world.'

However, if small changes are being made to the document it can be more efficient (when coupled
with an appropriate layout; see below) to use the remove_text and insert_text methods instead.

Layouts

The actual layout and rendering of a document is performed by the TextLayout classes. This split
existsto reduce the complexity of the code, and to allow a single document to be displayed in multiple
layouts simultaneously (in other words, many layouts can display one document).

Each of the TextLayout classes perform layout in the same way, but represent atrade-off in efficiency
of update against efficiency of drawing and memory usage.

The base TextLayout class uses little memory, and shares its graphics group with other TextLayout
instances in the same batch (see Batched rendering). When the text or style of the document is
modified, or the layout constraints change (for example, the width of the layout changes), the entire
text layout is recalculated. This is a potentially expensive operation, especially for long documents.
This makes TextLayout suitable for relatively short or unchanging documents.

ScrollableTextLayout isasmall extension to TextLayout that clipsthetext to aspecified view rectangle,
and allows text to be scrolled within that rectangle without performing the layout calculuation again.
Because of this clipping rectangle the graphics group cannot be shared with other text layouts, so for
ideal performance ScrollableTextLayout should be used only if this behaviour is required.

Incremental TextLayout uses a more sophisticated layout agorithm that performs less work for small
changes to documents. For example, if a document is being edited by the user, only the immediately
affected lines of text are recalculated when a character is typed or deleted. Incremental TextLayout
also performs view rectangle culling, reducing the amount of layout and rendering required when

51

Displaying text

the document is larger than the view. Incremental TextLayout should be used for large documents or
documents that change rapidly.

All the layout classes can be constructed given a document and display dimensions:
| ayout = pyglet.text. Text Layout (docunent, w dth, height)

Additional arguments to the constructor allow the specification of a graphics batch and group
(recommended if many layouts are to be rendered), and the optional multiline flag. To render more
than one line of text (either through word-wrapping or explicit line breaks) multiline must be Tr ue.

Like labels, layouts are positioned through their X, y, anchor_x and anchor_y properties. Note that
unlike Abstractlmage, the anchor propertiesaccept astring suchas™ bot t ont' or" cent er " instead
of anumeric displacement.

Formatted text

The FormattedDocument class maintains style information for individual charactersin thetext, rather
than asingle stylefor the whole document. Styles can be accessed and modified by name, for example:

CGet the font nanme used at character index O
font _name = docunent.get_style(' font_name', 0)

Set the font nane and size for the first 5 characters
docunent.set_style(0, 5, dict(font_nanme="Arial', font_size=12))

Internally, character styles are run-length encoded over the document text; so longer documents with
few style changes do not use excessive memory.

From the document's point of view, there are no predefined style names. it simply maps names
and character ranges to arbitrary Python values. It is the TextLayout classes that interpret this style
information; for example, by selecting adifferent font based onthef ont _nane style. Unrecognised
style names are ignored by the layout -- you can use this knowledge to store additional data alongside
the document text (for example, a URL behind a hyperlink).

Character styles

The following character styles are recognised by all TextLayout classes.

Where an attribute is marked "as a distance” the value is assumed to be in pixelsif given asan int or
float, otherwise a string of the form " Ou" is required, where 0O is the distance and u is the unit; one
of "px" (pixels), "pt" (points), " pc" (picas), " cn' (centimeters), " mm' (millimeters) or "i n"
(inches). For example, " 14pt " is the distance covering 14 points, which at the default DPI of 96

is 18 pixels.

font _nane Font family name, as given to pyglet.font.load.

font_size Font size, in points.

bol d Boolean.

italic Boolean.

underl i ne 4-tuple of intsin range (O, 255) giving RGBA underline color, or None
(default) for no underline.

ker ni ng Additional space to insert between glyphs, as adistance. Defaultsto 0.

basel i ne Offset of glyph baseline from line baseline, as a distance. Positive values

give a superscript, negative values give a subscript. Defaults to O.

52

Displaying text

col or 4-tuple of intsin range (0, 255) giving RGBA text color

background_col or 4-tuple of intsin range (0, 255) giving RGBA text background color; or
None for no background fill.

Paragraph styles

Although FormattedDocument does not distinguish between character- and paragraph-level styles,
TextLayout interpretsthe following stylesonly at the paragraph level. Y ou should take care to set these
stylesfor complete paragraphsonly, for example, by using FormattedDocument.set_paragraph_style.

These styles are ignored for layouts without thermul ti | i ne flag set.
align "l eft" (default)," center" or"right".

i ndent Additional horizontal space to insert before the first glyph of the first line of
aparagraph, as a distance.

| eadi ng Additional space to insert between consecutive lines within a paragraph, as a
distance. Defaultsto O.

I i ne_spaci ng Distance between consecutive baselinesin aparagraph, asadistance. Defaults
to None, which automatically calculates the tightest line spacing for each line
based on the maximum font ascent and descent.

margi n_| eft L eft paragraph margin, as a distance.

mar gi n_ri ght Right paragraph margin, as a distance.

mar gi n_t op Margin above paragraph, as a distance.

mar gi n_bottom Margin below paragraph, as adistance. Adjacent margins do not collapse.

tab_stops List of horizontal tab stops, as distances, measured from the left edge of the
text layout. Defaults to the empty list. When the tab stops are exhausted, they
implicitly continue at 50 pixel intervals.

wrap Boolean. If True (the default), text wraps within the width of the layout.

For the purposes of these attributes, paragraphs are split by the newline character (U+0010) or the
paragraph break character (U+2029). Line breaks within a paragraph can be forced with character U
+2028.

Attributed text

pyglet provides two formats for decoding formatted documents from plain text. These are useful
for loading preprepared documents such as help screens. At this time there is no facility for saving
(encoding) formatted documents.

The attributed text format is an encoding specific to pyglet that can exactly describe any
FormattedDocument. Y ou must use this encoding to access al of the features of pyglet text layout.
For amore accessible, yet less featureful encoding, see the HTML encoding, described below.

The following example shows a simple attributed text encoded document:

Chapter 1

My father's fanmily name being Pirrip, and nmy Christian name Philip,
ny infant tongue could nake of both names nothing | onger or nore
explicit than Pip. So, | called nyself Pip, and cane to be called

53

Displaying text

Pi p.

| give Pirrip as ny father's fanily name, on the authority of his
tonbstone and ny sister - Ms. Joe Gargery, who married the

bl acksmith. As | never saw ny father or mnmy nother, and never saw
any |ikeness of either of them (for their days were |long before the
days of photographs), ny first fancies regardi ng what they were

i ke, were unreasonably derived fromtheir tonbstones.

Newlines are ignored, unless two are made in succession, indicating a paragraph break. Line breaks
can be forced with the\ \ sequence:

This is the way the world ends \\
This is the way the world ends \\
This is the way the world ends \\
Not with a bang but a whi mper.

Line breaks are a so forced when the text is indented with one or more spaces or tabs, which is useful
for typesetting code:

The foll owi ng paragraph has hard |ine breaks for every line of code:

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()
pygl et. app. run()

Text can be styled using a attribute tag:
This sentence nakes a {bold True}bol d{bol d Fal se} statemnent.

The attribute tag consists of the attribute name (in this example, bol d) followed by a Python boal,
int, float, string, tuple or list.

Unlike most structured documents such as HTML, attributed text has no concept of the "end" of a
style; styles merely change within the document. This corresponds exactly to the representation used
by FormattedDocument internally.

Some more examples follow:

{font_nanme 'Tines New Roman'}{font_size 28}Hell o{font_size 12},
{color (255, 0, 0, 255)}world{color (O, O, 0, 255)}!

(This example uses 28pt Times New Roman for the word "Hello", and 12pt red text for the word
"world").

Paragraph styles can be set by prefixing the style name with a period (.). This ensures the style range
exactly encompasses the paragraph:

{.margin_left "12px"}This is a block quote, as the nargin is inset.
{.margin_left "24px"}This paragraph is inset yet again.

Attributed text can be loaded as a Unicode string. In addition, any character can be inserted given its
Unicode code point in numeric form, either in decimal:

This text is Copyright {#169}.
or hexadecimal:

This text is Copyright {#xa9}.

Displaying text

The characters{ and} can be escaped by duplicating them:
Attributed text uses nmany "{{" and "}}" characters.
Usethedecode_at tri but ed function to decode attributed text into a FormattedDocument:

docunent = pyglet.text.decode_attributed(' Hello, {bold True}world")

HTML

While attributed text gives access to all of the features of FormattedDocument and TextLayout, it is
quite verbose and difficult produce text in. For convenience, pyglet provides an HTML 4.01 decoder
that can trandlate a small, commonly used subset of HTML into a FormattedDocument.

Note that the decoder does not preserve the structure of the HTML document -- al notion of element
hierarchy islost in the trandation, and only the visible style changes are preserved.

The following example uses decode_html to create a FormattedDocument from a string of HTML.:
docunent = pyglet.text.decode_htm (' Hell o, worl d")
The following elements are supported:

B BLOCKQUOTE BR CENTER CODE DD DIR DL EM FONT H1L H2 H3 H4 H5 H6 | | MG KBD
LI MENU OL P PRE Q SAMP STRONG SUB SUP TT U UL VAR

Thest yl e attributeis not supported, so font sizes must be given asHTML logical sizesin the range
1to 7, rather than as point sizes. The corresponding font sizes, and some other stylesheet parameters,
can be modified by subclassing HTMLDecoder.

Custom elements

Graphics and other visual elements can be inserted inline into a document using
AbstractDocument.insert_element. For example, inline elements are used to render HTML images
included withthel MGtag. Thereiscurrently no support for floating or absol utely-positioned elements.

Elements must subclass InlineElement and override the place and remove methods. These methods
are called by TextLayout when the element becomes or ceases to be visible. For TextLayout and
ScrollableTextLayout, this is when the element is added or removed from the document; but for
Incremental TextLayout the methods are also called as the element scrollsin and out of the viewport.

The constructor of InlineElement gives the width and height (separated into the ascent above the
baseline, and descent below the baseline) of the element.

Typically an InlineElement subclasswill add graphics primitivesto the layout's graphics batch; though
applications may choose to simply record the position of the element and render it separately.

The position of the element in the document text is marked with a NUL character (U+0000)
placeholder. This has the effect that inserting an element into a document increases the length of the
document text by one. Elements can also be styled asif they were ordinary character text, though the
layout ignores any such style attributes.

User-editable text

While pyglet does not comewith any complete GUI widgetsfor applicationsto use, it doesimplement
many of the features required to implement interactive text editing. These can be used asabasisfor a
more complete GUI system, or to present asimpletext entry field, asdemonstrated intheexanpl es/
t ext _i nput . py example.

55

Displaying text

Incremental TextLayout should always be used for text that can be edited by the user.
This class maintains information about the placement of glyphs on screen, and so
can map window coordinates to a document position and vice-versa. These methods
are get_position_from_point, get_point_from position, get_line from point, get_point_from line,
get_line_from_position, get_position_from line, get_position_on_line and get_line_count.

The viewable rectangle of the document can be adjusted using a document position instead of a
scrollbar using the ensure_line visible and ensure x visible methods.

Incremental TextLayout can display a current text selection by temporarily overriding the foreground
and background colour of the selected text. The selection_start and selection_end properties give
the range of the selection, and selection_color and selection_background color the colors to use
(defaulting to white on blue).

The Caret class implements an insertion caret (cursor) for Incremental TextLayout. This includes
displaying the blinking caret at the correct location, and handling keyboard, text and mouse events.
The behaviour inresponseto theeventsisvery similar to the system GUIson Windows, Mac OS X and
GTK. Using Caret freesyou from using the | ncremental TextLayout methods described above directly.

The following example creates a document, alayout and a caret and attaches the caret to the window
to listen for events:

i mport pygl et

wi ndow = pygl et.w ndow. W ndow()

docunent = pygl et.text.docunent. FormattedDocunent ()

| ayout = pyglet.text.layout.|ncrenental Text Layout(docunent, wi dth, height)
caret = pyglet.text.caret. Caret(layout)

wi ndow. push_handl er s(caret)

When the layout is drawn, the caret will also be drawn, so this example is nearly complete enough to
display the user input. However, it is suitable for use when only one editable text layout isto bein the
window. If multiple text widgets are to be shown, some mechanism is needed to dispatch eventsto the
widget that has keyboard focus. An example of how to do thisis given in the examples/text_input.py
example program.

Loading system fonts

Thelayout classesautomatically load fontsasrequired. Y ou can al so explicitly load fontsto implement
your own layout algorithms.

To load afont you must know its family name. This is the name displayed in the font dialog of any
application. For example, all operating systems include the Times New Roman font. You must also
specify the font size to load, in points:

Load "Ti mes New Roman" at 16pt
times = pyglet.font.load(' Ti res New Roman', 16)

Bold and italic variants of the font can specified with keyword parameters:

tinmes_bold = pyglet.font.load(' Ti mes New Ronan', 16, bol d=True)
times_italic = pyglet.font.load(' Ti nes New Ronan', 16, italic=True)
times_bold italic = pyglet.font.|oad(' Ti nes New Roman', 16,

bol d=True, italic=True)

For maximum compatibility on al platforms, you can specify a list of font names to load, in order
of preference. For example, many users will have installed the Microsoft Web Fonts pack, which
includes Verdana, but this cannot be guaranteed, so you might specify Arial or Helvetica as suitable
alternatives:

56

Displaying text

sans_serif = pyglet.font.|load((' Verdana', 'Helvetica', '"Arial'), 16)

If you do not particularly care which font is used, and just need to display some readable text, you
can specify None as the family name, which will load a default sans-serif font (Helveticaon Mac OS
X, Aria on Windows XP):

sans_serif = pyglet.font.|oad(None, 16)

Font sizes

When loading a font you must specify the font size it is to be rendered at, in points. Points are a
somewhat historical but conventional unit used in both display and print media. There are various
conflicting definitionsfor the actual length of apoint, but pyglet uses the PostScript definition: 1 point
= /72 inches.

Font resolution

The actual rendered size of the font on screen depends on the display resolution. pyglet uses a default
DPI of 96 on al operating systems. Most Mac OS X applications use a DPI of 72, so the font sizes
will not match up on that operating system. However, application devel opers can be assured that font
sizes remain consistent in pyglet across platforms.

The DPI can be specified directly inthe pyglet.font.load function, and asan argument to the TextLayout
constructor.

Determining font size

Once afont isloaded at a particular size, you can query its pixel size with the attributes:

Font . ascent
Font . descent

These measurements are shown in the diagram below.

ascent

baseline

descent

Font metrics. Note that the descent is usually negative as it descends below the
baseline.

Y ou can calculate the distance between successive lines of text as:
ascent - descent + |eading

where leading is the number of pixelsto insert between each line of text.

Loading custom fonts

Y ou can supply afont with your application if it's not commonly installed on the target platform. You
should ensure you have alicense to distribute the font -- the terms are often specified within the font
fileitself, and can be viewed with your operating system's font viewer.

L oading a custom font must be performed in two steps:

57

Displaying text

1. Let pyglet know about the additional font or font files.
2. Load thefont by its family name.

For example, let'ssay you havethe Action Manfontinafilecalledact i on_man. t t f . Thefollowing
code will load an instance of that font:

pygl et.font.add file('action_man.ttf")
action_nan = pyglet.font.|oad(' Acti on Man')

Similarly, once the font file has been added, the font name can be specified as a style on a label or
layout:

| abel = pyglet.text.Label ('Hello', font_name='"Action Man')

Fonts are often distributed in separate files for each variant. Action Man Bold would probably be
distributed as a separate file called act i on_nman_bol d. t t f ; you need to let pyglet know about
thisaswell:

font.add_file('action_nman_bold.ttf")
action_nan_bold = font.| oad(' Action Man', bol d=True)

Note that even when you know the filename of the font you want to load, you must specify the font's
family name to pyglet.font.load.

Y ou need not have the file on disk to add it to pyglet; you can specify any file-like object supporting
the read method. This can be useful for extracting fonts from a resource archive or over a network.

If the custom font is distributed with your application, consider using the Application resources.

Supported font formats

pyglet can load any font file that the operating system natively supports. Thelist of supported formats
is shown in the table below.

Font For mat Windows XP |Mac OS X Linux
(FreeType)

TrueType (.ttf) X X X

PostScript Type 1 (.pfm, .pfb) | X X X

Windows Bitmap (.fnt) X X

Mac OS X Data Fork Font X

(.dfont)

OpenType (.ttf) ® X

X11 font formats PCF, BDF, X

SFONT

Bitstream PFR (.pfr) X

8All OpenTypefontsare backward compatiblewith TrueType, so whilethe advanced OpenTypefeatures
can only be rendered with Mac OS X, the files can be used on any platform. pyglet does not currently
make use of the additional kerning and ligature information within OpenType fonts.

OpenGL font considerations

Text in pyglet is drawn using textured quads. Each font maintains a set of one or more textures, into
which glyphs are uploaded as they are needed. For most applications this detail is transparent and
unimportant, however some of the details of these glyph textures are described below for advanced
users.

58

Displaying text

Context affinity

When afontisloaded, it immediately createsatexturein the current context's object space. Subsequent
textures may need to be created if thereis not enough room on thefirst texture for all the glyphs. This
is done when the glyph isfirst requested.

pyglet always assumes that the object space that was active when the font was loaded is the active
one when any texture operations are performed. Normally this assumption is valid, as pyglet shares
object spaces between all contexts by default. There are afew situations in which thiswill not be the
case, though:

» When explicitly setting the context share during context creation.
» When multiple display devices are being used which cannot support a shared context object space.

In any of these cases, you will need to reload the font for each object space that it's needed in. pyglet
keeps a cache of fonts, but does so per-object-space, so it knows when it can reuse an existing font
instanceor if it needstoload it and create new textures. Y ou will also need to ensure that an appropriate
context is active when any glyphs may need to be added.

Blend state

The glyph textures have an internal format of GL_ ALPHA, which provides a ssmple way to recolour
and blend antialiased text by changing the vertex colors. pyglet makes very few assumptions about
the OpenGL state, and will not alter it besides changing the currently bound texture.

The following blend state is used for drawing font glyphs:
frompyglet.gl inport *

gl Bl endFunc(GL_SRC_ALPHA, GL_ONE_M NUS_SRC_ALPHA)
gl Enabl e(GL_BLEND)

All glyph texturesusethe G._ TEXTURE_2Dtarget, so you should ensure that ahigher priority target
suchas GL_ TEXTURE_3Dis not enabled before trying to render text.

59

Images

pyglet provides functions for loading and saving images in various formats using native operating
system services. pyglet can also work with the Python Imaging Library [http://www.pythonware.com/
products/pil/] (PIL) for access to more file formats.

Loaded images can be efficiently provided to OpenGL as a texture, and OpenGL textures and
framebuffers can be retrieved as pyglet images to be saved or otherwise manipul ated.

pyglet also provides an efficient and comprehensive Sorite class, for displaying images on the screen
with an optional transform.

Loading an image

Images can be loaded using the pyglet.image.load function:
kitten = pyglet.imge.load('kitten.png')

If the image is distributed with your application, consider using the pyglet.resource module (see
Application resources).

Without any additional arguments, load will attempt to load the filename specified using any available
image decoder. Thiswill allow you to load PNG, GIF, JPEG, BMP and DDSfiles, and possibly other
filesaswell, depending on your operating system and additional installed modul es (seethe next section
for details). If the image cannot be loaded, an |mageDecodeException will be raised.

You can load an image from any file-like object providing a read method by specifying the file
keyword parameter:

kitten_stream = open('kitten.png', 'rb")
kitten = pyglet.imge.load('kitten.png', file=kitten_stream

In this case the filename ki t t en. png isoptional, but gives a hint to the decoder asto the file type
(it is otherwise unused).

pyglet provides the following image decoders:

Module Class Description

pygl et. i mage. codecs. dds DDSI mageDecodeReads Microsoft
DirectDraw
Surface files
containing
compressed
textures

pygl et. i mage. codecs. gdi pl us|GDI Pl usDecodefUses Windows
GDI+ services to
decode images.

pygl et . i mage. codecs. gdkpi xbuEkPi xbuf 21 mageBectieeGTK-2.0
GDK functions to
decode images.

pygl et . i mage. codecs. pi | Pl LI mageDecodéWrapper interface
around PIL Image
class.

pygl et. i mage. codecs. png PNA mageDecodePNG decoder
written in pure
Python.

60

http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/

Images

Module Class Description

pygl et . i mage. codecs. qui ckti p@ui ckTi mel mageDsesoddiac OS
X QuickTime to
decode images.

Each of these classes registers itself with pyglet.image with the filename extensions it supports. The
load function will try each image decoder with a matching file extension first, before attempting the
other decoders. Only if every image decoder fails to load an image will ImageDecodeException be
raised (the origin of the exception will be the first decoder that was attempted).

Y ou can override this behaviour and specify a particular decoding instance to use. For example, inthe
following example the pure Python PNG decoder is always used rather than the operating system's
decoder:

from pygl et. i mage. codecs. png i nport PNG nageDecoder
kitten = pyglet.imge.load('kitten.png', decoder=PNGd nageDecoder ())

This use is not recommended unless your application has to work around specific deficiences in an
operating system decoder.

Supported image formats

The following table lists the image formats that can be loaded on each operating system. If PIL
is installed, any additional formats it supports can also be read. See the Python Imaging Library
Handbook [http://www.pythonware.com/library/pil/handbook/index.htm] for alist of such formats.

Extension Description |Windows |[Mac OSX Linux °

XP

. bmp Windows |X X X
Bitmap
. dds Microsoft | X X X

DirectDraw
Surface ¥°

.exif Exif X
.gif Graphics | X X X

Interchange
Format

.1 P9 .jpeg JPEG/IFF |X X X
Image

. p2 .jpx JPEG 2000 X

. pcx PC X
Paintbrush
Bitmap
Graphic

. png Portable X X X
Network
Graphic
. pnm PBM X
Portable
Any Map
Graphic
Bitmap

61

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

Images

Extension Description |Windows [Mac OSX Linux ®
XP
.ras Sun raster X
graphic
.tga Truevision X
Targa
Graphic
tif Lt ff Tagged X X X
Image File
Format
. Xxbm X11 bitmap X X
. Xpm X1licon X X

Requires GTK 2.0 or later.
10Only S3TC compressed surfaces are supported. Depth, volume and cube textures are not supported.

The only supported save format is PNG, unless PIL isinstalled, in which case any format it supports
can be written.

Working with images

The pyglet.image.load function returns an Abstractimage. The actual class of the object depends on
the decoder that was used, but all images support the following attributes:

wi dt h The width of theimage, in pixels.

hei ght The height of the image, in pixels.

anchor _x Distance of the anchor point from the left edge of the image, in pixels
anchor _y Distance of the anchor point from the bottom edge of the image, in pixels

The anchor point defaultsto (0, 0), though some image formats may contain an intrinsic anchor point.
The anchor point is used to align the image to a point in space when drawing it.

You may only want to use a portion of the complete image. You can use the get_region method to
return an image of a rectangular region of a source image:

i mage_part = kitten.get_regi on(x=10, y=10, wi dth=100, hei ght=100)
Thisreturns an image with dimensions 100x100. The region extracted from kitten is aligned such that
the bottom-left corner of the rectangle is 10 pixels from the left and 10 pixels from the bottom of
the image.

Image regions can be used as if they were complete images. Note that changes to an image region

may or may not be reflected on the source image, and changes to the source image may or may not be
reflected on any region images. Y ou should not assume either behaviour.

The Abstractimage hierarchy

The following sections deal with the various concrete image classes. All images subclass
Abstractlmage, which provides the basic interface described in previous sections.

62

Images

Abstractimage

T
| |

ImageData CompressedimageData Texture

T

ImageDataRegion

ImageGrid

T

TextureRegion

The Abstractl mage class hierarchy.

An image of any class can be converted into a Texture or ImageData using the get_texture and
get_image data methods defined on Abstractimage. For example, to load an image and work with

it as an OpenGL texture:
kitten = pyglet.imge.load('kitten.png').get _texture()

There isno penalty for accessing one of these methods if object is already of the requested class. The
following table shows how concrete classes are converted into other classes:

Original class .get _texture().get_inmage_data()

Texture No change gl Get Texl nage2D

TextureRegion No change gl Get Tex| mage2D,
crop resulting
image.

ImageData gl Texl rrageZDl No change

ImageDataRegion gl Texl matgeZDl No change

CompressedimageData gl Conpr essedTeNlAnﬁgeZD

Bufferimage gl CopyTexSubl ngigeadPi xel s

g mageData caches the texture for future use, so there is no performance penalty for repeatedly blitting
an ImageData.

2If the required texture compression extension is not present, the image is decompressed in memory and
then supplied to OpenGL viagl Tex| nage2D.

31t is not currently possible to retrieve ImageData for compressed texture images. This
feature may be implemented in a future release of pyglet. One workaround is to create
a texture from the compressed image, then read the image data from the texture; i.e,
conpressed_i mage. get _texture().get_i mage_data().

“Buffer| mageMask cannot be converted to Texture.

Y ou should try to avoid conversions which use gl Get Tex| mage2Dor gl ReadPi xel s, asthese
can impose asubstantial performance penalty by transferring datain the "wrong" direction of thevideo
bus, especially on older hardware.

Accessing or providing pixel data

The ImageData class represents an image as a string or sequence of pixel data, or as a ctypes pointer.
Details such as the pitch and component layout are also stored in the class. You can access an
ImageData object for any image with get_image data:

kitten = pyglet.imge.load('kitten.png').get _inage_data()

The design of ImageData is to allow applications to access the detail in the format they prefer, rather
than having to understand the many formats that each operating system and OpenGL make use of .

63

Images

The pitch and format properties determine how the bytes are arranged. pitch givesthe number of bytes
between each consecutive row. The data is assumed to run from left-to-right, bottom-to-top, unless
pitch is negative, in which case it runs from left-to-right, top-to-bottom. There is no need for rowsto
be tightly packed; larger pitch values are often used to align each row to machine word boundaries.

The format property gives the number and order of color components. It is a string of one or more of
the letters corresponding to the components in the following table:

Red
Green

Blue
Alpha
Luminance

> 0 O30

I Intensity

For example, aformat string of " RGBA" corresponds to four bytes of colour data, in the order red,
green, blue, alpha. Note that machine endianness has no impact on the interpretation of aformat string.

The length of aformat string always gives the number of bytes per pixel. So, the minimum absolute
pitch for agivenimageisl en(kitten. format) * kitten.w dth.

To retrieve pixel datain a particular format, use the get_data method, specifying the desired format
and pitch. The following example reads tightly packed rows in RGB format (the alpha component, if
any, will be discarded):

kitten = kitten.get _inmage_data()
data = kitten.get_data(' RGB', kitten.width * 3)

data always returns a string, however it can be set to a ctypes array, stdlib array, list of byte data,
string, or ctypes pointer. To set the image data use set_data, again specifying the format and pitch:

kitten.set _data(' R&B', kitten.width * 3, data)

Y ou can also create ImageData directly, by providing each of these attributes to the constructor. This
isany easy way to load textures into OpenGL from other programs or libraries.

Performance concerns

pyglet can use several methodsto transform pixel datafrom one format to another. It will alwaystry to
select the most efficient means. For example, when providing texture data to OpenGL, the following
possibilities are examined in order:

1. Can the data be provided directly using a built-in OpenGL pixel format such as G._RGB or
GL_RGBA?

2. Isthere an extension present that handles this pixel format?
3. Can the data be transformed with a single regular expression?

4. If none of the above are possible, the image will be split into separate scanlines and a regular
expression replacement done on each; then the lines will be joined together again.

The following table shows which image formats can be used directly with steps 1 and 2 above, as
long as the image rows are tightly packed (that is, the pitch is equal to the width times the number
of components).

Format Required extensions
'

Images

xel s

Format Required extensions

wpn

LA

"R

el

" g

A

" ARGB" GL_EXT_bgra and
GL_APPLE_packed_pi

" ABGR' G._EXT_abgr

"B&R' GL_EXT _bgra

" BGRA" GL_EXT bgra

If the image datais not in one of these formats, aregular expression will be constructed to pull it into
one. If therows are not tightly packed, or if the image is ordered from top-to-bottom, the rows will be
split before the regular expression is applied. Each of these may incur a performance penalty -- you

should avoid such formats for real-time texture updates if possible.

Image sequences and atlases

Sometimes a single image is used to hold several images. For example, a "sprite sheet" is an image

that contains each animation frame required for a character sprite animation.

pydlet provides convenience classes for extracting theindividual imagesfrom such acompositeimage
asif it were a simple Python sequence. Discrete images can aso be packed into one or more larger

textures with texture bins and atlases.

AbstractimageSequence

==

ImageGrid

TextureSequence

T

UniformTextureSequence

o

TextureGrid Texture3D

The Abstractl mageSequence class hierarchy.

Image grids

An "image grid" is a single image which is divided into several smaller images by drawing an
imaginary grid over it. The following image shows an image used for the explosion animation in the

Astraea example.

65

Images

An image consisting of eight animation frames arranged in a grid.

Thisimage has onerow and eight columns. Thisisall theinformation you need to create an ImageGrid
with:

expl osi on = pygl et.inmge. | oad(' expl osi on. png')
expl osi on_seq = pygl et.image. | nageGi d(expl osion, 1, 8)

The images within the grid can now be accessed asif they were their own images:

frame_1
frame_2

expl osi on_seq[0]
expl osi on_seq[1]

Images with more than one row can be accessed either as a single-dimensional sequence, or asa(row,
column) tuple; as shown in the following diagram.

23
8 9 10 11 T
(2,0 21 2,2 2,3) o
13
4 5 6 7 5
1,0 11 12 1,3
3 [3:16]
0 1 2 3 ©.9]1(03:(34)]
(0,0 0,1) ©,2 ©,3
2 3
5 6
((5) 1.2
0 1
1 2|
©,1) 0,2
[1:11]
[01):(23)]

An image grid with several rows and columns, and the slices that can be used to
accessit.

Image sequences can be sliced like any other sequence in Python. For example, the following obtains
the first four framesin the animation:

start_frames = expl osion_seq[: 4]

For efficient rendering, you should use a TextureGrid. This uses asingle texture for the grid, and each
individual image returned from a slice will be a TextureRegion:

expl osion_tex _seq = inmage. TextureGi d(expl osi on_seq)

Because TextureGrid is also a Texture, you can use it either asindividual images or as the whole grid
at once.

3D textures

TextureGrid is extremely efficient for drawing many sprites from a single texture. One problem you
may encounter, however, is bleeding between adjacent images.

When OpenGL renders a texture to the screen, by default it obtains each pixel colour by interpolating
nearby texels. Y ou can disable this behaviour by switching to the GL_ NEAREST interpolation mode,
however you then lose the benefits of smooth scaling, distortion, rotation and sub-pixel positioning.

66

Images

You can aleviate the problem by always leaving a 1-pixel clear border around each image frame.
This will not solve the problem if you are using mipmapping, however. At this stage you will need
a 3D texture.

You can create a 3D texture from any sequence of images, or from an ImageGrid. The images must
all be of the same dimension, however they need not be powers of two (pyglet takes care of this by
returning TextureRegion as with aregular Texture).

In the following example, the explosion texture from above is uploaded into a 3D texture:
expl osion_3d = pygl et.inmage. Texture3D. create_for_imge_gri d(expl osi on_seq)

You could also have stored each image as a separate file and used Texture3D.create for_images to
create the 3D texture.

Once created, a 3D texture behaves like any other ImageSequence; slices return TextureRegion for
an image plane within the texture. Unlike a TextureGrid, though, you cannot blit a Texture3D in its
entirety.

Texture bins and atlases

Image grids are useful when the artist has good tools to construct the larger images of the appropriate
format, and the contained images all have the same size. However it is often simpler to keep individual
images as separate files on disk, and only combine them into larger textures at runtime for efficiency.

A TextureAtlasisinitially an empty texture, but images of any size can be added to it at any time. The
atlas takes care of tracking the "free" areas within the texture, and of placing images at appropriate
locations within the texture to avoid overlap.

It's possible for a TextureAtlas to run out of space for new images, so applications will need to either
know the correct size of thetextureto allocateinitally, or maintain multiple atlases as each onefills up.

The TextureBin class provides a ssimple means to manage multiple atlases. The following example
loads a list of images, then inserts those images into a texture bin. The resulting list is a list of
TextureRegion images that map into the larger shared texture atlases:

i mges = [
pygl et.i mage. | oad(' i ngl. png'),
pygl et.i mage. | oad(' i ng2. png'),
...

]

bin = pygl et.image. atl as. Text ureBi n()
i mges = [bin.add(inmage) for inage in imges]

The pyglet.resource module (see Application resources) usestexture binsinternally to efficiently pack
images automatically.

Animations

While image sequences and atlases provide storage for related images, they alone are not enough to
describe a complete animation.

The Animation class manages a list of AnimationFrame objects, each of which references an image
and aduration, in seconds. The storage of theimagesis up to the application devel oper: they can each
be discrete, or packed into atexture atlas, or any other technique.

An animation can be loaded directly from a GIF 89a image file with load_animation (supported on
Linux, Mac OS X and Windows) or constructed manually from alist of images or an image sequence

67

Images

using the class methods (in which case the timing information will also need to be provided). The
add_to_texture_bin method provides a convenient way to pack the image frames into a texture bin
for efficient access.

Individual frames can be accessed by the application for use with any kind of rendering, or the entire
animation can be used directly with a Sprite (see next section).

The following example loads a GIF animation and packs the images in that animation into a texture
bin. A spriteis used to display the animation in the window:

ani mation = pyglet.inage.load_ani mati on(' ani mation.gif")
bin = pygl et.inmge. Text ureBin()

ani mati on. add_t o_t exture_bi n(bin)

sprite = pyglet.sprite. Sprite(animation)

wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_draw():
sprite.draw()

pygl et. app. run()

When animations are loaded with pyglet.resource (see Application resources) the frames are
automatically packed into atexture bin.

This example program islocated in examples/programming_guide/animation.py, along with asample
GIF animation file.

Buffer images

pyglet provides a basic representation of the framebuffer as components of the Abstractimage
hierarchy. At this stage this representation is based off OpenGL 1.1, and there is no support for
newer features such as framebuffer objects. Of course, this doesn't prevent you using framebuffer
objects in your programs -- pyglet.gl provides this functionality -- just that they are not represented
as Abstractl mage types.

Abstractimage

T

Bufferimage

ColorBufferimage DepthBufferimage BufferimageMask

The Bufferlmage hierarchy.
A framebuffer consists of
» One or more colour buffers, represented by ColorBufferlmage
» Anoptional depth buffer, represented by DepthBufferlmage

» An optional stencil buffer, with each bit represented by BufferlmageMask

68

Images

» Any number of auxilliary buffers, also represented by ColorBufferlmage

Y ou cannot create the buffer images directly; instead you must obtain instancesviathe Buffer Manager.
Use get_buffer_manager to get this singleton:

buf fers = image. get _buffer_manager ()

Only the back-left color buffer can be obtained (i.e., thefront buffer isinaccessible, and stereo contexts
are not supported by the buffer manager):

color _buffer = buffers.get_col or_buffer()

This buffer can be treated like any other image. For example, you could copy it to atexture, obtain its
pixel data, saveit to afile, and so on. Using the texture attribute is particularly useful, asit allowsyou
to perform multipass rendering effects without needing a render-to-texture extension.

The depth buffer can be obtained similarly:

depth_buffer = buffers.get _depth_buffer()

When a depth buffer is converted to atexture, the class used will be a DepthTexture, suitable for use
with shadow map techniques.

Theauxilliary buffersand stencil bitsare obtained by requesting one, which will then be marked as"in-
use". This permits multiple libraries and your application to work together without clashes in stencil
bits or auxilliary buffer names. For example, to obtain a free stencil bit:

mask = buffers. get_buffer_mask()

The buffer manager maintains a weak reference to the buffer mask, so that when you release all
referencesto it, it will be returned to the pool of available masks.

Similarly, afree auxilliary buffer is obtained:
aux_buffer = buffers.get_aux_buffer()

When using the stencil or auxilliary buffers, make sure you explicitly request these when creating the
window. See OpenGL configuration options for details.

Displaying images

Images should be drawn into a window in the window's on_draw event handler. Usually a "sprite"
should be created for each appearance of the image on-screen. Images can aso be drawn directly
without creating a sprite.

Sprites

A spriteisaninstance of animage displayed in thewindow. Multiple sprites can share the sameimage;
for example, hundreds of bullet sprites might share the same bullet image.

A spriteis constructed given an image or animation, and drawn with the Sprite.draw method:
sprite = pyglet.sprite.Sprite(inmge)

@ ndow. event

def on_draw():

wi ndow. cl ear ()
sprite.draw)

69

Images

Sprites have properties for setting the position, rotation, scale, opacity, color tint and visibility of the
displayed image. Sprites automatically handle displaying the most up-to-date frame of an animation.
The following example uses a scheduled function to gradually move the sprite across the screen:

def update(dt):
Move 10 pi xel s per second
sprite.x += dt * 10

Call update 60 tinmes a second
pygl et. cl ock. schedul e_i nterval (update, 1/60.)

If you need to draw many sprites, use a Batch to draw them all at once. Thisisfar more efficient than
calling draw on each of them in aloop:

batch = pygl et. graphi cs. Bat ch()

sprites = [pyglet.sprite.Sprite(inmge, batch=batch),
pygl et.sprite. Sprite(imge, batch=batch),
...]

@ ndow. event

def on_draw):
wi ndow. cl ear ()
bat ch. draw()

When sprites are collected into a batch, no guarantee is made about the order in which they will be
drawn. If you need to ensure some sprites are drawn before others (for example, landscape tiles might
be drawn before character sprites, which might be drawn before some particle effect sprites), use two
or more OrderedGroup objects to specify the draw order:

bat ch = pygl et. graphi cs. Bat ch()
background = pygl et. graphi cs. Order edG oup(0)
foreground = pygl et. graphi cs. Order edG oup(1)

sprites = [pyglet.sprite. Sprite(imge, batch=batch, group=background),
pygl et.sprite. Sprite(imge, batch=batch, group=background),
pygl et.sprite. Sprite(imge, batch=batch, group=foreground),
pygl et.sprite. Sprite(imge, batch=batch, group=foreground),
#...]

@ ndow. event

def on_draw():
wi ndow. cl ear ()
bat ch. draw()

See the Graphics section for more details on batch and group rendering.

For best performance, try to collect all batch images into as few textures as possible; for example,
by loading images with pyglet.resource.image (see Application resources) or with Texture bins and
atlases).

Simple image blitting
A simple but less efficient way to draw an image directly into awindow is with the blit method:

@ ndow. event
def on_draw():
wi ndow. cl ear ()
i mge.blit(x, vy)

70

Images

The x and y coordinates locate where to draw the anchor point of the image. For example, to center
theimageat (x, y):

kitten.anchor _x = kitten.width // 2
ki tten. anchor y kitten.height // 2
kitten.blit(x, y)

Y ou can also specify an optional z component to the blit method. This has no effect unless you have
changed the default projection or enabled depth testing. In the following example, the second image
is drawn behind the first, even though it is drawn after it:

frompyglet.gl inport *
gl Enabl e(GL_DEPTH_TEST)

kitten.blit(x, y, O)
kitten.blit(x, y, -0.5)

The default pyglet projection has a depth range of (-1, 1) -- images drawn with a z value outside this
range will not be visible, regardless of whether depth testing is enabled or not.

Images with an apha channel can be blended with the existing framebuffer. To do this you need to
supply OpenGL with a blend equation. The following code fragment implements the most common
form of apha blending, however other techniques are also possible:

frompyglet.gl inport *
gl Enabl e(G._BLEND)
gl Bl endFunc(GL_SRC_ALPHA, G_L_ONE_M NUS_SRC_ALPHA)

Y ou would only need to call the code above once during your program, before you draw any images
(thisis not necessary when using only sprites).

OpenGL imaging

This section assumes you are familiar with texture mapping in OpenGL (for example, chapter 9 of the
OpenGL Programming Guide [http://opengl.org/documentation/red_book/]).

To create atexture from any Abstractimage, call get_texture:

kitten = inage.load('kitten.jpg')
texture = kitten.get _texture()

Textures are automatically created and used by ImageData when blitted. It is useful to use textures
directly when aiming for high performance or 3D applications.

The Texture class represents any texture object. The target attribute gives the texture target (for
example, G._ TEXTURE_2D) and id the texture name. For example, to bind atexture:

gl Bi ndTexture(texture.target, texture.id)

Texture dimensions

Implementations of OpenGL prior to 2.0 require textures to have dimensions that are powers of two
(i.e,1,2,4,8,16,...). Becauseof thisrestriction, pyglet will always create textures of these dimensions
(there are several non-conformant post-2.0 implementations). This could have unexpected results for
auser blitting atextureloaded from afile of non-standard dimensions. To remedy this, pyglet returnsa
TextureRegion of the larger texture corresponding to just the part of the texture covered by the origina
image.

A TextureRegion has an owner attribute that references the larger texture. The following session
demonstrates this:

71

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Images

>>> rgba = i nage. | oad('tests/inagel/rgba.png')

>>> rgba

<l mageDat a 235x257> # The image is 235x257

>>> rgba. get _texture()

<Text ur eRegi on 235x257> # The returned texture is a region

>>> rgba. get _texture().owner

<Texture 256x512> # The owni ng texture has power-2 di mensions
>>>

A TextureRegion defines a tex_coords attribute that gives the texture coordinates to use for a quad
mapping the whole image. tex_coords is a 4-tuple of 3-tuple of floats; i.e., each texture coordinate is
given in 3 dimensions. The following code can be used to render a quad for a texture region:

texture = kitten.get_texture()

t = texture.tex _coords

w, h = texture.wi dth, texture.height
array = (G.float * 32)(

t[ojfo}, t[ojr1y, t[ojrz, 1.,
X, 2 z, 1.,
t[1][(o], t[1Jr1], tf1jrz, 1.,
X + W, Yy, Z, 1.,
t[2][o], t[2][1], t[2][2], 1.,
X + w, y + h, 4 1.,
t[3][(0], t[3][1], t[3][2], 1.,
X, y + h, 4 1.)

gl Pushd i ent Attri b(G._CLI ENT_VERTEX_ ARRAY_BI T)
gl I nterl eavedArrays(G._T4F _VAF, 0, array)

gl DrawAr rays(G._QUADS, 0, 4)

gl PopClientAttrib()

The Texture.blit method does this.

Use the Text ure. creat e method to create either a texture region from a larger power-2
sized texture, or a texture with the exact dimensions using the GL_t ext ure_r ect angl e_ ARB
extension.

Texture internal format

pyglet automatically selects an internal format for the texture based on the source image's format
attribute. The following table describes how it is selected.

Format Internal format

Any format with 3 components G._RGB

Any format with 2 components G__LUM NANCE_ALPHA
"A GL_ALPHA

"Lt GL_LUM NANCE

e GL_I NTENSI TY

Any other format G._RGBA

Note that this table does not imply any mapping between format components and their OpenGL
counterparts. For example, an image with format " RG' will use G._LUM NANCE_ALPHA as its
internal format; the luminance channel will be averaged from the red and green components, and the
alpha channel will be empty (maximal).

Usethe Text ur e. cr eat e class method to create a texture with a specific internal format.

72

Images

Saving an image
Any image can be saved using the save method:
kitten.save(' kitten.png')
or, specifying afile-like object:

kitten_stream = open('kitten.png', 'wh')
kitten.save('kitten.png', file=kitten_stream

The following example shows how to grab a screenshot of your application window:
pygl et.i mage. get _buffer_manager().get_col or _buffer().save('screenshot. png')

Note that images can only be saved in the PNG format unless PIL isinstalled.

73

Sound and video

pyglet can play many audio and video formats. Audio isplayed back with either OpenAL, DirectSound
or ALSA, permitting hardware-accelerated mixing and surround-sound 3D positioning. Video is
played into OpenGL textures, and so can be easily be manipulated in real-time by applications and
incorporated into 3D environments.

Decoding of compressed audio and video is provided by AVbin [http://code.google.com/p/avbin], an
optional component availablefor Linux, Windowsand Mac OS X. AVbinisinstalled alongside pyglet
by default if the Windowsor Mac OS X installation isused. If pyglet wasinstalled from source, AVbin
can beinstalled separately.

If AVbinis not present, pyglet will fall back to reading uncompressed WAV files only. This may be
sufficient for many applications that require only a small number of short sounds, in which case those
applications need not distribute AVhin.

Audio drivers

pyglet can use OpenAL, DirectSound or ALSA to play back audio. Only one of these drivers can
be used in an application, and this must be selected before the pyglet.media module is loaded. The
available drivers depend on your operating system:

Windows Mac OS X Linux
OpenAL 1 OpenAL OpenAL
DirectSound

ALSA

HopenAL isnot installed by default on Windows, nor in many Linux distributions. It can be downloaded
separately from your audio device manufacturer or openal.org [http://www.openal .org/downl oads.html]

The audio driver can be set through the audi o key of the pyglet.options dictionary. For example:
pygl et.options['audio'] = ('openal', 'silent"')

Thistells pyglet to use the OpenAL driver if it isavailable, and to ignore al audio output if it is not.
Theaudi o option can be alist of any of these strings, giving the preference order for each driver:

String Audio driver
openal OpenAL

di rect sound DirectSound

al sa ALSA

sil ent No audio output

You must set the audi o option before importing pyglet.media. You can alternatively set it through
an environment variable; see Environment settings.

The following sections describe the requirements and limitations of each audio driver.

DirectSound

DirectSound is available only on Windows, and is installed by default on Windows XP and later.
pyglet usesonly DirectX 7 features. On Windows Vista DirectSound does not support hardware audio
mixing or surround sound.

74

http://code.google.com/p/avbin
http://code.google.com/p/avbin
http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

OpenAL

OpenAL isincluded with Mac OS X. Windows users can download a generic driver from openal.org
[http://www.openal .org/downloads.html], or from their sound device's manufacturer. Linux users can
use the reference implementation also provided by Creative. For example, Ubuntu users can apt -

get openal . ALUT isnot required. pyglet makes use of OpenAL 1.1 featuresif available, but will
also work with OpenAL 1.0.

Due to along-standing bug in the reference implementation of OpenAL, stereo audio is downmixed
to mono on Linux. This does not affect Windows or Mac OS X users.

ALSA isthe standard Linux audio implementation, and isinstalled by default with many distributions.
Dueto limitationsin ALSA all audio sources will play back at full volume and without any surround
sound positioning.

Linux Issues

Linux users have the option of choosing between OpenAL and AL SA for audio output. Unfortunately
both implementations have severe limitations or implementation bugs that are outside the scope of
pyglet's control.

If your application can manage without stereo playback, or needs control over individual audio
volumes, you should use the OpenAL driver (assuming your users have it installed).

If your application needs stereo playback, or does not require spatialised sound, consider using the
ALSA driver in preference to the OpenAL driver. Y ou can do thiswith:

pygl et.options['audio'] = ('alsa', 'openal', 'silent')

Supported media types

If AVbinisnot installed, only uncompressed RIFF/WAYV files encoded with linear PCM can be read.

With AVbin, many common and less-common formats are supported. Due to the large number of
combinations of audio and video codecs, options, and container formats, it is difficult to provide a
complete yet useful list. Some of the supported audio formats are:

« AU

« MP2

e MP3

* OGG/Vorbis

« WAV

« WMA

Some of the supported video formats are:
« AVI

» DivX

* H.263

75

http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

* H.264
* MPEG

* MPEG-2

OGG/Theora
* Xvid
« WMV

For a complete list, see the AVhin sources. Otherwise, it is probably simpler to simply try playing
back your target file with the medi a_pl ayer . py example.

New versions of AVbin asthey are rel eased may support additional formats, or fix errorsin the current
implementation. AVbin is completely future- and backward-compatible, so no change to pyglet is
needed to use a newer version of AVbin -- just install it in place of the old version.

Loading media

Audio and video files are loaded in the same way, using the pyglet.media.load function, providing
afilename:

source = pygl et. nmedi a. | oad(' expl osi on. wav')

If the mediafile is bundled with the application, consider using the resource modul e (see Application
resources).

The result of loading a mediafile is a Source object. This object provides useful information about
the type of media encoded in the file, and serves as an opague object used for playing back the file
(described in the next section).

Theload function will raise aMediaException if the format isunknown. IOError may also beraised if
the file could not be read from disk. Future versions of pyglet will also support reading from arbitrary
file-like objects, however avalid filename must currently be given.

The length of the mediafile is given by the duration property, which returns the media's length in
seconds.

Audio metadatais provided in the source'saudio_format attribute, whichisNonefor silent videos. This
metadatais not generally useful to applications. See the AudioFormat class documentation for details.

Video metadata is provided in the source's video_format attribute, which is None for audio files. It is
recommended that this attribute is checked before attempting play back avideo file -- if amovie file
has a readable audio track but unknown video format it will appear as an audio file.

You can use the video metadata, described in a VideoFormat object, to set up display of the video
before beginning playback. The attributes are as follows:

Attribute Description

wi dt h, hei ght Width and height of the
video image, in pixels.

sanpl e_aspect The aspect ratio of each
video pixel.

Y ou must take care to apply the sample aspect ratio to the video image size for display purposes. The
following code determines the display size for a given video format:

def get_video_size(wi dth, height, sanple_aspect):

76

Sound and video

i f sanpl e_aspect > 1.:

return width * sanpl e_aspect, hei ght
elif sanple_aspect < 1.:

return width, height / sanple_aspect
el se:

return width, height

Mediafiles are not normally read entirely from disk; instead, they are streamed into the decoder, and
then into the audio buffers and video memory only when needed. This reduces the startup time of
loading a file and reduces the memory requirements of the application.

However, there are times when it is desirable to completely decode an audio file in memory first.
For example, a sound that will be played many times (such as a bullet or explosion) should only be
decoded once. Y ou can instruct pyglet to completely decode an audio file into memory at load time:

expl osi on = pygl et. medi a. | oad(' expl osi on. wav', stream ng=Fal se)

The resulting source is an instance of SaticSource, which provides the same interface as a streaming
source. You can also construct a StaticSource directly from an already-loaded Source:

expl osi on = pygl et. medi a. St ati cSour ce(pygl et. medi a. | oad(' expl osi on. wav'))

Simple audio playback

Many applications, especially games, need to play sounds in their entirety without needing to keep
track of them. For example, a sound needsto be played when the player's space ship explodes, but this
sound never needs to have its volume adjusted, or be rewound, or interrupted.

pyglet provides a simple interface for this kind of use-case. Call the play method of any Source to
play it immediately and completely:

expl osi on = pygl et. medi a. | oad(' expl osi on. wav', strean ng=Fal se)
expl osi on. pl ay()

You can call play on any Source, not just SaticSource.

The return value of Source.play is a ManagedPlayer, which can either be discarded, or retained to
maintain control over the sound's playback.

Controlling playback

You can implement many functions common to a media player using the Player class. Use of this
classis also necessary for video playback. There are no parametersto its construction:

pl ayer = pygl et. nmedi a. Pl ayer ()

A player will play any source that is "queued” on it. Any number of sources can be queued on a
single player, but once queued, a source can never be degqueued (until it is removed automatically
once complete). The main use of this queuing mechanism isto facilitate "gapless' transitions between
playback of mediafiles.

A StreamingSour ce can only ever be queued on one player, and only once on that player. StaticSource
objects can be queued any number of times on any number of players. Recall that a StaticSource can
be created by passing st r eami ng=Fal se to the load method.

In the following example, two sounds are queued onto a player:

pl ayer. queue(sourcel)
pl ayer. queue(sour ce?2)

77

Sound and video

Playback begins with the player's play method is called:

pl ayer. pl ay()

Standard controls for controlling playback are provided by these methods:

M ethod Description

play Begin or resume playback
of the current source.

pause Pause playback of the
current source.

next Dequeue the current
source and move to the
next one immediately.

seek Seek to a specific time
within the current source.

Note that thereis no stop method. If you do not need to resume playback, simply pause playback and
discard the player and source objects. Using the next method does not guarantee gapless playback.

There are several properties that describe the player's current state:

Property Description

time The current playback
position within the current
source, in seconds. Thisis
read-only (but see the seek
method).

playing True if the player is
currently playing, False
if there are no sources
queued or the player is
paused. This is read-only
(but seethe pause and play
methods).

source A reference to the current
source being played. This
is read-only (but see the
gueue method).

volume Theaudio level, expressed
as a float from O (mute)
to 1 (normal volume). This
can be set at any time.

When a player reaches the end of the current source, by default it will move immediately to the next
gueued source. If there are no more sources, playback stops until another is queued. There are several
other possible behaviours, specified by setting the eos_action attribute on the player:

eos_action Description

EOS NEXT The default action:
playback continues at the
next source.

EOS PAUSE Playback pauses at the
end of the source, which

78

Sound and video

eos_action Description
remains the current source
for this player.

EOS LOOP Playback continues

immediately a the
beginning of the current

source.
EOS STOP Valid only for
ManagedPlayer, for

which it is default: the
player is discarded when
the current sourcefinishes.

Y ou can change aplayer's eos_action at any time, but be aware that unless sufficient timeis given for
the future data to be decoded and buffered there may be a stutter or gap in playback. If eos action is
set well in advance of the end of the source (say, several seconds), there will be no disruption.

Incorporating video

When a Player is playing back a source with video, use the get_texture method to obtain the video
frame image. This can be used to display the current video image syncronised with the audio track,
for example:

@ ndow. event
def on_draw():
pl ayer.get texture().blit(0, 0)

Thetextureisaninstance of pyglet.image.Texture, with aninternal format of either GL_ TEXTURE_2D
or GL_TEXTURE_RECTANGLE_ARB. While the texture will typically be created only once and
subsequentally updated each frame, you should make no such assumption in your application -- future
versions of pyglet may use multiple texture objects.

Positional audio

pyglet uses OpenAL for audio playback, which includes many features for positioning sound within
a 3D space. Thisis particularly effective with a surround-sound setup, but is aso applicable to stereo
systems.

A Player in pyglet has an associated position in 3D space -- that is, it is equivalent to an OpenAL
"source'. The properties for setting these parameters are described in more detail in the API
documentation; see for example Player.position and Player .pitch.

The OpenAL "listener" object is provided by the pyglet.media.listener singleton, an instance of
Listener. This provides similar properties such as Listener.position, Listener.forward_orientation and
Listener.up_orientation that describe the position of the user in 3D space.

Note that only mono sounds can be positioned. Stereo sounds will play back as normal, and only their
volume and pitch properties will affect the sound.

79

Application resources

Previous sections in this guide have described how to load images, media and text documents using
pyglet. Applications also usually have the need to load other datafiles: for example, level descriptions
in agame, internationalised strings, and so on.

Programmers are often tempted to load, for example, an image required by their application with:
i mage = pygl et.inmage. |l oad('l ogo.png')

This code assumes | ogo. png is in the current working directory. Unfortunately the working
directory is not necessarily the same as the directory containing the application script files.

» Applications started from the command line can start from an arbitrary working directory.

» Applications bundled into an egg, Mac OS X package or Windows executable may have their
resourcesinside aZIPfile.

» The application might need to change the working directory in order to work with the user's files.

A common workaround for thisisto construct a path relative to the script file instead of the working
directory:

i nport os

script_dir = os.path.dirname(__file_)
path = os.path.join(script_dir, 'logo.png)
i mge = pygl et.image. | oad(pat h)

This, besides being tedious to write, still does not work for resources within ZIP files, and can be
troublesome in projects that span multiple packages.

The pyglet.resource modul e solves this problem elegantly:
i mge = pygl et.resource.imge('|ogo.png')

The following sections describe exactly how the resources are located, and how the behaviour can
be customised.

Loading resources

Use the pyglet.resource module when files shipped with the application need to be loaded. For
example, instead of writing:

data_file = open('file.txt")
use:

pygl et.resource.file('file.txt")

data file

There are also convenience functions for loading media files for pyglet. The following table shows
the equivalent resource functions for the standard file functions.

File function Resour ce function | Type

open pyglet.resourcefile | File-like object

pyglet.image.load pygl et.resour ce.imageexture or
TextureRegion

pyglet.image.load pyglet.resour ce.textlifexture

80

Application resources

File function Resour ce function | Type
pyglet.image.load_animation pygl et.resour ce.ani matiionation
pyglet.media.load pyglet.resour ce.mediSource

pyalet.resour ce.text| Unfor mattedDocument
pyglet.text.loadmimetype =t ext / pl aijn

pyglet.resour ce.htm| For mattedDocument
pyglet.text.loadmimetype=t ext / ht m

pyglet.resour ce.attr{bigachattedD ocument
pyglet.text.loadmimetype =t ext / vnd. pygl et -at tri but ed

pyglet.font.add_file pyglet.resource.add| fanie

pyglet.resource.texture is for loading stand-alone textures, and would be required when using the
texture for a 3D model.

pyglet.resource.image is optimised for loading sprite-like images that can have their texture
coordinates adjusted. The resource module attempts to pack small images into larger textures for
efficient rendering (which iswhy the return type of this function can be TextureRegion).

Resource locations

Some resource files reference other files by name. For example, an HTML document can contain
<i mg src="i nage. png" / >eements. nthiscaseyour application needstolocatei mage. png
relative to the original HTML file.

Use pyglet.resource.location to get a Location object describing the location of an application
resource. Thislocation might be afile system directory or adirectory within aZIP file. The Location
object can directly open files by name, so your application does not need to distinguish between these
Cases.

In the following example, at hunbnai | s. t xt fileisassumed to contain alist of image filenames
(one per ling), which are then loaded assuming the image files are located in the same directory as
thet hurmbnai | s. t xt file:

thunmbnails_file = pyglet.resource.file('thunbnails.txt', "rt")
t hunbnai | s_| ocati on = pygl et.resource.location('thunbnails.txt")

for line in thunmbnails file:
filenane = line.strip()
imge _file = thunbnail s_| ocation.open(fil enane)
i mge = pyglet.imge.load(filenane, file=inage file)
Do something with “inmage ...

This code correctly ignores other images with the same filename that might appear elsewhere on the
resource path.

Specifying the resource path

By default, only the script home directory is searched (the directory containing the __ main__
module). Y ou can set pyglet.resource.path to alist of locationsto search in order. Thislist isindexed,
so after modifying it you will need to call pyglet.resource.reindex.

Each item in the path list is either a path relative to the script home, or the name of a Python module
preceded with an ampersand (@. For example, if you would like to package all your resourcesin a
r es directory:

pygl et.resource. path = ['res']

81

Application resources

pygl et. resource. rei ndex()

Items on the path are not searched recursively, so if your resource directory itself has subdirectories,
these need to be specified explicitly:

pygl et.resource.path = ['res', 'res/images', 'res/sounds', 'res/fonts']
pygl et.resource. rei ndex()

Specifying module names makes it easy to group code with its resources. The following example uses
the directory containing the hypothetical gui . ski ns. def aul t for resources:

pygl et.resource.path = [' @ui .skins.default', '."']
pygl et. resource. rei ndex()

Multiple loaders

A Loader encapsul ates a complete resource path and cache. Thisletsyour application cleanly separate
resource loading of different modules. Loaders are constructed for a given search path, and exposes
the same methods as the global pyglet.resource module functions.

For example, if amodule needsto load its own graphics but does not want to interfere with the rest of
the application's resource loading, it would create its own Loader with alocal search path:

| oader = pyglet.resource.Loader(['@ + __nane__])
i mmge = | oader.inage('l ogo.png')

Thisis particularly suitable for "plugin” modules.

Y ou can also use a Loader instance to load aset of resources relative to some user-specified document
directory. The following example creates aloader for a directory specified on the command line:

i mport sys
home = sys. argv[1]
| oader = pygl et.resource. Loader (scri pt_hone=[hone])

This is the only way that absolute directories and resources not bundled with an application should
be used with pyglet.resource.

Saving user preferences

Because Python applications can be distributed in several ways, including within ZIPfiles, it isusually
not feasible to save user preferences, high score lists, and so on within the application directory (or
worse, the working directory).

The pyglet.resource.get_settings path function returns a directory suitable for writing arbitrary user-
centric data. The directory used follows the operating system's convention:

* ~/ . Applicati onNanme/ on Linux
* $HOVE\ Appli cation Settings\Applicati onName onWindows
e ~/Library/ Application Support/Applicati onName on Mac OSX

The returned directory name is not guaranteed to exist -- it is the application's responsibility to create
it. The following example opens a high score list file for agame called " SuperGame" into the settings
directory:

i mport os

82

Application resources

dir = pyglet.resource. get_settings_path(' Super Gane')
if not os.path.exists(dir):
os. makedi rs(dir)
filenane = os.path.join(dir, 'highscores.txt')
file = open(filenane, 'w")

83

Debugging tools

pyglet includes a number of debug paths that can be enabled during or before application startup.
These were primarily developed to aid in debugging pyglet itself, however some of them may also
prove useful for understanding and debugging pyglet applications.

Each debug optionisakey inthe pyglet.optionsdictionary. Options can be set directly onthedictionary
before any other modules are imported:

i mport pygl et
pygl et. options['debug gl'] = Fal se

They can also be set with environment variables before pyglet is imported. The corresponding
environment variable for each optionisthe string PYGLET _ prefixed to the uppercase option key. For
example, the environment variable for debug_gl isPYGLET _DEBUG_GL.. Boolean options are set
or unset with 1 and O values.

A summary of the debug environment variables appearsin the table bel ow.

Option Environment Type
variable

debug font PYGLET _DEBUG_HaéI

debug_gl PYGLET_DEBUG_Ghool

debug gl _trace PYGLET_DEBUG_(hodl RACE

debug gl trace_args

PYGLET _DEBUG_

ool RACE_ARGS

debug _graphi cs_bat ch

PYGLET_DEBUG_

JRAPHI CS_BATCH

debug_lib PYGLET_DEBUG _Lbdsl
debug_nedi a PYGLET_DEBUG Matall A
debug trace PYGLET _DEBUG_TiBA&CE
debug trace_args PYGLET _DEBUG_ TIBACE ARGS
debug_trace_depth PYGLET_DEBUG_TIRACE_DEPTH
debug_wi n32 PYGLET_DEBUG_ViadB2
debug_x11 PYGLET_DEBUG_Xidol

graphi cs_vbo PYGLET _GRAPHI (d%0d/BO

The debug_nedi a and debug_f ont options are used to debug the pygl et . nedi a and
pygl et. f ont modules, respectively. Their behaviour is platform-dependent and useful only for
pyglet developers.

The remaining debug options are detailed below.

Debugging OpenGL

Thegr aphi cs_vbo option enablesthe use of vertex buffer objectsin pyglet.graphics (instead, only
vertex arrays). This is useful when debugging the gr aphi ¢s module as well as isolating code for
determining if avideo driver isfaulty.

The debug_gr aphi cs_bat ch option causes all Batch objects to dump their rendering tree to
standard output before drawing, after any change (so two drawings of the same tree will only dump
once). Thisis useful to debug applications making use of Group and Batch rendering.

Debugging tools

Error checking

The debug_gl option intercepts most OpenGL calls and calls gl Get Er r or afterwards (it only
doesthiswhere such acall would be legal). If an error isreported, an exception israised immediately.

This option is enabled by default unless the - Oflag (optimisation) is given to Python, or the script is
running from within a py2exe or py2app package.

Tracing

Thedebug gl trace option causes all OpenGL functions called to be dumped to standard out.
When combined with debug gl trace_args, the arguments given to each function are also
printed (they are abbreviated if necessary to avoid dumping large amounts of buffer data).

Tracing execution

Thedebug_t r ace option enables Python-wide function tracing. This causes every function call to
be printed to standard out. Due to the large number of function calls required just to initialise pyglet,
it is recommended to redirect standard output to afile when using this option.

Thedebug_t race_ar gs option additionally prints the arguments to each function call.

Whendebug_trace_dept h isgreater than 1 the caller(s) of each function (and their arguments, if
debug_trace_ar gs isset) arealso printed. Each caller isindented beneath the callee. The default
depth is 1, specifying that no callers are printed.

Platform-specific debugging

The debug_| i b option causes the path of each loaded library to be printed to standard out. This
is performed by the undocumented pygl et . | i b module, which on Linux and Mac OS X must
sometimes follow complex procedures to find the correct library. On Windows not all libraries are
loaded via this module, so they will not be printed (however, loading Windows DL Ls is sufficiently
simple that there islittle need for thisinformation).

Linux

X11 errors are caught by pyglet and suppressed, as there are plenty of X servers in the wild that
generate errors that can be safely ignored. Thedebug_x 11 option causes these errors to be dumped
to standard out, along with a traceback of the Python stack (this may or may not correspond to the
error, depending on whether or not it was reported asynchronously).

Windows

The debug_wi n32 option causes al library calls into user32.dl |, kernel 32.dll and
gdi 32. dl | to be intercepted. Before each library call Set Last Error (0) is cdled, and
afterwards Get Last Error () is called. Any errors discovered are written to a file named
debug wi n32. | og. Note that an error is only valid if the function called returned an error code,
but the interception function does not check this.

85

Appendix: Migrating to pyglet 1.1

pyglet 1.1 introduces new features for rendering high performance graphics and text, is more
convenient to use, and integrates better with the operating system. Some of the existing interfaces have
also been redesigned dlightly to conform with standard Python practice or to fix design flaws.

Compatibility and deprecation

pyglet 1.1 is backward compatible with pyglet 1.0. Any application that uses only public and
documented methods of pyglet 1.0 will continue to work unchanged in pyglet 1.1. If you encounter
an issue where thisis not the case, please consider it abug in pyglet and file an issue report.

Some methods have been marked deprecated in pyglet 1.1. These methods continue to work, but have
been superceded by newer methods that are either more efficient or have a better design. The AP
reference hasacompletelist of deprecated methods; the main changes are described in the next section.

 Continue to use deprecated methods if your application needs to work with pyglet 1.0 as well as
pyglet 1.1.

» New applications should not use deprecated methods.

Deprecated methods will continue to be supported in al minor revisions of pyglet 1.x. A pyglet 2.0
release will no longer support these methods.

Deprecated methods

New

The following minor changes have been made for design or efficiency reasons. Applications which
no longer need to support pyglet 1.0 should make the appropriate changes to ensure the deprecated
methods are not called.

Thedi spat ch_event s method on Player and the equivalent function on the pyglet.media module
should no longer be called. In pyglet 1.1, media objects schedule an update function on pyglet.clock
at an appropriate interval. New applications using media are required to call pyglet.clock.tick
periodically.

The Abstractimage properties t ext ure, i mage_dat a, and so on have been replaced with
equivalent methodsget _t ext ure, get i mage_dat a, etc.

The ImageData properties data, format and pitch, which together were used to extract pixel datafrom
an image, have been replaced with a single function get _dat a. The format and pitch properties
should now be used only to determine the current format and pitch of the image.

The get_current_context function has been replaced with a global variable, current context, for
efficiency.

features replacing standard practice

pyglet 1.1 introduces new features that make it easier to program with, so the standard practice as
followed in many of the pyglet example programs has changed.

Importing pyglet

In pyglet 1.0, it was necessary to explicitly import each submodule required by the application; for
example:

from pyglet inport font

86

Appendix: Migrating to pyglet 1.1

from pygl et inport inmage
from pygl et inport w ndow

pyglet now lazily loads submodules on demand, so an application can get away with importing just
pyglet. Thisis especialy handy for modules that are typically only used once in an application, and
freesup the namesf ont , i nage, wi ndowand so on for the application developer. For example:

wi ndow = pygl et.w ndow. Wndow()

Application event loop

Every application using pyglet 1.0 provides its own event loop, such as:

whil e not w ndow. has_exit:
dt = clock.tick()
updat e(dt)

wi ndow. di spat ch_event s()
wi ndow. cl ear ()

draw()
wi ndow. fli p()

Besides being somewhat repetitious to type, this type of event loop is difficult to extend with more
windows, and exausts all available system resources, even if the application is not doing anything.

The new pyglet.app module provides an application event loop that is less demanding of the CPU yet
more responsive to user events. A complete application that opens an empty window can be written
with:

wi ndow = pygl et.w ndow. W ndow()

@ ndow. event
def on_draw():
wi ndow. cl ear ()

pygl et . app. run()

Note the new on_draw event, which makes it easy to specify different drawing functions for each
window. The pyglet.app event loop takes care of dispatching events, ticking the clock, calling the draw
function and flipping the window buffer.

Update functions can be scheduled on the clock. To have an update function be called as often as
possible, use clock.schedule (this effectively degenerates into the older dispatch_events practice of
thrashing the CPU):

def update(dt):
pass
cl ock. schedul e(updat e)

Usually applications can update at a less frequent interval. For example, a game that is designed to
run at 60Hz can use clock.schedule_interval:

def update(dt):
pass
cl ock. schedul e_i nterval (update, 1/60.0)

This also removes the need for clock.set_fps limit.

Besides the advantages already listed, windows managed by the event loop will not block while being
resized or moved; and the menu bar on OS X can be interacted with without blocking the application.

87

Appendix: Migrating to pyglet 1.1

It is highly recommended that all applications use the event loop. The loop can be extended if
you need to add additional hooks or integrate with another package. Applications continuing to use
Window.dispatch_events gain no advantage, but suffer from poorer response, increased CPU usage
and artifacts during window resizing and moving.

See The application event loop for more details.

Loading resources

New

L ocating resources such asimages, sound and video files, datafilesand fontsisdifficult to do correctly
across al platforms, considering the effects of a changing working directory and various distribution
packages such as setuptools, py2exe and py2app.

The new pyglet.resource module implements the correct logic for all these cases, making it simple to
load resources that belong to a specific module or the application as awhole. A resource path can be
set that isindexed once, and can include filesystem directories, Python module paths and ZIP files.

For example, suppose your application ships with al ogo. png that needs to be loaded on startup.
In pyglet 1.0 you might have written:

i mport os.path
from pygl et inport inmage

script_dir = os.path.dirnane(__file_)
logo_filenane = os.path.join(script_dir, 'logo.png')
| ogo = i mage. | oad(l ogo_fil enane)

In pyglet 1.1, you can write:
| ogo = pygl et.resource.imge('l ogo.png')
And will actually work in more scenarios (such as within a setuptools egg file, py2exe and py2app).

The resource modul e efficiently packs multiple small images into larger textures, so thereisless need
for artiststo create sprite sheetsthemsel vesfor efficient rendering. Imagesand textures are al so cached
automatically.

See Application resources for more details.

graphics features

The pyglet.graphics moduleis alow-level abstraction of OpenGL vertex arrays and buffer objects. It
isintended for use by developers who are already very familiar with OpenGL and are after the best
performance possible. pyglet uses this module internally to implement its new sprite module and the
new text rendering module. The Graphics chapter describes this module in detail.

The pyglet.sprite module provide a fast, easy way to display 2D graphics on screen. Sprites can
be moved, rotated, scaled and made translucent. Using the batch features of the new graphics API,
multiple sprites can be drawn in one go very quickly. See Sorites for details.

The pyglet.image.load_animation function can load animated GIF images. These are returned as an
Animation, which exposes the individual image frames and timings. Animations can also be played
directly on a sprite in place of an image. The Animations chapter describes how to use them.

The pyglet.image.atlas module packs multiple images into larger textures for efficient rendering. The
pyglet.resource module uses this module for small images automatically, but you can use it directly
even if you're not making use of pyglet.resource. See Texture bins and atlases for details.

Imagesnow haveanchor _x andanchor _y attributes, which specify a point from which theimage
should be drawn. The sprite module a so uses the anchor point as the center of rotation.

88

Appendix: Migrating to pyglet 1.1

Textures have a get_transform method for retrieving a TextureRegion that refers to the same texture
datain video memory, but with optional horizontal or vertical flipping, or 90-degree rotation.

New text features

The pyglet.text module can render formatted text efficiently. A new class Label supercedes the old
pyglet.font. Text class (which is now actually implemented in terms of Label). The "Hello, World"
application can now be written:

wi ndow = pygl et.w ndow. W ndow()
| abel = pyglet.text.Label ('Hello, world",
font _nanme='Ti mes New Roman',
font _size=36,
x=wi ndow. wi dt h//2, y=wi ndow. hei ght//2,
hal i gn="'center', valign='center')

@n ndow. event

def on_draw):
wi ndow. cl ear ()
| abel . draw()

pygl et . app. run()
Y ou can aso display multiple fonts and styles within one label, with HTMLLabel:
| abel = pyglet.text.HTM.Label (' Hel | o</ b>, world!")

More advanced uses of the new text module permit applicationsto efficiently display large, scrolling,
formatted documents (for example, HTML files with embedded images), and to alow the user to
interactively edit text asin aWY SIWY G text editor.

Other new features

EventDispatcher now hasaremove_handlersmethod which providesfiner control over the event stack
than pop_handlers.

The @vent decorator has been fixed so that it no longer overrides existing event handlers on the
object, which fixes the common problem of handling the on_resize event. For example, the following
now works without any surprises (in pyglet 1.0 this would override the default handler, which sets up
a default, necessary viewport and projection):

@ ndow. event
def on_resize(w dth, height):
pass

A variant of clock.schedule interval, clock.schedule interval soft has been added. This is for
functionsthat need to be called periodically at agiven interval, but do not need to schedule the period
immediately. Soft interval scheduling is used by the pyglet.media module to distribute the work of
decoding video and audio data over time, rather than stalling the CPU periodically. Games could use
soft interval scheduling to spread the regular computational requirements of multiple agents out over
time.

Inpyglet 1.0, font.load attempted to match the font resolution (DPI) with the operating system'stypical
behaviour. For example, on Linux and Mac OS X the default DPI was typicaly set at 72, and on
Windows at 96. While this would be useful for writing a word processor, it adds a burden on the
application developer to ensure their fonts work at arbitrary resolutions. In pyglet 1.1 the default DPI
isset at 96 across all platforms. It can still be overridden explicitly by the application if desired.

89

Appendix: Migrating to pyglet 1.1

Video sourcesin pyglet.media can now be stepped through frame-by-frame: individual image frames
can be extracted without needing to play back the video in realtime.

For a complete list of new features and bug fixes, see the CHANGEL OG distributed with the source
distribution.

90

