
pyglet Programming Guide

pyglet Programming Guide

iii

Table of Contents
Welcome .. vi

Sections .. vi
Table of contents ... vi

Installation ... 1
Installing using setup.py ... 1
Installation from the runtime eggs .. 1

Writing a pyglet application .. 2
Hello, World .. 2
Image viewer ... 2
Handling mouse and keyboard events ... 3
Playing sounds and music .. 4
Where to next? ... 4

Creating an OpenGL context ... 6
Displays, screens, configs and contexts ... 6

Contexts and configs ... 6
Displays .. 7
Screens ... 7

OpenGL configuration options .. 8
The default configuration .. 10

Simple context configuration ... 10
Selecting the best configuration ... 11
Sharing objects between contexts ... 11

The OpenGL interface ... 13
Using OpenGL ... 13
Resizing the window ... 14
Error checking .. 14
Using extension functions ... 15
Using multiple windows ... 15
AGL, GLX and WGL .. 15

Graphics .. 17
Drawing primitives .. 17
Vertex attributes .. 18
Vertex lists ... 19

Updating vertex data .. 20
Data usage ... 21
Indexed vertex lists .. 21

Batched rendering ... 21
Setting the OpenGL state .. 22
Hierarchical state ... 22
Sorting vertex lists .. 23

Batches and groups in other modules .. 24
Windowing .. 25

Creating a window .. 25
Context configuration ... 25
Fullscreen windows ... 26

Size and position ... 26
Appearance .. 27

Window style ... 27
Caption .. 28
Icon .. 28

Visibility .. 28
Subclassing Window .. 29
Windows and OpenGL contexts ... 29

Double-buffering ... 29
Vertical retrace synchronisation ... 29

pyglet Programming Guide

iv

The application event loop .. 31
Customising the event loop ... 31

Event loop events .. 31
Overriding the default idle policy ... 31

Dispatching events manually ... 32
The pyglet event framework .. 33

Setting event handlers .. 33
Stacking event handlers .. 33
Creating your own event dispatcher .. 35

Implementing the Observer pattern ... 36
Documenting events .. 36

Working with the keyboard ... 38
Keyboard events ... 38

Defined key symbols ... 38
Modifiers ... 39
User-defined key symbols ... 40
Remembering key state .. 40

Text and motion events .. 40
Motion events ... 41

Keyboard exclusivity ... 42
Working with the mouse .. 43

Mouse events ... 43
Changing the mouse cursor ... 44
Mouse exclusivity ... 46

Keeping track of time .. 47
Calling functions periodically .. 47
Animation techniques ... 48
The frame rate .. 48

Displaying the frame rate .. 48
User-defined clocks ... 49

Displaying text ... 50
Simple text rendering ... 50
The document/layout model .. 50

Documents ... 51
Layouts ... 51

Formatted text .. 52
Character styles ... 52
Paragraph styles .. 53
Attributed text .. 53
HTML ... 55

Custom elements ... 55
User-editable text .. 55
Loading system fonts ... 56
Font sizes .. 57

Font resolution .. 57
Determining font size ... 57

Loading custom fonts ... 57
Supported font formats ... 58

OpenGL font considerations .. 58
Context affinity ... 59
Blend state ... 59

Images ... 60
Loading an image .. 60
Supported image formats .. 61
Working with images ... 62
The AbstractImage hierarchy ... 62
Accessing or providing pixel data .. 63

Performance concerns .. 64

pyglet Programming Guide

v

Image sequences and atlases ... 65
Image grids .. 65
3D textures .. 66
Texture bins and atlases ... 67

Animations ... 67
Buffer images ... 68
Displaying images ... 69

Sprites ... 69
Simple image blitting ... 70

OpenGL imaging .. 71
Texture dimensions .. 71
Texture internal format ... 72

Saving an image ... 73
Sound and video ... 74

Audio drivers ... 74
DirectSound ... 74
OpenAL ... 75
ALSA ... 75
Linux Issues ... 75

Supported media types ... 75
Loading media .. 76
Simple audio playback ... 77
Controlling playback .. 77
Incorporating video .. 79
Positional audio .. 79

Application resources ... 80
Loading resources ... 80

Resource locations ... 81
Specifying the resource path ... 81
Multiple loaders .. 82
Saving user preferences .. 82

Debugging tools .. 84
Debugging OpenGL ... 84

Error checking .. 85
Tracing .. 85

Tracing execution .. 85
Platform-specific debugging .. 85

Linux .. 85
Windows ... 85

Appendix: Migrating to pyglet 1.1 ... 86
Compatibility and deprecation ... 86
Deprecated methods ... 86
New features replacing standard practice ... 86

Importing pyglet ... 86
Application event loop ... 87
Loading resources ... 88

New graphics features .. 88
New text features .. 89
Other new features .. 89

vi

Welcome
The pyglet Programming Guide provides in-depth documentation for writing applications that use
pyglet. Many topics described here reference the pyglet API reference, provided separately.

If this is your first time reading about pyglet, we suggest you start at Writing a pyglet application.

Sections
• Installation

• Writing a pyglet application

• Creating an OpenGL context

• The OpenGL interface

• Graphics

• Windowing

• The application event loop

• The pyglet event framework

• Working with the keyboard

• Working with the mouse

• Keeping track of time

• Displaying text

• Images

• Sound and video

• Application resources

• Debugging tools

• Appendix: Migrating to pyglet 1.1

Table of contents
• Installation

• Installing using setup.py

• Installation from the runtime eggs

• Writing a pyglet application

• Hello, World

• Image viewer

• Handling mouse and keyboard events

• Playing sounds and music

• Where to next?

Welcome

vii

• Creating an OpenGL context

• Displays, screens, configs and contexts

• Contexts and configs

• Displays

• Screens

• OpenGL configuration options

• The default configuration

• Simple context configuration

• Selecting the best configuration

• Sharing objects between contexts

• The OpenGL interface

• Using OpenGL

• Resizing the window

• Error checking

• Using extension functions

• Using multiple windows

• AGL, GLX and WGL

• Graphics

• Drawing primitives

• Vertex attributes

• Vertex lists

• Updating vertex data

• Data usage

• Indexed vertex lists

• Batched rendering

• Setting the OpenGL state

• Hierarchical state

• Sorting vertex lists

• Batches and groups in other modules

• Windowing

• Creating a window

• Context configuration

Welcome

viii

• Fullscreen windows

• Size and position

• Appearance

• Window style

• Caption

• Icon

• Visibility

• Subclassing Window

• Windows and OpenGL contexts

• Double-buffering

• Vertical retrace synchronisation

• The application event loop

• Customising the event loop

• Event loop events

• Overriding the default idle policy

• Dispatching events manually

• The pyglet event framework

• Setting event handlers

• Stacking event handlers

• Creating your own event dispatcher

• Implementing the Observer pattern

• Documenting events

• Working with the keyboard

• Keyboard events

• Defined key symbols

• Modifiers

• User-defined key symbols

• Remembering key state

• Text and motion events

• Motion events

• Keyboard exclusivity

• Working with the mouse

Welcome

ix

• Mouse events

• Changing the mouse cursor

• Mouse exclusivity

• Keeping track of time

• Calling functions periodically

• Animation techniques

• The frame rate

• Displaying the frame rate

• User-defined clocks

• Displaying text

• Simple text rendering

• The document/layout model

• Documents

• Layouts

• Formatted text

• Character styles

• Paragraph styles

• Attributed text

• HTML

• Custom elements

• User-editable text

• Loading system fonts

• Font sizes

• Font resolution

• Determining font size

• Loading custom fonts

• Supported font formats

• OpenGL font considerations

• Context affinity

• Blend state

• Images

Welcome

x

• Loading an image

• Supported image formats

• Working with images

• The AbstractImage hierarchy

• Accessing or providing pixel data

• Performance concerns

• Image sequences and atlases

• Image grids

• 3D textures

• Texture bins and atlases

• Animations

• Buffer images

• Displaying images

• Sprites

• Simple image blitting

• OpenGL imaging

• Texture dimensions

• Texture internal format

• Saving an image

• Sound and video

• Audio drivers

• DirectSound

• OpenAL

• ALSA

• Linux Issues

• Supported media types

• Loading media

• Simple audio playback

• Controlling playback

• Incorporating video

• Positional audio

Welcome

xi

• Application resources

• Loading resources

• Resource locations

• Specifying the resource path

• Multiple loaders

• Saving user preferences

• Debugging tools

• Debugging OpenGL

• Error checking

• Tracing

• Tracing execution

• Platform-specific debugging

• Linux

• Windows

• Appendix: Migrating to pyglet 1.1

• Compatibility and deprecation

• Deprecated methods

• New features replacing standard practice

• Importing pyglet

• Application event loop

• Loading resources

• New graphics features

• New text features

• Other new features

1

Installation
pyglet does not need to be installed. Because it uses no external libraries or compiled binaries, you can
run it in-place. You can distribute the pyglet source code or runtime eggs alongside your application
code (see Distribution).

You might want to experiment with pyglet and run the example programs before you install it on
your development machine. To do this, add either the extracted pyglet source archive directory or the
compressed runtime egg to your PYTHONPATH.

On Windows you can specify this from a command line:

set PYTHONPATH c:\path\to\pyglet-1.1\;%PYTHONPATH%

On Mac OS X, Linux or on Windows under cygwin using bash:

set PYTHONPATH /path/to/pyglet-1.1/:$PYTHONPATH
export PYTHONPATH

or, using tcsh or a variant:

setenv PYTHONPATH /path/to/pyglet-1.1/:$PYTHONPATH

If you have downloaded a runtime egg instead of the source archive, you would specify the filename
of the egg in place of pyglet-1.1/.

Installing using setup.py
To make pyglet available to all users, or to avoid having to set the PYTHONPATH for each session,
you can install it into your Python's site-packages directory.

From a command prompt on Windows, change into the extracted pyglet source archive directory and
type:

python setup.py install

On Mac OS X and Linux you will need to do the above as a priveleged user; for example using sudo:

sudo python setup.py install

Once installed you should be able to import pyglet from any terminal without setting the
PYTHONPATH.

Installation from the runtime eggs
If you have setuptools installed, you can install or upgrade to the latest version of pyglet using
easy_install:

easy_install -U pyglet

On Mac OS X and Linux you may need to run the above as a priveleged user; for example:

sudo easy_install -U pyglet

2

Writing a pyglet application
Getting started with a new library or framework can be daunting, especially when presented with a
large amount of reference material to read. This chapter gives a very quick introduction to pyglet
without covering any of the details.

Hello, World
We'll begin with the requisite "Hello, World" introduction. This program will open a window
with some text in it and wait to be closed. You can find the entire program in the examples/
programming_guide/hello_world.py file.

Begin by importing the pyglet package:

import pyglet

Create a Window by calling its default constructor. The window will be visible as soon as it's created,
and will have reasonable default values for all its parameters:

window = pyglet.window.Window()

To display the text, we'll create a Label. Keyword arguments are used to set the font, position and
anchorage of the label:

label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 anchor_x='center', anchor_y='center')

An on_draw event is dispatched to the window to give it a chance to redraw its contents. pyglet
provides several ways to attach event handlers to objects; a simple way is to use a decorator:

@window.event
def on_draw():
 window.clear()
 label.draw()

Within the on_draw handler the window is cleared to the default background color (black), and the
label is drawn.

Finally, call:

pyglet.app.run()

To let pyglet respond to application events such as the mouse and keyboard. Your event handlers will
now be called as required, and the run method will return only when all application windows have
been closed.

Note that earlier versions of pyglet required the application developer to write their own event-handling
runloop. This is still possible, but discouraged; see The application event loop for details.

Image viewer
Most games will need to load and display images on the screen. In this example we'll load an image
from the application's directory and display it within the window:

import pyglet

Writing a pyglet application

3

window = pyglet.window.Window()
image = pyglet.resource.image('kitten.jpg')

@window.event
def on_draw():
 window.clear()
 image.blit(0, 0)

pyglet.app.run()

We used the pyglet.resource.image function to load the image, which automatically locates the file
relative to the source file (rather than the working directory). To load an image not bundled with the
application (for example, specified on the command line, you would use pyglet.image.load).

The AbstractImage.blit method draws the image. The arguments (0, 0) tell pyglet to draw the image
at pixel coordinates 0, 0 in the window (the lower-left corner).

The complete code for this example is located in examples/programming_guide/image_viewer.py.

Handling mouse and keyboard events
So far the only event used is the on_draw event. To react to keyboard and mouse events, it's necessary
to write and attach event handlers for these events as well:

import pyglet

window = pyglet.window.Window()

@window.event
def on_key_press(symbol, modifiers):
 print 'A key was pressed'

@window.event
def on_draw():
 window.clear()

pyglet.app.run()

Keyboard events have two parameters: the virtual key symbol that was pressed, and a bitwise
combination of any modifiers that are present (for example, the CTRL and SHIFT keys).

The key symbols are defined in pyglet.window.key:

from pyglet.window import key

@window.event
def on_key_press(symbol, modifiers):
 if symbol == key.A:
 print 'The "A" key was pressed.'
 elif symbol == key.LEFT:
 print 'The left arrow key was pressed.'
 elif symbol == key.ENTER:
 print 'The enter key was pressed.'

See the pyglet.window.key documentation for a complete list of key symbols.

Mouse events are handled in a similar way:

from pyglet.window import mouse

Writing a pyglet application

4

@window.event
def on_mouse_press(x, y, button, modifiers):
 if button == mouse.LEFT:
 print 'The left mouse button was pressed.'

The x and y parameters give the position of the mouse when the button was pressed, relative to the
lower-left corner of the window.

There are more than 20 event types that you can handle on a window. The easiest way to find the event
name and parameters you need is to add the following line to your program:

window.push_handlers(pyglet.window.event.WindowEventLogger())

This will cause all events received on the window to be printed to the console.

An example program using keyboard and mouse events is in examples/programming_guide/events.py

Playing sounds and music
pyglet makes it easy to play and mix multiple sounds together in your game. The following example
plays an MP3 file 5:

import pyglet

music = pyglet.resource.media('music.mp3')
music.play()

pyglet.app.run()

As with the image loading example presented earlier, pyglet.resource.media locates the sound file in
the application's directory (not the working directory). If you know the actual filesystem path (either
relative or absolute), use pyglet.media.load.

Short sounds, such as a gunfire shot used in a game, should be decoded in memory before they are
used, so that they play more immediately and incur less of a CPU performance penalty. Specify
streaming=False in this case:

sound = pyglet.resource.media('shot.wav', streaming=False)
sound.play()

The examples/media_player.py example demonstrates playback of streaming audio and video using
pyglet. The examples/noisy/noisy.py example demonstrates playing many short audio samples
simultaneously, as in a game.

Where to next?
The examples presented in this chapter should have given you enough information to get started
writing simple arcade and point-and-click-based games.

The remainder of this programming guide goes into quite technical detail regarding some of pyglet's
features. While getting started, it's recommended that you skim the beginning of each chapter but not
attempt to read through the entire guide from start to finish.

To write 3D applications or achieve optimal performance in your 2D
applications you'll need to work with OpenGL directly. The canonical references

5MP3 and other compressed audio formats require AVbin to be installed (this is the default for the Windows and Mac OS X installers).
Uncompressed WAV files can be played without AVbin.

Writing a pyglet application

5

for OpenGL are The OpenGL Programming Guide [http://opengl.org/documentation/
books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version] and The
OpenGL Shading Language [http://opengl.org/documentation/books/
#the_opengl_shading_language_2nd_edition].

There are numerous examples of pyglet applications in the examples/ directory of the
documentation and source distributions. Keep checking http://www.pyglet.org/ for more examples
and tutorials as they are written.

http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_programming_guide_the_official_guide_to_learning_opengl_version
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://opengl.org/documentation/books/#the_opengl_shading_language_2nd_edition
http://www.pyglet.org/

6

Creating an OpenGL context
This section describes how to configure an OpenGL context. For most applications the information
described here is far too low-level to be of any concern, however more advanced applications can take
advantage of the complete control pyglet provides.

Displays, screens, configs and contexts

Display

Screen

Window

Complete Config
double_buffer = True
red_size = 8
green_size = 8
blue_size = 8
aux_buffers = 4

Template Config
double_buffer = True
red_size =
green_size =
blue_size =
aux_buffers =

Context

Platform

Flow of construction, from the singleton Platform to a newly created Window with
its Context.

Contexts and configs
When you draw on a window in pyglet, you are drawing to an OpenGL context. Every window has
its own context, which is created when the window is created. You can access the window's context
via its context attribute.

The context is created from an OpenGL configuration (or "config"), which describes various properties
of the context such as what color format to use, how many buffers are available, and so on. You can
access the config that was used to create a context via the context's config attribute.

For example, here we create a window using the default config and examine some of its properties:

>>> import pyglet
>>> window = pyglet.window.Window()
>>> context = window.context
>>> config = context.config
>>> config.double_buffer
c_int(1)
>>> config.stereo
c_int(0)
>>> config.sample_buffers
c_int(0)

Note that the values of the config's attributes are all ctypes instances. This is because the config was
not specified by pyglet. Rather, it has been selected by pyglet from a list of configs supported by the
system. You can make no guarantee that a given config is valid on a system unless it was provided
to you by the system.

pyglet simplifies the process of selecting one of the system's configs by allowing you to create
a "template" config which specifies only the values you are interested in. See Simple context
configuration for details.

Creating an OpenGL context

7

Displays
The system may actually support several different sets of configs, depending on which display device
is being used. For example, a computer with two video cards would have not support the same configs
on each card. Another example is using X11 remotely: the display device will support different
configurations than the local driver. Even a single video card on the local computer may support
different configs for the two monitors plugged in.

In pyglet, a "display" is a collection of "screens" attached to a single display device. On Linux, the
display device corresponds to the X11 display being used. On Windows and Mac OS X, there is only
one display (as these operating systems present multiple video cards as a single virtual device).

There is a singleton class Platform which provides access to the display(s); this represents the computer
on which your application is running. It is usually sufficient to use the default display:

>>> platform = pyglet.window.get_platform()
>>> display = platform.get_default_display()

On X11, you can specify the display string to use, for example to use a remotely connected display.
The display string is in the same format as used by the DISPLAY environment variable:

>>> display = platform.get_display('remote:1.0')

You use the same string to specify a separate X11 screen 6:

>>> display = platform.get_display(':0.1')

Screens
Once you have obtained a display, you can enumerate the screens that are connected. A screen is
the physical display medium connected to the display device; for example a computer monitor, TV
or projector. Most computers will have a single screen, however dual-head workstations and laptops
connected to a projector are common cases where more than one screen will be present.

In the following example the screens of a dual-head workstation are listed:

>>> for screen in display.get_screens():
... print screen
...
XlibScreen(screen=0, x=1280, y=0, width=1280, height=1024, xinerama=1)
XlibScreen(screen=0, x=0, y=0, width=1280, height=1024, xinerama=1)

Because this workstation is running Linux, the returned screens are XlibScreen, a subclass of
Screen. The screen and xinerama attributes are specific to Linux, but the x, y, width and
height attributes are present on all screens, and describe the screen's geometry, as shown below.

width = 1280 width = 1280

h
ei

g
h

t
=

 1
0

2
4

h
ei

g
h

t
=

 1
0

2
4

x = 0, y = 0 x = 1280, y = 0

12

6Assuming Xinerama is not being used to combine the screens. If Xinerama is enabled, use screen 0 in the display string, and select a screen
in the same manner as for Windows and Mac OS X.

Creating an OpenGL context

8

Example arrangement of screens and their reported geometry. Note that the primary
display (marked "1") is positioned on the right, according to this particular user's
preference.

There is always a "default" screen, which is the first screen returned by get_screens. Depending on
the operating system, the default screen is usually the one that contains the taskbar (on Windows) or
menu bar (on OS X). You can access this screen directly using get_default_screen.

OpenGL configuration options
When configuring or selecting a Config, you do so based on the properties of that config. pyglet
supports a fixed subset of the options provided by AGL, GLX, WGL and their extensions. In particular,
these constraints are placed on all OpenGL configs:

• Buffers are always component (RGB or RGBA) color, never palette indexed.

• The "level" of a buffer is always 0 (this parameter is largely unsupported by modern OpenGL drivers
anyway).

• There is no way to set the transparent color of a buffer (again, this GLX-specific option is not well
supported).

• There is no support for pbuffers (equivalent functionality can be achieved much more simply and
efficiently using framebuffer objects).

The visible portion of the buffer, sometimes called the color buffer, is configured with the following
attributes:

buffer_size Number of bits per sample. Common values
are 24 and 32, which each dedicate 8 bits
per color component. A buffer size of 16
is also possible, which usually corresponds
to 5, 6, and 5 bits of red, green and blue,
respectively.

Usually there is no need to set this property,
as the device driver will select a buffer size
compatible with the current display mode by
default.

red_size, blue_size,
green_size, alpha_size

These each give the number of bits dedicated
to their respective color component. You
should avoid setting any of the red, green
or blue sizes, as these are determined by
the driver based on the buffer_size
property.

If you require an alpha channel in your color
buffer (for example, if you are compositing
in multiple passes) you should specify
alpha_size=8 to ensure that this channel
is created.

sample_buffers and
samples

Configures the buffer for multisampling, in
which more than one color sample is used to
determine the color of each pixel, leading to
a higher quality, antialiased image.

Enable multisampling by setting
sample_buffers=1, then give the

Creating an OpenGL context

9

number of samples per pixel to use
in samples. For example, samples=2
is the fastest, lowest-quality multisample
configuration. A higher-quality buffer (with
a compromise in performance) is possible
with samples=4.

Not all video hardware supports
multisampling; you may need to make this
a user-selectable option, or be prepared to
automatically downgrade the configuration
if the requested one is not available.

stereo Creates separate left and right buffers, for
use with stereo hardware. Only specialised
video hardware such as stereoscopic glasses
will support this option. When used, you will
need to manually render to each buffer, for
example using glDrawBuffers.

double_buffer Create separate front and back
buffers. Without double-buffering, drawing
commands are immediately visible on the
screen, and the user will notice a visible
flicker as the image is redrawn in front of
them.

It is recommended to set
double_buffer=True, which creates a
separate hidden buffer to which drawing is
performed. When the Window.flip is called,
the buffers are swapped, making the new
drawing visible virtually instantaneously.

In addition to the color buffer, several other buffers can optionally be created based on the values of
these properties:

depth_size A depth buffer is usually required for 3D
rendering. The typical depth size is 24 bits.
Specify 0 if you do not require a depth
buffer.

stencil_size The stencil buffer is required for masking
the other buffers and implementing certain
volumetric shadowing algorithms. The
typical stencil size is 8 bits; or specify 0 if
you do not require it.

accum_red_size,
accum_blue_size,
accum_green_size,
accum_alpha_size

The accumulation buffer can be used for
simple antialiasing, depth-of-field, motion
blur and other compositing operations. Its
use nowadays is being superceded by the use
of floating-point textures, however it is still
a practical solution for implementing these
effects on older hardware.

If you require an accumulation buffer,
specify 8 for each of these attributes (the
alpha component is optional, of course).

Creating an OpenGL context

10

aux_buffers Each auxilliary buffer is configured the same
as the colour buffer. Up to four auxilliary
buffers can typically be created. Specify 0 if
you do not require any auxilliary buffers.

Like the accumulation buffer, auxilliary
buffers are used less often nowadays as more
efficient techniques such as render-to-texture
are available. They are almost universally
available on older hardware, though, where
the newer techniques are not possible.

The default configuration
If you create a Window without specifying the context or config, pyglet will use a template config
with the following properties:

Attribute Value

double_buffer True

depth_size 24

Simple context configuration
A context can only be created from a config that was provided by the system. Enumerating and
comparing the attributes of all the possible configs is a complicated process, so pyglet provides a
simpler interface based on "template" configs.

To get the config with the attributes you need, construct a Config and set only the attributes you are
interested in. You can then supply this config to the Window constructor to create the context.

For example, to create a window with an alpha channel:

config = pyglet.gl.Config(alpha_size=8)
window = pyglet.window.Window(config=config)

It is sometimes necessary to create the context yourself, rather than letting the Window constructor
do this for you. In this case use Screen.get_best_config to obtain a "complete" config, which you can
then use to create the context:

platform = pyglet.window.get_platform()
display = platform.get_default_display()
screen = display.get_default_screen()

template = pyglet.gl.Config(alpha_size=8)
config = screen.get_best_config(template)
context = config.create_context(None)
window = pyglet.window.Window(context=context)

Note that you cannot create a context directly from a template (any Config you constructed yourself).
The Window constructor performs a similar process to the above to create the context if a template
config is given.

Not all configs will be possible on all machines. The call to get_best_config will raise
NoSuchConfigException if the hardware does not support the requested attributes. It will never return
a config that does not meet or exceed the attributes you specify in the template.

You can use this to support newer hardware features where available, but also accept a lesser config
if necessary. For example, the following code creates a window with multisampling if possible,
otherwise leaves multisampling off:

Creating an OpenGL context

11

template = gl.Config(sample_buffers=1, samples=4)
try:
 config = screen.get_best_config(template)
except pyglet.window.NoSuchConfigException:
 template = gl.Config()
 config = screen.get_best_config(template)
window = pyglet.window.Window(config=config)

Selecting the best configuration
Allowing pyglet to select the best configuration based on a template is sufficient for most applications,
however some complex programs may want to specify their own algorithm for selecting a set of
OpenGL attributes.

You can enumerate a screen's configs using the get_matching_configs method. You must supply a
template as a minimum specification, but you can supply an "empty" template (one with no attributes
set) to get a list of all configurations supported by the screen.

In the following example, all configurations with either an auxilliary buffer or an accumulation buffer
are printed:

platform = pyglet.window.get_platform()
display = platform.get_default_display()
screen = display.get_default_screen()

for config in screen.get_matching_configs(gl.Config()):
 if config.aux_buffers or config.accum_red_size:
 print config

As well as supporting more complex configuration selection algorithms, enumeration allows you to
efficiently find the maximum value of an attribute (for example, the maximum samples per pixel), or
present a list of possible configurations to the user.

Sharing objects between contexts
Every window in pyglet has its own OpenGL context. Each context has its own OpenGL state,
including the matrix stacks and current flags. However, contexts can optionally share their objects
with one or more other contexts. Shareable objects include:

• Textures

• Display lists

• Shader programs

• Vertex and pixel buffer objects

• Framebuffer objects

There are two reasons for sharing objects. The first is to allow objects to be stored on the video card
only once, even if used by more than one window. For example, you could have one window showing
the actual game, with other "debug" windows showing the various objects as they are manipulated. Or,
a set of widget textures required for a GUI could be shared between all the windows in an application.

The second reason is to avoid having to recreate the objects when a context needs to be recreated. For
example, if the user wishes to turn on multisampling, it is necessary to recreate the context. Rather
than destroy the old one and lose all the objects already created, you can

1. Create the new context, sharing object space with the old context, then

Creating an OpenGL context

12

2. Destroy the old context. The new context retains all the old objects.

pyglet defines an ObjectSpace: a representation of a collection of objects used by one or more contexts.
Each context has a single object space, accessible via its object_space attribute.

By default, all contexts share the same object space as long as at least one context using it is "alive". If
all the contexts sharing an object space are lost or destroyed, the object space will be destroyed also.
This is why it is necessary to follow the steps outlined above for retaining objects when a context is
recreated.

pyglet creates a hidden "shadow" context as soon as pyglet.gl is imported. By default, all windows
will share object space with this shadow context, so the above steps are generally not needed. The
shadow context also allows objects such as textures to be loaded before a window is created.

When you create a Context, you tell pyglet which other context it will obtain an object space from. By
default (when using the Window constructor to create the context) the most recently created context
will be used. You can specify another context, or specify no context (to create a new object space)
in the Context constructor.

It can be useful to keep track of which object space an object was created in. For example, when you
load a font, pyglet caches the textures used and reuses them; but only if the font is being loaded on the
same object space. The easiest way to do this is to set your own attributes on the ObjectSpace object.

In the following example, an attribute is set on the object space indicating that game objects have been
loaded. This way, if the context is recreated, you can check for this attribute to determine if you need
to load them again:

context = pyglet.gl.get_current_context()
object_space = context.object_space
object_space.my_game_objects_loaded = True

Avoid using attribute names on ObjectSpace that begin with "pyglet", they may conflict with an
internal module.

13

The OpenGL interface
pyglet provides an interface to OpenGL and GLU. The interface is used by all of pyglet's higher-level
API's, so that all rendering is done efficiently by the graphics card, rather than the operating system.
You can access this interface directly; using it is much like using OpenGL from C.

The interface is a "thin-wrapper" around libGL.so on Linux, opengl32.dll on Windows and
OpenGL.framework on OS X. The pyglet maintainers regenerate the interface from the latest
specifications, so it is always up-to-date with the latest version and almost all extensions.

The interface is provided by the pyglet.gl package. To use it you will need a good
knowledge of OpenGL, C and ctypes. You may prefer to use OpenGL without using ctypes, in
which case you should investigate PyOpenGL [http://pyopengl.sourceforge.net/]. PyOpenGL [http://
pyopengl.sourceforge.net/] provides similar functionality with a more "Pythonic" interface, and will
work with pyglet without any modification.

Using OpenGL
Documentation of OpenGL and GLU are provided at the OpenGL website [http://www.opengl.org]
and (more comprehensively) in the OpenGL Programming Guide [http://opengl.org/documentation/
red_book/].

Importing the package gives access to OpenGL, GLU, and all OpenGL registered extensions. This is
sufficient for all but the most advanced uses of OpenGL:

from pyglet.gl import *

All function names and constants are identical to the C counterparts. For example, the following
program draws a triangle on the screen:

from pyglet.gl import *

Direct OpenGL commands to this window.
window = pyglet.window.Window()

@window.event
def on_draw():
 glClear(GL_COLOR_BUFFER_BIT)
 glLoadIdentity()
 glBegin(GL_TRIANGLES)
 glVertex2f(0, 0)
 glVertex2f(window.width, 0)
 glVertex2f(window.width, window.height)
 glEnd()

pyglet.app.run()

Some OpenGL functions require an array of data. These arrays must be constructed as ctypes
arrays of the correct type. The following example draw the same triangle as above, but uses a vertex
array instead of the immediate-mode functions. Note the construction of the vertex array using a one-
dimensional ctypes array of GLfloat:

from pyglet.gl import *

window = pyglet.window.Window()

vertices = [

http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://pyopengl.sourceforge.net/
http://www.opengl.org
http://www.opengl.org
http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

The OpenGL interface

14

 0, 0,
 window.width, 0,
 window.width, window.height]
vertices_gl = (GLfloat * len(vertices))(*vertices)

glEnableClientState(GL_VERTEX_ARRAY)
glVertexPointer(2, GL_FLOAT, 0, vertices_gl)

@window.event
def on_draw():
 glClear(GL_COLOR_BUFFER_BIT)
 glLoadIdentity()
 glDrawArrays(GL_TRIANGLES, 0, len(vertices) // 2)

pyglet.app.run()

Similar array constructions can be used to create data for vertex buffer objects, texture data, polygon
stipple data and the map functions.

Resizing the window
pyglet sets up the viewport and an orthographic projection on each window automatically. It does this
in a default on_resize handler defined on Window:

@window.event
def on_resize(width, height):
 glViewport(0, 0, width, height)
 glMatrixMode(gl.GL_PROJECTION)
 glLoadIdentity()
 glOrtho(0, width, 0, height, -1, 1)
 glMatrixMode(gl.GL_MODELVIEW)

If you need to define your own projection (for example, to use a 3-dimensional perspective projection),
you should override this event with your own; for example:

@window.event
def on_resize(width, height):
 glViewport(0, 0, width, height)
 glMatrixMode(GL_PROJECTION)
 glLoadIdentity()
 gluPerspective(65, width / float(height), .1, 1000)
 glMatrixMode(GL_MODELVIEW)
 return pyglet.event.EVENT_HANDLED

Note that the on_resize handler is called for a window the first time it is displayed, as well as any
time it is later resized.

Error checking
By default, pyglet calls glGetError after every GL function call (except where such a check would
be invalid). If an error is reported, pyglet raises GLException with the result of gluErrorString
as the message.

This is very handy during development, as it catches common coding errors early on. However, it has
a significant impact on performance, and is disabled when python is run with the -O option.

You can also disable this error check by setting the following option before importing pyglet.gl
or pyglet.window:

The OpenGL interface

15

Disable error checking for increased performance
pyglet.options['debug_gl'] = False

from pyglet.gl import *

Setting the option after importing pyglet.gl will have no effect. Once disabled, there is no error-
checking overhead in each GL call.

Using extension functions
Before using an extension function, you should check that the extension is implemented by the
current driver. Typically this is done using glGetString(GL_EXTENSIONS), but pyglet has a
convenience module, pyglet.gl.gl_info that does this for you:

if pyglet.gl.gl_info.have_extension('GL_ARB_shadow'):
 # ... do shadow-related code.
else:
 # ... raise an exception, or use a fallback method

You can also easily check the version of OpenGL:

if pyglet.gl.gl_info.have_version(1,5):
 # We can assume all OpenGL 1.5 functions are implemented.

Remember to only call the gl_info functions after creating a window.

There is a corresponding glu_info module for checking the version and extensions of GLU.

nVidia often release hardware with extensions before having them registered officially. When you
import * from pyglet.gl you import only the registered extensions. You can import the
latest nVidia extensions with:

from pyglet.gl.glext_nv import *

Using multiple windows
pyglet allows you to create and display any number of windows simultaneously. Each will be created
with its own OpenGL context, however all contexts will share the same texture objects, display lists,
shader programs, and so on, by default 7. Each context has its own state and framebuffers.

There is always an active context (unless there are no windows). When using pyglet.app.run for the
application event loop, pyglet ensures that the correct window is the active context before dispatching
the on_draw or on_resize events.

In other cases, you can explicitly set the active context with Window.switch_to.

AGL, GLX and WGL
The OpenGL context itself is managed by an operating-system specific library: AGL on OS X, GLX
under X11 and WGL on Windows. pyglet handles these details when a window is created, but you
may need to use the functions directly (for example, to use pbuffers) or an extension function.

The modules are named pyglet.gl.agl, pyglet.gl.glx and pyglet.gl.wgl. You must
only import the correct module for the running operating system:

if sys.platform == 'linux2':

7Sometimes objects and lists cannot be shared between contexts; for example, when the contexts are provided by different video devices. This
will usually only occur if you explicitly select different screens driven by different devices.

The OpenGL interface

16

 from pyglet.gl.glx import *
 glxCreatePbuffer(...)
elif sys.platform == 'darwin':
 from pyglet.gl.agl import *
 aglCreatePbuffer(...)

There are convenience modules for querying the version and extensions of WGL and GLX named
pyglet.gl.wgl_info and pyglet.gl.glx_info, respectively. AGL does not have such a
module, just query the version of OS X instead.

If using GLX extensions, you can import pyglet.gl.glxext_arb for the registered extensions
or pyglet.gl.glxext_nv for the latest nVidia extensions.

Similarly, if using WGL extensions, import pyglet.gl.wglext_arb or
pyglet.gl.wglext_nv.

17

Graphics
At the lowest level, pyglet uses OpenGL to draw in windows. The OpenGL interface is exposed via
the pyglet.gl module (see The OpenGL interface).

However, using the OpenGL interface directly for drawing graphics is difficult and inefficient. The
pyglet.graphics module provides a simpler means for drawing graphics that uses vertex arrays and
vertex buffer objects internally to deliver better performance.

Drawing primitives
The pyglet.graphics module draws the OpenGL primitive objects by a mode denoted by the constants

• pyglet.gl.GL_POINTS

• pyglet.gl.GL_LINES

• pyglet.gl.GL_LINE_LOOP

• pyglet.gl.GL_LINE_STRIP

• pyglet.gl.GL_TRIANGLES

• pyglet.gl.GL_TRIANGLE_STRIP

• pyglet.gl.GL_TRIANGLE_FAN

• pyglet.gl.GL_QUADS

• pyglet.gl.GL_QUAD_STRIP

• pyglet.gl.GL_POLYGON

See the OpenGL Programming Guide [http://opengl.org/documentation/red_book/] for a description
of each of mode.

Each primitive is made up of one or more vertices. Each vertex is specified with either 2, 3 or 4
components (for 2D, 3D, or non-homogeneous coordinates). The data type of each component can
be either int or float.

Use pyglet.graphics.draw to draw a primitive. The following example draws two points at coordinates
(10, 15) and (30, 35):

pyglet.graphics.draw(2, pyglet.gl.GL_POINTS,
 ('v2i', (10, 15, 30, 35))
)

The first and second arguments to the function give the number of vertices to draw and the primitive
mode, respectively. The third argument is a "data item", and gives the actual vertex data.

Because vertex data can be supplied in several forms, a "format string" is required. In this case, the
format string is "v2i", meaning the vertex position data has two components (2D) and int type.

The following example has the same effect as the previous one, but uses floating point data and 3
components per vertex:

pyglet.graphics.draw(2, pyglet.gl.GL_POINTS,
 ('v3f', (10.0, 15.0, 0.0, 30.0, 35.0, 0.0))

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Graphics

18

)

Vertices can also be drawn out of order and more than once by using the pyglet.graphics.draw_indexed
function. This requires a list of integers giving the indices into the vertex data. The following example
draws the same two points as above, but indexes the vertices (sequentially):

pyglet.graphics.draw_indexed(2, pyglet.gl.GL_POINTS,
 [0, 1, 2, 3],
 ('v2i', (10, 15, 30, 35))
)

This second example is more typical; two adjacent triangles are drawn, and the shared vertices are
reused with indexing:

pyglet.graphics.draw_indexed(4, pyglet.gl.GL_TRIANGLES,
 [0, 1, 2, 0, 2, 3],
 ('v2i', (100, 100,
 150, 100,
 150, 150,
 100, 150))
)

Note that the first argument gives the number of vertices in the data, not the number of indices (which
is implicit on the length of the index list given in the third argument).

Vertex attributes
Besides the required vertex position, vertices can have several other numeric attributes. Each is
specified in the format string with a letter, the number of components and the data type.

Each of the attributes is described in the table below with the set of valid format strings written as a
regular expression (for example, "v[234][if]" means "v2f", "v3i", "v4f", etc. are all valid
formats).

Some attributes have a "recommended" format string, which is the most efficient form for the video
driver as it requires less conversion.

Attribute Formats Recommended

Vertex position "v[234]
[sifd]"

"v[234]f"

Color "c[34]
[bBsSiIfd]"

"c[34]B"

Edge flag "e1[bB]"

Fog coordinate "f[1234]
[bBsSiIfd]"

Normal "n3[bsifd]" "n3f"

Secondary color "s[34]
[bBsSiIfd]"

"s[34]B"

Texture coordinate "t[234]
[sifd]"

"t[234]f"

Generic attribute "[0-15]g(n)?
[1234]
[bBsSiIfd]"

The possible data types that can be specified in the format string are described below.

Graphics

19

Format Type Python type

"b" Signed byte int

"B" Unsigned byte int

"s" Signed short int

"S" Unsigned short int

"i" Signed int int

"I" Unsigned int int

"f" Single precision
float

float

"d" Double precision
float

float

The following attributes are normalised to the range [0, 1]. The value is used as-is if the data
type is floating-point. If the data type is byte, short or int, the value is divided by the maximum value
representable by that type. For example, unsigned bytes are divided by 255 to get the normalised value.

• Color

• Secondary color

• Generic attributes with the "n" format given.

Up to 16 generic attributes can be specified per vertex, and can be used by shader programs for any
purpose (they are ignored in the fixed-function pipeline). For the other attributes, consult the OpenGL
programming guide for details on their effects.

When using the pyglet.graphics.draw and related functions, attribute data is specified alongside the
vertex position data. The following example reproduces the two points from the previous page, except
that the first point is blue and the second green:

pyglet.graphics.draw(2, pyglet.gl.GL_POINTS,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))
)

It is an error to provide more than one set of data for any attribute, or to mismatch the size of the initial
data with the number of vertices specified in the first argument.

Vertex lists
There is a significant overhead in using pyglet.graphics.draw and pyglet.graphics.draw_indexed due
to pyglet interpreting and formatting the vertex data for the video device. Usually the data drawn in
each frame (of an animation) is identical or very similar to the previous frame, so this overhead is
unnecessarily repeated.

A VertexList is a list of vertices and their attributes, stored in an efficient manner that's suitable for
direct upload to the video card. On newer video cards (supporting OpenGL 1.5 or later) the data is
actually stored in video memory.

Create a VertexList for a set of attributes and initial data with pyglet.graphics.vertex_list. The following
example creates a vertex list with the two coloured points used in the previous page:

vertex_list = pyglet.graphics.vertex_list(2,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))

Graphics

20

)

To draw the vertex list, call its VertexList.draw method:

vertex_list.draw(pyglet.gl.GL_POINTS)

Note that the primitive mode is given to the draw method, not the vertex list constructor. Otherwise
the vertex_list method takes the same arguments as pyglet.graphics.draw, including any number of
vertex attributes.

Because vertex lists can reside in video memory, it is necessary to call the delete method to release
video resources if the vertex list isn't going to be used any more (there's no need to do this if you're
just exiting the process).

Updating vertex data
The data in a vertex list can be modified. Each vertex attribute (including the vertex position) appears
as an attribute on the VertexList object. The attribute names are given in the following table.

Vertex attribute Object attribute

Vertex position vertices

Color colors

Edge flag edge_flags

Fog coordinate fog_coords

Normal normals

Secondary color secondary_colors

Texture coordinate tex_coords

Generic attribute Inaccessible

In the following example, the vertex positions of the vertex list are updated by replacing the
vertices attribute:

vertex_list.vertices = [20, 25, 40, 45]

The attributes can also be selectively updated in-place:

vertex_list.vertices[:2] = [30, 35]

Similarly, the color attribute of the vertex can be updated:

vertex_list.colors[:3] = [255, 0, 0]

For large vertex lists, updating only the modified vertices can have a perfomance benefit, especially
on newer graphics cards.

Attempting to set the attribute list to a different size will cause an error (not necessarily immediately,
either). To resize the vertex list, call VertexList.resize with the new vertex count. Be sure to fill in any
newly uninitialised data after resizing the vertex list.

Since vertex lists are mutable, you may not necessarily want to initialise them with any particular data.
You can specify just the format string in place of the (format, data) tuple in the data arguments
vertex_list function. The following example creates a vertex list of 1024 vertices with positional, color,
texture coordinate and normal attributes:

vertex_list = pyglet.graphics.vertex_list(1024, 'v3f', 'c4B', 't2f', 'n3f')

Graphics

21

Data usage
By default, pyglet assumes vertex data will be updated less often than it is drawn, but more often
than just during initialisation. You can override this assumption for each attribute by affixing a usage
specification onto the end of the format string, detailed in the following table:

Usage Description

"/static" Data is never or
rarely modified after
initialisation

"/dynamic" Data is occasionally
modified (default)

"/stream" Data is updated every
frame

In the following example a vertex list is created in which the positional data is expected to change
every frame, but the color data is expected to remain relatively constant:

vertex_list = pyglet.graphics.vertex_list(1024, 'v3f/stream', 'c4B/static')

The usage specification affects how pyglet lays out vertex data in memory, whether or not it's stored on
the video card, and is used as a hint to OpenGL. Specifying a usage does not affect what operations are
possible with a vertex list (a static attribute can still be modified), and may only have performance
benefits on some hardware.

Indexed vertex lists
IndexedVertexList performs the same role as VertexList, but for indexed vertices. Use
pyglet.graphics.vertex_list_indexed to construct an indexed vertex list, and update the
IndexedVertexList.indices sequence to change the indices.

Batched rendering
For optimal OpenGL performance, you should render as many vertex lists as possible in a single draw
call. Internally, pyglet uses VertexDomain and IndexedVertexDomain to keep vertex lists that share
the same attribute formats in adjacent areas of memory. The entire domain of vertex lists can then be
drawn at once, without calling VertexList.draw on each individual list.

It is quite difficult and tedious to write an application that manages vertex domains itself, though.
In addition to maintaining a vertex domain for each set of attribute formats, domains must also be
separated by primitive mode and required OpenGL state.

The Batch class implements this functionality, grouping related vertex lists together and sorting by
OpenGL state automatically. A batch is created with no arguments:

batch = pyglet.graphics.Batch()

Vertex lists can now be created with the Batch.add and Batch.add_indexed methods instead of
pyglet.graphics.vertex_list and pyglet.graphics.vertex_list_indexed functions. Unlike the module
functions, these methods accept a mode parameter (the primitive mode) and a group parameter
(described below).

The two coloured points from previous pages can be added to a batch as a single vertex list with:

vertex_list = batch.add(2, pyglet.gl.GL_POINTS, None,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))

Graphics

22

)

The resulting vertex_list can be modified as described in the previous section. However, instead of
calling VertexList.draw to draw it, call Batch.draw to draw all vertex lists contained in the batch at
once:

batch.draw()

For batches containing many vertex lists this gives a significant performance improvement over
drawing individual vertex lists.

To remove a vertex list from a batch, call VertexList.delete.

Setting the OpenGL state
In order to achieve many effects in OpenGL one or more global state parameters must be set. For
example, to enable and bind a texture requires:

from pyglet.gl import *
glEnable(texture.target)
glBindTexture(texture.target, texture.id)

before drawing vertex lists, and then:

glDisable(texture.target)

afterwards to avoid interfering with later drawing commands.

With a Group these state changes can be encapsulated and associated with the vertex lists they affect.
Subclass Group and override the Group.set_state and Group.unset_state methods to perform the
required state changes:

class CustomGroup(pyglet.graphics.Group):
 def set_state(self):
 glEnable(texture.target)
 glBindTexture(texture.target, texture.id)

 def unset_state(self):
 glDisable(texture.target)

An instance of this group can now be attached to vertex lists in the batch:

custom_group = CustomGroup()
vertex_list = batch.add(2, pyglet.gl.GL_POINTS, custom_group,
 ('v2i', (10, 15, 30, 35)),
 ('c3B', (0, 0, 255, 0, 255, 0))
)

The Batch ensures that the appropriate set_state and unset_state methods are called before
and after the vertex lists that use them.

Hierarchical state
Groups have a parent attribute that allows them to be implicitly organised in a tree structure. If groups
B and C have parent A, then the order of set_state and unset_state calls for vertex lists in
a batch will be:

A.set_state()
Draw A vertices
B.set_state()

Graphics

23

Draw B vertices
B.unset_state()
C.set_state()
Draw C vertices
C.unset_state()
A.unset_state()

This is useful to group state changes into as few calls as possible. For example, if you have a number
of vertex lists that all need texturing enabled, but have different bound textures, you could enable and
disable texturing in the parent group and bind each texture in the child groups. The following example
demonstrates this:

class TextureEnableGroup(pyglet.graphics.Group):
 def set_state(self):
 glEnable(GL_TEXTURE_2D)

 def unset_state(self):
 glDisable(GL_TEXTURE_2D)

texture_enable_group = TextureEnableGroup()

class TextureBindGroup(pyglet.graphics.Group):
 def __init__(self, texture):
 super(TextureBindGroup, self).__init__(parent=texture_enable_group)
 assert texture.target = GL_TEXTURE_2D
 self.texture = texture

 def set_state(self):
 glBindTexture(GL_TEXTURE_2D, self.texture.id)

 # No unset_state method required.

 def __eq__(self, other):
 return (self.__class__ is other.__class__ and
 self.texture == other.__class__)

batch.add(4, GL_QUADS, TextureBindGroup(texture1), 'v2f', 't2f')
batch.add(4, GL_QUADS, TextureBindGroup(texture2), 'v2f', 't2f')
batch.add(4, GL_QUADS, TextureBindGroup(texture1), 'v2f', 't2f')

Note the use of an __eq__ method on the group to allow Batch to merge the two
TextureBindGroup identical instances.

Sorting vertex lists
VertexDomain does not attempt to keep vertex lists in any particular order. So, any vertex lists sharing
the same primitive mode, attribute formats and group will be drawn in an arbitrary order. However,
Batch will sort Group objects sharing the same parent by their __cmp__ method. This allows groups
to be ordered.

The OrderedGroup class is a convenience group that does not set any OpenGL state, but is
parameterised by an integer giving its draw order. In the following example a number of vertex lists
are grouped into a "background" group that is drawn before the vertex lists in the "foreground" group:

background = pyglet.graphics.OrderedGroup(0)
foreground = pyglet.graphics.OrderedGroup(1)

batch.add(4, GL_QUADS, foreground, 'v2f')
batch.add(4, GL_QUADS, background, 'v2f')

Graphics

24

batch.add(4, GL_QUADS, foreground, 'v2f')
batch.add(4, GL_QUADS, background, 'v2f', 'c4B')

By combining hierarchical groups with ordered groups it is possible to describe an entire scene within
a single Batch, which then renders it as efficiently as possible.

Batches and groups in other modules
The Sprite, Label and TextLayout classes all accept batch and group parameters in their
constructors. This allows you to add any of these higher-level pyglet drawables into arbitrary places
in your rendering code.

For example, multiple sprites can be grouped into a single batch and then drawn at once, instead of
calling Sprite.draw on each one individually:

batch = pyglet.graphics.Batch()
sprites = [pyglet.sprite.Sprite(image, batch=batch) for i in range(100)]

batch.draw()

The group parameter can be used to set the drawing order (and hence which objects overlap others)
within a single batch, as described on the previous page.

In general you should batch all drawing objects into as few batches as possible, and use groups to
manage the draw order and other OpenGL state changes for optimal performance. If you are creating
your own drawable classes, consider adding batch and group parameters in a similar way.

25

Windowing
A Window in pyglet corresponds to a top-level window provided by the operating system. Windows
can be floating (overlapped with other application windows) or fullscreen.

Creating a window
If the Window constructor is called with no arguments, defaults will be assumed for all parameters:

window = pyglet.window.Window()

The default parameters used are:

• The window will have a size of 640x480, and not be resizable.

• A default context will be created using template config described in OpenGL configuration options.

• The window caption will be the name of the executing Python script (i.e., sys.argv[0]).

Windows are visible as soon as they are created, unless you give the visible=False argument to
the constructor. The following example shows how to create and display a window in two steps:

window = pyglet.window.Window(visible=False)
... perform some additional initialisation
window.set_visible()

Context configuration
The context of a window cannot be changed once created. There are several ways to control the context
that is created:

• Supply an already-created Context using the context argument:

context = config.create_context(share)
window = pyglet.window.Window(context=context)

• Supply a complete Config obtained from a Screen using the config argument. The context will be
created from this config and will share object space with the most recently created existing context:

config = screen.get_best_config(template)
window = pyglet.window.Window(config=config)

• Supply a template Config using the config argument. The context will use the best config obtained
from the default screen of the default display:

config = gl.Config(double_buffer=True)
window = pyglet.window.Window(config=config)

• Specify a Screen using the screen argument. The context will use a config created from default
template configuration and this screen:

screen = display.get_screens()[screen_number]
window = pyglet.window.Window(screen=screen)

• Specify a Display using the display argument. The default screen on this display will be used to
obtain a context using the default template configuration:

display = platform.get_display(display_name)
window = pyglet.window.Window(display=display)

Windowing

26

If a template Config is given, a Screen or Display may also be specified; however any other
combination of parameters overconstrains the configuration and some parameters will be ignored.

Fullscreen windows
If the fullscreen=True argument is given to the window constructor, the window will draw to
an entire screen rather than a floating window. No window border or controls will be shown, so you
must ensure you provide some other means to exit the application.

By default, the default screen on the default display will be used, however you can optionally specify
another screen to use instead. For example, the following code creates a fullscreen window on the
secondary screen:

screens = display.get_screens()
window = pyglet.window.Window(fullscreen=True, screens[1])

There is no way to create a fullscreen window that spans more than one window (for example, if you
wanted to create an immersive 3D environment across multiple monitors). Instead, you should create
a separate fullscreen window for each screen and attach identical event handlers to all windows.

Windows can be toggled in and out of fullscreen mode with the set_fullscreen method. For example,
to return to windowed mode from fullscreen:

window.set_fullscreen(False)

The previous window size and location, if any, will attempt to be restored, however the operating
system does not always permit this, and the window may have relocated.

Size and position
This section applies only to windows that are not fullscreen. Fullscreen windows always have the
width and height of the screen they fill.

You can specify the size of a window as the first two arguments to the window constructor. In the
following example, a window is created with a width of 800 pixels and a height of 600 pixels:

window = pyglet.window.Window(800, 600)

The "size" of a window refers to the drawable space within it, excluding any additional borders or title
bar drawn by the operating system.

You can allow the user to resize your window by specifying resizable=True in the constructor.
If you do this, you may also want to handle the on_resize event:

window = pyglet.window.Window(resizable=True)

@window.event
def on_resize(width, height):
 print 'The window was resized to %dx%d' % (width, height)

You can specify a minimum and maximum size that the window can be resized to by the user with
the set_minimum_size and set_maximum_size methods:

window.set_minimum_size(320, 200)
window.set_maximum_size(1024, 768)

The window can also be resized programatically (even if the window is not user-resizable) with the
set_size method:

window.set_size(800, 600)

Windowing

27

The window will initially be positioned by the operating system. Typically, it will use its own
algorithm to locate the window in a place that does not block other application windows, or cascades
with them. You can manually adjust the position of the window using the get_position and set_position
methods:

x, y = window.get_location()
window.set_location(x + 20, y + 20)

Note that unlike the usual coordinate system in pyglet, the window location is relative to the top-left
corner of the desktop, as shown in the following diagram:

x

width
h

ei
g

h
t

y

The position and size of the window relative to the desktop.

Appearance

Window style
Non-fullscreen windows can be created in one of four styles: default, dialog, tool or borderless.
Examples of the appearances of each of these styles under Windows XP and Mac OS X 10.4 are
shown below.

Style Windows XP Mac OS X

WINDOW_STYLE_DEFAULT

WINDOW_STYLE_DIALOG

WINDOW_STYLE_TOOL

Non-resizable variants of these window styles may appear slightly different (for example, the
maximize button will either be disabled or absent).

Besides the change in appearance, the window styles affect how the window behaves. For example,
tool windows do not usually appear in the task bar and cannot receive keyboard focus. Dialog
windows cannot be minimized. Selecting the appropriate window style for your windows means your
application will behave correctly for the platform on which it is running, however that behaviour may
not be consistent across Windows, Linux and Mac OS X.

The appearance and behaviour of windows in Linux will vary greatly depending on the distribution,
window manager and user preferences.

Borderless windows (WINDOW_STYLE_BORDERLESS) are not decorated by the operating system
at all, and have no way to be resized or moved around the desktop. These are useful for implementing
splash screens or custom window borders.

Windowing

28

You can specify the style of the window in the Window constructor. Once created, the window style
cannot be altered:

window = pyglet.window.Window(style=window.Window.WINDOW_STYLE_DIALOG)

Caption
The window's caption appears in its title bar and task bar icon (on Windows and some Linux window
managers). You can set the caption during window creation or at any later time using the set_caption
method:

window = pyglet.window.Window(caption='Initial caption')
window.set_caption('A different caption')

Icon
The window icon appears in the title bar and task bar icon on Windows and Linux, and in the dock
icon on Mac OS X. Dialog and tool windows do not necessarily show their icon.

Windows, Mac OS X and the Linux window managers each have their own preferred icon sizes:

Windows XP • A 16x16 icon for the title bar and task bar.

• A 32x32 icon for the Alt+Tab switcher.

Mac OS X • Any number of icons of resolutions 16x16, 24x24, 32x32,
48x48, 72x72 and 128x128. The actual image displayed will
be interpolated to the correct size from those provided.

Linux • No constraints, however most window managers will use a
16x16 and a 32x32 icon in the same way as Windows XP.

The Window.set_icon method allows you to set any number of images as the icon. pyglet will select
the most appropriate ones to use and apply them to the window. If an alternate size is required but not
provided, pyglet will scale the image to the correct size using a simple interpolation algorithm.

The following example provides both a 16x16 and a 32x32 image as the window icon:

window = pyglet.window.Window()
icon1 = pyglet.image.load('16x16.png')
icon2 = pyglet.image.load('32x32.png')
window.set_icon(icon1, icon2)

You can use images in any format supported by pyglet, however it is recommended to use a format
that supports alpha transparency such as PNG. Windows .ico files are supported only on Windows, so
their use is discouraged. Mac OS X .icons files are not supported at all.

Note that the icon that you set at runtime need not have anything to do with the application icon, which
must be encoded specially in the application binary (see Self-contained executables).

Visibility
Windows have several states of visibility. Already shown is the visible property which shows or hides
the window.

Windows can be minimized, which is equivalent to hiding them except that they still appear on the
taskbar (or are minimised to the dock, on OS X). The user can minimize a window by clicking the
appropriate button in the title bar. You can also programmatically minimize a window using the
minimize method (there is also a corresponding maximize method).

Windowing

29

When a window is made visible the on_show event is triggered. When it is hidden the on_hide event
is triggered. On Windows and Linux these events will only occur when you manually change the
visibility of the window or when the window is minimized or restored. On Mac OS X the user can
also hide or show the window (affecting visibility) using the Command+H shortcut.

Subclassing Window
A useful pattern in pyglet is to subclass Window for each type of window you will display, or as your
main application class. There are several benefits:

• You can load font and other resources from the constructor, ensuring the OpenGL context has
already been created.

• You can add event handlers simply be defining them on the class. The on_resize event will be called
as soon as the window is created (this doesn't usually happen, as you must create the window before
you can attach event handlers).

• There is reduced need for global variables, as you can maintain application state on the window.

The following example shows the same "Hello World" application as presented in Writing a pyglet
application, using a subclass of Window:

class HelloWorldWindow(pyglet.window.Window):
 def __init__(self):
 super(HelloWorldWindow, self).__init__()

 self.label = pyglet.text.Label('Hello, world!')

 def on_draw(self):
 self.clear()
 self.label.draw()

if __name__ == '__main__':
 window = HelloWorldWindow()
 pyglet.app.run()

This example program is located in examples/programming_guide/window_subclass.py.

Windows and OpenGL contexts
Every window in pyglet has an associated OpenGL context. Specifying the configuration of this
context has already been covered in Creating a window. Drawing into the OpenGL context is the only
way to draw into the window's client area.

Double-buffering
If the window is double-buffered (i.e., the configuration specified double_buffer=True, the
default), OpenGL commands are applied to a hidden back buffer. This back buffer can be copied to the
window using the flip method. If you are using the standard pyglet.app.run or pyglet.app.EventLoop
event loop, this is taken care of automatically after each on_draw event.

If the window is not double-buffered, the flip operation is unnecessary, and you should remember only
to call glFlush to ensure buffered commands are executed.

Vertical retrace synchronisation
Double-buffering eliminates one cause of flickering: the user is unable to see the image as it painted,
only the final rendering. However, it does introduce another source of flicker known as "tearing".

Windowing

30

Tearing becomes apparent when displaying fast-moving objects in an animation. The buffer flip occurs
while the video display is still reading data from the framebuffer, causing the top half of the display
to show the previous frame while the bottom half shows the updated frame. If you are updating the
framebuffer particularly quickly you may notice three or more such "tears" in the display.

pyglet provides a way to avoid tearing by synchronising buffer flips to the video refresh rate. This
is enabled by default, but can be set or unset manually at any time with the vsync (vertical retrace
synchronisation) property. A window is created with vsync initially disabled in the following example:

window = pyglet.window.Window(vsync=False)

It is usually desirable to leave vsync enabled, as it results in flicker-free animation. There are some
use-cases where you may want to disable it, for example:

• Profiling an application. Measuring the time taken to perform an operation will be affected by the
time spent waiting for the video device to refresh, which can throw off results. You should disable
vsync if you are measuring the performance of your application.

• If you cannot afford for your application to block. If your application run loop needs to quickly poll
a hardware device, for example, you may want to avoid blocking with vsync.

Note that some older video cards do not support the required extensions to implement vsync; this will
appear as a warning on the console but is otherwise ignored.

31

The application event loop
In order to let pyglet process operating system events such as mouse and keyboard events, applications
need to enter an application event loop. The event loop continuously checks for new events, dispatches
those events, and updates the contents of all open windows.

pyglet provides an application event loop that is tuned for performance and low power usage on
Windows, Linux and Mac OS X. Most applications need only call:

pyglet.app.run()

to enter the event loop after creating their initial set of windows and attaching event handlers. The run
function does not return until all open windows have been closed, or until pyglet.app.exit()
is called.

The pyglet application event loop dispatches window events (such as for mouse and keyboard input)
as they occur and dispatches the on_draw event to each window after every iteration through the loop.

To have additional code run periodically or every iteration through the loop, schedule functions on
the clock (see Scheduling functions for future execution). pyglet ensures that the loop iterates only as
often as necessary to fulfil all scheduled functions and user input.

Customising the event loop
The pyglet event loop is encapsulated in the EventLoop class, which provides several hooks that can
be overridden for customising its behaviour. This is recommended only for advanced users -- typical
applications and games are unlikely to require this functionality.

To use the EventLoop class directly, instantiate it and call run:

pyglet.app.EventLoop().run()

Only one EventLoop can be running at a time; when the run method is called the module variable
pyglet.app.event_loop is set to the running instance. Other pyglet modules such as pyglet.window
depend on this.

Event loop events
You can listen for several events on the event loop instance. The most useful of these is
on_window_close, which is dispatched whenever a window is closed. The default handler for this event
exits the event loop if there are no more windows. The following example overrides this behaviour to
exit the application whenever any window is closed:

event_loop = pyglet.app.EventLoop()

@event_loop.event
def on_window_close(window):
 event_loop.exit()
 return pyglet.event.EVENT_HANDLED

event_loop.run()

Overriding the default idle policy
The EventLoop.idle method is called every iteration of the event loop. It is responsible for calling
scheduled clock functions, redrawing windows, and deciding how idle the application is. You can

The application event loop

32

override this method if you have specific requirements for tuning the performance of your application;
especially if it uses many windows.

The default implementation has the following algorithm:

1. Call clock.tick with poll=True to call any scheduled functions.

2. Dispatch the on_draw event and call flip on every open window.

3. Return the value of clock.get_sleep_time.

The return value of the method is the number of seconds until the event loop needs to iterate again
(unless there is an earlier user-input event); or None if the loop can wait for input indefinitely.

Note that this default policy causes every window to be redrawn during every user event -- if you
have more knowledge about which events have an effect on which windows you can improve on the
performance of this method.

Dispatching events manually
Earlier versions of pyglet and certain other windowing toolkits such as PyGame and SDL require
the application developer to write their own event loop. This "manual" event loop is usually just an
inconvenience compared to pyglet.app.run, but can be necessary in some situations when combining
pyglet with other toolkits.

A simple event loop usually has the following form:

while True:
 pyglet.clock.tick()

 for window in pyglet.app.windows:
 window.switch_to()
 window.dispatch_events()
 window.dispatch_event('on_draw')
 window.flip()

The dispatch_events method checks the window's operating system event queue for user input and
dispatches any events found. The method does not wait for input -- if ther are no events pending,
control is returned to the program immediately.

The call to pyglet.clock.tick() is required for ensuring scheduled functions are called, including the
internal data pump functions for playing sounds and video.

Developers are strongly discouraged from writing pyglet applications with event loops like this:

• The EventLoop class provides plenty of hooks for most toolkits to be integrated without needing
to resort to a manual event loop.

• Because EventLoop is tuned for specific operating systems, it is more responsive to user events,
and continues calling clock functions while windows are being resized, and (on Mac OS X) the
menu bar is being tracked.

• It is difficult to write a manual event loop that does not consume 100% CPU while still remaining
responsive to user input.

The capability for writing manual event loops remains for legacy support and extreme circumstances.

33

The pyglet event framework
The pyglet.window, pyglet.media, pyglet.app and pyglet.text modules make use of a consistent event
pattern, which provides several ways to attach event handlers to objects. You can also reuse this pattern
in your own classes easily.

Throughout this documentation, an "event dispatcher" is an object that has events it needs to notify
other objects about, and an "event handler" is some code that can be attached to a dispatcher.

Setting event handlers
An event handler is simply a function with a formal parameter list corresponding to the event type. For
example, the Window.on_resize event has the parameters (width, height), so an event handler
for this event could be:

def on_resize(width, height):
 pass

The Window class subclasses EventDispatcher, which enables it to have event handlers attached to it.
The simplest way to attach an event handler is to set the corresponding attribute on the object:

window = pyglet.window.Window()

def on_resize(width, height):
 pass
window.on_resize = on_resize

While this technique is straight-forward, it requires you to write the name of the event three times for
the one function, which can get tiresome. pyglet provides a shortcut using the event decorator:

window = window.Window()

@window.event
def on_resize(width, height):
 pass

This is not entirely equivalent to setting the event handler directly on the object. If the object already
had an event handler, using @event will add the handler to the object, rather than replacing it. The
next section describes this functionality in detail.

As shown in Subclassing Window, you can also attach event handlers by subclassing the event
dispatcher and adding the event handler as a method:

class MyWindow(pyglet.window.Window):
 def on_resize(self, width, height):
 pass

Stacking event handlers
It is often convenient to attach more than one event handler for an event. EventDispatcher allows you
to stack event handlers upon one another, rather than replacing them outright. The event will propogate
from the top of the stack to the bottom, but can be stopped by any handler along the way.

To push an event handler onto the stack, use the push_handlers method:

def on_key_press(symbol, modifiers):

The pyglet event framework

34

 if symbol == key.SPACE
 fire_laser()

window.push_handlers(on_key_press)

As a convenience, the @event decorator can be used as an alternative to push_handlers:

@window.event
def on_key_press(symbol, modifiers):
 if symbol == key.SPACE
 fire_laser()

One use for pushing handlers instead of setting them is to handle different parameterisations of events
in different functions. In the above example, if the spacebar is pressed, the laser will be fired. After
the event handler returns control is passed to the next handler on the stack, which on a Window is a
function that checks for the ESC key and sets the has_exit attribute if it is pressed. By pushing the
event handler instead of setting it, the application keeps the default behaviour while adding additional
functionality.

You can prevent the remaining event handlers in the stack from receiving the event by returning a
true value. The following event handler, when pushed onto the window, will prevent the escape key
from exiting the program:

def on_key_press(symbol, modifiers):
 if symbol == key.ESCAPE:
 return True

window.push_handlers(on_key_press)

You can push more than one event handler at a time, which is especially useful when coupled with
the pop_handlers function. In the following example, when the game starts some additional event
handlers are pushed onto the stack. When the game ends (perhaps returning to some menu screen) the
handlers are popped off in one go:

def start_game():
 def on_key_press(symbol, modifiers):
 print 'Key pressed in game'
 return True

 def on_mouse_press(x, y, button, modifiers):
 print 'Mouse button pressed in game'
 return True

 window.push_handlers(on_key_press, on_mouse_press)

def end_game():
 window.pop_handlers()

Note that you do not specify which handlers to pop off the stack -- the entire top "level" (consisting
of all handlers specified in a single call to push_handlers) is popped.

You can apply the same pattern in an object-oriented fashion by grouping related event handlers in a
single class. In the following example, a GameEventHandler class is defined. An instance of that
class can be pushed on and popped off of a window:

class GameEventHandler(object):
 def on_key_press(self, symbol, modifiers):
 print 'Key pressed in game'
 return True

The pyglet event framework

35

 def on_mouse_press(self, x, y, button, modifiers):
 print 'Mouse button pressed in game'
 return True

game_handlers = GameEventHandler()

def start_game()
 window.push_handlers(game_handlers)

def stop_game()
 window.pop_handlers()

Creating your own event dispatcher
pyglet provides only the Window and Player event dispatchers, but exposes a public interface for
creating and dispatching your own events.

The steps for creating an event dispatcher are:

1. Subclass EventDispatcher

2. Call the register_event_type class method on your subclass for each event your subclass will
recognise.

3. Call dispatch_event to create and dispatch an event as needed.

In the following example, a hypothetical GUI widget provides several events:

class ClankingWidget(pyglet.event.EventDispatcher):
 def clank(self):
 self.dispatch_event('on_clank')

 def click(self, clicks):
 self.dispatch_event('on_clicked', clicks)

 def on_clank(self):
 print 'Default clank handler.'

ClankingWidget.register_event_type('on_clank')
ClankingWidget.register_event_type('on_clicked')

Event handlers can then be attached as described in the preceding sections:

widget = ClankingWidget()

@widget.event
def on_clank():
 pass

@widget.event
def on_clicked(clicks):
 pass

def override_on_clicked(clicks):
 pass

widget.push_handlers(on_clicked=override_on_clicked)

The pyglet event framework

36

The EventDispatcher takes care of propogating the event to all attached handlers or ignoring it if there
are no handlers for that event.

There is zero instance overhead on objects that have no event handlers attached (the event stack is
created only when required). This makes EventDispatcher suitable for use even on light-weight objects
that may not always have handlers. For example, Player is an EventDispatcher even though potentially
hundreds of these objects may be created and destroyed each second, and most will not need an event
handler.

Implementing the Observer pattern
The Observer design pattern [Gamma,etal.,`DesignPatterns`Addison-Wesley1994], also known as
Publisher/Subscriber, is a simple way to decouple software components. It is used extensively in many
large software projects; for example, Java's AWT and Swing GUI toolkits and the Python logging
module; and is fundamental to any Model-View-Controller architecture.

EventDispatcher can be used to easily add observerable components to your application. The following
example recreates the ClockTimer example from Design Patterns (pages 300-301), though without
needing the bulky Attach, Detach and Notify methods:

The subject
class ClockTimer(pyglet.event.EventDispatcher):
 def tick(self):
 self.dispatch_events('on_update')
ClockTimer.register_event('on_update')

Abstract observer class
class Observer(object):
 def __init__(self, subject):
 subject.push_handlers(self)

Concrete observer
class DigitalClock(Observer):
 def on_update(self):
 pass

Concrete observer
class AnalogClock(Observer):
 def on_update(self):
 pass

timer = ClockTimer()
digital_clock = DigitalClock(timer)
analog_clock = AnalogClock(timer)

The two clock objects will be notified whenever the timer is "ticked", though neither the timer nor
the clocks needed prior knowledge of the other. During object construction any relationships between
subjects and observers can be created.

Documenting events
pyglet uses a modified version of Epydoc [http://epydoc.sourceforge.net/] to construct its API
documentation. One of these modifications is the inclusion of an "Events" summary for event
dispatchers. If you plan on releasing your code as a library for others to use, you may want to consider
using the same tool to document code.

The patched version of Epydoc is included in the pyglet repository under trunk/tools/epydoc
(it is not included in distributions). It has special notation for document event methods, and allows
conditional execution when introspecting source code.

Gamma,etal.,`DesignPatterns`Addison-Wesley1994
Gamma,etal.,`DesignPatterns`Addison-Wesley1994
http://epydoc.sourceforge.net/
http://epydoc.sourceforge.net/

The pyglet event framework

37

If the sys.is_epydoc attribute exists and is True, the module is currently being introspected for
documentation. pyglet places event documentation only within this conditional, to prevent extraneous
methods appearing on the class.

To document an event, create a method with the event's signature and add a blank event field to
the docstring:

import sys

class MyDispatcher(object):
 if getattr(sys, 'is_epydoc'):
 def on_update():
 '''The object was updated.

 :event:
 '''

Note that the event parameters should not include self. The function will appear in the "Events"
table and not as a method.

38

Working with the keyboard
pyglet has support for low-level keyboard input suitable for games as well as locale- and device-
independent Unicode text entry.

Keyboard input requires a window which has focus. The operating system usually decides which
application window has keyboard focus. Typically this window appears above all others and may
be decorated differently, though this is platform-specific (for example, Unix window managers
sometimes couple keyboard focus with the mouse pointer).

You can request keyboard focus for a window with the activate method, but you should not rely on
this -- it may simply provide a visual cue to the user indicating that the window requires user input,
without actually getting focus.

Windows created with the WINDOW_STYLE_BORDERLESS or WINDOW_STYLE_TOOL style
cannot receive keyboard focus.

It is not possible to use pyglet's keyboard or text events without a window; consider using Python
built-in functions such as raw_input instead.

Keyboard events
The Window.on_key_press and Window.on_key_release events are fired when any key on the
keyboard is pressed or released, respectively. These events are not affected by "key repeat" -- once a
key is pressed there are no more events for that key until it is released.

Both events are parameterised by the same arguments:

def on_key_press(symbol, modifiers):
 pass

def on_key_release(symbol, modifiers):
 pass

Defined key symbols
The symbol argument is an integer that represents a "virtual" key code. It does //not// correspond to
any particular numbering scheme; in particular the symbol is //not// an ASCII character code.

pyglet has key symbols that are hardware and platform independent for many types of keyboard. These
are defined in pyglet.window.key as constants. For example, the Latin-1 alphabet is simply the letter
itself:

key.A
key.B
key.C
...

The numeric keys have an underscore to make them valid identifiers:

key._1
key._2
key._3
...

Various control and directional keys are identified by name:

key.ENTER or key.RETURN
key.SPACE

Working with the keyboard

39

key.BACKSPACE
key.DELETE
key.MINUS
key.EQUAL
key.BACKSLASH

key.LEFT
key.RIGHT
key.UP
key.DOWN
key.HOME
key.END
key.PAGEUP
key.PAGEDOWN

key.F1
key.F2
...

Keys on the number pad have separate symbols:

key.NUM_1
key.NUM_2
...
key.NUM_EQUAL
key.NUM_DIVIDE
key.NUM_MULTIPLY
key.NUM_MINUS
key.NUM_PLUS
key.NUM_DECIMAL
key.NUM_ENTER

Some modifier keys have separate symbols for their left and right sides (however they cannot all be
distinguished on all platforms):

key.LCTRL
key.RCTRL
key.LSHIFT
key.RSHIFT
...

Key symbols are independent of any modifiers being held down. For example, lower-case and upper-
case letters both generate the A symbol. This is also true of the number keypad.

Modifiers
The modifiers that are held down when the event is generated are combined in a bitwise fashion and
provided in the modifiers parameter. The modifier constants defined in pyglet.window.key are:

MOD_SHIFT
MOD_CTRL
MOD_ALT Not available on Mac OS X
MOD_WINDOWS Available on Windows only
MOD_COMMAND Available on Mac OS X only
MOD_OPTION Available on Mac OS X only
MOD_CAPSLOCK
MOD_NUMLOCK
MOD_SCROLLLOCK
MOD_ACCEL Equivalent to MOD_CTRL, or MOD_COMMAND on Mac OS X.

Working with the keyboard

40

For example, to test if the shift key is held down:

if modifiers & MOD_SHIFT:
 pass

Unlike the corresponding key symbols, it is not possible to determine whether the left or right modifier
is held down (though you could emulate this behaviour by keeping track of the key states yourself).

User-defined key symbols
pyglet does not define key symbols for every keyboard ever made. For example, non-Latin languages
will have many keys not recognised by pyglet (however, their Unicode representation will still be valid,
see Text and motion events). Even English keyboards often have additional so-called "OEM" keys
added by the manufacturer, which might be labelled "Media", "Volume" or "Shopping", for example.

In these cases pyglet will create a key symbol at runtime based on the hardware scancode of the key.
This is guaranteed to be unique for that model of keyboard, but may not be consistent across other
keyboards with the same labelled key.

The best way to use these keys is to record what the user presses after a prompt, and then check for
that same key symbol. Many commercial games have similar functionality in allowing players to set
up their own key bindings.

Remembering key state
pyglet provides the convenience class KeyStateHandler for storing the current keyboard state. This
can be pushed onto the event handler stack of any window and subsequently queried as a dict:

from pyglet.window import key

window = pyglet.window.Window()
keys = key.KeyStateHandler()
window.push_handlers(keys)

Check if the spacebar is currently pressed:
if keys[key.SPACE]:
 pass

Text and motion events
pyglet decouples the keys that the user presses from the Unicode text that is input. There are several
benefits to this:

• The complex task of mapping modifiers and key symbols to Unicode characters is taken care of
automatically and correctly.

• Key repeat is applied to keys held down according to the user's operating system preferences.

• Dead keys and compose keys are automatically interpreted to produce diacritic marks or combining
characters.

• Keyboard input can be routed via an input palette, for example to input characters from Asian
languages.

• Text input can come from other user-defined sources, such as handwriting or voice recognition.

The actual source of input (i.e., which keys were pressed, or what input method was used) should
be considered outside of the scope of the application -- the operating system provides the necessary
services.

Working with the keyboard

41

When text is entered into a window, the on_text event is fired:

def on_text(text):
 pass

The only parameter provided is a Unicode string. For keyboard input this will usually be one character
long, however more complex input methods such as an input palette may provide an entire word or
phrase at once.

You should always use the on_text event when you need to determine a string from a sequence of
keystrokes. Conversely, you never use on_text when you require keys to be pressed (for example, to
control the movement of the player in a game).

Motion events
In addition to entering text, users press keys on the keyboard to navigate around text widgets according
to well-ingrained conventions. For example, pressing the left arrow key moves the cursor one character
to the left.

While you might be tempted to use the on_key_press event to capture these events, there are a couple
of problems:

• Key repeat events are not generated for on_key_press, yet users expect that holding down the left
arrow key will eventually move the character to the beginning of the line.

• Different operating systems have different conventions for the behaviour of keys. For example, on
Windows it is customary for the Home key to move the cursor to the beginning of the line, whereas
on Mac OS X the same key moves to the beginning of the document.

pyglet windows provide the on_text_motion event, which takes care of these problems by abstracting
away the key presses and providing your application only with the intended cursor motion:

def on_text_motion(motion):
 pass

motion is an integer which is a constant defined in pyglet.window.key. The following table shows the
defined text motions and their keyboard mapping on each operating system.

Constant Behaviour Windows/
Linux

Mac OS X

MOTION_UP Move the
cursor up

Up Up

MOTION_DOWN Move the
cursor down

Down Down

MOTION_LEFT Move the
cursor left

Left Left

MOTION_RIGHT Move the
cursor right

Right Right

MOTION_PREVIOUS_WORD Move the
cursor to the
previuos word

Ctrl + Left Option + Left

MOTION_NEXT_WORD Move the
cursor to the
next word

Ctrl + Right Option + Right

MOTION_BEGINNING_OF_LINEMove the
cursor to the

Home Command +
Left

Working with the keyboard

42

Constant Behaviour Windows/
Linux

Mac OS X

beginning of
the current line

MOTION_END_OF_LINE Move the
cursor to the
end of the
current line

End Command +
Right

MOTION_PREVIOUS_PAGE Move to the
previous page

Page Up Page Up

MOTION_NEXT_PAGE Move to the
next page

Page Down Page Down

MOTION_BEGINNING_OF_FILEMove to the
beginning of
the document

Ctrl + Home Home

MOTION_END_OF_FILE Move to the
end of the
document

Ctrl + End End

MOTION_BACKSPACE Delete the
previous
character

Backspace Backspace

MOTION_DELETE Delete the next
character, or
the current
character

Delete Delete

Keyboard exclusivity
Some keystrokes or key combinations normally bypass applications and are handled by the operating
system. Some examples are Alt+Tab (Command+Tab on Mac OS X) to switch applications and the
keys mapped to Expose on Mac OS X.

You can disable these hot keys and have them behave as ordinary keystrokes for your application.
This can be useful if you are developing a kiosk application which should not be closed, or a game in
which it is possible for a user to accidentally press one of these keys.

To enable this mode, call set_exclusive_keyboard for the window on which it should apply. On Mac
OS X the dock and menu bar will slide out of view while exclusive keyboard is activated.

The following restrictions apply on Windows:

• Most keys are not disabled: a user can still switch away from your application using Ctrl+Escape,
Alt+Escape, the Windows key or Ctrl+Alt+Delete. Only the Alt+Tab combination is disabled.

The following restrictions apply on Mac OS X:

• The power key is not disabled.

Use of this function is not recommended for general release applications or games as it violates user-
interface conventions.

43

Working with the mouse
All pyglet windows can recieve input from a 3 button mouse with a 2 dimensional scroll wheel. The
mouse pointer is typically drawn by the operating system, but you can override this and request either
a different cursor shape or provide your own image or animation.

Mouse events
All mouse events are dispatched by the window which receives the event from the operating system.
Typically this is the window over which the mouse cursor is, however mouse exclusivity and drag
operations mean this is not always the case.

The coordinate space for the mouse pointer's location is relative to the bottom-left corner of the
window, with increasing Y values approaching the top of the screen (note that this is "upside-down"
compared with many other windowing toolkits, but is consistent with the default OpenGL projection
in pyglet).

x

y

The coordinate space for the mouse pointer.

The most basic mouse event is on_mouse_motion which is dispatched every time the mouse moves:

def on_mouse_motion(x, y, dx, dy):
 pass

The x and y parameters give the coordinates of the mouse pointer, relative to the bottom-left corner
of the window.

The event is dispatched every time the operating system registers a mouse movement. This is not
necessarily once for every pixel moved -- the operating system typically samples the mouse at a fixed
frequency, and it is easy to move the mouse faster than this. Conversely, if your application is not
processing events fast enough you may find that several queued-up mouse events are dispatched in a
single Window.dispatch_events call. There is no need to concern yourself with either of these issues;
the latter rarely causes problems, and the former can not be avoided.

Many games are not concerned with the actual position of the mouse cursor, and only need to know
in which direction the mouse has moved. For example, the mouse in a first-person game typically
controls the direction the player looks, but the mouse pointer itself is not displayed.

The dx and dy parameters are for this purpose: they give the distance the mouse travelled along each
axis to get to its present position. This can be computed naively by storing the previous x and y
parameters after every mouse event, but besides being tiresome to code, it does not take into account
the effects of other obscuring windows. It is best to use the dx and dy parameters instead.

The following events are dispatched when a mouse button is pressed or released, or the mouse is
moved while any button is held down:

def on_mouse_press(x, y, button, modifiers):
 pass

Working with the mouse

44

def on_mouse_release(x, y, button, modifiers):
 pass

def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
 pass

The x, y, dx and dy parameters are as for the on_mouse_motion event. The press and release events
do not require dx and dy parameters as they would be zero in this case. The modifiers parameter is as
for the keyboard events, see Working with the keyboard.

The button parameter signifies which mouse button was pressed, and is one of the following constants:

pyglet.window.mouse.LEFT
pyglet.window.mouse.MIDDLE
pyglet.window.mouse.RIGHT

The buttons parameter in on_mouse_drag is a bitwise combination of all the mouse buttons currently
held down. For example, to test if the user is performing a drag gesture with the left button:

from pyglet.window import mouse

def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
 if buttons & mouse.LEFT:
 pass

When the user begins a drag operation (i.e., pressing and holding a mouse button and then moving the
mouse), the window in which they began the drag will continue to receive the on_mouse_drag event
as long as the button is held down. This is true even if the mouse leaves the window. You generally
do not need to handle this specially: it is a convention among all operating systems that dragging is a
gesture rather than a direct manipulation of the user interface widget.

There are events for when the mouse enters or leaves a window:

def on_mouse_enter(x, y):
 pass

def on_mouse_leave(x, y):
 pass

The coordinates for on_mouse_leave will lie outside of your window. These events are not dispatched
while a drag operation is taking place.

The mouse scroll wheel generates the on_mouse_scroll event:

def on_mouse_scroll(x, y, scroll_x, scroll_y):
 pass

The scroll_y parameter gives the number of "clicks" the wheel moved, with positive numbers
indicating the wheel was pushed forward. The scroll_x parameter is 0 for most mice, however some
new mice such as the Apple Mighty Mouse use a ball instead of a wheel; the scroll_x parameter gives
the horizontal movement in this case. The scale of these numbers is not known; it is typically set by
the user in their operating system preferences.

Changing the mouse cursor
The mouse cursor can be set to one of the operating system cursors, a custom image, or hidden
completely. The change to the cursor will be applicable only to the window you make the change to.
To hide the mouse cursor, call Window.set_mouse_visible:

window = pyglet.window.Window()

Working with the mouse

45

window.set_mouse_visible(False)

This can be useful if the mouse would obscure text that the user is typing. If you are hiding the
mouse cursor for use in a game environment, consider making the mouse exclusive instead; see Mouse
exclusivity, below.

Use Window.set_mouse_cursor to change the appearance of the mouse cursor. A mouse cursor
is an instance of MouseCursor. You can obtain the operating system-defined cursors with
Window.get_system_mouse_cursor:

cursor = window.get_system_mouse_cursor(win.CURSOR_HELP)
window.set_mouse_cursor(cursor)

The cursors that pyglet defines are listed below, along with their typical appearance on Windows and
Mac OS X. The pointer image on Linux is dependent on the window manager.

Constant Windows XP Mac OS X

CURSOR_DEFAULT

CURSOR_CROSSHAIR

CURSOR_HAND

CURSOR_HELP

CURSOR_NO

CURSOR_SIZE

CURSOR_SIZE_DOWN

CURSOR_SIZE_DOWN_LEFT

CURSOR_SIZE_DOWN_RIGHT

CURSOR_SIZE_LEFT

CURSOR_SIZE_LEFT_RIGHT

CURSOR_SIZE_RIGHT

CURSOR_SIZE_UP

CURSOR_SIZE_UP_DOWN

CURSOR_SIZE_UP_LEFT

CURSOR_SIZE_UP_RIGHT

CURSOR_TEXT

CURSOR_WAIT

CURSOR_WAIT_ARROW

Alternatively, you can use your own image as the mouse cursor. Use pyglet.image.load to load the
image, then create an ImageMouseCursor with the image and "hot-spot" of the cursor. The hot-spot
is the point of the image that corresponds to the actual pointer location on screen, for example, the
point of the arrow:

image = pyglet.image.load('cursor.png')
cursor = pyglet.window.ImageMouseCursor(image, 16, 8)
window.set_mouse_cursor(cursor)

You can even render a mouse cursor directly with OpenGL. You could draw a 3-dimensional cursor,
or a particle trail, for example. To do this, subclass MouseCursor and implement your own draw

Working with the mouse

46

method. The draw method will be called with the default pyglet window projection, even if you are
using another projection in the rest of your application.

Mouse exclusivity
It is possible to take complete control of the mouse for your own application, preventing it being used
to activate other applications. This is most useful for immersive games such as first-person shooters.

When you enable mouse-exclusive mode, the mouse cursor is no longer available. It is not merely
hidden -- no amount of mouse movement will make it leave your application. Because there is no
longer a mouse cursor, the x and y parameters of the mouse events are meaningless; you should use
only the dx and dy parameters to determine how the mouse was moved.

Activate mouse exclusive mode with set_exclusive_mouse:

window = pyglet.window.Window()
window.set_exclusive_mouse(True)

You should activate mouse exclusive mode even if your window is full-screen: it will prevent
the window "hitting" the edges of the screen, and behave correctly in multi-monitor setups (a
common problem with commercial full-screen games is that the mouse is only hidden, meaning it can
accidentally travel onto the other monitor where applications are still visible).

Note that on Linux setting exclusive mouse also disables Alt+Tab and other hotkeys for switching
applications. No workaround for this has yet been discovered.

47

Keeping track of time
pyglet's clock module provides functionality for scheduling functions for periodic or one-shot future
execution and for calculating and displaying the application frame rate.

Calling functions periodically
pyglet applications begin execution with:

pyglet.app.run()

Once called, this function doesn't return until the application windows have been closed. This may
leave you wondering how to execute code while the application is running.

Typical applications need to execute code in only three circumstances:

• A user input event (such as a mouse movement or key press) has been generated. In this case the
appropriate code can be attached as an event handler to the window.

• An animation or other time-dependent system needs to update the position or parameters of an
object. We'll call this a "periodic" event.

• A certain amount of time has passed, perhaps indicating that an operation has timed out, or that a
dialog can be automatically dismissed. We'll call this a "one-shot" event.

To have a function called periodically, for example, once every 0.1 seconds:

def update(dt):
 # ...
pyglet.clock.schedule_interval(update, 0.1)

The dt parameter gives the number of seconds (due to latency, load and timer inprecision, this might
be slightly more or less than the requested interval).

Scheduling functions with a set interval is ideal for animation, physics simulation, and game state
updates. pyglet ensures that the application does not consume more resources than necessary to execute
the scheduled functions in time.

Rather than "limiting the frame rate", as required in other toolkits, simply schedule all your update
functions for no less than the minimum period your application or game requires. For example, most
games need not run at more than 60Hz (60 times a second) for imperceptibly smooth animation, so
the interval given to schedule_interval would be 1/60.0 (or more).

If you are writing a benchmarking program or otherwise wish to simply run at the highest possible
frequency, use schedule:

def update(dt):
 # ...
pyglet.clock.schedule(update)

By default pyglet window buffer swaps are synchronised to the display refresh rate, so you may also
want to disable set_vsync.

For one-shot events, use schedule_once:

def dismiss_dialog(dt):
 # ...

Dismiss the dialog after 5 seconds.

Keeping track of time

48

pyglet.clock.schedule_once(dismiss_dialog, 5.0)

To stop a scheduled function from being called, including cancelling a periodic function, use
pyglet.clock.unschedule.

Animation techniques
Every scheduled function takes a dt parameter, giving the actual "wall clock" time that passed since
the previous invocation (or the time the function was scheduled, if it's the first period). This parameter
can be used for numerical integration.

For example, a non-accelerating particle with velocity v will travel some distance over a change in
time dt. This distance is calculated as v * dt. Similarly, a particle under constant acceleration a
will have a change in velocity of a * dt.

The following example demonstrates a simple way to move a sprite across the screen at exactly 10
pixels per second:

sprite = pyglet.sprite.Sprite(image)
sprite.dx = 10.0

def update(dt):
 sprite.x += sprite.dx * dt
pyglet.clock.schedule_interval(update, 1/60.0) # update at 60Hz

This is a robust technique for simple animation, as the velocity will remain constant regardless of the
speed or load of the computer.

Some examples of other common animation variables are given in the table below.

Animation parameter Distance Velocity

Rotation Degrees Degrees per second

Position Pixels Pixels per second

Keyframes Frame number Frames per second

The frame rate
Game performance is often measured in terms of the number of times the display is updated every
second; that is, the frames-per-second or FPS. You can determine your application's FPS with a single
function call:

pyglet.clock.get_fps()

The value returned is more useful than simply taking the reciprocal of dt from a period function, as
it is averaged over a sliding window of several frames.

Displaying the frame rate
A simple way to profile your application performance is to display the frame rate while it is running.
Printing it to the console is not ideal as this will have a severe impact on performance. pyglet provides
the ClockDisplay class for displaying the frame rate with very little effort:

fps_display = pyglet.clock.ClockDisplay()

@window.event
def on_draw():

Keeping track of time

49

 window.clear()
 fps_display.draw()

By default the frame rate will be drawn in the bottom-right corner of the window in a semi-translucent
large font. See the ClockDisplay documentation for details on how to customise this, or even display
another clock value (such as the current time) altogether.

User-defined clocks
The default clock used by pyglet uses the system clock to determine the time (i.e., time.time()).
Separate clocks can be created, however, allowing you to use another time source. This can be useful
for implementing a separate "game time" to the real-world time, or for synchronising to a network
time source or a sound device.

Each of the clock functions are aliases for the methods on a global instance of clock.Clock. You
can construct or subclass your own Clock, which can then maintain its own schedule and framerate
calculation. See the class documentation for more details.

50

Displaying text
pyglet provides the font module for rendering high-quality antialiased Unicode glyphs efficiently.
Any installed font on the operating system can be used, or you can supply your own font with your
application.

Text rendering is performed with the text module, which can display word-wrapped formatted text.
There is also support for interactive editing of text on-screen with a caret.

Simple text rendering
The following complete example creates a window that displays "Hello, World" centered vertically
and horizontally:

window = pyglet.window.Window()
label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 anchor_x='center', anchor_y='center')

@window.event
def on_draw():
 window.clear()
 label.draw()

pyglet.app.run()

The example demonstrates the most common uses of text rendering:

• The font name and size are specified directly in the constructor. Additional parameters exist for
setting the bold and italic styles and the color of the text.

• The position of the text is given by the x and y coordinates. The meaning of these coordinates is
given by the anchor_x and anchor_y parameters.

• The actual text is drawn with the Label.draw method. Labels can also be added to a graphics batch;
see Graphics for details.

The HTMLLabel class is used similarly, but accepts an HTML formatted string instead of parameters
describing the style. This allows the label to display text with mixed style:

label = pyglet.text.HTMLLabel(
 'Hello, <i>world</i>',
 x=window.width//2, y=window.height//2,
 anchor_x='center', anchor_y='center')

See Formatted text for details on the subset of HTML that is supported.

The document/layout model
The Label class demonstrated above presents a simplified interface to pyglet's complete text rendering
capabilities. The underlying TextLayout and AbstractDocument classes provide a "model/view"
interface to all of pyglet's text features.

Displaying text

51

AbstractDocumentTextLayout

ScrollableTextLayout

IncrementalTextLayout

UnformattedDocument FormattedDocument

Documents
A document is the "model" part of the architecture, and describes the content and style of
the text to be displayed. There are two concrete document classes: UnformattedDocument and
FormattedDocument. UnformattedDocument models a document containing text in just one style,
whereas FormattedDocument allows the style to change within the text.

An empty, unstyled document can be created by constructing either of the classes directly. Usually
you will want to initialise the document with some text, however. The decode_text, decode_attributed
and decode_html functions return a document given a source string. For decode_text, this is simply a
plain text string, and the return value is an UnformattedDocument:

document = pyglet.text.decode_text('Hello, world.')

decode_attributed and decode_html are described in detail in the next section.

The text of a document can be modified directly as a property on the object:

document.text = 'Goodbye, cruel world.'

However, if small changes are being made to the document it can be more efficient (when coupled
with an appropriate layout; see below) to use the remove_text and insert_text methods instead.

Layouts
The actual layout and rendering of a document is performed by the TextLayout classes. This split
exists to reduce the complexity of the code, and to allow a single document to be displayed in multiple
layouts simultaneously (in other words, many layouts can display one document).

Each of the TextLayout classes perform layout in the same way, but represent a trade-off in efficiency
of update against efficiency of drawing and memory usage.

The base TextLayout class uses little memory, and shares its graphics group with other TextLayout
instances in the same batch (see Batched rendering). When the text or style of the document is
modified, or the layout constraints change (for example, the width of the layout changes), the entire
text layout is recalculated. This is a potentially expensive operation, especially for long documents.
This makes TextLayout suitable for relatively short or unchanging documents.

ScrollableTextLayout is a small extension to TextLayout that clips the text to a specified view rectangle,
and allows text to be scrolled within that rectangle without performing the layout calculuation again.
Because of this clipping rectangle the graphics group cannot be shared with other text layouts, so for
ideal performance ScrollableTextLayout should be used only if this behaviour is required.

IncrementalTextLayout uses a more sophisticated layout algorithm that performs less work for small
changes to documents. For example, if a document is being edited by the user, only the immediately
affected lines of text are recalculated when a character is typed or deleted. IncrementalTextLayout
also performs view rectangle culling, reducing the amount of layout and rendering required when

Displaying text

52

the document is larger than the view. IncrementalTextLayout should be used for large documents or
documents that change rapidly.

All the layout classes can be constructed given a document and display dimensions:

layout = pyglet.text.TextLayout(document, width, height)

Additional arguments to the constructor allow the specification of a graphics batch and group
(recommended if many layouts are to be rendered), and the optional multiline flag. To render more
than one line of text (either through word-wrapping or explicit line breaks) multiline must be True.

Like labels, layouts are positioned through their x, y, anchor_x and anchor_y properties. Note that
unlike AbstractImage, the anchor properties accept a string such as "bottom" or "center" instead
of a numeric displacement.

Formatted text
The FormattedDocument class maintains style information for individual characters in the text, rather
than a single style for the whole document. Styles can be accessed and modified by name, for example:

Get the font name used at character index 0
font_name = document.get_style('font_name', 0)

Set the font name and size for the first 5 characters
document.set_style(0, 5, dict(font_name='Arial', font_size=12))

Internally, character styles are run-length encoded over the document text; so longer documents with
few style changes do not use excessive memory.

From the document's point of view, there are no predefined style names: it simply maps names
and character ranges to arbitrary Python values. It is the TextLayout classes that interpret this style
information; for example, by selecting a different font based on the font_name style. Unrecognised
style names are ignored by the layout -- you can use this knowledge to store additional data alongside
the document text (for example, a URL behind a hyperlink).

Character styles
The following character styles are recognised by all TextLayout classes.

Where an attribute is marked "as a distance" the value is assumed to be in pixels if given as an int or
float, otherwise a string of the form "0u" is required, where 0 is the distance and u is the unit; one
of "px" (pixels), "pt" (points), "pc" (picas), "cm" (centimeters), "mm" (millimeters) or "in"
(inches). For example, "14pt" is the distance covering 14 points, which at the default DPI of 96
is 18 pixels.

font_name Font family name, as given to pyglet.font.load.

font_size Font size, in points.

bold Boolean.

italic Boolean.

underline 4-tuple of ints in range (0, 255) giving RGBA underline color, or None
(default) for no underline.

kerning Additional space to insert between glyphs, as a distance. Defaults to 0.

baseline Offset of glyph baseline from line baseline, as a distance. Positive values
give a superscript, negative values give a subscript. Defaults to 0.

Displaying text

53

color 4-tuple of ints in range (0, 255) giving RGBA text color

background_color 4-tuple of ints in range (0, 255) giving RGBA text background color; or
None for no background fill.

Paragraph styles
Although FormattedDocument does not distinguish between character- and paragraph-level styles,
TextLayout interprets the following styles only at the paragraph level. You should take care to set these
styles for complete paragraphs only, for example, by using FormattedDocument.set_paragraph_style.

These styles are ignored for layouts without the multiline flag set.

align "left" (default), "center" or "right".

indent Additional horizontal space to insert before the first glyph of the first line of
a paragraph, as a distance.

leading Additional space to insert between consecutive lines within a paragraph, as a
distance. Defaults to 0.

line_spacing Distance between consecutive baselines in a paragraph, as a distance. Defaults
to None, which automatically calculates the tightest line spacing for each line
based on the maximum font ascent and descent.

margin_left Left paragraph margin, as a distance.

margin_right Right paragraph margin, as a distance.

margin_top Margin above paragraph, as a distance.

margin_bottom Margin below paragraph, as a distance. Adjacent margins do not collapse.

tab_stops List of horizontal tab stops, as distances, measured from the left edge of the
text layout. Defaults to the empty list. When the tab stops are exhausted, they
implicitly continue at 50 pixel intervals.

wrap Boolean. If True (the default), text wraps within the width of the layout.

For the purposes of these attributes, paragraphs are split by the newline character (U+0010) or the
paragraph break character (U+2029). Line breaks within a paragraph can be forced with character U
+2028.

Attributed text
pyglet provides two formats for decoding formatted documents from plain text. These are useful
for loading preprepared documents such as help screens. At this time there is no facility for saving
(encoding) formatted documents.

The attributed text format is an encoding specific to pyglet that can exactly describe any
FormattedDocument. You must use this encoding to access all of the features of pyglet text layout.
For a more accessible, yet less featureful encoding, see the HTML encoding, described below.

The following example shows a simple attributed text encoded document:

Chapter 1

My father's family name being Pirrip, and my Christian name Philip,
my infant tongue could make of both names nothing longer or more
explicit than Pip. So, I called myself Pip, and came to be called

Displaying text

54

Pip.

I give Pirrip as my father's family name, on the authority of his
tombstone and my sister - Mrs. Joe Gargery, who married the
blacksmith. As I never saw my father or my mother, and never saw
any likeness of either of them (for their days were long before the
days of photographs), my first fancies regarding what they were
like, were unreasonably derived from their tombstones.

Newlines are ignored, unless two are made in succession, indicating a paragraph break. Line breaks
can be forced with the \\ sequence:

This is the way the world ends \\
This is the way the world ends \\
This is the way the world ends \\
Not with a bang but a whimper.

Line breaks are also forced when the text is indented with one or more spaces or tabs, which is useful
for typesetting code:

The following paragraph has hard line breaks for every line of code:

 import pyglet

 window = pyglet.window.Window()
 pyglet.app.run()

Text can be styled using a attribute tag:

This sentence makes a {bold True}bold{bold False} statement.

The attribute tag consists of the attribute name (in this example, bold) followed by a Python bool,
int, float, string, tuple or list.

Unlike most structured documents such as HTML, attributed text has no concept of the "end" of a
style; styles merely change within the document. This corresponds exactly to the representation used
by FormattedDocument internally.

Some more examples follow:

{font_name 'Times New Roman'}{font_size 28}Hello{font_size 12},
{color (255, 0, 0, 255)}world{color (0, 0, 0, 255)}!

(This example uses 28pt Times New Roman for the word "Hello", and 12pt red text for the word
"world").

Paragraph styles can be set by prefixing the style name with a period (.). This ensures the style range
exactly encompasses the paragraph:

{.margin_left "12px"}This is a block quote, as the margin is inset.

{.margin_left "24px"}This paragraph is inset yet again.

Attributed text can be loaded as a Unicode string. In addition, any character can be inserted given its
Unicode code point in numeric form, either in decimal:

This text is Copyright {#169}.

or hexadecimal:

This text is Copyright {#xa9}.

Displaying text

55

The characters { and } can be escaped by duplicating them:

Attributed text uses many "{{" and "}}" characters.

Use the decode_attributed function to decode attributed text into a FormattedDocument:

document = pyglet.text.decode_attributed('Hello, {bold True}world')

HTML
While attributed text gives access to all of the features of FormattedDocument and TextLayout, it is
quite verbose and difficult produce text in. For convenience, pyglet provides an HTML 4.01 decoder
that can translate a small, commonly used subset of HTML into a FormattedDocument.

Note that the decoder does not preserve the structure of the HTML document -- all notion of element
hierarchy is lost in the translation, and only the visible style changes are preserved.

The following example uses decode_html to create a FormattedDocument from a string of HTML:

document = pyglet.text.decode_html('Hello, world')

The following elements are supported:

B BLOCKQUOTE BR CENTER CODE DD DIR DL EM FONT H1 H2 H3 H4 H5 H6 I IMG KBD
LI MENU OL P PRE Q SAMP STRONG SUB SUP TT U UL VAR

The style attribute is not supported, so font sizes must be given as HTML logical sizes in the range
1 to 7, rather than as point sizes. The corresponding font sizes, and some other stylesheet parameters,
can be modified by subclassing HTMLDecoder.

Custom elements
Graphics and other visual elements can be inserted inline into a document using
AbstractDocument.insert_element. For example, inline elements are used to render HTML images
included with the IMG tag. There is currently no support for floating or absolutely-positioned elements.

Elements must subclass InlineElement and override the place and remove methods. These methods
are called by TextLayout when the element becomes or ceases to be visible. For TextLayout and
ScrollableTextLayout, this is when the element is added or removed from the document; but for
IncrementalTextLayout the methods are also called as the element scrolls in and out of the viewport.

The constructor of InlineElement gives the width and height (separated into the ascent above the
baseline, and descent below the baseline) of the element.

Typically an InlineElement subclass will add graphics primitives to the layout's graphics batch; though
applications may choose to simply record the position of the element and render it separately.

The position of the element in the document text is marked with a NUL character (U+0000)
placeholder. This has the effect that inserting an element into a document increases the length of the
document text by one. Elements can also be styled as if they were ordinary character text, though the
layout ignores any such style attributes.

User-editable text
While pyglet does not come with any complete GUI widgets for applications to use, it does implement
many of the features required to implement interactive text editing. These can be used as a basis for a
more complete GUI system, or to present a simple text entry field, as demonstrated in the examples/
text_input.py example.

Displaying text

56

IncrementalTextLayout should always be used for text that can be edited by the user.
This class maintains information about the placement of glyphs on screen, and so
can map window coordinates to a document position and vice-versa. These methods
are get_position_from_point, get_point_from_position, get_line_from_point, get_point_from_line,
get_line_from_position, get_position_from_line, get_position_on_line and get_line_count.

The viewable rectangle of the document can be adjusted using a document position instead of a
scrollbar using the ensure_line_visible and ensure_x_visible methods.

IncrementalTextLayout can display a current text selection by temporarily overriding the foreground
and background colour of the selected text. The selection_start and selection_end properties give
the range of the selection, and selection_color and selection_background_color the colors to use
(defaulting to white on blue).

The Caret class implements an insertion caret (cursor) for IncrementalTextLayout. This includes
displaying the blinking caret at the correct location, and handling keyboard, text and mouse events.
The behaviour in response to the events is very similar to the system GUIs on Windows, Mac OS X and
GTK. Using Caret frees you from using the IncrementalTextLayout methods described above directly.

The following example creates a document, a layout and a caret and attaches the caret to the window
to listen for events:

import pyglet

window = pyglet.window.Window()
document = pyglet.text.document.FormattedDocument()
layout = pyglet.text.layout.IncrementalTextLayout(document, width, height)
caret = pyglet.text.caret.Caret(layout)
window.push_handlers(caret)

When the layout is drawn, the caret will also be drawn, so this example is nearly complete enough to
display the user input. However, it is suitable for use when only one editable text layout is to be in the
window. If multiple text widgets are to be shown, some mechanism is needed to dispatch events to the
widget that has keyboard focus. An example of how to do this is given in the examples/text_input.py
example program.

Loading system fonts
The layout classes automatically load fonts as required. You can also explicitly load fonts to implement
your own layout algorithms.

To load a font you must know its family name. This is the name displayed in the font dialog of any
application. For example, all operating systems include the Times New Roman font. You must also
specify the font size to load, in points:

Load "Times New Roman" at 16pt
times = pyglet.font.load('Times New Roman', 16)

Bold and italic variants of the font can specified with keyword parameters:

times_bold = pyglet.font.load('Times New Roman', 16, bold=True)
times_italic = pyglet.font.load('Times New Roman', 16, italic=True)
times_bold_italic = pyglet.font.load('Times New Roman', 16,
 bold=True, italic=True)

For maximum compatibility on all platforms, you can specify a list of font names to load, in order
of preference. For example, many users will have installed the Microsoft Web Fonts pack, which
includes Verdana, but this cannot be guaranteed, so you might specify Arial or Helvetica as suitable
alternatives:

Displaying text

57

sans_serif = pyglet.font.load(('Verdana', 'Helvetica', 'Arial'), 16)

If you do not particularly care which font is used, and just need to display some readable text, you
can specify None as the family name, which will load a default sans-serif font (Helvetica on Mac OS
X, Arial on Windows XP):

sans_serif = pyglet.font.load(None, 16)

Font sizes
When loading a font you must specify the font size it is to be rendered at, in points. Points are a
somewhat historical but conventional unit used in both display and print media. There are various
conflicting definitions for the actual length of a point, but pyglet uses the PostScript definition: 1 point
= 1/72 inches.

Font resolution
The actual rendered size of the font on screen depends on the display resolution. pyglet uses a default
DPI of 96 on all operating systems. Most Mac OS X applications use a DPI of 72, so the font sizes
will not match up on that operating system. However, application developers can be assured that font
sizes remain consistent in pyglet across platforms.

The DPI can be specified directly in the pyglet.font.load function, and as an argument to the TextLayout
constructor.

Determining font size
Once a font is loaded at a particular size, you can query its pixel size with the attributes:

Font.ascent
Font.descent

These measurements are shown in the diagram below.

dog baseline

as
ce

n
t

d
es

ce
n

t

Font metrics. Note that the descent is usually negative as it descends below the
baseline.

You can calculate the distance between successive lines of text as:

ascent - descent + leading

where leading is the number of pixels to insert between each line of text.

Loading custom fonts
You can supply a font with your application if it's not commonly installed on the target platform. You
should ensure you have a license to distribute the font -- the terms are often specified within the font
file itself, and can be viewed with your operating system's font viewer.

Loading a custom font must be performed in two steps:

Displaying text

58

1. Let pyglet know about the additional font or font files.

2. Load the font by its family name.

For example, let's say you have the Action Man font in a file called action_man.ttf. The following
code will load an instance of that font:

pyglet.font.add_file('action_man.ttf')
action_man = pyglet.font.load('Action Man')

Similarly, once the font file has been added, the font name can be specified as a style on a label or
layout:

label = pyglet.text.Label('Hello', font_name='Action Man')

Fonts are often distributed in separate files for each variant. Action Man Bold would probably be
distributed as a separate file called action_man_bold.ttf; you need to let pyglet know about
this as well:

font.add_file('action_man_bold.ttf')
action_man_bold = font.load('Action Man', bold=True)

Note that even when you know the filename of the font you want to load, you must specify the font's
family name to pyglet.font.load.

You need not have the file on disk to add it to pyglet; you can specify any file-like object supporting
the read method. This can be useful for extracting fonts from a resource archive or over a network.

If the custom font is distributed with your application, consider using the Application resources.

Supported font formats
pyglet can load any font file that the operating system natively supports. The list of supported formats
is shown in the table below.

Font Format Windows XP Mac OS X Linux
(FreeType)

TrueType (.ttf) X X X

PostScript Type 1 (.pfm, .pfb) X X X

Windows Bitmap (.fnt) X X

Mac OS X Data Fork Font
(.dfont)

X

OpenType (.ttf) 8 X

X11 font formats PCF, BDF,
SFONT

X

Bitstream PFR (.pfr) X
8All OpenType fonts are backward compatible with TrueType, so while the advanced OpenType features
can only be rendered with Mac OS X, the files can be used on any platform. pyglet does not currently
make use of the additional kerning and ligature information within OpenType fonts.

OpenGL font considerations
Text in pyglet is drawn using textured quads. Each font maintains a set of one or more textures, into
which glyphs are uploaded as they are needed. For most applications this detail is transparent and
unimportant, however some of the details of these glyph textures are described below for advanced
users.

Displaying text

59

Context affinity
When a font is loaded, it immediately creates a texture in the current context's object space. Subsequent
textures may need to be created if there is not enough room on the first texture for all the glyphs. This
is done when the glyph is first requested.

pyglet always assumes that the object space that was active when the font was loaded is the active
one when any texture operations are performed. Normally this assumption is valid, as pyglet shares
object spaces between all contexts by default. There are a few situations in which this will not be the
case, though:

• When explicitly setting the context share during context creation.

• When multiple display devices are being used which cannot support a shared context object space.

In any of these cases, you will need to reload the font for each object space that it's needed in. pyglet
keeps a cache of fonts, but does so per-object-space, so it knows when it can reuse an existing font
instance or if it needs to load it and create new textures. You will also need to ensure that an appropriate
context is active when any glyphs may need to be added.

Blend state
The glyph textures have an internal format of GL_ALPHA, which provides a simple way to recolour
and blend antialiased text by changing the vertex colors. pyglet makes very few assumptions about
the OpenGL state, and will not alter it besides changing the currently bound texture.

The following blend state is used for drawing font glyphs:

from pyglet.gl import *
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)
glEnable(GL_BLEND)

All glyph textures use the GL_TEXTURE_2D target, so you should ensure that a higher priority target
such as GL_TEXTURE_3D is not enabled before trying to render text.

60

Images
pyglet provides functions for loading and saving images in various formats using native operating
system services. pyglet can also work with the Python Imaging Library [http://www.pythonware.com/
products/pil/] (PIL) for access to more file formats.

Loaded images can be efficiently provided to OpenGL as a texture, and OpenGL textures and
framebuffers can be retrieved as pyglet images to be saved or otherwise manipulated.

pyglet also provides an efficient and comprehensive Sprite class, for displaying images on the screen
with an optional transform.

Loading an image
Images can be loaded using the pyglet.image.load function:

kitten = pyglet.image.load('kitten.png')

If the image is distributed with your application, consider using the pyglet.resource module (see
Application resources).

Without any additional arguments, load will attempt to load the filename specified using any available
image decoder. This will allow you to load PNG, GIF, JPEG, BMP and DDS files, and possibly other
files as well, depending on your operating system and additional installed modules (see the next section
for details). If the image cannot be loaded, an ImageDecodeException will be raised.

You can load an image from any file-like object providing a read method by specifying the file
keyword parameter:

kitten_stream = open('kitten.png', 'rb')
kitten = pyglet.image.load('kitten.png', file=kitten_stream)

In this case the filename kitten.png is optional, but gives a hint to the decoder as to the file type
(it is otherwise unused).

pyglet provides the following image decoders:

Module Class Description

pyglet.image.codecs.dds DDSImageDecoderReads Microsoft
DirectDraw
Surface files
containing
compressed
textures

pyglet.image.codecs.gdiplus GDIPlusDecoderUses Windows
GDI+ services to
decode images.

pyglet.image.codecs.gdkpixbuf2GdkPixbuf2ImageDecoderUses the GTK-2.0
GDK functions to
decode images.

pyglet.image.codecs.pil PILImageDecoderWrapper interface
around PIL Image
class.

pyglet.image.codecs.png PNGImageDecoderPNG decoder
written in pure
Python.

http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/

Images

61

Module Class Description

pyglet.image.codecs.quicktimeQuickTimeImageDecoderUses Mac OS
X QuickTime to
decode images.

Each of these classes registers itself with pyglet.image with the filename extensions it supports. The
load function will try each image decoder with a matching file extension first, before attempting the
other decoders. Only if every image decoder fails to load an image will ImageDecodeException be
raised (the origin of the exception will be the first decoder that was attempted).

You can override this behaviour and specify a particular decoding instance to use. For example, in the
following example the pure Python PNG decoder is always used rather than the operating system's
decoder:

from pyglet.image.codecs.png import PNGImageDecoder
kitten = pyglet.image.load('kitten.png', decoder=PNGImageDecoder())

This use is not recommended unless your application has to work around specific deficiences in an
operating system decoder.

Supported image formats
The following table lists the image formats that can be loaded on each operating system. If PIL
is installed, any additional formats it supports can also be read. See the Python Imaging Library
Handbook [http://www.pythonware.com/library/pil/handbook/index.htm] for a list of such formats.

Extension Description Windows
XP

Mac OS X Linux 9

.bmp Windows
Bitmap

X X X

.dds Microsoft
DirectDraw
Surface 10

X X X

.exif Exif X

.gif Graphics
Interchange
Format

X X X

.jpg .jpeg JPEG/JIFF
Image

X X X

.jp2 .jpx JPEG 2000 X

.pcx PC
Paintbrush
Bitmap
Graphic

X

.png Portable
Network
Graphic

X X X

.pnm PBM
Portable
Any Map
Graphic
Bitmap

X

http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm
http://www.pythonware.com/library/pil/handbook/index.htm

Images

62

Extension Description Windows
XP

Mac OS X Linux 9

.ras Sun raster
graphic

X

.tga Truevision
Targa
Graphic

X

.tif .tiff Tagged
Image File
Format

X X X

.xbm X11 bitmap X X

.xpm X11 icon X X
9Requires GTK 2.0 or later.
10Only S3TC compressed surfaces are supported. Depth, volume and cube textures are not supported.

The only supported save format is PNG, unless PIL is installed, in which case any format it supports
can be written.

Working with images
The pyglet.image.load function returns an AbstractImage. The actual class of the object depends on
the decoder that was used, but all images support the following attributes:

width The width of the image, in pixels.

height The height of the image, in pixels.

anchor_x Distance of the anchor point from the left edge of the image, in pixels

anchor_y Distance of the anchor point from the bottom edge of the image, in pixels

The anchor point defaults to (0, 0), though some image formats may contain an intrinsic anchor point.
The anchor point is used to align the image to a point in space when drawing it.

You may only want to use a portion of the complete image. You can use the get_region method to
return an image of a rectangular region of a source image:

image_part = kitten.get_region(x=10, y=10, width=100, height=100)

This returns an image with dimensions 100x100. The region extracted from kitten is aligned such that
the bottom-left corner of the rectangle is 10 pixels from the left and 10 pixels from the bottom of
the image.

Image regions can be used as if they were complete images. Note that changes to an image region
may or may not be reflected on the source image, and changes to the source image may or may not be
reflected on any region images. You should not assume either behaviour.

The AbstractImage hierarchy
The following sections deal with the various concrete image classes. All images subclass
AbstractImage, which provides the basic interface described in previous sections.

Images

63

AbstractImage

CompressedImageDataImageData Texture ImageGrid

ImageDataRegion TextureRegion

The AbstractImage class hierarchy.

An image of any class can be converted into a Texture or ImageData using the get_texture and
get_image_data methods defined on AbstractImage. For example, to load an image and work with
it as an OpenGL texture:

kitten = pyglet.image.load('kitten.png').get_texture()

There is no penalty for accessing one of these methods if object is already of the requested class. The
following table shows how concrete classes are converted into other classes:

Original class .get_texture().get_image_data()

Texture No change glGetTexImage2D

TextureRegion No change glGetTexImage2D,
crop resulting
image.

ImageData glTexImage2D 1 No change

ImageDataRegion glTexImage2D 1 No change

CompressedImageData glCompressedTexImage2D
2

N/A 3

BufferImage glCopyTexSubImage2D
4

glReadPixels

1ImageData caches the texture for future use, so there is no performance penalty for repeatedly blitting
an ImageData.
2If the required texture compression extension is not present, the image is decompressed in memory and
then supplied to OpenGL via glTexImage2D.
3It is not currently possible to retrieve ImageData for compressed texture images. This
feature may be implemented in a future release of pyglet. One workaround is to create
a texture from the compressed image, then read the image data from the texture; i.e.,
compressed_image.get_texture().get_image_data().
4BufferImageMask cannot be converted to Texture.

You should try to avoid conversions which use glGetTexImage2D or glReadPixels, as these
can impose a substantial performance penalty by transferring data in the "wrong" direction of the video
bus, especially on older hardware.

Accessing or providing pixel data
The ImageData class represents an image as a string or sequence of pixel data, or as a ctypes pointer.
Details such as the pitch and component layout are also stored in the class. You can access an
ImageData object for any image with get_image_data:

kitten = pyglet.image.load('kitten.png').get_image_data()

The design of ImageData is to allow applications to access the detail in the format they prefer, rather
than having to understand the many formats that each operating system and OpenGL make use of.

Images

64

The pitch and format properties determine how the bytes are arranged. pitch gives the number of bytes
between each consecutive row. The data is assumed to run from left-to-right, bottom-to-top, unless
pitch is negative, in which case it runs from left-to-right, top-to-bottom. There is no need for rows to
be tightly packed; larger pitch values are often used to align each row to machine word boundaries.

The format property gives the number and order of color components. It is a string of one or more of
the letters corresponding to the components in the following table:

R Red

G Green

B Blue

A Alpha

L Luminance

I Intensity

For example, a format string of "RGBA" corresponds to four bytes of colour data, in the order red,
green, blue, alpha. Note that machine endianness has no impact on the interpretation of a format string.

The length of a format string always gives the number of bytes per pixel. So, the minimum absolute
pitch for a given image is len(kitten.format) * kitten.width.

To retrieve pixel data in a particular format, use the get_data method, specifying the desired format
and pitch. The following example reads tightly packed rows in RGB format (the alpha component, if
any, will be discarded):

kitten = kitten.get_image_data()
data = kitten.get_data('RGB', kitten.width * 3)

data always returns a string, however it can be set to a ctypes array, stdlib array, list of byte data,
string, or ctypes pointer. To set the image data use set_data, again specifying the format and pitch:

kitten.set_data('RGB', kitten.width * 3, data)

You can also create ImageData directly, by providing each of these attributes to the constructor. This
is any easy way to load textures into OpenGL from other programs or libraries.

Performance concerns
pyglet can use several methods to transform pixel data from one format to another. It will always try to
select the most efficient means. For example, when providing texture data to OpenGL, the following
possibilities are examined in order:

1. Can the data be provided directly using a built-in OpenGL pixel format such as GL_RGB or
GL_RGBA?

2. Is there an extension present that handles this pixel format?

3. Can the data be transformed with a single regular expression?

4. If none of the above are possible, the image will be split into separate scanlines and a regular
expression replacement done on each; then the lines will be joined together again.

The following table shows which image formats can be used directly with steps 1 and 2 above, as
long as the image rows are tightly packed (that is, the pitch is equal to the width times the number
of components).

Format Required extensions

"I"

Images

65

Format Required extensions

"L"

"LA"

"R"

"G"

"B"

"A"

"RGB"

"RGBA"

"ARGB" GL_EXT_bgra and
GL_APPLE_packed_pixels

"ABGR" GL_EXT_abgr

"BGR" GL_EXT_bgra

"BGRA" GL_EXT_bgra

If the image data is not in one of these formats, a regular expression will be constructed to pull it into
one. If the rows are not tightly packed, or if the image is ordered from top-to-bottom, the rows will be
split before the regular expression is applied. Each of these may incur a performance penalty -- you
should avoid such formats for real-time texture updates if possible.

Image sequences and atlases
Sometimes a single image is used to hold several images. For example, a "sprite sheet" is an image
that contains each animation frame required for a character sprite animation.

pyglet provides convenience classes for extracting the individual images from such a composite image
as if it were a simple Python sequence. Discrete images can also be packed into one or more larger
textures with texture bins and atlases.

AbstractImageSequence

TextureSequenceImageGrid

UniformTextureSequence

TextureGrid Texture3D

The AbstractImageSequence class hierarchy.

Image grids
An "image grid" is a single image which is divided into several smaller images by drawing an
imaginary grid over it. The following image shows an image used for the explosion animation in the
Astraea example.

Images

66

An image consisting of eight animation frames arranged in a grid.

This image has one row and eight columns. This is all the information you need to create an ImageGrid
with:

explosion = pyglet.image.load('explosion.png')
explosion_seq = pyglet.image.ImageGrid(explosion, 1, 8)

The images within the grid can now be accessed as if they were their own images:

frame_1 = explosion_seq[0]
frame_2 = explosion_seq[1]

Images with more than one row can be accessed either as a single-dimensional sequence, or as a (row,
column) tuple; as shown in the following diagram.

0
(0, 0)

4
(1, 0)

8
(2, 0)

1
(0, 1)

1
(0, 1)

3
(0, 3)

5
(1, 1)

5
(1, 1)

7
(1, 3)

9
(2, 1)

2
(0, 2)

2
(0, 2)

6
(1, 2)

6
(1, 2)

11
(2, 3)

10
(2, 2)

3
(0, 3)

7
(1, 3)

11
(2, 3)

[1:11]
[(0,1):(2,3)]

[3:16]
[(0,3):(3,4)]

0 1

32

0

1

2
[:]

An image grid with several rows and columns, and the slices that can be used to
access it.

Image sequences can be sliced like any other sequence in Python. For example, the following obtains
the first four frames in the animation:

start_frames = explosion_seq[:4]

For efficient rendering, you should use a TextureGrid. This uses a single texture for the grid, and each
individual image returned from a slice will be a TextureRegion:

explosion_tex_seq = image.TextureGrid(explosion_seq)

Because TextureGrid is also a Texture, you can use it either as individual images or as the whole grid
at once.

3D textures
TextureGrid is extremely efficient for drawing many sprites from a single texture. One problem you
may encounter, however, is bleeding between adjacent images.

When OpenGL renders a texture to the screen, by default it obtains each pixel colour by interpolating
nearby texels. You can disable this behaviour by switching to the GL_NEAREST interpolation mode,
however you then lose the benefits of smooth scaling, distortion, rotation and sub-pixel positioning.

Images

67

You can alleviate the problem by always leaving a 1-pixel clear border around each image frame.
This will not solve the problem if you are using mipmapping, however. At this stage you will need
a 3D texture.

You can create a 3D texture from any sequence of images, or from an ImageGrid. The images must
all be of the same dimension, however they need not be powers of two (pyglet takes care of this by
returning TextureRegion as with a regular Texture).

In the following example, the explosion texture from above is uploaded into a 3D texture:

explosion_3d = pyglet.image.Texture3D.create_for_image_grid(explosion_seq)

You could also have stored each image as a separate file and used Texture3D.create_for_images to
create the 3D texture.

Once created, a 3D texture behaves like any other ImageSequence; slices return TextureRegion for
an image plane within the texture. Unlike a TextureGrid, though, you cannot blit a Texture3D in its
entirety.

Texture bins and atlases
Image grids are useful when the artist has good tools to construct the larger images of the appropriate
format, and the contained images all have the same size. However it is often simpler to keep individual
images as separate files on disk, and only combine them into larger textures at runtime for efficiency.

A TextureAtlas is initially an empty texture, but images of any size can be added to it at any time. The
atlas takes care of tracking the "free" areas within the texture, and of placing images at appropriate
locations within the texture to avoid overlap.

It's possible for a TextureAtlas to run out of space for new images, so applications will need to either
know the correct size of the texture to allocate initally, or maintain multiple atlases as each one fills up.

The TextureBin class provides a simple means to manage multiple atlases. The following example
loads a list of images, then inserts those images into a texture bin. The resulting list is a list of
TextureRegion images that map into the larger shared texture atlases:

images = [
 pyglet.image.load('img1.png'),
 pyglet.image.load('img2.png'),
 # ...
]

bin = pyglet.image.atlas.TextureBin()
images = [bin.add(image) for image in images]

The pyglet.resource module (see Application resources) uses texture bins internally to efficiently pack
images automatically.

Animations
While image sequences and atlases provide storage for related images, they alone are not enough to
describe a complete animation.

The Animation class manages a list of AnimationFrame objects, each of which references an image
and a duration, in seconds. The storage of the images is up to the application developer: they can each
be discrete, or packed into a texture atlas, or any other technique.

An animation can be loaded directly from a GIF 89a image file with load_animation (supported on
Linux, Mac OS X and Windows) or constructed manually from a list of images or an image sequence

Images

68

using the class methods (in which case the timing information will also need to be provided). The
add_to_texture_bin method provides a convenient way to pack the image frames into a texture bin
for efficient access.

Individual frames can be accessed by the application for use with any kind of rendering, or the entire
animation can be used directly with a Sprite (see next section).

The following example loads a GIF animation and packs the images in that animation into a texture
bin. A sprite is used to display the animation in the window:

animation = pyglet.image.load_animation('animation.gif')
bin = pyglet.image.TextureBin()
animation.add_to_texture_bin(bin)
sprite = pyglet.sprite.Sprite(animation)

window = pyglet.window.Window()

@window.event
def on_draw():
 sprite.draw()

pyglet.app.run()

When animations are loaded with pyglet.resource (see Application resources) the frames are
automatically packed into a texture bin.

This example program is located in examples/programming_guide/animation.py, along with a sample
GIF animation file.

Buffer images
pyglet provides a basic representation of the framebuffer as components of the AbstractImage
hierarchy. At this stage this representation is based off OpenGL 1.1, and there is no support for
newer features such as framebuffer objects. Of course, this doesn't prevent you using framebuffer
objects in your programs -- pyglet.gl provides this functionality -- just that they are not represented
as AbstractImage types.

BufferImage

DepthBufferImageColorBufferImage BufferImageMask

AbstractImage

The BufferImage hierarchy.

A framebuffer consists of

• One or more colour buffers, represented by ColorBufferImage

• An optional depth buffer, represented by DepthBufferImage

• An optional stencil buffer, with each bit represented by BufferImageMask

Images

69

• Any number of auxilliary buffers, also represented by ColorBufferImage

You cannot create the buffer images directly; instead you must obtain instances via the BufferManager.
Use get_buffer_manager to get this singleton:

buffers = image.get_buffer_manager()

Only the back-left color buffer can be obtained (i.e., the front buffer is inaccessible, and stereo contexts
are not supported by the buffer manager):

color_buffer = buffers.get_color_buffer()

This buffer can be treated like any other image. For example, you could copy it to a texture, obtain its
pixel data, save it to a file, and so on. Using the texture attribute is particularly useful, as it allows you
to perform multipass rendering effects without needing a render-to-texture extension.

The depth buffer can be obtained similarly:

depth_buffer = buffers.get_depth_buffer()

When a depth buffer is converted to a texture, the class used will be a DepthTexture, suitable for use
with shadow map techniques.

The auxilliary buffers and stencil bits are obtained by requesting one, which will then be marked as "in-
use". This permits multiple libraries and your application to work together without clashes in stencil
bits or auxilliary buffer names. For example, to obtain a free stencil bit:

mask = buffers.get_buffer_mask()

The buffer manager maintains a weak reference to the buffer mask, so that when you release all
references to it, it will be returned to the pool of available masks.

Similarly, a free auxilliary buffer is obtained:

aux_buffer = buffers.get_aux_buffer()

When using the stencil or auxilliary buffers, make sure you explicitly request these when creating the
window. See OpenGL configuration options for details.

Displaying images
Images should be drawn into a window in the window's on_draw event handler. Usually a "sprite"
should be created for each appearance of the image on-screen. Images can also be drawn directly
without creating a sprite.

Sprites
A sprite is an instance of an image displayed in the window. Multiple sprites can share the same image;
for example, hundreds of bullet sprites might share the same bullet image.

A sprite is constructed given an image or animation, and drawn with the Sprite.draw method:

sprite = pyglet.sprite.Sprite(image)

@window.event
def on_draw():
 window.clear()
 sprite.draw()

Images

70

Sprites have properties for setting the position, rotation, scale, opacity, color tint and visibility of the
displayed image. Sprites automatically handle displaying the most up-to-date frame of an animation.
The following example uses a scheduled function to gradually move the sprite across the screen:

def update(dt):
 # Move 10 pixels per second
 sprite.x += dt * 10

Call update 60 times a second
pyglet.clock.schedule_interval(update, 1/60.)

If you need to draw many sprites, use a Batch to draw them all at once. This is far more efficient than
calling draw on each of them in a loop:

batch = pyglet.graphics.Batch()

sprites = [pyglet.sprite.Sprite(image, batch=batch),
 pyglet.sprite.Sprite(image, batch=batch),
 # ...]

@window.event
def on_draw():
 window.clear()
 batch.draw()

When sprites are collected into a batch, no guarantee is made about the order in which they will be
drawn. If you need to ensure some sprites are drawn before others (for example, landscape tiles might
be drawn before character sprites, which might be drawn before some particle effect sprites), use two
or more OrderedGroup objects to specify the draw order:

batch = pyglet.graphics.Batch()
background = pyglet.graphics.OrderedGroup(0)
foreground = pyglet.graphics.OrderedGroup(1)

sprites = [pyglet.sprite.Sprite(image, batch=batch, group=background),
 pyglet.sprite.Sprite(image, batch=batch, group=background),
 pyglet.sprite.Sprite(image, batch=batch, group=foreground),
 pyglet.sprite.Sprite(image, batch=batch, group=foreground),
 # ...]

@window.event
def on_draw():
 window.clear()
 batch.draw()

See the Graphics section for more details on batch and group rendering.

For best performance, try to collect all batch images into as few textures as possible; for example,
by loading images with pyglet.resource.image (see Application resources) or with Texture bins and
atlases).

Simple image blitting
A simple but less efficient way to draw an image directly into a window is with the blit method:

@window.event
def on_draw():
 window.clear()
 image.blit(x, y)

Images

71

The x and y coordinates locate where to draw the anchor point of the image. For example, to center
the image at (x, y):

kitten.anchor_x = kitten.width // 2
kitten.anchor_y = kitten.height // 2
kitten.blit(x, y)

You can also specify an optional z component to the blit method. This has no effect unless you have
changed the default projection or enabled depth testing. In the following example, the second image
is drawn behind the first, even though it is drawn after it:

from pyglet.gl import *
glEnable(GL_DEPTH_TEST)

kitten.blit(x, y, 0)
kitten.blit(x, y, -0.5)

The default pyglet projection has a depth range of (-1, 1) -- images drawn with a z value outside this
range will not be visible, regardless of whether depth testing is enabled or not.

Images with an alpha channel can be blended with the existing framebuffer. To do this you need to
supply OpenGL with a blend equation. The following code fragment implements the most common
form of alpha blending, however other techniques are also possible:

from pyglet.gl import *
glEnable(GL_BLEND)
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA)

You would only need to call the code above once during your program, before you draw any images
(this is not necessary when using only sprites).

OpenGL imaging
This section assumes you are familiar with texture mapping in OpenGL (for example, chapter 9 of the
OpenGL Programming Guide [http://opengl.org/documentation/red_book/]).

To create a texture from any AbstractImage, call get_texture:

kitten = image.load('kitten.jpg')
texture = kitten.get_texture()

Textures are automatically created and used by ImageData when blitted. It is useful to use textures
directly when aiming for high performance or 3D applications.

The Texture class represents any texture object. The target attribute gives the texture target (for
example, GL_TEXTURE_2D) and id the texture name. For example, to bind a texture:

glBindTexture(texture.target, texture.id)

Texture dimensions
Implementations of OpenGL prior to 2.0 require textures to have dimensions that are powers of two
(i.e., 1, 2, 4, 8, 16, ...). Because of this restriction, pyglet will always create textures of these dimensions
(there are several non-conformant post-2.0 implementations). This could have unexpected results for
a user blitting a texture loaded from a file of non-standard dimensions. To remedy this, pyglet returns a
TextureRegion of the larger texture corresponding to just the part of the texture covered by the original
image.

A TextureRegion has an owner attribute that references the larger texture. The following session
demonstrates this:

http://opengl.org/documentation/red_book/
http://opengl.org/documentation/red_book/

Images

72

>>> rgba = image.load('tests/image/rgba.png')
>>> rgba
<ImageData 235x257> # The image is 235x257
>>> rgba.get_texture()
<TextureRegion 235x257> # The returned texture is a region
>>> rgba.get_texture().owner
<Texture 256x512> # The owning texture has power-2 dimensions
>>>

A TextureRegion defines a tex_coords attribute that gives the texture coordinates to use for a quad
mapping the whole image. tex_coords is a 4-tuple of 3-tuple of floats; i.e., each texture coordinate is
given in 3 dimensions. The following code can be used to render a quad for a texture region:

texture = kitten.get_texture()
t = texture.tex_coords
w, h = texture.width, texture.height
array = (GLfloat * 32)(
 t[0][0], t[0][1], t[0][2], 1.,
 x, y, z, 1.,
 t[1][0], t[1][1], t[1][2], 1.,
 x + w, y, z, 1.,
 t[2][0], t[2][1], t[2][2], 1.,
 x + w, y + h, z, 1.,
 t[3][0], t[3][1], t[3][2], 1.,
 x, y + h, z, 1.)

glPushClientAttrib(GL_CLIENT_VERTEX_ARRAY_BIT)
glInterleavedArrays(GL_T4F_V4F, 0, array)
glDrawArrays(GL_QUADS, 0, 4)
glPopClientAttrib()

The Texture.blit method does this.

Use the Texture.create method to create either a texture region from a larger power-2
sized texture, or a texture with the exact dimensions using the GL_texture_rectangle_ARB
extension.

Texture internal format
pyglet automatically selects an internal format for the texture based on the source image's format
attribute. The following table describes how it is selected.

Format Internal format

Any format with 3 components GL_RGB

Any format with 2 components GL_LUMINANCE_ALPHA

"A" GL_ALPHA

"L" GL_LUMINANCE

"I" GL_INTENSITY

Any other format GL_RGBA

Note that this table does not imply any mapping between format components and their OpenGL
counterparts. For example, an image with format "RG" will use GL_LUMINANCE_ALPHA as its
internal format; the luminance channel will be averaged from the red and green components, and the
alpha channel will be empty (maximal).

Use the Texture.create class method to create a texture with a specific internal format.

Images

73

Saving an image
Any image can be saved using the save method:

kitten.save('kitten.png')

or, specifying a file-like object:

kitten_stream = open('kitten.png', 'wb')
kitten.save('kitten.png', file=kitten_stream)

The following example shows how to grab a screenshot of your application window:

pyglet.image.get_buffer_manager().get_color_buffer().save('screenshot.png')

Note that images can only be saved in the PNG format unless PIL is installed.

74

Sound and video
pyglet can play many audio and video formats. Audio is played back with either OpenAL, DirectSound
or ALSA, permitting hardware-accelerated mixing and surround-sound 3D positioning. Video is
played into OpenGL textures, and so can be easily be manipulated in real-time by applications and
incorporated into 3D environments.

Decoding of compressed audio and video is provided by AVbin [http://code.google.com/p/avbin], an
optional component available for Linux, Windows and Mac OS X. AVbin is installed alongside pyglet
by default if the Windows or Mac OS X installation is used. If pyglet was installed from source, AVbin
can be installed separately.

If AVbin is not present, pyglet will fall back to reading uncompressed WAV files only. This may be
sufficient for many applications that require only a small number of short sounds, in which case those
applications need not distribute AVbin.

Audio drivers
pyglet can use OpenAL, DirectSound or ALSA to play back audio. Only one of these drivers can
be used in an application, and this must be selected before the pyglet.media module is loaded. The
available drivers depend on your operating system:

Windows Mac OS X Linux

OpenAL 11 OpenAL OpenAL 11

DirectSound

ALSA
11OpenAL is not installed by default on Windows, nor in many Linux distributions. It can be downloaded
separately from your audio device manufacturer or openal.org [http://www.openal.org/downloads.html]

The audio driver can be set through the audio key of the pyglet.options dictionary. For example:

pyglet.options['audio'] = ('openal', 'silent')

This tells pyglet to use the OpenAL driver if it is available, and to ignore all audio output if it is not.
The audio option can be a list of any of these strings, giving the preference order for each driver:

String Audio driver

openal OpenAL

directsound DirectSound

alsa ALSA

silent No audio output

You must set the audio option before importing pyglet.media. You can alternatively set it through
an environment variable; see Environment settings.

The following sections describe the requirements and limitations of each audio driver.

DirectSound
DirectSound is available only on Windows, and is installed by default on Windows XP and later.
pyglet uses only DirectX 7 features. On Windows Vista DirectSound does not support hardware audio
mixing or surround sound.

http://code.google.com/p/avbin
http://code.google.com/p/avbin
http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

75

OpenAL
OpenAL is included with Mac OS X. Windows users can download a generic driver from openal.org
[http://www.openal.org/downloads.html], or from their sound device's manufacturer. Linux users can
use the reference implementation also provided by Creative. For example, Ubuntu users can apt-
get openal. ALUT is not required. pyglet makes use of OpenAL 1.1 features if available, but will
also work with OpenAL 1.0.

Due to a long-standing bug in the reference implementation of OpenAL, stereo audio is downmixed
to mono on Linux. This does not affect Windows or Mac OS X users.

ALSA
ALSA is the standard Linux audio implementation, and is installed by default with many distributions.
Due to limitations in ALSA all audio sources will play back at full volume and without any surround
sound positioning.

Linux Issues
Linux users have the option of choosing between OpenAL and ALSA for audio output. Unfortunately
both implementations have severe limitations or implementation bugs that are outside the scope of
pyglet's control.

If your application can manage without stereo playback, or needs control over individual audio
volumes, you should use the OpenAL driver (assuming your users have it installed).

If your application needs stereo playback, or does not require spatialised sound, consider using the
ALSA driver in preference to the OpenAL driver. You can do this with:

pyglet.options['audio'] = ('alsa', 'openal', 'silent')

Supported media types
If AVbin is not installed, only uncompressed RIFF/WAV files encoded with linear PCM can be read.

With AVbin, many common and less-common formats are supported. Due to the large number of
combinations of audio and video codecs, options, and container formats, it is difficult to provide a
complete yet useful list. Some of the supported audio formats are:

• AU

• MP2

• MP3

• OGG/Vorbis

• WAV

• WMA

Some of the supported video formats are:

• AVI

• DivX

• H.263

http://www.openal.org/downloads.html
http://www.openal.org/downloads.html

Sound and video

76

• H.264

• MPEG

• MPEG-2

• OGG/Theora

• Xvid

• WMV

For a complete list, see the AVbin sources. Otherwise, it is probably simpler to simply try playing
back your target file with the media_player.py example.

New versions of AVbin as they are released may support additional formats, or fix errors in the current
implementation. AVbin is completely future- and backward-compatible, so no change to pyglet is
needed to use a newer version of AVbin -- just install it in place of the old version.

Loading media
Audio and video files are loaded in the same way, using the pyglet.media.load function, providing
a filename:

source = pyglet.media.load('explosion.wav')

If the media file is bundled with the application, consider using the resource module (see Application
resources).

The result of loading a media file is a Source object. This object provides useful information about
the type of media encoded in the file, and serves as an opaque object used for playing back the file
(described in the next section).

The load function will raise a MediaException if the format is unknown. IOError may also be raised if
the file could not be read from disk. Future versions of pyglet will also support reading from arbitrary
file-like objects, however a valid filename must currently be given.

The length of the media file is given by the duration property, which returns the media's length in
seconds.

Audio metadata is provided in the source's audio_format attribute, which is None for silent videos. This
metadata is not generally useful to applications. See the AudioFormat class documentation for details.

Video metadata is provided in the source's video_format attribute, which is None for audio files. It is
recommended that this attribute is checked before attempting play back a video file -- if a movie file
has a readable audio track but unknown video format it will appear as an audio file.

You can use the video metadata, described in a VideoFormat object, to set up display of the video
before beginning playback. The attributes are as follows:

Attribute Description

width, height Width and height of the
video image, in pixels.

sample_aspect The aspect ratio of each
video pixel.

You must take care to apply the sample aspect ratio to the video image size for display purposes. The
following code determines the display size for a given video format:

def get_video_size(width, height, sample_aspect):

Sound and video

77

 if sample_aspect > 1.:
 return width * sample_aspect, height
 elif sample_aspect < 1.:
 return width, height / sample_aspect
 else:
 return width, height

Media files are not normally read entirely from disk; instead, they are streamed into the decoder, and
then into the audio buffers and video memory only when needed. This reduces the startup time of
loading a file and reduces the memory requirements of the application.

However, there are times when it is desirable to completely decode an audio file in memory first.
For example, a sound that will be played many times (such as a bullet or explosion) should only be
decoded once. You can instruct pyglet to completely decode an audio file into memory at load time:

explosion = pyglet.media.load('explosion.wav', streaming=False)

The resulting source is an instance of StaticSource, which provides the same interface as a streaming
source. You can also construct a StaticSource directly from an already-loaded Source:

explosion = pyglet.media.StaticSource(pyglet.media.load('explosion.wav'))

Simple audio playback
Many applications, especially games, need to play sounds in their entirety without needing to keep
track of them. For example, a sound needs to be played when the player's space ship explodes, but this
sound never needs to have its volume adjusted, or be rewound, or interrupted.

pyglet provides a simple interface for this kind of use-case. Call the play method of any Source to
play it immediately and completely:

explosion = pyglet.media.load('explosion.wav', streaming=False)
explosion.play()

You can call play on any Source, not just StaticSource.

The return value of Source.play is a ManagedPlayer, which can either be discarded, or retained to
maintain control over the sound's playback.

Controlling playback
You can implement many functions common to a media player using the Player class. Use of this
class is also necessary for video playback. There are no parameters to its construction:

player = pyglet.media.Player()

A player will play any source that is "queued" on it. Any number of sources can be queued on a
single player, but once queued, a source can never be dequeued (until it is removed automatically
once complete). The main use of this queuing mechanism is to facilitate "gapless" transitions between
playback of media files.

A StreamingSource can only ever be queued on one player, and only once on that player. StaticSource
objects can be queued any number of times on any number of players. Recall that a StaticSource can
be created by passing streaming=False to the load method.

In the following example, two sounds are queued onto a player:

player.queue(source1)
player.queue(source2)

Sound and video

78

Playback begins with the player's play method is called:

player.play()

Standard controls for controlling playback are provided by these methods:

Method Description

play Begin or resume playback
of the current source.

pause Pause playback of the
current source.

next Dequeue the current
source and move to the
next one immediately.

seek Seek to a specific time
within the current source.

Note that there is no stop method. If you do not need to resume playback, simply pause playback and
discard the player and source objects. Using the next method does not guarantee gapless playback.

There are several properties that describe the player's current state:

Property Description

time The current playback
position within the current
source, in seconds. This is
read-only (but see the seek
method).

playing True if the player is
currently playing, False
if there are no sources
queued or the player is
paused. This is read-only
(but see the pause and play
methods).

source A reference to the current
source being played. This
is read-only (but see the
queue method).

volume The audio level, expressed
as a float from 0 (mute)
to 1 (normal volume). This
can be set at any time.

When a player reaches the end of the current source, by default it will move immediately to the next
queued source. If there are no more sources, playback stops until another is queued. There are several
other possible behaviours, specified by setting the eos_action attribute on the player:

eos_action Description

EOS_NEXT The default action:
playback continues at the
next source.

EOS_PAUSE Playback pauses at the
end of the source, which

Sound and video

79

eos_action Description

remains the current source
for this player.

EOS_LOOP Playback continues
immediately at the
beginning of the current
source.

EOS_STOP Valid only for
ManagedPlayer, for
which it is default: the
player is discarded when
the current source finishes.

You can change a player's eos_action at any time, but be aware that unless sufficient time is given for
the future data to be decoded and buffered there may be a stutter or gap in playback. If eos_action is
set well in advance of the end of the source (say, several seconds), there will be no disruption.

Incorporating video
When a Player is playing back a source with video, use the get_texture method to obtain the video
frame image. This can be used to display the current video image syncronised with the audio track,
for example:

@window.event
def on_draw():
 player.get_texture().blit(0, 0)

The texture is an instance of pyglet.image.Texture, with an internal format of either GL_TEXTURE_2D
or GL_TEXTURE_RECTANGLE_ARB. While the texture will typically be created only once and
subsequentally updated each frame, you should make no such assumption in your application -- future
versions of pyglet may use multiple texture objects.

Positional audio
pyglet uses OpenAL for audio playback, which includes many features for positioning sound within
a 3D space. This is particularly effective with a surround-sound setup, but is also applicable to stereo
systems.

A Player in pyglet has an associated position in 3D space -- that is, it is equivalent to an OpenAL
"source". The properties for setting these parameters are described in more detail in the API
documentation; see for example Player.position and Player.pitch.

The OpenAL "listener" object is provided by the pyglet.media.listener singleton, an instance of
Listener. This provides similar properties such as Listener.position, Listener.forward_orientation and
Listener.up_orientation that describe the position of the user in 3D space.

Note that only mono sounds can be positioned. Stereo sounds will play back as normal, and only their
volume and pitch properties will affect the sound.

80

Application resources
Previous sections in this guide have described how to load images, media and text documents using
pyglet. Applications also usually have the need to load other data files: for example, level descriptions
in a game, internationalised strings, and so on.

Programmers are often tempted to load, for example, an image required by their application with:

image = pyglet.image.load('logo.png')

This code assumes logo.png is in the current working directory. Unfortunately the working
directory is not necessarily the same as the directory containing the application script files.

• Applications started from the command line can start from an arbitrary working directory.

• Applications bundled into an egg, Mac OS X package or Windows executable may have their
resources inside a ZIP file.

• The application might need to change the working directory in order to work with the user's files.

A common workaround for this is to construct a path relative to the script file instead of the working
directory:

import os

script_dir = os.path.dirname(__file__)
path = os.path.join(script_dir, 'logo.png')
image = pyglet.image.load(path)

This, besides being tedious to write, still does not work for resources within ZIP files, and can be
troublesome in projects that span multiple packages.

The pyglet.resource module solves this problem elegantly:

image = pyglet.resource.image('logo.png')

The following sections describe exactly how the resources are located, and how the behaviour can
be customised.

Loading resources
Use the pyglet.resource module when files shipped with the application need to be loaded. For
example, instead of writing:

data_file = open('file.txt')

use:

data_file = pyglet.resource.file('file.txt')

There are also convenience functions for loading media files for pyglet. The following table shows
the equivalent resource functions for the standard file functions.

File function Resource function Type

open pyglet.resource.file File-like object

pyglet.image.load pyglet.resource.imageTexture or
TextureRegion

pyglet.image.load pyglet.resource.textureTexture

Application resources

81

File function Resource function Type

pyglet.image.load_animation pyglet.resource.animationAnimation

pyglet.media.load pyglet.resource.mediaSource

pyglet.text.loadmimetype = text/plain
pyglet.resource.text UnformattedDocument

pyglet.text.loadmimetype = text/html
pyglet.resource.htmlFormattedDocument

pyglet.text.loadmimetype = text/vnd.pyglet-attributed
pyglet.resource.attributedFormattedDocument

pyglet.font.add_file pyglet.resource.add_fontNone

pyglet.resource.texture is for loading stand-alone textures, and would be required when using the
texture for a 3D model.

pyglet.resource.image is optimised for loading sprite-like images that can have their texture
coordinates adjusted. The resource module attempts to pack small images into larger textures for
efficient rendering (which is why the return type of this function can be TextureRegion).

Resource locations
Some resource files reference other files by name. For example, an HTML document can contain
 elements. In this case your application needs to locate image.png
relative to the original HTML file.

Use pyglet.resource.location to get a Location object describing the location of an application
resource. This location might be a file system directory or a directory within a ZIP file. The Location
object can directly open files by name, so your application does not need to distinguish between these
cases.

In the following example, a thumbnails.txt file is assumed to contain a list of image filenames
(one per line), which are then loaded assuming the image files are located in the same directory as
the thumbnails.txt file:

thumbnails_file = pyglet.resource.file('thumbnails.txt', 'rt')
thumbnails_location = pyglet.resource.location('thumbnails.txt')

for line in thumbnails_file:
 filename = line.strip()
 image_file = thumbnails_location.open(filename)
 image = pyglet.image.load(filename, file=image_file)
 # Do something with `image`...

This code correctly ignores other images with the same filename that might appear elsewhere on the
resource path.

Specifying the resource path
By default, only the script home directory is searched (the directory containing the __main__
module). You can set pyglet.resource.path to a list of locations to search in order. This list is indexed,
so after modifying it you will need to call pyglet.resource.reindex.

Each item in the path list is either a path relative to the script home, or the name of a Python module
preceded with an ampersand (@). For example, if you would like to package all your resources in a
res directory:

pyglet.resource.path = ['res']

Application resources

82

pyglet.resource.reindex()

Items on the path are not searched recursively, so if your resource directory itself has subdirectories,
these need to be specified explicitly:

pyglet.resource.path = ['res', 'res/images', 'res/sounds', 'res/fonts']
pyglet.resource.reindex()

Specifying module names makes it easy to group code with its resources. The following example uses
the directory containing the hypothetical gui.skins.default for resources:

pyglet.resource.path = ['@gui.skins.default', '.']
pyglet.resource.reindex()

Multiple loaders
A Loader encapsulates a complete resource path and cache. This lets your application cleanly separate
resource loading of different modules. Loaders are constructed for a given search path, and exposes
the same methods as the global pyglet.resource module functions.

For example, if a module needs to load its own graphics but does not want to interfere with the rest of
the application's resource loading, it would create its own Loader with a local search path:

loader = pyglet.resource.Loader(['@' + __name__])
image = loader.image('logo.png')

This is particularly suitable for "plugin" modules.

You can also use a Loader instance to load a set of resources relative to some user-specified document
directory. The following example creates a loader for a directory specified on the command line:

import sys
home = sys.argv[1]
loader = pyglet.resource.Loader(script_home=[home])

This is the only way that absolute directories and resources not bundled with an application should
be used with pyglet.resource.

Saving user preferences
Because Python applications can be distributed in several ways, including within ZIP files, it is usually
not feasible to save user preferences, high score lists, and so on within the application directory (or
worse, the working directory).

The pyglet.resource.get_settings_path function returns a directory suitable for writing arbitrary user-
centric data. The directory used follows the operating system's convention:

• ~/.ApplicationName/ on Linux

• $HOME\Application Settings\ApplicationName on Windows

• ~/Library/Application Support/ApplicationName on Mac OS X

The returned directory name is not guaranteed to exist -- it is the application's responsibility to create
it. The following example opens a high score list file for a game called "SuperGame" into the settings
directory:

import os

Application resources

83

dir = pyglet.resource.get_settings_path('SuperGame')
if not os.path.exists(dir):
 os.makedirs(dir)
filename = os.path.join(dir, 'highscores.txt')
file = open(filename, 'wt')

84

Debugging tools
pyglet includes a number of debug paths that can be enabled during or before application startup.
These were primarily developed to aid in debugging pyglet itself, however some of them may also
prove useful for understanding and debugging pyglet applications.

Each debug option is a key in the pyglet.options dictionary. Options can be set directly on the dictionary
before any other modules are imported:

import pyglet
pyglet.options['debug_gl'] = False

They can also be set with environment variables before pyglet is imported. The corresponding
environment variable for each option is the string PYGLET_ prefixed to the uppercase option key. For
example, the environment variable for debug_gl is PYGLET_DEBUG_GL. Boolean options are set
or unset with 1 and 0 values.

A summary of the debug environment variables appears in the table below.

Option Environment
variable

Type

debug_font PYGLET_DEBUG_FONTbool

debug_gl PYGLET_DEBUG_GLbool

debug_gl_trace PYGLET_DEBUG_GL_TRACEbool

debug_gl_trace_args PYGLET_DEBUG_GL_TRACE_ARGSbool

debug_graphics_batch PYGLET_DEBUG_GRAPHICS_BATCHbool

debug_lib PYGLET_DEBUG_LIBbool

debug_media PYGLET_DEBUG_MEDIAbool

debug_trace PYGLET_DEBUG_TRACEbool

debug_trace_args PYGLET_DEBUG_TRACE_ARGSbool

debug_trace_depth PYGLET_DEBUG_TRACE_DEPTHint

debug_win32 PYGLET_DEBUG_WIN32bool

debug_x11 PYGLET_DEBUG_X11bool

graphics_vbo PYGLET_GRAPHICS_VBObool

The debug_media and debug_font options are used to debug the pyglet.media and
pyglet.font modules, respectively. Their behaviour is platform-dependent and useful only for
pyglet developers.

The remaining debug options are detailed below.

Debugging OpenGL
The graphics_vbo option enables the use of vertex buffer objects in pyglet.graphics (instead, only
vertex arrays). This is useful when debugging the graphics module as well as isolating code for
determining if a video driver is faulty.

The debug_graphics_batch option causes all Batch objects to dump their rendering tree to
standard output before drawing, after any change (so two drawings of the same tree will only dump
once). This is useful to debug applications making use of Group and Batch rendering.

Debugging tools

85

Error checking
The debug_gl option intercepts most OpenGL calls and calls glGetError afterwards (it only
does this where such a call would be legal). If an error is reported, an exception is raised immediately.

This option is enabled by default unless the -O flag (optimisation) is given to Python, or the script is
running from within a py2exe or py2app package.

Tracing
The debug_gl_trace option causes all OpenGL functions called to be dumped to standard out.
When combined with debug_gl_trace_args, the arguments given to each function are also
printed (they are abbreviated if necessary to avoid dumping large amounts of buffer data).

Tracing execution
The debug_trace option enables Python-wide function tracing. This causes every function call to
be printed to standard out. Due to the large number of function calls required just to initialise pyglet,
it is recommended to redirect standard output to a file when using this option.

The debug_trace_args option additionally prints the arguments to each function call.

When debug_trace_depth is greater than 1 the caller(s) of each function (and their arguments, if
debug_trace_args is set) are also printed. Each caller is indented beneath the callee. The default
depth is 1, specifying that no callers are printed.

Platform-specific debugging
The debug_lib option causes the path of each loaded library to be printed to standard out. This
is performed by the undocumented pyglet.lib module, which on Linux and Mac OS X must
sometimes follow complex procedures to find the correct library. On Windows not all libraries are
loaded via this module, so they will not be printed (however, loading Windows DLLs is sufficiently
simple that there is little need for this information).

Linux
X11 errors are caught by pyglet and suppressed, as there are plenty of X servers in the wild that
generate errors that can be safely ignored. The debug_x11 option causes these errors to be dumped
to standard out, along with a traceback of the Python stack (this may or may not correspond to the
error, depending on whether or not it was reported asynchronously).

Windows
The debug_win32 option causes all library calls into user32.dll, kernel32.dll and
gdi32.dll to be intercepted. Before each library call SetLastError(0) is called, and
afterwards GetLastError() is called. Any errors discovered are written to a file named
debug_win32.log. Note that an error is only valid if the function called returned an error code,
but the interception function does not check this.

86

Appendix: Migrating to pyglet 1.1
pyglet 1.1 introduces new features for rendering high performance graphics and text, is more
convenient to use, and integrates better with the operating system. Some of the existing interfaces have
also been redesigned slightly to conform with standard Python practice or to fix design flaws.

Compatibility and deprecation
pyglet 1.1 is backward compatible with pyglet 1.0. Any application that uses only public and
documented methods of pyglet 1.0 will continue to work unchanged in pyglet 1.1. If you encounter
an issue where this is not the case, please consider it a bug in pyglet and file an issue report.

Some methods have been marked deprecated in pyglet 1.1. These methods continue to work, but have
been superceded by newer methods that are either more efficient or have a better design. The API
reference has a complete list of deprecated methods; the main changes are described in the next section.

• Continue to use deprecated methods if your application needs to work with pyglet 1.0 as well as
pyglet 1.1.

• New applications should not use deprecated methods.

Deprecated methods will continue to be supported in all minor revisions of pyglet 1.x. A pyglet 2.0
release will no longer support these methods.

Deprecated methods
The following minor changes have been made for design or efficiency reasons. Applications which
no longer need to support pyglet 1.0 should make the appropriate changes to ensure the deprecated
methods are not called.

The dispatch_events method on Player and the equivalent function on the pyglet.media module
should no longer be called. In pyglet 1.1, media objects schedule an update function on pyglet.clock
at an appropriate interval. New applications using media are required to call pyglet.clock.tick
periodically.

The AbstractImage properties texture, image_data, and so on have been replaced with
equivalent methods get_texture, get_image_data, etc.

The ImageData properties data, format and pitch, which together were used to extract pixel data from
an image, have been replaced with a single function get_data. The format and pitch properties
should now be used only to determine the current format and pitch of the image.

The get_current_context function has been replaced with a global variable, current_context, for
efficiency.

New features replacing standard practice
pyglet 1.1 introduces new features that make it easier to program with, so the standard practice as
followed in many of the pyglet example programs has changed.

Importing pyglet
In pyglet 1.0, it was necessary to explicitly import each submodule required by the application; for
example:

from pyglet import font

Appendix: Migrating to pyglet 1.1

87

from pyglet import image
from pyglet import window

pyglet now lazily loads submodules on demand, so an application can get away with importing just
pyglet. This is especially handy for modules that are typically only used once in an application, and
frees up the names font, image, window and so on for the application developer. For example:

window = pyglet.window.Window()

Application event loop
Every application using pyglet 1.0 provides its own event loop, such as:

while not window.has_exit:
 dt = clock.tick()
 update(dt)

 window.dispatch_events()
 window.clear()
 draw()
 window.flip()

Besides being somewhat repetitious to type, this type of event loop is difficult to extend with more
windows, and exausts all available system resources, even if the application is not doing anything.

The new pyglet.app module provides an application event loop that is less demanding of the CPU yet
more responsive to user events. A complete application that opens an empty window can be written
with:

window = pyglet.window.Window()

@window.event
def on_draw():
 window.clear()

pyglet.app.run()

Note the new on_draw event, which makes it easy to specify different drawing functions for each
window. The pyglet.app event loop takes care of dispatching events, ticking the clock, calling the draw
function and flipping the window buffer.

Update functions can be scheduled on the clock. To have an update function be called as often as
possible, use clock.schedule (this effectively degenerates into the older dispatch_events practice of
thrashing the CPU):

def update(dt):
 pass
clock.schedule(update)

Usually applications can update at a less frequent interval. For example, a game that is designed to
run at 60Hz can use clock.schedule_interval:

def update(dt):
 pass
clock.schedule_interval(update, 1/60.0)

This also removes the need for clock.set_fps_limit.

Besides the advantages already listed, windows managed by the event loop will not block while being
resized or moved; and the menu bar on OS X can be interacted with without blocking the application.

Appendix: Migrating to pyglet 1.1

88

It is highly recommended that all applications use the event loop. The loop can be extended if
you need to add additional hooks or integrate with another package. Applications continuing to use
Window.dispatch_events gain no advantage, but suffer from poorer response, increased CPU usage
and artifacts during window resizing and moving.

See The application event loop for more details.

Loading resources
Locating resources such as images, sound and video files, data files and fonts is difficult to do correctly
across all platforms, considering the effects of a changing working directory and various distribution
packages such as setuptools, py2exe and py2app.

The new pyglet.resource module implements the correct logic for all these cases, making it simple to
load resources that belong to a specific module or the application as a whole. A resource path can be
set that is indexed once, and can include filesystem directories, Python module paths and ZIP files.

For example, suppose your application ships with a logo.png that needs to be loaded on startup.
In pyglet 1.0 you might have written:

import os.path
from pyglet import image

script_dir = os.path.dirname(__file__)
logo_filename = os.path.join(script_dir, 'logo.png')
logo = image.load(logo_filename)

In pyglet 1.1, you can write:

logo = pyglet.resource.image('logo.png')

And will actually work in more scenarios (such as within a setuptools egg file, py2exe and py2app).

The resource module efficiently packs multiple small images into larger textures, so there is less need
for artists to create sprite sheets themselves for efficient rendering. Images and textures are also cached
automatically.

See Application resources for more details.

New graphics features
The pyglet.graphics module is a low-level abstraction of OpenGL vertex arrays and buffer objects. It
is intended for use by developers who are already very familiar with OpenGL and are after the best
performance possible. pyglet uses this module internally to implement its new sprite module and the
new text rendering module. The Graphics chapter describes this module in detail.

The pyglet.sprite module provide a fast, easy way to display 2D graphics on screen. Sprites can
be moved, rotated, scaled and made translucent. Using the batch features of the new graphics API,
multiple sprites can be drawn in one go very quickly. See Sprites for details.

The pyglet.image.load_animation function can load animated GIF images. These are returned as an
Animation, which exposes the individual image frames and timings. Animations can also be played
directly on a sprite in place of an image. The Animations chapter describes how to use them.

The pyglet.image.atlas module packs multiple images into larger textures for efficient rendering. The
pyglet.resource module uses this module for small images automatically, but you can use it directly
even if you're not making use of pyglet.resource. See Texture bins and atlases for details.

Images now have anchor_x and anchor_y attributes, which specify a point from which the image
should be drawn. The sprite module also uses the anchor point as the center of rotation.

Appendix: Migrating to pyglet 1.1

89

Textures have a get_transform method for retrieving a TextureRegion that refers to the same texture
data in video memory, but with optional horizontal or vertical flipping, or 90-degree rotation.

New text features
The pyglet.text module can render formatted text efficiently. A new class Label supercedes the old
pyglet.font.Text class (which is now actually implemented in terms of Label). The "Hello, World"
application can now be written:

window = pyglet.window.Window()
label = pyglet.text.Label('Hello, world',
 font_name='Times New Roman',
 font_size=36,
 x=window.width//2, y=window.height//2,
 halign='center', valign='center')

@window.event
def on_draw():
 window.clear()
 label.draw()

pyglet.app.run()

You can also display multiple fonts and styles within one label, with HTMLLabel:

label = pyglet.text.HTMLLabel('Hello, world!')

More advanced uses of the new text module permit applications to efficiently display large, scrolling,
formatted documents (for example, HTML files with embedded images), and to allow the user to
interactively edit text as in a WYSIWYG text editor.

Other new features
EventDispatcher now has a remove_handlers method which provides finer control over the event stack
than pop_handlers.

The @event decorator has been fixed so that it no longer overrides existing event handlers on the
object, which fixes the common problem of handling the on_resize event. For example, the following
now works without any surprises (in pyglet 1.0 this would override the default handler, which sets up
a default, necessary viewport and projection):

@window.event
def on_resize(width, height):
 pass

A variant of clock.schedule_interval, clock.schedule_interval_soft has been added. This is for
functions that need to be called periodically at a given interval, but do not need to schedule the period
immediately. Soft interval scheduling is used by the pyglet.media module to distribute the work of
decoding video and audio data over time, rather than stalling the CPU periodically. Games could use
soft interval scheduling to spread the regular computational requirements of multiple agents out over
time.

In pyglet 1.0, font.load attempted to match the font resolution (DPI) with the operating system's typical
behaviour. For example, on Linux and Mac OS X the default DPI was typically set at 72, and on
Windows at 96. While this would be useful for writing a word processor, it adds a burden on the
application developer to ensure their fonts work at arbitrary resolutions. In pyglet 1.1 the default DPI
is set at 96 across all platforms. It can still be overridden explicitly by the application if desired.

Appendix: Migrating to pyglet 1.1

90

Video sources in pyglet.media can now be stepped through frame-by-frame: individual image frames
can be extracted without needing to play back the video in realtime.

For a complete list of new features and bug fixes, see the CHANGELOG distributed with the source
distribution.

