FreeBSD Developers'
Handbook

FreeBSD Developers' Handbook

f&3T: 43126

August 2000 F .

KRt © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 The FreeBSD
Documentation Project

SRS

BO A Developers' Handbook | B HEHFFL AN THHERE mEAY
MEFZEHMTFERREARRE—HFZTH » RRIEE N FreeBSD 4

THE) > FEBMEE] FreeBSD documentation project BEEZMIE o

R S ERTE FreeBSD ‘E4§ LTH » HHA[{E FreeBSD FIP server TF#iA
RS AL o B IR A] IFEEAMAY mirroryhi F# o

Copyright

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HTIML, PDF,
PostScript, RTF and so forth) with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice,
this list of conditions and the following disclaimer as the first lines of this

file unmodified.

2. Redistributions in compiled form (transformed to other DIDs, converted to PDF,
PostScript, RIF and other formats) must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

A THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS: OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ii

http://svnweb.freebsd.org/doc?view=revision&revision=43126
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
../../../../index.html
ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/
../../../../doc/zh_TW.Big5/books/handbook/mirrors-ftp.html

FreeBSD & FreeBSDA:4 & 1yt pytd

Apple, AirPort, FireWire, Mac, Macintosh, Mac 0S, Quicktime, LA} TrueType & Apple

Computer, Inc. FESEELLRH AR ZAYFE MR o

IBM, AIX. 0S/2, PowerPC, PS/2, S/390, I ThinkPad 2 S AL AFHEEREMER
T PR ek P A o

IEEE, POSIX, F1 802 /& Institute of Electrical and Electronics Engineers, Inc. fF3

BIARE RS

Intel, Celeron, EtherExpress, 1386, 1486, Itanium, Pentium, Fll Xeon /& Intel Corporation

B 53 S RERE R SE B N E A B SR A P ARl I R A o
Linux #& Linus Torvalds R A -

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windows Media, A Windows NT &

Microsoft Corporation f£3%[EHH /B H Mt B S B AR BAE M A

Motif, OSF/1, #l UNIX & The Open Group fEEEIFIEHMEIZKAGEMAEEE 1T DialTone F
The Open Group fZ=HEFIZE -

Sun, Sun Microsystems, Java, Java Virtual Machine, JDK, JSP, JVM, Netra, Solaris,
StarOffice Ffl SunOS & Sun Microsystems, Inc. 7F3%ERFNH fih B Z A i el z: M i o

FF 2 BTG P AN AL B R 6) — LR A R AR RO B R BCC 3G AR B H R © ASCH B RS
FHE » LUK FreeBSD Project ZABEFT AFIAURIER » REMGLL &' B "7 FFofaisRE -

iii

T R R 1
L BT oo 5
1.1. fF FreeBSD BHZEREZL ... 5

1.2. The BSD VisSioniiiiiuiiinniiiiieeeeeennnnnenns 5

1.3, B ERETE T . o 5

1.4, JUSHSIC BOZRRE 6

2. R BB T 7
2. 1. B 7

2. 2. B 7

2.3. Programming My oot 7

2.4. F oo BRAREEFET 11
2.5, MAKE it e e e e e e e 19

2.6. DeEDUSEING .o v ittt ittt i i e e e e e e 24

2.7. Using Emacs as a Development Environment 28

2.8. Further Readingiiiiiiiiiiiiniin s 38

3. Secure Programmingttt ettt ettt 41
3.1, SYNODSIS vttt e e e e e e 41

3.2. Secure Design Methodologyiviiiniiniinnnnnnnnn 41

3.3. Buffer Overflowsttt ittt 41
3.4, SetUID 1SSUES viiiiiiiiiiite ittt ittt et 44
3.5. Limiting your program's environment 45

3.6, TrUST ittt i e e e e e e e 46

3.7. Race Conditions ...ttt ittt 47

4. Localization and Internationalization — L1ON and I18N 49
4.1. Programming I18N Compliant Applications 49

5. Source Tree Guidelines and Policiesiiiiiiiinnnnn.. 51
5.1. MAINTAINER on Makefilesc.iviiiininnnnennnnnn. 51

5.2. Contributed Softwareiiiiiiiinnneeeennnnnnnns 51

5.3. Encumbered Files ...ttt ittt 54
5.4. Shared Librariesiiiiiiiiiiiiniiiiineneeennnn 55

6. Regression and Performance Testingc.iiiiiinennnn. 59
6.1. Micro Benchmark Checklistiiiiiiniinnnnnnn. 59

I11. Interprocess Communication(IPC)t 63
S o Yol (< 1 =T 67
T, SYNODSIS vttt ittt e e e e e 67

7.2. Networking and Diversityc.uiiiiiiiiinennnn. 67

7.8, Protocols ...ttt e e e e e e e 68

7.4. The Sockets Model ...ttt ittt 72
7.5. Essential Socket Functionsciiiuunnnnn.. 73

7.6. Helper Functionsuiiiiiiiinin e ennnennns 90
T.7. CoNCUrrent SErVerS . uuuuueeeeeeeeennnneeeeeennnneenns 92

8. IPVE Internals . .uiuuiiinit ittt ettt ettt 95
8.1. IPv6/IPsec Implementationeeeeeeneenunnunenens 95

TIT. Kernel (BZil)) oot e e e e 119

9. Kernel DebuUgging .« .vvii ittt ittt e et e 123
9.1. Obtaining a Kernel Crash Dumpcco..... 123

9.2. Debugging a Kernel Crash Dump with kgdb 125

9.3. Debugging a Crash Dump with DDDc..... 130

9.4. Post—Mortem Analysis of a Dumpcoviieennn.. 131

9.5. On—Line Kernel Debugging Using DDB 131

9.6. On—-Line Kernel Debugging Using Remote GDB 135

9.7. Debugging Loadable Modules Using GDB 137

9.8. Debugging a Console Driveroveviiiennennen. 138

9.9. Debugging the Deadlocksiiiiiiiiiinnennnnn. 138

IV. Architectures (EEBSZERE) .ot 139
10. x86 Assembly Language Programmingccouiienvnn. 143
10. 1. SYNODSIS vttt ittt et e e e e e 143
10.2. The To0lS vttt ittt itinnnanneenns 143
10.3. System Calls .ttt ettt 144
10.4. Return Valuesiiiiiiiiinnnn i iiiinnneneeeennnns 147
10.5. Creating Portable Codeuiiiiiniiiininennnnnn 149
10.6. Our First Programoceiiiiin e e 153
10.7. Writing UNIX® Filtersuiiiiiininnennennn 155
10.8. Buffered Input and Output 159
10.9. Command Line Argumentsoeevinitneneenenennenns 167
10.10. UNIX® Environmenteuuuinneeenennnnnennn 172
10.11. Working with Files ...ttt 177
10.12. One—Pointed Mindc.iiiiiiiniiinninnnnnnns 190
10.13. Using the FPUt ii e i, 199
10,14, Cavealts vttt it et e e e e e e e 233
10.15. Acknowledgements ...t tin ittt et enenennens 235

Vo BBk 237
B R o e 241
B 243

vi

#2.19) B 4%

2.1. A sample

.emacs file

A I BAAMS

1.

1372 S 5
1.1. 7E FreeBSD BHEERET . ot 5
1.2, The BSD Vision ...ttt 5
1.3, BB ZRRETEE . oo 5
1.4, Justisre BB o 6

a2 = N 7
2. L. M o 7
2.2, BT o 7
2.3. Programming M .o 7
2.4. oo RAREERET . 11
2.0 MAKE i e e e e 19
2.6, DEDUSEING vttt ittt it e e e e e e e e e e 24
2.7. Using Emacs as a Development Environment 28
2.8. Further Readingttt e i iiiinn 38

Secure Programming ...t e ettt ittt ettt ittt tne e 41
Bl SYNODSIS vttt e e e e e e e e 41
3.2. Secure Design Methodology ...ttt i 41
3.3, Buffer Overflowsiiiuiiiniiiiiiiieeiiiitinnnnnneennn 41
3.4, SetlUID 1SSUES v vt ittiiett ittt et tanneee e 44
3.5. Limiting your program's environmentccccui0.... 45
3.6, TrUST it e et e e 46
3.7. Race Conditionsiiiiiiiniiiiiiineeeeiiinnnnnnneeennn 47

Localization and Internationalization — L1ON and I18N 49
4.1. Programming 118N Compliant Applications 49

Source Tree Guidelines and Policiesiiiiiniiininnennnnn 51
5.1. MAINTAINER on Makefilesovuuiirinninnnnennennnns 51
5.2. Contributed Softwarecceiiiiieeeiiinnnneeeennnnns 51
5.3. Encumbered Files ...ttt 54
5.4. Shared Librariesc.uuuiiiietiiiiineneeeeennnnnnneennn 55

Regression and Performance TesSting ...t ieinenennnnnn 59

6.1. Micro Benchmark Checklistc.iiiiiiiiiiiinnnnnennnn. 39

S e
= 1. B 4]\

Contributed by Murray Stokely H. Jeroen Ruigrok van der Werven.

1.1. /& FreeBSD B#42 X,

T T RAMBAGAIE | FRABIRE) FreeBSD EARZLHEMT T » MHEKRFHTFEATEE
R TIE 2 (HEEREHEEIIEIE ? FreeBSD AEMEMRAMBERAMIBEE? B
programer HF AT LUH (T EENE 2

AREREREIR—LERE > ER » Bl programming FEEEAFH AT MR Z MG IR »
BUARZRAERE GRS MMESE > AEFEASTEHEEESE -
EIR o BIAILEARE FreeBSD HIREXHEET S » AXHFABHBE TS EMHA -
1.2. The BSD Vision

B TEREHAKNERE WX like R4 FHA RIFHIFERAM: ~ MEEMBEN -
T AR 4R — LR TS (original software tools ideology) ©

1.3. BAEHEHEE
T (FIAE B T T
IR B AT - RERII T -

- HA—EERBLE - R E CRRBIRAESSE B AR 0 A
RTE » PEERMREIRNFTK » FRARER IR B A E I A M -

- THEE - FRAHREERE - 25RIEBIEHARNER > SHECE
25 RS

- BRI IHE ST 2 IR - IR IR AN EE EERIRE
- FHH10% FROHEREEISERSERL 90% AU TAE(Y & > 5t A5 H Y B IR o
- BT REH R (LR RO -

- FRBEHEH] (nechanism) » TIIEERA (policy) o FEITE » LM/ HEEEL H
fEFIEAGRE

L i E Scheifler & Gettys B "X Window System" Fg3

Jusrisrc AOZERE

1.4. Jusr/src B %24

SEREM) FreeBSD JFUATEERTE/ABHNI CVS repository A e @ FreeBSD JRIATE

R Juslsc> THEETIFHE :

Directory Description

bir/ Source for files in /hin

contrib/ Source for files from contributed
software.

crypto/ Cryptographical sources

etc/ Source for files in /etc

gamed Source for files in Jug/games

gnuw/ Utilities covered by the GNU Public
License

include/ Source for files in fus/include

kerbeross/ Source for Kerberos version 5

lib/ Source for files in fuglib

libexec/ Source for files in [fug/libexec

release Files required to produce a FreeBSD
release

rescue/ Build system for the frescue utilities

shin/ Source for files in /dhin

secure/ FreeSec sources

share/ Source for files in Jug/share

syd Kernel source files

tools/ Tools used for maintenance and
testing of FreeBSD

usr.bin/ Source for files in fus/bin

usr.shin/ Source for files in fug/shin

= 2, BAMELL

Contributed by James Raynard E. Murray Stokely.

2.1. BLE

AREANGAIFAEH—LE FreeBSD FrigftiufEsF % L & (programing tools) »
AEBRNEH T EBAFEREMR AR WNIX® FHA#ERH » Fit A e gt
BEREARSEMAE » ARERIS RIEE &SR CLENE A S A E D Er SR
KER > R R EAERZEIERE N AR P ENG — L -

2.2. A~

FreeBSD fRME—EAEEHBMFHERE > [LWHHEZE C~C+~Fortran I
assembler (A ARET) K= 2% (compiler), 7E FreeBSD HHERKESEEARN
REHRT FRIFR Perl AMHEHAMAEEE UINIX® THE - B2sed DK awk: WE
{RIZZEIF S » FreeBSDTE Ports collection HiRIRHtEMMAVAMZERS 1 B Eay
(interpreter), FreeBSD MR LIEHE » £ POSIX® Al ANSI C» HIREETE
Fré &t BSD {H4% o FFLATE FreeBSD FEMBERAREBGHMETELMMBH - ¥
A LAERT L F & L4 ~ $dT -

BN - SEIRTEAIRAE WIX® P& EFHERER > WA DIEURESZ £ FreeBSD
LNEETHERRANE S - AR RESRE B IRIGE LF - T RATFRAK
ZEPEERE - 3 H AR SRR - DURIR AT DU R MR LB

AEARAA BRI EEAGRLE - SE R —BREREmE - i >
HMBBARCAEET INIX® RFAVEARIE » THEEZENE FFRFENEEN
DRE |

2.3. Programming #LZ&

RS > AR RO HR A THEL e <2 AR E TR E B2 2RIl
B o ARHE - SRLRIBITRIRN I — (B LA RTTE © AFEHE SRR
B2 (EEZETE - RIRE L ER TZELR (instruction) B Ay
% (commands)” o H—AJEHZ Hi¥ds (interpreter) » TIH _MHA
i BwiEas (compiler) o HRMVEINERNTI & - NIHEE S HURE BB B BOMI T A REE
fif - P4 (commands) HH & UI— (2 1) BAFEF WAL - AR REET
ERATHR E BN ER T

HiFds

2.3.1. A#ER

(R ErRsly - FTE AR GE SR BN EE AR LSRG - EEGLR
RO LT LSl B ESGRRNEITE S o £ EBRERIRESH - WD
ARTENMLAAMASEERERE - KRR ERSEEIGZHER - 1 H
HITIRSEEEERETRIES o R TR AHEBES - REBWERERS
HEA SR (debugger) » I HBURHBISERGIE » UESHREARRE -

BRI RAER © AT LASLZIE BIFE S AT R - DU SRRt TR IE - A
B RRAERR 2 E RIS RS RRE S Z AR AR » B ALHAZRIRIR
—ERHVEFR o MHBIE T - it & i By Eaie AT - EARMEAE
WAFEANNOILERHE » PUE ST o BETRCRTE - B
GHEAERZHRIER - T EEHER R - B I A G LR S TR
HHVEHARCK -

FEEBAT R WRIRZ AR AEREMERES » T L2E2YHEES
(interpreted languages) » £/ Lisp » Smalltalk » Perl F1 Basic #P/& » UNIX®
] shell {5 sh il csh EMAGHMERHER FEL REALECMBE O
ar FEREARA shell “script” o ZRIEFFTEHAIE “housekeeping (4EE)”
%5 o UNIX® FIEREE Y —giaiefit KER/NT R » WA shell script 5K
MHEeERELNTH > DMET/EREARE -

2.3.2. FreeBSD 124ttg HF R

THEE AT FreeBSD Ports Collection FriRfpIEEAEE » BAF LI
BEEOER EERRE S

ERNUA{E A Ports Collection ZF#ERYELHH » AJ22R] FreeBSD Handbook H1HY
PortsZEHj o

BASIC
BASIC /& Beginner's ALL-purpose Symbolic Instruction Code HIXEES o
BASIC & 1950 FEARFIGERE » HEWFHEEELSHENER THEERIIK
BEANMERER o BT 1980 » BASICE AR ERE programmer FE—{HEEE 1)
FEREF T o b4k » BASIC & Visual Basic HYEERE -

FreeBSD Ports Collection W AUWIERFHRINY BASIC B EEHS o Bywater Basic
BB lang/bwbasic o Jif Phil Cockroft's Basic Higes (FHItAY
Rabbit Basic) ilff lang/pbasic °

Lisp
LISP &7 1950 FABHBEHBEN—MEZENXGES > mE LIsP pig—fE
“number—crunching” languages GREGE/T KREEFEIIENZES) » EERE
AT EMERFET LISP IFRENEENEITF (numbers) » TTR&FHENFE
(lists) o [MHxAEF/RH LISP Fp@ApH T EiER @ LISP & “List

../../../../doc/zh_TW.Big5/books/handbook/ports-using.html

2. EAE LA

Processing” WIHEE o FEANTEE (Artificial Intelligence, Al)ZSEI b
LISP &I FHEH &

LISP EdRHmF RN ERGE S - (B sl S 2 sUR & 5 A HEEDIR
fE e

4 K ERAFH LISP HEERS# AT LITE UNIX® Z4% L IEE » B IR FreeBSD [Ports
Collection HAULEE © GNU Common Lisp WIRTE lang/gcl» Bruno Haible
A1 Michael Stoll HYJ CLISP USHR{E lang/clisp » A CMUCL (8, & —1F
ERmENRRERS) » DURHMB AR LIsP HFESR (thankl ¢ EEEW
SLisp » A EITRAMBMEERLZE Common Lisp MIIIAE) RIS B ER
£ lang/cmucl LLJ lang/slisp e

Perl
HAGEEEMS > B perl KIEE scripts DIFHEIH > FRFHLHE
FHARE www 4% FAY CGI Script FEF o

Perl Jf Ports Collection [NHY lang/perl5 o |fj FreeBSD 4.X HIZH! Perl
$7E Jus/bin/perl °

Scheme
Scheme & LISP WS —% » Scheme H4FELELE L Common LISP 1REfEE
BF o HJIA Scheme FHEL » FRLMRZ REEZEREIEE — R AGE T HEE -
T BB S0 Bt AT AR) B 45 A7 P =35 ZEAORE X o

Scheme WX§kFE lang/elk > Elk Scheme F 2% (& T ERTATERED
Scheme B :%e%) UNEETE lang/mit—scheme » SCM Scheme Interpreter W{EETE
lang/scm °

Icon
Icon BEPEREREES » Icon BA M AKAIFE (String) fIEEHE (Structure) JEHE
B/ o FreeBSD Ports Collection FRULERHY Tcon HiZeshiARIZHAE lang/

icon °

Logo
Logo A GEHNENGES » T —YWHERE P E A E ER
i o ARG/ RIS EAREE S ERAUEE » Logo EAMHE NFEHERE o
Ry BIMEB/NAAKE - R Logo ARFEHEHMZ SEE L EMHERRZES
[©

Logo £ FreeBSD Ports Collection HEFThRBIEHMAE lang/logo °
Python

Python ZWMHEMIEENGES > Pyvthon HIFEEEMEER Python 2
HFAFIRIRERGEES SR Python W LURFEAIFHLS - (HENMKEBEEG

s

HiEENGES (B2 Perl M Tcl) » FEFEH Python HAJIERFIFER
M~ W E R -

FreeBSD Ports Collection WHETE lang/python °

Ruby
Ruby A M p HEXEES - Ruby BRIIEHRT > REER S ERFE
RN - EREEARENY - DIAREEARGNEREEAHE
)12

FreeBSD Ports Collection WI$E7E lang/ruby8 o

Tcl and Tk
Tl ZWNIFINERERGES i Tcl v DINHEZ EANEREE Tcl AIBHE
P o Tel AT AP EE B —(E il & R A SR iR X aiE B A E B I REiE
j_:t o

Tcl HFZHIMAERIAE FreeBSD FI#EfE » MHHH) Tcl RMAR Tcl 8.4
FreeBSD Ports Collection W$E7E lang/tcl84 o

2.3.3. BFES

e A EnRae A ELROEE » YN - B el LSRR A AR I A\ B
AW - IRR LA TR e A E MRSt - W R DR PR AR
b E—BBEGE > B4R X BTN SRR THE o ok - 18
A IERR 251 > SFERREE 88 R AT R B P R R B B R A AT LU E -

TRAABERY - (6 F S e ot MR B ae B A) LS EASEIREAR - AE - GiEds
RFFHIREFRZ ERFa N REEE R REEZRINEN - Ol - IR AERARREDY)
BEWER BEEZIRHCEIERRR | EIREES N SEERMERR - 5
WERLEAST - SR n] LUTE e B OF B AL IRAOAESE - (B2 EREas AN
7o TwrEas S Eas KR ZAIFER B IR T IRR IR EE B — G 1%
i DRHORF > (R R B AR AR SR L AR AT BT > R LW LIBIT > T
HAERAILHEOR S b - WREA RS — aWE DR ERR: - FREHEE
HATIRHIAES |

M RERFE S & Pascal ~C I C++> C Ml G+ ANE—EFM+ AR
5 ERREEBGLKERN Programmer o Pascal HEZ (T FREEMD
BHEES - MHABES AR » FreeBSD THEIZ AL Pascal EEifE base
system Hi s {HZ GNU Pascal Compiler Al Free Pascal Compiler HSH]4)FI7E
lang/gpc Al lang/fpc FFLE] o

AR AN R AR R R SR AR 20 RN Bt A — A s T PR BB B (8 U
RECEMREN > K TEGL - HEEXBEERE » ML R %

YRAESR AT TEIT > AR ATREF L core dump o

10

2. EAE LA

FEFTEEAY IDE (Integrated Development Environments) BH#$IRIZ » FreeBSD TH
HE A IDE A5 base system H1 o (EEIRFEM devel/kdevelop ZHE
kdevelop BYf#] Emacs ZCEEES IDE BHESIRIE o fE1BMMY HiF2.7. “Using Emacs
as a Development Environment” ELEHENGA4E » 40fa[LL Emacs ZC{EZ IDE [BHEE
B

2.4. A o« R&HFRLKX

REHEH A AEEE GNU C compiler F1 GNU C++ compiler A{E#HBEH > 18
MifH7E FreeBSD base system HELET ° HEEYT cc 3 g FLELIEL
7o Z=PY WA A EREERE AR AR - 8% AT 1E BB i SCHF AR S04
ZFHiRE o FE AR -

EIRFESEIRHIGEIERR » B TR (EEEE MAE AT LIFE FreeBSD E#UIT > EHIEL
BB BROrRESE Rl - LB BRAITE 2R RIRE AR SE AL -

1. FHSLEHE (Pre—process) {REIVIETCHE » HERIE ARV » MHEAMETT » BE
expanding (& K) C B marco °

2. WERFERFREETHEER o/ M - MARERAHES - HiER
oHBES -

3. WEIABENAAFE S — EEMEIREES (nachine code) IEF AL » (HIEN
$E] BRI E) (HR TER RE) °

4. PAHAETEAKINES — 2 EERAOEEESHERRI vit
byte s & 1 Fl 0o

5. W R EI B SRR ER - O TR
TERER » SRR -

6. HNARFEE MRS AR - SR a R A -

7. MiEarFAHEELR MAM LM run—time loader W LUERAEAZIE
BEAEUT -

8. mEREGITCHFETHBITHEEERRRL -
WH G (compiling) SEIEE 1 FIFE 4 BB — HMPBRARES HLh

(linking) » HEHMELSER 1 el LIETE TASLEEE (pre—processing) » A EE 3
ZHER 4 B E 43 (assembling) ©

SR - TEE(EPEEL CC MR EMITFIATE R HAL A% S » T4 nachine—independent
E’»j p—code °

11

A cc AgmEigat

SEERYE o URF] LN B DL EANED - SiRan il a BB e o BB oo HUER(E AT
if2 s (front end) » EERRIEMAISBURIEIARB AR KRR - HFT

% cc foobar.c

it &I foobarc FEUAMNRE - MSTAL LULEIE o ARIREIF S RTE EMN
iE o ASEETTEML TS8R

% ccfoo.c bar.c

SEREVESE M E S — AUREREAERE S o A BRI (R
Moo Han c MEFRERE > sk EHEF A RAER binary sort AlFEAL bubble sort o

cc HIEH 2RI - HALEELR EFMARE o T AR LB HEEANEIE
LAE R B3 o

-O##
-0 HRERINHATIERE S - RE A HHEEENG - mEHETEREA

2 aout

% cc foobar .c it a.out
% cc --0 foobar foobar.c #### foobar

e/ -c I A& SRR I6HSE - TAEEA (linking) & HAEMEREEEZ D
IERER(EH] Makefile ZCAmFEREURY » EEEHIFH A

% cc --c foobar .c

TEE LM foobar HY object file (FEEITHE) o JEHE AT LIBEHABAY object
file sEEEE— » TIRBITH

-9 MEIE—EEE edo FAEREEIE EEZBITHRERE - FTRERIRREEFUE B
s REETESE AT HEE ~ ARERRE AT M R B P I 5 5% o PRt B RTE
WA o (EEEEEUE - BRI - BN RIRRERIE & i KR AR
PLEZIELE - -g HEARHMRTER « EREURERI SR LR - TE RERH

SHIFFEEY binary sort Hl bubble sort [5H » TECHEFFIFHIFEF|H » binary sort HRIKE L
bubble sort If o

ER -0 WIEHA - AR —EREERE T -

12

2. EAE LA

PREY “FEITRRA (release version)” Y EMERAEAAEIEE HHIES » BiAL
H -g E®HET -

% cc --g foobar.c

EEEGRE LA SRR BT » °

-O GRETREMABITHE - M & (A — 245075 - AGRE R DA R
R GRT - TLUERE 0 REMN EBTFASEHEERN S ELE
o ERREMRSEHE LR » BHIHE FreeBSD 2.10 release H1H
cc HIRE -O2 W » LRI T FE LS BRASUTIE -

RAEEZREFITHOR ~ 308 IR » A4 75 2 s EIE -

% cc --O --o foobar foobar.c

TEEESE foobar BUTHE MR EILIA -

UIT =E285 & 358 oo AR T & — LEIBRFERRE - BaiEEs
ALHY ANSL fRUE - T ANSI BRHEAKGEME 1SO HRHE o

-Wall
-Wal R cc MEEEABR/ERMESNITAEESME - NlES TR EE
AR - FE EEIRTE2ER co RS HESME -

-and
-and BAPA cc FPARIIELERFIRAE ANST C FREEDIRE o AliE s T A REE G AL
B HE LEWARERIEX G2/ E ANST R o

-pedantic
RTHBAR cc FRFARIAE ANST C FRUEDHEE o

BRTIELZSE > cc EAFFIREHN LN SEHUTRES B AR 28R
HAEM - EEERELEARAENmEHETARIDELESE - RIEEARERE
REZHMOPE - FERE R DTG REds L TSR - B
REAT LU A bt F AR > U & portable code (REAEME RAFHIFEZED) -

—ORE - R AR EEEE (e - R - ERIEEXES B —
B ikas LHIRIRE R - B RIS TR R E AR -

CHEER > WA LOIZA -0 DUREBITHER FTUITHE R aout &t - IBE - EafEs
foobar HrgTHEE NS REERE » SEE R P — T -

13

WK cC R

% cc --Wall --and --pedantic --o foobar foobar.c

Lbifirg < &R foobar.c WHIREILZEIT AR » W HEAS K foobar HIFLT
f o

-llibrary
HAF gce TR (1inking) BRI TR BIA R U % 78 -

R RIENEE - BERERXFERT ¢ BEBHE RHEMIEEFER
— B BB A N AR E B PR (Library) 7 [RIUAR SR AR N0
EIE N EA R - (R H SRR 2N L E AT -

AR S > AR U libsomethinga> BUAAZETESRSEIRF N B 281
-lsomething 417 o BRFIZICET - B UM libma- FTLURLZER oc (Y
SR Ime —BRBIT B FIE S B ERERRSHIRE

% cc --o foobar foobar.c--Im

LIRS EE scc IRBER SRR EEAL » DU IRAVER 2URT DAY B U B A o5
VBB

WRARIEES AR U Crr RS - IRBLZHBSMERE -IgH+ BE 2 -lstde
++o WIRIRHY FreeBSD Jf& 2.2(%) LMRMUA > IRATLUAIFES o+ ZRERMR
cc° 7t FreeBSD I c++ WATLLAH g++ HUfL -

% cc --o foobar foobar.cc --Ig++ ## FreeBSD 2.1.6 ###i
% cc --0 foobar foobar.cc --Istdct++ ## FreeBSD 2.2 ##
% c++ --o foobar foobar .cc

bt SH G IR IAHE foobar.co 4RiEE L4 B fooboar HUEATHE - BB TR
FREAIZAE WIX® AT o+ BREFHL C ox HE2E oc /EARIE
%> TdE MS-Dos® FRFELL .cpp EAEIRE A4 7 = ORI bk i s
T) o goc EKEIME A AR E FIWR—FEARERS S - ART - BRAE DS FEIR A
BIMEZT » FFUARTLLE HAIMER cpp 1B Cc+— BRIBRIBIKEE |

2.4.1. % HE cc FAE

fl: A dn) BRBEERER > EAMEERAE T » EHRERE?
Ivar/tmp/cc0143941.0: Undefined symbol °_sin' referenced from text segment

14

= 2. BAM#BLIE

.

= -

FI:E :

it

i

EHEH 9n) EEOEEERRE 0 RUESRR cc BAEE KRR
(linking) » BLRIEEE :

TR - FalE LR B AR - AR A —1n SEIH GEREUEER 2.1 (1
6 KJ7)

RRIETHRE

MRERBITER > S T EEAR

REAFERY » RBAGE RN R IEREE R » SIS 1 FE 2

D E SRR BRI —{E BRORE » E SRR B R A (B (E R A

(prototype) » MR ARFHITRR » QIR EIEEBA S int (BED - R
PAREEY » VRE0FE P RN [ERE A A int

o 1 U WP Sz i

D BEHRIEHEMERER (prototype) B REFHRTE math.h » mRIRE
include JEHE - SRR sl & AMERZ ORI EEEER » it — Rz ERE S
BEIEMERLR |

WK cC R

%

ﬁ:ﬁ :

¥

¥

FEH .

16

T LA 2R - BEERE > RRET

% .Ja.out
2.1" 6= 85.766121

WA AL » FHEES include mahh &1 » T B EEAME
B2 B B AT o

. DAL foobarc (H/EAWFEIZNE foobar BITH o RZEWREIIE ?
DORLR c PRAPE TR AR R AT 2 - S AITE R BAT R A

a.out ° fi] -ofilename 2% > BUAT LUESIFTARZAOLER - Eoan

% cc --o foobar foobar.c

% A EGER AR 4 foobar - FI Is FESWFATLIR SN » (HEUITHF » #1
BAIHAN A EHEE o R ?

© HL NS-DOS® AFIMAE > BRAFATEEMITHAVEREE » BRI INIX® RLFIAA

GE H AR H ik TSR ERITIOESR o RSP TT foobar fUE "L
FreE i H ki T4 4% foobar MURER" - EiE M ATLIR B PATH ERIGEE
BOEMT > DU MRCR

bin:/usr/bin:/usr/local/bin:.
EArEagny o AR WRAERTE R A B Sk AR - Bk A R HE

COAERIT test BUTHE - (EEANRAEMERSE - BREWERET ?
D RZEE) WIX® RHSEEERE fusfbin BEEITH - BRIFETEE/ AT

HRIE SR tes THI shell FEZERFEAZE usibin () teds T
H2 0% » (I -

% Jtest

R T RESR iR # - GE R VRAORESUECE #1122 ST |

BRI RA BT - B FRAIE core dunped SEMFLE -
SE BB R 2

© B core dumped EAGERIEZ - ATLLEWIEIFHR INIX® REH

AFEM core memory HERHEFRF o FEA EERAERSHI TR LR

- EAREETA

ik

Fi:ﬁ :

% EERFTI core memory WHHIEFAE A core BEREZRF - DUFE:E
programmer J1iEFE T E IR A H#E -

D BEEKMET | BRERELE core dumped T 0 Z/EJEHE ?

© #EH gdb RO core FER GEMEIRSE Hi72.6. "Debugging”) e

EHENEKI core memory BRI dump HiZK1Z » FIFFHHIELS —EEER

segmentation fault B EE ?

COEAL s EEEBRER IR R R A T A W — M R E R

(illegal operation) » UNIX® FLAEMIEHTARIREREIERRARNGEE
FIRERBEER » FrLIA & 3R IREMEE -

RHE G “segmentation fault” FJR KB A -

- AEE—E NULL B9FEHE (pointer) fEET ARUENTE - 4N

char *foo = NULL;
strepy(foo, -"bang!");

- FER—E M ARIIIA (initialized) BIHEER » 401

char *foo;
strepy(foo, -"bang!");

W AR MR FR R W GG EAS & /2 BB » W RARSEE IR » B ETEIE
FIRIMREE$8H] kernel ERMEIRGCIEIEOIE » kernel FASAIHIEH
AR RFEELER o MR IRIHEE » WRTE 2 MR B E R
RV EERARIFERIEHE (data structures) IOV E » EHiEMEEEE
RS S B RN EIH T AR -

- ACE R AR (array) TEREE - 40

int bar[20];
bar[27] = 6;

- AE B MEER ISR (read—only memory) FHVERL - 41
char *foo = -"My string";

strepy(foo, -"bang!");

UNIX® compilers often put string literals like "My String" into

read—only areas of memory.

17

WA cc ME

Fl:ﬁ :

18

- Doing naughty things with maloc() and freg(). es

o
5

Making one of these mistakes will not always lead to an error, but
they are always bad practice. Some systems and compilers are more
tolerant than others, which is why programs that ran well on one
system can crash when you try them on an another.

Sometimes when 1 get a core dump it says bus error. It says in my
UNIX® book that this means a hardware problem, but the computer still

seems to be working. Is this true?

No, fortunately not (unless of course you really do have a hardware
problem---) . This is usually another way of saying that you accessed
memory in a way you should not have.

This dumping core business sounds as though it could be quite useful,
if 1 can make it happen when 1 want to. Can I do this, or do I have

to wait until there is an error?

Yes, just go to another console or xterm, do

to find out the process ID of your program, and do

where pid is the process ID you looked up.

This is useful if your program has got stuck in an infinite loop, for
instance. If your program happens to trap SIGABRT, there are several
other signals which have a similar effect.

2. EAE LA

Alternatively, you can create a core dump from inside your program,
by calling the abort() function. See the manual page of abort(3) to

learn more.

If you want to create a core dump from outside your program, but do
not want the process to terminate, you can use the gcore program. See

the manual page of gcore(1l) for more information.

2.5. Make

2.5.1. What is make?

When you are working on a simple program with only one or two source
files, typing in

% ccfilel.cfile2.c

is not too bad, but it quickly becomes very tedious when there are several
files—and it can take a while to compile, too.

One way to get around this is to use object files and only recompile the
source file if the source code has changed. So we could have something like:

% ccfilel.ofile2.o ... file37.c ...

if we had changed file37.c., but not any of the others, since the last time
we compiled. This may speed up the compilation quite a bit, but does not
solve the typing problem.

Or we could write a shell script to solve the typing problem, but it
would have to re—compile everything, making it very inefficient on a large
proJject.

What happens if we have hundreds of source files lying about? What if we
are working in a team with other people who forget to tell us when they
have changed one of their source files that we use?

Perhaps we could put the two solutions together and write something like
a shell script that would contain some kind of magic rule saying when a
source file needs compiling. Now all we need now is a program that can
understand these rules, as it is a bit too complicated for the shell.

This program is called make. It reads in a file, called a makefile, that
tells it how different files depend on each other, and works out which
files need to be re—compiled and which ones do not. For example, a rule
could say something like “if fromboz.o is older than frombozc, that means

19

http://www.FreeBSD.org/cgi/man.cgi?query=abort&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=gcore&sektion=1

Example of using Mmake

someone must have changed fromboz.c, so it needs to be re—compiled." The
makefile also has rules telling make how to re—compile the source file,
making it a much more powerful tool.

Makefiles are typically kept in the same directory as the source they apply
to, and can be called makefile, Makefile or MAKEFILE. Most programmers
use the name Makefile, as this puts it near the top of a directory listing,

where it can easily be seen.

2.5.2. Example of using make

Here is a very simple make file:

foo: foo.c
cc --o foo foo.c

It consists of two lines, a dependency line and a creation line.

The dependency line here consists of the name of the program (known as
the target), followed by a colon, then whitespace, then the name of the
source file. When make reads this line, it looks to see if foO exists:
if it exists, it compares the time foo was last modified to the time fooO.C
was last modified. If foo does not exist, or is older than foo.c, it then
looks at the creation line to find out what to do. In other words, this
is the rule for working out when f00.Cc needs to be re—compiled.

The creation line starts with a tab (press the tab key) and then the
command you would type to create foo if vou were doing it at a command
prompt. If foO is out of date, or does not exist, make then executes this
command to create it. In other words, this is the rule which tells make
how to re—compile foo.c.

So, when you type make, it will make sure that foo is up to date with
respect to your latest changes to foo.c. This principle can be extended
to Makefiles with hundreds of targets—in fact, on FreeBSD, it is possible
to compile the entire operating system just by typing makeworld in the

appropriate directory!

Another useful property of makefiles is that the targets do not have to be
programs. For instance, we could have a make file that looks like this:

foo: foo.c
cc --o foo foo.c

6They do not use the MAKEFILE form as block capitals are often used for documentation

files like README.

20

2. EAE LA

install:
cp foo -/home/me

We can tell make which target we want to make by typing:

% maketarget

make will then only look at that target and ignore any others. For example,
if we type makefoo with the makefile above, make will ignore the insal
target.

If we just type make on its own, make will always look at the first target
and then stop without looking at any others. So if we typed make here,
it will just go to the foo target, re—compile foo if necessary, and then
stop without going on to the ingdl target.

Notice that the ingal target does not actually depend on anything! This
means that the command on the following line is always executed when we try
to make that target by typing makeingall. In this case, it will copy foo into
the user's home directory. This is often used by application makefiles,
so that the application can be installed in the correct directory when

it has been correctly compiled.

This is a slightly confusing subject to try to explain. If you do not
quite understand how make works, the best thing to do is to write a
simple program like “hello world” and a make file like the one above and
experiment. Then progress to using more than one source file, or having
the source file include a header file. The touch command is very useful

here—it changes the date on a file without you having to edit it.

2.5.3. Make and include—files

C code often starts with a list of files to include, for example stdio.h.
Some of these files are system—include files, some of them are from the
project you are now working on:

#include <stdio.h>
#include -"foo.h"

int main(....

To make sure that this file is recompiled the moment foo.h is changed, you
have to add it in your Makefile:

foo: foo.c foo.h

The moment your project is getting bigger and you have more and more own
include—files to maintain, it will be a pain to keep track of all include

21

FreeBSD Makefiles

files and the files which are depending on it. If you change an include—
file but forget to recompile all the files which are depending on it, the
results will be devastating. gCC has an option to analyze your files and

to produce a list of include—files and their dependencies: -MM.

If you add this to your Makefile:

depend:
gcc --E --MM *.c > -.depend

and run makedepend. the file .depend will appear with a list of object—
files, C—files and the include—files:

foo.o: foo.c foo.h

If you change foo.h, next time you run make all files depending on foo.h

will be recompiled.

Do not forget to run makedepend each time you add an include—file to

one of your files.

2.5.4. FreeBSD Makefiles

Makefiles can be rather complicated to write. Fortunately, BSD—based
systems like FreeBSD come with some very powerful ones as part of the
system. One very good example of this is the FreeBSD ports system. Here
is the essential part of a typical ports Makefile:

MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/LOCAL_PORTS/
DISTFILES= scheme-microcodetdist-7.3-freebsd.tgz

.include <bsd.port.mk>

Now, if we go to the directory for this port and type make, the following

happens:

1. A check is made to see if the source code for this port is already
on the system.

2. If it is not, an FTP connection to the URL in MASTER SITES is set
up to download the source.

3. The checksum for the source is calculated and compared it with one
for a known, good, copy of the source. This is to make sure that the
source was not corrupted while in transit.

4. Any changes required to make the source work on FreeBSD are applied
—this is known as patching.

22

2. EAE LA

5. Any special configuration needed for the source is done. (Many UNIX®
program distributions try to work out which version of UNIX® they are
being compiled on and which optional UNIX® features are present—this

is where they are given the information in the FreeBSD ports scenario).

6. The source code for the program is compiled. In effect, we change to
the directory where the source was unpacked and do make—the program's

own make file has the necessary information to build the program.

7. We now have a compiled version of the program. If we wish, we can
test it now: when we feel confident about the program, we can type
makeingall. This will cause the program and any supporting files it
needs to be copied into the correct location: an entry is also made
into a package database, so that the port can easily be uninstalled
later if we change our mind about it.

Now I think you will agree that is rather impressive for a four line script!

The secret lies in the last line, which tells make to look in the system
makefile called bsdportmk. It is easy to overlook this line, but this is
where all the clever stuff comes from—someone has written a makefile that
tells make to do all the things above (plus a couple of other things I did
not mention, including handling any errors that may occur) and anyone can
get access to that just by putting a single line in their own make file!

If you want to have a look at these system makefiles, they are in /usr/share/
mKk, but it is probably best to wait until you have had a bit of practice
with makefiles, as they are very complicated (and if you do look at them,
make sure you have a flask of strong coffee handy!)

2.5.5. More advanced uses of make

Make is a very powerful tool, and can do much more than the simple example
above shows. Unfortunately, there are several different versions of make,
and they all differ considerably. The best way to learn what they can do
is probably to read the documentation—hopefully this introduction will
have given you a base from which you can do this.

The version of make that comes with FreeBSD is the Berkeley make; there

is a tutorial for it in /ug/share/doc/psd/12.make. To view it, do

% zmor e paper .acii.gz

in that directory.

Many applications in the ports use GNU make, which has a very good set

of “info” pages. If you have installed any of these ports, GNU make

23

Debugging

will automatically have been installed as gnwke. It is also available as

a port and package in its own right.

To view the info pages for GNU make, you will have to edit the dir file
in the fus/local/info directory to add an entry for it. This involves adding

a line like

* Make: (make). The GNU Make utility.

to the file. Once you have done this, you can type info and then select
make from the menu (or in Emacs, do C-hi).

2.6. Debugging

2.6.1. The Debugger

The debugger that comes with FreeBSD is called gdb (GNU debugger). You
start it up by typing

% gdb progname

although most people prefer to run it inside Emacs. You can do this by:

M-x gdb RET progname RET

Using a debugger allows you to run the program under more controlled
circumstances. Typically, you can step through the program a line at a
time, inspect the value of variables, change them, tell the debugger to
run up to a certain point and then stop, and so on. You can even attach
to a program that is already running, or load a core file to investigate
why the program crashed. It is even possible to debug the kernel, though
that is a little trickier than the user applications we will be discussing
in this section.

gdb has quite good on—line help, as well as a set of info pages, so this

section will concentrate on a few of the basic commands.

Finally, if you find its text—based command—prompt style off-putting,
there is a graphical front—end for it (xxgdb) in the ports collection.

This section is intended to be an introduction to using gdb and does not

cover specialized topics such as debugging the kernel.

2.6.2. Running a program in the debugger

You will need to have compiled the program with the -g option to get the
most out of using gdb. It will work without, but you will only see the

24

../../../../ports/devel.html

= 2. BAM#BLIE

name of the function you are in, instead of the source code. If you see
a line like:

when gdb starts up, you will know that the program was not compiled with
the -g option.

At the gdb prompt, type break main. This will tell the debugger to skip
over the preliminary set—up code in the program and start at the beginning
of your code. Now type run to start the program—it will start at the
beginning of the set—up code and then get stopped by the debugger when
it calls main(). (If you have ever wondered where main() gets called from,
now you know!) .

You can now step through the program, a line at a time, by pressing n. If
you get to a function call, you can step into it by pressing S. Once you are
in a function call, you can return from stepping into a function call by
pressing f. You can also use up and down to take a quick look at the caller.

Here is a simple example of how to spot a mistake in a program with gdb.

This is our program (with a deliberate mistake):

This program sets i to be 5 and passes it to a function bazzo which prints
out the number we gave it.

When we compile and run the program we get

Running a program in the debugger

That was not what we expected! Time to see what is going on!

Hang on a minute! How did anint get to be 4231? Did we not we set it to
be 5 in man()? Let's move up to man() and have a look.

Oh dear! Looking at the code, we forgot to initialize i. We meant to put

but we left the i=5; line out. As we did not initialize i, it had whatever

number happened to be in that area of memory when the program ran, which
in this case happened to be 4231.

{jz;ﬂa
5
gdb displays the stack frame every time we go into or

out of a function, even if we are using Up and down to
move around the call stack. This shows the name of the
function and the values of its arguments, which helps
us keep track of where we are and what is going on.

2. EAE LA

(The stack is a storage area where the program stores
information about the arguments passed to functions and
where to go when it returns from a function call).

2.6.3. Examining a core file

A core file is basically a file which contains the complete state of the
process when it crashed. In “the good old days” , programmers had to
print out hex listings of core files and sweat over machine code manuals,
but now life is a bit easier. Incidentally, under FreeBSD and other 4.4BSD
systems, a core file is called prognamecore instead of just core, to make

it clearer which program a core file belongs to.

To examine a core file, start up gdb in the usual way. Instead of typing
bregk or run, type

(gdb) cor e progname.core

If you are not in the same directory as the core file, you will have to

do dir /path/to/coreffile first.
You should see something like this:

% gdb a.out

GDB isfree software and you are welcome to distribute copies of it

under certain conditions; type -"show copying" to see the conditions.

There is absolutely no warranty for GDB; type -"show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.
(gdb) corea.out.core

Core was generated by “a.out'.

Program terminated with signal 11, Segmentation fault.

Cannot access memory at address 0x7020796d.

#0 Ox164ain bazz (anint=0x5) at temp.c:17

(gdb)

In this case, the program was called aOQut, so the core file is called
aout.core. We can see that the program crashed due to trying to access an

area in memory that was not available to it in a function called bazz.

Sometimes it is useful to be able to see how a function was called,
as the problem could have occurred a long way up the call stack in a
complex program. The bt command causes gdb to print out a back—trace of
the call stack:

(gdb) bt
#0 0x164ain bazz (anint=0x5) at temp.c:17

27

Attaching to a running program

The end() function is called when a program crashes: in this case, the
bazz() function was called from main().

2.6.4. Attaching to a running program

One of the neatest features about gdb is that it can attach to a program
that is already running. Of course, that assumes you have sufficient
permissions to do so. A common problem is when you are stepping through
a program that forks, and you want to trace the child, but the debugger
will only let you trace the parent.

What you do is start up another gdb, use ps to find the process ID for
the child, and do

in gdb. and then debug as usual.

“That is all very well,” you are probably thinking, “but by the time I
have done that, the child process will be over the hill and far away” . Fear

not, gentle reader, here is how to do it (courtesy of the gdb info pages):

Now all you have to do is attach to the child, set PauseMode to Q, and
wait for the deep() call to return!

2.7. Using Emacs as a Development Environment

2.7.1. Emacs

Unfortunately, UNIX® systems do not come with the kind of everything—you—

ever—wanted—and—lots—more—you—did—not—in—one—gigantic—package integrated

28

2. EAE LA

development environments that other systems have. 7 However, it is possible
to set up your own environment. It may not be as pretty, and it may not
be quite as integrated, but you can set it up the way you want it. And
it is free. And you have the source to it.

The key to it all is Emacs. Now there are some people who loathe it, but
many who love it. If you are one of the former, I am afraid this section
will hold little of interest to you. Also, you will need a fair amount
of memory to run it—1I would recommend 8MB in text mode and 16MB in X as
the bare minimum to get reasonable performance.

Emacs is basically a highly customizable editor—indeed, it has been
customized to the point where it is more like an operating system than
an editor! Many developers and sysadmins do in fact spend practically all
their time working inside Emacs, leaving it only to log out.

It is impossible even to summarize everything Emacs can do here, but here
are some of the features of interest to developers:

- Very powerful editor, allowing search—and-replace on both strings
and regular expressions (patterns), Jumping to start/end of block
expression, etc, etc.

+ Pull-down menus and online help.
+ Language—dependent syntax highlighting and indentation.

+ Completely customizable.

You can compile and debug programs within Emacs.
+ On a compilation error, you can jump to the offending line of source code.

* Friendly—ish front—end to the info program used for reading GNU hypertext

documentation, including the documentation on Emacs itself.

Friendly front—end to gdb, allowing you to look at the source code as

you step through your program.
* You can read Usenet news and mail while your program is compiling.
And doubtless many more that I have overlooked.
Emacs can be installed on FreeBSD using the Emacs port.

Once it is installed, start it up and do C-ht to read an Emacs tutorial

—that means hold down the control key, press h, let go of the control

7Somc powerful, free IDEs now exist, such as KDevelop in the ports collection.

29

../../../../ports/editors.html

Configuring Emacs

key, and then press t. (Alternatively, you can you use the mouse to select
Emacs Tutorial from the Help menu) .

Although Emacs does have menus, it is well worth learning the key bindings,
as it is much quicker when you are editing something to press a couple of
keys than to try to find the mouse and then click on the right place. And,
when you are talking to seasoned Emacs users, you will find they often
casually throw around expressions like “M-x replace-sRET foo RET bar RET”

so it is useful to know what they mean. And in any case, Emacs has far
too many useful functions for them to all fit on the menu bars.

Fortunately, it is quite easy to pick up the key—bindings, as they are
displayed next to the menu item. My advice is to use the menu item for,
say, opening a file until you understand how it works and feel confident
with it, then try doing C—x C—f. When you are happy with that, move on
to another menu command.

If you can not remember what a particular combination of keys does, select
Describe Key from the Help menu and type it in—Emacs will tell you what
it does. You can also use the Command Apropos menu item to find out all
the commands which contain a particular word in them, with the key binding
next to it.

By the way, the expression above means hold down the Meta key, press x,
release the Meta key, type replace-s (short for replace-dtring—another feature
of Emacs is that you can abbreviate commands), press the return key, type
foo (the string you want replaced), press the return key, type bar (the
string you want to replace foo with) and press return again. Emacs will

then do the search—and-replace operation you have just requested.

If you are wondering what on earth the Meta key is, it is a special key
that many UNIX® workstations have. Unfortunately, PC's do not have one,
so it is usually the alt key (or if you are unlucky, the escape key).

Oh, and to get out of Emacs, do C-xC-c (that means hold down the control
key, press x, press c and release the control key). If you have any unsaved
files open, Emacs will ask you if you want to save them. (Ignore the bit
in the documentation where it says C-z is the usual way to leave Emacs
—that leaves Emacs hanging around in the background, and is only really
useful if you are on a system which does not have virtual terminals).

2.7.2. Configuring Emacs

Emacs does many wonderful things: some of them are built in, some of them
need to be configured.

30

2. EAE LA

Instead of using a proprietary macro language for configuration, Emacs
uses a version of Lisp specially adapted for editors, known as Emacs Lisp.
Working with Emacs Lisp can be quite helpful if you want to go on and
learn something like Common Lisp. Emacs Lisp has many features of Common
Lisp, although it is considerably smaller (and thus easier to master).

The best way to learn Emacs Lisp is to download the Emacs Tutorial

However, there is no need to actually know any Lisp to get started with
configuring Emacs, as I have included a sample .emacs file, which should
be enough to get you started. Just copy it into your home directory and
restart Emacs if it is already running: it will read the commands from
the file and (hopefully) give you a useful basic setup.

2.7.3. A sample .emacs file

Unfortunately, there is far too much here to explain it in detail: however
there are one or two points worth mentioning.

+ Everything beginning with a ; is a comment and is ignored by Emacs.

+ In the first line, the -*-EmacsLigp-*- is so that we can edit the .emacs
file itself within Emacs and get all the fancy features for editing
Emacs Lisp. Emacs usually tries to guess this based on the filename,
and may not get it right for .emacs

The tab key is bound to an indentation function in some modes, so when
you press the tab key, it will indent the current line of code. If you
want to put a tab character in whatever you are writing, hold the control
key down while you are pressing the tab key.

- This file supports syntax highlighting for C, C++, Perl, Lisp and Scheme,
by guessing the language from the filename.

- Emacs already has a pre—defined function called next-eror. In a
compilation output window, this allows you to move from one compilation
error to the next by doing M-n: we define a complementary function,
previous—error, that allows you to go to a previous error by doing M-p.
The nicest feature of all is that C-cC-c will open up the source file

in which the error occurred and jump to the appropriate line.

- We enable Emacs's ability to act as a server, so that if you are doing
something outside Emacs and you want to edit a file, you can just type in

% emacsclient filename

31

ftp://ftp.gnu.org/old-gnu/emacs/elisp-manual-19-2.4.tar.gz

A sample .emacs file

and then you can edit the file in your Emacs! 8

#ifil 2.1. A sample .emacs file

8Many Emacs users set their EDITOR environment to a’ﬂa:&:lla']t so this happens every time
they need to edit a file.

32

= 2. BAM#BLIE

33

A sample .emacs file

34

= 2. BAM#BLIE

35

A sample .emacs file

36

= 2. BAM#BLIE

2.7.4. Extending the Range of Languages Emacs Understands

Now, this is all very well if you only want to program in the languages
already catered for in the .emacs file (C, C++, Perl, Lisp and Scheme),
but what happens if a new language called “whizbang” comes out, full
of exciting features?

The first thing to do is find out if whizbang comes with any files that
tell Emacs about the language. These usually end in .@, short for “Emacs
Lisp” . For example, if whizbang is a FreeBSD port, we can locate these
files by doing

and install them by copying them into the Emacs site Lisp directory. On
FreeBSD 2.1.0-RELEASE, this is /ug/locd/share/emacd/sitelisp.

37

Further Reading

So for example, if the output from the find command was

[usr/ports/lang/whizbang/work/misc/whizbang.el

we would do

cp -lusr/ports/lang/whizbang/wor k/misc/iwhizbang.dl -/usr/local/shar elemacs/site-
lisp

Next, we need to decide what extension whizbang source files have. Let's
say for the sake of argument that they all end in .Wwiz. We need to add

an entry to our .emnacs file to make sure Emacs will be able to use the
information in whizbang.el.

Find the auto—mode—alist entry in .emacS and add a line for whizbang,

such as:

("\\.Isp$" -. lisp-mode)
("\\.wiz$" -. whizbang-mode)
("\\.scm$" -. scheme-mode)

This means that Emacs will automatically go into whizbang-mode when you
edit a file ending in Wiz.

Just below this, you will find the font—lock—auto—mode—list entry. Add
Whizbang-mode to it like so:

;; Auto font lock mode
(defvar font-lock-auto-mode-list

(list -‘c-mode -'ct++-mode -'c++-c-mode -'emacs-lisp-mode -'whizbang-mode -'lisp-mode -'perl-
mode -'scheme-mode)

-"List of modes to always start in font-lock-mode")

This means that Emacs will always enable font-lock-mode (ie syntax
highlighting) when editing a .wiz file.

And that is all that is needed. If there is anything else you want done
automatically when you open up a Wiz file, you can add a whizbmg—mode

hook (see my-scheme-mode-hook for a simple example that adds auto-indent) .

2.8. Further Reading

For information about setting up a development environment for contributing
fixes to FreeBSD itself, please see development (7).

38

http://www.FreeBSD.org/cgi/man.cgi?query=development&sektion=7

2. EAE LA

- Brian Harvey and Matthew Wright Simply Scheme MIT 1994. ISBN
0—262—-08226—8

- Randall Schwartz Learning Perl O'Reilly 1993 ISBN 1-56592—042—-2

- Patrick Henry Winston and Berthold Klaus Paul Horn Lisp (3rd Edition)
Addison—Wesley 1989 ISBN 0-201-08319-1

* Brian W. Kernighan and Rob Pike The Unix Programming Environment
Prentice—Hall 1984 ISBN 0-13-937681-X

- Brian W. Kernighan and Dennis M. Ritchie The C Programming Language (2nd
Edition) Prentice—Hall 1988 ISBN 0-13-110362-8

+ Bjarne Stroustrup The C++ Programming Language Addison—Wesley 1991 ISBN
0—201-53992-6

+ W. Richard Stevens Advanced Programming in the Unix Environment Addison—
Wesley 1992 ISBN 0—201-56317—7

+W. Richard Stevens Unix Network Programming Prentice—Hall 1990 ISBN
0—-13-949876—1

39

= 3. Secure Programming

Contributed by Murray Stokely.

3.1. Synopsis

This chapter describes some of the security issues that have plagued
UNIX® programmers for decades and some of the new tools available to help

programmers avoid writing exploitable code.

3.2. Secure Design Methodology

Writing secure applications takes a very scrutinous and pessimistic
outlook on life. Applications should be run with the principle of “least
privilege” so that no process is ever running with more than the bare
minimum access that it needs to accomplish its function. Previously tested
code should be reused whenever possible to avoid common mistakes that
others may have already fixed.

One of the pitfalls of the UNIX® environment is how easy it is to make
assumptions about the sanity of the environment. Applications should never
trust user input (in all its forms), system resources, inter—process
communication, or the timing of events. UNIX® processes do not execute

synchronously so logical operations are rarely atomic.

3.3. Buffer Overflows

Buffer Overflows have been around since the very beginnings of the Von—
Neuman 1 architecture. They first gained widespread notoriety in 1988
with the Morris Internet worm. Unfortunately, the same basic attack remains
effective today. Of the 17 CERT security advisories of 1999, 10 of them
were directly caused by buffer—overflow software bugs. By far the most
common type of buffer overflow attack is based on corrupting the stack.

Most modern computer systems use a stack to pass arguments to procedures
and to store local variables. A stack is a last in first out (LIFO) buffer
in the high memory area of a process image. When a program invokes a
function a new "stack frame" is created. This stack frame consists of
the arguments passed to the function as well as a dynamic amount of local
variable space. The "stack pointer" is a register that holds the current
location of the top of the stack. Since this value is constantly changing

Example Buffer Overflow

as new values are pushed onto the top of the stack, many implementations
also provide a "frame pointer" that is located near the beginning of a
stack frame so that local variables can more easily be addressed relative
to this value. 1 The return address for function calls 1is also
stored on the stack, and this is the cause of stack—overflow exploits
since overflowing a local variable in a function can overwrite the return
address of that function, potentially allowing a malicious user to execute
any code he or she wants.

Although stack—based attacks are by far the most common, it would also be
possible to overrun the stack with a heap—based (malloc/free) attack.

The C programming language does not perform automatic bounds checking on
arrays or pointers as many other languages do. In addition, the standard
C library is filled with a handful of very dangerous functions.

SIpr(char *dest, const char *src) [|May overflow the dest buffer

drcat(char *dest, const char *src) May overflow the dest buffer

getwd(char *buf) May overflow the buf buffer
gets(char *s) May overflow the s buffer
[Vﬂsm]ﬁ(const char *format, ...) May overflow its arguments.
raﬂpﬁh(char *path, char|May overflow the path buffer

resolved_path[])

Ddspﬂnﬁ(char *str, const char |May overflow the str buffer.

*format, ...)

3.3.1. Example Buffer Overflow

The following example code contains a buffer overflow designed to overwrite
the return address and skip the instruction immediately following the
function call. (Inspired by 4)

#include tdio.h

void manipulate(char *buffer) {
char newbuffer[80];
strepy(newbuffer,buffer);

}

int main() {
char ch,buffer[4096];
inti=0;

while ((buffer[i++] = getchar()) -!=-\n") {};

42

%= 3. Secure Programming

i=1;

manipul ate(buffer);

i=2;

printf("The vaue of i is-: %d\n"i);
return O;

Let us examine what the memory image of this process would look like if we
were to input 160 spaces into our little program before hitting return.

[XXX figure here!]

Obviously more malicious input can be devised to execute actual compiled
instructions (such as exec(/bin/sh)).

3.3.2. Avoiding Buffer Overflows

The most straightforward solution to the problem of stack—overflows is
to always use length restricted memory and string copy functions. grncpy
and grncat are part of the standard C library. These functions accept a
length value as a parameter which should be no larger than the size of the
destination buffer. These functions will then copy up to “length' bytes
from the source to the destination. However there are a number of problems
with these functions. Neither function guarantees NUL termination if the
size of the input buffer is as large as the destination. The length
parameter is also used inconsistently between strncpy and strncat so it
is easy for programmers to get confused as to their proper usage. There is
also a significant performance loss compared to Srcpy when copying a short

string into a large buffer since drncpy NUL fills up the size specified.

In OpenBSD, another memory copy implementation has been created to get
around these problem. The Sﬂcpy and drlcat functions guarantee that they
will always null terminate the destination string when given a non—zero
length argument. For more information about these functions see 6. The
OpenBSD ﬂﬂcpy and drlcat instructions have been in FreeBSD since 3.3.

3.3.2.1. Compiler based run—time bounds checking

Unfortunately there is still a very large assortment of code in public
use which blindly copies memory around without using any of the bounded
copy routines we just discussed. Fortunately, there is another solution.
Several compiler add—-ons and libraries exist to do Run—time bounds checking
in C/C++.

StackGuard is one such add—on that is implemented as a small patch to the
gcc code generator. From the StackGuard website:

43

http://immunix.org/stackguard.html

SetUID issues

"StackGuard detects and defeats stack smashing attacks by
protecting the return address on the stack from being
altered. StackGuard places a "canary" word next to the
return address when a function is called. If the canary
word has been altered when the function returns, then a
stack smashing attack has been attempted, and the program
responds by emitting an intruder alert into syslog, and
then halts."”

"StackGuard is implemented as a small patch to the gcc
code generator, specifically the function prolog() and
function_epilog() routines. function prolog() has been
enhanced to lay down canaries on the stack when functions
start, and function epilog() checks canary integrity when
the function exits. Any attempt at corrupting the return
address is thus detected before the function returns."

Recompiling your application with StackGuard is an effective means of
stopping most buffer—overflow attacks, but it can still be compromised.

3.3.2.2. Library based run—time bounds checking

Compiler—based mechanisms are completely useless for binary—only software
for which you cannot recompile. For these situations there are a number of
libraries which re—implement the unsafe functions of the C—library (SIpr,
fscanf. getwd. etc..) and ensure that these functions can never write past

the stack pointer.
+ libsafe

+ libverify

+ libparanoia

Unfortunately these library—based defenses have a number of shortcomings.
These libraries only protect against a very small set of security related
issues and they neglect to fix the actual problem. These defenses may
fail if the application was compiled with —fomit—frame—pointer. Also, the
LD PRELOAD and LD _LIBRARY PATH environment variables can be overwritten/
unset by the user.

3.4. SetUID issues

There are at least 6 different IDs associated with any given process.
Because of this you have to be very careful with the access that your

44

%= 3. Secure Programming

process has at any given time. In particular, all seteuid applications
should give up their privileges as soon as it is no longer required.

The real user ID can only be changed by a superuser process. The login
program sets this when a user initially logs in and it is seldom changed.

The effective user ID is set by the EXECO functions if a program has its
seteuid bit set. An application can call seteuid() at any time to set the
effective user ID to either the real user ID or the saved set—user—ID.
When the effective user ID is set by execo functions, the previous value
is saved in the saved set—user—ID.

3.5. Limiting your program's environment

The traditional method of restricting a process is with the Chﬂxﬁo system
call. This system call changes the root directory from which all other
paths are referenced for a process and any child processes. For this
call to succeed the process must have execute (search) permission on the
directory being referenced. The new environment does not actually take
effect until you chdir() into your new environment. It should also be noted
that a process can easily break out of a chroot environment if it has root
privilege. This could be accomplished by creating device nodes to read
kernel memory, attaching a debugger to a process outside of the jail, or
in many other creative ways.

The behavior of the ChﬂxIO system call can be controlled somewhat with
the kern.chroot_allow_open_directories Sysctl variable. When this value is
set to O, ChKXIO will fail with EPERM if there are any directories open.
If set to the default value of 1, then Chﬂxﬁo will fail with EPERM if
there are any directories open and the process is already subject to a
Chﬂxxo call. For any other value, the check for open directories will
be bypassed completely.

3.5.1. FreeBSD's Jjail functionality

The concept of a Jail extends upon the Chﬂxﬁo by 1limiting the powers of the
superuser to create a true ‘virtual server'. Once a prison is set up all
network communication must take place through the specified IP address,
and the power of "root privilege" in this jail is severely constrained.

While in a prison, any tests of superuser power within the kernel using
the ELEEYO call will fail. However, some calls to EUSEIO have been changed

45

POSIX®.1le Process Capabilities

to a new interface susa;xxxo. This function is responsible for recognizing

or denying access to superuser power for imprisoned processes.
A superuser process within a jailed environment has the power to:

- Manipulate credential with sgtuid. seteuid. setgid, setegid. setgroups. setreuid.
setregid, setlogin

- Set resource limits with setrlimit

+ Modify some sysctl nodes (kern.hostname)
- chroot()

- Set flags on a vnode: chflags. fchflags

- Set attributes of a vnode such as file permission, owner, group, size,
access time, and modification time.

- Bind to privileged ports in the Internet domain (ports < 1024)

Jhl is a very useful tool for running applications in a secure environment
but it does have some shortcomings. Currently, the IPC mechanisms have not
been converted to the SUSEr XXX so applications such as MySQL cannot be run
within a jail. Superuser access may have a very limited meaning within a
Jjail, but there is no way to specify exactly what "very limited" means.

3.5.2. POSIX®.le Process Capabilities

POSIX® has released a working draft that adds event auditing, access
control 1lists, fine grained privileges, information labeling, and
mandatory access control.

This is a work in progress and 1is the focus of the TrustedBSD
project. Some of the initial work has been committed to FreeBSD—CURRENT
(cap_set_proc(3)).

3.6. Trust

An application should never assume that anything about the users
environment is sane. This includes (but is certainly not limited to):
user input, signals, environment variables, resources, IPC, mmaps, the
filesystem working directory, file descriptors, the # of open files, etc.
You should never assume that you can catch all forms of invalid input that a
user might supply. Instead, your application should use positive filtering

46

http://www.trustedbsd.org/

%= 3. Secure Programming

to only allow a specific subset of inputs that you deem safe. Improper
data validation has been the cause of many exploits, especially with CGI
scripts on the world wide web. For filenames you need to be extra careful
about paths ("../", "/"), symbolic links, and shell escape characters.

Perl has a really cool feature called "Taint" mode which can be used to
prevent scripts from using data derived outside the program in an unsafe
way. This mode will check command line arguments, environment variables,
locale information, the results of certain syscalls (readdir(). readlink().

getpwxxx(). and all file input.

3.7. Race Conditions

A race condition is anomalous behavior caused by the unexpected dependence
on the relative timing of events. In other words, a programmer incorrectly
assumed that a particular event would always happen before another.

Some of the common causes of race conditions are signals, access checks,
and file opens. Signals are asynchronous events by nature so special care
must be taken in dealing with them. Checking access with axxs{Z) then
openCD is clearly non—atomic. Users can move files in between the two
calls. Instead, privileged applications should SIdoO and then call Openo
directly. Along the same lines, an application should always set a proper
umask before open() to obviate the need for spurious chmod() calls.

47

= 4. lLocalization and
Internationalization — L10ON
and 113N

4.1. Programming I18N Compliant Applications

To make your application more useful for speakers of other languages, we
hope that you will program [18N compliant. The GNU gcc compiler and GUI
libraries like QT and GTK support 118N through special handling of strings.
Making a program I18N compliant is very easy. It allows contributors to
port your application to other languages quickly. Refer to the library
specific 118N documentation for more details.

In contrast with common perception, I18N compliant code is easy to write.
Usually, it only involves wrapping your strings with library specific
functions. In addition, please be sure to allow for wide or multibyte

character support.

4.1.1. A Call to Unify the I18N Effort

It has come to our attention that the individual I118N/L10ON efforts for
each country has been repeating each others' efforts. Many of us have
been reinventing the wheel repeatedly and inefficiently. We hope that the
various major groups in I18N could congregate into a group effort similar
to the Core Team's responsibility.

Currently, we hope that, when you write or port I18N programs, you would
send it out to each country's related FreeBSD mailing list for testing. In
the future, we hope to create applications that work in all the languages
out—of—the—box without dirty hacks.

The FreeBSD internationalization IIEZHIE has been established. If you
are an 118N/L10ON developer, please send your comments, ideas, questions,

and anything you deem related to it.

4.1.2. Perl and Python

Perl and Python have 118N and wide character handling libraries. Please
use them for 118N compliance.

http://lists.FreeBSD.org/mailman/listinfo/freebsd-i18n

Perl and Python

In older FreeBSD versions, Perl may give warnings about not having a wide
character locale installed on your system. You can set the environment

variable LD_PRELOAD to fust/lib/libxpg4.so in your shell.
In sh-based shells:

LD_PRELOAD=/ug/lib/libxpg4.so

In C-based shells:

setenv LD_PREL OAD -/ust/lib/libxpg4.so

50

= 5. Source Tree
Guidelines and Policies

Contributed by Poul-Henning Kamp.

This chapter documents various guidelines and policies in force for the
FreeBSD source tree.

5.1. MAINTAINER on Makefiles

If a particular portion of the FreeBSD distribution is being maintained
by a person or group of persons, they can communicate this fact to the
world by adding a

MAINTAINER= email-addresses
line to the Makefiles covering this portion of the source tree.
The semantics of this are as follows:

The maintainer owns and is responsible for that code. This means that he
is responsible for fixing bugs and answering problem reports pertaining
to that piece of the code, and in the case of contributed software, for
tracking new versions, as appropriate.

Changes to directories which have a maintainer defined shall be sent to
the maintainer for review before being committed. Only if the maintainer
does not respond for an unacceptable period of time, to several emails,
will it be acceptable to commit changes without review by the maintainer.
However, it is suggested that you try to have the changes reviewed by
someone else if at all possible.

It is of course not acceptable to add a person or group as maintainer
unless they agree to assume this duty. On the other hand it does not have
to be a committer and it can easily be a group of people.

5.2. Contributed Software

Contributed by Poul-Henning Kamp H David O'Brien.

Some parts of the FreeBSD distribution consist of software that is actively
being maintained outside the FreeBSD project. For historical reasons, we
call this contributed software. Some examples are sendmail, gcc and patch.

Contributed Software

Over the last couple of years, various methods have been used in dealing
with this type of software and all have some number of advantages and
drawbacks. No clear winner has emerged.

Since this is the case, after some debate one of these methods has been
selected as the “official” method and will be required for future imports
of software of this kind. Furthermore, it is strongly suggested that
existing contributed software converge on this model over time, as it
has significant advantages over the old method, including the ability to
easily obtain diffs relative to the “official” versions of the source by
everyone (even without cvs access). This will make it significantly easier
to return changes to the primary developers of the contributed software.

Ultimately, however, it comes down to the people actually doing the work.
If using this model is particularly unsuited to the package being dealt
with, exceptions to these rules may be granted only with the approval
of the core team and with the general consensus of the other developers.
The ability to maintain the package in the future will be a key issue
in the decisions.

\ =z
FE

Because of some unfortunate design limitations with the
RCS file format and CVS's use of vendor branches, minor,
trivial and/or cosmetic changes are strongly discouraged
on files that are still tracking the vendor branch.

“Spelling fixes” are explicitly included here under
the “cosmetic” category and are to be avoided for files
with revision 1.1.x.x. The repository bloat impact from
a single character change can be rather dramatic.

The Tcl embedded programming language will be used as example of how this
model works:

grc/contrib/tcl contains the source as distributed by the maintainers of this
package. Parts that are entirely not applicable for FreeBSD can be removed.
In the case of Tcl, the mac, win and compat subdirectories were eliminated

before the import.

gd/lib/libtc] contains only a bmake style Makefile that uses the standard
bsdlib.mk makefile rules to produce the library and install the
documentation.

52

= 5. Source Tree Guidelines and Policies

sc/us.bin/tdsh contains only a bmake style Makefile which will produce and
install the tclsh program and its associated man—pages using the standard

bsd.prog.mk rules.

gc/toolstoolgtcl_bmake contains a couple of shell-scripts that can be of
help when the tcl software needs updating. These are not part of the built
or installed software.

The important thing here is that the sr¢/contrib/tcl directory is created
according to the rules: it is supposed to contain the sources as distributed
(on a proper CVS vendor—branch and without RCS keyword expansion) with as
few FreeBSD—specific changes as possible. The 'easy—import' tool on freefdl
will assist in doing the import, but if there are any doubts on how to
go about it, it is imperative that you ask first and not blunder ahead
and hope it “works out” . CVS is not forgiving of import accidents and a
fair amount of effort is required to back out major mistakes.

Because of the previously mentioned design limitations with CVS's vendor
branches, it is required that “official” patches from the vendor be
applied to the original distributed sources and the result re—imported
onto the vendor branch again. Official patches should never be patched
into the FreeBSD checked out version and “committed” , as this destroys
the vendor branch coherency and makes importing future versions rather
difficult as there will be conflicts.

Since many packages contain files that are meant for compatibility with
other architectures and environments that FreeBSD, it is permissible to
remove parts of the distribution tree that are of no interest to FreeBSD in
order to save space. Files containing copyright notices and release—note
kind of information applicable to the remaining files shall not be removed.

If it seems easier, the bmake Makefiles can be produced from the dist tree
automatically by some utility, something which would hopefully make it
even easier to upgrade to a new version. If this is done, be sure to check
in such utilities (as necessary) in the src/tools directory along with the

port itself so that it is available to future maintainers.

In the src/contrib/tcl level directory, a file called FREEBSD-upgrade should
be added and it should state things like:

+ Which files have been left out.

+ Where the original distribution was obtained from and/or the official
master site.

+ Where to send patches back to the original authors.

53

Encumbered Files

+ Perhaps an overview of the FreeBSD—specific changes that have been made.

However, please do not import FREEBSD-upgrade with the contributed source.
Rather you should cvsadd FREEBSD-upgrade; cvsci after the initial import.
Example wording from src/contrib/cpio is below:

5.8. Encumbered Files

It might occasionally be necessary to include an encumbered file in the
FreeBSD source tree. For example, if a device requires a small piece of
binary code to be loaded to it before the device will operate, and we

54

= 5. Source Tree Guidelines and Policies

do not have the source to that code, then the binary file is said to be
encumbered. The following policies apply to including encumbered files in
the FreeBSD source tree.

1. Any file which is interpreted or executed by the system CPU(s) and not
in source format is encumbered.

2. Any file with a license more restrictive than BSD or GNU is encumbered.

3. A file which contains downloadable binary data for use by the hardware
is not encumbered, unless (1) or (2) apply to it. It must be stored in an
architecture neutral ASCII format (file2c or uuencoding is recommended) .

4. Any encumbered file requires specific approval from the Core team before
it is added to the CVS repository.

5. Encumbered files go in gc/contrib or src/sys/contrib.

6. The entire module should be kept together. There is no point in splitting
it, unless there is code—sharing with non—encumbered code.

7.0bject files are named archffilename.o.uu>.
8. Kernel files:
a. Should always be referenced in confffiles* (for build simplicity).

b. Should always be in LINT, but the Core team decides per case if it
should be commented out or not. The Core team can, of course, change
their minds later on.

c. The Release Engineer decides whether or not it goes into the release.
9. User—land files:

a.
The Core team decides if the code should be part of makeworld.

b.
The Release Engineer decides if it goes into the release.

5.4. Shared Libraries

Contributed by Satoshi Asami, Peter Wemm H David O'Brien.

If you are adding shared library support to a port or other piece of
software that does not have one, the version numbers should follow these

55

../../../../doc/zh_TW.Big5/articles/contributors/staff-core.html
../../../../doc/zh_TW.Big5/articles/contributors/staff-core.html
../../../../doc/zh_TW.Big5/articles/contributors/staff-core.html
../../../../doc/zh_TW.Big5/articles/contributors/staff-core.html
../../../../doc/zh_TW.Big5/articles/contributors/staff-who.html

Shared Libraries

rules. Generally, the resulting numbers will have nothing to do with the
release version of the software.

The three principles of shared library building are:

- Start from 1.0

+ If there is a change that is backwards compatible, bump minor number
(note that ELF systems ignore the minor number)

+ If there is an incompatible change, bump major number

For instance, added functions and bugfixes result in the minor version
number being bumped, while deleted functions, changed function call syntax,

etc. will force the major version number to change.

Stick to version numbers of the form major.minor (X.y). Our a.out dynamic
linker does not handle version numbers of the form X.y.zZ well. Any version
number after the y (i.e. the third digit) is totally ignored when comparing
shared 1ib version numbers to decide which library to link with. Given
two shared libraries that differ only in the “micro” revision, |d.so
will link with the higher one. That is, if you link with libf00.90.3.3.3,
the linker only records 3.3 in the headers, and will link with anything
starting with libfoo.s0.3.(anything >= 3). (highest available).

&
S ldso will always use the highest “minor” revision.

For instance, it will use libc.s0.2.2 in preference to
libc.s0.2.0, even if the program was initially linked with
libc.s0.2.0.

In addition, our ELF dynamic linker does not handle minor version numbers
at all. However, one should still specify a major and minor version number
as our Makefiles “do the right thing” based on the type of system.

For non—port libraries, it is also our policy to change the shared library
version number only once between releases. In addition, it is our policy to
change the major shared library version number only once between major OS
releases (i.e. from 3.0 to 4.0). When you make a change to a system library
that requires the version number to be bumped, check the Makefile's commit

logs. It is the responsibility of the committer to ensure that the first

56

= 5. Source Tree Guidelines and Policies

such change since the release will result in the shared library version
number in the Makefile to be updated, and any subsequent changes will not.

57

= 6. Regression and
Performance Testing

Regression tests are used to exercise a particular bit of the system to
check that it works as expected, and to make sure that old bugs are not
reintroduced.

The FreeBSD regression testing tools can be found in the FreeBSD source
tree in the directory src/toolgregression.

6.1. Micro Benchmark Checklist

This section contains hints for doing proper micro—benchmarking on FreeBSD
or of FreeBSD itself.

It is not possible to use all of the suggestions below every single
time, but the more used, the better the benchmark's ability to test small
differences will be.

- Disable APM and any other kind of clock fiddling (ACPI ?).

- Run in single user mode. E.g. cron(8), and and other daemons only add
noise. The sshd(8) daemon can also cause problems. If ssh access is
required during test either disable the SSHvl key regeneration, or kill
the parent sshd daemon during the tests.

- Do not run ntpd(8).

- If syslog(3) events are generated, run syslogd(8) with an empty /etc/
sydogd.conf, otherwise, do not run it.

+ Minimize disk—1/0, avoid it entirely if possible.
- Do not mount file systems that are not needed.

« Mount /, /usr, and any other file system as read-only if possible. This

removes atime updates to disk (etc.) from the I/0 picture.

- Reinitialize the read/write test file system with newfs(8) and populate
it from a tar(l) or dump(8) file before every run. Unmount and
mount it before starting the test. This results in a consistent file
system layout. For a worldstone test this would apply to /usr/obj (Just

http://www.FreeBSD.org/cgi/man.cgi?query=cron&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=sshd&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=ntpd&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=syslog&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=syslogd&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=newfs&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=tar&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=dump&sektion=8

Micro Benchmark Checklist

reinitialize with newfs and mount). To get 100% reproducibility, populate
the file system from a dd(1) file (i.e.: ddif=myimageof=/dev/ajOslhb$1m)

- Use malloc backed or preloaded md(4) partitions.

+ Reboot between individual iterations of the test, this gives a more

consistent state.

+ Remove all non—essential device drivers from the kernel. For instance

if USB is not needed for the test, do not put USB in the kernel. Drivers
which attach often have timeouts ticking away.

Unconfigure hardware that are not in use. Detach disks with atacontrol (8)
and camcontrol (8) if the disks are not used for the test.

Do not configure the network unless it is being tested, or wait until
after the test has been performed to ship the results off to another
computer.

If the system must be connected to a public network, watch out for spikes
of broadcast traffic. Even though it is hardly noticeable, it will take
up CPU cycles. Multicast has similar caveats.

« Put each file system on its own disk. This minimizes Jjitter from head—

seek optimizations.

+ Minimize output to serial or VGA consoles. Running output into files

gives less jitter. (Serial consoles easily become a bottleneck.) Do not
touch keyboard while the test is running, even space or back—space shows
up in the numbers.

+ Make sure the test is long enough, but not too long. If the test is

too short, timestamping is a problem. If it is too long temperature
changes and drift will affect the frequency of the quartz crystals in
the computer. Rule of thumb: more than a minute, less than an hour.

+ Try to keep the temperature as stable as possible around the machine.

This affects both quartz crystals and disk drive algorithms. To get
real stable clock, consider stabilized clock injection. E.g. get a 0OCXO
+ PLL, ingject output into clock circuits instead of motherboard xtal.
Contact Poul—-Henning Kamp for more information about this.

+ Run the test at least 3 times but it is better to run more than 20 times

60

both for “before” and “after” code. Try to interleave if possible
(i.e.: do not run 20 times before then 20 times after), this makes it
possible to spot environmental effects. Do not interleave 1:1, but 3:3,
this makes it possible to spot interaction effects.

http://www.FreeBSD.org/cgi/man.cgi?query=dd&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=md&sektion=4
http://www.FreeBSD.org/cgi/man.cgi?query=atacontrol&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=camcontrol&sektion=8

T 6. Regression and Performance Testing

A good pattern is: bababa{bbbasa}*. This gives hint after the first 1+1
runs (so it is possible to stop the test if it goes entirely the wrong
way), a standard deviation after the first 3+3 (gives a good indication
if it is going to be worth a long run) and trending and interaction

numbers later on.

Use ug/src/toolstoolgministat to see if the numbers are significant.
Consider buying “Cartoon guide to statistics” ISBN: 0062731025, highly
recommended, if you have forgotten or never learned about standard
deviation and Student's T.

- Do not use background fsck(8) unless the test is a benchmark of background

fsck. Also, disable background fsck in /etc/rc.conf unless the benchmark is
not started at least 60+ “fsck runtime” seconds after the boot, as
rc(8) wakes up and checks if fsck needs to run on any file systems when
background fsck is enabled. Likewise, make sure there are no snapshots

lying around unless the benchmark is a test with snapshots.

« If the benchmark show unexpected bad performance, check for things like

high interrupt volume from an unexpected source. Some versions of ACPI
have been reported to “misbehave” and generate excess interrupts. To
help diagnose odd test results, take a few snapshots of vmsat -i and

look for anything unusual.

- Make sure to be careful about optimization parameters for kernel and

userspace, likewise debugging. It is easy to let something slip through
and realize later the test was not comparing the same thing.

+ Do not ever benchmark with the WITNESS and INVARIANTS kernel options

enabled unless the test is interested to benchmarking those features.
WITNESS can cause 400%+ drops in performance. Likewise, userspace
malloc(3) parameters default differently in —CURRENT from the way they
ship in production releases.

61

http://www.FreeBSD.org/cgi/man.cgi?query=fsck&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rc&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=malloc&sektion=3

#% II. Interprocess
Communication(IPC)

S Yo T (< 1 oY 67
Tl SYNODSIS ittt it e e e e e e e 67
7.2. Networking and Diversityc.cciiuiiiiniiiniinnennnnn. 67
7.8, ProtoColS v it i i i e e e e e e 68
T.4. The Sockets Modelttt ittt 72
7.5. Essential Socket Functionsc.c.iiiiiiiiiiiiinnneennn 73
T.6. Helper FUunCltionsttt ittt 90
T.7. CONCUITent SeIrVEIS uuuiiiitunneneeeeeoonnneeeeeennnneenns 92
8. IPVE Internals ...ttt ittt ettt 95

8.1. IPv6/IPsec Implementationveveeueneneneeeenenenenenens 95

~

= 7. Sockets

Contributed by G. Adam Stanislav.

7.1. Synopsis

BSD sockets take interprocess communications to a new level. It is no longer
necessary for the communicating processes to run on the same machine. They
still can, but they do not have to.

Not only do these processes not have to run on the same machine, they do
not have to run under the same operating system. Thanks to BSD sockets,
your FreeBSD software can smoothly cooperate with a program running on
a Macintosh®, another one running on a Sun™ workstation, yet another
one running under Windows® 2000, all connected with an Ethernet—based

local area network.

But your software can equally well cooperate with processes running in
another building, or on another continent, inside a submarine, or a space
shuttle.

It can also cooperate with processes that are not part of a computer
(at least not in the strict sense of the word), but of such devices as
printers, digital cameras, medical equipment. Just about anything capable
of digital communications.

7.2. Networking and Diversity

We have already hinted on the diversity of networking. Many different
systems have to talk to each other. And they have to speak the same
language. They also have to understand the same language the same way.

People often think that body language is universal. But it is not. Back
in my early teens, my father took me to Bulgaria. We were sitting at a
table in a park in Sofia, when a vendor approached us trying to sell us
some roasted almonds.

I had not learned much Bulgarian by then, so, instead of saying no, I
shook my head from side to side, the “universal” body language for no.
The vendor quickly started serving us some almonds.

I then remembered I had been told that in Bulgaria shaking your head
sideways meant yes. Quickly, 1 started nodding my head up and down.

Protocols

The vendor noticed, took his almonds, and walked away. To an uninformed
observer, 1 did not change the body language: I continued using the
language of shaking and nodding my head. What changed was the meaning
of the body language. At first, the vendor and I interpreted the same
language as having completely different meaning. I had to adjust my own
interpretation of that language so the vendor would understand.

It is the same with computers: The same symbols may have different, even
outright opposite meaning. Therefore, for two computers to understand each
other, they must not only agree on the same language, but on the same
interpretation of the language.

7.3. Protocols

While various programming languages tend to have complex syntax and use
a number of multi—letter reserved words (which makes them easy for the
human programmer to understand), the languages of data communications tend
to be very terse. Instead of multi—byte words, they often use individual
bits. There is a very convincing reason for it: While data travels inside
your computer at speeds approaching the speed of light, it often travels
considerably slower between two computers.

Because the languages used in data communications are so terse, we usually
refer to them as protocols rather than languages.

As data travels from one computer to another, it always uses more than
one protocol. These protocols are layered. The data can be compared to
the inside of an onion: You have to peel off several layers of “skin”
to get to the data. This is best illustrated with a picture:

68

= 7. Sockets

Bt hernet

In this example, we are trying to get an image from a web page we are

connected to via an Ethernet.

The image consists of raw data, which is simply a sequence of RGB values
that our software can process, i.e., convert into an image and display

on our monitor.

Alas, our software has no way of knowing how the raw data is organized: Is
it a sequence of RGB values, or a sequence of grayscale intensities, or
perhaps of CMYK encoded colors? Is the data represented by 8-bit quanta,
or are they 16 bits in size, or perhaps 4 bits? How many rows and columns
does the image consist of? Should certain pixels be transparent?

I think you get the picture...

To inform our software how to handle the raw data, it is encoded as a PNG
file. It could be a GIF, or a JPEG, but it is a PNG.

And PNG is a protocol.

At this point, I can hear some of you yelling, No, it is not! It is

a file format!”

69

Protocols

Well, of course it is a file format. But from the perspective of data
communications, a file format is a protocol: The file structure is a
language, a terse one at that, communicating to our process how the data
is organized. Ergo, it is a protocol.

Alas, if all we received was the PNG file, our software would be facing
a serious problem: How is it supposed to know the data is representing an
image, as opposed to some text, or perhaps a sound, or what not? Secondly,
how is it supposed to know the image is in the PNG format as opposed to
GIF, or JPEG, or some other image format?

To obtain that information, we are using another protocol: HTTP. This
protocol can tell us exactly that the data represents an image, and that
it uses the PNG protocol. It can also tell us some other things, but let
us stay focused on protocol layers here.

So, now we have some data wrapped in the PNG protocol, wrapped in the HTTP
protocol. How did we get it from the server?

By using TCP/IP over Ethernet, that is how. Indeed, that is three more
protocols. Instead of continuing inside out, I am now going to talk about
Ethernet, simply because it is easier to explain the rest that way.

Ethernet is an interesting system of connecting computers in a local area
network (LAN). Each computer has a network interface card (NIC), which
has a unique 48-bit ID called its address. No two Ethernet NICs in the
world have the same address.

These NICs are all connected with each other. Whenever one computer wants
to communicate with another in the same Ethernet LAN, it sends a message
over the network. Every NIC sees the message. But as part of the Ethernet
protocol, the data contains the address of the destination NIC (among
other things). So, only one of all the network interface cards will pay
attention to it, the rest will ignore it.

But not all computers are connected to the same network. Just because
we have received the data over our Ethernet does not mean it originated
in our own local area network. It could have come to us from some other
network (which may not even be Ethernet based) connected with our own
network via the Internet.

All data is transferred over the Internet using IP, which stands for
Internet Protocol. Its basic role is to let us know where in the world
the data has arrived from, and where it is supposed to go to. It does
not guarantee we will receive the data, only that we will know where it
came from if we do receive it.

70

= 7. Sockets

Even if we do receive the data, IP does not guarantee we will receive
various chunks of data in the same order the other computer has sent it
to us. So, we can receive the center of our image before we receive the
upper left corner and after the lower right, for example.

It is TCP (Transmission Control Protocol) that asks the sender to resend
any lost data and that places it all into the proper order.

All in all, it took five different protocols for one computer to communicate
to another what an image looks like. We received the data wrapped into the
PNG protocol, which was wrapped into the HTTP protocol, which was wrapped
into the TCP protocol, which was wrapped into the IP protocol, which was
wrapped into the Ethernet protocol.

Oh, and by the way, there probably were several other protocols involved
somewhere on the way. For example, if our LAN was connected to the Internet
through a dial—up call, it used the PPP protocol over the modem which used
one (or several) of the various modem protocols, et cetera, et cetera,
et cetera...

As a developer you should be asking by now, “How am I supposed to handle
it all?”

Luckily for you, you are not supposed to handle it all. You are supposed
to handle some of it, but not all of it. Specifically, you need not worry
about the physical connection (in our case Ethernet and possibly PPP,
etc). Nor do you need to handle the Internet Protocol, or the Transmission
Control Protocol.

In other words, you do not have to do anything to receive the data from
the other computer. Well, you do have to ask for it, but that is almost
as simple as opening a file.

Once you have received the data, it is up to you to figure out what to
do with it. In our case, you would need to understand the HTTP protocol
and the PNG file structure.

To use an analogy, all the internetworking protocols become a gray area:
Not so much because we do not understand how it works, but because we
are no longer concerned about it. The sockets interface takes care of
this gray area for us:

71

The Sockets Model

We only need to understand any protocols that tell us how to interpret
the data, not how to receive it from another process, nor how to send
it to another process.

7.4. The Sockets Model

BSD sockets are built on the basic UNIX® model: Everything is a file. In
our example, then, sockets would let us receive an HITP file, so to speak.
It would then be up to us to extract the PNG file from it.

Because of the complexity of internetworking, we cannot just use the open
system call, or the open() C function. Instead, we need to take several

steps to “opening’y a socket.
Once we do, however, we can start treating the socket the same way we

treat any file descriptor: We can read from it, write to it, pipe it, and,
eventually, close it.

72

= 7. Sockets

7.5. Essential Socket Functions

While FreeBSD offers different functions to work with sockets, we only
need four to “open” a socket. And in some cases we only need two.

7.5.1. The Client—Server Difference

Typically, one of the ends of a socket—based data communication is a
server, the other is a client.

7.5.1.1. The Common Elements

7.5.1.1.1. socket

The one function used by both, clients and servers, is socket(2). It is
declared this way:

int socket(int domain, int type, int protocol);

The return value is of the same type as that of open., an integer. FreeBSD
allocates its value from the same pool as that of file handles. That is
what allows sockets to be treated the same way as files.

The doman argument tells the system what protocol family you want it to
use. Many of them exist, some are vendor specific, others are very common.
They are declared in sys/socket.h.

Use PF INET for UDP, TCP and other Internet protocols (IPv4).

Five values are defined for the type argument, again, in SyS/E)Cka.h. All of
them start with “SOCK_” . The most common one is SOCK_STREAM, which

tells the system you are asking for a reliable stream delivery service
(which is TCP when used with PF_INET).

If you asked for SOCK_DGRAM. you would be requesting a connectionless

datagram delivery service (in our case, UDP).
If you wanted to be in charge of the low—level protocols (such as IP), or
even network interfaces (e.g., the Ethernet), you would need to specify

SOCK_RAW.

Finally, the protocol argument depends on the previous two arguments, and

is not always meaningful. In that case, use Q for its value.

73

http://www.FreeBSD.org/cgi/man.cgi?query=socket&sektion=2

The Client—Server Difference

S The Unconnected Socket

Nowhere, in the socket function have we specified to what
other system we should be connected. Our newly created
socket remains unconnected.

This is on purpose: To use a telephone analogy, we have
Just attached a modem to the phone line. We have neither
told the modem to make a call, nor to answer if the

phone rings.

7.5.1.1.2. sockaddr

Various functions of the sockets family expect the address of (or pointer
to, to use C terminology) a small area of the memory. The various C
declarations in the syg/socket.h refer to it as gtructsockaddr. This structure

is declared in the same file:

/*

* Structure used by kernel to store most

* addresses.

*

struct sockaddr {

unsigned char sa_len; /* total length */

sa family_t sa family; /* address family */

char sa data[14]; /* actually longer; address value */

i

#define SOCK_MAXADDRLEN 255 /* |ongest possible addresses */

Please note the vagueness with which the Sa_daa field is declared, Jjust

as an array of 14 bytes, with the comment hinting there can be more than

14 of them.

This vagueness is quite deliberate. Sockets is a very powerful interface.
While most people perhaps think of it as nothing more than the Internet
interface—and most applications probably use it for that nowadays—
sockets can be used for just about any kind of interprocess communications,
of which the Internet (or, more precisely, IP) is only one.

The SyS'SI)Cka.h refers to the various types of protocols sockets will handle
as address families, and 1ists them right before the definition of sockaddr:

74

= 7. Sockets

The one used for IP is AF_INET. It is a symbol for the constant 2.

It is the address family listed in the &3 family field of sockaddr that
decides how exactly the vaguely named bytes of sa_data will be used.

75

The Client—Server Difference

Specifically, whenever the address family is AF_INET, we can use gtruct
sockaddr_in found in netingt/inh, wherever sockaddr is expected:

/*

* Socket address, internet style.
*/

struct sockaddr_in {

uint8_t sin_len;

sa family_t sin_family;
in_port_t sin_port;

struct in_addr sin_addr;

char sin_zero[8];

}

We can visualize its organization this way:

4] 1 2 3
0 0 Family Port
4 IP Address
8 0
12 0

The three important fields are &in family, which is byte 1 of the structure,
Sin_port, a 16-bit value found in bytes 2 and 3, and sjn_addr, a 32-bit
integer representation of the IP address, stored in bytes 4-7.

Now, let us try to fill it out. Let us assume we are trying to write a
client for the daytime protocol, which simply states that its server will
write a text string representing the current date and time to port 13. We
want to use TCP/IP, so we need to specify AF INET in the address family
field. AF_INET is defined as 2. Let us use the IP address of 192.43.244.18,
which is the time server of US federal government ('[ime_nist,gov).

1 2 3
0 0 2 13
4 192.43.244.18
8
12

By the way the Sn addr field is declared as being of the dructin addr type,
which is defined in ndinet/in.h:

76

= 7. Sockets

/*

* |nternet address (a structure for historical reasons)
*/

struct in_addr {

in_addr_t s addr;

h

In addition, in addr t is a 32-bit integer.

The 19243.24418 is just a convenient notation of expressing a 32-bit
integer by 1listing all of its 8-bit bytes, starting with the most
significant one.

So far, we have viewed sockaddr as an abstraction. Our computer does not
store ghort integers as a single 16-bit entity, but as a sequence of 2

bytes. Similarly, it stores 32-bit integers as a sequence of 4 bytes.

Suppose we coded something like this:

sasin family = AF_INET;
sasin_port =13;
sasin_addr.s_addr = (((((192 << 8) -| 43) << 8) -| 244) << 8) -| 18;

What would the result look 1like?

Well, that depends, of course. On a Pentium®, or other x86, based computer,
it would look like this:

0 1 2
0 0 2 13 0
4 18 244 43 192
B
12
On a different system, it might look like this:
0 1 2 3
0 0 2 0 13
4 192 43 244 18

The Client—Server Difference

And on a PDP it might look different yet. But the above two are the most
common ways in use today.

Ordinarily, wanting to write portable code, programmers pretend that these
differences do not exist. And they get away with it (except when they
code in assembly language). Alas, you cannot get away with it that easily

when coding for sockets.
Why?

Because when communicating with another computer, you usually do not know
whether it stores data most significant byte (MSB) or least significant
byte (LSB) first.

You might be wondering, “So., will sockets not handle it for me?”
It will not.

While that answer may surprise you at first, remember that the general
sockets interface only understands the sa len and sa family fields of the
sockaddr structure. You do not have to worry about the byte order there (of
course, on FreeBSD sa family is only 1 byte anyway, but many other UNIX®
systems do not have salen and use 2 bytes for sa family. and expect the

data in whatever order is native to the computer).

But the rest of the data is just sa datg[14] as far as sockets goes. Depending

on the address family, sockets just forwards that data to its destination.

Indeed, when we enter a port number, it is because we want the other
computer to know what service we are asking for. And, when we are the
server, we read the port number so we know what service the other computer
is expecting from us. Either way, sockets only has to forward the port
number as data. It does not interpret it in any way.

Similarly, we enter the IP address to tell everyone on the way where to
send our data to. Sockets, again, only forwards it as data.

That is why, we (the programmers, not the sockets) have to distinguish
between the byte order used by our computer and a conventional byte order
to send the data in to the other computer.

We will call the byte order our computer uses the host byte order, or
Jjust the host order.

There is a convention of sending the multi—byte data over IP MSB first.
This, we will refer to as the network byte order, or simply the network
order.

78

= 7. Sockets

Now, if we compiled the above code for an Intel

byte order would produce:

based computer, our host

0 1 2 3
0 0 2 13 0
4 18 244 43 192
8
12

But the network byte order requires that we

store the data MSB first:

0 1 2 3

] 0 2 0 13

4 192 43 244 18
B
12

Unfortunately, our host order is the exact opposite of the network order.

We have several ways of dealing with it. One would be to reverse the
values in our code:

sasin_family =AF_INET;
sa.sin_port =13<<§;
sa.sin_addr.s addr = (((((18 << 8) -| 244) << 8) -| 43) << 8) -| 192;

This will trick our compiler into storing the data in the network byte
order. In some cases, this is exactly the way to do it (e.g., when
programming in assembly language). In most cases, however, it can cause
a problem.

Suppose, you wrote a sockets—based program in C. You know it is going to
run on a Pentium®, so you enter all your constants in reverse and force

them to the network byte order. It works well.

Then, some day, your trusted old Pentium® becomes a rusty old Pentium®.
You replace it with a system whose host order is the same as the network
order. You need to recompile all your software. All of your software
continues to perform well, except the one program you wrote.

You have since forgotten that you had forced all of your constants to
the opposite of the host order. You spend some quality time tearing out

79

The Client—Server Difference

your hair, calling the names of all gods you ever heard of (and some you
made up), hitting your monitor with a nerf bat, and performing all the
other traditional ceremonies of trying to figure out why something that
has worked so well is suddenly not working at all.

Eventually, you figure it out, say a couple of swear words, and start
rewriting your code.

Luckily, you are not the first one to face the problem. Someone else has
created the htons(3) and htonl(3) C functions to convert a short and Iong
respectively from the host byte order to the network byte order, and the
ntohs(3) and ntohl(3) C functions to go the other way.

On MSB—first systems these functions do nothing. On LSB—first systems they
convert values to the proper order.

So, regardless of what system your software is compiled on, your data will
end up in the correct order if you use these functions.

7.5.1.2. Client Functions

Typically, the client initiates the connection to the server. The client
knows which server it is about to call: It knows its IP address, and it
knows the port the server resides at. It is akin to you picking up the
phone and dialing the number (the address), then, after someone answers,
asking for the person in charge of wingdings (the port).

7.5.1.2.1. connect

Once a client has created a socket, it needs to connect it to a specific
port on a remote system. It uses connect(2):

int connect(int s, const struct sockaddr * name, socklen_t namelen);

The S argument is the socket, i.e., the value returned by the socket
function. The name is a pointer to sockaddr, the structure we have talked
about extensively. Finally, namden informs the system how many bytes are
in our sockaddr structure.

If connect is successful, it returns Q. Otherwise it returns -1 and stores
the error code in €rno.

There are many reasons why connect may fail. For example, with an attempt
to an Internet connection, the IP address may not exist, or it may be down,
or Jjust too busy, or it may not have a server listening at the specified
port. Or it may outright refuse any request for specific code.

80

http://www.FreeBSD.org/cgi/man.cgi?query=htons&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=htonl&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=ntohs&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=ntohl&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=connect&sektion=2

=z

. 7. Sockets

7.5.1.2.2. Our First Client

We now know enough to write a very simple client, one that will get current

time from 192.43.244.18 and print it to stdout.

Go ahead, enter it in your editor, save it as daytimec. then compile and

run it:

The Client—Server Difference

%

In this case, the date was June 19, 2001, the time was 02:29:25 UTC.
Naturally, your results will vary.

7.5.1.3. Server Functions

The typical server does not initiate the connection. Instead, it waits for
a client to call it and request services. It does not know when the client
will call, nor how many clients will call. It may be just sitting there,
waiting patiently, one moment, The next moment, it can find itself swamped
with requests from a number of clients, all calling in at the same time.

The sockets interface offers three basic functions to handle this.
7.5.1.3.1. bind

Ports are like extensions to a phone line: After you dial a number, you
dial the extension to get to a specific person or department.

There are 65535 IP ports, but a server usually processes requests that
come in on only one of them. It is like telling the phone room operator
that we are now at work and available to answer the phone at a specific
extension. We use bind(2) to tell sockets which port we want to serve.

int bind(int s, const struct sockaddr *addr, socklen_t addrlen);

Beside specifying the port in addr, the server may include its IP address.
However, it can Jjust use the symbolic constant INADDR_ANY to indicate
it will serve all requests to the specified port regardless of what its
IP address is. This symbol, along with several similar ones, is declared

in netinet/in.h

#define INADDR_ANY (u_int32_t)0x00000000

Suppose we were writing a server for the daytime protocol over TCP/IP.
Recall that it uses port 13. Our sockaddr in structure would look like this:

0 1 2 3
0 0 2 0 13
4 0
8 0
12 0

82

http://www.FreeBSD.org/cgi/man.cgi?query=bind&sektion=2

= 7. Sockets

7.5.1.3.2. ligen

To continue our office phone analogy, after you have told the phone central
operator what extension you will be at, you now walk into your office,
and make sure your own phone is plugged in and the ringer is turned on.
Plus, you make sure your call waiting is activated, so you can hear the
phone ring even while you are talking to someone.

The server ensures all of that with the listen(2) function.

int listen(int s, int backlog);

In here, the backlog variable tells sockets how many incoming requests to
accept while you are busy processing the last request. In other words, it
determines the maximum size of the queue of pending connections.

7.5.1.3.3. accept

After you hear the phone ringing, you accept the call by answering the call.
You have now established a connection with your client. This connection
remains active until either you or your client hang up.

The server accepts the connection by using the accept(2) function.

int accept(int s, struct sockaddr *addr, socklen_t * addrlen);

Note that this time addrlen is a pointer. This is necessary because in this
case it is the socket that fills out addr, the sockaddr in structure.

The return value is an integer. Indeed, the accgpt returns a new socket.

You will use this new socket to communicate with the client.

What happens to the old socket? It continues to listen for more requests
(remember the backlog variable we passed to ligen?) until we close it.

Now, the new socket is meant only for communications. It is fully connected.
We cannot pass it to ligen again, trying to accept additional connections.

7.5.1.3.4. Our First Server

Our first server will be somewhat more complex than our first client was:
Not only do we have more sockets functions to use, but we need to write
it as a daemon.

This is best achieved by creating a child process after binding the port.
The main process then exits and returns control to the shell (or whatever
program invoked it).

83

http://www.FreeBSD.org/cgi/man.cgi?query=listen&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=accept&sektion=2

The Client—Server Difference

The child calls ligen, then starts an endless loop, which accepts a

connection, serves it, and eventually closes its socket.

84

=z

. 7. Sockets

We start by creating a socket. Then we fill out the sockaddr_in structure
in sa. Note the conditional use of INADDR_ANY:

Its value is Q. Since we have Jjust used bzer0 on the entire structure, it

would be redundant to set it to Q again. But if we port our code to some
other system where INADDR_ANY is perhaps not a zero, we need to assign it
to sa.s'n_eddr.s_addr. Most modern C compilers are clever enough to notice

The Client—Server Difference

that INADDR ANY is a constant. As long as it is a zero, they will optimize
the entire conditional statement out of the code.

After we have called bhind successfully, we are ready to become a daemon:
We use fork to create a child process. In both, the parent and the child,
the S variable is our socket. The parent process will not need it, so it
calls close, then it returns Q to inform its own parent it had terminated

successfully.

Meanwhile, the child process continues working in the background. It calls
listen and sets its backlog to 4. It does not need a large value here because
daytime is not a protocol many clients request all the time, and because
it can process each request instantly anyway.

Finally, the daemon starts an endless loop, which performs the following
steps:

1. Call accept. It waits here until a client contacts it. At that point,
it receives a new socket, C, which it can use to communicate with

this particular client.

2. It uses the C function fdopen to turn the socket from a low—level
file descriptor to a C-style FILE pointer. This will allow the use
of fprintf later on.

3. It checks the time, and prints it in the ISO 8601 format to the client
“file” . It then uses fdose to close the file. That will automatically

close the socket as well.

We can generalize this, and use it as a model for many other servers:

86

= 7. Sockets

(Sti")

Create Top Socket
" Daemon
Bind Port Process

Initialize Daemon

¥

Close Top Socket

e
=)

Listen

Close Accepted
Socket

This flowchart is good for sequential servers, i.e., servers that can
serve one client at a time, Jjust as we were able to with our daytime

87

The Client—Server Difference

server. This is only possible whenever there is no real “conversation”

going on between the client and the server: As soon as the server detects a
connection to the client, it sends out some data and closes the connection.
The entire operation may take nanoseconds, and it is finished.

The advantage of this flowchart is that, except for the brief moment after
the parent forks and before it exits, there is always only one process

active: Our server does not take up much memory and other system resources.

Note that we have added initialize daemon in our flowchart. We did not
need to initialize our own daemon, but this is a good place in the flow of
the program to set up any and handlers, open any files we may need, etc.

Just about everything in the flow chart can be used literally on many
different servers. The serve entry is the exception. We think of it as
a “black box” , i.e., something you design specifically for your own
server, and just “plug it into the rest.”

Not all protocols are that simple. Many receive a request from the client,
reply to it, then receive another request from the same client. Because
of that, they do not know in advance how long they will be serving the
client. Such servers usually start a new process for each client. While
the new process is serving its client, the daemon can continue listening
for more connections.

Now, go ahead, save the above source code as daytimed.c (it is customary
to end the names of daemons with the letter d). After you have compiled

it, try running it:

% ./daytimed
bind: Permission denied
%

What happened here? As you will recall, the daytime protocol uses port
13. But all ports below 1024 are reserved to the superuser (otherwise,
anyone could start a daemon pretending to serve a commonly used port,
while causing a security breach).

Try again, this time as the superuser:

Jdaytimed
#

What... Nothing? Let us try again:

Jdaytimed

88

=z

. 7. Sockets

Every port can only be bound by one program at a time. Our first attempt
was indeed successful: It started the child daemon and returned quietly.
It is still running and will continue to run until you either kill it, or
any of its system calls fail, or you reboot the system.

Fine, we know it is running in the background. But is it working? How do

we know it is a proper daytime server? Simple:

telnet tried the new IPv6, and failed. It retried with IPv4 and succeeded.
The daemon works.

If you have access to another UNIX® system via telnet, you can use it to
test accessing the server remotely. My computer does not have a static
IP address, so this is what I did:

Again, it worked. Will it work using the domain name?

89

Helper Functions

By the way, telnet prints the Connection closed by foreign host message

after our daemon has closed the socket. This shows us that, indeed, using
fclose(client); in our code works as advertised.

7.6. Helper Functions

FreeBSD C library contains many helper functions for sockets programming.
For example, in our sample client we hard coded the timenist.gov IP address.
But we do not always know the IP address. Even if we do, our software
is more flexible if it allows the user to enter the IP address, or even
the domain name.

7.6.1. gethostbyname

While there is no way to pass the domain name directly to any of the
sockets functions, the FreeBSD C library comes with the gethostbyname (3)
and gethostbyname2(3) functions, declared in netdb.h.

Both return a pointer to the hogstent structure, with much information about
the domain. For our purposes, the h addr list[0] field of the structure
points at h_length bytes of the correct address, already stored in the

network byte order.

This allows us to create a much more flexible—and much more useful—

version of our daytime program:

http://www.FreeBSD.org/cgi/man.cgi?query=gethostbyname&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=gethostbyname2&sektion=3

=z

. 7. Sockets

We now can type a domain name (or an IP address, it works both ways) on the

command line, and the program will try to connect to its daytime server.
Otherwise, it will still default to time,niﬂ.gov. However, even in this case
we will use gethostbyname rather than hard coding 192.43.244.18. That way,
even if its IP address changes in the future, we will still find it.

Since it takes virtually no time to get the time from your local server, you
could run daytime twice in a row: First to get the time from time,niﬁ_gov,
the second time from your own system. You can then compare the results
and see how exact your system clock is:

91

As you can see, my system was two seconds ahead of the NIST time.

7.6.2. getservbyname

Sometimes you may not be sure what port a certain service uses. The
getservbyname (3) function, also declared in netdb.h comes in very handy

in those cases:

The sarvent structure contains the s port, which contains the proper port,
already in network byte order.

Had we not known the correct port for the daytime service, we could have

found it this way:

You usually do know the port. But if you are developing a new protocol,
you may be testing it on an unofficial port. Some day, you will register
the protocol and its port (if nowhere else, at least in your /etc/services,
which is where geExrvbymane looks). Instead of returning an error in the
above code, you just use the temporary port number. Once you have listed
the protocol in Jetg/sarvices, your software will find its port without you

having to rewrite the code.

7.7. Concurrent Servers

Unlike a sequential server, a concurrent server has to be able to serve
more than one client at a time. For example, a chat server may be serving
a specific client for hours—it cannot wait till it stops serving a client
before it serves the next one.

92

http://www.FreeBSD.org/cgi/man.cgi?query=getservbyname&sektion=3

= 7. Sockets

This requires a significant change in our flowchart:

Close Accepted
Socket

Process Signals

1
|
1
1
i
Create Top Socket i
1
i ! Daemon !
Bind Port Process '
1
Initialize Daemon i
1
Close Top Socket ‘lL :
Listen :

: |

1 “

0 1

et 11 Server |

I 1

1 Process i

1! 1

mP| ciose Top socket E i

:I

Close Accepted H

Socket ::

1

“

¥

]

i

!

We moved the serve from the daemon process to its own server process.
However, because each child process inherits all open files (and a socket
is treated Jjust like a file), the new process inherits not only the

“accepted handle,” i.e., the socket returned by the accept call, but
also the top socket, i.e., the one opened by the top process right at
the beginning.

However, the server process does not need this socket and should close it
immediately. Similarly, the daemon process no longer needs the accepted
socket, and not only should, but must close it—otherwise, it will run out

of available file descriptors sooner or later.

After the server process is done serving, it should close the accepted
socket. Instead of returning to accgpt, it now exits.

93

Concurrent Servers

Under UNIX®, a process does not really exit. Instead, it returns to its
parent. Typically, a parent process Waits for its child process, and obtains
a return value. However, our daemon process cannot simply stop and wait.
That would defeat the whole purpose of creating additional processes.
But if it never does wait, its children will become zombies—no longer

functional but still roaming around.

For that reason, the daemon process needs to set signal handlers in its
initialize daemon phase. At least a SIGCHLD signal has to be processed, so
the daemon can remove the zombie return values from the system and release
the system resources they are taking up.

That is why our flowchart now contains a process signals box, which is
not connected to any other box. By the way, many servers also process
SIGHUP, and typically interpret as the signal from the superuser that they
should reread their configuration files. This allows us to change settings
without having to kill and restart these servers.

94

= 8. IPv6 Internals

8.1. IPv6/IPsec Implementation

Contributed by Yoshinobu Inoue.

This section should explain IPv6 and IPsec related implementation

internals. These functionalities are derived from KAME project

8.1.1. IPv6
8.1.1.1. Conformance

The IPv6 related functions conforms, or tries to conform to the latest set
of IPv6 specifications. For future reference we list some of the relevant
documents below (NOTE: this is not a complete list — this is too hard

to maintain...).

For details please refer to specific chapter in the document, RFCs, manual
pages, or comments in the source code.

Conformance tests have been performed on the KAME STABLE kit at TAHI
project. Results can be viewed at hitp:/ww.tahi.org/reporttKAME/. We also
attended Univ. of New Hampshire IOL tests (http:/Awww.iol.unh.edu/) in the

past, with our past snapshots.
- REC1639: FTP Operation Over Big Address Records (FOOBAR)

+ RFC2428 is preferred over RFC1639. FTP clients will first try RFC2428,
then RFC1639 if failed.

- RFC1886: DNS Extensions to support IPv6
+ RFC1933: Transition Mechanisms for IPv6 Hosts and Routers
+ IPv4 compatible address is not supported.
- automatic tunneling (described in 4.3 of this RFC) is not supported.

- gif(4) interface implements IPv[46]—over—IPv[46] tunnel in a generic
way, and it covers "configured tunnel" described in the spec. See
23.5.1.5 in this document for details.

+ RFC1981: Path MTU Discovery for IPv6

« RFC2080: RIPng for IPv6

http://www.kame.net/
http://www.tahi.org/report/KAME/
http://www.iol.unh.edu/
http://www.FreeBSD.org/cgi/man.cgi?query=gif&sektion=4

1Pv6

- usr.sbin/route6d support this.
+ RFC2292: Advanced Sockets API for IPv6

- For supported library functions/kernel APIs, see sysnetindt6/ADVAPI.
- RFC2362: Protocol Independent Multicast—Sparse Mode (PIM—SM)

- RFC2362 defines packet formats for PIM-SM. draft-ietf-pim-ipv6-0Lixt is

written based on this.
« RFC2373: IPv6 Addressing Architecture

- supports node required addresses, and conforms to the scope
requirement.

« RFC2374: An IPv6 Aggregatable Global Unicast Address Format

« supports 64-bit length of Interface ID.
« RFC2375: IPv6 Multicast Address Assignments

+ Userland applications use the well—known addresses assigned in the RFC.
+ RFC2428: FTP Extensions for IPv6 and NATs

« RFC2428 is preferred over RFC1639. FTP clients will first try RFC2428,
then RFC1639 if failed.

+ RFC2460: IPv6 specification
+ RFC2461: Neighbor discovery for IPv6
+ See 23.5.1.2 in this document for details.
« RFC2462: IPv6 Stateless Address Autoconfiguration
+ See 23.5.1.4 in this document for details.
+ RFC2463: ICMPv6 for IPv6 specification
+ See 23.5.1.9 in this document for details.
+ RFC2464: Transmission of IPv6 Packets over Ethernet Networks
+ RFC2465: MIB for IPv6: Textual Conventions and General Group

+ Necessary statistics are gathered by the kernel. Actual IPv6 MIB
support is provided as a patchkit for ucd—snmp.

96

=z

8. [Pv6 Internals

« RFC2466: MIB for IPv6: ICMPv6 group

- Necessary statistics are gathered by the kernel. Actual IPv6 MIB
support is provided as patchkit for ucd—snmp.

+ RFC2467: Transmission of IPv6 Packets over FDDI Networks
« RFC2497: Transmission of IPv6 packet over ARCnet Networks
+ RFC2553: Basic Socket Interface Extensions for IPv6

- IPv4 mapped address (3.7) and special behavior of IPv6 wildcard bind
socket (3.8) are supported. See 23.5.1.12 in this document for details.

« RFC2675: IPv6 Jumbograms
+ See 23.5.1.7 in this document for details.
« RFC2710: Multicast Listener Discovery for IPv6
« RFC2711: IPv6 router alert option
- draft-ietf-ipngwg-router-renum-08: Router renumbering for IPv6
- draft-ietf-ipngwg-icmp-namelookups-02: 1Pv6 Name Lookups Through ICMP
- draft-ietf-ipngwg-icmp-name-lookups-03: IPv6 Name Lookups Through ICMP
- dreft-ietf-pim-ipv6-01.txt: PIM for IPv6
- pim6dd (8) implements dense mode. pim6sd(8) implements sparse mode.

- draft-itojun-ipv6-tcp-to-anycast-00: Disconnecting TCP connection toward IPv6

anycast address
- draft-yamamoto-wideipv6-comm-mode-00
- See 23.5.1.6 in this document for details.

- draft-ietf-ipngwg-scopedaddr-format-00.txt : An Extension of Format for IPv6
Scoped Addresses

8.1.1.2. Neighbor Discovery

Neighbor Discovery is fairly stable. Currently Address Resolution,
Duplicated Address Detection, and Neighbor Unreachability Detection
are supported. In the near future we will be adding Proxy Neighbor

97

http://www.FreeBSD.org/cgi/man.cgi?query=pim6dd&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=pim6sd&sektion=8

1Pv6

Advertisement support in the kernel and Unsolicited Neighbor Advertisement
transmission command as admin tool.

If DAD fails, the address will be marked "duplicated" and message will
be generated to syslog (and usually to console). The "duplicated" mark
can be checked with ifconfig(8). It is administrators' responsibility to
check for and recover from DAD failures. The behavior should be improved
in the near future.

Some of the network driver loops multicast packets back to itself, even if
instructed not to do so (especially in promiscuous mode). In such cases DAD
may fail, because DAD engine sees inbound NS packet (actually from the node
itself) and considers it as a sign of duplicate. You may want to look at #if
condition marked "heuristics" in sys/netinet6/nd6 nbr.c:ndé dad timer ()
as workaround (note that the code fragment in "heuristics" section is
nm;mmccmﬁmmmnf

Neighbor Discovery specification (RFC2461) does not talk about neighbor
cache handling in the following cases:

1. when there was no neighbor cache entry, node received unsolicited RS/
NS/NA/redirect packet without link—layer address

2. neighbor cache handling on medium without link—layer address (we need
a neighbor cache entry for IsRouter bit)

For first case, we implemented workaround based on discussions on IETF
ipngwg mailing list. For more details, see the comments in the source code
and email thread started from (IPng 7155), dated Feb 6 1999.

IPv6 on—link determination rule (RFC2461) 1is quite different from
assumptions in BSD network code. At this moment, no on—1link determination
rule is supported where default router list is empty (RFC2461, section
5.2, last sentence in 2nd paragraph — note that the spec misuse the word
"host" and "node" in several places in the section).

To avoid possible DoS attacks and infinite loops, only 10 options on ND
packet is accepted now. Therefore, if you have 20 prefix options attached
to RA, only the first 10 prefixes will be recognized. If this troubles you,
please ask it on FREEBSD—CURRENT mailing list and/or modify nd6_maxndopt
in sys/nainetB/ndac. If there are high demands we may provide sysctl knob
for the variable.

8.1.1.3. Scope Index

IPv6 uses scoped addresses. Therefore, it is very important to specify
scope index (interface index for link—local address, or site index for

98

http://www.FreeBSD.org/cgi/man.cgi?query=ifconfig&sektion=8

=z

8. [Pv6 Internals

site—local address) with an IPv6 address. Without scope index, scoped
IPv6 address is ambiguous to the kernel, and kernel will not be able to
determine the outbound interface for a packet.

Ordinary userland applications should use advanced API (RFC2292) to specify
scope index, or interface index. For similar purpose, sin6 scope id member
in sockaddr_ in6 structure is defined in RFC2553. However, the semantics
for sin6 _scope id is rather vague. If you care about portability of your
application, we suggest you to use advanced API rather than sin6_scope id.

In the kernel, an interface index for link—local scoped address is embedded
into 2nd 16bit—word (3rd and 4th byte) in IPv6 address. For example, you
may see something like:

feB80:1::200:f8ff:fe01:6317

in the routing table and interface address structure (struct in6_ifaddr).
The address above is a link—local unicast address which belongs to a
network interface whose interface identifier is 1. The embedded index
enables us to identify IPv6 link local addresses over multiple interfaces
effectively and with only a little code change.

Routing daemons and configuration programs, 1like route6d(8) and
ifconfig(8), will need to manipulate the "embedded" scope index. These
programs use routing sockets and ioctls (like SIOCGIFADDR_TN6) and the
kernel API will return IPv6 addresses with 2nd 16bit—word filled in. The
APIs are for manipulating kernel internal structure. Programs that use
these APIs have to be prepared about differences in kernels anyway.

When you specify scoped address to the command line, NEVER write the
embedded form (such as ff02:1::1 or fe80:2::fedc). This is not supposed to
work. Always use standard form, like ff02::1 or fe80::fedc, with command
line option for specifying interface (like phﬂgG-lneOffOZIl). In general, if
a command does not have command line option to specify outgoing interface,
that command is not ready to accept scoped address. This may seem to be
opposite from IPv6's premise to support "dentist office" situation. We
believe that specifications need some improvements for this.

Some of the userland tools support extended numeric IPv6 syntax, as
documented in draft-ietf-ipngwg-scopedaddr-format-00.txt. You can specify outgoing
link, by using name of the outgoing interface like "fe80::1%ne0". This way
you will be able to specify link—local scoped address without much trouble.

To use this extension in your program, you will need to use getaddrinfo(3),
and getnameinfo(3) with NI_WITHSCOPEID. The implementation currently

99

http://www.FreeBSD.org/cgi/man.cgi?query=route6d&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=ifconfig&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getnameinfo&sektion=3

1Pv6

assumes 1—to—1 relationship between a 1link and an interface, which is
stronger than what specs say.

8.1.1.4. Plug and Play

Most of the IPv6 stateless address autoconfiguration is implemented in
the kernel. Neighbor Discovery functions are implemented in the kernel
as a whole. Router Advertisement (RA) input for hosts is implemented in
the kernel. Router Solicitation (RS) output for endhosts, RS input for
routers, and RA output for routers are implemented in the userland.

8.1.1.4.1. Assignment of link—local, and special addresses

IPv6 1link—local address 1is generated from IEEE802 address (Ethernet
MAC address). Each of interface is assigned an IPv6 link—local address
automatically, when the interface becomes up (IFF_UP)‘ Also, direct route
for the link—local address is added to routing table.

Here is an output of netstat command:

Internet6:

Destination Gateway Flags Netif Expire
fe80:1::%ed0/64 link#1 uc edo
fe80:2::%ep0/64 link#2 uc ep0

Interfaces that has no IEEE802 address (pseudo interfaces like tunnel
interfaces, or ppp interfaces) will borrow IEEE802 address from other
interfaces, such as Ethernet interfaces, whenever possible. If there
is no IEEE802 hardware attached, a last resort pseudo—random value,
MD5 (hostname) , will be used as source of link—local address. If it is
not suitable for your usage, you will need to configure the link—local

address manually.

If an interface is not capable of handling IPv6 (such as lack of multicast
support), link—local address will not be assigned to that interface. See
section 2 for details.

Each interface Jjoins the solicited multicast address and the 1link—
local all-nodes multicast addresses (e.g. fe80::1:ff01:6317 and ff02::1,
respectively, on the link the interface is attached). In addition to a
link—local address, the loopback address (::1) will be assigned to the
loopback interface. Also, ::1/128 and ff0l::/32 are automatically added
to routing table, and loopback interface joins node—local multicast group
ff01::1.

8.1.1.4.2. Stateless address autoconfiguration on hosts
In IPv6 specification, nodes are separated into two categories: routers

and hosts. Routers forward packets addressed to others, hosts does not

100

=z

8. [Pv6 Internals

forward the packets. net.inet6.ip6.forwarding defines whether this node
is router or host (router if it is 1, host if it is 0).

When a host hears Router Advertisement from the router, a host may
autoconfigure itself by stateless address autoconfiguration. This behavior
can be controlled by net.inet6.ip6.accept_rtadv (host autoconfigures
itself if it is set to 1). By autoconfiguration, network address prefix
for the receiving interface (usually global address prefix) is added.
Default route is also configured. Routers periodically generate Router
Advertisement packets. To request an adjacent router to generate RA packet,
a host can transmit Router Solicitation. To generate a RS packet at
any time, use the rtsol command. rtsold(8) daemon is also available.
rtsold(8) generates Router Solicitation whenever necessary, and it works
great for nomadic usage (notebooks/laptops). If one wishes to ignore Router
Advertisements, use sysctl to set net.inet6.ip6.accept rtadv to O.

To generate Router Advertisement from a router, use the rtadvd(8) daemon.

Note that, IPv6 specification assumes the following items, and
nonconforming cases are left unspecified:

+ Only hosts will listen to router advertisements
- Hosts have single network interface (except loopback)

Therefore, this is unwise to enable net.inet6.ip6.accept _rtadv on routers,
or multi—interface host. A misconfigured node can behave strange
(nonconforming configuration allowed for those who would like to do some
experiments) .

To summarize the sysctl knob:

accept_rtadv forwarding role of the node

0 0 host (to be manually configured)

0 1 router

1 0 autoconfigured host
(spec assumes that host has single
interface only, autoconfigured host
with multiple interfaceis
out-of-scope)

1 1 invalid, or experimental
(out-of-scope of spec)

RFC2462 has validation rule against incoming RA prefix information option,

in 5.5.3 (e). This is to protect hosts from malicious (or misconfigured)
routers that advertise very short prefix lifetime. There was an update

101

http://www.FreeBSD.org/cgi/man.cgi?query=rtsold&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rtsold&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rtadvd&sektion=8

1Pv6

from Jim Bound to ipngwg mailing list (look for "(ipng 6712)" in the
archive) and it is implemented Jim's update.

See 23.5.1.2 in the document for relationship between DAD and
autoconfiguration.

8.1.1.5. Generic tunnel interface

GIF (Generic InterFace) is a pseudo interface for configured tunnel.
Details are described in gif(4). Currently

+v6 in v6
+v6 in v4
+vd in v6
+vd in v4

are available. Use gifconfig(8) to assign physical (outer) source and
destination address to gif interfaces. Configuration that uses same address
family for inner and outer 1P header (v4 in v4, or v6 in v6) is dangerous.
It is very easy to configure interfaces and routing tables to perform
infinite level of tunneling. Please be warned.

gif can be configured to be ECN—friendly. See 23.5.4.5 for ECN—friendliness
of tunnels, and gif(4) for how to configure.

If you would like to configure an IPv4—in—IPv6 tunnel with gif interface,
read gif(4) carefully. You will need to remove IPv6 link—local address
automatically assigned to the gif interface.

8.1.1.6. Source Address Selection
Current source selection rule is scope oriented (there are some exceptions
— see below). For a given destination, a source IPv6 address is selected

by the following rule:

1. If the source address is explicitly specified by the user (e.g. via the
advanced API), the specified address is used.

2. 1f there is an address assigned to the outgoing interface (which is
usually determined by looking up the routing table) that has the same

scope as the destination address, the address is used.

This is the most typical case.

102

http://www.FreeBSD.org/cgi/man.cgi?query=gif&sektion=4
http://www.FreeBSD.org/cgi/man.cgi?query=gifconfig&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=gif&sektion=4
http://www.FreeBSD.org/cgi/man.cgi?query=gif&sektion=4

=z

8. [Pv6 Internals

3. If there is no address that satisfies the above condition, choose a
global address assigned to one of the interfaces on the sending node.

4. 1f there is no address that satisfies the above condition, and
destination address is site local scope, choose a site local address
assigned to one of the interfaces on the sending node.

5. If there is no address that satisfies the above condition, choose the
address associated with the routing table entry for the destination.
This is the last resort, which may cause scope violation.

For 1instance, ::1 is selected for ff0l::1, fe80:1::200:f8ff:fe01:6317
for fe80:1::2a0:24ff:feab:839b (note that embedded interface index —
described in 23.5.1.3 — helps us choose the right source address. Those
embedded indices will not be on the wire). If the outgoing interface
has multiple address for the scope, a source 1is selected Ilongest
match basis (rule 3). Suppose 3ffe:501:808:1:200:f8ff:fe01:6317 and
3ffe:2001:9:124:200:f8ff:fe01:6317 are given to the outgoing interface.
3ffe:501:808:1:200:f8ff:fe01:6317 is chosen as the source for the
destination 3ffe:501:800::1.

Note that the above rule is not documented in the IPv6 spec. It is
considered "up to implementation" item. There are some cases where we do
not use the above rule. One example is connected TCP session, and we use
the address kept in tcb as the source. Another example is source address
for Neighbor Advertisement. Under the spec (RFC2461 7.2.2) NA's source
should be the target address of the corresponding NS's target. In this
case we follow the spec rather than the above longest—match rule.

For new connections (when rule 1 does not apply). deprecated addresses
(addresses with preferred lifetime = 0) will not be chosen as source
address if other choices are available. If no other choices are available,
deprecated address will be used as a last resort. If there are multiple
choice of deprecated addresses, the above scope rule will be used to choose
from those deprecated addresses. If you would like to prohibit the use of
deprecated address for some reason, configure net.inet6.ip6.use_deprecated
to 0. The issue related to deprecated address is described in RFC2462
5.5.4 (NOTE: there is some debate underway in IETF ipngwg on how to use
"deprecated" address).

8.1.1.7. Jumbo Payload

The Jumbo Payload hop—by—hop option is implemented and can be used to send
IPv6 packets with payloads longer than 65,535 octets. But currently no
physical interface whose MTU is more than 65,535 is supported, so such
payloads can be seen only on the loopback interface (i.e. 100).

103

1Pv6

If you want to try jumbo payloads, you first have to reconfigure the kernel
so that the MTU of the loopback interface is more than 65,535 bytes; add
the following to the kernel configuration file:

options"LARGE_LOMTU" #To test jumbo payload
and recompile the new kernel.

Then you can test Jjumbo payloads by the ping6(8) command with —b and —s
options. The —b option must be specified to enlarge the size of the socket
buffer and the —s option specifies the length of the packet, which should
be more than 65,535. For example, type as follows:

% ping6 --b 70000 --s68000 -:: 1

The IPv6 specification requires that the Jumbo Payload option must not
be used in a packet that carries a fragment header. If this condition is
broken, an ICMPv6 Parameter Problem message must be sent to the sender.
specification is followed, but you cannot usually see an ICMPv6 error
caused by this requirement.

When an IPv6 packet is received, the frame length is checked and compared
to the length specified in the payload length field of the IPv6 header or
in the value of the Jumbo Payload option, if any. If the former is shorter
than the latter, the packet is discarded and statistics are incremented.

You can see the statistics as output of netstat(8) command with ‘-s —
p ip6' option:

% netstat --s--p ip6
ip6:
(snip)
1 with data size < datalength

So, kernel does not send an ICMPv6 error unless the erroneous packet is an
actual Jumbo Payload, that is, its packet size is more than 65,535 bytes.
As described above, currently no physical interface with such a huge MTU
is supported, so it rarely returns an ICMPv6 error.

TCP/UDP over Jjumbogram is not supported at this moment. This is because
we have no medium (other than loopback) to test this. Contact us if you
need this.

IPsec does not work on Jumbograms. This is due to some specification
twists in supporting AH with jumbograms (AH header size influences payload
length, and this makes it real hard to authenticate inbound packet with
Jjumbo payload option as well as AH).

104

http://www.FreeBSD.org/cgi/man.cgi?query=ping6&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=netstat&sektion=8

=z

8. [Pv6 Internals

There are fundamental issues in *BSD support for jumbograms. We would like
to address those, but we need more time to finalize these. To name a few:

+ mbuf pkthdr.len field is typed as "int" in 4.4BSD, so it will not hold
Jumbogram with len > 2G on 32bit architecture CPUs. If we would like
to support jumbogram properly, the field must be expanded to hold 4G +
IPv6 header + link—layer header. Therefore, it must be expanded to at
least int64_t (u_int32 t is NOT enough).

+ We mistakingly use "int" to hold packet length in many places. We need
to convert them into larger integral type. It needs a great care, as we
may experience overflow during packet length computation.

+ We mistakingly check for ip6 plen field of IPv6 header for packet payload
length in various places. We should be checking mbuf pkthdr.len instead.
ip6_input() will perform sanity check on jumbo payload option on input,
and we can safely use mbuf pkthdr.len afterwards.

+ TCP code needs a careful update in bunch of places, of course.
8.1.1.8. Loop prevention in header processing

IPv6 specification allows arbitrary number of extension headers to be
placed onto packets. If we implement IPv6 packet processing code in the
way BSD IPv4 code is implemented, kernel stack may overflow due to long
function call chain. sys/netinet6 code is carefully designed to avoid
kernel stack overflow. Because of this, sys/netinet6 code defines its own
protocol switch structure, as "struct ip6protosw” (see netinet6fip6protosw.h) .
There is no such update to IPv4 part (sys/netinet) for compatibility, but
small change is added to its pr_input() prototype. So "struct ipprotosw" is
also defined. Because of this, if you receive IPsec—over—IPv4 packet with
massive number of IPsec headers, kernel stack may blow up. IPsec—over—IPv6
is okay. (Off—course, for those all IPsec headers to be processed, each
such IPsec header must pass each IPsec check. So an anonymous attacker
will not be able to do such an attack.)

8.1.1.9. ICMPv6

After RFC2463 was published, IETF ipngwg has decided to disallow ICMPv6
error packet against ICMPv6 redirect, to prevent ICMPv6 storm on a network
medium. This is already implemented into the kernel.

8.1.1.10. Applications

For wuserland programming, we support IPv6 socket API as specified in
RFC2553, RFC2292 and upcoming Internet drafts.

105

1Pv6

TCP/UDP over IPv6 is available and quite stable. You can enjoy telnet(l),
ftp(1), rlogin(l), rsh(1), ssh(l), etc. These applications are protocol
independent. That is, they automatically chooses IPv4d or IPv6 according
to DNS.

8.1.1.11. Kernel Internals

While ip_forward() calls ip_output(), ip6_forward() directly calls
if_output() since routers must not divide IPv6 packets into fragments.

ICMPv6 should contain the original packet as long as possible up to 1280.
UDP6/1P6 port unreach, for instance, should contain all extension headers
and the *unchanged® UDP6 and IP6 headers. So, all IP6 functions except
TCP never convert network byte order into host byte order, to save the
original packet.

tep_input(), udp6_input() and icmp6_input() can not assume that IP6
header is preceding the transport headers due to extension headers.
So, in6_cksum() was implemented to handle packets whose IP6 header and
transport header is not continuous. TCP/IP6 nor UDP6/1P6 header structures
do not exist for checksum calculation.

To process IP6 header, extension headers and transport headers easily,
network drivers are now required to store packets in one internal mbuf
or one or more external mbufs. A typical old driver prepares two internal
mbufs for 96 — 204 bytes data, however, now such packet data is stored
in one external mbuf.

nasui-s-pip6 tells you whether or not your driver conforms such requirement.
In the following example, "cce0" violates the requirement. (For more
information, refer to Section 2.)

Mbuf statistics:
317 one mbuf
two or more mbuf::
lo0=8
cce0 = 10
3282 one ext mbuf

0 two or more ext mbuf

Each input function calls IP6 EXTHDR CHECK in the beginning to check if
the region between IP6 and its header is continuous. IP6 EXTHDR_CHECK
calls m_pullup() only if the mbuf has M_LOOP flag, that is, the packet
comes from the loopback interface. m_pullup() is never called for packets
coming from physical network interfaces.

Both IP and IP6 reassemble functions never call m_pullup().

106

http://www.FreeBSD.org/cgi/man.cgi?query=telnet&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ftp&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=rlogin&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=rsh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1

=z

8. [Pv6 Internals

8.1.1.12. IPv4 mapped address and IPv6 wildcard socket

RFC2553 describes IPv4 mapped address (3.7) and special behavior of IPv6
wildcard bind socket (3.8). The spec allows you to:

+ Accept IPv4 connections by AF _INET6 wildcard bind socket.

+ Transmit IPv4 packet over AF_INET6 socket by using special form of the
address like ::ffff:10.1.1.1.

but the spec itself is very complicated and does not specify how the socket
layer should behave. Here we call the former one "listening side" and the
latter one "initiating side", for reference purposes.

You can perform wildcard bind on both of the address families, on the
same port.

The following table show the behavior of FreeBSD 4.x.

listening side initiating side
(AF_INET6 wildcard (connection to -::ffff:10.1.1.1)
socket gets |Pv4 conn.)

FreeBSD 4.x configurable supported
default: enabled

The following sections will give you more details, and how you can configure
the behavior.

Comments on listening side:

It looks that RFC2553 talks too little on wildcard bind issue, especially
on the port space issue, failure mode and relationship between AF_INET/
INET6 wildcard bind. There can be several separate interpretation for
this RFC which conform to it but behaves differently. So, to implement
portable application you should assume nothing about the behavior in the
kernel. Using getaddrinfo(3) is the safest way. Port number space and
wildcard bind issues were discussed in detail on ipv6imp mailing list, in
mid March 1999 and it looks that there is no concrete consensus (means,
up to implementers). You may want to check the mailing list archives.

If a server application would like to accept IPv4 and IPv6 connections,
there will be two alternatives.

One is using AF_INET and AF_INET6 socket (you will need two sockets). Use
getaddrinfo(3) with AI_PASSIVE into ai_flags, and socket(2) and bind(2)
to all the addresses returned. By opening multiple sockets, you can accept

107

http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=socket&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=bind&sektion=2

1Pv6

connections onto the socket with proper address family. IPv4 connections
will be accepted by AF_INET socket, and IPv6 connections will be accepted
by AF_INET6 socket.

Another way is using one AF_INET6 wildcard bind socket. Use getaddrinfo(3)
with AI_PASSIVE into ai_flags and with AF_INET6 into ai_family, and set
the 1st argument hostname to NULL. And socket(2) and bind(2) to the address
returned. (should be IPv6 unspecified addr). You can accept either of IPv4
and IPv6 packet via this one socket.

To support only IPv6 traffic on AF_INET6 wildcard binded socket portably,
always check the peer address when a connection is made toward AF_INET6
listening socket. If the address is IPv4 mapped address, vyou may

want to reject the connection. You can check the condition by using
IN6_IS_ADDR_VAMAPPED() macro.

To resolve this issue more easily, there is system dependent setsockopt (2)
option, IPV6 BINDVEONLY, used like below.

int on;

setsockopt(s, IPPROTO_IPV6, IPV6_BINDVGONLY,
(char *)&on, sizeof (on)) < 0));

When this call succeed, then this socket only receive IPv6 packets.
Comments on initiating side:

Advise to application implementers: to implement a portable IPv6
application (which works on multiple IPv6 kernels), we believe that the
following is the key to the success:

+ NEVER hardcode AF_INET nor AF_INET6.

- Use getaddrinfo(3) and getnameinfo(3) throughout the system. Never
use gethostby*(), getaddrby*(), inet *() or getipnodeby*(). (To update
existing applications to be IPv6 aware easily, sometime getipnodeby™ ()
will be useful. But if possible, try to rewrite the code to use
getaddrinfo(3) and getnameinfo(3).)

« If you would like to connect to destination, use getaddrinfo(3) and try
all the destination returned, like telnet(l) does.

- Some of the IPv6 stack is shipped with buggy getaddrinfo(3). Ship a

minimal working version with your application and use that as last
resort.

108

http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=socket&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=bind&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=setsockopt&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getnameinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getnameinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=telnet&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3

=z

8. [Pv6 Internals

If you would like to use AF_INET6 socket for both IPv4 and IPv6 outgoing
connection, you will need to use getipnodebyname (3). When you would like to
update your existing application to be IPv6 aware with minimal effort, this
approach might be chosen. But please note that it is a temporal solution,
because getipnodebyname (3) itself is not recommended as it does not handle
scoped IPv6 addresses at all. For IPv6 name resolution, getaddrinfo(3)
is the preferred API. So you should rewrite your application to use
getaddrinfo(3), when you get the time to do it.

When writing applications that make outgoing connections, story goes much
simpler if you treat AF_INET and AF _INET6 as totally separate address
family. {set,get}sockopt issue goes simpler, DNS issue will be made
simpler. We do not recommend you to rely upon IPv4d mapped address.

8.1.1.12.1. unified tcp and inpcb code

FreeBSD 4.x uses shared tcp code between IPv4 and IPv6 (from sys/netinet/
tcp®) and separate udp4/6 code. It uses unified inpcb structure.

The platform can be configured to support IPv4 mapped address. Kernel
configuration is summarized as follows:

+ By default, AF_INET6 socket will grab I[Pv4d connections in certain
condition, and can initiate connection to IPv4 destination embedded in
IPv4 mapped IPv6 address.

- You can disable it on entire system with sysctl like below.
sysctl net.inet6.ip6.mapped_addr=0
8.1.1.12.1.1. listening side

Each socket can be configured to support special AF_INET6 wildcard bind
(enabled by default). You can disable it on each socket basis with
setsockopt(2) like below.

int on;
setsockopt(s, IPPROTO_IPV6, IPV6_BINDV6ONLY,
(char *)&on, sizeof (on)) < 0));

Wildcard AF_INET6 socket grabs IPv4 connection if and only if the following
conditions are satisfied:

+ there is no AF_INET socket that matches the IPv4 connection

+ the AF_INET6 socket 1is configured to accept I[Pv4d traffic, i.e.

getsockopt(IPV6_BINDVGONLY) returns O.

109

http://www.FreeBSD.org/cgi/man.cgi?query=getipnodebyname&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getipnodebyname&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=getaddrinfo&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=setsockopt&sektion=2

IPv6

There is no problem with open/close ordering.
8.1.1.12.1.2. initiating side

FreeBSD 4.x supports outgoing connection to IPv4d mapped address
(::ffff:10.1.1.1), if the node is configured to support IPv4d mapped
address.

8.1.1.13. sockaddr_storage

When RFC2553 was about to be finalized, there was discussion on how struct
sockaddr_storage members are named. One proposal is to prepend " " to
the members (like " ss_len") as they should not be touched. The other
proposal was not to prepend it (like "ss_len") as we need to touch those
members directly. There was no clear consensus on it.

As a result, RFC2553 defines struct sockaddr_storage as follows:

On the contrary, XNET draft defines as follows:

In December 1999, it was agreed that RFC2553bis should pick the latter
(XNET) definition.

Current implementation conforms to XNET definition, based on RFC2553bis
discussion.

If you look at multiple IPv6 implementations, you will be able to see
both definitions. As an userland programmer, the most portable way of
dealing with it is to:

1. ensure ss_family and/or ss_len are available on the platform, by using
GNU autoconf,

2. have —Dss_family=__ss_family to unify all occurrences (including header
file) into _ ss family, or

110

=z

8. [Pv6 Internals

5

3. never touch _ ss family. cast to sockaddr * and use sa family like:

struct sockaddr_storage ss;
family = ((struct sockaddr *)& ss)->sa _family

8.1.2. Network Drivers
Now following two items are required to be supported by standard drivers:

1. mbuf clustering requirement. In this stable release, we changed
MINCLSIZE into MHLEN+1 for all the operating systems in order to make
all the drivers behave as we expect.

2. multicast. If ifmcstat(8) yields no multicast group for a interface,
that interface has to be patched.

If any of the drivers do not support the requirements, then the drivers
can not be used for IPv6 and/or IPsec communication. If you find any
problem with your card using IPv6/IPsec, then, please report it to the
FreeBSD problem reports ESIEHHIE.

(NOTE: In the past we required all PCMCIA drivers to have a call to
in6_ifattach(). We have no such requirement any more)

8.1.3. Translator
We categorize IPv4/IPv6 translator into 4 types:

» Translator A — It is used in the early stage of transition to make it
possible to establish a connection from an IPv6 host in an IPv6 island
to an IPv4 host in the IPv4 ocean.

+ Translator B — It is used in the early stage of transition to make it
possible to establish a connection from an IPv4 host in the IPv4 ocean
to an IPv6 host in an IPv6 island.

* Translator C — It is used in the late stage of transition to make it
possible to establish a connection from an IPv4 host in an IPv4 island
to an IPv6 host in the IPv6 ocean.

* Translator D — It is used in the late stage of transition to make it
possible to establish a connection from an IPv6 host in the IPv6 ocean
to an IPv4 host in an IPv4 island.

TCP relay translator for category A is supported. This is called "FAITH".
We also provide IP header translator for category A. (The latter is not
yet put into FreeBSD 4.x yet.)

111

http://www.FreeBSD.org/cgi/man.cgi?query=ifmcstat&sektion=8
http://lists.FreeBSD.org/mailman/listinfo/freebsd-bugs

IPsec

8.1.3.1. FAITH TCP relay translator

FAITH system uses TCP relay daemon called faithd(8) helped by the kernel.
FAITH will reserve an IPv6 address prefix, and relay TCP connection toward
that prefix to IPv4 destination.

For example, if the reserved IPv6 prefix is 3ffe:0501:0200:ffff::,
and the 1Pv6 destination for TCP connection is
3ffe:0501:0200:ffff::163.221.202.12, the connection will be relayed toward
IPv4 destination 163.221.202.12.

destination 1Pv4 node (163.221.202.12)

AN

-| IPv4 tcp toward 163.221.202.12
FAITH-relay dual stack node
N

-| IPv6 TCP toward 3ffe:0501:0200:ffff::163.221.202.12
source |Pv6 node
faithd(8) must be invoked on FAITH-relay dual stack node.

For more details, consult sc/us.shinfathd README

8.1.4. IPsec

IPsec is mainly organized by three components.
1. Policy Management

2. Key Management

3. AH and ESP handling

8.1.4.1. Policy Management

The kernel implements experimental policy management code. There are two
way to manage security policy. One is to configure per—socket policy
using setsockopt(2). In this cases, policy configuration is described in
ipsec_set policy (3). The other is to configure kernel packet filter—based
policy using PF KEY interface, via setkey (8).

The policy entry is not re—ordered with its indexes, so the order of entry
when you add is very significant.

8.1.4.2. Key Management

The key management code implemented in this kit (sys/netkey) is a home—
brew PFKEY v2 implementation. This conforms to RFC2367.

112

http://www.FreeBSD.org/cgi/man.cgi?query=faithd&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=faithd&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=setsockopt&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=ipsec_set_policy&sektion=3
http://www.FreeBSD.org/cgi/man.cgi?query=setkey&sektion=8

=z

8. [Pv6 Internals

The home—brew IKE daemon, "racoon" is included in the kit (kame/kame/
racoon). Basically you will need to run racoon as daemon, then set up a
policy to require keys (like ping-P 'out ipsec esp/transport//use) . The kernel

will contact racoon daemon as necessary to exchange keys.
8.1.4.3. AH and ESP handling

IPsec module is implemented as "hooks" to the standard IPv4/IPv6
processing. When sending a packet, ip{,6} output() checks if ESP/AH
processing is required by checking if a matching SPD (Security Policy
Database) is found. If ESP/AH is needed, {esp,ah}{4,6} output() will
be called and mbuf will be updated accordingly. When a packet is
received, {esp,ah}4 input() will be called based on protocol number, i.e.
(*inetsw[proto]) (). {esp,ah}4 input() will decrypt/check authenticity of
the packet, and strips off daisy—chained header and padding for ESP/AH.
It is safe to strip off the ESP/AH header on packet reception, since we
will never use the received packet in "as is" form.

By using ESP/AH, TCP4/6 effective data segment size will be affected by
extra daisy—chained headers inserted by ESP/AH. Our code takes care of
the case.

Basic crypto functions can be found in directory "sys/crypto". ESP/AH
transform are listed in {esp,ah}_core.c with wrapper functions. If you
wish to add some algorithm, add wrapper function in {esp,ah}_core.c, and
add your crypto algorithm code into sys/crypto.

Tunnel mode is partially supported in this release, with the following

restrictions:

« IPsec tunnel is not combined with GIF generic tunneling interface.
It needs a great care because we may create an infinite loop between
ip_output() and tunnelifp—>if output(). Opinion varies if it is better
to unify them, or not.

+ MTU and Don't Fragment bit (IPv4) considerations need more checking,
but basically works fine.

+ Authentication model for AH tunnel must be revisited. We will need to
improve the policy management engine, eventually.

8.1.4.4. Conformance to RFCs and IDs

The IPsec code in the kernel conforms (or, tries to conform) to the

following standards:

"0ld IPsec" specification documented in rfc182[5-9].txt

113

IPsec

"new IPsec" specification documented in rfc240[1-6].txt. rfc241[01].txt.

rfc2451.txt and dra‘t-mcdondd—sjmple-ipsec—api-Ol.txt (draft expired, but you
can take from ftp://ftp.kame.net/pub/internet—drafts/). (NOTE: IKE
specifications, rfc241[7-9).txt are implemented in userland, as "racoon" IKE

daemon)
Currently supported algorithms are:
+ old IPsec AH
- null crypto checksum (no document, just for debugging)
- keyed MD5 with 128bit crypto checksum (rfc1828.txt)
- keyed SHA1 with 128bit crypto checksum (no document)
- HMAC MD5 with 128bit crypto checksum (rfc2085.txt)
- HMAC SHA1 with 128bit crypto checksum (no document)
- old IPsec ESP
- null encryption (no document, similar to rfc2410.txt)
» DES—CBC mode (rfc1829.txt)
+ new [Psec AH
- null crypto checksum (no document, just for debugging)
- keyed MD5 with 96bit crypto checksum (no document)
- keyed SHA1 with 96bit crypto checksum (no document)
- HMAC MD5 with 96bit crypto checksum (rfc2403.txt)
« HMAC SHA1 with 96bit crypto checksum (rfc2404.txt)
* new [Psec ESP
- null encryption (rfc2410.txt)

- DES-CBC with derived 1V (draft-ietf-ipsec-ciph-des-derived-Oltxt, draft

expired)
- DES-CBC with explicit IV (rfc2405.txt)

- 3DES—CBC with explicit IV (rfc245L.txt)

114

ftp://ftp.kame.net/pub/internet-drafts/

=z

8. [Pv6 Internals

- BLOWFISH CBC (rfc245L.txt)

- CAST128 CBC (rfc2451.txt)

- RC5 CBC (rfc2451.txt)

+ each of the above can be combined with:
« ESP authentication with HMAC-MD5(96bit)
+ ESP authentication with HMAC—SHA1 (96bit)

The following algorithms are NOT supported:
- old IPsec AH

« HMAC MD5 with 128bit crypto checksum + 64bit replay prevention
(rfc2085.txt)

- keyed SHA1 with 160bit crypto checksum + 32bit padding (rfc1852.txt)

IPsec (in kernel) and IKE (in userland as "racoon") has been tested at
several interoperability test events, and it is known to interoperate
with many other implementations well. Also, current IPsec implementation
as quite wide coverage for IPsec crypto algorithms documented in RFC (we
cover algorithms without intellectual property issues only).

8.1.4.5. ECN consideration on IPsec tunnels
ECN—friendly IPsec tunnel is supported as described in dﬁitipsx}eﬂ%OODd.

Normal IPsec tunnel is described in RFC2401. On encapsulation, IPv4 TOS
field (or, IPv6 traffic class field) will be copied from inner IP header to
outer IP header. On decapsulation outer IP header will be simply dropped.
The decapsulation rule is not compatible with ECN, since ECN bit on the
outer IP TOS/traffic class field will be lost.

To make IPsec tunnel ECN—friendly, we should modify encapsulation and
decapsulation procedure. This is described in http://www.aciri.org/floyd/
papers/draft—ipsec—ecn—00.txt, chapter 3.

IPsec tunnel implementation can give you three behaviors, by setting
net.inet.ipsec.ecn (or net.inet6.ipsec6.ecn) to some value:

- RFC2401: no consideration for ECN (sysctl value —1)

- ECN forbidden (sysctl value 0)

115

http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt
http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt

IPsec

- ECN allowed (sysctl value 1)

Note that the behavior is configurable in per—node manner, not per—SA
manner (draft—ipsec—ecn—00 wants per—SA configuration, but it looks too
much for me).

The behavior is summarized as follows (see source code for more detail):

General strategy for configuration is as follows:

- if both IPsec tunnel endpoint are capable of ECN—friendly behavior, you
should better configure both end to “ECN allowed” (sysctl value 1).

- if the other end is very strict about TOS bit, use "RFC2401" (sysctl
value —1).

- in other cases, use "ECN forbidden" (sysctl value 0).
The default behavior is "ECN forbidden" (sysctl value 0).
For more information, please refer to:

http://www.aciri.org/floyd/papers/draft—ipsec—ecn—00.txt, RFC2481
(Explicit Congestion Notification), src/sys/netinet6/{ah,esp} input.c

(Thanks goes to Kenjiro Cho <kjc@cd.sony.cojp> for detailed analysis)
8.1.4.6. Interoperability

Here are (some of) platforms that KAME code have tested IPsec/IKE
interoperability in the past. Note that both ends may have modified their
implementation, so use the following list Jjust for reference purposes.

116

http://www.aciri.org/floyd/papers/draft-ipsec-ecn-00.txt
mailto:kjc@csl.sony.co.jp

=z

8. [Pv6 Internals

Altiga, Ashley—laurent (vpcom.com), Data Fellows (F—Secure), Ericsson ACC,
FreeS/WAN, HITACHI, IBM AIX®, II1J, Intel, Microsoft® Windows#NT®, NIST
(1inux IPsec + plutoplus), Netscreen, OpenBSD, RedCreek, Routerware, SSH,
Secure Computing, Soliton, Toshiba, VPNet, Yamaha RT100i

117

3% III. Kernel(#%:Q)

9.

Kernel DebUgging . ovvi ittt ittt et et ettt e e 123
9.1. Obtaining a Kernel Crash Dumpcciiiiiiinennnnnnn 123
9.2. Debugging a Kernel Crash Dump with kgdb 125
9.3. Debugging a Crash Dump with DDDcciiiiiennn.. 130
9.4. Post—Mortem Analysis of a Dumpcuiiiiiinnnnnn. 131
9.5. On—Line Kernel Debugging Using DDBcviiiinnnn. 131
9.6. On—Line Kernel Debugging Using Remote GDB 135
9.7. Debugging Loadable Modules Using GDBccvvvuv.on. 137
9.8. Debugging a Console Driveriiiiiiiiinennnenenn 138
9.9. Debugging the DeadlocKsS ...viiiiii ittt ittt 138

=

= 9. Kernel Debugging

Contributed by Paul Richards H JOrg Wunsch.

9.1. Obtaining a Kernel Crash Dump

When running a development kernel (eg: FreeBSD-CURRENT), such as a kernel
under extreme conditions (eg: very high load averages, tens of thousands
of connections, exceedingly high number of concurrent users, hundreds of
jail(8)s, etc.), or using a new feature or device driver on FreeBSD-STABLE
(eg: PAE), sometimes a kernel will panic. In the event that it does, this
chapter will demonstrate how to extract useful information out of a crash.

A system reboot is inevitable once a kernel panics. Once a system is
rebooted, the contents of a system's physical memory (RAM) is lost, as
well as any bits that are on the swap device before the panic. To preserve
the bits in physical memory, the kernel makes use of the swap device as
a temporary place to store the bits that are in RAM across a reboot after
a crash. In doing this, when FreeBSD boots after a crash, a kernel image
can now be extracted and debugging can take place.

YA =
FE

A swap device that has been configured as a dump device
still acts as a swap device. Dumps to non—swap devices
(such as tapes or CDRWs, for example) are not supported

at this time. A “swap device” is synonymous with a
“swap partition."

To be able to extract a usable core, it is required that at least one swap
partition be large enough to hold all of the bits in physical memory. When
a kernel panics, before the system reboots, the kernel is smart enough to
check to see if a swap device has been configured as a dump device. If
there is a valid dump device, the kernel dumps the contents of what is
in physical memory to the swap device.

9.1.1. Configuring the Dump Device

Before the kernel will dump the contents of its physical memory to a
dump device, a dump device must be configured. A dump device is specified
by using the dumpon(8) command to tell the kernel where to save kernel

http://www.FreeBSD.org/cgi/man.cgi?query=jail&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=dumpon&sektion=8

Extracting a Kernel Dump

crash dumps. The dumpon(8) program must be called after the swap partition
has been configured with swapon(8). This is normally handled by setting
the dumpdev variable in rc.conf(5) to the path of the swap device (the

recommended way to extract a kernel dump).

Alternatively, the dump device can be hard—coded via the dump clause
in the config(5) line of a kernel configuration file. This approach is
deprecated and should be used only if a kernel is crashing before dumpon (8)
can be executed.

R

Check fetc/fdab or swapinfo(8) for a list of swap devices.

A Make sure the dumpdir specified in rc.conf(5) exists

before a kernel crash!

mkdir -/var/crash
chmod 700 -/var/crash

Also, remember that the contents of /var/crash is sensitive
and very likely contains confidential information such

as passwords.

9.1.2. Extracting a Kernel Dump

Once a dump has been written to a dump device, the dump must be extracted
before the swap device is mounted. To extract a dump from a dump device,
use the savecore(8) program. If dumpdev has been set in rc.conf(5),
savecore(8) will be called automatically on the first multi—user boot
after the crash and before the swap device is mounted. The location of
the extracted core is placed in the rc.conf(5) value dumpdir. by default
var/crash and will be named vmcoreO.

In the event that there is already a file called vmcoreQ in /var/crash (or
whatever dumpdir is set to), the kernel will increment the trailing number
for every crash to avoid overwriting an existing vmcore (eg: vmcorel) .

124

http://www.FreeBSD.org/cgi/man.cgi?query=dumpon&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=swapon&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5
http://www.FreeBSD.org/cgi/man.cgi?query=config&sektion=5
http://www.FreeBSD.org/cgi/man.cgi?query=dumpon&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=swapinfo&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5
http://www.FreeBSD.org/cgi/man.cgi?query=savecore&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5
http://www.FreeBSD.org/cgi/man.cgi?query=savecore&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5

= 9. Kernel Debugging

While debugging, it is highly likely that you will want to use the highest
version vmecore in /var/crash when searching for the right vmcore.

VAN
If you are testing a new kernel but need to boot a
different one in order to get your system up and running
again, boot it only into single user mode using the -S
flag at the boot prompt, and then perform the following
steps:

#fsck --p

#mount --a--t ufs #make sure -/var/crash iswritable
savecor e -/var /crash -/dev/adOslb

exit # exit to multi-user

This instructs savecore(8) to extract a kernel dump from
/dev/ad0slb and place the contents in /var/crash. Do not
forget to make sure the destination directory /var/crash
has enough space for the dump. Also, do not forget to
specify the correct path to your swap device as it is
likely different than /dev/adOslb!

The recommended, and certainly the easiest way to automate obtaining crash
dumps is to use the dumpdev variable in rc.conf(5).

9.2. Debugging a Kernel Crash Dump with kgdb

NETEETSN
EE
@ This section covers kgdb(1) as found in FreeBSD#5.3 and

later. In previous versions, one must use gdb-k to read

a core dump file.

Once a dump has been obtained, getting useful information out of the dump
is relatively easy for simple problems. Before launching into the internals
of kgdb(1) to debug the crash dump, locate the debug version of your kernel
(normally called kerndl.debug) and the path to the source files used to

125

http://www.FreeBSD.org/cgi/man.cgi?query=savecore&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=rc.conf&sektion=5
http://www.FreeBSD.org/cgi/man.cgi?query=kgdb&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=kgdb&sektion=1

Debugging a Kernel Crash Dump with kgdb

build your kernel (normally /usr/obj/usr/src/sy§KERNCONF, where KERNCONF
is the ident specified in a kernel config(5)). With those two pieces of

info, let the debugging commence!

To enter into the debugger and begin getting information from the dump,
the following steps are required at a minimum:

You can debug the crash dump using the kernel sources Jjust like you can
for any other program.

This first dump is from a 5.2-BETA kernel and the crash comes from deep
within the kernel. The output below has been modified to include line
numbers on the left. This first trace inspects the instruction pointer
and obtains a back trace. The address that is used on line 41 for the
lig command is the instruction pointer and can be found on line 17. Most
developers will request having at least this information sent to them if
you are unable to debug the problem yourself. If, however, you do solve
the problem, make sure that your patch winds its way into the source tree

via a problem report, mailing lists, or by being able to commit it!

http://www.FreeBSD.org/cgi/man.cgi?query=config&sektion=5

= 9. Kernel Debugging

28

29:syncing disks, buffers remaining... 2199 2199 panic: mi_switch: switch in acritical section

30:cpuid = 0;

31:Uptime: 2h43m19s

32:Dumping 255 MB

33: 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
34:---

35:Reading symbols from -/boot/kernel/snd_maestro3.ko...done.

36:Loaded symbols for -/boot/kernel/snd_maestro3.ko
37:Reading symbols from -/boot/kernel/snd_pcm.ko...done.
38:Loaded symbols for -/boot/kernel/snd_pcm.ko

39:#0 doadump () at -/usr/src/sys/kern/kern_shutdown.c:240
40:240 dumping++;

41:(kgdb) list *0xc0713860

42:0xc0713860 isin lapic_ipi_wait (/usr/src/sys/i386/i386/Iocal_apic.c:663).

43:658 incr =0;

44:659 delay = 1;

45:660 -} else

46:661 incr =1;

47:662 for (x = 0; x < delay; x +=incr) {
48:663 if ((lapic->icr_lo & APIC_DELSTAT MASK) == APIC_DELSTAT _IDLE)
49:664 return (1);

50:665 ia32_pause();

51:666 -}

52:667 return (0);

53:(kgdb) backtrace

54:#0 doadump () at -/usr/src/sys/kern/kern_shutdown.c:240

55:#1 0xc055fd9b in boot (howto=260) at -/usr/src/sys/kern/kern_shutdown.c:372
56:#2 0xc056019d in panic () at -/usr/src/sys/kern/kern_shutdown.c:550
57:#3 0xc0567ef5 in mi_switch () at -/usr/src/sys/lkern/kern_synch.c:470
58:#4 0xc055fa87 in boot (howto=256) at -/usr/src/sys/kern/kern_shutdown.c:312
59:#5 0xc056019d in panic () at -/usr/src/sys/kern/kern_shutdown.c:550

60:#6 0xc0720c66 in trap_fatal (frame=0xdc1d0b30, eva=0)
61: at -/usr/src/sys/i386/i386/trap.c:821
62:#7 0xc07202b3 in trap (frame=

63 {tf_fs=--1065484264, tf_es= --1065484272, tf_ds = --1065484272, tf_edi =1, tf_esi =0, -

tf_ebp = --602076292, tf_isp = --602076324, tf_ebx = 0, tf_edx = 0, tf_ecx = 1000000, tf_eax = 243, -
tf_trapno = 12, tf_err = 0, tf_eip = --1066321824, tf_cs= 8, tf_eflags = 65671, tf_esp = 243, tf_ss=0})

64: at -/usr/src/sys/i386/i386/trap.c:250

65:#8 0xc070c9f8 in calltrap () at { standard input} :94
66:#9 0xc07139f3in lapic_ipi_vectored (vector=0, dest=0)
67: at -/usr/src/sys/i386/i386/local_apic.c: 733

68:#10 0xc0718b23 in ipi_selected (cpus=1, ipi=1)

69: at -/usr/src/sys/i386/i386/mp_machdep.c:1115
70:#11 0xc057473e in kseq_notify (ke=0xcc05e360, cpu=0)
71: at -/usr/src/sysikern/sched_ule.c:520

72:#12 0xc0575cad in sched_add (td=0xcbcf5c80)

73: &t -/usr/src/sysikern/sched ule.c:1366

74:#13 0xc05666¢6 in setrunqueue (td=0xcc05e360)

75: at -/usr/src/sysikern/kern_switch.c:422

76:#14 0xc05752f4 in sched_wakeup (td=0xcbcf5c80)

77: at -lusr/src/sysikern/sched_ule.c:999

78:#15 0xc056816c in setrunnabl e (td=0xchcf5c80)

Debugging a Kernel Crash Dump with kgdb

This next trace is an older dump from the FreeBSD 2 time frame, but is
more involved and demonstrates more of the features of gdb. Long 1lines
have been folded to improve readability, and the lines are numbered for
reference. Despite this, it is a real—-world error trace taken during the
development of the pcvt console driver.

ﬁ 9. Kernel Debugging

Comments to the above script:

129

Debugging a Crash Dump with DDD

line 6:
This is a dump taken from within DDB (see below), hence the panic
comment “because you said to!” , and a rather long stack trace; the
initial reason for going into DDB has been a page fault trap though.

line 20:
This is the location of function UapO in the stack trace.

line 36:
Force usage of a new stack frame: this is no longer necessary. The
stack frames are supposed to point to the right locations now, even
in case of a trap. From looking at the code in source line 403, there
is a high probability that either the pointer access for “tp” was
messed up, or the array access was out of bounds.

line 52:
The pointer looks suspicious, but happens to be a valid address.

line 56:
However, it obviously points to garbage, so we have found our error!
(For those unfamiliar with that particular piece of code: th{Jine
refers to the line discipline of the console device here, which must
be a rather small integer number.)

/AN

If your system is crashing regularly and you are running
out of disk space, deleting old vmcore files in /var/crash
could save a considerable amount of disk space!

9.3. Debugging a Crash Dump with DDD

Examining a kernel crash dump with a graphical debugger like ddd is also
possible (you will need to install the devel/ddd port in order to use
the ddd debugger). Add the -k option to the ddd command line you would

use normally. For example:

#ddd --k -/var/crash/ker ndl.0 -/var/crash/vmcore.0

You should then be able to go about looking at the crash dump using ddd's

graphical interface.

130

= 9. Kernel Debugging

9.4. Post—Mortem Analysis of a Dump

What do you do if a kernel dumped core but you did not expect it, and
it is therefore not compiled using conﬁg—g? Not everything is lost here.

Do not panic!

Of course, you still need to enable crash dumps. See above for the options
you have to specify in order to do this.

Go to your kernel config directory (/usr/src/sys/arch/oonf) and edit your
configuration file. Uncomment (or add, if it does not exist) the following
line:

makeoptions DEBUG=-g #Build kernel with gdb(1) debug symbols

Rebuild the kernel. Due to the time stamp change on the Makefile, some
other object files will be rebuilt, for example trgp.0. With a bit of luck,
the added -g option will not change anything for the generated code, so
you will finally get a new kernel with similar code to the faulting one
but with some debugging symbols. You should at least verify the old and
new sizes with the size(1) command. If there is a mismatch, you probably
need to give up here.

Go and examine the dump as described above. The debugging symbols might
be incomplete for some places, as can be seen in the stack trace in the
example above where some functions are displayed without line numbers and
argument lists. If you need more debugging symbols, remove the appropriate
object files, recompile the kernel again and repeat the gdb-k session

until you know enough.

All this is not guaranteed to work, but it will do it fine in most cases.

9.5. On—-Line Kernel Debugging Using DDB

While gdb-k as an off-line debugger provides a very high level of user
interface, there are some things it cannot do. The most important ones
being breakpointing and single—stepping kernel code.

If you need to do low—level debugging on your kernel, there is an on—line
debugger available called DDB. It allows setting of breakpoints, single—
stepping kernel functions, examining and changing kernel variables, etc.
However, it cannot access kernel source files, and only has access to the
global and static symbols, not to the full debug information like gdb does.

To configure your kernel to include DDB, add the option line

131

http://www.FreeBSD.org/cgi/man.cgi?query=size&sektion=1

On—Line Kernel Debugging Using DDB

options DDB

to your config file, and rebuild. (See The FreeBSD Handbook for details
on configuring the FreeBSD kernel) .

TN
S If you have an older version of the boot blocks, your

debugger symbols might not be loaded at all. Update
the boot blocks; the recent ones load the DDB symbols
automatically.

Once your DDB kernel is running, there are several ways to enter DDB. The
first, and earliest way is to type the boot flag -d right at the boot
prompt. The kernel will start up in debug mode and enter DDB prior to any
device probing. Hence you can even debug the device probe/attach functions.

The second scenario is to drop to the debugger once the system has booted.
There are two simple ways to accomplish this. If you would like to break
to the debugger from the command prompt, simply type the command:

sysctl debug.enter_debugger=ddb

Alternatively, if you are at the system console, you may use a hot—key
on the keyboard. The default break—to—debugger sequence is Ctrl+Al1t+ESC.
For syscons, this sequence can be remapped and some of the distributed
maps out there do this, so check to make sure you know the right sequence
to use. There is an option available for serial consoles that allows
the use of a serial 1line BREAK on the console line to enter DDB (opﬂons
BREAK_TO DEBUGGER in the kernel config file). It is not the default
since there are a lot of serial adapters around that gratuitously generate
a BREAK condition, for example when pulling the cable.

The third way is that any panic condition will branch to DDB if the kernel
is configured to use it. For this reason, it is not wise to configure a
kernel with DDB for a machine running unattended.

The DDB commands roughly resemble some gdb commands. The first thing you

probably need to do is to set a breakpoint:

b function-name
b address

132

../../../../doc/zh_TW.Big5/books/handbook/index.html

= 9. Kernel Debugging

Numbers are taken hexadecimal by default, but to make them distinct from
symbol names: hexadecimal numbers starting with the letters af need to be
preceded with OX (this is optional for other numbers). Simple expressions
are allowed, for example: function-name+ 0x103.

To continue the operation of an interrupted kernel, simply type:

To get a stack trace, use:

NETEUN
S EE
Note that when entering DDB via a hot—key, the kernel

is currently servicing an interrupt, so the stack trace
might be not of much use to you.

If you want to remove a breakpoint, use

The first form will be accepted immediately after a breakpoint hit, and
deletes the current breakpoint. The second form can remove any breakpoint,
but you need to specify the exact address; this can be obtained from:

To single—step the kernel, try:

This will step into functions, but you can make DDB trace them until the
matching return statement is reached by:

133

On—Line Kernel Debugging Using DDB

NETRETTY
EE
This is different from gdb's next statement; it is like

gdb' s finish.

To examine data from memory, use (for example) :

for word/halfword/byte access, and hexadecimal/decimal/character/ string
display. The number after the comma is the object count. To display the
next 0x10 items, simply use:

Similarly, use

to disassemble the first 0x10 instructions of foofunc, and display them

along with their offset from the beginning of foofunc.

To modify memory, use the write command:

The command modifier (b/h/W) specifies the size of the data to be written,
the first following expression is the address to write to and the remainder
is interpreted as data to write to successive memory locations.

IT you need to know the current registers, use:

Alternatively, you can display a single register value by e.g.

o
]
[aN
=]
e}
o
.
[
<
e
ot
o
<

—

34

= 9. Kernel Debugging

Should you need to call some kernel functions from DDB, simply say:
call func(argl, arg2, -...)
The return value will be printed.

For a ps(1) style summary of all running processes, use:
ps

Now you have examined why your kernel failed, and you wish to reboot.
Remember that, depending on the severity of previous malfunctioning, not
all parts of the kernel might still be working as expected. Perform one
of the following actions to shut down and reboot your system:

panic

This will cause your kernel to dump core and reboot, so you can later
analyze the core on a higher level with gdb. This command usually must
be followed by another continue statement.

call boot(0)

Which might be a good way to cleanly shut down the running system, Synco all
disks, and finally reboot. As long as the disk and filesystem interfaces
of the kernel are not damaged, this might be a good way for an almost
clean shutdown.

call cpu_reset()

This is the final way out of disaster and almost the same as hitting
the Big Red Button.

If you need a short command summary, simply type:
help
However, it is highly recommended to have a printed copy of the ddb(4)

manual page ready for a debugging session. Remember that it is hard to
read the on—line manual while single—stepping the kernel.

9.6. On—Line Kernel Debugging Using Remote GDB

This feature has been supported since FreeBSD 2.2, and it is actually
a very neat one.

135

http://www.FreeBSD.org/cgi/man.cgi?query=ps&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ddb&sektion=4

On—Line Kernel Debugging Using Remote GDB

GDB has already supported remote debugging for a long time. This is done
using a very simple protocol along a serial line. Unlike the other methods
described above, you will need two machines for doing this. One is the
host providing the debugging environment, including all the sources, and
a copy of the kernel binary with all the symbols in it, and the other one
is the target machine that simply runs a similar copy of the very same
kernel (but stripped of the debugging information) .

You should configure the kernel in question with config -g. include DDB
into the configuration, and compile it as usual. This gives a large binary,
due to the debugging information. Copy this kernel to the target machine,
strip the debugging symbols off with strip—x, and boot it using the -d boot
option. Connect the serial line of the target machine that has "flags
080" set on its sio device to any serial line of the debugging host.
Now, on the debugging machine, go to the compile directory of the target
kernel, and start gdb:

% gdb --k kernd

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type -"show copying" to see the conditions.
Thereis absolutely no warranty for GDB; type -"show warranty" for details.
GDB 4.16 (i386-unknown-freebsd),

Copyright 1996 Free Software Foundation, Inc...

(kgdb)

Initialize the remote debugging session (assuming the first serial port
is being used) by:

(kgdb) tar get remote -/dev/cuaal

Now, on the target host (the one that entered DDB right before even
starting the device probe), type:

Debugger("Boot flags requested debugger")
Stopped at Debugger+0x35: movb $0, edata+0x51bc

db> gdb

DDB will respond with:

Next trap will enter GDB remote protocol mode

Every time you type gdb, the mode will be toggled between remote GDB and
local DDB. In order to force a next trap immediately, simply type S (step).

Your hosting GDB will now gain control over the target kernel:
Remote debugging using -/dev/cuaal

Debugger (msg=0xf01b0383 -"Boot flags requested debugger")
at -../../i386/i386/db_interface.c:257

136

= 9. Kernel Debugging

(kgab)

You can use this session almost as any other GDB session, including full
access to the source, running it in gud-mode inside an Emacs window (which

gives you an automatic source code display in another Emacs window), etc.

9.7. Debugging Loadable Modules Using GDB

When debugging a panic that occurred within a module, or using remote GDB
against a machine that uses dynamic modules, you need to tell GDB how to
obtain symbol information for those modules.

First, you need to build the module(s) with debugging information:

cd -/sysmodulesllinux
make clean; make COPTS=-g

If you are using remote GDB, you can run kldstat on the target machine to

find out where the module was loaded:

#kldstat

Id Refs Address Size Name

4 0xc0100000 1¢c1678 kernel

2 10xc0a9e000 6000 linprocfs.ko

3 10xc0ad7000 2000 warp_saver.ko
4 1 0xc0adc000 11000 linux.ko

[y

If you are debugging a crash dump, you will need to walk the linker files
list, starting at linker_files>tgh firgt and following the link.tge next pointers
until you find the entry with the filename vou are looking for. The address
member of that entry is the load address of the module.

Next, yvou need to find out the offset of the text section within the module:

objdump ---section-header s -/symodules/linux/linux.ko -| grep text
3-rel.text 000016€0 000038e0 0000380 000038e0 2*2
10-text ~ 00007f34 000062d0 000062d0 000062d0 2**2

The one you want is the .text section, section 10 in the above example. The
fourth hexadecimal field (sixth field overall) is the offset of the text
section within the file. Add this offset to the load address of the module
to obtain the relocation address for the module's code. In our example,
we get 0xc0adc000 + 0x62d0 = OxcOae22d0. Use the add-symbol-file command in
GDB to tell the debugger about the module:

(kgdb) add-symboal-file -/sysmodules/linux/linux.ko 0xc0ae22d0

137

Debugging a Console Driver

add symbol table from file -"/sys/modul es/linux/linux.ko" at text_addr = 0xcOae22d0?

(yorny
Reading symbols from -/sys/modules/linux/linux.ko...done.

(kgab)

You should now have access to all the symbols in the module.

9.8. Debugging a Console Driver

Since you need a console driver to run DDB on, things are more complicated
if the console driver itself is failing. You might remember the use of a
serial console (either with modified boot blocks, or by specifying -h at the
Boot: prompt), and hook up a standard terminal onto your first serial port.

DDB works on any configured console driver, including a serial console.

9.9. Debugging the Deadlocks

You may experience so called deadlocks, the situation where system stops
doing useful work. To provide the helpful bug report in this situation,
you shall use ddb as described above. Please, include the output of ps

and trace for suspected processes in the report.

If possible, consider doing further investigation. Receipt below is
especially useful if you suspect deadlock occurs in the VFS layer. Add
the options

makeoptions DEBUG=-g

options INVARIANTS

options INVARIANT_SUPPORT
options WITNESS

options DEBUG_LOCKS
options DEBUG_VFS LOCKS
options DIAGNOSTIC

to the kernel config. When deadlock occurs, in addition to the output
of the ps command, provide information from the show alpcpu. show dllocks,
show lockedvnods and show dltrace.

For threaded processes, to obtain meaningful backtraces, use thread thread-
id to switch to the thread stack, and do backtrace with where.

138

#% IV. Architectures(&

it 2R A%)

10.

x86

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

Assembly Language Programmingcouiiiiinennnnennn 143
L. SYNOPSI S ittt it e e e e e e e e 143
2. The Tools ittt ettt e e 143
3. System Calls ittt e et e e e e 144
4. Return Valuesiiiiiiiiiiii ittt 147
5. Creating Portable Codeuiiiiiiiiiiin e 149
6. Our First Programieiiiiiit it inennenenn 153
7. Writing UNIX® Filtersiiiuiiiiiennieennnennnnennn 155
8. Buffered Input and Outputc.iiiiiiiinnennnnn. 159
9. Command Line Argumentsuiiiitinnenenennenennens 167
10. UNIX® Environmentoeeeiiinnnnnnneeeeeeeennnnnnn 172
11. Working with Files ...ttt it 177
12. One—Pointed Mindt iiiiiiiiiiiiiiennnnn. 190
13. Using the FPU ... i i i e e e e i ieeeenn 199
14, Caveats ..t e e 233
15. Acknowledgements ...ttt ittt e e e e 235

= 10. x86 Assembly
Language Programming

This chapter was written by G. Adam Stanislav.

10.1. Synopsis

Assembly language programming under UNIX® is highly undocumented. It is
generally assumed that no one would ever want to use it because various
UNIX® systems run on different microprocessors, so everything should be

written in C for portability.

In reality, C portability is quite a myth. Even C programs need to
be modified when ported from one UNIX® to another, regardless of what
processor each runs on. Typically, such a program is full of conditional
statements depending on the system it is compiled for.

Even if we believe that all of UNIX® software should be written in
C, or some other high—level language, we still need assembly language
programmers: Who else would write the section of C library that accesses
the kernel?

In this chapter I will attempt to show you how you can use assembly
language writing UNIX® programs, specifically under FreeBSD.

This chapter does not explain the basics of assembly language. There are
enough resources about that (for a complete online course in assembly
language, see Randall Hyde's Art of Assembly Language: or if you prefer
a printed book, take a look at Jeff Duntemann's Assembly Language Step—
by—Step) . However, once the chapter is finished, any assembly language
programmer will be able to write programs for FreeBSD quickly and
efficiently.

Copyright # 2000—-2001 G. Adam Stanislav. All rights reserved.

10.2. The Tools

10.2.1. The Assembler

The most important tool for assembly language programming is the assembler,
the software that converts assembly language code into machine language.

http://webster.cs.ucr.edu/
http://www.int80h.org/cgi-bin/isbn?isbn=0471375233
http://www.int80h.org/cgi-bin/isbn?isbn=0471375233

The Linker

Two very different assemblers are available for FreeBSD. One is as(1l),
which uses the traditional UNIX® assembly language syntax. It comes with

the system.

The other is /usr/ports/devel/nasm. It uses the Intel syntax. Its main
advantage is that it can assemble code for many operating systems. It
needs to be installed separately, but is completely free.

This chapter uses nasm syntax because most assembly language programmers
coming to FreeBSD from other operating systems will find it easier to
understand. And, because, quite frankly, that is what I am used to.

10.2.2. The Linker

The output of the assembler, like that of any compiler, needs to be linked
to form an executable file.

The standard 1d(1) linker comes with FreeBSD. It works with the code
assembled with either assembler.

10.3. System Calls

10.3.1. Default Calling Convention

By default, the FreeBSD kernel uses the C calling convention. Further,
although the kernel is accessed using int80h, it is assumed the program will
call a function that issues int80h, rather than issuing int80h directly.

This convention is very convenient, and quite superior to the Microsoft®
convention used by MS-DOS®. Why? Because the UNIX® convention allows any
program written in any language to access the kernel.

An assembly language program can do that as well. For example, we could

open a file:

144

http://www.FreeBSD.org/cgi/man.cgi?query=as&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=ld&sektion=1

ﬁ 10. x86 Assembly Language Programming

This is a very clean and portable way of coding. If you need to port the
code to a UNIX® system which uses a different interrupt, or a different

way of passing parameters, all you need to change is the kernel procedure.

But assembly language programmers like to shave off cycles. The above
example requires a callret combination. We can eliminate it by pushing an

extra dword:

The 5 that we have placed in EAX identifies the kernel function, in
this case open.

10.3.2. Alternate Calling Convention

FreeBSD is an extremely flexible system. It offers other ways of calling
the kernel. For it to work, however, the system must have Linux emulation
installed.

Linux is a UNIX® like system. However, its kernel uses the same system—call

convention of passing parameters in registers MS-DOS® does. As with the

UNIX® convention, the function number is placed in EAX. The parameters,

however, are not passed on the stack but in EBX, ECX, EDX, ES, EDI, EBP:

This convention has a great disadvantage over the UNIX® way, at least as
far as assembly language programming is concerned: Every time you make a
kernel call you must qu1 the registers, then pop them later. This makes

your code bulkier and slower. Nevertheless, FreeBSD gives you a choice.

If you do choose the Linux convention, you must let the system know about
it. After your program is assembled and linked, you need to brand the
executable:

145

Which Convention Should You Use?

% branddf --f Linux filename

10.3.3. Which Convention Should You Use?

If you are coding specifically for FreeBSD, you should always use the UNIX®
convention: It is faster, you can store global variables in registers, you
do not have to brand the executable, and you do not impose the installation
of the Linux emulation package on the target system.

If you want to create portable code that can also run on Linux, you
will probably still want to give the FreeBSD users as efficient a code
as possible. I will show you how you can accomplish that after 1 have
explained the basics.

10.3.4. Call Numbers

To tell the kernel which system service you are calling, place its number
in EAX. Of course, you need to know what the number is.

10.3.4.1. The syscalls File

The numbers are listed in syscdls. locatesyscalls finds this file in several
different formats, all produced automatically from sysﬂlsmaﬁer.

You can find the master file for the default UNIX® calling convention
in Jug/src/syskern/syscalsmaster. If you need to use the other convention
implemented in the Linux emulation mode, read [usr/src/sys/i386/inux/
syscdlsmagter.

e
{ JUN
Not only do FreeBSD and Linux use different calling

conventions, they sometimes use different numbers for

the same functions.

syscalsmader describes how the call is to be made:

0 STD NOHIDE { int nosys(void); -} syscall nosys argsint

1 STD NOHIDE { void exit(int rval); -} exit rexit_argsvoid

2 STD POSIX { int fork(void); -}

3 STD POSIX { ssize tread(int fd, void *buf, size_t nbyte); -}

4 STD POSIX { ssize t write(int fd, const void *buf, size t nbyte); -}
5 STD POSIX { int open(char *path, int flags, int mode); -}

146

=z

10. x86 Assembly Language Programming

6 STD POSIX { int close(int fd); -}
etc...

It is the leftmost column that tells us the number to place in EAX.

The rightmost column tells us what parameters to qu1. They are pudkﬂ
from right to left.

For example, to open a file, we need to push the mode first, then flags.
then the address at which the pah is stored.

10.4. Return Values

A system call would not be useful most of the time if it did not return
some kind of a value: The file descriptor of an open file, the number of
bytes read to a buffer, the system time, etc.

Additionally, the system needs to inform us if an error occurs: A file
does not exist, system resources are exhausted, we passed an invalid
parameter, etc.

10.4.1. Man Pages

The traditional place to look for information about various system calls
under UNIX® systems are the manual pages. FreeBSD describes its system

calls in section 2, sometimes in section 3.
For example, open(2) says:

If successful, openO returns a non—negative integer, termed
a file descriptor. It returns -1 on failure, and sets €@rno

to indicate the error.

The assembly language programmer new to UNIX® and FreeBSD will immediately
ask the puzzling question: Where is &rno and how do I get to it?

e
{ I
The information presented in the manual pages applies

to C programs. The assembly language programmer needs

additional information.

147

http://www.FreeBSD.org/cgi/man.cgi?query=open&sektion=2

Where Are the Return Values?

10.4.2. Where Are the Return Values?

Unfortunately, it depends... For most system calls it is in EAX, but
not for all. A good rule of thumb, when working with a system call for
the first time, is to look for the return value in EAX. If it is not

there, you need further research.

T
I am aware of one system call that returns the value in

EDX: SYS fork. All others I have worked with use EAX.
But I have not worked with them all yet.

7N

If you cannot find the answer here or anywhere else,
study libc source code and see how it interfaces with
the kernel.

10.4.3. Where Is erno?

Actually, nowhere...

arno is part of the C language, not the UNIX® kernel. When accessing
kernel services directly, the error code is returned in EAX, the same

register the proper return value generally ends up in.
This makes perfect sense. If there is no error, there is no error code.

If there is an error, there is no return value. One register can contain
either.

10.4.4. Determining an Error Occurred

When using the standard FreeBSD calling convention, the carryflag is cleared

upon success, set upon failure.

When using the Linux emulation mode, the signed value in EAX is non—
negative upon success, and contains the return value. In case of an error,
the value is negative, i.e., -€&TNO.

148

ﬁ 10. x86 Assembly Language Programming

10.5. Creating Portable Code

Portability is generally not one of the strengths of assembly language.
Yet, writing assembly language programs for different platforms is
possible, especially with nasm. I have written assembly language libraries
that can be assembled for such different operating systems as Windows®
and FreeBSD.

It is all the more possible when you want your code to run on two platforms
which, while different, are based on similar architectures.

For example, FreeBSD is UNIX®, Linux is UNIX® 1like. I only mentioned
three differences between them (from an assembly language programmer's
perspective): The calling convention, the function numbers, and the way
of returning values.

10.5.1. Dealing with Function Numbers

In many cases the function numbers are the same. However, even when they
are not, the problem is easy to deal with: Instead of using numbers in
your code, use constants which you have declared differently depending

on the target architecture:

10.5.2. Dealing with Conventions

Both, the calling convention, and the return value (the &rno problem) can
be resolved with macros:

149

Dealing with Other Portability Issues

10.5.3. Dealing with Other Portability Issues

The above solutions can handle most cases of writing code portable between
FreeBSD and Linux. Nevertheless, with some kernel services the differences
are deeper.

In that case, you need to write two different handlers for those particular
system calls, and use conditional assembly. Luckily, most of your code
does something other than calling the kernel, so usually you will only
need a few such conditional sections in your code.

10.5.4. Using a Library

You can avoid portability issues in your main code altogether by writing a
library of system calls. Create a separate library for FreeBSD, a different
one for Linux, and yet other libraries for more operating systems.

150

ﬁ 10. x86 Assembly Language Programming

In your library, write a separate function (or procedure, if you prefer
the traditional assembly language terminology) for each system call. Use
the C calling convention of passing parameters. But still use EAX to pass

the call number in. In that case, your FreeBSD library can be very simple,

as many seemingly different functions can be just labels to the same code:

Your Linux library will require more different functions. But even here
you can group system calls using the same number of parameters:

The library approach may seem inconvenient at first because it requires

you to produce a separate file your code depends on. But it has many
advantages: For one, you only need to write it once and can use it for all
your programs. You can even let other assembly language programmers use
it, or perhaps use one written by someone else. But perhaps the greatest
advantage of the library is that your code can be ported to other systems,
even by other programmers, by simply writing a new library without any
changes to your code.

If you do not like the idea of having a library, you can at least place
all your system calls in a separate assembly language file and link it

151

Using an Include File

with your main program. Here, again, all porters have to do is create a
new object file to link with your main program.

10.5.5. Using an Include File

If you are releasing your software as (or with) source code, you can use
macros and place them in a separate file, which you include in your code.

Porters of your software will simply write a new include file. No library
or external object file is necessary, yet your code is portable without
any need to edit the code.

FE
PIATAY
@ This is the approach we will use throughout this chapter.

We will name our include file Qﬁﬂ!ﬂjnc, and add to it
whenever we deal with a new system call.

We can start our Qﬁﬂanjnc by declaring the standard file descriptors:

Next, we create a symbolic name for each system call:

We add a short, non—global procedure with a long name, so we do not
accidentally reuse the name in our code:

We create a macro which takes one argument, the syscall number:

152

ﬁ 10. x86 Assembly Language Programming

Finally, we create macros for each syscall. These macros take no arguments.

Go ahead, enter it into your editor and save it as Qﬁﬂanjnc. We will add

more to it as we discuss more syscalls.

10.6. Our First Program

We are now ready for our first program, the mandatory Hello, World!

153

Assembling the Code

Here is what it does: Line 1 includes the defines, the macros, and the
code from system.inc.

Lines 3-5 are the data: Line 3 starts the data section/segment. Line 4
contains the string "Hello, World!" followed by a new line (QAh). Line
5 creates a constant that contains the length of the string from line
4 in bytes.

Lines 7—-16 contain the code. Note that FreeBSD uses the elf file format
for its executables, which requires every program to start at the point
labeled _dart (or, more precisely, the linker expects that). This label
has to be global.

Lines 10-13 ask the system to write hbytes bytes of the hdlo string to stdout.

Lines 15-16 ask the system to end the program with the return value of Q.

The E?{Siﬁxh syscall never returns, so the code ends there.

Y =
@ EE
If you have come to UNIX® from MS-DOS® assembly language

background, you may be used to writing directly to the

video hardware. You will never have to worry about this
in FreeBSD, or any other flavor of UNIX®. As far as you
are concerned, you are writing to a file known as stdout.
This can be the video screen, or a telnet terminal, or
an actual file, or even the input of another program.
Which one it is, is for the system to figure out.

10.6.1. Assembling the Code

Type the code (except the line numbers) in an editor, and save it in a
file named hdlo.asm. You need nasm to assemble it.

10.6.1.1. Installing nasm
If you do not have nasm, type:

% su

Password:your root password
cd -/usr/portgdeve/nasm
#makeingall

154

ﬁ 10. x86 Assembly Language Programming

You may type makeingall cdlean instead of just makeingall if you do not
want to keep nasm source code.

Either way, FreeBSD will automatically download nasm from the Internet,
compile it, and install it on your system.

=
=i}

N
EE
If your system is not FreeBSD, you need to get nasm

from its home page. You can still use it to assemble
FreeBSD code.

Now you can assemble, link, and run the code:

10.7. Writing UNIX® Filters

A common type of UNIX® application is a filter—a program that reads data
from the sdin, processes it somehow, then writes the result to Stdout.

In this chapter, we shall develop a simple filter, and learn how to read
from sdin and write to ddout. This filter will convert each byte of its

input into a hexadecimal number followed by a blank space.

155

http://www.web-sites.co.uk/nasm/

Writing UNIX® Filters

In the data section we create an array called hex. It contains the 16

hexadecimal digits in ascending order. The array is followed by a buffer
which we will use for both input and output. The first two bytes of
the buffer are initially set to Q. This is where we will write the two
hexadecimal digits (the first byte also is where we will read the input).
The third byte is a space.

The code section consists of four parts: Reading the byte, converting
it to a hexadecimal number, writing the result, and eventually exiting
the program.

To read the byte, we ask the system to read one byte from sdin, and store
it in the first byte of the buffer. The system returns the number of bytes
read in EAX. This will be 1 while data is coming, or O, when no more
input data is available. Therefore, we check the value of EAX. If it is

0., we jump to .done, otherwise we continue.

156

=z

10. x86 Assembly Language Programming

TN
For simplicity sake, we are ignoring the possibility of

an error condition at this time.

The hexadecimal conversion reads the byte from the buffer into EAX, or
actually just AL, while clearing the remaining bits of EAX to zeros.
We also copy the byte to EDX because we need to convert the upper four
bits (nibble) separately from the lower four bits. We store the result
in the first two bytes of the buffer.

Next, we ask the system to write the three bytes of the buffer, i.e., the
two hexadecimal digits and the blank space, to Sdout. We then jump back
to the beginning of the program and process the next byte.

Once there is no more input left, we ask the system to exit our program,
returning a zero, which is the traditional value meaning the program was
successful.

Go ahead, and save the code in a file named hex.aam, then type the following
(the "D means press the control key and type D while holding the control
key down) :

% nasm --f ef hex.asm

% ld --s--0 hex hex.o

% ./hex

Hello, World!

4865 6C 6C 6F 2C 20 57 6F 72 6C 64 21 0A Here |l come!
48 65 72 65 20 49 20 63 6F 6D 6521 0A *D %

TN
S If you are migrating to UNIX® from MS-DOS®, you may be

wondering why each line ends with QA instead of 0D OQA.

This is because UNIX® does not use the cr/1f convention,

but a "new line" convention, which is QA in hexadecimal.

Can we improve this? Well, for one, it is a bit confusing because once we
have converted a line of text, our input no longer starts at the beginning

157

Writing UNIX® Filters

of the line. We can modify it to print a new line instead of a space
after each QA:

158

ﬁ 10. x86 Assembly Language Programming

We have stored the space in the CL register. We can do this safely because,
unlike Microsoft®#Windows®, UNIX® system calls do not modify the value
of any register they do not use to return a value in.

That means we only need to set CL once. We have, therefore, added a new
label Joop and jump to it for the next byte instead of jumping at _dart.

We have also added the .hex label so we can either have a blank space or
a new line as the third byte of the buffer.

Once you have changed hex.aam to reflect these changes, type:

That looks better. But this code is quite inefficient! We are making a
system call for every single byte twice (once to read it, another time
to write the output).

10.8. Buffered Input and Output

We can improve the efficiency of our code by buffering our input and
output. We create an input buffer and read a whole sequence of bytes at
one time. Then we fetch them one by one from the buffer.

We also create an output buffer. We store our output in it until it is full.
At that time we ask the kernel to write the contents of the buffer to stdout.

The program ends when there is no more input. But we still need to ask
the kernel to write the contents of our output buffer to Sdout one last
time, otherwise some of our output would make it to the output buffer,
but never be sent out. Do not forget that, or you will be wondering why

some of your output is missing.

159

Buffered Input and Output

ﬁ 10. x86 Assembly Language Programming

We now have a third section in the source code, named .pss. This section is

not included in our executable file, and, therefore, cannot be initialized.
We use resdb instead of db. It simply reserves the requested size of

uninitialized memory for our use.

We take advantage of the fact that the system does not modify the registers:
We use registers for what, otherwise, would have to be global variables
stored in the .data section. This is also why the UNIX® convention of
passing parameters to system calls on the stack is superior to the Microsoft
convention of passing them in the registers: We can keep the registers
for our own use.

We use EDI and ESl as pointers to the next byte to be read from or written
to. We use EBX and ECX to keep count of the number of bytes in the
two buffers, so we know when to dump the output to, or read more input
from, the system.

161

Buffered Input and Output

Let us see how it works now:

Not what you expected? The program did not print the output until we
pressed AD. That is easy to fix by inserting three lines of code to write
the output every time we have converted a new line to QA. I have marked
the three lines with > (do not copy the > in your hex.asm) .

ﬁ 10. x86 Assembly Language Programming

How to Unread a Character

Now, let us see how it works:

Not bad for a 644-byte executable, is it!

=
=]

@ EE
This approach to buffered input/output still contains a

hidden danger. I will discuss—and fix—it later, when
I talk about the dark side of buffering.

10.8.1. How to Unread a Character

A
=

i3

O This may be a somewhat advanced topic, mostly of interest
to programmers familiar with the theory of compilers. If
you wish, you may skip to the next section, and perhaps
read this later.

While our sample program does not require it, more sophisticated filters
often need to look ahead. In other words, they may need to see what the
next character is (or even several characters). If the next character is

=z

10. x86 Assembly Language Programming

of a certain value, it is part of the token currently being processed.
Otherwise, it is not.

For example, you may be parsing the input stream for a textual string
(e.g., when implementing a language compiler): If a character is followed
by another character, or perhaps a digit, it is part of the token you are
processing. If it is followed by white space, or some other value, then
it is not part of the current token.

This presents an interesting problem: How to return the next character
back to the input stream, so it can be read again later?

One possible solution is to store it in a character variable, then set
a flag. We can modify gacha’ to check the flag, and if it is set, fetch
the byte from that variable instead of the input buffer, and reset the
flag. But, of course, that slows us down.

The C language has an ungeco function, Jjust for that purpose. Is there
a quick way to implement it in our code? I would like you to scroll back
up and take a look at the genha'procedure and see if you can find a nice
and fast solution before reading the next paragraph. Then come back here
and see my own solution.

The key to returning a character back to the stream is in how we are
getting the characters to start with:

First we check if the buffer is empty by testing the value of EBX. If

it is zero, we call the read procedure.

If we do have a character available, we use lodsd, then decrease the value
of EBX. The loddh instruction is effectively identical to:

mov d, [esi]
inc es

The byte we have fetched remains in the buffer until the next time read
is called. We do not know when that happens, but we do know it will not
happen until the next call to getcha’. Hence, to "return" the last-read
byte back to the stream, all we have to do is decrease the value of ES

and increase the value of EBX:

ungetc:
dec esi
inc ebx

165

How to Unread a Character

But, be careful! We are perfectly safe doing this if our look—ahead is at
most one character at a time. If we are examining more than one upcoming
character and call ungefc several times in a row, it will work most of the
time, but not all the time (and will be tough to debug). Why?

Because as long as geujwr does not have to call read, all of the pre-read
bytes are still in the buffer, and our ungefc works without a glitch. But
the moment gacha'calls reed, the contents of the buffer change.

We can always rely on ungetC working properly on the last character we have
read with gachag but not on anything we have read before that.

If your program reads more than one byte ahead, you have at least two
choices:

If possible, modify the program so it only reads one byte ahead. This
is the simplest solution.

If that option is not available, first of all determine the maximum number
of characters your program needs to return to the input stream at one
time. Increase that number slightly, Just to be sure, preferably to a
multiple of 16—so it aligns nicely. Then modify the .bSS section of your

code, and create a small "spare" buffer right before your input buffer,

something like this:

You also need to modify your ungefC to pass the value of the byte to
unget in AL:

With this modification, you can call ungeiC up to 17 times in a row safely
(the first call will still be within the buffer, the remaining 16 may be
either within the buffer or within the "spare").

166

=z

10. x86 Assembly Language Programming

10.9. Command Line Arguments

Our hex program will be more useful if it can read the names of an input
and output file from its command line, i.e., if it can process the command
line arguments. But... Where are they?

Before a UNIX® system starts a program, it pu§1es some data on the stack,
then Jjumps at the _dat label of the program. Yes, 1 said Jjumps, not
calls. That means the data can be accessed by reading [egptoffset]. or by
simply popping it.

The value at the top of the stack contains the number of command line
arguments. It is traditionally called argc., for "argument count.”

Command line arguments follow next, all argC of them. These are typically
referred to as argv., for "argument value(s)." That is, we get agvﬂﬂ,
argv[l]. ... agv[argc-1]. These are not the actual arguments, but pointers to
arguments, i.e., memory addresses of the actual arguments. The arguments
themselves are NUL—terminated character strings.

The argv list is followed by a NULL pointer, which is simply a 0. There

is more, but this is enough for our purposes right now.

NETECUN
EE
If you have come from the MS-DOS® programming

environment, the main difference is that each argument

is in a separate string. The second difference is that
there is no practical 1limit on how many arguments there
can be.

Armed with this knowledge, we are almost ready for the next version of
hex.asam. First, however, we need to add a few lines to Qﬁieﬂjnc:

First, we need to add two new entries to our list of system call numbers:

%define SYS_open 5
%define SYS_close 6

Then we add two new macros at the end of the file:

%macro sys.open 0
system SYS_open

167

Command Line Arguments

Here, then, is our modified source code:

ﬁ 10. x86 Assembly Language Programming

Command Line Arguments

In our .data section we now have two new variables, fd.in and fd.out. We store

the input and output file descriptors here.

In the .text section we have replaced the references to sdin and stdout with
[fd.in] and [fd.out].

170

=z

10. x86 Assembly Language Programming

The .text section now starts with a simple error handler, which does nothing
but exit the program with a return value of 1. The error handler is before

dat so we are within a short distance from where the errors occur.

Naturally, the program execution still begins at _gart. First, we remove
argc and agvﬂﬂ from the stack: They are of no interest to us (in this

program, that is).

We pop argv[1l] to ECX. This register is particularly suited for pointers,
as we can handle NULL pointers with jecxz. If argv[1] is not NULL, we try
to open the file named in the first argument. Otherwise, we continue
the program as before: Reading from din, writing to stdout. If we fail
to open the input file (e.g., it does not exist), we Jjump to the error
handler and quit.

If all went well, we now check for the second argument. If it is there,
we open the output file. Otherwise, we send the output to Sdout. If we
fail to open the output file (e.g., it exists and we do not have the write
permission), we, again, Jjump to the error handler.

The rest of the code is the same as before, except we close the input and
output files before exiting, and, as mentioned, we use [fd.in] and [fd.out].

Our executable is now a whopping 768 bytes long.

Can we still improve it? Of course! Every program can be improved. Here
are a few ideas of what we could do:

- Have our error handler print a message to Sdar.
+ Add error handlers to the read and write functions.
- Close ddin when we open an input file, sdout when we open an output file.

+ Add command line switches, such as - and -0, so we can list the input and

output files in any order, or perhaps read from sdin and write to a file.
« Print a usage message if command line arguments are incorrect.

I shall leave these enhancements as an exercise to the reader: You already

know everything you need to know to implement them.

171

UNIX® Environment

10.10. UNIX® Environment

An important UNIX® concept is the environment, which is defined by
environment variables. Some are set by the system, others by you, yet
others by the shell, or any program that loads another program.

10.10.1. How to Find Environment Variables

I said earlier that when a program starts executing, the stack contains
agc followed by the NULL-terminated argv array, followed by something
else. The "something else" is the environment, or, to be more precise, a
NULL—terminated array of pointers to environment variables. This is often
referred to as env.

The structure of env is the same as that of argv, a list of memory addresses
followed by a NULL (0). In this case, there is no "enwc'—we figure out
where the array ends by searching for the final NULL.

The variables usually come in the name=value format, but sometimes the
=vaue part may be missing. We need to account for that possibility.

10.10.2. webvars

I could just show you some code that prints the environment the same way
the UNIX® env command does. But I thought it would be more interesting
to write a simple assembly language CGI utility.

10.10.2.1. CGI: A Quick Overview

I have a detailed CGI tutorial on my web site, but here is a very quick
overview of CGI:

- The web server communicates with the CGI program by setting environment
variables.

- The CGI program sends its output to gdout. The web server reads it

from there.
+ It must start with an HTTP header followed by two blank lines.

- It then prints the HTML code, or whatever other type of data it is
producing.

172

http://www.whizkidtech.redprince.net/cgi-bin/tutorial

= 10. x86 Assembly Language Programming

R
=
While certain environment variables use standard names,

others vary, depending on the web server. That makes
webvars quite a useful diagnostic tool.

10.10.2.2. The Code

Our webvars program, then, must send out the HTTP header followed by some
HTML mark—up. It then must read the environment variables one by one and

send them out as part of the HIML page.

The code follows. I placed comments and explanations right inside the code:

; Copyright (c) 2000 G. Adam Stanislav
; All rights reserved.

; Redistribution and use in source and binary forms, with or without

; modification, are permitted provided that the following conditions

; are met:

; 1. Redistributions of source code must retain the above copyright

; notice, thislist of conditions and the following disclaimer.

; 2. Redistributions in binary form must reproduce the above copyright
; notice, thislist of conditions and the following disclaimer in the

; documentation and/or other materials provided with the distribution.

; THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “"ASIS' AND

; ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

; IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -
PURPOSE

; ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

; FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
; DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
; OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

; HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, -
STRICT

; LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
; OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

; SUCH DAMAGE.

131393993533 5391900000000000999339933333333333333339999990990931331133193333333
’

; Version 1.0

; Started: 8-Dec-2000
; Updated: 8-Dec-2000

173

webvars

ﬁ 10. x86 Assembly Language Programming

webvars

This code produces a 1,396-byte executable. Most of it is data, i.e., the
HTML mark—up we need to send out.

Assemble and link it as usual:

=z

10. x86 Assembly Language Programming

To use it, you need to upload webvars to your web server. Depending on how
your web server is set up, you may have to store it in a special Cq-un

directory, or perhaps rename it with a £gi extension.

Then you need to use your browser to view its output. To see its output on
my web server, please go to http://mww.int80h.org/webvary. 1f curious about
the additional environment variables present in a password protected web
directory, go to http://mww.int80h.org/private/, using the name asm and password
programmer .

10.11. Working with Files

We have already done some basic file work: We know how to open and close
them, how to read and write them using buffers. But UNIX® offers much
more functionality when it comes to files. We will examine some of it in
this section, and end up with a nice file conversion utility.

Indeed, let us start at the end, that is, with the file conversion utility.
It always makes programming easier when we know from the start what the
end product is supposed to do.

One of the first programs I wrote for UNIX® was tuc, a text—to—UNIX® file
converter. It converts a text file from other operating systems to a UNIX®
text file. In other words, it changes from different kind of line endings
to the newline convention of UNIX®. It saves the output in a different
file. Optionally, it converts a UNIX® text file to a DOS text file.

I have used tuc extensively, but always only to convert from some other
0S to UNIX®, never the other way. I have always wished it would Jjust
overwrite the file instead of me having to send the output to a different
file. Most of the time, I end up using it like this:

% tuc myfiletempfile
% mv tempfilemyfile

It would be nice to have a ftuc, i.e., fast tuc, and use it like this:

% ftuc myfile

In this chapter, then, we will write ftuc in assembly language (the
original tuc is in C), and study various file—oriented kernel services
in the process.

At first sight, such a file conversion is very simple: All you have to
do is strip the carriage returns, right?

177

http://www.int80h.org/webvars/
http://www.int80h.org/private/
ftp://ftp.int80h.org/unix/tuc/

Finite State Machine

If you answered yes, think again: That approach will work most of the time
(at least with MS DOS text files), but will fail occasionally.

The problem is that not all non UNIX® text files end their line with the
carriage return / line feed sequence. Some use carriage returns without
line feeds. Others combine several blank lines into a single carriage
return followed by several line feeds. And so on.

A text file converter, then, must be able to handle any possible line

endings:

- carriage return / line feed
» carriage return

- line feed / carriage return
+ line feed

It should also handle files that use some kind of a combination of the
above (e.g., carriage return followed by several line feeds).

10.11.1. Finite State Machine

The problem is easily solved by the use of a technique called finite
state machine, originally developed by the designers of digital electronic
circuits. A finite state machine is a digital circuit whose output is
dependent not only on its input but on its previous input, i.e., on its
state. The microprocessor is an example of a finite state machine: Our
assembly language code is assembled to machine language in which some
assembly language code produces a single byte of machine language, while
others produce several bytes. As the microprocessor fetches the bytes from
the memory one by one, some of them simply change its state rather than
produce some output. When all the bytes of the op code are fetched, the
microprocessor produces some output, or changes the value of a register,
etc.

Because of that, all software is essentially a sequence of state
instructions for the microprocessor. Nevertheless, the concept of finite
state machine is useful in software design as well.

Our text file converter can be designed as a finite state machine with
three possible states. We could call them states 0—2, but it will make
our life easier if we give them symbolic names:

+ ordinary

178

=z

10. x86 Assembly Language Programming

s cr
< 1f

Our program will start in the ordinary state. During this state, the
program action depends on its input as follows:

+ If the input is anything other than a carriage return or line feed, the

input is simply passed on to the output. The state remains unchanged.

+ If the input is a carriage return, the state is changed to cr. The input
is then discarded, i.e., no output is made.

« If the input is a line feed, the state is changed to 1f. The input
is then discarded.

Whenever we are in the cr state, it is because the last input was a
carriage return, which was unprocessed. What our software does in this
state again depends on the current input:

+ If the input is anything other than a carriage return or line feed, output
a line feed, then output the input, then change the state to ordinary.

- If the input is a carriage return, we have received two (or more)
carriage returns in a row. We discard the input, we output a line feed,
and leave the state unchanged.

« If the input is a line feed, we output the line feed and change the
state to ordinary. Note that this is not the same as the first case
above — if we tried to combine them, we would be outputting two line
feeds instead of one.

Finally, we are in the 1f state after we have received a line feed that was
not preceded by a carriage return. This will happen when our file already
is in UNIX® format, or whenever several lines in a row are expressed by
a single carriage return followed by several line feeds, or when line
ends with a line feed / carriage return sequence. Here is how we need to

handle our input in this state:

« If the input is anything other than a carriage return or line feed,
we output a line feed, then output the input, then change the state
to ordinary. This is exactly the same action as in the cr state upon
receiving the same kind of input.

« If the input is a carriage return, we discard the input, we output a
line feed, then change the state to ordinary.

179

Implementing FSM in Software

+ If the input is a line feed, we output the line feed, and leave the
state unchanged.

10.11.1.1. The Final State

The above finite state machine works for the entire file, but leaves the
possibility that the final 1line end will be ignored. That will happen
whenever the file ends with a single carriage return or a single line feed.
I did not think of it when I wrote tuc, just to discover that occasionally
it strips the last line ending.

This problem is easily fixed by checking the state after the entire file
was processed. If the state is not ordinary, we simply need to output
one last line feed.

FE

I

Now that we have expressed our algorithm as a finite
state machine, we could easily design a dedicated digital
electronic circuit (a "chip") to do the conversion for
us. Of course, doing so would be considerably more
expensive than writing an assembly language program.

10.11.1.2. The Output Counter

Because our file conversion program may be combining two characters into
one, we need to use an output counter. We initialize it to 0, and increase
it every time we send a character to the output. At the end of the program,
the counter will tell us what size we need to set the file to.

10.11.2. Implementing FSM in Software

The hardest part of working with a finite state machine is analyzing the
problem and expressing it as a finite state machine. That accomplished,
the software almost writes itself.

In a high—level language, such as C, there are several main approaches.
One is to use a 9Switch statement which chooses what function should be

run. For example,

switch (state) {
default:

case REGULAR:
regular(inputchar);

180

= 10. x86 Assembly Language Programming

Another approach is by using an array of function pointers, something
like this:

Yet another is to have ddae be a function pointer, set to point at the

appropriate function:

This is the approach we will use in our program because it is very easy
to do in assembly language, and very fast, too. We will simply keep the
address of the right procedure in EBX, and then just issue:

This is possibly faster than hardcoding the address in the code because
the microprocessor does not have to fetch the address from the memory—it
is already stored in one of its registers. 1 said possibly because with
the caching modern microprocessors do, either way may be equally fast.

10.11.3. Memory Mapped Files

Because our program works on a single file, we cannot use the approach
that worked for us before, i.e., to read from an input file and to write
to an output file.

UNIX® allows us to map a file, or a section of a file, into memory. To do
that, we first need to open the file with the appropriate read/write flags.
Then we use the mmap system call to map it into the memory. One nice thing
about mmagp is that it automatically works with virtual memory: We can map
more of the file into the memory than we have physical memory available,
yet still access it through regular memory op codes, such as mov, lods,
and 90S. Whatever changes we make to the memory image of the file will be
written to the file by the system. We do not even have to keep the file
open: As long as it stays mapped, we can read from it and write to it.

181

Determining File Size

The 32-bit Intel microprocessors can access up to four gigabytes of memory
— physical or virtual. The FreeBSD system allows us to use up to a half
of it for file mapping.

For simplicity sake, in this tutorial we will only convert files that
can be mapped into the memory in their entirety. There are probably not
too many text files that exceed two gigabytes in size. If our program
encounters one, it will simply display a message suggesting we use the
original tuc instead.

If you examine your copy of s/sczilsmaaer, you will find two separate
syscalls named mmap. This is because of evolution of UNIX®: There was
the traditional BSD mmap. syscall 71. That one was superseded by the
POSIX® mmap. syscall 197. The FreeBSD system supports both because older
programs were written by using the original BSD version. But new software
uses the POSIX® version, which is what we will use.

The syscdlsmagter file lists the POSIX® version like this:

197 STD BSD { caddr_t mmap(caddr_t addr, size t len, int prot, \
int flags, int fd, long pad, off_t pos); -}

This differs slightly from what mmap(2) says. That is because mmap(2)
describes the C version.

The difference is in the Iongpad argument, which is not present in the C
version. However, the FreeBSD syscalls add a 32-bit pad after pué’]ing a
64-bit argument. In this case, Off_t is a 64-bit value.

When we are finished working with a memory—mapped file, we unmap it with
the munmap syscall:

H —
e
For an in-depth treatment of mmap, see W. Richard

Stevens' Unix Network Programming, Volume 2, Chapter 12.

10.11.4. Determining File Size

Because we need to tell mmgp how many bytes of the file to map into the
memory, and because we want to map the entire file, we need to determine
the size of the file.

182

http://www.FreeBSD.org/cgi/man.cgi?query=mmap&sektion=2
http://www.FreeBSD.org/cgi/man.cgi?query=mmap&sektion=2
http://www.int80h.org/cgi-bin/isbn?isbn=0130810819

=z

10. x86 Assembly Language Programming

We can use the fda syscall to get all the information about an open file

that the system can give us. That includes the file size.

Again, syscdlsmagter 1ists two versions of fdat, a traditional one (syscall
62), and a POSIX® one (syscall 189). Naturally, we will use the POSIX®

version:

189 STD POSIX { int fstat(int fd, struct stat *sb); -}

This is a very straightforward call: We pass to it the address of a da

structure and the descriptor of an open file. It will fill out the contents
of the &a structure.

I do, however, have to say that I tried to declare the da structure in
the bss section, and fgtat did not like it: It set the carry flag indicating
an error. After I changed the code to allocate the structure on the stack,
everything was working fine.

10.11.5. Changing the File Size

Because our program may combine carriage return / line feed sequences into
straight line feeds, our output may be smaller than our input. However,
since we are placing our output into the same file we read the input from,
we may have to change the size of the file.

The ftruncate system call allows us to do Jjust that. Despite its somewhat
misleading name, the ftruncate system call can be used to both truncate the

file (make it smaller) and to grow it.

And yes, we will find two versions of ftruncate in sysx:dlsmaser, an older

one (130), and a newer one (201). We will use the newer one:

201 STD BSD { int ftruncate(int fd, int pad, off_t length); -}
Please note that this one contains a intpad again.

10.11.6. ftuc

We now know everything we need to write ftuc. We start by adding some
new lines in wstem.inc. First, we define some constants and structures,

somewhere at or near the beginning of the file:

%define O_RDONLY 0
%define O_WRONLY 1

183

We define the new syscalls:

We add the macros for their use:

ﬁ 10. x86 Assembly Language Programming

And here is our code:

185

ﬁ 10. x86 Assembly Language Programming

ﬁ 10. x86 Assembly Language Programming

A
T

O Do not use this program on files stored on a disk formated
by MS-DOS® or Windows®. There seems to be a subtle bug
in the FreeBSD code when using mmagp on these drives
mounted under FreeBSD: If the file is over a certain
size, mmgp will just fill the memory with zeros, and
then copy them to the file overwriting its contents.

189

One—Pointed Mind

10.12. One—Pointed Mind

As a student of Zen, I like the idea of a one—pointed mind: Do one thing
at a time, and do it well.

This, indeed, is very much how UNIX® works as well. While a typical
Windows® application is attempting to do everything imaginable (and is,
therefore, riddled with bugs), a typical UNIX® program does only one
thing, and it does it well.

The typical UNIX® user then essentially assembles his own applications
by writing a shell script which combines the various existing programs by
piping the output of one program to the input of another.

When writing your own UNIX® software, it is generally a good idea to see
what parts of the problem you need to solve can be handled by existing
programs, and only write your own programs for that part of the problem
that you do not have an existing solution for.

10.12.1. CSV

I will illustrate this principle with a specific real—-life example 1 was
faced with recently:

I needed to extract the 11th field of each record from a database I
downloaded from a web site. The database was a CSV file, i.e., a list of
comma—separated values. That is quite a standard format for sharing data

among people who may be using different database software.

The first line of the file contains the list of various fields separated
by commas. The rest of the file contains the data listed line by line,
with values separated by commas.

I tried awk, using the comma as a separator. But because several lines
contained a quoted comma, awk was extracting the wrong field from those

lines.

Therefore, 1 needed to write my own software to extract the 11th field
from the CSV file. However, going with the UNIX® spirit, I only needed
to write a simple filter that would do the following:

+ Remove the first line from the file:
+ Change all unquoted commas to a different character:

+ Remove all quotation marks.

190

=z

10. x86 Assembly Language Programming

Strictly speaking, I could use sed to remove the first line from the file,
but doing so in my own program was very easy, so I decided to do it and
reduce the size of the pipeline.

At any rate, writing a program like this took me about 20 minutes. Writing
a program that extracts the 11th field from the CSV file would take a
lot longer, and I could not reuse it to extract some other field from
some other database.

This time I decided to let it do a little more work than a typical tutorial
program would:

+ It parses its command line for options;

+ It displays proper usage if it finds wrong arguments;

+ It produces meaningful error messages.

Here is its usage message:

Usage: csv [-t<delim>] [-c<comma>] [-p] [-0 <outfile>] [-i <infile>]

All parameters are optional, and can appear in any order.

The -t parameter declares what to replace the commas with. The tab is
the default here. For example, -t; will replace all unquoted commas with

semicolons.

I did not need the -C option, but it may come in handy in the future. It
lets me declare that I want a character other than a comma replaced with
something else. For example, -c@ will replace all at signs (useful if you

want to split a list of email addresses to their user names and domains) .

The -p option preserves the first line, i.e., it does not delete it. By
default, we delete the first line because in a CSV file it contains the
field names rather than data.

The -i and -0 options let me specify the input and the output files. Defaults
are gdin and sdout, so this is a regular UNIX® filter.

I made sure that both -ifilename and -ifilename are accepted. I also made
sure that only one input and one output files may be specified.

To get the 11th field of each record, I can now do:
% csv -'-t;' data.csv -| awk -'-F;' -'{print $11}'
The code stores the options (except for the file descriptors) in EDX:

The comma in DH, the new separator in DL, and the flag for the -p option

191

CSV

in the highest bit of EDX, so a check for its sign will give us a quick
decision what to do.

Here is the code:

192

ﬁ 10. x86 Assembly Language Programming

ﬁ 10. x86 Assembly Language Programming

ﬁ 10. x86 Assembly Language Programming

Much of it is taken from hex.asm above. But there is one important

difference: I no longer call write whenever I am outputting a line feed.

Yet, the code can be used interactively.

I have found a better solution for the interactive problem since 1 first
started writing this chapter. I wanted to make sure each line is printed
out separately only when needed. After all, there is no need to flush out
every line when used non—interactively.

The new solution I use now is to call write every time I find the input
buffer empty. That way, when running in the interactive mode, the program
reads one line from the user's keyboard, processes it, and sees its input
buffer is empty. It flushes its output and reads the next line.

10.12.1.1. The Dark Side of Buffering

This change prevents a mysterious lockup in a very specific case. I refer
to it as the dark side of buffering, mostly because it presents a danger
that is not quite obvious.

It is unlikely to happen with a program like the csv above, so let us
consider yet another filter: In this case we expect our input to be raw data
representing color values, such as the red, green, and blue intensities
of a pixel. Our output will be the negative of our input.

Such a filter would be very simple to write. Most of it would look Jjust
like all the other filters we have written so far, so I am only going

to show you its inner loop:

197

CSV

Because this filter works with raw data, it is unlikely to be used
interactively.

But it could be called by image manipulation software. And, unless it
calls write before each call to read., chances are it will lock up.

Here is what might happen:
1. The image editor will load our filter using the C function popenO.
2. It will read the first row of pixels from a bitmap or pixmap.

3. It will write the first row of pixels to the pipe leading to the
fd.in of our filter.

4. Our filter will read each pixel from its input, turn it to a negative,
and write it to its output buffer.

5. Our filter will call gacha'to fetch the next pixel.
6. gechar will find an empty input buffer, so it will call read.
7. read will call the SYS read system call.

8. The kernel will suspend our filter until the image editor sends more
data to the pipe.

9. The image editor will read from the other pipe, connected to the fd.out
of our filter so it can set the first row of the output image before
it sends us the second row of the input.

10. The kernel suspends the image editor until it receives some output
from our filter, so it can pass it on to the image editor.

At this point our filter waits for the image editor to send it more data
to process, while the image editor is waiting for our filter to send it
the result of the processing of the first row. But the result sits in
our output buffer.

The filter and the image editor will continue waiting for each other
forever (or, at least, until they are killed). Our software has Jjust

entered a race condition.

This problem does not exist if our filter flushes its output buffer before
asking the kernel for more input data.

198

=z

10. x86 Assembly Language Programming

10.13. Using the FPU

Strangely enough, most of assembly language literature does not even
mention the existence of the FPU, or floating point unit, let alone discuss
programming it.

Yet, never does assembly language shine more than when we create highly
optimized FPU code by doing things that can be done only in assembly
language.

10.13.1. Organization of the FPU

The FPU consists of 8 80—bit floating—point registers. These are
organized in a stack fashion—you can pu§1 a value on TOS (top of stack)
and you can pop it.

That said, the assembly language op codes are not push and pop because

those are already taken.

You can push a value on TOS by using fld, fild. and fbld. Several other op

codes let you push many common constants—such as pi—on the TOS.

Similarly, you can pop a value by using f&, fdp. fig, figp, and fbdtp.
Actually, only the op codes that end with a p will literally pop the value,
the rest will dore it somewhere else without removing it from the TOS.

We can transfer the data between the TOS and the computer memory either
as a 32—bit, 64—bit, or 80—bit real, a 16—bit, 32—bit, or 64—bit
integer, or an 80—bit packed decimal.

The 80—bit packed decimal is a special case of binary coded decimal which
is very convenient when converting between the ASCII representation of
data and the internal data of the FPU. It allows us to use 18 significant
digits.

No matter how we represent data in the memory, the FPU always stores it
in the 80—bit real format in its registers.

Its internal precision is at least 19 decimal digits, so even if we choose
to display results as ASCII in the full 18—digit precision, we are still
showing correct results.

We can perform mathematical operations on the TOS: We can calculate its
sine, we can scale it (i.e., we can multiply or divide it by a power of
2), we can calculate its base—2 logarithm, and many other things.

199

Organization of the FPU

We can also multiply or divide it by, add it to, or subtract it from, any
of the FPU registers (including itself).

The official Intel op code for the TOS is &, and for the registers
F(0)—<t(7). & and (0). then, refer to the same register.

For whatever reasons, the original author of nasm has decided to
use different op codes, namely S0—«7. In other words, there are no

parentheses, and the TOS is always 90, never just <.
10.13.1.1. The Packed Decimal Format

The packed decimal format uses 10 bytes (80 bits) of memory to represent
18 digits. The number represented there is always an integer.

/AN

You can use it to get decimal places by multiplying the
TOS by a power of 10 first.

The highest bit of the highest byte (byte 9) is the sign bit: If it is
set, the number is negative, otherwise, it is positive. The rest of the
bits of this byte are unused/ignored.

The remaining 9 bytes store the 18 digits of the number: 2 digits per byte.

The more significant digit is stored in the high nibble (4 bits), the less
significant digit in the low nibble.

That said, you might think that -1234567 would be stored in the memory
like this (using hexadecimal notation):

8000 00 00 00 00 01 23 45 67

Alas it is not! As with everything else of Intel make, even the packed
decimal is little—endian.

That means our -1234567 is stored like this:

67 4523 01 00 00 00 00 00 80

Remember that, or you will be pulling your hair out in desperation!

200

=z

10. x86 Assembly Language Programming

TN
S The book to read—if you can find it—is Richard Startz'

8087/80287/80387 for the IBM PC & Compatibles. Though
it does seem to take the fact about the little—endian
storage of the packed decimal for granted. I kid you not
about the desperation of trying to figure out what was
wrong with the filter I show below before it occurred
to me I should try the little—endian order even for
this type of data.

10.13.2. Excursion to Pinhole Photography

To write meaningful software, we must not only understand our programming
tools, but also the field we are creating software for.

Our next filter will help us whenever we want to build a pinhole camera,
so, we need some background in pinhole photography before we can continue.

10.13.2.1. The Camera

The easiest way to describe any camera ever built is as some empty space
enclosed in some lightproof material, with a small hole in the enclosure.

The enclosure is usually sturdy (e.g., a box), though sometimes it is
flexible (the bellows). It is quite dark inside the camera. However, the
hole lets light rays in through a single point (though in some cases
there may be several). These light rays form an image, a representation
of whatever is outside the camera, in front of the hole.

If some light sensitive material (such as film) is placed inside the
camera, it can capture the image.

The hole often contains a lens, or a lens assembly, often called the
objective.

10.13.2.2. The Pinhole
But, strictly speaking, the lens is not necessary: The original cameras

did not use a lens but a pinhole. Even today, pinholes are used, both as
a tool to study how cameras work, and to achieve a special kind of image.

201

http://www.int80h.org/cgi-bin/isbn?isbn=013246604X

Excursion to Pinhole Photography

The image produced by the pinhole is all equally sharp. Or blurred. There
is an ideal size for a pinhole: If it is either larger or smaller, the
image loses its sharpness.

10.13.2.3. Focal Length

This ideal pinhole diameter is a function of the square root of focal
length, which is the distance of the pinhole from the film.

D =PC* sgrt(FL)

In here, D is the ideal diameter of the pinhole, FL is the focal length,
and PC is a pinhole constant. According to Jay Bender, its value is
0.04, while Kenneth Connors has determined it to be (0.037. Others have
proposed other values. Plus, this value is for the daylight only: Other
types of light will require a different constant, whose value can only
be determined by experimentation.

10.13.2.4. The F—Number

The f—number is a very useful measure of how much light reaches the film.
A light meter can determine that, for example, to expose a film of specific
sensitivity with £5.6 may require the exposure to last 1/1000 sec.

It does not matter whether it is a 35—mm camera, or a 6x9cm camera, etc.
As long as we know the f—number, we can determine the proper exposure.

The f—number is easy to calculate:

F=FL-/D

In other words, the f—number equals the focal length divided by the
diameter of the pinhole. It also means a higher f—number either implies
a smaller pinhole or a larger focal distance, or both. That, in turn,
implies, the higher the f—number, the longer the exposure has to be.

Furthermore, while pinhole diameter and focal distance are one—
dimensional measurements, both, the film and the pinhole, are two—

dimensional. That means that if you have measured the exposure at f—
number A as t, then the exposure at f—number B is:

t* (B -/ A)

202

=z

10. x86 Assembly Language Programming

10.13.2.5. Normalized F—Number

While many modern cameras can change the diameter of their pinhole, and
thus their f—number, quite smoothly and gradually, such was not always
the case.

To allow for different f—numbers, cameras typically contained a metal
plate with several holes of different sizes drilled to them.

Their sizes were chosen according to the above formula in such a way
that the resultant f—number was one of standard f—numbers used on all
cameras everywhere. For example, a very old Kodak Duaflex IV camera in my
possession has three such holes for f—numbers 8, 11, and 16.

A more recently made camera may offer f—numbers of 2.8, 4, 5.6, 8, 11, 16,
22, and 32 (as well as others). These numbers were not chosen arbitrarily:
They all are powers of the square root of 2, though they may be rounded
somewhat.

10.13.2.6. The F—Stop

A typical camera is designed in such a way that setting any of the
normalized f—numbers changes the feel of the dial. It will naturally
stop in that position. Because of that, these positions of the dial are
called f—stops.

Since the f—numbers at each stop are powers of the square root of 2, moving
the dial by 1 stop will double the amount of 1light required for proper
exposure. Moving it by 2 stops will quadruple the required exposure. Moving
the dial by 3 stops will require the increase in exposure 8 times, etc.

10.13.3. Designing the Pinhole Software
We are now ready to decide what exactly we want our pinhole software to do.
10.13.3.1. Processing Program Input

Since its main purpose is to help us design a working pinhole camera, we
will use the focal length as the input to the program. This is something
we can determine without software: Proper focal length is determined by
the size of the film and by the need to shoot "regular" pictures, wide
angle pictures, or telephoto pictures.

Most of the programs we have written so far worked with individual
characters, or bytes, as their input: The hex program converted individual
bytes into a hexadecimal number, the csv program either let a character
through, or deleted it, or changed it to a different character, etc.

203

Designing the Pinhole Software

One program, ftuc used the state machine to consider at most two input
bytes at a time.

But our pinhole program cannot Jjust work with individual characters, it
has to deal with larger syntactic units.

For example, if we want the program to calculate the pinhole diameter (and
other values we will discuss later) at the focal lengths of 100 mm. 150
mm, and 210mm., we may want to enter something like this:

100, 150, 210

Our program needs to consider more than a single byte of input at a time.
When it sees the first 1, it must understand it is seeing the first digit
of a decimal number. When it sees the Q and the other O, it must know it

is seeing more digits of the same number.

When it encounters the first comma, it must know it is no longer receiving
the digits of the first number. It must be able to convert the digits
of the first number into the value of 100. And the digits of the second
number into the value of 150. And, of course, the digits of the third

number into the numeric value of 210.

We need to decide what delimiters to accept: Do the input numbers have
to be separated by a comma? If so, how do we treat two numbers separated
by something else?

Personally, I like to keep it simple. Something either is a number, so
I process it. Or it is not a number, so I discard it. I do not like the
computer complaining about me typing in an extra character when it is
obvious that it is an extra character. Duh!

Plus, it allows me to break up the monotony of computing and type in a
query instead of just a number:

What isthe best pinhole diameter for thefocal length of 1507

There is no reason for the computer to spit out a number of complaints:

Syntax error: What
Syntax error: is
Syntax error: the
Syntax error: best

Et cetera, et cetera, et cetera.

Secondly, 1 like the # character to denote the start of a comment which
extends to the end of the line. This does not take too much effort to
code, and lets me treat input files for my software as executable scripts.

204

=z

10. x86 Assembly Language Programming

In our case, we also need to decide what units the input should come
in: We choose millimeters because that is how most photographers measure
the focus length.

Finally, we need to decide whether to allow the use of the decimal point
(in which case we must also consider the fact that much of the world
uses a decimal comma) .

In our case allowing for the decimal point/comma would offer a false sense
of precision: There is little if any noticeable difference between the
focus lengths of 50 and 51, so allowing the user to input something like
505 is not a good idea. This is my opinion, mind you, but I am the one

writing this program. You can make other choices in yours, of course.
10.13.3.2. Offering Options

The most important thing we need to know when building a pinhole camera is
the diameter of the pinhole. Since we want to shoot sharp images, we will
use the above formula to calculate the pinhole diameter from focal length.
As experts are offering several different values for the PC constant, we

will need to have the choice.

It is traditional in UNIX® programming to have two main ways of choosing
program parameters, plus to have a default for the time the user does
not make a choice.

Why have two ways of choosing?

One is to allow a (relatively) permanent choice that applies automatically
each time the software is run without us having to tell it over and over
what we want it to do.

The permanent choices may be stored in a configuration file, typically
found in the user's home directory. The file usually has the same name
as the application but is started with a dot. Often "rc" is added to the
file name. So, ours could be ~/pinhole or ~/.pinholerc. (The ~/ means current

user's home directory.)

The configuration file 1is wused mostly by programs that have many
configurable parameters. Those that have only one (or a few) often use
a different method: They expect to find the parameter in an environment
variable. In our case, we might look at an environment variable named

PINHOLE.

Usually, a program uses one or the other of the above methods. Otherwise, if
a configuration file said one thing, but an environment variable another,
the program might get confused (or Jjust too complicated).

205

Designing the Pinhole Software

Because we only need to choose one such parameter, we will go with the
second method and search the environment for a variable named PINHOLE.

The other way allows us to make ad hoc decisions: "Though I usually want
you to use 0.039, this time I want 0.03872." In other words, it allows
us to override the permanent choice.

This type of choice is usually done with command line parameters.

Finally, a program always needs a default. The user may not make any
choices. Perhaps he does not know what to choose. Perhaps he is "just
browsing." Preferably, the default will be the value most users would
choose anyway. That way they do not need to choose. Or, rather, they can
choose the default without an additional effort.

Given this system, the program may find conflicting options, and handle
them this way:

1. If it finds an ad hoc choice (e.g., command line parameter), it
should accept that choice. It must ignore any permanent choice and
any default.

2. Otherwise, if it finds a permanent option (e.g., an environment
variable), it should accept it, and ignore the default.

3. Otherwise, it should use the default.
We also need to decide what format our PC option should have.

At first site, it seems obvious to use the PINHOLE=0.04 format for the

environment variable, and -p104 for the command line.

Allowing that is actually a security risk. The PC constant is a very small
number. Naturally, we will test our software using various small values of
PC. But what will happen if someone runs the program choosing a huge value?

It may crash the program because we have not designed it to handle huge

numbers.

Or, we may spend more time on the program so it can handle huge numbers.
We might do that if we were writing commercial software for computer
illiterate audience.

Or, we might say, "Tough! The user should know better.""

Or, we Jjust may make it impossible for the user to enter a huge number.
This is the approach we will take: We will use an implied 0. prefix.

206

=z

10. x86 Assembly Language Programming

In other words, if the user wants 0.04, we will expect him to type -p04,
or set PINHOLE=04 in his environment. So, if he says -p9999999, we will
interpret it as 0.9999999—still ridiculous but at least safer.

Secondly, many users will just want to go with either Bender's constant
or Connors' constant. To make it easier on them, we will interpret -b as
identical to -p04, and -C as identical to -p037.

10.13.3.3. The Output

We need to decide what we want our software to send to the output, and
in what format.

Since our input allows for an unspecified number of focal length entries,
it makes sense to use a traditional database—style output of showing the
result of the calculation for each focal length on a separate line, while
separating all values on one line by a tab character.

Optionally, we should also allow the user to specify the use of the CSV
format we have studied earlier. In this case, we will print out a line of
comma—separated names describing each field of every line, then show our
results as before, but substituting a comma for the tab.

We need a command line option for the CSV format. We cannot use -C because
that already means use Connors' constant. For some strange reason, many
web sites refer to CSV files as "Excel spreadsheet" (though the CSV format
predates Excel). We will, therefore, use the -e switch to inform our

software we want the output in the CSV format.

We will start each line of the output with the focal length. This may
sound repetitious at first, especially in the interactive mode: The user
types in the focal length, and we are repeating it.

But the user can type several focal lengths on one line. The input can
also come in from a file or from the output of another program. In that
case the user does not see the input at all.

By the same token, the output can go to a file which we will want to
examine later, or it could go to the printer, or become the input of
another program.

So, it makes perfect sense to start each line with the focal length as
entered by the user.

No, wait! Not as entered by the user. What if the user types in something
like this:

207

Designing the Pinhole Software

00000000150

Clearly, we need to strip those leading zeros.

So, we might consider reading the user input as is, converting it to binary
inside the FPU, and printing it out from there.

But...

What if the user types something like this:

174597657234523534535345353535305305345635073096 76764423

Ha! The packed decimal FPU format lets us input 18—digit numbers. But
the user has entered more than 18 digits. How do we handle that?

Well, we could modify our code to read the first 18 digits, enter it to
the FPU, then read more, multiply what we already have on the TOS by 10
raised to the number of additional digits, then add to it.

Yes, we could do that. But in this program it would be ridiculous (in
a different one it may be just the thing to do): Even the circumference
of the Earth expressed in millimeters only takes 11 digits. Clearly, we
cannot build a camera that large (not yet, anyway).

So, if the user enters such a huge number, he is either bored, or testing
us, or trying to break into the system, or playing games—doing anything
but designing a pinhole camera.

What will we do?
We will slap him in the face, in a manner of speaking:

174597657234523534535345353535305305345635073096 76764423 27?2 77?2 72?2 72?2 77?

To achieve that, we will simply ignore any leading zeros. Once we find
a non—zero digit, we will initialize a counter to Q and start taking

three steps:
1. Send the digit to the output.

2. Append the digit to a buffer we will use later to produce the packed
decimal we can send to the FPU.

3. Increase the counter.

Now, while we are taking these three steps, we also need to watch out
for one of two conditions:

208

=z

10. x86 Assembly Language Programming

- If the counter grows above 18, we stop appending to the buffer. We
continue reading the digits and sending them to the output.

If, or rather when, the next input character is not a digit, we are
done inputting for now.

Incidentally, we can simply discard the non—digit, unless it is a #,
which we must return to the input stream. It starts a comment, so we
must see it after we are done producing output and start looking for
more input.

That still leaves one possibility uncovered: If all the user enters is a
zero (or several zeros), we will never find a non—zero to display.

We can determine this has happened whenever our counter stays at Q. In
that case we need to send QO to the output, and perform another "slap

in the face":

Q2RI INI?

Once we have displayed the focal length and determined it is valid (greater
than O but not exceeding 18 digits), we can calculate the pinhole diameter.

It is not by coincidence that pinhole contains the word pin. Indeed, many
a pinhole 1literally is a pin hole, a hole carefully punched with the
tip of a pin.

That is because a typical pinhole is very small. Our formula gets the
result in millimeters. We will multiply it by 1000, so we can output the

result in microns.
At this point we have yet another trap to face: Too much precision.

Yes, the FPU was designed for high precision mathematics. But we are
not dealing with high precision mathematics. We are dealing with physics
(optics, specifically).

Suppose we want to convert a truck into a pinhole camera (we would not
be the first ones to do that!). Suppose its box is 12 meters long, so we
have the focal length of 12000. Well, using Bender's constant, it gives us
square root of 12000 multiplied by 0.04, which is 4.381780460 millimeters,
or 4381.780460 microns.

Put either way, the result is absurdly precise. Our truck is not exactly
12000 millimeters long. We did not measure its length with such a precision,
so stating we need a pinhole with the diameter of 4.381780460 millimeters

is, well, deceiving. 4.4 millimeters would do just fine.

209

Designing the Pinhole Software

TN
I "only" used ten digits in the above example. Imagine
the absurdity of going for all 18!

We need to 1limit the number of significant digits of our result. One way of
doing it is by using an integer representing microns. So, our truck would
need a pinhole with the diameter of 4382 microns. Looking at that number,

we still decide that 4400 microns, or 4.4 millimeters is close enough.

Additionally, we can decide that no matter how big a result we get, we
only want to display four significant digits (or any other number of them,
of course). Alas, the FPU does not offer rounding to a specific number of
digits (after all, it does not view the numbers as decimal but as binary).

We, therefore, must devise an algorithm to reduce the number of significant
digits.

Here is mine (I think it is awkward—if you know a better one, please,
let me know):

1. Initialize a counter to O.

2. While the number is greater than or equal to 10000, divide it by 10

and increase the counter.
3. Output the result.

4. While the counter is greater than Q, output Q and decrease the counter.

G
@ The 10000 is only good if you want four significant

digits. For any other number of significant digits,
replace 10000 with 10 raised to the number of significant
digits.

We will, then, output the pinhole diameter in microns, rounded off to
four significant digits.

210

=z

10. x86 Assembly Language Programming

At this point, we know the focal length and the pinhole diameter. That
means we have enough information to also calculate the f—number.

We will display the f—number, rounded to four significant digits. Chances
are the f—number will tell us very little. To make it more meaningful,
we can find the nearest normalized f—number, i.e., the nearest power of
the square root of 2.

We do that by multiplying the actual f—number by itself, which, of course,
will give us its sguare. We will then calculate its base—2 logarithm,
which is much easier to do than calculating the base—square—root—of—
2 logarithm! We will round the result to the nearest integer. Next, we
will raise 2 to the result. Actually, the FPU gives us a good shortcut to
do that: We can use the fscade op code to "scale" 1, which is analogous to
qhifting an integer left. Finally, we calculate the square root of it all,

and we have the nearest normalized f—number.

If all that sounds overwhelming—or too much work, perhaps—it may become
much clearer if you see the code. It takes 9 op codes altogether:

fmul O, st0
fldi

fld st1

fyl2x
frndint

fldi

fscale

fsort
fstp st1

The first line, fmul 90, 90, squares the contents of the TOS (top of the
stack, same as &, called &0 by nasm). The fldl pushes 1 on the TOS.

The next line, fldstl, pushes the square back to the TOS. At this point the
square is both in & and 3(2) (it will become clear why we leave a second

copy on the stack in a moment). (1) contains 1.

Next, fyl2x calculates base—2 logarithm of & multiplied by (1). That is
why we placed 1 on (1) before.

At this point, & contains the logarithm we have Just calculated, 3(1)

contains the square of the actual f—number we saved for later.

frndint rounds the TOS to the nearest integer. fldl pushes a 1. fscade shifts
the 1 we have on the TOS by the value in (1), effectively raising 2 to $(1).

211

Designing the Pinhole Software

Finally, fsqn calculates the square root of the result, i.e., the nearest

normalized f—number.

We now have the nearest normalized f—number on the TOS, the base—2
logarithm rounded to the nearest integer in SCD, and the square of the

actual f—number in &(2). We are saving the value in §(2) for later.

But we do not need the contents of &(1) anymore. The last line, fdpdl.
places the contents of & to (1), and pops. As a result, what was (1) is
now &, what was &(2) is now (1), etc. The new & contains the normalized
f—number. The new SCD contains the square of the actual f—number we

have stored there for posterity.

At this point, we are ready to output the normalized f—number. Because
it is normalized, we will not round it off to four significant digits,
but will send it out in its full precision.

The normalized f—number is useful as long as it is reasonably small and
can be found on our light meter. Otherwise we need a different method of
determining proper exposure.

Earlier we have figured out the formula of calculating proper exposure at
an arbitrary f—number from that measured at a different f—number.

Every light meter I have ever seen can determine proper exposure at f5.6.

We will, therefore, calculate an "f5.6 multiplier," i.e., by how much we
need to multiply the exposure measured at f5.6 to determine the proper

exposure for our pinhole camera.

From the above formula we know this factor can be calculated by dividing
our f—number (the actual one, not the normalized one) by 5.6, and squaring
the result.

Mathematically, dividing the square of our f—number by the square of 5.6

will give us the same result.

Computationally, we do not want to square two numbers when we can only
square one. So, the first solution seems better at first.

But...

5.6 is a constant. We do not have to have our FPU waste precious cycles.
We can Just tell it to divide the square of the f—number by whatever
5.62 equals to. Or we can divide the f—number by 5.6, and then square the

result. The two ways now seem equal.

But, they are not!

212

=z

10. x86 Assembly Language Programming

Having studied the principles of photography above, we remember that the
5.6 is actually square root of 2 raised to the fifth power. An irrational

number. The square of this number is exactly 32.

Not only is 32 an integer, it is a power of 2. We do not need to divide
the square of the f—number by 32. We only need to use fscae to shift it
right by five positions. In the FPU lingo it means we will fscdle it with
(1) equal to -5. That is much faster than a division.

So, now it has become clear why we have saved the square of the f—number
on the top of the FPU stack. The calculation of the f5.6 multiplier is
the easiest calculation of this entire program! We will output it rounded
to four significant digits.

There is one more useful number we can calculate: The number of stops our
f—number is from f5.6. This may help us if our f—number is just outside
the range of our light meter, but we have a shutter which lets us set
various speeds, and this shutter uses stops.

Say, our f—number is 5 stops from 5.6, and the light meter says we
should use 1/1000 sec. Then we can set our shutter speed to 1/1000 first,
then move the dial by 5 stops.

This calculation is quite easy as well. All we have to do is to calculate
the base—2 logarithm of the £5.6 multiplier we had just calculated (though
we need its value from before we rounded it off). We then output the result
rounded to the nearest integer. We do not need to worry about having more
than four significant digits in this one: The result is most 1likely to
have only one or two digits anyway.

10.13.4. FPU Optimizations

In assembly language we can optimize the FPU code in ways impossible in
high languages, including C.

Whenever a C function needs to calculate a floating—point value, it
loads all necessary variables and constants into FPU registers. It then
does whatever calculation is required to get the correct result. Good C
compilers can optimize that part of the code really well.

It "returns" the value by leaving the result on the TOS. However, before
it returns, it cleans up. Any variables and constants it used in its
calculation are now gone from the FPU.

It cannot do what we Jjust did above: We calculated the square of the f—
number and kept it on the stack for later use by another function.

213

FPU Optimizations

We knew we would need that value later on. We also knew we had enough room
on the stack (which only has room for 8 numbers) to store it there.

A C compiler has no way of knowing that a value it has on the stack will
be required again in the very near future.

Of course, the C programmer may know it. But the only recourse he has is
to store the value in a memory variable.

That means, for one, the value will be changed from the 80-bit precision
used internally by the FPU to a C double (64 bits) or even single (32 bits).

That also means that the value must be moved from the TOS into the memory,
and then back again. Alas, of all FPU operations, the ones that access
the computer memory are the slowest.

So, whenever programming the FPU in assembly language, look for the ways
of keeping intermediate results on the FPU stack.

We can take that idea even further! In our program we are using a constant
(the one we named PC) .

It does not matter how many pinhole diameters we are calculating: 1, 10,
20, 1000, we are always using the same constant. Therefore, we can optimize
our program by keeping the constant on the stack all the time.

Early on in our program, we are calculating the value of the above constant.
We need to divide our input by 10 for every digit in the constant.

It is much faster to multiply than to divide. So, at the start of our
program, we divide 10 into 1 to obtain 0.1, which we then keep on the stack:
Instead of dividing the input by 10 for every digit, we multiply it by 0.1.

By the way, we do not input 0.1 directly, even though we could. We have a
reason for that: While 0.1 can be expressed with just one decimal place,

we do not know how many binary places it takes. We, therefore, let the
FPU calculate its binary value to its own high precision.

We are using other constants: We multiply the pinhole diameter by 1000
to convert it from millimeters to microns. We compare numbers to 10000

when we are rounding them off to four significant digits. So, we keep
both, 1000 and 10000, on the stack. And, of course, we reuse the 0.1 when

rounding off numbers to four digits.

Last but not least, we keep -5 on the stack. We need it to scale the square
of the f—number, instead of dividing it by 32. It is not by coincidence
we load this constant last. That makes it the top of the stack when only

214

ﬁ 10. x86 Assembly Language Programming

the constants are on it. So, when the square of the f—number is being
scaled, the -5 is at &(1), precisely where fscade expects it to be.

It is common to create certain constants from scratch instead of loading

them from the memory. That is what we are doing with -5:

We can generalize all these optimizations into one rule: Keep repeat values
on the stack!

g —
LN

PostScript® is a stack—oriented programming language.
There are many more books available about PostScript®

than about the FPU assembly language: Mastering
PostScript® will help you master the FPU.

10.13.5. pinhole—The Code

215

pinhole—The Code

ﬁ 10. x86 Assembly Language Programming

pinhole—The Code

ﬁ 10. x86 Assembly Language Programming

pinhole—The Code

ﬁ 10. x86 Assembly Language Programming

pinhole—The Code

ﬁ 10. x86 Assembly Language Programming

pinhole—The Code

ﬁ 10. x86 Assembly Language Programming

pinhole—The Code

ﬁ 10. x86 Assembly Language Programming

pinhole—The Code

The code follows the same format as all the other filters we have seen

before, with one subtle exception:

We are no longer assuming that the end of input implies
the end of things to do, something we took for granted in
the character—oriented filters.

This filter does not process characters. It processes a

language (albeit a very simple one, consisting only of
numbers) .

228

=z

10. x86 Assembly Language Programming

When we have no more input, it can mean one of two things:
+ We are done and can quit. This is the same as before.

- The last character we have read was a digit. We have
stored it at the end of our ASCII—to—float conversion
buffer. We now need to convert the contents of that buffer
into a number and write the last line of our output.

For that reason, we have modified our gachar and our read
routines to return with the Ca‘ryfleg clear whenever we are
fetching another character from the input, or the Ca‘ryﬂ@

set whenever there is no more input.

Of course, we are still using assembly language magic to
do that! Take a good look at gacher. It always returns with

the carryflag clear.

Yet, our main code relies on the C&‘I’yﬂﬁj to tell it when

to quit—and it works.

The magic is in read. Whenever it receives more input from
the system, it Just returns to gdcha’, which fetches a
character from the input buffer, clears the carry flag and

returns.

But when read receives no more input from the system, it
does not return to getchar at all. Instead, the addesp, byte
4 op code adds 4 to ESP, sets the caryflag, and returns.

So, where does it return to? Whenever a program uses the
cal op code, the microprocessor pushes the return address,
i.e., it stores it on the top of the stack (not the FPU
stack, the system stack, which is in the memory). When a
program uses the ret op code, the microprocessor pops the
return value from the stack, and jumps to the address that
was stored there.

But since we added 4 to ESP (which is the stack pointer
register), we have effectively given the microprocessor a
minor case of amnesia: It no longer remembers it was gacha’

that cdled read.

And since gdcha’ never puﬁ’]ed anything before cdling read,
the top of the stack now contains the return address to

229

Using pinhole

whatever or whoever cdled getchar. As far as that caller
is concerned, he caled getchar, which returned with the carry
flag set!

Other than that, the bcdload routine is caught up in the middle of a
Lilliputian conflict between the Big—Endians and the Little—Endians.

It is converting the text representation of a number into that number:
The text is stored in the big—endian order, but the packed decimal is

little—endian.

To solve the conflict, we use the gd op code early on. We cancel it with
cld later on: It is quite important we do not cal anything that may depend
on the default setting of the direction flag while &d is active.

Everything else in this code should be quite clear, providing you have

read the entire chapter that precedes it.

It is a classical example of the adage that programming requires a lot
of thought and only a little coding. Once we have thought through every
tiny detail, the code almost writes itself.

10.13.6. Using pinhole

Because we have decided to make the program ignore any input except for
numbers (and even those inside a comment), we can actually perform textual

queries. We do not have to, but we can.

In my humble opinion, forming a textual query, instead of having to follow
a very strict syntax, makes software much more user friendly.

Suppose we want to build a pinhole camera to use the 4x5 inch film. The
standard focal length for that film is about 150mm. We want to fine—tune
our focal length so the pinhole diameter is as round a number as possible.
Let us also suppose we are quite comfortable with cameras but somewhat
intimidated by computers. Rather than just have to type in a bunch of
numbers, we want to ask a couple of questions.

Our session might look like this:
% pinhole
Computer,

What size pinholedo | need for thefocal length of 1507
150 490 306 362 2930 12

230

ﬁ 10. x86 Assembly Language Programming

We have found that while for the focal length of 150, our pinhole diameter
should be 490 microns, or 0.49 mm, if we go with the almost identical

focal length of 156 mm, we can get away with a pinhole diameter of exactly
one half of a millimeter.

10.13.7. Scripting

Because we have chosen the # character to denote the start of a comment,

we can treat our pinhole software as a scripting language.

You have probably seen shell scripts that start with:

.LOr. ..

...because the blank space after the # 1is optional.

Whenever UNIX® is asked to run an executable file which starts with the
#l, it assumes the file is a script. It adds the command to the rest of

the first line of the script, and tries to execute that.

Suppose now that we have installed pinhole in /usr/local/bin/, we can now
write a script to calculate various pinhole diameters suitable for various
focal lengths commonly used with the 120 film.

The script might look something like this:

231

Scripting

Because 120 is a medium size film, we may name this file medium.

We can set its permissions to execute, and run it as if it were a program:

UNIX® will interpret that last command as:

It will run that command and display:

Now, let us enter:

UNIX® will treat that as:

That gives it two conflicting options: -b and -¢ (Use Bender's constant and
use Connors' constant). We have programmed it so later options override
early ones—our program will calculate everything using Connors' constant:

2

32

= 10. x86 Assembly Language Programming

We decide we want to go with Bender's constant after all. We want to save
its values as a comma—separated file:

10.14. Caveats

Assembly language programmers who "grew up" under MS-DOS® and Windows®
often tend to take shortcuts. Reading the keyboard scan codes and writing
directly to video memory are two classical examples of practices which,
under MS-DOS® are not frowned upon but considered the right thing to do.

The reason? Both the PC BIOS and MS-DOS® are notoriously slow when

performing these operations.

You may be tempted to continue similar practices in the UNIX® environment.
For example, I have seen a web site which explains how to access the
keyboard scan codes on a popular UNIX® clone.

That is generally a very bad idea in UNIX® environment! Let me explain why.

10.14.1. UNIX® Is Protected

For one thing, it may simply not be possible. UNIX® runs in protected
mode. Only the kernel and device drivers are allowed to access hardware
directly. Perhaps a particular UNIX® clone will let you read the keyboard
scan codes, but chances are a real UNIX® operating system will not. And
even if one version may let you do it, the next one may not, so your
carefully crafted software may become a dinosaur overnight.

233

UNIX® Is an Abstraction

10.14.2. UNIX® Is an Abstraction

But there is a much more important reason not to try accessing the hardware
directly (unless, of course, you are writing a device driver), even on
the UNIX® like systems that let you do it:

UNIX® is an abstraction!

There is a major difference in the philosophy of design between MS—DOS®
and UNIX®. MS-DOS® was designed as a single—user system. It is run on
a computer with a keyboard and a video screen attached directly to that
computer. User input is almost guaranteed to come from that keyboard. Your
program's output virtually always ends up on that screen.

This is NEVER guaranteed under UNIX®. It is quite common for a UNIX® user
to pipe and redirect program input and output:

% programl -| programz2 -| program3 > filel

If you have written program2, your input does not come from the keyboard
but from the output of programl. Similarly, your output does not go to
the screen but becomes the input for program3 whose output, in turn, goes

to filel.

But there is more! Even if you made sure that your input comes from, and
your output goes to, the terminal, there is no guarantee the terminal
is a PC: It may not have its video memory where you expect it, nor may
its keyboard be producing PC—style scan codes. It may be a Macintosh®,

or any other computer.

Now you may be shaking your head: My software is in PC assembly language,
how can it run on a Macintosh®? But I did not say your software would be

running on a Macintosh®, only that its terminal may be a Macintosh®.

Under UNIX®, the terminal does not have to be directly attached to the
computer that runs your software, it can even be on another continent,
or, for that matter, on another planet. It is perfectly possible that a
Macintosh® user in Australia connects to a UNIX® system in North America
(or anywhere else) via telnet. The software then runs on one computer,
while the terminal is on a different computer: If you try to read the scan
codes, you will get the wrong input!

Same holds true about any other hardware: A file you are reading may be

on a disk you have no direct access to. A camera you are reading images
from may be on a space shuttle, connected to you via satellites.

234

=z

10. x86 Assembly Language Programming

That is why under UNIX® you must never make any assumptions about where
your data is coming from and going to. Always let the system handle the
physical access to the hardware.

A
{ I
These are caveats, not absolute rules. Exceptions are

possible. For example, if a text editor has determined

it is running on a local machine, it may want to read
the scan codes directly for improved control. I am not
mentioning these caveats to tell you what to do or what
not to do, Jjust to make you aware of certain pitfalls
that await you if you have Jjust arrived to UNIX® form
MS-DOS®. Of course, creative people often break rules,
and it is OK as long as they know they are breaking
them and why.

10.15. Acknowledgements

This tutorial would never have been possible without the help of many
experienced FreeBSD programmers from the FreeBSD technical discussions I
JEFHIE , many of whom have patiently answered my questions, and pointed me
in the right direction in my attempts to explore the inner workings of
UNIX® system programming in general and FreeBSD in particular.

Thomas M. Sommers opened the door for me. His How do I write "Hello, world"
in FreeBSD assembler? web page was my first encounter with an example of
assembly language programming under FreeBSD.

Jake Burkholder has kept the door open by willingly answering all of my
questions and supplying me with example assembly language source code.

Copyright # 2000—2001 G. Adam Stanislav. All rights reserved.

235

http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://lists.FreeBSD.org/mailman/listinfo/freebsd-hackers
http://user.nj.net/~tms/hello.html
http://user.nj.net/~tms/hello.html

V. Wk

52 UK

[1] Dave A Patterson H John L Hennessy. Ji#f © 1998 Morgan Kaufmann
Publishers, Inc.. 1-55860-428-6. Morgan Kaufmann Publishers,
Inc.. Computer Organization and Design. The Hardware / Software
Interface. 1-2.

[2] W. Richard Stevens. Hﬁ$§ © 1993 Addison Wesley Longman, Inc..
0—201-56317-7. Addison Wesley Longman, Inc.. Advanced Programming
in the Unix Environment. 1-2.

[3] Marshall Kirk McKusick, Keith Bostic, Michael J Karels, H John S
Quarterman. Wiﬁ% © 1996 Addison—Wesley Publishing Company, Inc..
0—201-54979—4. Addison—Wesley Publishing Company, Inc.. The Design
and Implementation of the 4.4 BSD Operating System. 1-2.

[4] Aleph One. Phrack 49; "Smashing the Stack for Fun and Profit".

[5] Chrispin Cowan, Calton Pu, H Dave Maier. StackGuard; Automatic
Adaptive Detection and Prevention of Buffer—Overflow Attacks.

[6] Todd Miller H Theo de Raadt. strlcpy and strlcat — consistent, safe
string copy and concatenation..

7l

A

arguments, 41

B

bounds checking
compiler—based, 43
library—based, 44

buffer overflow, 41, 44

C

CERT

security advisories, 41
chroot(), 45
contributed software, 51
core team, 55

D

data validation, 46

F

frame pointer, 42

G

gce, 43
GTK, 49

Jail, 45

LIFO, 41

M

Morris Internet worm, 41

N

NUL termination, 43

0

OpenBSD, 43

P

Perl, 49

Perl Taint mode, 47
ports maintainer, 51
positive filtering, 46

POSIX.1le Process Capabilities, 46

process image
frame pointer, 42
stack pointer, 41
Python, 49

Q

Qt, 49

R

race conditions
access checks, 47
file opens, 47
signals, 47

release engineer, 55

return address, 42

S

seteuid, 44

stack, 41

stack frame, 41

stack pointer, 41

stack—overflow, 42

StackGuard, 43

string copy functions
strlcat, 43

strlcpy, 43
strncat, 43
strncpy, 43

T

TrustedBSD, 46

U

user IDs
effective user 1D, 45
real user 1D, 45

V

Von—Neuman, 41

	FreeBSD Developers' Handbook
	內容目錄
	部 I. 基本概念
	章 1. 簡介
	1.1. 在 FreeBSD 開發程式
	1.2. The BSD Vision
	1.3. 程式架構指南
	1.4. /usr/src 的架構

	章 2. 程式開發工具
	2.1. 概敘
	2.2. 簡介
	2.3. Programming 概念
	2.3.1. 直譯器
	2.3.2. FreeBSD 提供的直譯器
	2.3.3. 編譯器

	2.4. 用 cc 來編譯程式
	2.4.1. 常見的 cc 問題

	2.5. Make
	2.5.1. What is make?
	2.5.2. Example of using make
	2.5.3. Make and include-files
	2.5.4. FreeBSD Makefiles
	2.5.5. More advanced uses of make

	2.6. Debugging
	2.6.1. The Debugger
	2.6.2. Running a program in the debugger
	2.6.3. Examining a core file
	2.6.4. Attaching to a running program

	2.7. Using Emacs as a Development Environment
	2.7.1. Emacs
	2.7.2. Configuring Emacs
	2.7.3. A sample .emacs file
	2.7.4. Extending the Range of Languages Emacs Understands

	2.8. Further Reading

	章 3. Secure Programming
	3.1. Synopsis
	3.2. Secure Design Methodology
	3.3. Buffer Overflows
	3.3.1. Example Buffer Overflow
	3.3.2. Avoiding Buffer Overflows
	3.3.2.1. Compiler based run-time bounds checking
	3.3.2.2. Library based run-time bounds checking

	3.4. SetUID issues
	3.5. Limiting your program's environment
	3.5.1. FreeBSD's jail functionality
	3.5.2. POSIX®.1e Process Capabilities

	3.6. Trust
	3.7. Race Conditions

	章 4. Localization and Internationalization - L10N and I18N
	4.1. Programming I18N Compliant Applications
	4.1.1. A Call to Unify the I18N Effort
	4.1.2. Perl and Python

	章 5. Source Tree Guidelines and Policies
	5.1. MAINTAINER on Makefiles
	5.2. Contributed Software
	5.3. Encumbered Files
	5.4. Shared Libraries

	章 6. Regression and Performance Testing
	6.1. Micro Benchmark Checklist

	部 II. Interprocess Communication(IPC)
	章 7. Sockets
	7.1. Synopsis
	7.2. Networking and Diversity
	7.3. Protocols
	7.4. The Sockets Model
	7.5. Essential Socket Functions
	7.5.1. The Client-Server Difference
	7.5.1.1. The Common Elements
	7.5.1.1.1. socket
	7.5.1.1.2. sockaddr

	7.5.1.2. Client Functions
	7.5.1.2.1. connect
	7.5.1.2.2. Our First Client

	7.5.1.3. Server Functions
	7.5.1.3.1. bind
	7.5.1.3.2. listen
	7.5.1.3.3. accept
	7.5.1.3.4. Our First Server

	7.6. Helper Functions
	7.6.1. gethostbyname
	7.6.2. getservbyname

	7.7. Concurrent Servers

	章 8. IPv6 Internals
	8.1. IPv6/IPsec Implementation
	8.1.1. IPv6
	8.1.1.1. Conformance
	8.1.1.2. Neighbor Discovery
	8.1.1.3. Scope Index
	8.1.1.4. Plug and Play
	8.1.1.4.1. Assignment of link-local, and special addresses
	8.1.1.4.2. Stateless address autoconfiguration on hosts

	8.1.1.5. Generic tunnel interface
	8.1.1.6. Source Address Selection
	8.1.1.7. Jumbo Payload
	8.1.1.8. Loop prevention in header processing
	8.1.1.9. ICMPv6
	8.1.1.10. Applications
	8.1.1.11. Kernel Internals
	8.1.1.12. IPv4 mapped address and IPv6 wildcard socket
	8.1.1.12.1. unified tcp and inpcb code
	8.1.1.12.1.1. listening side
	8.1.1.12.1.2. initiating side

	8.1.1.13. sockaddr_storage

	8.1.2. Network Drivers
	8.1.3. Translator
	8.1.3.1. FAITH TCP relay translator

	8.1.4. IPsec
	8.1.4.1. Policy Management
	8.1.4.2. Key Management
	8.1.4.3. AH and ESP handling
	8.1.4.4. Conformance to RFCs and IDs
	8.1.4.5. ECN consideration on IPsec tunnels
	8.1.4.6. Interoperability

	部 III. Kernel(核心)
	章 9. Kernel Debugging
	9.1. Obtaining a Kernel Crash Dump
	9.1.1. Configuring the Dump Device
	9.1.2. Extracting a Kernel Dump

	9.2. Debugging a Kernel Crash Dump with kgdb
	9.3. Debugging a Crash Dump with DDD
	9.4. Post-Mortem Analysis of a Dump
	9.5. On-Line Kernel Debugging Using DDB
	9.6. On-Line Kernel Debugging Using Remote GDB
	9.7. Debugging Loadable Modules Using GDB
	9.8. Debugging a Console Driver
	9.9. Debugging the Deadlocks

	部 IV. Architectures(電腦架構)
	章 10. x86 Assembly Language Programming
	10.1. Synopsis
	10.2. The Tools
	10.2.1. The Assembler
	10.2.2. The Linker

	10.3. System Calls
	10.3.1. Default Calling Convention
	10.3.2. Alternate Calling Convention
	10.3.3. Which Convention Should You Use?
	10.3.4. Call Numbers
	10.3.4.1. The syscalls File

	10.4. Return Values
	10.4.1. Man Pages
	10.4.2. Where Are the Return Values?
	10.4.3. Where Is errno?
	10.4.4. Determining an Error Occurred

	10.5. Creating Portable Code
	10.5.1. Dealing with Function Numbers
	10.5.2. Dealing with Conventions
	10.5.3. Dealing with Other Portability Issues
	10.5.4. Using a Library
	10.5.5. Using an Include File

	10.6. Our First Program
	10.6.1. Assembling the Code
	10.6.1.1. Installing nasm

	10.7. Writing UNIX® Filters
	10.8. Buffered Input and Output
	10.8.1. How to Unread a Character

	10.9. Command Line Arguments
	10.10. UNIX® Environment
	10.10.1. How to Find Environment Variables
	10.10.2. webvars
	10.10.2.1. CGI: A Quick Overview
	10.10.2.2. The Code

	10.11. Working with Files
	10.11.1. Finite State Machine
	10.11.1.1. The Final State
	10.11.1.2. The Output Counter

	10.11.2. Implementing FSM in Software
	10.11.3. Memory Mapped Files
	10.11.4. Determining File Size
	10.11.5. Changing the File Size
	10.11.6. ftuc

	10.12. One-Pointed Mind
	10.12.1. CSV
	10.12.1.1. The Dark Side of Buffering

	10.13. Using the FPU
	10.13.1. Organization of the FPU
	10.13.1.1. The Packed Decimal Format

	10.13.2. Excursion to Pinhole Photography
	10.13.2.1. The Camera
	10.13.2.2. The Pinhole
	10.13.2.3. Focal Length
	10.13.2.4. The F–Number
	10.13.2.5. Normalized F–Number
	10.13.2.6. The F–Stop

	10.13.3. Designing the Pinhole Software
	10.13.3.1. Processing Program Input
	10.13.3.2. Offering Options
	10.13.3.3. The Output

	10.13.4. FPU Optimizations
	10.13.5. pinhole—The Code
	10.13.6. Using pinhole
	10.13.7. Scripting

	10.14. Caveats
	10.14.1. UNIX® Is Protected
	10.14.2. UNIX® Is an Abstraction

	10.15. Acknowledgements

	部 V. 附錄
	參考文獻
	索引

