Ehylables

Hierarchical datasets in Python

PyTables User Guide
Release 2.4.0

The PyTables Governance Team

July 20, 2012

]

CONTENTS

The PyTables Core Library 7
Introduction 9
I.1 Main Features e e e 10
1.2 The Object Tree o o v i e e e e e e e e e e e e e e e e e e e 11
Installation 17
2.1 Installation from sOUICe L e e e e 17
2.2 Binary installation (Windows) e e e e e e e e e e 21
Tutorials 23
3.1 Getting started L L e e e e e 23
3.2 Browsingthe objecttree o e e e e e e e e e 30
3.3 Commiting data to tables and arrayso e e e e e e 37
3.4 Multidimensional table cells and automatic sanity checks 0oL, 40
3.5 Using links for more convenient accesstonodes L. 45
3.6 Exercising the Undo/Redo feature 49
3.7 Usingenumerated tYPES . . . v v v v v i e 53
3.8 Dealing with nested structures intables e 56
3.9 Other examples in PyTables distribution L o oL, 61
Library Reference 63
4.1 tables variables and functions L e 63
42 TheFile Class o o i i e e e e e e e e e e 66
43 TheNodeclass o e e e e e e e e e 80
44 TheGroupclass e e e 83
4.5 TheLeafclass o e e e 88
4.6 TheTableclass o e e e e 91
477 The Array class L e e e e 110
4.8 The CArray class e e e 113
4.9 TheEArrayclass o o e e e e 114
410 The VLAITay Class v v v v v o i e 115
411 TheLinkclass o o o e e e e e 120
4.12 The Softlink class e e e e e e e e 121
4.13 The ExternalLink class oL e e e e e 121
4.14 The Unlmplemented class o . o o e e e e e 122
4.15 The Unknown class o o o i i i e e e e e 123
4.16 The AttributeSet class e e e e e 123
4.17 Declarative Classes e e e e e e e e e e e 125
418 Helper classes o v i i e e e e e e e e e e e 136

IT

4.19 The Expr class - a general-purpose expression evaluator
420 Exceptionsmodule L e e e e e e e e e e

Optimization tips

5.1 Understanding chunking L
5.2 Accelerating your searches e e e e e e e e
5.3 Compression iSSUES . . v v v v v v v e
54 UsingPsyco
5.5 Getting the most from the node LRU cache
5.6 Compacting your PyTables files e

Complementary modules

filenode - simulating a filesystem with PyTables

6.1 Whatis filenode? L e e
6.2 Findingafilenodenode e
6.3 filenode - simulating files inside PyTables oo
6.4 Complementary NOtES v v v v v v i e
6.5 Current imitations L. e e e e e e e e e e
6.6 filenode module reference L e e e e e

netcdf3 - a PyTables NetCDF3 emulation API (deprecated)

7.1 Whatisnetedf3? L e e e e e e
7.2 Using the tables.netcdf3 package L
7.3 tables.netcdf3 packagereference
7.4 Converting between true netCDF files and tables.netcdf3 files
7.5 tables.netcdf3 file structure oL L e
7.6 Sharing data in tables.netcdf3 files over the Internet with OPeNDAP
7.7 Differences between the Scientific.IO.NetCDF API and the tables.netcdf3 API

III Appendixes

8

9

10

11

12

13

Supported data types in PyTables
Condition Syntax

PyTables parameter files
10.1 Tunable parameters in parameters.Py. . . « . . v v v v v et e e e e e e e e e e e e e

Using nested record arrays (deprecated)

11.1 Introduction o e e e e e e e
11.2 NestedRecArray methods e e e e
11.3 NestedRecord objects e e

Utilities

12,1 ptdump . . . oo e e e e e e e e e e e
12.2 ptrepack L e e e e
12.3 nctohS . . o e

PyTables File Format

13.1 Mandatory attributes foraFile o
13.2 Mandatory attributes foraGroup e e
13.3 Optional attributes fora Group o o v i i e e e e e e e e
13.4 Mandatory attributes, storage layout and supported data types for Leaves

151
151
152
166
177
180
184

185

187
187
187
188
190
191
191

195
195
195
199
201
202
203
203

205
207
209

211
211

215
215
217
218

219
219
221
224

13.5 Optional attributes for Leaves

14 Bibliography

Index

1.1
1.2

3.1
32
33
34

5.1
52
53
54
5.5

5.6

5.7
5.8
59

5.10

5.11

5.12

5.13
5.14
5.15
5.16
5.17
5.18
5.19

5.20
5.21
5.22

LIST OF FIGURES

Figure 1: An HDF5 example with 2 subgroups, 2 tablesand 1 array. 13
Figure 2: A PyTables object treeexample. 15
Figure 1. The initial version of the data file for tutorial 1, with a view of the data objects. 29
Figure 2. The final version of the data file for tutorial 1. 41
Figure 3. General properties of the /detector/readout table. 42
Figure 4. Table hierarchy for tutorial 2. 46
Figure 1. Creation time per element for a 15 GB EArray and different chunksizes. 153
Figure 2. File sizes for a 15 GB EArray and different chunksizes. 154
Figure 3. Sequential access time per element for a 15 GB EArray and different chunksizes. . . . 155
Figure 4. Random access time per element for a 15 GB EArray and different chunksizes. 156
Figure 5. Times for non-indexed complex queries in a small table with 10 millions of rows: the

datafitsinmemory. 158
Figure 6. Times for non-indexed complex queries in a large table with 1 billion of rows: the data

doesnotfitinmemory. e e e 159
Figure 7. Times for indexing an Int32 and Float64 column. 161
Figure 8. Sizes for an index of a Float64 column with 1 billionof rows. 162

Figure 9. Times for complex queries with a cold cache (mean of 5 first random queries) for
different optimization levels. Benchmark made on a machine with Intel Core2 (64-bit) @ 3 GHz

processor with RAID-0 disk storage. 163
Figure 10. Times for complex queries with a cold cache (mean of 5 first random queries) for

different compressors. e e e e e e 164
Figure 11. Times for complex queries with a cold cache (mean of 5 first random queries) for

different disk storage (SSD vs spinning disks). oL 165
Figure 12. Times for complex queries with a cold cache (mean of 5 first random queries) for

unsorted and sorted tables. oL 167
Figure 13. Comparison between different compression libraries. 169
Figure 14. Comparison between different compression levelsof Zlib. 170
Figure 15. Writing tables with several compressors. 171
Figure 16. Selecting values in tables with several compressors. The file is not in the OS cache. . . 172
Figure 17. Selecting values in tables with several compressors. The file is in the OS cache. 173
Figure 18. Writing in tables with different levels of compression. 174
Figure 19. Selecting values in tables with different levels of compression. The file is in the OS

cache. L e 175
Figure 20. Comparison between different compression libraries with and without the shuffle filter.176
Figure 21. Writing with different compression libraries with and without the shuffle filter. 177
Figure 22. Reading with different compression libraries with the shuffle filter. The file is not in

OScache. e 178

PyTables User Guide, Release 2.4.0

5.23 Figure 23. Reading with different compression libraries with and without the shuffle filter. The

fileisinOScache. e 179
5.24 Figure 24. Writing tables with/without Psyco. 181
5.25 Figure 25. Reading tables with/without Psyco. 182

2 List of Figures

LIST OF TABLES

5.1 Retrieval speed and memory consumption depending on the number of nodes in LRU cache. 183

8.1 Data types supported for array elements and tables columns in PyTables. 208

PyTables User Guide, Release 2.4.0

Authors Francesc Alted, Ivan Vilata, Scott Prater, Vicent Mas, Tom Hedley, Antonio Valentino, Jeffrey
Whitaker, Anthony Scopatz, Josh Moore

Copyright © 2002, 2003, 2004 - Francesc Alted
© 2005, 2006, 2007 - Carabos Coop. V.
© 2008, 2009, 2010 - Francesc Alted
© 2011-2012 - PyTables maintainers

Date July 20, 2012

Version 2.4.0

Home Page http://www.pytables.org

4 List of Tables

http://www.pytables.org

PyTables User Guide, Release 2.4.0

Copyright Notice and Statement for PyTables User’s Guide

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

a. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

b. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

c. Neither the name of Francesc Alted nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

List of Tables 5

PyTables User Guide, Release 2.4.0

6 List of Tables

Part 1

The PyTables Core Library

CHAPTER
ONE

INTRODUCTION

La sabiduria no vale la pena si no es posible servirse de ella para inventar una nueva manera de preparar
los garbanzos.

[Wisdom isn’t worth anything if you can’t use it to come up with a new way to cook garbanzos.]
—Gabriel Garcia Marquez, A wise Catalan in “Cien afios de soledad”

The goal of PyTables is to enable the end user to manipulate easily data tables and array objects in a hierarchical struc-
ture. The foundation of the underlying hierarchical data organization is the excellent HDFS5 library (see [HDGF1]).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5 API, but only
to provide a flexible, very pythonic tool to deal with (arbitrarily) large amounts of data (typically bigger than available
memory) in tables and arrays organized in a hierarchical and persistent disk storage structure.

A table is defined as a collection of records whose values are stored in fixed-length fields. All records have the same
structure and all values in each field have the same data type. The terms fixed-length and strict data types may seem
to be a strange requirement for an interpreted language like Python, but they serve a useful function if the goal is to
save very large quantities of data (such as is generated by many data acquisition systems, Internet services or scientific
applications, for example) in an efficient manner that reduces demand on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables implements a special class so as to easily
define all its fields and other properties. PyTables also provides a powerful interface to mine data in tables. Records in
tables are also known in the HDF5 naming scheme as compound data types.

For example, you can define arbitrary tables in Python simply by declaring a class with named fields and type infor-
mation, such as in the following example:

class Particle(IsDescription):

name = StringCol (16) # l6-character String
idnumber = Int64Col() # signed 64-bit integer
ADCcount = UIntl6Col() # unsigned short integer
TDCcount = UInt8Col() # unsigned byte

grid_i = Int32Col () # integer

grid_j = Int32Col() # integer

A sub-structure (nested data-type)

class Properties(IsDescription):
pressure = Float32Col (shape=(2,3)) # 2-D float array (single-precision)
energy = Float64Col (shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large) collections of
them to a file for persistent storage. After that, the data can be retrieved and post-processed quite easily with PyTables
or even with another HDF5 application (in C, Fortran, Java or whatever language that provides a library to interface
with HDF5).

PyTables User Guide, Release 2.4.0

Other important entities in PyTables are array objects, which are analogous to tables with the difference that all of
their components are homogeneous. They come in different flavors, like generic (they provide a quick and fast way
to deal with for numerical arrays), enlargeable (arrays can be extended along a single dimension) and variable length
(each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of PyTables.

1.1

Main Features

PyTables takes advantage of the object orientation and introspection capabilities offered by Python, the powerful data
management features of HDFS, and NumPy’s flexibility and Numexpr’s high-performance manipulation of large sets
of objects organized in a grid-like fashion to provide these features:

Support for table entities: You can tailor your data adding or deleting records in your tables. Large numbers of
rows (up to 2**63, much more than will fit into memory) are supported as well.

Multidimensional and nested table cells: You can declare a column to consist of values having any number of
dimensions besides scalars, which is the only dimensionality allowed by the majority of relational databases.
You can even declare columns that are made of other columns (of different types).

Indexing support for columns of tables: Very useful if you have large tables and you want to quickly look up for
values in columns satisfying some criteria.

Support for numerical arrays: NumPy (see [NUMPY]), Numeric (see [NUMERIC]), and numarray (see [NU-
MARRAYY]) arrays can be used as a useful complement of tables to store homogeneous data.

Enlargeable arrays: You can add new elements to existing arrays on disk in any dimension you want (but
only one). Besides, you are able to access just a slice of your datasets by using the powerful extended slicing
mechanism, without need to load all your complete dataset in memory.

Variable length arrays: The number of elements in these arrays can vary from row to row. This provides a lot
of flexibility when dealing with complex data.

Supports a hierarchical data model: Allows the user to clearly structure all data. PyTables builds up an object
tree in memory that replicates the underlying file data structure. Access to objects in the file is achieved by
walking through and manipulating this object tree. Besides, this object tree is built in a lazy way, for efficiency
purposes.

User defined metadata: Besides supporting system metadata (like the number of rows of a table, shape, flavor,
etc.) the user may specify arbitrary metadata (as for example, room temperature, or protocol for IP traffic that
was collected) that complement the meaning of actual data.

Ability to read/modify generic HDFYS files: PyTables can access a wide range of objects in generic HDFS5 files,
like compound type datasets (that can be mapped to Table objects), homogeneous datasets (that can be mapped
to Array objects) or variable length record datasets (that can be mapped to VLArray objects). Besides, if a
dataset is not supported, it will be mapped to a special Unlmplemented class (see The Unlmplemented class),
that will let the user see that the data is there, although it will be unreachable (still, you will be able to access
the attributes and some metadata in the dataset). With that, PyTables probably can access and modify most of
the HDFS files out there.

Data compression: Supports data compression (using the Zlib, LZO, bzip2 and Blosc compression libraries) out
of the box. This is important when you have repetitive data patterns and don’t want to spend time searching for
an optimized way to store them (saving you time spent analyzing your data organization).

High performance I/0: On modern systems storing large amounts of data, tables and array objects can be read
and written at a speed only limited by the performance of the underlying I/O subsystem. Moreover, if your data
is compressible, even that limit is surmountable!

10

Chapter 1. Introduction

PyTables User Guide, Release 2.4.0

* Support of files bigger than 2 GB: PyTables automatically inherits this capability from the underlying HDF5
library (assuming your platform supports the C long long integer, or, on Windows, __int64).

* Architecture-independent: PyTables has been carefully coded (as HDFS itself) with little-endian/big-endian byte
ordering issues in mind. So, you can write a file on a big-endian machine (like a Sparc or MIPS) and read it on
other little-endian machine (like an Intel or Alpha) without problems. In addition, it has been tested successfully
with 64 bit platforms (Intel-64, AMD-64, PowerPC-G5, MIPS, UltraSparc) using code generated with 64 bit
aware compilers.

1.2 The Object Tree

The hierarchical model of the underlying HDFS library allows PyTables to manage tables and arrays in a tree-like
structure. In order to achieve this, an object tree entity is dynamically created imitating the HDFS structure on disk.
The HDFS5 objects are read by walking through this object tree. You can get a good picture of what kind of data is kept
in the object by examining the metadata nodes.

The different nodes in the object tree are instances of PyTables classes. There are several types of classes, but the most
important ones are the Node, Group and Leaf classes. All nodes in a PyTables tree are instances of the Node class. The
Group and Leaf classes are descendants of Node. Group instances (referred to as groups from now on) are a grouping
structure containing instances of zero or more groups or leaves, together with supplementary metadata. Leaf instances
(referred to as leaves) are containers for actual data and can not contain further groups or leaves. The Table, Array,
CArray, EArray, VLArray and UnImplemented classes are descendants of Leaf, and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix filesystem,
i.e. anode (file or directory) is always a child of one and only one group (directory), its parent group '. Inside of
that group, the node is accessed by its name. As is the case with Unix directories and files, objects in the object tree
are often referenced by giving their full (absolute) path names. In PyTables this full path can be specified either as
string (such as ‘/subgroup2/table3’, using / as a parent/child separator) or as a complete object path written in a format
known as the natural name schema (such as file.root.subgroup2.table3).

Support for natural naming is a key aspect of PyTables. It means that the names of instance variables of the node
objects are the same as the names of its children ?. This is very Pythonic and intuitive in many cases. Check the
tutorial Reading (and selecting) data in a table for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. The metadata (i.e.
special data that describes the structure of the actual data) is loaded only when the user want to access to it (see later).
Moreover, the actual data is not read until she request it (by calling a method on a particular node). Using the object
tree (the metadata) you can retrieve information about the objects on disk such as table names, titles, column names,
data types in columns, numbers of rows, or, in the case of arrays, their shapes, typecodes, etc. You can also search
through the tree for specific kinds of data then read it and process it. In a certain sense, you can think of PyTables as a
tool that applies the same introspection capabilities of Python objects to large amounts of data in persistent storage.

It is worth noting that PyTables sports a metadata cache system that loads nodes lazily (i.e. on-demand), and unloads
nodes that have not been used for some time (following a Least Recently Used schema). It is important to stress out
that the nodes enter the cache after they have been unreferenced (in the sense of Python reference counting), and
that they can be revived (by referencing them again) directly from the cache without performing the de-serialization
process from disk. This feature allows dealing with files with large hierarchies very quickly and with low memory
consumption, while retaining all the powerful browsing capabilities of the previous implementation of the object tree.
See [OPTIM] for more facts about the advantages introduced by this new metadata cache system.

To better understand the dynamic nature of this object tree entity, let’s start with a sample PyTables script (which you
can find in examples/objecttree.py) to create an HDFS5 file:

! PyTables does not support hard links - for the moment.
2 1 got this simple but powerful idea from the excellent Objectify module by David Mertz (see [MERTZ]).

1.2. The Object Tree 11

PyTables User Guide, Release 2.4.0

from tables import =

class Particle(IsDescription):

identity = StringCol (itemsize=22, dflt=" ", pos=0) # character String
idnumber = Intl6Col(dflt=1, pos = 1) # short integer
speed = Float32Col(dflt=1, pos = 2) # single-precision

Open a file in "w"rite mode
fileh = openFile("objecttree.h5", mode = "w")

Get the HDF5 root group
root = fileh.root

Create the groups
groupl = fileh.createGroup (root, "groupl")
group2 = fileh.createGroup(root, "group2")

Now, create an array in root group
arrayl = fileh.createArray(root, "arrayl", ["string", "array"], "String array")

Create 2 new tables in groupl
tablel fileh.createTable (groupl, "tablel", Particle)
table2 fileh.createTable (" /group2", "table2", Particle)

Create the last table in group?2
array2 = fileh.createArray("/groupl", "array2", [1,2,3,4])

Now, fill the tables

for table in (tablel, table2):
Get the record object associated with the table:
row = table.row

Fill the table with 10 records
for i in xrange(10):
First, assign the values to the Particle record

row[’identity’] = ’'This is particle: %2d’ % (i)
row[’ idnumber’] = i
row[’speed’] =1 = 2.

This injects the Record values
row.append ()

Flush the table buffers
table.flush()

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDFS file called objecttree.h5 with the structure that appears in Figure 1 *. When
the file is created, the metadata in the object tree is updated in memory while the actual data is saved to disk. When
you close the file the object tree is no longer available. However, when you reopen this file the object tree will be
reconstructed in memory from the metadata on disk (this is done in a lazy way, in order to load only the objects that
are required by the user), allowing you to work with it in exactly the same way as when you originally created it.

In Figure2, you can see an example of the object tree created when the above objecttree.h5 file is read (in fact, such
an object tree is always created when reading any supported generic HDFS file). It is worthwhile to take your time to

3 We have used ViTables (see /VITABLES]) in order to create this snapshot.

12 Chapter 1. Introduction

PyTables User Guide, Release 2.4.0

* ViTables 2.0 2

File Node Query Windows Tools Help
1 EQEE =4 1lhx FY R
Tree of databases k| tablel
':‘”ﬁ? objecttree.h5 identity idnumber |speed [
- # arrayl 1 'This is particie: 0' :0 0.0 |
B[4 group2
@ table2 2|'This is particle: 1' |1 2.0
= [# groupl 3| 'This is particle: 2' 2 4.0
888 array2 4|'This is particle: 3' 3 6.0
- [& Query results 5| 'This is particle: 4' 4 8.0 E
4 i | <
1 1
1|'string’ 1|1
>|'array’ 5|2
3|3
4|4
Al TIgNLs reservea. -
Creating the Query results file... =
OK! =
objecttree.h5-=/groupl/tablel A

Figure 1.1: Figure 1: An HDF5 example with 2 subgroups, 2 tables and 1 array.

1.2. The Object Tree 13

PyTables User Guide, Release 2.4.0

understand it *. It will help you understand the relationships of in-memory PyTables objects.

4 Bear in mind, however, that this diagram is not a standard UML class diagram; it is rather meant to show the connections between the PyTables
objects and some of its most important attributes and methods.

14 Chapter 1. Introduction

PyTables User Guide, Release 2.4.0

fileObject(File)

+name: string = "objecttree.h5"
+root: Group = rootGroupObject

+createGroup (where:Group,name:string): Group
+createTable(where:Group,name:string,description:IsDescription): Table
+createArray(where:Group,name:string,object:array): Array

+['identity']: string
+['idnumber']: intlé
+['speed']: float32
+nrow: int64

+append ()

+close()
rootGroupObject(Group)
+_v_name: string = "/"
+groupl: Group = groupObjectl
+group2: Group = groupObject2
+arrayl: Array = arrayObjectl
arrayObject1(Array)
+name: string = "arrayl"
+read(): array
groupObject1(Group) groupObject2(Group)
+_v_name: string = "groupl” +_v_name: string = "group2"
+tablel: Table = tableObjectl +table2: Table = tableObject2
+array2: Array = arrayObject2
- tableObject2(Table
tableObject1(Table) ject2(Table)
- - — - +name: string = "table2"
*name: string = FaDIEI +row: Row = rowObject2
+row: Row = rowObjectl
+read(): table
+read(): table
arrayObject2(Array)
+name: string = "array2")
: rowObject2(Row
rowObject1(Row) +read(): array) ()

+['idnumber']: intlé
+['speed']: int32
+nrow: int64

+['identity']: string

+append ()

Figure 1.2: Figure 2: A PyTables object tree example.

1.2. The Object Tree

15

PyTables User Guide, Release 2.4.0

16 Chapter 1. Introduction

CHAPTER
TWO

INSTALLATION

Make things as simple as possible, but not any simpler.
—Albert Einstein

The Python Distutils are used to build and install PyTables, so it is fairly simple to get the application up and running.
If you want to install the package from sources you can go on reading to the next section.

However, if you are running Windows and want to install precompiled binaries, you can jump straight to Binary
installation (Windows). In addition, binary packages are available for many different Linux distributions, MacOSX
and other Unices. Just check the package repository for your preferred operating system.

2.1 Installation from source

These instructions are for both Unix/MacOS X and Windows systems. If you are using Windows, it is assumed that
you have a recent version of MS Visual C++ compiler installed. A GCC compiler is assumed for Unix, but other
compilers should work as well.

Extensions in PyTables have been developed in Cython (see /CYTHON]) and the C language. You can rebuild every-
thing from scratch if you have Cython installed, but this is not necessary, as the Cython compiled source is included
in the source distribution.

To compile PyTables you will need a recent version of Python, the HDF5 (C flavor) library from
http://www.hdfgroup.org, and the NumPy (see /NUMPY]) and Numexpr (see [NUMEXPR]) packages. Although
you won’t need numarray (see [NUMARRAY]) or Numeric (see [NUMERIC]) in order to compile PyTables, they are
supported; you only need a reasonably recent version of them (>= 1.5.2 for numarray and >= 24.2 for Numeric) if
you plan on using them in your applications. If you already have numarray and/or Numeric installed, the test driver
module will detect them and will run the tests for numarray and/or Numeric automatically.

Warning: The use of numarray and Numeric in PyTables is now deprecated.
Support for these packages will be dropped in future versions.

2.1.1 Prerequisites

First, make sure that you have
* Python >=2.4 (Python 3.x is not supported currently),
* HDF5 >=1.8.4,
e NumPy >=1.4.1,

17

http://www.hdfgroup.org
http://www.python.org
http://www.hdfgroup.org/HDF5
http://numpy.scipy.org

PyTables User Guide, Release 2.4.0

e Numexpr >= 1.4.1 and
e Cython >=0.13

installed (for testing purposes, we are using HDF5 1.8.9, NumPy 1.6.1 and Numexpr 1.4.2 currently). If you don’t,
fetch and install them before proceeding.

Note: Users of Python 2.4.x also need to install ctypes

Note: Currently PyTables does not use setuptools so do not expect that the setup.py script automatically install all
packages PyTables depends on.

Compile and install these packages (but see Windows prerequisites for instructions on how to install precompiled
binaries if you are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install the Zlib (see [ZLIB]), which is also
required by HDF5 as well. You may also optionally install the excellent LZO compression library (see /[LZO] and
Compression issues). The high-performance bzip2 compression library can also be used with PyTables (see [BZIP2]).
The Blosc (see [BLOSC]) compression library is embedded in PyTables, so you don’t need to install it separately.

Unix

setup.py will detect HDFS, LZO, or bzip2 libraries and include files under /usr or /usr/local,; this
will cover most manual installations as well as installations from packages. If setup.py can not find
libhdf5, 1libhdf5 (or liblzo, or libbz2 that you may wish to use) or if you have several versions of a library
installed and want to use a particular one, then you can set the path to the resource in the environment,
by setting the values of the HDF5_DIR, LZO_DIR, or BZIP2_DIR environment variables to the path to
the particular resource. You may also specify the locations of the resource root directories on the setup.py
command line. For example:

——hdf5=/stuff/hdf5-1.8.9
——lzo=/stuff/1lzo-2.02
——bzip2=/stuff/bzip2-1.0.5

If your HDFS5 library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:
—-1flags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.8.9/1ib"

You may also want to try setting the LD_LIBRARY_PATH environment variable to point to the directory
where the shared libraries can be found. Check your compiler and linker documentation as well as the

Python Distutils documentation for the correct syntax or environment variable names. It is also possible
to link with specific libraries by setting the LIBS environment variable:

LIBS="hdf5-1.8.9 nsl"

Finally, you can give additional flags to your compiler by passing them to the ——cflags flag:
——cflags="-w -03 -msse2"

In the above case, a gcc compiler is used and you instructed it to suppress all the warnings and set the
level 3 of optimization. Finally, if you are running Linux in 32-bit mode, and you know that your CPU has

support for SSE2 vector instructions, you may want to pass the -msseZ2 flag that will accelerate Blosc
operation.

Windows

18 Chapter 2. Installation

http://code.google.com/p/numexpr
http://cython.org
http://www.hdfgroup.org/HDF5
http://numpy.scipy.org
http://code.google.com/p/numexpr
http://pypi.python.org/pypi/ctypes
http://pypi.python.org/pypi/setuptools

PyTables User Guide, Release 2.4.0

You can get ready-to-use Windows binaries and other development files for most of the following li-
braries from the GnuWin32 project (see [GNUWIN32]). In case you cannot find the LZO binaries in the
GnuWin32 repository, you can find them at http://sourceforge.net/projects/pytables/files/lzo-win. Once
you have installed the prerequisites, setup.py needs to know where the necessary library stub (.lib) and
header (.h) files are installed. You can set the path to the include and dll directories for the HDF5 (manda-
tory) and LZO or BZIP2 (optional) libraries in the environment, by setting the values of the HDF5_DIR,
LZO_DIR,or BZIP2_DIR environment variables to the path to the particular resource. For example:

set HDF5_DIR=c:\\stuff\\hdf5-1.8.5-32bit-VS2008-IVF101\\release
set LZO_DIR=c:\\Program Files (x86)\\GnuWin32
set BZIP2_DIR=c:\\Program Files (x86)\\GnuWin32

You may also specify the locations of the resource root directories on the setup.py command line. For
example:

——hdf5=c:\\stuff\\hdf5-1.8.5-32bit-VS2008-IVF101l\\release
——lzo=c:\\Program Files (x86)\\GnuWin32
——bzip2=c:\\Program Files (x86)\\GnuWin32

Development version (Unix)

Installation of the development version is very similar to installation from a source package (described
above). There are two main differences:

1. sources have to be downloaded from the PyTables source repository hosted on GitHub. Git (see
[GIT]) is used as VCS. The following command create a local copy of latest development version
sources:

$ git clone https://github.com/PyTables/PyTables.git

2. sources in the git repository do not include pre-built documentation and pre-generated C code of
Cython extension modules. To be able to generate them, both Cython (see /CYTHON]) and sphinx
>=1.0.7 (see [SPHINX]) are mandatory prerequisites.

2.1.2 PyTables package installation
Once you have installed the HDFS5 library and the NumPy and Numexpr packages, you can proceed with the PyTables
package itself.

1. Run this command from the main PyTables distribution directory, including any extra command line arguments
as discussed above:

$ python setup.py build_ext —--inplace

2. To run the test suite, execute any of these commands.
Unix In the sh shell and its variants:

$ env PYTHONPATH=. python tables/tests/test_all.py

or, if you prefer:

$ env PYTHONPATH=. python -c "import tables; tables.test ()"

Note: the syntax used above overrides original contents of the PYTHONPATH environment variable. If
this is not the desired behaviour and the user just wants to add some path before existing ones, then the
safest syntax to use is the following:

2.1. Installation from source 19

http://sourceforge.net/projects/pytables/files/lzo-win
https://github.com/PyTables/PyTables
https://github.com

PyTables User Guide, Release 2.4.0

$ env PYTHONPATH=.${PYTHONPATH:+:$PYTHONPATH} python tables/tests/test_all.py

Please refer to your sh documentation for details.

Windows
Open the command prompt (cmd.exe or command.com) and type:

> set PYTHONPATH=.; $PYTHONPATHS%
> python tables\\tests\\test_all.py

or:

> set PYTHONPATH=.; $PYTHONPATH%
> python -c "import tables; tables.test ()"

Both commands do the same thing, but the latter still works on an already installed PyTables (so, there is no
need to set the PYTHONPATH variable for this case). However, before installation, the former is recommended
because it is more flexible, as you can see below. If you would like to see verbose output from the tests simply
add the —v flag and/or the word verbose to the first of the command lines above. You can also run only the tests
in a particular test module. For example, to execute just the test_types test suite, you only have to specify it:

change to backslashes for win
$ python tables/tests/test_types.py -v

You have other options to pass to the test_all.py driver:

change to backslashes for win
$ python tables/tests/test_all.py --heavy

The command above runs every test in the test unit. Beware, it can take a lot of time, CPU and memory resources
to complete:

change to backslashes for win
$ python tables/tests/test_all.py —--print-versions

The command above shows the versions for all the packages that PyTables relies on. Please be sure to include
this when reporting bugs:

only under Linux 2.6.x
$ python tables/tests/test_all.py —--show-memory

The command above prints out the evolution of the memory consumption after each test module completion.
It’s useful for locating memory leaks in PyTables (or packages behind it). Only valid for Linux 2.6.x kernels.
And last, but not least, in case a test fails, please run the failing test module again and enable the verbose output:

$ python tables/tests/test_<module>.py -v verbose
and, very important, obtain your PyTables version information by using the ——print-versions flag (see

above) and send back both outputs to developers so that we may continue improving PyTables. If you run into
problems because Python can not load the HDFS5 library or other shared libraries.

Unix

Try setting the LD_LIBRARY_PATH or equivalent environment variable to point to the directory
where the missing libraries can be found.

Windows

20

Chapter 2. Installation

PyTables User Guide, Release 2.4.0

Put the DLL libraries (hdf5dll.dll and, optionally, 1zo1.dll and bzip2.dll) in a directory listed in your
PATH environment variable. The setup.py installation program will print out a warning to that effect
if the libraries can not be found.

3. To install the entire PyTables Python package, change back to the root distribution directory and run the fol-
lowing command (make sure you have sufficient permissions to write to the directories where the PyTables files
will be installed):

$ python setup.py install

Of course, you will need super-user privileges if you want to install PyTables on a system-protected area. You
can select, though, a different place to install the package using the ——prefix flag:

$ python setup.py install —--prefix="/home/myuser/mystuff"

Have in mind, however, that if you use the ——prefix flag to install in a non-standard place, you should
properly setup your PYTHONPATH environment variable, so that the Python interpreter would be able to find
your new PyTables installation. You have more installation options available in the Distutils package. Issue a:

$ python setup.py install —--help

for more information on that subject.

That’s it! Now you can skip to the next chapter to learn how to use PyTables.

2.2 Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it useful for
instructions on how to install binary prerequisites even if you want to compile PyTables itself on Windows.

Warning: Since PyTables 2.2b3, Windows binaries are distributed with SSE2 instructions enabled. If your
processor does not have support for SSE2, then you will not be able to use these binaries.

2.2.1 Windows prerequisites

First, make sure that you have Python 2.4, NumPy 1.4.1 and Numexpr 1.4.1 or higher installed (PyTables binaries
have been built using NumPy 1.5 and Numexpr 1.4.1). The binaries already include DLLs for HDF5 (1.8.4, 1.8.9),
zlib1 (1.2.3), szlib (2.0, uncompression support only) and bzip2 (1.0.5) for Windows (2.8.0). The LZO DLL can’t be
included because of license issues (but read below for directives to install it if you want so).

To enable compression with the optional LZO library (see the Compression issues for hints about how it may
be used to improve performance), fetch and install the LZO from http://sourceforge.net/projects/pytables/files/1zo-
win (choose v1l.x for Windows 32-bit and v2.x for Windows 64-bit). Normally, you will only need to fetch that
package and copy the included 1zo1.dll/1zo2.dll file in a directory in the PATH environment variable (for example
CAWINDOWS\SYSTEM) or python_installation_path\Lib\site-packages\tables (the last directory may not exist yet,
so if you want to install the DLL there, you should do so after installing the PyTables package), so that it can be found
by the PyTables extensions.

Please note that PyTables has internal machinery for dealing with uninstalled optional compression libraries, so, you
don’t need to install the LZO dynamic library if you don’t want to.

2.2.2 PyTables package installation

Download the tables-<version>.win32-py<version>.exe file and execute it.

2.2. Binary installation (Windows) 21

http://sourceforge.net/projects/pytables/files/lzo-win
http://sourceforge.net/projects/pytables/files/lzo-win

PyTables User Guide, Release 2.4.0

You can (and you should) test your installation by running the next commands:

>>> import tables
>>> tables.test ()

on your favorite python shell. If all the tests pass (possibly with a few warnings, related to the potential unavailability
of LZO 1ib) you already have a working, well-tested copy of PyTables installed! If any test fails, please copy the
output of the error messages as well as the output of:

>>> tables.print_versions ()

and mail them to the developers so that the problem can be fixed in future releases.

You can proceed now to the next chapter to see how to use PyTables.

22 Chapter 2. Installation

CHAPTER
THREE

TUTORIALS

Seras la clau que obre tots els panys, seras la llum, la llum il.limitada, seras confi on 1’aurora comenca,
seras forment, escala il.luminada!

—Lyrics: Vicent Andrés i Estellés. Music: Ovidi Montllor, Toti Soler, M’aclame a tu

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand PyTables’
main features. If you would like more information about some particular instance variable, global function, or method,
look at the doc strings or go to the library reference in Library Reference. If you are reading this in PDF or HTML
formats, follow the corresponding hyperlink near each newly introduced entity.

Please note that throughout this document the terms column and field will be used interchangeably, as will the terms
row and record.

3.1 Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. a table) into a
file. Then we will select some of the data in the table using Python cuts and create NumPy arrays to store this selection
as separate objects in a tree.

In examples/tutoriall-1.py you will find the working version of all the code in this section. Nonetheless, this tutorial
series has been written to allow you reproduce it in a Python interactive console. I encourage you to do parallel testing
and inspect the created objects (variables, docs, children objects, etc.) during the course of the tutorial!

3.1.1 Importing tables objects

Before starting you need to import the public objects in the tables package. You normally do that by executing:

>>> import tables

This is the recommended way to import tables if you don’t want to pollute your namespace. However, PyTables has a
contained set of first-level primitives, so you may consider using the alternative:

>>> from tables import =*

If you are going to work with NumPy arrays (and normally, you will) you will also need to import functions from the
numpy package. So most PyTables programs begin with:

>>> import tables # but in this tutorial we use "from tables import \="
>>> import numpy

23

PyTables User Guide, Release 2.4.0

3.1.2 Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data retrieved from
it. You need first to define the table, the number of columns it has, what kind of object is contained in each column,
and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and an ADC
(Analogical to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields in our record object
called TDCcount and ADCcount. We also want to save the grid position in which the particle has been detected, so
we will add two new fields called grid_i and grid_j. Our instrumentation also can obtain the pressure and energy of
the particle. The resolution of the pressure-gauge allows us to use a single-precision float to store pressure readings,
while the energy value will need a double-precision float. Finally, to track the particle we want to assign it a name to
identify the kind of the particle it is and a unique numeric identifier. So we will add two more fields: name will be
a string of up to 16 characters, and idnumber will be an integer of 64 bits (to allow us to store records for extremely
large numbers of particles).

Having determined our columns and their types, we can now declare a new Particle class that will contain all this
information:

>>> from tables import =*
>>> class Particle(IsDescription):

name = StringCol (16) # l6-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UIntl6Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte

grid_1i = Int32Col () # 32-bit integer

grid_j = Int32Col() # 32-bit integer

pressure = Float32Col() # float (single-precision)
energy = Float64Col() # double (double-precision)

N
This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As its value
you assign an instance of the appropriate Col subclass, according to the kind of column defined (the data type, the

length, the shape, etc). See the The Col class and its descendants for a complete description of these subclasses. See
also Supported data types in PyTables for a list of data types supported by the Col constructor.

From now on, we can use Particle instances as a descriptor for our detector data table. We will see later on how to pass
this object to construct the table. But first, we must create a file where all the actual data pushed into our table will be
saved.

3.1.3 Creating a PyTables file from scratch

Use the top-level openFile () function to create a PyTables file:

>>> h5file = openFile("tutoriall.h5", mode = "w", title = "Test file")
openFile () is one of the objects imported by the *from tables import = statement. Here, we are saying
that we want to create a new file in the current working directory called “tutoriall.h5” in “w”rite mode and with an

descriptive title string (“Test file”). This function attempts to open the file, and if successful, returns the File (see The
File Class) object instance h5file. The root of the object tree is specified in the instance’s root attribute.

3.1.4 Creating a new group

Now, to better organize our data, we will create a group called detector that branches from the root node. We will save
our particle data table in this group:

24 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

>>> group = h5file.createGroup("/", ’'detector’, ’'Detector information’)

Here, we have taken the File instance h5file and invoked its File.createGroup () method to create a new group
called detector branching from “/” (another way to refer to the hS5file.root object we mentioned above). This will
create a new Group (see The Group class) object instance that will be assigned to the variable group.

3.1.5 Creating a new table

Let’s now create a Table (see The Table class) object as a branch off the newly-created group. We do that by calling
the File.createTable () method of the h5file object:

>>> table = h5file.createTable(group, ’'readout’, Particle, "Readout example')

We create the Table instance under group. We assign this table the node name “readout”. The Particle class declared
before is the description parameter (to define the columns of the table) and finally we set “Readout example” as the
Table title. With all this information, a new Table instance is created and assigned to the variable table.

If you are curious about how the object tree looks right now, simply print the File instance variable h5file, and examine
the output:

>>> print h5file

tutoriall.hb5 (File) ’Test file’

Last modif.: ’'Wed Mar 7 11:06:12 2007’

Object Tree:

/ (RootGroup) ’Test file’

/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

As you can see, a dump of the object tree is displayed. It’s easy to see the Group and Table objects we have just
created. If you want more information, just type the variable containing the File instance:

>>> h5file
File(filename='"tutoriall.h5’, title=’Test file’, mode=’w’, rootUEP=’/’, filters=Filters (complevel=0,
/ (RootGroup) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’
description := {
"ADCcount": UIntléCol (shape=(), dflit=0, pos=0),
"TDCcount": UInt8Col (shape=(), dflt=0, pos=1),
"energy": Floaté64Col (shape=(), dflt=0.0, pos=2),
"grid_1i": Int32Col (shape=(), dflt=0, pos=3),
"grid_j": Int32Col (shape=(), dflt=0, pos=4),
"idnumber": Int64Col (shape=(), dflt=0, pos=5),
"name": StringCol (itemsize=16, shape=(), dflt=’’, pos=6),
"pressure": Float32Col (shape=(), dflt=0.0, pos=7)}
byteorder := ’1little’
chunkshape := (87,)

More detailed information is displayed about each object in the tree. Note how Particle, our table descriptor class, is
printed as part of the readout table description information. In general, you can obtain much more information about
the objects and their children by just printing them. That introspection capability is very useful, and I recommend that
you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to the Row (see The Row class)
instance of this table instance:

>>> particle = table.row

3.1. Getting started 25

PyTables User Guide, Release 2.4.0

The row attribute of table points to the Row instance that will be used to write data rows into the table. We write
data simply by assigning the Row instance the values for each row as if it were a dictionary (although it is actually an
extension class), using the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange (10):

particle[’name’] = ’"Particle: $6d’ % (1)
particle[’TDCcount’] = i % 256
particle[’ADCcount’] = (1 * 256) % (1 << 16)
particle[’grid _i"] = 1

particle[’grid_7’] 10 - i
particle[’pressure’] = float (i*1i)
particle[’energy’] float (particle[’pressure’] ** 4)
particle[’ idnumber’] = i * (2 »x 34)

Insert a new particle record
particle.append()

X

=

55
This code should be easy to understand. The lines inside the loop just assign values to the different columns in the
Row instance particle (see The Row class). A call to its append() method writes this information to the table I/O buffer.

After we have processed all our data, we should flush the table’s I/O buffer if we want to write all this data to disk. We
achieve that by calling the table.flush() method:

>>> table.flush()

Remember, flushing a table is a very important step as it will not only help to maintain the integrity of your file, but
also will free valuable memory resources (i.e. internal buffers) that your program may need for other things.

3.1.6 Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we are
interested in. See the example below:

>>> table = h5file.root.detector.readout

>>> pressure = [x['pressure’] for x in table.iterrows() if x[’TDCcount’] > 3 and 20 <= x[’'pressure’]
>>> pressure

[25.0, 36.0, 49.0]

The first line creates a “shortcut” to the readout table deeper on the object tree. As you can see, we use the natural
naming schema to access it. We also could have used the h5file.getNode() method, as we will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows in table as they are
provided by the Table.iterrows () iterator. The iterator returns values until all the data in table is exhausted.
These rows are filtered using the expression:

X[TDCcount’] > 3 and 20 <= x[’pressure’] < 50
So, we are selecting the values of the pressure column from filtered records to create the final list and assign it to
pressure variable.

We could have used a normal for loop to accomplish the same purpose, but I find comprehension syntax to be more
compact and elegant.

PyTables do offer other, more powerful ways of performing selections which may be more suitable if you have very
large tables or if you need very high query speeds. They are called in-kernel and indexed queries, and you can use
them through Table.where () and other related methods.

Let’s use an in-kernel selection to query the name column for the same set of cuts:

26 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

>>> names = [x['name’] for x in table.where (""" (TDCcount > 3) & (20 <= pressure) & (pressure < 50)"

>>> names
[’Particle: 57, ’Particle: 6’7, ’Particle: 77]

In-kernel and indexed queries are not only much faster, but as you can see, they also look more compact, and are
among the greatests features for PyTables, so be sure that you use them a lot. See Condition Syntax and Accelerating
your searches for more information on in-kernel and indexed selections.

That’s enough about selections for now. The next section will show you how to save these selected results to a file.

3.1.7 Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new group columns branching
off the root group. Afterwards, under this group, we will create two arrays that will contain the selected data. First,
we create the group:

>>> gcolumns = h5file.createGroup(h5file.root, "columns", "Pressure and Name'")

Note that this time we have specified the first parameter using natural naming (h5file.root) instead of with an absolute
path string (/7).

Now, create the first of the two Array objects we’ve just mentioned:

>>> h5file.createArray(gcolumns, ’'pressure’, array(pressure),
"Pressure column selection")
/columns/pressure (Array(3,)) ’Pressure column selection’
atom := Floaté4Atom(shape=(), dflt=0.0)
maindim := 0
flavor := ’"numpy’
byteorder := ’little’
chunkshape := None

We already know the first two parameters of the File.createArray () methods (these are the same as the first
two in createTable): they are the parent group where Array will be created and the Array instance name. The third
parameter is the object we want to save to disk. In this case, it is a NumPy array that is built from the selection list we
created before. The fourth parameter is the fitle.

Now, we will save the second array. It contains the list of strings we selected before: we save this object as-is, with no
further conversion:

>>> h5file.createArray(gcolumns, ’name’, names, "Name column selection™)
/columns/name (Array(3,)) ’Name column selection’

atom := StringAtom(itemsize=16, shape=(), dflt=’")

maindim := 0

flavor := ’python’

byteorder := ’‘irrelevant’

chunkshape := None

As you can see, File.createArray () accepts names (which is a regular Python list) as an object parameter.
Actually, it accepts a variety of different regular objects (see createArray ()) as parameters. The flavor attribute
(see the output above) saves the original kind of object that was saved. Based on this flavor, PyTables will be able to
retrieve exactly the same object from disk later on.

Note that in these examples, the createArray method returns an Array instance that is not assigned to any variable.
Don’t worry, this is intentional to show the kind of object we have created by displaying its representation. The Array
objects have been attached to the object tree and saved to disk, as you can see if you print the complete object tree:

3.1. Getting started 27

PyTables User Guide, Release 2.4.0

>>> print h5file

tutoriall.hb5 (File) ’Test file’

Last modif.: ’'Wed Mar 7 19:40:44 2007’

Object Tree:

/ (RootGroup) ’Test file’

/columns (Group) ’Pressure and Name’

/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’‘Readout example’

3.1.8 Closing the file and looking at its content

To finish this first tutorial, we use the close method of the h5file File object to close the file before exiting Python:

>>> h5file.close()
>>> D

5

You have now created your first PyTables file with a table and two arrays. You can examine it with any generic HDF5
tool, such as hSdump or h5ls. Here is what the tutoriall.h5 looks like when read with the h5Is program.

$ h51ls —-rd tutoriall.h5

/columns Group
/columns/name Dataset {3}
Data:
(0) "particle: 5", "Particle: 6", "Particle: 7"
/columns/pressure Dataset {3}
Data:
(0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}
Data:
(o) {0, 0, 0, 0, 10, 0, "Particle: o", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: ", 1%,
(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4m, 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7"v, 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the output as displayed by the “ptdump” PyTables utility (located in utils/ directory).

$ ptdump tutoriall.h5

/ (RootGroup) ’'Test file’

/columns (Group) ’Pressure and Name’

/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’'Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’'Readout example’

You can pass the —v or —d options to ptdump if you want more verbosity. Try them out!

Also, in Figure 1, you can admire how the tutoriall1.h5 looks like using the ViTables graphical interface.

28 Chapter 3

. Tutorials

http://vitables.org

PyTables User Guide, Release 2.4.0

* ViTables 2.0 &
File Node Query Windows Tools Help

1 E@QEB =& H1ihx TV &%

Tree of databases i eado Heado E ple
E’lﬁ? tqtoriall.hS ADCcount |TDCcount |energy grid_i grid j =
_ & [columns 1|0 0 0.0 0 10
- B [# detector 3/512 2 256.0 2 8
; [readout
Query results 4 768 3 65610 3 7
5(1024 4 65536.0 4 6 E

Hipressure ...

1/25.0 1 'Particle: 5'
2/36.0 2 |'Particle: 6'
3/49.0 | 3|'Particle: 7'

Al TIgNLs reservea.

Creating the Query results file...

OK!

/home/faltet/PyTables/pytables/trunk/examples/tutoriall.h5-=>/columns/name A

Figure 3.1: Figure 1. The initial version of the data file for tutorial 1, with a view of the data objects.

3.1. Getting started 29

PyTables User Guide, Release 2.4.0

3.2 Browsing the object tree

In this section, we will learn how to browse the tree and retrieve data and also meta-information about the actual data.

In examples/tutoriall-2.py you will find the working version of all the code in this section. As before, you are encour-
aged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1 Traversing the object tree

Let’s start by opening the file we created in last tutorial section:

>>> h5file = openFile("tutoriall.h5", "a")

This time, we have opened the file in “a”ppend mode. We use this mode to add more information to the file.
PyTables, following the Python tradition, offers powerful introspection capabilities, i.e. you can easily ask information
about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing File instance:

>>> print hb5file

tutoriall.hb (File) ’'Test file’

Last modif.: 'Wed Mar 7 19:50:57 2007’

Object Tree:

/ (RootGroup) ’Test file’

/columns (Group) ’Pressure and Name’

/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

It looks like all of our objects are there. Now let’s make use of the File iterator to see how to list all the nodes in the
object tree:

>>> for node in h5file:

. print node

/ (RootGroup) ’Test file’

/columns (Group) ’Pressure and Name’

/detector (Group) ’Detector information’

/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector/readout (Table(10,)) ’Readout example’

We can use the File.walkGroups () method of the File class to list only the groups on tree:

>>> for group in h5file.walkGroups():
. print group

/ (RootGroup) ’Test file’

/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’

Note that File.walkGroups () actually returns an iferator, not a list of objects. Using this iterator with the
listNodes() method is a powerful combination. Let’s see an example listing of all the arrays in the tree:

>>> for group in hb5file.walkGroups("/"):

for array in h5file.listNodes(group, classname=’'Array’):
. print array
/columns/name (Array(3,)) ’‘Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

30 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

File.listNodes () returns a list containing all the nodes hanging off a specific Group. If the classname keyword
is specified, the method will filter out all instances which are not descendants of the class. We have asked for only
Array instances. There exist also an iterator counterpart called File.iterNodes () that might be handy is some
situations, like for example when dealing with groups with a large number of nodes behind it.

We can combine both calls by using the File.walkNodes () special method of the File object. For example:

>>> for array in hb5file.walkNodes("/", "Array"):

. print array

/columns/name (Array(3,)) ’‘Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

This is a nice shortcut when working interactively.

Finally, we will list all the Leaf, i.e. Table and Array instances (see The Leaf class for detailed information on Leaf
class), in the /detector group. Note that only one instance of the Table class (i.e. readout) will be selected in this group
(as should be the case):

>>> for leaf in h5file.root.detector._f_walkNodes(’Leaf’):
ce print leaf
/detector/readout (Table(10,)) ’‘Readout example’

We have used a call to the Group._f_walkNodes () method, using the natural naming path specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let’s take a look at
some important PyTables object instance variables.

3.2.2 Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by using the
AttributeSet class (see The AttributeSet class). You can access this object through the standard attribute attrs in Leaf
nodes and _v_attrs in Group nodes.

For example, let’s imagine that we want to save the date indicating when the data in /detector/readout table has been
acquired, as well as the temperature during the gathering process:

>>> table = h5file.root.detector.readout

>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"

Now, let’s set a somewhat more complex attribute in the /detector group:

>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the _v_attrs attribute because detector is a Group node. In general,
you can save any standard Python data structure as an attribute node. See The AttributeSet class for a more detailed
explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date

‘Wed, 06/12/2003 18:33”

>>> table.attrs.temperature

18.399999999999999

>>> table.attrs.temp_scale

"Celsius’

>>> detector._v_attrs.stuff

[5, (2.2999999999999998, 4.5), ’Integer and tuple’]

3.2. Browsing the object tree 31

PyTables User Guide, Release 2.4.0

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current user attribute set of /detector/table, you can print its representation (try hitting the
TAB key twice if you are on a Unix Python console with the rlcompleter module active):

>>> table.attrs
/detector/readout._v_attrs (AttributeSet), 23 attributes:

[CLASS := ’TABLE’,

FIELD O_FILL := 0,

FIELD O_NAME := ’ADCcount’,
FIELD 1_FILL := 0,

FIELD 1_NAME := ’TIDCcount’,
FIELD 2 FILL := 0.0,
FIELD 2 _NAME := ’energy’,
FIELD 3 FILL := 0,
FIELD 3 _NAME := ’‘grid_i’,
FIELD 4 _FILL := 0,
FIELD_4_NAME := ’grid_3j’,
FIELD 5 FILL := 0,
FIELD 5 NAME := ’idnumber’,
FIELD 6_FILL := "'/,

FIELD 6_NAME := ’name’,
FIELD 7 _FILL := 0.0,
FIELD 7 _NAME := ’pressure’,
FLAVOR := ’numpy’,

NROWS := 10,

TITLE := ’Readout example’,
VERSION := 2.6/,
temp_scale := ’‘Celsius’,

temperature := 18.399999999999999]

We’ve got all the attributes (including the system attributes). You can get a list of all attributes or only the user or
system attributes with the _f_list() method:

>>> print table.attrs._f_ list("all")

[’/CLASS’, ’FIELD (0 _FILL’, ’'FIELD_ 0 _NAME’, ’FIELD_1_FILL’, ’FIELD_I1_NAME’,
/FIELD 2 FILL’, ’'FIELD_ 2 NAME’, ’'FIELD 3 FILL’, ’FIELD 3 NAME’, ’'FIELD 4 FILL’,
'FIELD 4 NAME’, 'FIELD_5 FILL’, 'FIELD 5 NAME’, 'FIELD 6 _FILL’, ’'FIELD 6_NAME’,
/FIELD 7 FILL’, ’'FIELD 7 NAME’, ’'FLAVOR’, ’NROWS’, ’'TITLE’, ’'VERSION’,
‘temp_scale’, ’temperature’]

>>> print table.attrs._f_list("user")

[’ temp_scale’, ’'temperature’]

>>> print table.attrs._f_ list("sys")

[/CLASS’, 'FIELD (0 _FILL’, ’FIELD (0 _NAME’, ’FIELD_ 1 FILL’, 'FIELD_1_NAME’,
'FIELD 2 FILL’, ’FIELD_2 NAME’, 'FIELD 3 FILL’, ’‘FIELD_3 NAME’, ’'FIELD 4 FILL’,
"FIELD 4 NAME’, ’'FIELD_5_FILL’, ’'FIELD_5 NAME’, ’'FIELD_6_FILL’, ’'FIELD 6_NAME’,
’FIELD 7 FILL’, ’'FIELD 7 NAME’, ’'FLAVOR’, ’NROWS’, ’'TITLE’, ’VERSION’]

You can also rename attributes:

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print table.attrs._f_ list()
[’ tempScale’, ’'temperature’]

And, from PyTables 2.0 on, you are allowed also to set, delete or rename system attributes:

>>> table.attrs._f_rename ("VERSION", "version™)
>>> table.attrs.VERSION

32 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "tables/attributeset.py", line 222, in __getattr_
(name, self._v_ nodePath)
AttributeError: Attribute ’'VERSION’ does not exist in node: ’/detector/readout’
>>> table.attrs.version
r2.67

Caveat emptor: you must be careful when modifying system attributes because you may end fooling PyTables and
ultimately getting unwanted behaviour. Use this only if you know what are you doing.
So, given the caveat above, we will proceed to restore the original name of VERSION attribute:

>>> table.attrs._f_rename("version", "VERSION")
>>> table.attrs.VERSION
r2.67

Ok. that’s better. If you would terminate your session now, you would be able to use the h5ls command to read the
/detector/readout attributes from the file written to disk.

$ h51ls -vr tutoriall.h5/detector/readout
Opened "tutoriall.hb5" with sec2 driver.

/detector/readout Dataset {10/Inf}

Attribute: CLASS scalar
Type: 6-byte null-terminated ASCII string
Data: "TABLE"

Attribute: VERSION scalar
Type: 4-byte null-terminated ASCII string
Data: "2.6"

Attribute: TITLE scalar
Type: 16-byte null-terminated ASCII string
Data: "Readout example"

Attribute: NROWS scalar
Type: native long long
Data: 10

Attribute: FIELD_O_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "ADCcount"

Attribute: FIELD_ 1 NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "TDCcount"

Attribute: FIELD_2 NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "energy"

Attribute: FIELD_3 NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_i"

Attribute: FIELD_4 NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_3j"

Attribute: FIELD_5 NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "idnumber"

Attribute: FIELD_6_NAME scalar
Type: 5-byte null-terminated ASCII string
Data: "name"

Attribute: FIELD_7_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "pressure"

3.2. Browsing the object tree 33

PyTables User Guide, Release 2.4.0

Attribute: FLAVOR scalar
Type: 5-byte null-terminated ASCII string
Data: "numpy"

Attribute: tempScale scalar
Type: 7-byte null-terminated ASCII string
Data: "Celsius"

Attribute: temperature scalar
Type: native double

Data: 18.4
Location: 0:1:0:1952

Links: 1
Modified: 2006-12-11 10:35:13 CET
Chunks: {85} 3995 bytes
Storage: 470 logical bytes, 3995 allocated bytes, 11.76% utilization
Type: struct {
"ADCcount" +0 native unsigned short
"TDCcount" +2 native unsigned char
"energy" +3 native double
"grid_i" +11 native int
"grid_j" +15 native int
"idnumber" +19 native long long
"name" +27 l6-byte null-terminated ASCII string
"pressure" +43 native float
} 47 bytes

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3 Getting object metadata

Each object in PyTables has metadata information about the data in the file. Normally this meta-information is
accessible through the node instance variables. Let’s take a look at some examples:

>>> print "Object:", table

Object: /detector/readout (Table(10,)) ’Readout example’
>>> print "Table name:", table.name

Table name: readout

>>> print "Table title:", table.title

Table title: Readout example

>>> print "Number of rows in table:", table.nrows

Number of rows in table: 10

>>> print "Table variable names with their type and shape:"
Table variable names with their type and shape:

>>> for name in table.colnames:

. print name, ’':= %$s, %s’ % (table.coldtypes|[name], table.coldtypes[name].shape)
ADCcount := uintlé6, ()

TDCcount := uint8, ()

energy := floaté64, ()

grid_ i := int32, ()

grid_j := int32, ()

idnumber := inté64, ()

name := [S16, ()

pressure := float32, ()

Here, the name, title, nrows, colnames and coldtypes attributes (see Tab1e for a complete attribute list) of the Table
object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by asking for help:

34 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

>>> help(table)
Help on Table in module tables.table:
class Table (tableExtension.Table, tables.leaf.Leaf)

/
/
/
/
/
/
/
[
/
/

—

This class represents heterogeneous datasets in an HDF5 file.

Tables are leaves (see the 'Leaf' class) whose data consists of a
unidimensional sequence of *rows+, where each row contains one or
more xfields#*. Fields have an associated unique #*namex* and
xpositionx*, with the first field having position 0. All rows have
the same fields, which are arranged in *columnsx*.

snip]

Instance variables

The following instance variables are provided in addition to those
in ‘Leaf'. Please note that there are several ‘col' dictionaries
to ease retrieving information about a column directly by its path
name, avoiding the need to walk through ‘Table.description' or
‘Table.cols .

autoIndex
Automatically keep column indexes up to date?

Setting this value states whether existing indexes should be
automatically updated after an append operation or recomputed
after an index-invalidating operation (i.e. removal and

modification of rows). The default is true.
snip]
rowsize
The size in bytes of each row in the table.
Public methods —-- reading

* col (name)
* iterrows ([start] [, stop][, step])
* ltersequence (sequence)
itersorted(sortbhy[, checkCSI][, start][, stop][, step])
* read([start] [, stop][, step][, field][, coords])
* readCoordinates (coords/[, field])
readSorted (sortby[, checkCSI][, field,][, start][, stop][, step])
* __getitem _ (key)
* _ 1ter ()

Public methods —-—- writing

* append (rows)
* modifyColumn([start][, stop][, step][, column][, colname])

[snip]

Try getting help with other object docs by yourself:

>>> help(h5file)
>>> help(table.removeRows)

To examine metadata in the /columns/pressure Array object:

3.2. Browsing the object tree

35

PyTables User Guide, Release 2.4.0

>>> pressureObject = h5file.getNode("/columns", "pressure™)

>>> print "Info on the object:", repr(pressureObject)

Info on the object: /columns/pressure (Array(3,)) ’'Pressure column selection’
atom := Float64Atom(shape=(), dflt=0.0)

maindim := 0
flavor := ’‘numpy’
byteorder := ’1little’
chunkshape := None

>>> print " shape: ==>", pressureObject.shape
shape: ==> (3,)

>>> print " title: ==>", pressureObject.title
title: ==> Pressure column selection

>>> print " atom: ==>", pressureObject.atom
atom: ==> Float64Atom (shape=(), dflt=0.0)

Observe that we have used the File.getNode () method of the File class to access a node in the tree, instead
of the natural naming method. Both are useful, and depending on the context you will prefer one or the other.
File.getNode () has the advantage that it can get a node from the pathname string (as in this example) and
can also act as a filter to show only nodes in a particular location that are instances of class classname. In general,
however, I consider natural naming to be more elegant and easier to use, especially if you are using the name com-
pletion capability present in interactive console. Try this powerful combination of natural naming and completion
capabilities present in most Python consoles, and see how pleasant it is to browse the object tree (well, as pleasant as
such an activity can be).

If you look at the type attribute of the pressureObject object, you can verify that it is a “float64” array. By looking
at its shape attribute, you can deduce that the array on disk is unidimensional and has 3 elements. See Array or the
internal doc strings for the complete Array attribute list.

3.2.4 Reading data from Array objects

Once you have found the desired Array, use the read() method of the Array object to retrieve its data:

>>> pressureArray = pressureObject.read()

>>> pressureArray

array ([25., 36., 49.17)

>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <type ’numpy.ndarray’>
>>> nameArray = hb5file.root.columns.name.read()

>>> print "nameArray is an object of type:", type(nameArray)
nameArray 1s an object of type: <type ’1list’>

>>>

>>> print "Data on arrays nameArray and pressureArray:"
Data on arrays nameArray and pressureArray:

>>> for i in range(pressureObject.shape[0]) :

ce. print nameArray[i], "-->", pressureArray[i]
Particle: 5 ——> 25.0
Particle: 6 ——> 36.0
Particle: 7 —=> 49.0

You can see that the Array . read () method returns an authentic NumPy object for the pressureObject instance by
looking at the output of the type() call. A read() of the nameArray object instance returns a native Python list (of
strings). The type of the object saved is stored as an HDF5 attribute (named FLAVOR) for objects on disk. This
attribute is then read as Array meta-information (accessible through in the Array.attrs. FLAVOR variable), enabling the
read array to be converted into the original object. This provides a means to save a large variety of objects as arrays
with the guarantee that you will be able to later recover them in their original form. See File.createArray ()
for a complete list of supported objects for the Array object class.

36 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

3.3 Commiting data to tables and arrays

We have seen how to create tables and arrays and how to browse both data and metadata in the object tree. Let’s
examine more closely now one of the most powerful capabilities of PyTables, namely, how to modify already created
tables and arrays '

3.3.1 Appending data to an existing table

Now, let’s have a look at how we can add records to an existing table on disk. Let’s use our well-known readout Table
object and append some new values to it:

>>> table = h5file.root.detector.readout

>>> particle = table.row

>>> for i in xrange (10, 15):
particle[’name’] = ’"Particle: $6d’ % (1)
particle[’TDCcount’] = i % 256
particle[’ADCcount’] = (i = 256) % (1 << 16)
particle[’grid i"] = 1
particle[’grid_j’] = 10 - i
particle[’pressure’] = float (ixi)
particle[’energy’] = float (particle[’pressure’] *% 4)
particle[’ idnumber’] = i * (2 %% 34)

ce particle.append()

>>> table.flush()

It’s the same method we used to fill a new table. PyTables knows that this table is on disk, and when you add new
records, they are appended to the end of the table .

If you look carefully at the code you will see that we have used the table.row attribute to create a table row and fill it
with the new values. Each time that its append() method is called, the actual row is committed to the output buffer and
the row pointer is incremented to point to the next table record. When the buffer is full, the data is saved on disk, and
the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the flush() method after a write operation, or else your tables will not be
updated!

Let’s have a look at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows() :
print "%$-16s | %11.1f | %$11.4g | %ed | %6d | %8d \|" % \\
(r['name’], r[’'pressure’], r[’energy’]l, r[’grid_ 1’1, r[’'grid_3j’1,
C r[’ TDCcount’1])
Particle: 0 |/

0.0 | 0 |/ 0 |/ 10 | 0 |/
Particle: 1/ 1.0 |/ 1 1/ 9 |/ 1
Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
Particle: 3/ 9.0 | 6561 | 3 7 3
Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
Particle: 5 25.0 | 3.906e+05 | 5 5 5]
Particle: 6 |/ 36.0 | 1.68e+06 | 6 |/ 4 | 6 |/
Particle: 7 49.0 | 5.765e+06 | 7 3 7
Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 9 |
Particle: 10 | 100.0 | l1e+08 | 10 |/ 0 | 10 |
Particle: 11 121.0 | 2.144e+08 | 11 -1 11
Particle: 12 | 144.0 | 4.3e+08 | 12] -2 12 |

! Appending data to arrays is also supported, but you need to create special objects called EArray (see The EArray class for more info).
2 Note that you can append not only scalar values to tables, but also fully multidimensional array objects.

3.3. Commiting data to tables and arrays 37

PyTables User Guide, Release 2.4.0

Particle: 13] 169.0 | 8.157e+08 | 13] -3/ 13
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.3.2 Modifying data in tables

Ok, until now, we’ve been only reading and writing (appending) values to our tables. But there are times that you need
to modify your data once you have saved it on disk (this is specially true when you need to modify the real world data
to adapt your goals ;). Let’s see how we can modify the values that were saved in our existing tables. We will start
modifying single cells in the first row of the Particle table:

>>> print "Before modif-->", table[O0]

Before modif--> (0, 0, 0.0, 0, 10, OL, ’'Particle: 07, 0.0)

>>> table.cols.TDCcount[0] = 1

>>> print "After modifying first row of ADCcount-->", table[O0]

After modifying first row of ADCcount--> (0, 1, 0.0, 0, 10, OL, ’Particle: 07, 0.0)
>>> table.cols.energy[0] = 2

>>> print "After modifying first row of energy-->", table[0]

After modifying first row of energy--> (0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0)

We can modify complete ranges of columns as well:

>>> table.cols.TDCcount[2:5] = [2,3,4]
>>> print "After modifying slice [2:5] of TDCcount-->", table[0:5]
After modifying slice [2:5] of TDCcount—->

[0, 1, 2.0, 0, 10, 0L, ’Particle: 07, 0.0)
(256, 1, 1.0, 1, 9, 17179869184L, ’Particle: 17, 1.0)
(512, 2, 256.0, 2, 8, 34359738368L, ’Particle: 27, 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 37, 9.0)
(1024, 4, 65536.0, 4, 6, 68719476736L, ’'Particle: 47, 16.0)]

>>> table.cols.energy[1:9:3] = [2,3,4]
>>> print "After modifying slice [1:9:3] of energy——->", table[0:9]
After modifying slice [1:9:3] of energy——>

[, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0)
(256, 1, 2.0, 1, 9, 17179869184L, ’Particle: 17, 1.0)
(512, 2, 256.0, 2, 8, 34359738368L, ’Particle: 27, 4.0)
(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 37, 9.0)
(1024, 4, 3.0, 4, 6, 68719476736L, ’Particle: 47, 16.0)
(1280, 5, 390625.0, 5, 5, 85899345920L, ’'Particle: 57, 25.0)
(1536, 6, 1679616.0, 6, 4, 103079215104L, ’Particle: 67, 36.0)
(1792, 7, 4.0, 7, 3, 120259084288L, ’'Particle: 77, 49.0)
(2048, 8, 16777216.0, 8, 2, 137438953472L, ’'Particle: 87, 64.0)]

Check that the values have been correctly modified! Hint: remember that column TDCcount is the second one, and
that energy is the third. Look for more info on modifying columns in Column.___setitem__ ().

PyTables also lets you modify complete sets of rows at the same time. As a demonstration of these capability, see the
next example:

>>> table.modifyRows (start=1, step=3,

rows=[(1, 2, 3.0, 4, 5, 6L, 'Particle: None’, 8.0),

R (2, 4, 6.0, 8, 10, 12L, ’'Particle: Nonex2’, 16.0)1)
2
>>> print "After modifying the complete third row-->", table[0:5]
After modifying the complete third row—->

[0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0)
(1, 2, 3.0, 4, 5, 6L, ’'Particle: None’, 8.0)
(512, 2, 256.0, 2, 8, 34359738368L, ’Particle: 27, 4.0)

38 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 37, 9.0)
(2, 4, 6.0, 8, 10, 12L, ’'Particle: Nonex2’, 16.0)]

As you can see, the modifyRows() call has modified the rows second and fifth, and it returned the number of modified
rows.

Apart of Table .modifyRows (), there exists another method, called Table.modifyColumn () to modify spe-
cific columns as well.

Finally, it exists another way of modifying tables that is generally more handy than the described above. This new
way uses the method Row . update () of the Row instance that is attached to every table, so it is meant to be used in
table iterators. Look at the next example:

>>> for row in table.where(’ TDCcount <= 27):
row[’energy’] = row[’TDCcount’]*2

.. row.update ()
>>> print "After modifying energy column (where TDCcount <=2)-->",6 table[0:4]
After modifying energy column (where TDCcount <=2)-->
[, 1, 2.0, 0, 10, 0L, ’Particle: 07, 0.0)

(1, 2, 4.0, 4, 5, 6L, ’Particle: None’, 8.0)

(512, 2, 4.0, 2, 8, 34359738368L, ’Particle: 27, 4.0)

(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 37, 9.0)]

Note: The authors find this way of updating tables (i.e. using Row.update()) to be both convenient and efficient.
Please make sure to use it extensively.

3.3.3 Modifying data in arrays

We are going now to see how to modify data in array objects. The basic way to do this is through the use of
Array.__setitem__ () special method. Let’s see at how modify data on the pressureObject array:

>>> pressureObject = h5file.root.columns.pressure
>>> print "Before modif-->", pressureObject[:]
Before modif—-—> [25. 36. 49.]

>>> pressureObject[0] = 2

>>> print "First modif-->", pressureObject[:]
First modif--> [2. 36. 49.]

>>> pressureObject[1:3] = [2.1, 3.5]

>>> print "Second modif-->", pressureObject[:]
Second modif—-—> [2. 2.1 3.5]

>>> pressureObject[::2] = [1,2]

>>> print "Third modif-->", pressureObject[:]
Third modif—-—> [1. 2.1 2.]

So, in general, you can use any combination of (multidimensional) extended slicing

With the sole exception that you cannot use negative values for step. to refer to indexes that you want to modify. See
Array.__getitem__ () for more examples on how to use extended slicing in PyTables objects.

Similarly, with and array of strings:

>>> nameObject = hbSfile.root.columns.name

>>> print "Before modif-->", nameObject[:]

Before modif—-—> [’Particle: 57, ’Particle: 6’7, ’Particle: 771]
>>> nameObject[0] = 'Particle: None’

>>> print "First modif-->", nameObject][:]

First modif--> [’Particle: None’, ’Particle: 6/, ’Particle: 771]

3.3. Commiting data to tables and arrays 39

PyTables User Guide, Release 2.4.0

>>> nameObject[1:3] = [/Particle: 0’7, ’'Particle: 171

>>> print "Second modif-->", nameObject[:]

Second modif--> [’Particle: None’, ’Particle: 0’, ’Particle: 17]
>>> nameObject[::2] = ['Particle: -3’7, ’"Particle: -571]

>>> print "Third modif-->", nameObject][:]

Third modif—--> [’Particle: -3’7, ’Particle: 0’, ’Particle: -57]

3.3.4 And finally... how to delete rows from a table

We’ll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the the 5th to
9th rows (inclusive):

>>> table.removeRows (5, 10)
5

Table.removeRows () deletes the rows in the range (start, stop). It returns the number of rows effectively re-
moved.

We have reached the end of this first tutorial. Don’t forget to close the file when you finish:

>>> h5file.close()
>>> D

3

In Figure 2 you can see a graphical view of the PyTables file with the datasets we have just created. In Figure 3.
General properties of the /detector/readout table. are displayed the general properties of the table /detector/readout.

3.4 Multidimensional table cells and automatic sanity checks

Now it’s time for a more real-life example (i.e. with errors in the code). We will create two groups that branch directly
from the root node, Particles and Events. Then, we will put three tables in each group. In Particles we will put tables
based on the Particle descriptor and in Events, the tables based the Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created table
/Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in examples/tutorial?2.py). It appears to do all of the above, but it
contains some small bugs. Note that this Particle class is not directly related to the one defined in last tutorial; this
class is simpler (note, however, the multidimensional columns called pressure and temperature).

We also introduce a new manner to describe a Table as a structured NumPy dtype (or even as a dictionary), as you can
see in the Event description. See File.createTable () about the different kinds of descriptor objects that can be
passed to this method:

from tables import =
from numpy import =

Describe a particle record
class Particle(IsDescription):

name = StringCol (itemsize=16) # lé6-character string

lati = Int32Col() # integer

longi = Int32Col () # integer

pressure = Float32Col (shape=(2,3)) # array of floats (single-precision)
temperature = Float64Col (shape=(2,3)) # array of doubles (double-precision)

Native NumPy dtype instances are also accepted

40 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

* ViTables 2.0 &
File Node Query Windows Tools Help

1 E@QEB =& H1lhx FY &%

Tree of databases B readout Readout example
E{ﬁ? tqtoriall.hS ADCcount |TDCcount |energy grid_i grid j B
- O [= columns 1.0 1 2.0 0 10
= ‘@mE Nname
g pressure 211 2 4.0 4
B[4 detector 3/512 2 4.0 2
l
Query results 4 768 3 6561.0 3 7 E
52 4 6.0 8 10 E
Hipressure ... a8 name Na...
1/1.0 1|'Particle: -3
2/2.1000000000000001 2 |'Particle: o'
3/2.0 3/|'Particle: -5’
Al TIgNLs reservea.
Creating the Query results file...
OK!

/home/faltet/PyTables/pytables/trunk/examples/tutoriall.h5->/detector/readout A

Figure 3.2: Figure 2. The final version of the data file for tutorial 1.

3.4. Multidimensional table cells and automatic sanity checks 41

PyTables User Guide, Release 2.4.0

* Table properties =

General | System Attributes | QserEE

~Database

Name: readout

Shape:
Data type:

Path: /detector/readout
Type: table
~Dataspace

Dimensions: 1

Compression: None

(10.)

record

00 9]

Field name Type Shape |—
ADCcount : uintl6 ()
TDCcount uint8 ()
energy float64d () L
grid i int32 ()
grid_j int32 () F

| oK ‘ | Cancel

Figure 3.3: Figure 3. General properties of the /detector/readout table.

42

Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

Event = dtype ([
("name" , "sle™),
("TDCcount" , uint8),
("ADCcount"™ , uintle),
("xcoord" , float32),
("ycoord" , float32)
1)

And dictionaries too (this defines the same structure as above)

Event = {

"name" : StringCol (itemsize=16),
"TDCcount" : UInt8Col(),

"ADCcount" : UIntl6Col(),

"xcoord" : Float32Col(),

"ycoord" : Float32col (),

}

Open a file in "w"rite mode
fileh = openFile("tutorial2.hb5", mode = "w")

Get the HDF5 root group
root = fileh.root

Create the groups:
for groupname in ("Particles", "Events"):
group = fileh.createGroup (root, groupname)

Now, create and fill the tables in Particles group
gparticles = root.Particles

Create 3 new tables
for tablename in ("TParticlel", "TParticle2", "TParticle3"):
Create a table

table = fileh.createTable("/Particles", tablename, Particle, "Particles: "+tablename)
Get the record object associated with the table:
particle = table.row
Fill the table with 257 particles
for i in xrange(257):
First, assign the values to the Particle record
particle[’name’] = ’"Particle: %$6d’ % (1)
particle[’lati’] = 1
particle[’longi’] = 10 - i
#H######### Detectable errors start here. Play with them!
particle[’pressure’] = array(i*arange(2%3)) .reshape((2,4)) # Incorrect
#particle[’pressure’] = array(i+arange (2+3)).reshape((2,3)) # Correct
#H######### End of errors
particle[’ temperature’] = (i%*%2) # Broadcasting
This injects the Record values
particle.append()
Flush the table buffers
table.flush()
3.4. Multidimensional table cells and automatic sanity checks 43

PyTables User Guide, Release 2.4.0

Now, go for Events:
for tablename in ("TEventl", "TEvent2", "TEvent3"):
Create a table in Events group
table = fileh.createTable(root.Events, tablename, Event, "Events: "+tablename)

Get the record object associated with the table:
event = table.row

Fill the table with 257 events

for i in xrange(257):
First, assign the values to the Event record
event [/ name’] = ’"Event: %$6d’ % (1)
event [/ TDCcount’] = 1 % (1<<8) # Correct range

########### Detectable errors start here. Play with them!

event [/ xcoor’] = float (i**2) # Wrong spelling
#event ["xcoord’] = float (i*x*2) # Correct spelling
event [/ ADCcount’] = "sss" # Wrong type
#event [7ADCcount’] = 1 x 2 # Correct type

#########4## End of errors
event [/ ycoord’] = float (i) **4

This injects the Record values
event .append()

Flush the buffers
table.flush()

Read the records from table "/Events/TEvent3" and select some

table = root.Events.TEvent3

e = [p[’TDCcount’] for p in table if p[’ADCcount’] < 20 and 4 <= p[’ TDCcount’] < 15]
print "Last record ==>", p

print "Selected values ==>", e

print "Total selected records ==> ", len(e)

Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

3.4.1 Shape checking

If you look at the code carefully, you’ll see that it won’t work. You will get the following error.

$ python tutorial2.py
Traceback (most recent call last):
File "tutorial2.py", line 51, in ?
particle[’pressure’] = array(ixarange(2+3), shape=(2,4)) # Incorrect
File ".../numarray/numarraycore.py", line 400, in array
a.setshape (shape)
File ".../numarray/generic.py", line 702, in setshape
raise ValueError ("New shape is not consistent with the old shape")
ValueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell. Looking at the
source, we see that we were trying to assign an array of shape (2,4) to a pressure element, which was defined with the
shape (2,3).

44 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

In general, these kinds of operations are forbidden, with one valid exception: when you assign a scalar value to a
multidimensional column cell, all the cell elements are populated with the value of the scalar. For example:

particle[’ temperature’] = (1i%*%2) # Broadcasting

The value i**2 is assigned to all the elements of the temperature table cell. This capability is provided by the NumPy
package and is known as broadcasting.

3.4.2 Field name checking

After fixing the previous error and rerunning the program, we encounter another error.

$ python tutorial2.py
Traceback (most recent call last):
File "tutorial2.py", line 73, in ?
event [xcoor’] = float (ixx2) # Wrong spelling
File "tableExtension.pyx", line 1094, in tableExtension.Row.__setitem___
File "tableExtension.pyx", line 127, in tableExtension.getNestedFieldCache
File "utilsExtension.pyx", line 331, in utilsExtension.getNestedField
KeyError: 'no such column: xcoor’

This error indicates that we are attempting to assign a value to a non-existent field in the event table object. By looking
carefully at the Event class attributes, we see that we misspelled the xcoord field (we wrote xcoor instead). This is
unusual behavior for Python, as normally when you assign a value to a non-existent instance variable, Python creates
a new variable with that name. Such a feature can be dangerous when dealing with an object that contains a fixed list
of field names. PyTables checks that the field exists and raises a KeyError if the check fails.

3.4.3 Data type checking

Finally, the last issue which we will find here is a TypeError exception.

$ python tutorial2.py
Traceback (most recent call last):
File "tutorial2.py", line 75, in ?
event [/ ADCcount’] = "sssg" # Wrong type
File "tableExtension.pyx", line 1111, in tableExtension.Row.__setitem_
TypeError: invalid type (<type ’str’>) for column ‘‘ADCcount ‘'

And, if we change the affected line to read:

event .ADCcount = 1 * 2 # Correct type

we will see that the script ends well.

You can see the structure created with this (corrected) script in Figure 4. In particular, note the multidimensional
column cells in table /Particles/TParticle2.

3.5 Using links for more convenient access to nodes

Links are special nodes that can be used to create additional paths to your existing nodes. PyTables supports three
kinds of links: hard links, soft links (aka symbolic links) and external links.

Hard links let the user create additional paths to access another node in the same file, and once created, they are
indistinguishable from the referred node object, except that they have different paths in the object tree. For example,
if the referred node is, say, a Table object, then the new hard link will become a Table object itself. From this point on,

3.5. Using links for more convenient access to nodes 45

PyTables User Guide, Release 2.4.0

* ViTables 2.0 2

File Node Query Windows Tools Help

1 E@QEB =& H1lhx FY &%

Tree of databases

B tutorial2.h5

o f# Events
@ TEventl
-8 TEvent2
[TEvent3
= 4 Particles
. TParticle3

- B Query results

TParticle2

Hi
lati longi name pressure |temperatur
0 10 ‘Particle: ... [[0.,0.,... [[0.,0,..
2|1 9 ‘Particle: ... [[0.,1.,... [[1,1.,..
®. TParticle2: pressure[3] [[4. 4., ..
1 3 . [re.,o9., ..
1.0.0 2.0 4.0 . [[16., 16...
2|6.0 8.0 10.0 Ir.n__c e T 1
ADCcount |TDCcount |name xcoord ycoord =
10 0 '‘Event: . 0.0 0.0 L
22 1 ‘Event: . 1.0 1.0
34 2 '‘Event: . 4.0 16.0
46 3 ‘Event . 9.0 81.0 L
58 4 'Event: ... 16.0 256.0 E;]
o |

|

)

Al TIgNLs reservea.

Creating the Query results file...

OK! =
/home/faltet/PyTables/pytables/trunk/examples/tutorial2.h5->/Particles/TParticle2 A
Figure 3.4: Figure 4. Table hierarchy for tutorial 2.
46 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

you will be able to access the same Table object from two different paths: the original one and the new hard link path.
If you delete one path to the table, you will be able to reach it via the other path.

Soft links are similar to hard links, but they keep their own personality. When you create a soft link to another node,
you will get a new SoftLink object that refers to that node. However, in order to access the referred node, you need to
dereference it.

Finally, external links are like soft links, with the difference that these are meant to point to nodes in external files
instead of nodes in the same file. They are represented by the ExternalLink class and, like soft links, you need to
dereference them in order to get access to the pointed node.

3.5.1 Interactive example

Now we are going to learn how to deal with links. You can find the code used in this section in
examples/links.py.

First, let’s create a file with some group structure:

>>> import tables as tb

>>> fl = tb.openFile(’ linksl.h5", "w’)
>>> gl = fl.createGroup(’/’, "gl’)

>>> g2 = fl.createGroup(gl, 'g2’)

Now, we will put some datasets on the /g1 and /g1/g2 groups:

>>> al = fl.createCArray(gl, ’'al’, tb.Int64Atom(), shape=(10000,))
>>> tl = fl.createTable(g2, 'tl1’, {’f1’: tb.IntCol(), "f2’7: tb.FloatCol()})

We can start the party now. We are going to create a new group, say /gl, where we will put our links and will start
creating one hard link too:

>>> gl = fl.createGroup(’/’, ’"gl’)

>>> ht = fl.createHardLink(gl, ’"ht’, ' /gl/g2/tl’) # ht points to tl
>>> print "''$s'' is a hard link to: ‘‘%s''" % (ht, t1)

‘‘/gl/ht (Table(0,)) ‘' is a hard link to: ‘‘/gl/g2/tl (Table(0,)) ‘'

You can see how we’ve created a hard link in /gl/ht which is pointing to the existing table in /g1/g2/tl. Have look at
how the hard link is represented; it looks like a table, and actually, it is an real table. We have two different paths to
access that table, the original /g1/g2/tl and the new one /gl/ht. If we remove the original path we still can reach the
table by using the new path:

>>> tl.remove ()
>>> print "table continues to be accessible in: s''" & fl.getNode(’ /gl/ht”)
table continues to be accessible in: ‘‘/gl/ht (Table(0,)) '

Vo
]

So far so good. Now, let’s create a couple of soft links:

>>> lal = fl.createSoftLink(gl, "1lal’, " /gl/al’) # lal points to al

>>> print "''$s'' is a soft link to: '‘%s''" % (lal, lal.target)

‘‘/gl/lal (SoftLink) -> /gl/al‘‘ is a soft link to: '‘‘/gl/al’

>>> 1t = fl.createSoftLink(gl, ’1t’, ' /gl/g2/tl’) # 1t points to tl

>>> print "''%s'' is a soft link to: “‘'%s''" % (1lt, lt.target)

‘‘“/gl/1t (SoftLink) -> /gl/g2/tl (dangling) ‘' is a soft link to: ‘‘/gl/g2/t1‘'

Okay, we see how the first link /gl/lal points to the array /gl/al. Notice how the link prints as a SoftLink, and how
the referred node is stored in the target instance attribute. The second link (/gt/It) pointing to /g1/g2/tl also has been
created successfully, but by better inspecting the string representation of it, we see that is labeled as ‘(dangling)’. Why
is this? Well, you should remember that we recently removed the /g1/g2/t1 path to access table t1. When printing it,

3.5. Using links for more convenient access to nodes 47

PyTables User Guide, Release 2.4.0

the object knows that it points to nowhere and reports this. This is a nice way to quickly know whether a soft link
points to an exiting node or not.

So, let’s re-create the removed path to t1 table:

>>> tl1 = fl.createHardLink ('’ /gl/g2’, "t1’, "/gl/ht")
>>> print "''$s'' is not dangling anymore" % (1lt,)
‘‘/gl/1t (SoftLink) —-> /gl/g2/tl1'' is not dangling anymore

and the soft link is pointing to an existing node now.

Of course, for soft links to serve any actual purpose we need a way to get the pointed node. It happens that soft links
are callable, and that’s the way to get the referred nodes back:

>>> plt = 1t ()

>>> print "dereferred 1t node: '‘$s''" % plt
dereferred 1t node: ‘‘/gl/g2/tl (Table(0,)) ‘"
>>> plal = lal()

>>> print "dereferred lal node: ‘‘%s''" % plal
dereferred lal node: ‘‘/gl/al (CArray(10000,)) ‘'

Now, plt is a Python reference to the t1 table while plal refers to the al array. Easy, uh?

Let’s suppose now that al is an array whose access speed is critical for our application. One possible solution is to
move the entire file into a faster disk, say, a solid state disk so that access latencies can be reduced quite a lot. However,
it happens that our file is too big to fit into our shiny new (although small in capacity) SSD disk. A solution is to copy
just the al array into a separate file that would fit into our SSD disk. However, our application would be able to handle
two files instead of only one, adding significantly more complexity, which is not a good thing.

External links to the rescue! As we’ve already said, external links are like soft links, but they are designed to link
objects in external files. Back to our problem, let’s copy the al array into a different file:

>>> f2 = tb.openFile(’ links2.hb5", "w’)
>>> new_al = al.copy(f2.root, "al’)
>>> f2.close() # close the other file

And now, we can remove the existing soft link and create the external link in its place:

>>> lal.remove ()

>>> lal = fl.createExternallink(gl, ’"lal’, ’"links2.h5:/al’)

>>> print "''$s'' is an external link to: ‘‘%s*'" % (lal, lal.target)

‘‘“/gl/lal (ExternalLink) -> links2.h5:/al‘'‘ is an external link to: ‘‘links2.h5:/al’

Let’s try dereferring it:

>>> new_al = lal() # dereferrencing lal returns al in 1links2.h5
>>> print "dereferred lal node: YY%s YY" % new_al
dereferred lal node: ‘‘“/al (CArray(10000,)) ™'

Well, it seems like we can access the external node. But just to make sure that the node is in the other file:

>>> print "new_al file:", new_al._v_file.filename
new_al file: 1links2.hb

Okay, the node is definitely in the external file. So, you won’t have to worry about your application: it will work
exactly the same no matter the link is internal (soft) or external.

Finally, here it is a dump of the objects in the final file, just to get a better idea of what we ended with:

>>> fl.close()
>>> exit ()
$ ptdump linksl.hb5

48 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

/ (RootGroup) 7’

/gl (Group) '’

/gl/al (CArray(10000,)) **

/gl (Group) 77’

/gl/ht (Table(0,)) 7’

/gl/lal (ExternalLink) —-> 1links2.h5:/al
/gl/1t (SoftLink) —-> /gl/g2/tl

/gl/92 (Group) 7’

/gl/g2/t1 (Table(0,)) ’’

This ends this tutorial. I hope it helped you to appreciate how useful links can be. I'm sure you will find other ways in
which you can use links that better fit your own needs.

3.6 Exercising the Undo/Redo feature

PyTables has integrated support for undoing and/or redoing actions. This functionality lets you put marks in specific
places of your hierarchy manipulation operations, so that you can make your HDFS5 file pop back (undo) to a specific
mark (for example for inspecting how your hierarchy looked at that point). You can also go forward to a more recent
marker (redo). You can even do jumps to the marker you want using just one instruction as we will see shortly.

You can undo/redo all the operations that are related to object tree management, like creating, deleting, moving or
renaming nodes (or complete sub-hierarchies) inside a given object tree. You can also undo/redo operations (i.e.
creation, deletion or modification) of persistent node attributes. However, when actions include infernal modifica-
tions of datasets (that includes Table.append, Table.modifyRows or Table.removeRows among others), they cannot be
undone/redone currently.

This capability can be useful in many situations, like for example when doing simulations with multiple branches.
When you have to choose a path to follow in such a situation, you can put a mark there and, if the simulation is not
going well, you can go back to that mark and start another path. Other possible application is defining coarse-grained
operations which operate in a transactional-like way, i.e. which return the database to its previous state if the operation
finds some kind of problem while running. You can probably devise many other scenarios where the Undo/Redo
feature can be useful to you °.

3.6.1 A basic example

In this section, we are going to show the basic behavior of the Undo/Redo feature. You can find the code used in
this example in examples/tutorial3-1.py. A somewhat more complex example will be explained in the next
section.

First, let’s create a file:

>>> import tables
>>> fileh = tables.openFile("tutorial3-1.h5", "w", title="Undo/Redo demo 1")

And now, activate the Undo/Redo feature with the method File.enableUndo () of File:

>>> fileh.enableUndo ()

From now on, all our actions will be logged internally by PyTables. Now, we are going to create a node (in this case
an Array object):

>>> one = fileh.createArray(’/’, ’anarray’, [3,4], "An array")

Now, mark this point:

3 You can even hide nodes temporarily. Will you be able to find out how?

3.6. Exercising the Undo/Redo feature 49

PyTables User Guide, Release 2.4.0

>>> fileh.mark ()
1

We have marked the current point in the sequence of actions. In addition, the mark() method has returned the identifier
assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning of the action log). In
the next section we will see that you can also assign a name to a mark (see File.mark () for more info on mark()).
Now, we are going to create another array:

>>> another = fileh.createArray(’/’, ’'anotherarray’, [4,5], "Another array")

Right. Now, we can start doing funny things. Let’s say that we want to pop back to the previous mark (that whose
value was 1, do you remember?). Let’s introduce the undo() method (see File.undo ()):

>>> fileh.undo ()

Fine, what do you think it happened? Well, let’s have a look at the object tree:

>>> print fileh

tutorial3-1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Tue Mar 13 11:43:55 2007’
Object Tree:

/ (RootGroup) ’‘Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’

What happened with the /anotherarray node we’ve just created? You guess it, it has disappeared because it was created
after the mark 1. If you are curious enough you may well ask where it has gone. Well, it has not been deleted
completely; it has been just moved into a special, hidden, group of PyTables that renders it invisible and waiting for a
chance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fileh.undo ()

>>> print fileh

tutorial3-1.h5 (File) ’Undo/Redo demo 17
Last modif.: ’Tue Mar 13 11:43:55 2007’
Object Tree:

/ (RootGroup) ’Undo/Redo demo 1’

Oops, /anarray has disappeared as well!l. Don’t worry, it will revisit us very shortly. So, you might be somewhat lost
right now; in which mark are we?. Let’s ask the File.getCurrentMark () method in the file handler:

>>> print fileh.getCurrentMark()
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of actions
when calling File.enableUndo(). Fine, but you are missing your too-young-to-die arrays. What can we do about that?
File.redo () to the rescue:

>>> fileh.redo ()

>>> print fileh

tutorial3-1.h5 (File) ’Undo/Redo demo 17
Last modif.: ’Tue Mar 13 11:43:55 2007’
Object Tree:

/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’

Great! The /anarray array has come into life again. Just check that it is alive and well:

>>> fileh.root.anarray.read()
[3, 4]

50 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

>>> fileh.root.anarray.title
’An array’

Well, it looks pretty similar than in its previous life; what’s more, it is exactly the same object!:

>>> fileh.root.anarray is one
True

It just was moved to the the hidden group and back again, but that’s all! That’s kind of fun, so we are going to do the
same with /anotherarray:

>>> fileh.redo ()

>>> print fileh

tutorial3-1.h5 (File) ’Undo/Redo demo 17
Last modif.: ’Tue Mar 13 11:43:55 2007’
Object Tree:

/ (RootGroup) ’Undo/Redo demo 1’

/anarray (Array(2,)) ’An array’
/anotherarray (Array(2,)) ’Another array’

Welcome back, /anotherarray! Just a couple of sanity checks:

>>> assert fileh.root.anotherarray.read() == [4,5]

>>> assert fileh.root.anotherarray.title == "Another array"
>>> fileh.root.anotherarray is another

True

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your action log
when you don’t need this feature anymore:

>>> fileh.disableUndo ()
That will allow you to continue working with your data without actually requiring PyTables to keep track of all your

actions, and more importantly, allowing your objects to die completely if they have to, not requiring to keep them
anywhere, and hence saving process time and space in your database file.

3.6.2 A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks will be set
in different parts of the code flow and we will see how to jump between these marks with just one method call. You
can find the code used in this example in examples/tutorial3-2.py

Let’s introduce the first part of the code:

import tables

Create an HDF5 file
fileh = tables.openFile(’tutorial3-2.h5", ’"w’, title=’'Undo/Redo demo 2')

#7 —kk—kk—kk—hk—hk—h*— enable undo/redo log —k ok — ok k— Ak — Ak — Ak — A A — kA —
fileh.enableUndo ()

Start undoable operations
fileh.createArray(’/’, 'otherarrayl’, [3,4], ’'Another array 1)
fileh.createGroup(’/’, ’"agroup’, ’'Group 1)

Create a ’first’ mark
fileh.mark (/ first’)

3.6. Exercising the Undo/Redo feature 51

PyTables User Guide, Release 2.4.0

fileh.createArray ('’ /agroup’, ’'otherarray2’, [4,5], ’'Another array 2')
fileh.createGroup (' /agroup’, ’agroup2’, ’Group 27)

Create a ’second’ mark
fileh.mark (' second’)
fileh.createArray ('’ /agroup/agroup2’, ’otherarray3’, [5,6], ’'Another array 3')

Create a ’third’ mark

fileh.mark (/third’)

fileh.createArray(’/’, 'otherarray4’, [6,7], 'Another array 47)
fileh.createArray(’ /agroup’, ’otherarray5’, [7,8], ’"Another array 5’)

You can see how we have set several marks interspersed in the code flow, representing different states of the database.
Also, note that we have assigned names to these marks, namely ‘first’, ‘second’ and ‘third’.

Now, start doing some jumps back and forth in the states of the database:

Now go to mark ’first’

fileh.goto(/ first’)

assert ' /otherarrayl’ in fileh

assert ' /agroup’ in fileh

assert ’'/agroup/agroup2’ not in fileh

assert ' /agroup/otherarray2’ not in fileh

assert ' /agroup/agroup2/otherarray3’ not in fileh
assert ' /otherarray4’ not in fileh

assert ' /agroup/otherarray5’ not in fileh

Go to mark ’third’

fileh.goto(/third’)

assert ' /otherarrayl’ in fileh

assert ' /agroup’ in fileh

assert ' /agroup/agroup2’ in fileh

assert ' /agroup/otherarray2’ in fileh

assert ' /agroup/agroup?2/otherarray3’ in fileh
assert ' /otherarray4’ not in fileh

assert ' /agroup/otherarray5’ not in fileh

Now go to mark ’second’

fileh.goto(’ second”)

assert ' /otherarrayl’ in fileh

assert ' /agroup’ in fileh

assert ' /agroup/agroup2’ in fileh

assert ' /agroup/otherarray?2’ in fileh

assert ' /agroup/agroup2/otherarray3’ not in fileh
assert ' /otherarray4’ not in fileh

assert ' /agroup/otherarray5’ not in fileh

Well, the code above shows how easy is to jump to a certain mark in the database by using the File.goto () method.

There are also a couple of implicit marks for going to the beginning or the end of the saved states: 0 and -1. Going to
mark #0 means go to the beginning of the saved actions, that is, when method fileh.enableUndo() was called. Going
to mark #-1 means go to the last recorded action, that is the last action in the code flow.

Let’s see what happens when going to the end of the action log:

Go to the end

fileh.goto(-1)

assert ' /otherarrayl’ in fileh
assert ' /agroup’ in fileh

assert ' /agroup/agroup2’ in fileh

52 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

assert ' /agroup/otherarray2’ in fileh

assert ' /agroup/agroup2/otherarray3’ in fileh
assert ' /otherarray4’ in fileh

assert ' /agroup/otherarray5’ in fileh

Check that objects have come back to life in a sane state

assert fileh.root.otherarrayl.read() == [3,4]

assert fileh.root.agroup.otherarray2.read() == [4,5]

assert fileh.root.agroup.agroup2.otherarray3.read() == [5,6]
assert fileh.root.otherarray4.read() == [6,7]

assert fileh.root.agroup.otherarray5.read() == [7, 8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of the object
tree.

We have nearly finished this demonstration. As always, do not forget to close the action log as well as the database:

Fl—hk— Ak —dA—hh—AAk—h4— disable undo/redo 10g —4,—Ar—kk—kt—Ah—hk—kA—"
fileh.disableUndo ()
Close the file
fileh.close()

You might want to check other examples on Undo/Redo feature that appear in examples/undo-redo.py.

3.7 Using enumerated types

PyTables includes support for handling enumerated types. Those types are defined by providing an exhaustive set or
list of possible, named values for a variable of that type. Enumerated variables of the same type are usually compared
between them for equality and sometimes for order, but are not usually operated upon.

Enumerated values have an associated name and concrete value. Every name is unique and so are concrete values. An
enumerated variable always takes the concrete value, not its name. Usually, the concrete value is not used directly, and
frequently it is entirely irrelevant. For the same reason, an enumerated variable is not usually compared with concrete
values out of its enumerated type. For that kind of use, standard variables and constants are more adequate.

PyTables provides the Enum (see The Enum class) class to provide support for enumerated types. Each instance of
Enum is an enumerated type (or enumeration). For example, let us create an enumeration of colors

All these examples can be found in examples/enum.py:

>>> import tables
>>> colorlList = [’'red’, ’'green’, ’'blue’, ’"white’, ’'black’]
>>> colors = tables.Enum(colorList)

Here we used a simple list giving the names of enumerated values, but we left the choice of concrete values up to the
Enum class. Let us see the enumerated pairs to check those values:

>>> print "Colors:", [v for v in colors]
Colors: [(’blue’, 2), (’black’, 4), (’white’, 3), (’green’, 1), (’'red’, 0)]

Names have been given automatic integer concrete values. We can iterate over the values in an enumeration, but we
will usually be more interested in accessing single values. We can get the concrete value associated with a name by
accessing it as an attribute or as an item (the later can be useful for names not resembling Python identifiers):

>>> print "Value of ’'red’ and ’'white’:", (colors.red, colors.white)
Value of ’red’ and ’‘white’: (0, 3)

>>> print "Value of ’yellow’:", colors.yellow

Value of ’“yellow’:

3.7. Using enumerated types 53

PyTables User Guide, Release 2.4.0

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File ".../tables/misc/enum.py", line 230, in _ getattr___
raise AttributeError (*ke.args)
AttributeError: no enumerated value with that name: ’"yellow’
>>>
>>> print "Value of ’'red’ and ’‘white’:", (colors[’red’], colors[’white’])
Value of ’“red’ and ’‘white’: (0, 3)
>>> print "Value of ’'yellow’:", colors[’vyellow’]
Value of ’yellow’:
Traceback (most recent call last):
File "<stdin>", line 1, in ?

File ".../tables/misc/enum.py", line 189, in _ getitem
raise KeyError("no enumerated value with that name: %r" % (name,))
KeyError: "no enumerated value with that name: ’"yellow’"

See how accessing a value that is not in the enumeration raises the appropriate exception. We can also do the opposite
action and get the name that matches a concrete value by using the __call__() method of Enum:

)

>>> print "Name of value %$s:" % colors.red, colors(colors.red)
Name of value 0: red
>>> print "Name of value 1234:", colors(1234)
Name of value 1234:
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File ".../tables/misc/enum.py", line 320, in _ call_

raise ValueError (

ValueError: no enumerated value with that concrete value: 1234

You can see what we made as using the enumerated type to convert a concrete value into a name in the enumeration.
Of course, values out of the enumeration can not be converted.

3.7.1 Enumerated columns

Columns of an enumerated type can be declared by using the EnumCol (see The Col class and its descendants)
class. To see how this works, let us open a new PyTables file and create a table to collect the simulated results of
a probabilistic experiment. In it, we have a bag full of colored balls; we take a ball out and annotate the time of
extraction and the color of the ball:

>>> h5f = tables.openFile(’enum.h5", "w’)
>>> class BallExt (tables.IsDescription):
ballTime = tables.Time32Col ()
ballColor = tables.EnumCol (colors, ’'black’, base="uint8’)
>>> tbl = h5f.createTable(’/’, ’extractions’, BallExt, title="Random ball extractions")
>>>

We declared the ballColor column to be of the enumerated type colors, with a default value of black. We also stated
that we are going to store concrete values as unsigned 8-bit integer values *.

Let us use some random values to fill the table:

>>> import time

>>> import random

>>> now = time.time ()
>>> row = tbl.row

>>> for i in range(10):

4 In fact, only integer values are supported right now, but this may change in the future.

54 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

row[’ballTime’] = now + 1

row[’ballColor’] = colors[random.choice(colorList)] # notice this
.. row.append ()

>>>
Notice how we used the __getitem__() call of colors to get the concrete value to store in ballColor. You should know
that this way of appending values to a table does automatically check for the validity on enumerated values. For
instance:

>>> row[’ballTime’] = now + 42
>>> row[’ballColor’] = 1234
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "tableExtension.pyx", line 1086, in tableExtension.Row.__setitem___
File ".../tables/misc/enum.py", line 320, in __call___
"no enumerated value with that concrete value: %r" % (value,))
ValueError: no enumerated value with that concrete value: 1234

But take care that this check is only performed here and not in other methods such as tbl.append() or tbl.modifyRows().
Now, after flushing the table we can see the results of the insertions:

>>> tbl.flush()
>>> for r in tbl:
ballTime = r['ballTime’]
ballColor = colors(r[’ballColor’]) # notice this
c print "Ball extracted on %d is of color %s." % (ballTime, ballColor)
Ball extracted on 1173785568 is of color green.
Ball extracted on 1173785569 is of color black.
Ball extracted on 1173785570 is of color white.
Ball extracted on 1173785571 is of color black.
Ball extracted on 1173785572 is of color black.
Ball extracted on 1173785573 is of color red.
Ball extracted on 1173785574 is of color green.
Ball extracted on 1173785575 is of color red.
Ball extracted on 1173785576 is of color white.
Ball extracted on 1173785577 is of color white.

As a last note, you may be wondering how to have access to the enumeration associated with ballColor once the file is
closed and reopened. You can call tbl.getEnum(‘ballColor’) (see Table.getEnum ()) to get the enumeration back.

3.7.2 Enumerated arrays

EArray and VLArray leaves can also be declared to store enumerated values by means of the EnumAtom (see 7he
Atom class and its descendants) class, which works very much like EnumCol for tables. Also, Array leaves can be
used to open native HDF enumerated arrays.

Let us create a sample EArray containing ranges of working days as bidimensional values:

>>> workingDays = {’Mon’: 1, "Tue’: 2, 'Wed’: 3, 'Thu’: 4, ’"Fri’: 5}

>>> dayRange = tables.EnumAtom(workingDays, 'Mon’, base="uintl6’)

>>> earr = h5f.createEArray(’/’, ’'days’, dayRange, (0, 2), title="Working day ranges")
>>> earr.flavor = ’'python’

Nothing surprising, except for a pair of details. In the first place, we use a dictionary instead of a list to explicitly
set concrete values in the enumeration. In the second place, there is no explicit Enum instance created! Instead, the
dictionary is passed as the first argument to the constructor of EnumAtom. If the constructor gets a list or a dictionary
instead of an enumeration, it automatically builds the enumeration from it.

3.7. Using enumerated types 55

PyTables User Guide, Release 2.4.0

Now let us feed some data to the array:

>>> wdays = earr.getEnum()
>>> earr.append([(wdays.Mon, wdays.Fri), (wdays.Wed, wdays.Fri)l)
>>> earr.append([(wdays.Mon, 1234)])

Please note that, since we had no explicit Enum instance, we were forced to use getEnum() (see EArray methods) to
get it from the array (we could also have used dayRange.enum). Also note that we were able to append an invalid
value (1234). Array methods do not check the validity of enumerated values.

Finally, we will print the contents of the array:

>>> for (dl, d2) in earr:
print "From %s to %s (%d days)." % (wdays(dl), wdays(d2), d2-dl+1)
From Mon to Fri (5 days).
From Wed to Fri (3 days).
Traceback (most recent call last):
File "<stdin>", line 2, in <module>
File ".../tables/misc/enum.py", line 320, in _ call___

"no enumerated value with that concrete value: %r" % (value,))
ValueError: no enumerated value with that concrete value: 1234

That was an example of operating on concrete values. It also showed how the value-to-name conversion failed because
of the value not belonging to the enumeration.

Now we will close the file, and this little tutorial on enumerated types is done:

>>> h5f.close()

3.8 Dealing with nested structures in tables

PyTables supports the handling of nested structures (or nested datatypes, as you prefer) in table objects, allowing you
to define arbitrarily nested columns.

An example will clarify what this means. Let’s suppose that you want to group your data in pieces of information that
are more related than others pieces in your table, So you may want to tie them up together in order to have your table
better structured but also be able to retrieve and deal with these groups more easily.

You can create such a nested substructures by just nesting subclasses of IsDescription. Let’s see one example (okay,
it’s a bit silly, but will serve for demonstration purposes):

from tables import =

class Info(IsDescription):
"""A sub-structure of Test"""
_Vv_pos = 2 # The position in the whole structure
name = StringCol (10)
value = Float64Col (pos=0)

colors = Enum([’red’, ’"green’, ’"blue’])

class NestedDescr(IsDescription):
"""A description that has several nested columns"""
color = EnumCol (colors, ’red’, base="uint32’)

infol = Info()

class info2(IsDescription):
_v_pos =1

56 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

name = StringCol (10)
value = Float64Col (pos=0)

class info3(IsDescription):
x = Float64Col (dflt=1)
y = UInt8Col (dflt=1)

The root class is NestedDescr and both infol and info2 are substructures of it. Note how infol is actually an instance
of the class Info that was defined prior to NestedDescr. Also, there is a third substructure, namely info3 that hangs
from the substructure info2. You can also define positions of substructures in the containing object by declaring the
special class attribute _v_pos.

3.8.1 Nested table creation
Now that we have defined our nested structure, let’s create a nested table, that is a table with columns that contain
other subcolumns:

>>> fileh = openFile("nested-tut.h5", "w")
>>> table = fileh.createTable(fileh.root, ’"table’, NestedDescr)

Done! Now, we have to feed the table with some values. The problem is how we are going to reference to the nested
fields. That’s easy, just use a ‘/* character to separate names in different nested levels. Look at this:

>>> row = table.row

>>> for i in range(10):
row[’color’] = colors[[’red’, "green’, 'blue’][1i%3]]
row[’infol/name’] = "namel-%s" % i
row[’info2/name’] = "name2-%s" % i
row[’info2/info3/y’]1 = i

All the rest will be filled with defaults
. row.append ()
>>> table.flush()
>>> table.nrows
10

You see? In order to fill the fields located in the substructures, we just need to specify its full path in the table hierarchy.

3.8.2 Reading nested tables

Now, what happens if we want to read the table? What kind oft data container will we get? Well, it’s worth trying it:

>>> nra = table[::4]
>>> nra
array([(((1.0, 0), ’“namez2-0", 0.0), (’namel-0’, 0.0), 0L),
(((1.0, 4), ’name2-4’, 0.0), (’namel-4’, 0.0), 1L),
(((1.0, 8), ’'name2-8’, 0.0), (’namel-8’, 0.0), 2L)],
dtype=[(’info2’, [(’info3’, [(’x’, ’>f87), (’y’, “\|ul’)]),
(’name”’, ’\|[S107), (’value’, ’>f87)]),
(’infol”’, [(’name’, ’\|[/S10’), (’value’, ’>f87)]),
(’color’, ’">u4’)])

What we got is a NumPy array with a compound, nested datatype (its dtype is a list of name-datatype tuples). We read
one row for each four in the table, giving a result of three rows.

3.8. Dealing with nested structures in tables 57

PyTables User Guide, Release 2.4.0

Note: When using the numarray flavor (deprecated), you will get an instance of the NestedRecArray class that lives in
the tables.nra package. NestedRecArray is actually a subclass of the RecArray object of the numarray.records module.
You can get more info about NestedRecArray object in Using nested record arrays (deprecated).

You can make use of the above object in many different ways. For example, you can use it to append new data to the
existing table object:

>>> table.append(nra)
>>> table.nrows
13

Or, to create new tables:

>>> table2 = fileh.createTable(fileh.root, ’"table2’, nra)
>>> table2[:]
array([(((1.0, 0), ’‘name2-0’, 0.0), (’namel-0’, 0.0), 0L),
(((1.0, 4), ’"name2-4’, 0.0), (’namel-4’, 0.0), 1L),
(((1.0, 8), ’"name2-8’, 0.0), (’namel-8’, 0.0), 2L)],
dtype=[(’info2’, [(’info3’, [('x’, ’/<f87), ('y’, ’'\|ul’)]),
("name’, ’\|/S107), (’value’, ’<f87)]),
(’infol”’”, [(’name’, ’\[S10’), (’value’, ’<f87)]),
("color’, ’"<u4’)])

Finally, we can select nested values that fulfill some condition:

>>> names = [x[’info2/name’] for x in table if x[’color’] == colors.red]
>>> names
["name2-0’, ’'name2-3’, ’'name2-6’, ’'name2-9’, ’‘name2-0']

Note that the row accessor does not provide the natural naming feature, so you have to completely specify the path of
your desired columns in order to reach them.

3.8.3 Using Cols accessor

We can use the cols attribute object (see The Cols class) of the table so as to quickly access the info located in the
interesting substructures:

>>> table.cols.info2[1:5]
array([((1.0, 1), ’namez2-1’, 0.0), ((1.0, 2), ’‘name2-2’, 0.0),
((1.0, 3), ’name2-37, 0.0), ((1.0, 4), ’"name2-4’, 0.0)],
dtype=[(’info3’, [(’x’, ’<f8’), (’y’, ’\|ul’)]), (’name’, ’\/[S107),
(’value’, ’<f87)])

Here, we have made use of the cols accessor to access to the info2 substructure and an slice operation to get access
to the subset of data we were interested in; you probably have recognized the natural naming approach here. We can
continue and ask for data in info3 substructure:

>>> table.cols.info2.info3[1:5]
array([(1.0, 1), (1.0, 2), (1.0, 3), (1.0, 4)],
dtype=[(’x", ’<f87), ('y’, “\|ul’)])

You can also use the _f_col method to get a handler for a column:

>>> table.cols._f_col(’info2’)
/table.cols.info2 (Cols), 3 columns
info3 (Cols(), Description)
name (Column(), \/S10)
value (Column (), floaté64)

58 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

Here, you’ve got another Cols object handler because info2 was a nested column. If you select a non-nested column,
you will get a regular Column instance:

>>> table.cols._f_col(’info2/info3/y")
/table.cols.info2.info3.y (Column(), uint8, idx=None)

To sum up, the cols accessor is a very handy and powerful way to access data in your nested tables. Don’t be afraid of
using it, specially when doing interactive work.

3.8.4 Accessing meta-information of nested tables

Tables have an attribute called description which points to an instance of the Description class (see The Description
class) and is useful to discover different meta-information about table data.

Let’s see how it looks like:

>>> table.description
{
"info2": {
"info3": {
"x": Float64Col (shape=(), dflt=1.0, pos=0),
"y": UInt8Col (shape=(), dflt=1, pos=1)},
"name": StringCol (itemsize=10, shape=(), dflt=’’, pos=1),
"value": Floaté4Col (shape=(), dflt=0.0, pos=2)},
"infol": {
"name": StringCol (itemsize=10, shape=(), dflt=’’, pos=0),
"value": Floaté4Col (shape=(), dflt=0.0, pos=1)},
"color": EnumCol (enum=Enum({’blue’: 2, ’'green’: 1, ’‘red’: 0}), dflt=’'red’,
base=UInt32Atom (shape=(), dflt=0), shape=(), pos=2)}

As you can see, it provides very useful information on both the formats and the structure of the columns in your table.
This object also provides a natural naming approach to access to subcolumns metadata:

>>> table.description.infol

{"name": StringCol (itemsize=10, shape=(), dflt=’’, pos=0),
"value": Floaté64Col (shape=(), dflt=0.0, pos=1)}

>>> table.description.info2.info3

{"x": Floaté64Col (shape=(), dflt=1.0, pos=0),
"y": UInt8Col (shape=(), dflt=1, pos=1)}

There are other variables that can be interesting for you:

>>> table.description._v_nestedNames

[(’info2’, [(’info3’, [’x’, ’'y’]), ’‘name’, ’value’]),
("infol’, [’name’, ’‘value’]), ’‘color’]

>>> table.description.infol._v_nestedNames

["name’, ’‘value’]

_v_nestedNames provides the names of the columns as well as its structure. You can see that there are the same
attributes for the different levels of the Description object, because the levels are also Description objects themselves.

There is a special attribute, called _v_nestedDescr, that can be useful to create nested structured arrays that imitate the
structure of the table (or a subtable thereof):

>>> import numpy

>>> table.description._v_nestedDescr

[("info2’, [(’info3’, [('x", '()f8"), ('y’, ' ()ul’)]), (’name’, ' ()S107),
("value’, 7 ()f8”)]), (’infol’, [(’name’, ’()S10’), (’value’, 7 ()f87)]),

3.8. Dealing with nested structures in tables 59

PyTables User Guide, Release 2.4.0

("color”, " ()ud’)]
>>> numpy.rec.array (None, shape=0,
dtype=table.description._v_nestedDescr)
recarray ([],
dtype=[(’info2’, [(’info3’, [(’x’, '>f87), ('y’, ’|ul’)]),

(’name’, 7/S510’), (’value’, ’">£f8")]),
("infol”’”, [(’name’, ’[S107), (’value’, ’>£f87)]),
("color”’”, ’7>u4’)])

>>> numpy.rec.array (None, shape=0,

dtype=table.description.info2._v_nestedDescr)
recarray ([],
dtype=[(’info3’, [(’x’, ’>f8’), ('y’, ’|ul’)]), (’name’, ’[S107),

("value’, 7>f87)])

>>> from tables import nra

>>> nra.array(None, descr=table.description._v_nestedDescr)

array (

[1,

descr=[(’info2’, [(’info3’, [('x", ' ()f8"), ('y’, ’“()ul’)]),

(’name”’, ’()S10’), (’value’, " ()f8’)]), (’infol’, [(’name’, ' ()S107),
("value’, 7 ()£87)]), (’color’, ' ()ud’)l],
shape=0)

You can see we have created two equivalent arrays: one with NumPy (the first) and one with the nra package (the last).
The later implements nested record arrays for numarray (see NestedRecArray).

Finally, there is a special iterator of the Description class, called _f_walk that is able to return you the different columns
of the table:

>>> for coldescr in table.description._f_walk():

Ce print "column-->",coldescr

column—--> Description([(’info2’, [(’info3’, [('x’, ' ()f87), ('y’, ' ()ul’)]),
(’name”, ’()S107), (’value’, " ()f87)]),
("infol’, [(’name’, ' ()S10’), (’value’, 7' ()f87)1]1),
("color’, 7 ()ud’)])

column—-> EnumCol (enum=Enum ({’blue’: 2, ’‘green’: 1, ’‘red’: 0}), dflt="red’,

base=UInt32Atom (shape=(), dflt=0), shape=(), pos=2)

column—--> Description([(’info3’, [(’x’, ' ()f8"), ('y’, ' ()ul’)]), (’name’, ’()S10”"),
("value’, 7 ()£87)])

column—--> StringCol (itemsize=10, shape=(), dflt=’’, pos=1)

column—--> Floaté64Col (shape=(), dflt=0.0, pos=2)

column--> Description([(’name’, 7 ()S10’), (’value’, 7 ()f87)])

column—--> StringCol (itemsize=10, shape=(), dflt=’’, pos=0)

column—-> Floaté64Col (shape=(), dflt=0.0, pos=1)

column--> Description([(’x’, 7 ()£87), ('y’, 7 ()ul’)])

column—--> Float64Col (shape=(), dflt=1.0, pos=0)

column--> UInt8Col (shape=(), dflt=1, pos=1)

See the The Description class for the complete listing of attributes and methods of Description.
Well, this is the end of this tutorial. As always, do not forget to close your files:

>>> fileh.close()

Finally, you may want to have a look at your resulting data file.

$ ptdump -d nested-tut.h5
/ (RootGroup) '’
/table (Table(13,)) '’
Data dump:
[0] (((1.0, O), "name2-0", 0.0), ('namel-0", 0.0), OL)

60 Chapter 3. Tutorials

PyTables User Guide, Release 2.4.0

[1] (((1.0, 1), "name2-1", 0.0), ('namel-1", 0.0), 1L)
[2] (((1.0, 2), '"name2-2’, 0.0), ('namel-2’, 0.0), 2L)
[31 (((1.0, 3), '"name2-3’, 0.0), ('namel-3", 0.0), OL)
[4] (((1.0, 4), "name2-4’", 0.0), ('namel-4’, 0.0), 1L)
[51 (((1.0, 5), "name2-5", 0.0), ('namel-5", 0.0), 2L)
[6] (((1.0, 6), "name2-6’, 0.0), ('namel-6", 0.0), OL)
[71 (((1.0, 7), "name2-7", 0.0), ('namel-7", 0.0), 1L)
[8] (((1.0, 8), "name2-8’, 0.0), ('namel-8’, 0.0), 2L)
[9] (((1.0, 9), '"name2-9’, 0.0), ('namel-9", 0.0), OL)

[10] (((1.0, 0O), "name2-0’, 0.0), ("namel-0", 0.0), OL)
[11] (((1.0, 4), 'name2-4’", 0.0), ('namel-4’, 0.0), 1L)
[12] (((1.0, 8), 'name2-8’", 0.0), ('namel-8’, 0.0), 2L)
/table2 (Table(3,)) '’
Data dump:

[0] (((1.0, O0), "nmname2-0’, 0.0), ('namel-0’, 0.0), OL)
[11 (((1.0, 4), "name2-4’, 0.0), ('namel-4’, 0.0), 1L)
[2] (((1.0, 8), "name2-8’, 0.0), ('namel-8’, 0.0), 2L)

Most of the code in this section is also available in examples/nested-tut.py.

All in all, PyTables provides a quite comprehensive toolset to cope with nested structures and address your classi-
fication needs. However, caveat emptor, be sure to not nest your data too deeply or you will get inevitably messed
interpreting too intertwined lists, tuples and description objects.

3.9 Other examples in PyTables distribution

Feel free to examine the rest of examples in directory examples/, and try to understand them. We have written
several practical sample scripts to give you an idea of the PyTables capabilities, its way of dealing with HDF5 objects,
and how it can be used in the real world.

3.9. Other examples in PyTables distribution 61

PyTables User Guide, Release 2.4.0

62

Chapter 3. Tutorials

CHAPTER
FOUR

LIBRARY REFERENCE

PyTables implements several classes to represent the different nodes in the object tree. They are named File, Group,
Leaf, Table, Array, CArray, EArray, VLArray and Unlmplemented. Another one allows the user to complement the
information on these different objects; its name is AttributeSet. Finally, another important class called IsDescription
allows to build a Table record description by declaring a subclass of it. Many other classes are defined in PyTables,
but they can be regarded as helpers whose goal is mainly to declare the data type properties of the different first class
objects and will be described at the end of this chapter as well.

An important function, called openFile is responsible to create, open or append to files. In addition, a few utility
functions are defined to guess if the user supplied file is a PyTables or HDF'5 file. These are called isPyTablesFile() and
isHDFS5File(), respectively. There exists also a function called whichLibVersion() that informs about the versions of
the underlying C libraries (for example, HDFS5 or Zlib) and another called print_versions() that prints all the versions
of the software that PyTables relies on. Finally, test() lets you run the complete test suite from a Python console
interactively.

Let’s start discussing the first-level variables and functions available to the user, then the different classes defined in
PyTables.

4.1 tables variables and functions

4.1.1 Global variables

tables._ _version__ =240
The PyTables version number.

tables.hdf5Version = ‘1.8.4-patchl’
The underlying HDFS5 library version number.

tables.is_pro = True
True for PyTables Professional edition, false otherwise.

Note: PyTables Professional edition has been released under an open source license. Starting with version 2.3,
PyTables includes all features of PyTables Pro. In order to reflect the presence of advanced features is_pro is
always set to True. i s_pro should be considered deprecated. It will be removed in the next major release.

Deprecated since version 2.3.

63

PyTables User Guide, Release 2.4.0

4.1.2 Global functions

tables.copyFile (srcfilename, dstfilename, overwrite=False, **kwargs)
An easy way of copying one PyTables file to another.

This function allows you to copy an existing PyTables file named srcfilename to another file called dstfilename.
The source file must exist and be readable. The destination file can be overwritten in place if existing by asserting
the overwrite argument.

This function is a shorthand for the File.copyFile () method, which acts on an already opened
file. kwargs takes keyword arguments used to customize the copying process. See the documentation of
File.copyFile () for adescription of those arguments.

tables.isHDF5File (filename)
Determine whether a file is in the HDF5 format.

When successful, it returns a true value if the file is an HDFS5 file, false otherwise. If there were problems
identifying the file, an HDF5ExtError is raised.

tables.isPyTablesFile (filename)
Determine whether a file is in the PyTables format.

When successful, it returns the format version string if the file is a PyTables file, None otherwise. If there were
problems identifying the file, an HDF5ExtError is raised.

class tables.lrange
Iterate over long ranges.

This is similar to xrange(), but it allows 64-bit arguments on all platforms. The results of the iteration are
sequentially yielded in the form of numpy.int64 values, but getting random individual items is not supported.

Because of the Python 32-bit limitation on object lengths, the length attribute (which is also a numpy.int64
value) should be used instead of the len() syntax.

Default start and step arguments are supported in the same way as in xrange(). When the standard [x]range()
Python objects support 64-bit arguments, this iterator will be deprecated.

tables.openFile (filename, mode="r’, title="", rootUEP="/", filters=None, **kwargs)
Open a PyTables (or generic HDFS) file and return a File object.

Parameters filename : str

The name of the file (supports environment variable expansion). It is suggested that file
names have any of the .h5, .hdf or .hdf5 extensions, although this is not mandatory.

mode : str
The mode to open the file. It can be one of the following:
e ‘r’: Read-only; no data can be modified.

e ‘w’ Write; a new file is created (an existing file with the same name would be
deleted).

* ‘a’: Append; an existing file is opened for reading and writing, and if the file does
not exist it is created.

e ‘r+’: Itis similar to ‘a’, but the file must already exist.
title : str

If the file is to be created, a TITLE string attribute will be set on the root group with
the given value. Otherwise, the title will be read from disk, and this will not have any
effect.

64 Chapter 4. Library Reference

PyTables User Guide, Release 2.4.0

rootUEP : str

The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken
as the starting point to create the object tree. It can be whatever existing group in the
file, named by its HDF5 path. If it does not exist, an HDF5ExtError is issued. Use this
if you do not want to build the entire object tree, but rather only a subtree of it.

filters : Filters

An instance of the Filters (see The Filters class) class that provides information about
the desired I/O filters applicable to the leaves that hang directly from the root group,
unless other filter properties are specified for these leaves. Besides, if you do not spec-
ify filter properties for child groups, they will inherit these ones, which will in turn
propagate to child nodes.

Notes

In addition, it recognizes the names of parameters present in tables/parameters.py as additional key-
word arguments. See PyTables parameter files for a detailed info on the supported parameters.

Note: If you need to deal with a large number of nodes in an efficient way, please see Getting the most from
the node LRU cache for more info and advices about the integrated node cache engine.

tables.setBloscMaxThreads (nthreads)

Set the maximum number of threads that Blosc can use.

This actually overrides the tables.parameters.MAX_BLOSC_THREADS setting in
tables.parameters, so the new value will be effective until this function is called again or a new
file with a different tables.parameters.MAX_BLOSC_THREADS value is specified.

Returns the previous setting for maximum threads.

tables.print_versions ()

Print all the versions of software that PyTables relies on.

tables.restrict_f£flavors (keep=[python’])

Disable all flavors except those in keep.

Providing an empty keep sequence implies disabling all flavors (but the internal one). If the sequence is not
specified, only optional flavors are disabled.

Important: Once you disable a flavor, it can not be enabled again.

tables.split_type (fype)

Split a PyTables type into a PyTables kind and an item size.

Returns a tuple of (kind, itemsize). If no item size is present in the type (in the form of a precision), the returned
item size is None:

>>> gplit_type(’int32")

(’7int’, 4)

>>> split_type(’string’)
(’string’, None)

>>> split_type(’int207)

Traceback (most recent call last):

ValueError: precision must be a multiple of 8: 20

4.1.

tables variables and functions 65

PyTables User Guide, Release 2.4.0

>>> gplit_type(’ foo bar’)
Traceback (most recent call last):

ValueError: malformed type: ’foo bar’

tables.test (verbose=False, heavy=False)

Run all the tests in the test suite.

If verbose is set, the test suite will emit messages with full verbosity (not recommended unless you are looking
into a certain problem).

If heavy is set, the test suite will be run in heavy mode (you should be careful with this because it can take a lot
of time and resources from your computer).

Return 0 (0s.EX_OK) if all tests pass, 1 in case of failure

tables.whichLibVersion (name)

Get version information about a C library.

If the library indicated by name is available, this function returns a 3-tuple containing the major library version
as an integer, its full version as a string, and the version date as a string. If the library is not available, None is
returned.

The currently supported library names are hdf5, zlib, 1zo and bzip2. If another name is given, a ValueError is
raised.

tables.silenceHDF5Messages (silence=True)

Silence (or re-enable) messages from the HDFS5 C library.

The silence parameter can be used control the behaviour and reset the standard HDF5 logging. New in version
2.4.

4.2 The File Class

class tables.File (filename, mode="r’, title="", rootUEP="/", filters=None, **kwargs)

The in-memory representation of a PyTables file.

An instance of this class is returned when a PyTables file is opened with the :func‘tables.openFile* function. It
offers methods to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods to
traverse the object tree. The user entry point to the object tree attached to the HDFS5 file is represented in the
rootUEP attribute. Other attributes are available.

File objects support an Undo/Redo mechanism which can be enabled withthe File.enableUndo () method.
Once the Undo/Redo mechanism is enabled, explicit marks (with an optional unique name) can be set on the state
of the database using the File .mark () method. There are two implicit marks which are always available:
the initial mark (0) and the final mark (-1). Both the identifier of a mark and its name can be used in undo and
redo operations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling operations
(setting and deleting) made after a mark can be undone by using the File.undo () method, which returns
the database to the state of a past mark. If undo() is not followed by operations that modify the hierarchy or
attributes, the File.redo () method can be used to return the database to the state of a future mark. Else,
future states of the database are forgotten.

Note that data handling operations can not be undone nor redone by now. Also, hierarchy manipulation opera-
tions on nodes that do not support the Undo/Redo mechanism issue an UndoRedoWarning before changing the
database.

66

Chapter 4. Library Reference

PyTables User Guide, Release 2.4.0

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling the
File.disableUndo () method.

File objects can also act as context managers when using the with statement introduced in Python 2.5. When
exiting a context, the file is automatically closed.

Parameters filename : str

The name of the file (supports environment variable expansion). It is suggested that file
names have any of the .hS, .hdf or .hdf5 extensions, although this is not mandatory.

mode : str
The mode to open the file. It can be one of the following:
e ‘7’: Read-only; no data can be modified.

* ‘w’ Write; a new file is created (an existing file with the same name would be
deleted).

* ‘a’: Append; an existing file is opened for reading and writing, and if the file does
not exist it is created.

e ‘r+’: Itis similar to ‘a’, but the file must already exist.
title : str

If the file is to be created, a TITLE string attribute will be set on the root group with
the given value. Otherwise, the title will be read from disk, and this will not have any
effect.

rootUEP : str

The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken
as the starting point to create the object tree. It can be whatever existing group in the
file, named by its HDF5 path. If it does not exist, an HDF5ExtError is issued. Use this
if you do not want to build the entire object tree, but rather only a subtree of it.

filters : Filters

An instance of the Filters (see The Filters class) class that provides information about
the desired /O filters applicable to the leaves that hang directly from the root group,
unless other filter properties are specified for these leaves. Besides, if you do not spec-
ify filter properties for child groups, they will inherit these ones, which will in turn
propagate to child nodes.

Notes

In addition, it recognizes the names of parameters present in tables/parameters.py as additional key-
word arguments. See PyTables parameter files for a detailed info on the supported parameters.

File attributes

filename
The name of the opened file.

format_version

The PyTables version number of this file.
isopen

True if the underlying file is open, false otherwise.

4.2. The File Class 67

PyTables User Guide, Release 2.4.0

mode
The mode in which the file was opened.

root
The root of the object tree hierarchy (a Group instance).

rootUEP
The UEP (user entry point) group name in the file (see the openFile () function).

4.2.1 File properties
File.title
The title of the root group in the file.

File.filters
Default filter properties for the root group (see The Filters class).

File.open_count
The number of times this file has been opened currently.

4.2.2 File methods - file handling

File.close()
Flush all the alive leaves in object tree and close the file.

File.copyFile (dstfilename, overwrite=False, **kwargs)
Copy the contents of this file to dstfilename.

Parameters dstfilename : str

A path string indicating the name of the destination file. If it already exists, the copy
will fail with an IOError, unless the overwrite argument is true.

overwrite : bool, optional

If true, the destination file will be overwritten if it already exists. In this case, the
destination file must be closed, or errors will occur. Defaults to False.

kwargs :

Additional keyword arguments discussed below.

Notes

Additional keyword arguments may be passed to customize the copying process. For instance, title and filters
may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may be collected,
etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying operations of
nodes to see which options they support.

In addition, it recognizes the names of parameters present in tables/parameters.py as additional key-
word arguments. See PyTables parameter files for a detailed info on the supported parameters.

Copying a file usually has the beneficial side effect of creating a more compact and cleaner version of the original
file.

File.flush()
Flush all the alive leaves in the object tree.

68 Chapter 4. Library Reference

PyTables User Guide, Release 2.4.0

File.fileno ()
Return the underlying OS integer file descriptor.

This is needed for lower-level file interfaces, such as the fcnt 1 module.

File._ _enter_ ()
Enter a context and return the same file.

File.__exit__ (*exc_info)
Exit a context and close the file.

File.__str ()
Return a short string representation of the object tree.

Examples

>>> f = tables.openFile(’'data/test.h5")

>>> print f

data/test.hb5 (File) ’Table Benchmark’

Last modif.: ’Mon Sep 20 12:40:47 2004’

Object Tree:

/ (Group) ’Table Benchmark’

/tuple0 (Table(100,)) ’This is the table title’
/group0 (Group) '’

/group0/tuplel (Table(100,)) ’This is the table title’
/group0/groupl (Group) '’

/group0/groupl/tuple2 (Table(100,)) ’This is the table title’
/group0/groupl/group2 (Group) '’

File.__repr_ ()
Return a detailed string representation of the object tree.

4.2.3 File methods - hierarchy manipulation

File.copyChildren (srcgroup, dstgroup, overwrite=False, recursive=False, createparents=False,
**kwargs)
Copy the children of a group into another group.

Parameters srcgroup : str
The group to copy from.
dstgroup : str
The destination group.
overwrite : bool, optional
If True, the destination group will be overwritten if it already exists. Defaults to False.
recursive : bool, optional
If True, all descendant nodes of srcgroup are recursively copied. Defaults to False.
createparents : bool, optional
If True, any necessary parents of dstgroup will be created. Defaults to False.

kwargs : dict

4.2. The File Class 69

PyTables User Guide, Release 2.4.0

Additional keyword arguments can be used to customize the copying process. See the
documentation of Group._f_copyChildren () for a description of those argu-
ments.

File.copyNode (where, newparent=None, newname=None, name=None, overwrite=False, recur-

sive=Fualse, createparents=False, **kwargs)
Copy the node specified by where and name to newparent/newname.

Parameters where : str

These arguments work as in File.getNode (), referencing the node to be acted
upon.

newparent : str or Group

The destination group that the node will be copied into (a path name or a Group in-
stance). If not specified or None, the current parent group is chosen as the new parent.

newname : str

The name to be assigned to the new copy in its destination (a string). If it is not specified
or None, the current name is chosen as the new name.

name : str

These arguments work as in File.getNode (), referencing the node to be acted
upon.

overwrite : bool, optional

If True, the destination group will be overwritten if it already exists. Defaults to False.
recursive : bool, optional

If True, all descendant nodes of srcgroup are recursively copied. Defaults to False.
createparents : bool, optional

If True, any necessary parents of dstgroup will be created. Defaults to False.
kwargs :

Additional keyword arguments can be used to customize the copying process. See the
documentation of Group._f_copy () for a description of those arguments.

Returns node : Node

The newly created copy of the source node (i.e. the destination node). See
Node._f_copy () for further details on the semantics of copying nodes.

File.createArray (where, name, object, title="", byteorder=None, createparents=False)
Create a new array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/levell/leaf5’), or a Group instance (see The Group class).

name : str
The name of the new array
object : python object

The array or scalar to be saved. Accepted types are NumPy arrays and scalars, numarray
arrays and string arrays (deprecated), Numeric arrays and scalars (deprecated), as well
as native Python sequences and scalars, provided that values are regular (i.e. they are

70 Chapter 4. Library Reference

PyTables User Guide, Release 2.4.0

not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type). Also,
objects that have some of their dimensions equal to 0 are not supported (use an EArray
node (see The EArray class) if you want to store an array with one of its dimensions
equal to 0).

title : str
A description for this node (it sets the TITLE HDFS5 attribute on disk).
byteorder : str

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the given object.

createparents : bool, optional
Whether to create the needed groups for the parent path to exist (not done by default).
See Also:

Array for more information on arrays
createTable for more information on the rest of parameters

File.createCArray (where, name, atom, shape, title="", filters=None, chunkshape=None, byte-

order=None, createparents=False)
Create a new chunked array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/levell/leaf5’), or a Group instance (see The Group class).

name : str
The name of the new array
atom : Atom

An Atom (see The Atom class and its descendants) instance representing the fype and
shape of the atomic objects to be saved.

shape : tuple

The shape of the new array.
title : str, optional

A description for this node (it sets the TITLE HDFS5 attribute on disk).
filters : Filters, optional

An instance of the Filters class (see The Filters class) that provides information about
the desired I/O filters to be applied during the life of this object.

chunkshape : tuple or number or None, optional

The shape of the data chunk to be read or written in a single HDFS5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be the same
as that of shape. If None, a sensible value is calculated (which is recommended).

byteorder : str, optional

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the given object.

createparents : bool, optional

4.2. The File Class 71

PyTables User Guide, Release 2.4.0

Whether to create the needed groups for the parent path to exist (not done by default).
See Also:

CArray for more information on chunked arrays

File.createEArray (where, name, atom, shape, title="", (filters=None, expectedrows=1000,

chunkshape=None, byteorder=None, createparents=False)
Create a new enlargeable array.

Parameters where : str or Group

The parent group from which the new array will hang. It can be a path string (for
example ‘/levell/leaf5’), or a Group instance (see The Group class).

name : str
The name of the new array
atom : Atom

An Atom (see The Atom class and its descendants) instance representing the fype and
shape of the atomic objects to be saved.

shape : tuple

The shape of the new array. One (and only one) of the shape dimensions must be 0.
The dimension being 0 means that the resulting EArray object can be extended along it.
Multiple enlargeable dimensions are not supported right now.

title : str, optional
A description for this node (it sets the TITLE HDFS attribute on disk).
expectedrows : int, optional

A user estimate about the number of row elements that will be added to the grow-
able dimension in the EArray node. If not provided, the default value is EX-
PECTED_ROWS_EARRAY (see tables/parameters.py). If you plan to create either
a much smaller or a much bigger array try providing a guess; this will optimize the
HDF5 B-Tree creation and management process time and the amount of memory used.

chunkshape : tuple, numeric, or None, optional

The shape of the data chunk to be read or written in a single HDF5 I/O operation. Filters
are applied to those chunks of data. The dimensionality of chunkshape must be the same
as that of shape (beware: no dimension should be 0 this time!). If None, a sensible value
is calculated based on the expectedrows parameter (which is recommended).

byteorder : str, optional

The byteorder of the data on disk, specified as ‘little’ or ‘big’. If this is not specified,
the byteorder is that of the platform.

createparents : bool, optional
Whether to create the needed groups for the parent path to exist (not done by default).
See Also:

EArray for more information on enlargeable arrays

72 Chapter 4. Library Reference

PyTables User Guide, Release 2.4.0

File.createExternalLink (where, name, target, createparents=False, warnl6incompat=True)
Create an external link.

Create an external link to a target node with the given name in where location. target can be a node object in
another file or a path string in the form ‘file:/path/to/node’. If createparents is true, the intermediate groups
required for reaching where are created (the default is not doing so).

The returned node is an Externallink instance.

Note: The warnl6incompat argument is deprecated since version 2.4. It will be ignored.

File.createGroup (where, name, title="", filters=None, createparents=False)
Create a new group.

Parameters where : str or Group

The parent group from which the new group will hang. It can be a path string (for
example ‘/levell/leaf5’), or a Group instance (see The Group class).

name : str

The name of the new group.
title : str, optional

A description for this node (it sets the TITLE HDFS attribute on disk).
filters : Filters

An instance of the Filters class (see The Filters class) that provides information about
the desired I/O filters applicable to the leaves that hang directly from this new group
(unless other filter properties are specified for these leaves). Besides, if you do not
specify filter properties for its child groups, they will inherit these ones.

createparents : bool
Whether to create the needed groups for the parent path to exist (not done by default).
See Also:

Group for more information on groups

File.createHardLink (where, name, target, createparents="False)
Create a hard link

Create a hard link to a target node with the given name in where location. target can be a node object or a path
string. If createparents is true, the intermediate groups required for reaching where are created (the default is
not doing s0).

The returned node is a regular Group or Leaf instance.

File.createSoftLink (where, name, target, createparents=_False)
Create a soft link (aka symbolic link) to a target node with the given name in where location. target can be a
node object or a path string. If createparents is true, the intermediate groups required for reaching where are
created (the default is not doing so).

The returned node is a SoftLink instance. See the SoftLink class (in The SoftLink class) for more information
on soft links.

File.createTable (where, name, description, title="", filters=None, expectedrows=10000,

chunkshape=None, byteorder=None, createparents=False)
Create a new table with the given name in where location.

4.2. The File Class 73

PyTables User Guide,