FreeBSD U3 tZ A F1E

FreeBSD LH3tE AF9ZE

fBE]: 43126

2013-11-07 F sgabor.

FRHE © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
DocEng

RS

Bl FreeBSD XfFEtE|(FFE : FDP, FreeBSD Documentation
Project) » MRHUBHHE RN - HAHEE & -

ANFEARCLRE - WFEAE TR A HANE - DU g AR — &AL
H(EHE DETA W TR) - DUCUREERNREE -

AR R - MARTENR © KRR - RIS EEH LSS
J DUERA o

Copyright

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HIML, PDF,
PostScript, RTF and so forth) with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice,
this list of conditions and the following disclaimer as the first lines of this

file unmodified.

2. Redistributions in compiled form (transformed to other DIDs, converted to PDF,
PostScript, RIF and other formats) must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

A THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS: OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ii

http://svnweb.freebsd.org/doc?view=revision&revision=43126

ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

iii

5= ix
1. Shell FEIRFFTE (Prompts) vttt ittt it ix
2. BRI EERRE ix
3. [Note ~ Tip ~ Important ~ Warning ~ Example] B&ER ix
A B X
Lo BB oo 1
1.1. FreeBSD AR oo 1
1.2, FEB L B e o ot 2
1.8, R LR o 2
2. LR 5
2. L. M R 6
2B B 1) T = R 7
3. SGML Pramer .t e e e e e 9
L. B o 9
3.2. Elements, tags, and attributes 0., 11
3.3. The DOCTYPE declarationouieiiiiieuinnnneeeennnnnnnn 18
3.4. Escaping back to SGMLttt i 21
B 5. I o 22
3.6, Entities ..ottt e e e e 23
3.7. Using entities to include filesciiiiiiiiinnenn.. 26
3.8. Marked SeCtionNs ...ttt ittt ittt ittt 30
3.9, ConClUSION v ittt ittt e e e e e e 34
I € = J 35
R R 1 PP 35
4.2, DoCBOOK ot e e e e 47
S StYIEShee S o e 83
5 e DSOS it e e e e 83
5.2, BSOS i e e e e e 83
6. Structuring documents under dOC/ . ..viiiii e 85
6.1. The top level, dOC/ ..ot et 85
6.2. The lang.encoding/ directoriesccoiiiiii.... 86
6.3. Document specific informationcoiiiiiinnennn. 86
7. The Documentation Build Processciiiuiiinninnnnanns 89
7.1. The FreeBSD Documentation Build Toolset 89
7.2. Understanding Makefiles in the Documentation tree 90
7.3. FreeBSD Documentation Project make includes 92
8. R WebsSite vttt 97
8. 1. EEHTIERE 97
8.2. Build the web pages from scratchcc0iuiiiiunn... 97
8.3. HEMRMIMEMIRES EZ8EHE 98
8. BRI B 98
0. BUEBRGE B R 101
10, SUEBIR E RE ot ee 107

10.1. Style gUIde vttt it e et e e e e e 108

10. 2. HAI B ot 111
11. Using ngl-mode With EMacs vttt e e e 113
12, A e 115
12.1. The FreeBSD Documentation Projectcov.iiin.. 115
12,2, SGML ottt e e e e e e 115
12,8, HIML ot e e e e e 115
12.4. DOCBOOK t ittt e e e e e e 115
12.5. The Linux Documentation Projectc.iiiiiiiivn.. 115
A B 117
A.1. DocBook BDOOK v vt e 117
A.2. DOCBoOK AICIE v vttt e e e 118
A.3. Producing formatted outputiiiiiiiiiinennnn. 119
2= 1 AP 123

vi

Pt

L5 B %%

L. BRI e x
3.1. Using an element (start and end tags)eeeivrneinenenenenn. 12
3.2. Using an element (start tag only) ...ueuenuei e enennnnn. 13
3.3. Elements within elements;: @Mciiiiiiiiiiiiiiienennnn. 13
3.4. Using an element with an attribute 14
3.5. Single quotes around attributes i, 14
3.6. .profile, for sh(l) and bash(l) USErsccceevvvininnnnnn. 15
3.7. .cshrc, for csh(1) and tcsh(l) USErsS wuvuviv e, 16
3.8. SGML genericC COMMENT vttt ittt et ittt et ettt et ettt et 22
3.9. Erroneous SGML commentsiiuiuinineeennnnnnnnnnnnnnn 22
3.10. Defining general entities ...ttt it ittt 24
3.11. Defining parameter entitiesiiiiiiiiiiinnnnnn. 25
3.12. Using general entities to include filesvuiiiiiinenenn 27
3.13. Using parameter entities to include files 28
3.14. Structure of a marked sectioniiiiiiiiiiiiiinannn. 30
3.15. Using a CDATA marked SeCTionv.iiitiiin e nenennenennnns 32
3.16. Using INCLUDE and IGNORE in marked sections 32
3.17. Using a parameter entity to control a marked section 33
4.1. Normal HTML document sSTructureceeuimenneeennnnnns 36
4.2, L, N2, etC. it e 37
4.3. Bad ordering of N elementsttt iiiiieennnnnn. 37
o 38
4.5, DlOCKOUOTE - .o oot 38
4.6, Ul and Ol ..t e 39
4.7. Definition lists with dl ... i 39
R 01 40
4.9. Simple use of taDlE oot 41
4.10. USing FOWSDBIN v vvetieni ettt ittt iaenanaenannns 42
4.11. Using COIF0AN .. oo 42
4.12. Using rowspan and oolspm together v 43
4.13. @M and STONG vt v vevnne et e 43
414, D and i v e e 44
S S T 1 PP 44
4.16. big, smndl, and font 45
4.17. Using <ahref=".. > ... e 45
4,18, Using <A NaAMES .. > ottt e e e 46
4.19. Linking to a named part of another document 46
4.20. Linking to a named part of the same document 47
4.21. Boilerplate book with bookinfocooiiiiiininnann. 49
4.22. Boilerplate article with atidenfo 50
4.23. A simple Chapler ittt i e e e e e e 51
4.24 ., EmMPLy Chaplers o ii ittt ittt et et e e e e 31

http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=bash&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=tcsh&sektion=1

S S S-S S S S NGNS S S SO SO SO SO N

=
O U1 > W N~

viii

.25.
.26.
.27.
.28.
.29.
.30.
.31.
.32.
.33.
.34.
.35.
.36.
.37,
.38.
.39.
.40.
.41,
42,
.43.
.44.
.45,
.46.
AT
.48.
.49.
.50.
.51,

Sections in chaplers ...ttt it ettt e e 51
075 (= 53
bloCKQUOE . o 54
WAIMING e 55
itemizedlist, orderedlist, and procedureoiiiiia, 56
Programlisting . ..o oo 57
0 and CAllOUtSE « v v v 58
informaltableo 59
Tables where frame="NoONE"cooiiiiiii i 60
screen, prompt, and USEHNPUE 61
BMPNBES ..t 62
QUOTALIONS L e e e 63
Keys, mouse buttons, and combinationsccciuiiionn. 63
Applications, commands, and OpLionS.iiiiiiiinennnennnn 65
filename ..o 66
filename tag with package rolecoiiiiiiiiiiiiiiina... 67
JEViCENAME - o et 68
hostid and roles ..iniiiin i e e et e e 69
[0S 1172 11N 70
maketarget and MaKeVAroonnii i 71
117 = P 72
replaceable 72
[0 117> 111 73
idonchaptersand SECHONSo v v v 78
A0+ttt 78
UsSing XIEF oo oot 79
Using lNK oot 80
UK et e e 81
DocBook BOOK .« ot i i e 117
DOCBOOK @iCle v ittt e 118
ﬁ%ﬁﬂ DocBook A HIML (GEEERETC) .ot e 119
BEYR DocBook A HTML (EEETFEZL) ..o, 120
BEHL DocBook Ay Postscript(PS) F&Z ... 120
BEPR DocBook £ PDF AU it 121

it}

5

1. Shell #24#F %% (Prompts)

TRERHRIRIEE root AURRIRFFIR - FEFTE B SCUIRGT & R BR AT 9%

(prompt) » HCIREE 2 FIMRIEIRSR A %t o

5% FER A% (Prompt)
EEMRSE %

root #

2. Z PR & 4mBERAE

TR RAE T A mEEEAE =

REEE E=307]

R R Is-a 2RI H A RIS -
T4 B2 login H ©
BE e HEREE You have mail.
MATESZ » BRELLEHTNEEA %su
7o Password:

ER2EZH4E FF M (manual)

PLosu (1) ZREIMBRSE

TEFERMRSE (user) ~ 4 (group) 4 7
HIRREE . ..

HE root 7 AT LUoE 1SR

FERA i TAZH D JBJEMAT -

FTHRAWE » AT HIE EBRAEZROUEE » 55T rmn
IRIRBEEE $HOME ZFEMRIRAIR B ERPT1EIE
3. [Note ~ Tip » Important ~ Warning ~ Example] &9
iE R

DIFXFERE MERD ~ THI50 ~ THEEMEL ~ MESr ~ THEfD A -

http://www.FreeBSD.org/cgi/man.cgi?query=su&sektion=1

TR
FRTEIEBNEE » HPEEEFEEENER - BB
FE TR TR RIS R -

N
S5 T R 7 P AR 7 SO TS 0 -

EE

FORERFHIERREE - — B Mg ORRIEESRT
EINHVEIN B -

i3

i oy
|

FORNEEHEIE - ARG NEB R TEEEEAEX - EEE
KBRS RGN EHRGE - W REREIEME AR
F o Pl —FFR A TR E R ..

Q| D © || g

#HH 1. B

ERRGIFHATE » 8% S BEERNE &Y SRR EBERT
A REEEAERIAE R o

4. RH

TEHE R Sue Blake, Patrick Durusau, Jon Hamilton, Peter Flynn,
Christopher Maden 32 %8 A1 Bh BEREEE VI AR - G B AL 2 B 58 roiE e e L B

i -

= 1. HMh

B2 EL FreeBSD Uit E o 4EFFETS B &1 SUHF$ FreeBSD HIRLTH AL T &
EE > | FreeBSD X F&+3E| (LN L FDP A3 FreeBSD Documentation Project
MI4EES) RIBEE SR E ~ EHTEEAHR - R B E R S T A& -

AXHREENER » SREBBEHE : TP AERAME) ~ THTEERE LR
RIHEAE FOPy ~ THIPEROEA TAAR G ERL -

FMTEOD B EEVORIE LRI FDP 4751 « FDP I ANBRIE & H W HZE H % D
?;}ijgjﬁm}\ o HEME—JHEAERUBLZRT B FreeBSD documentation project HE
REGEA S - i

- BRSO 2 T FDP FTHERERY o
- AJLIETE FOP FTMEERY SGML JRAASCHE o
© KB AR A SR B R -

- FEAT R B CRMBEER G - W RIEEFEAN FreeBSD LA -

1.1. FreeBSD #8448 pi, 3R 9~
FDP 483tf43 FreeBSD HY 4 MEERIAISCHE:

4 b Fffit (manual)
IR R ST manual AN FDP FriEEH) - FAEMEEI base system
FIEAy o SRTA 0 FOP A DL (3B FEMOE) B ROE L0 » AGEE S U HEE R
B EZ2 W IESERRAIH T o

MR A EA RAAAR T MRRE R AFAGES » EWEARH rop 4

FAQ
FAQ FERWRESFIEE newsgroup & HFEIEA THEEMEIR) FreeBsD
MBRMEREER - (B gl TMEEL K0 BFeREEHEEME
B AEBRRIFHEAAR -

i F F+fH (Handbook)
fH T EZEA FreeBSD i FIFIRUFERIVIR 2% ER] -
Web site

FreeBSD EEELIBNZE AT WW A5 » BOMPENE http://www.FreeBSD.org/
PLRGEFZ HAM mirror 3 o EHBGERT 2 N —IKIEMB FreeBSD HyHhTT o

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
../../../../index.html

BT A, ..

B VO E SO AL RS 43 &R AT 3B # FreeBSD CVS tree ZRENFS o IRl &t @ B
EREE SR BT AR R AR - T BB 2 sEal vl LA CSup, CVSup B
CTM 5 SCHBLH 3R (checkout) M HUHE H O A% RS FMUE (ol B A S & HH % -

WAL s P2 NS B HE B FreeBSD AWZARIMHEYS o FIEEFED
5 AR S RIEAE FreeBSD IER CVS repository [N o MHMhAGSCMH: » 7]
BEAEE AR W HE FreeBSD repository WIMTAFME o # » FOP GFE R
HIE LE SO R A o

1.2. A IZZAT...

ARSTAR B L AR

- WHA{E FreeBSD CVS repository BHTH OB LY FreeBSD XA (DL CVS
8¢ CSup BY CVSup B{Z CIM) B ZEH CVSup ZR FN#{ checked—out HYEIZA

* WA FreeBSD Ports EFEEIMEHIEL pke_add (1) HTHE ~ ZHREKES -

1.3. Bk EFH
A ETRRE WA O LUEE] OB T R o

—

Z#E textproc/docproj BEHAHEHE! port (meta—port) o

cd -/usr/portsitextproc/docpr oj
#make JADETEX=no ingall

2. F# FreeBSD doc tree A% F : M3y-EFH CSup 8¢ CVSup Y checkout &
o EEREEISEEL) CVS repository FIARHE FERRTLL o

ZRRFEANS F HBEHERERY CVS repository FLEF » BREEMNJEE checkout
i doc/share LA K doc/en USIS08859-1/share iz Mififl H #5447 o

% cvs checkout doc/share
% cvs checkout doc/en_US.| SO8859-1/share

EREE S R B T LLAYEE » BRI LA BB RN doc #F check out HiZK :
% cvscheckout doc

3. TAKFEZEHE repository H' checkout HARIEBEUCLBARIERE B LEA
Ao HTRARRFE SRR - 72 F B AR E R B FIAM -

BEIAE » FHREFRHCE - AR ERITE FreeBSD 82 Windows 2000 Z i
L VPN JEER - R DUREIL T EE R A (RE -

http://www.FreeBSD.org/cgi/man.cgi?query=pkg_add&sektion=1

A

1. Check out aticles H#k :

% cvscheckout doc/en_US.I SO8859-1/articles

2. HEBUARSEER/EA - EEGIF+ » BT R ELHCERTE
vpnrw2k FEERT ©

% cd doc/en_US.I SO8859-1/articles
% cp --R committer s-guide vpn-w2k

FEBEBNHE LE » %2 FAQURTE docen USIS08859-1/books/fag) - HRJEE
FEHE repository FEHUH AR (check out) :

% cvscheckout doc/en_US.I SO8859-1/books/faq

4. DfmEEasAmEs xml 1 -

5. DL lint EEEISE > ACHEa SO i B A R - U EERS
B EAEE TR I Em s - FURSEIECH A SR -

% makelint

EimEN— VIR - ERMRTTLLAH FORMATS SBBICRHE A =4
W—fE o BHEISCHROESIEE o html, html-split, txt. ps. pdf. rif

B AR ORE I F RO » "2% doc/share/mk/doc.docbook.mk F& o #EiT
5 HEEI5T o HEFRE S ZEEXIEE o IEHHTI9% (quotes) K%
TELUAR AR -

SRGIARE » 5 A EREAE html MR o BRERRAT -
% make FORMAT S=html
EERER html & txt #&Z0H0EE > IRATBEEFT IR make (1) FRLABESERL ¢

% make FORMAT S=html
% make FORM AT S=txt

HE >] DB — R HGER
% make FORMATS="html txt"

6. i Ll send—pr (1) HIESZBEHATER G -

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1

F 2, LA

FDP (5 —HE T ALAHHBI R EL FreeBSD SO ~ MU HHAE 255 -

7 FOP TAREUEE » W/HEEEELE T AT -

BT HAATLLA Ports Bf Packages H%H » LIiEFF L ZHM TR -

/AT TR » AR TR EM T AR R T o

% GERAMERFEETRRE] -

@

R textproc/docprod

#T textproc/docproj TAILIEERAE » Bl HEH
] port(meta—port) » ARG FIFMEE » H 2L H T EA
HRERTD © HTIEM port 21% > TJEZI Bt HETHE, -
GHERABRMGNAEMTAET o FEREREF O > BEH

chinese/docprog & HLERYT o

TEiEYE packages HEH » RATEEE T EMA JadeTeX JE(H
macro FXE - —HBEEFRHZ macro MIEE > TEHZEL
B TeX o HIY TeX HEMEBKMEM > FRIFRTE L
Postscript ¢ PDF #%z > HZHIFEALEET

Pt LGB 182 5 B e Re] ~ TR S [o DUMIE A
JadeTeX (DAR TeX) T o 35 E—{FGHAHIGS

#make JADETEX=yesingall

i o RS
#make JADETEX=noinsall

B E 0 R DR textproc/docproj—jadetex E%e
textproc/docproj—nojadetex @Mz —A#E » TMEED
BHEHE JADETEX S slave ports: H—IEEHE
docproj ZFEENEIRE JadeTeX MHE o #FHEE @ HHE
W HTML 3f ASCIT FEF UM » AP JadeTeX s TH
B Y PostScript ~ PDF 83 » BLFREHE TeX A7 °

It > 3 2

EETARH

D TLA

2.1. oA
2.1.1. #5e

B AR R TE AT FreeeBSD U1 EIR T FER LR T A » 1y B] LUF 2REE
Wi fEE HTML ~ plain textLlfz RIF &3 o BEEAHRAEMELE textproc/docprog
ERL TSR T ©

Jade (textproc/jade)
DSSSL MK EAERE S » AT A AIEARELAE 5 BUSUH: (marked up) B Hofth A%
o B HIML & TeX o

Tidy (www/tidy)
HIML “pretty printer” » FJFIZRICEHBYEARD HIML ANEEEE FHE -
DUFE H 1R AEE o

Links (www/links)
SCFERAERECRT W BIEE RS (browser) AT LU HTML AE#E%y plain text %X o

peps (graphics/peps)
A S E R EPS #EFURY o SELL A ZE A PNG SR 0 A RERE B
ERTULEEEE -

2.1.2. DTD A Entity

A FoP AHEIFFZ DID IR Entity > RIHIER THT » 25 LigseA1T -

HTML DTD (textproc/html)
HTML SEFY W BIERECEE S - HAlE FreeBSD AHE T HAUEEC o

DocBook DTD (textproc/docbook)
DocBook 7B [T F 2R BV ERAT SIS REE SRR » FreeBSD 8RS #R 2 LA
DocBook FFESECHY ©

ISO 8879 entities (textproc/iso8879)
TE 1S0 8879:1986 ZHH 19 {f entity #{FT% DID frREMH > GFTH
B9~ BT RN (REEEEEHAI TR DA RAIE o

2.1.83. # X & (Stylesheets)
B LetR A IRAT B A R ~ EHE R R R ~ PIE SR R

Modular DocBook EEFFE (textproc/dsssl—docbook—modular)
Modular DocBook f§x\F » &2 DocBook HURERCHE T SCHFHEHL A HABAK
2o R . HIML =X RIF o

=2, TR

2.2, WP LT H

A—RRETIMLIEAT B2 RTZREGEAHETEHLE - TWHTE
H A% B B

2.2.1. #5e

JadeTeX N teTeX (print/jadetex K print/teTeX)
Jade Ed teTeX R]FHZRIE DocBook FZFC{F#E A DVI, Postscript M PDF #%
I o ZHEIFFHLAFIN L JadeTeX B{H macro » BEA GIEMELE LEWEEL -

HEBAL ST E R E LR (B0 © A HTML, plain text, RTF JZE84%
XBAEE) BB EE JadeTeX B teTeX o MM —ACAT & T — LA
AR ~ WSS 0 BRy teTeX REIEZE/D 30MB ZEf] o

A HIREEE JadeTeX DUz teTeX HUEE » IBETESESE
JadeTeX Z1% > WG TE teTeX A47 e print/jadetex/
pkg-message A FEA /T ARAHBA 2B

Emacs BY XEmacs (editors/emacs BY editors/xemacs)
I8 W E miE AR & A JREE SGML DTD ARFC SRR RIS o XU R it —2t4g
& RGP R INFT IR - T 2 AT ARG/ T BE S AR S AR -

T+ SRR TR B 5 (TS AR B T LU S s
fho R U LUBEE bR R - AR R F R
B -

EHEEHAMT AREE SoML XHFER » 55K (E7# Documentation Engineering
Team <doceng@FreeBSD.org> #1378 @ AL —2K » ZEEH S NGEENEAT -

mailto:doceng@FreeBSD.org

= 3. SGML Primer

FDP S #-F#ZLL SoML MBIRE R » ARE G N SGML ZfHEE ~ AN BaE
HfEELE SGML JEAR - DURASSCIE A FTE A TH SGML 55075 o

INETER 4 ERSEFEA H Mark Galassi HUiEfe Get Going With DocBook °

3.1. A4

Way back when, electronic text was simple to deal with. Admittedly, you had
to know which character set your document was written in (ASCII, EBCDIC, or
one of a number of others) but that was about it. Text was text, and what
you saw really was what you got. No frills, no formatting, no intelligence.

Inevitably, this was not enough. Once you have text in a machine—usable
format, you expect machines to be able to use it and manipulate it
intelligently. You would like to indicate that certain phrases should
be emphasized, or added to a glossary, or be hyperlinks. You might want
filenames to be shown in a “typewriter” style font for viewing on screen,
but as “italics” when printed, or any of a myriad of other options for
presentation.

It was once hoped that Artificial Intelligence (AI) would make this easy.
Your computer would read in the document and automatically identify key
phrases, filenames, text that the reader should type in, examples, and
more. Unfortunately, real life has not happened quite like that, and our
computers require some assistance before they can meaningfully process
our text.

More precisely, they need help identifying what is what. You or I can
look at

To remove ftmp/foo use rm(1).

% rm -/tmp/foo

and easily see which parts are filenames, which are commands to be typed
in, which parts are references to manual pages, and so on. But the computer
processing the document cannot. For this we need markup.

“Markup” is commonly used to describe “adding value” or “increasing
cost” . The term takes on both these meanings when applied to text.
Markup is additional text included in the document, distinguished from

http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro/docbook-intro.html
http://www.FreeBSD.org/cgi/man.cgi?query=rm&sektion=1

s

the document's content in some way, so that programs that process the
document can read the markup and use it when making decisions about the
document. Editors can hide the markup from the user, so the user is not
distracted by it.

The extra information stored in the markup adds value to the document.
Adding the markup to the document must typically be done by a person—
after all, if computers could recognize the text sufficiently well to add
the markup then there would be no need to add it in the first place. This
increases the cost (i.e., the effort required) to create the document.

The previous example is actually represented in this document like this:

<para>To remove <filename>/tmp/foo</filename> use & man.rm.1;.</para>

<screen>& prompt.user; <userinput>rm -/tmp/foo</userinput></screen>
As you can see, the markup is clearly separate from the content.

Obviously, if you are going to use markup you need to define what your
markup means, and how it should be interpreted. You will need a markup
language that you can follow when marking up your documents.

Of course, one markup language might not be enough. A markup language
for technical documentation has very different requirements than a markup
language that was to be used for cookery recipes. This, in turn, would be
very different from a markup language used to describe poetry. What you
really need is a first language that you use to write these other markup
languages. A meta markup language.

This is exactly what the Standard Generalized Markup Language (SGML) is.
Many markup languages have been written in SGML, including the two most
used by the FDP, HTML and DocBook.

Each language definition is more properly called a Document Type Definition
(DTD) . The DTD specifies the name of the elements that can be used, what
order they appear in (and whether some markup can be used inside other
markup) and related information. A DID is sometimes referred to as an
application of SGML.

A DID is a complete specification of all the elements that are allowed
to appear, the order in which they should appear, which elements are
mandatory, which are optional, and so forth. This makes it possible to
write an SGML parser which reads in both the DID and a document which
claims to conform to the DTD. The parser can then confirm whether or not
all the elements required by the DID are in the document in the right

10

= 3. SGML Primer

order, and whether there are any errors in the markup. This is normally
referred to as ‘“validating the document”

Y =
FE

This processing simply confirms that the choice of
elements, their ordering, and so on, conforms to that
listed in the DTD. It does not check that you have used
appropriate markup for the content. If you tried to mark
up all the filenames in your document as function names,
the parser would not flag this as an error (assuming,
of course, that your DITD defines elements for filenames
and functions, and that they are allowed to appear in
the same place).

It is likely that most of your contributions to the Documentation Progject
will consist of content marked up in either HTML or DocBook, rather than
alterations to the DIDs. For this reason this book will not touch on how
to write a DID.

3.2. Elements, tags, and attributes

All the DIDs written in SGML share certain characteristics. This is hardly
surprising, as the philosophy behind SGML will inevitably show through.
One of the most obvious manifestations of this philosophy is that of
content and elements.

Your documentation (whether it is a single web page, or a lengthy book)
is considered to consist of content. This content is then divided (and
further subdivided) into elements. The purpose of adding markup is to name
and identify the boundaries of these elements for further processing.

For example, consider a typical book. At the very top level, the book
is itself an element. This “book” element obviously contains chapters,
which can be considered to be elements in their own right. Each chapter
will contain more elements, such as paragraphs, quotations, and footnotes.
Each paragraph might contain further elements, identifying content that
was direct speech, or the name of a character in the story.

You might like to think of this as “chunking” content. At the very
top level you have one chunk, the book. Look a little deeper, and you

11

Elements, tags, and attributes

have more chunks, the individual chapters. These are chunked further into
paragraphs, footnotes, character names, and so on.

Notice how you can make this differentiation between different elements of
the content without resorting to any SGML terms. It really is surprisingly
straightforward. You could do this with a highlighter pen and a printout of
the book, using different colors to indicate different chunks of content.

Of course, we do not have an electronic highlighter pen, so we need some
other way of indicating which element each piece of content belongs to.
In languages written in SGML (HTML, DocBook, et al) this is done by means
of tags.

A tag is used to identify where a particular element starts, and where
the element ends. The tag is not part of the element itself. Because each
DTD was normally written to mark up specific types of information, each
one will recognize different elements, and will therefore have different
names for the tags.

For an element called dement-name the start tag will normally look like
<dement-name>. The corresponding closing tag for this element is </dement-
name>.

#if7 3.1. Using an element (start and end tags)

HTML has an element for indicating that the content enclosed by
the element is a paragraph, called p. This element has both start
and end tags.

<p>Thisisaparagraph. It starts with the start tag for

the -'p' element, and it will end with the end tag for the -'p'

element.</p>

<p>Thisis another paragraph. But this one is much shorter.</p>

Not all elements require an end tag. Some elements have no content. For
example, in HTML you can indicate that you want a horizontal line to appear
in the document. Obviously, this line has no content, so Jjust the start
tag is required for this element.

12

= 3. SGML Primer

#if7 3.2. Using an element (start tag only)

HTML has an element for indicating a horizontal rule, called hr.

This element does not wrap content, so only has a start tag.
<p>Thisis a paragraph.</p>
<hr>

<p>Thisis another paragraph. A horizontal rule separates this
from the previous paragraph.</p>

If it is not obvious by now, elements can contain other elements. In the
book example earlier, the book element contained all the chapter elements,
which in turn contained all the paragraph elements, and so on.

#if5] 3.3. Elements within elements; em

<p>Thisis asimple paragraph where some
of the words have been emphasi zed.</p>

The DID will specify the rules detailing which elements can contain other
elements, and exactly what they can contain.

A People often confuse the terms tags and elements, and use

the terms as if they were interchangeable. They are not.

An element is a conceptual part of your document. An
element has a defined start and end. The tags mark where
the element starts and end.

When this document (or anyone else knowledgeable about
SGML) refers to “the <p> tag” they mean the literal
text consisting of the three characters <, p, and >.

13

Elements, tags, and attributes

But the phrase ‘“the <p> element” refers to the whole
element.

This distinction is very subtle. But keep it in mind.

Elements can have attributes. An attribute has a name and a value, and is
used for adding extra information to the element. This might be information
that indicates how the content should be rendered, or might be something
that uniquely identifies that occurrence of the element, or it might be
something else.

An element's attributes are written inside the start tag for that element,
and take the form attribute-name="attribute-value".

In sufficiently recent versions of HTML, the p element has an attribute
called dign, which suggests an alignment (justification) for the paragraph
to the program displaying the HTML.

The dign attribute can take one of four defined values, left, center, right
and judify. If the attribute is not specified then the default is Ieft.

#iff 3.4. Using an element with an attribute

<p dign="left">Theinclusion of the align attribute
on this paragraph was superfluous, since the default is left.</p>

<p aign="center">This may appear in the center.</p>

Some attributes will only take specific values, such as |€ft or judify. Others
will allow you to enter anything you want. If you need to include quotes
(") within an attribute then use single quotes around the attribute value.

#3f7 3.5. Single quotes around attributes

<p adign="right>| am on the right!</p>

14

= 3. SGML Primer

Sometimes you do not need to use quotes around attribute values at all.
However, the rules for doing this are subtle, and it is far simpler Jjust
to always quote your attribute values.

The information on attributes, elements, and tags is stored in SGML
catalogs. The various Documentation Project tools use these catalog files
to validate your work. The tools in textproc/docproj include a variety
of SGML catalog files. The FreeBSD Documentation Project includes its
own set of catalog files. Your tools need to know about both sorts of
catalog files.

3.2.1. For you to do---

In order to run the examples in this document you will need to install
some software on your system and ensure that an environment variable is
set correctly.

1. Download and install textproc/docproj from the FreeBSD ports system.
This is a meta—port that should download and install all of the programs
and supporting files that are used by the Documentation Project.

2. Add lines to your shell startup files to set SGML_CATALOG_FILES.

(If you are not working on the English version of the documentation,
you will want to substitute the correct directory for your language.)

#ifj 3.6. .profile, for sh(1) and bash(1)
users

SGML_ROOT=/usr/local/share/xml
SGML_CATALOG_FILES=${SGML_ROOT}/jade/catalog
SGML_CATALOG_FILES=${ SGML_ROOT}/is08879/catal og:
$SGML_CATALOG_FILES

SGML_CATALOG_FILES=${ SGML_ROOT}/html/catal og:
$SGML_CATALOG_FILES

SGML_CATALOG_FILES=%{ SGML_ROOT}/docbook/4.1/catal og:
$SGML_CATALOG_FILES
SGML_CATALOG_FILES=/usr/doc/share/xml/catal og:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=/usr/doc/en_US.I SO8859-1/share/xml/catal og:
$SGML_CATALOG_FILES

export SGML_CATALOG_FILES

15

http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=bash&sektion=1

For you to do---

#5 3.7. .cshrc, for csh(l) and tcsh(1l)

users

Then either log out, and log back in again, or run those commands from
the command line to set the variable values.

1. Create examplexml, and enter the following text:

2. Try to validate this file using an SGML parser.

Part of textproc/docproj is the nsgmls validating parser [10].
Normally, rEgnﬂS reads in a document marked up according to an SGML
DID and returns a copy of the document's Element Structure Information
Set (ESIS, but that is not important right now).

16

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=tcsh&sektion=1

= 3. SGML Primer

However, when rEgnﬂs is given the -S parameter, nsgnﬂs will suppress

its normal output,

and Jjust print error messages. This makes it a

useful way to check to see if your document is valid or not.

Use rEgnﬂs to check that your document is valid:

% nsgmls--s examplexml

As you will see, rEgnﬂs returns without displaying any output. This

means that your document validated successfully.

3. See what happens when required elements are omitted. Try removing the
titte and ftitle tags, and re—run the validation.

% nsgmls--s examplexml

nsgmls:example.xml:5:4:E: character datais not allowed here
nsgmls:example.xml:6:8:E: end tag for -"HEAD" which is not finished

The error output from rEgnﬂs is organized into colon—separated groups,

or columns.

Column

Meaning

1

The name of the program generating
the error. This will always be

nsgmls.

The name of the file that contains
the error.

Line number where the error appears.

Column number where the error

appears.

A one letter code indicating the
nature of the message. | indicates
an informational message, W is for
warnings, and E is for errors®, and
X is for cross—references. As you

can see, these messages are errors.

6

The text of the error message.

It is not always the fifth column either. nsngS—SI displays n%]mls:l: SPverson"1.3"

(depending on the installed version). As you can see, this is an informational message.

Simply omitting the title tags has generated 2 different errors.

17

The DOCTYPE declaration

The first error indicates that content (in this case, characters,
rather than the start tag for an element) has occurred where the SGML
parser was expecting something else. In this case, the parser was
expecting to see one of the start tags for elements that are valid
inside head (such as title) .

The second error is because head elements must contain a title element.
Because it does not nggmls considers that the element has not been
properly finished. However, the closing tag indicates that the element
has been closed before it has been finished.

Put the title element back in.

3.3. The DOCTYPE declaration

The beginning of each document that you write must specify the name of
the DID that the document conforms to. This is so that SGML parsers can
determine the DTD and ensure that the document does conform to it.

This information is generally expressed on one line, in the DOCTYPE

declaration.

A typical declaration for a document written to conform with version 4.0
of the HTIML DTD looks 1like this:

<IDOCTY PE html PUBLIC -"-//W3C//DTD HTML 4.0/EN">

That line contains a number of different components.

<l
Is the indicator that indicates that this is an SGML declaration. This
line is declaring the document type.

DOCTYPE
Shows that this is an SGML declaration for the document type.

html

Names the first element that will appear in the document.

PUBLIC"-//W3C//DTD HTML 4.0/EN"

18

Lists the Formal Public Identifier (FPI) for the DID that this document
conforms to. Your SGML parser will use this to find the correct DTD
when processing this document.

= 3. SGML Primer

PUBLIC is not a part of the FPI, but indicates to the SGML processor
how to find the DID referenced in the FPI. Other ways of telling the
SGML parser how to find the DID are shown later.

Returns to the document.

3.8.1. Formal Public Identifiers (FPIs)

{ AT
You do not need to know this, but it is useful background,

and might help you debug problems when your SGML
processor can not locate the DID you are using.

FPIs must follow a specific syntax. This syntax is as follows:
"Owner//Keyword Description/Language

Owner
This indicates the owner of the FPI.

“

If this string starts with I1SO then this is an ISO owned FPI. For
example, the FPI "1SO 8879:1986//ENTITIES Greek Symbolg/EN" lists SO
8879:1986 as being the owner for the set of entities for Greek symbols.
ISO 8879:1986 is the I1SO number for the SGML standard.

i

Otherwise, this string will either look 1like -//Owhe or +/Owner
(notice the only difference is the leading + or -).

If the string starts with - then the owner information is unregistered,

with a + it identifies it as being registered.

ISO 9070:1991 defines how registered names are generated: it might
be derived from the number of an ISO publication, an ISBN code, or
an organization code assigned according to ISO 6523. In addition, a
registration authority could be created in order to assign registered
names. The ISO council delegated this to the American National
Standards Institute (ANSI).

Because the FreeBSD Project has not been registered the owner string
is -/[FreeBSD. And as you can see, the W3C are not a registered owner

either.

19

Formal Public Identifiers (FPIs)

Keyword
There are several keywords that indicate the type of information in the
file. Some of the most common keywords are DTD, ELEMENT, ENTITIES,
and TEXT. DTD is used only for DID files, ELEMENT is usually used
for DID fragments that contain only entity or element declarations.
TEXT is used for SGML content (text and tags).

Description
Any description you want to supply for the contents of this file. This
may include version numbers or any short text that is meaningful to
you and unique for the SGML system.

Language
This is an ISO two—character code that identifies the native language
for the file. EN is used for English.

3.3.1.1. catalog files

If you use the syntax above and process this document using an SGML
processor, the processor will need to have some way of turning the FPI
into the name of the file on your computer that contains the DID.

In order to do this it can use a catalog file. A catalog file (typically
called Cetdog) contains lines that map FPIs to filenames. For example, if

the catalog file contained the line:

PUBLIC -"-//W3C//DTD HTML 4.0/EN" -"4.0/strict.dtd"

The SGML processor would know to look up the DID from drict.dtd in the 4.0
subdirectory of whichever directory held the C{;tdog file that contained
that line.

Look at the contents of /ust/loca/share/xmi/html/catalog. This is the catalog
file for the HTML DTDs that will have been installed as part of the
textproc/docproJ port.

3.3.1.2. SGML_CATALOG_FILES

In order to locate a C&dog file, your SGML processor will need to know
where to look. Many of them feature command line parameters for specifying
the path to one or more catalogs.

In addition, you can set SGML_CATALOG FILES to point to the files.

This environment variable should consist of a colon—separated list of
catalog files (including their full path).

20

= 3. SGML Primer

Typically, you will want to include the following files:

+ Jusr/local/share/xml/dochook/4.1/catal og
+ Jusrflocal/sharefxmi/html/catalog

+ Jusr/local/sharefxml/iso8879/catal og

* Jusr/local/share/xm/jade/catal og

You should already have done this.

3.3.2. Alternatives to FPIs

Instead of using an FPI to indicate the DTD that the document conforms
to (and therefore, which file on the system contains the DID) you can
explicitly specify the name of the file.

The syntax for this is slightly different:

<IDOCTY PE html SYSTEM -"/path/to/file.dtd">

The SYSTEM keyword indicates that the SGML processor should locate the
DID in a system specific fashion. This typically (but not always) means
the DTD will be provided as a filename.

Using FPIs is preferred for reasons of portability. You do not want to
have to ship a copy of the DID around with your document, and if you
used the SYSTEM identifier then everyone would need to keep their DIDs
in the same place.

3.4. Escaping back to SGML

Earlier in this primer I said that SGML is only used when writing a DTD.
This is not strictly true. There is certain SGML syntax that you will
want to be able to use within your documents. For example, comments can
be included in your document, and will be ignored by the parser. Comments
are entered using SGML syntax. Other uses for SGML syntax in your document
will be shown later too.

Obviously, you need some way of indicating to the SGML processor that the
following content is not elements within the document, but is SGML that
the parser should act upon.

These sections are marked by <!..> in your document. Everything between

these delimiters is SGML syntax as you might find within a DTD.

21

tl_lﬂ:

i

As you may Jjust have realized, the DOCTYPE declaration is an example of
SGML syntax that you need to include in your document---

3.5. ;iMt

Comments are an SGML construction, and are normally only valid inside a
DID. However, as Hi#3.4, “Escaping back to SGML” shows, it is possible
to use SGML syntax within your document.

“ o9

The delimiter for SGML comments is the string . The first occurrence

of this string opens a comment, and the second closes it.

#if 3.8. SGML generic comment

If you have used HTIML before you may have been shown different rules
for comments. In particular, you may think that the string <l-- opens a

comment, and it is only closed by -->.

This is not the case. A lot of web browsers have broken HIML parsers,
and will accept that as valid. However, the SGML parsers used by the
Documentation Project are much stricter, and will reject documents that
make that error.

%ﬁﬁﬂ 3.9. Erroneous SGML comments

22

= 3. SGML Primer

THISISOUTSIDE THE COMMENT!

--- back inside the comment --->

The SGML parser will treat this as though it were actually:

<ITHISISOUTSIDE THE COMMENT>

This is not valid SGML, and may give confusing error messages.

As the example suggests, do not write comments like that.

<! >

That is a (slightly) better approach, but it still potentially
confusing to people new to SGML.

3.5.1. For you to do---

1. Add some comments to examplexml, and check that the file still
validates using nsgmls.

2. Add some invalid comments to exaTWjexnﬂ, and see the error messages

that rEgnﬂS gives when it encounters an invalid comment.

3.6. Entities

Entities are a mechanism for assigning names to chunks of content. As an
SGML parser processes your document, any entities it finds are replaced
by the content of the entity.

This is a good way to have re—usable, easily changeable chunks of content
in your SGML documents. It is also the only way to include one marked up
file inside another using SGML.

There are two types of entities which can be used in two different
situations: general entities and parameter entities.

3.6.1. General Entities

You cannot use general entities in an SGML context (although you define
them in one). They can only be used in your document. Contrast this with
parameter entities.

23

Parameter entities

Each general entity has a name. When you want to reference a general entity
(and therefore include whatever text it represents in your document),
you write &entity—na‘ne;. For example, suppose you had an entity called
current.verson which expanded to the current version number of your product.
You could write:

<para>The current version of our product is
¤t.version;.</para>

When the version number changes you can simply change the definition of
the value of the general entity and reprocess your document.

You can also use general entities to enter characters that you could
not otherwise include in an SGML document. For example, < and & cannot
normally appear in an SGML document. When the SGML parser sees the <
symbol it assumes that a tag (either a start tag or an end tag) is about
to appear, and when it sees the & symbol it assumes the next text will

be the name of an entity.

Fortunately, you can use the two general entities &It; and &an; whenever

you need to include one or other of these.

A general entity can only be defined within an SGML context. Typically,
this is done immediately after the DOCTYPE declaration.

#3f7 3.10. Defining general entities

<IDOCTY PE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<IENTITY current.version -"3.0-RELEASE">

<IENTITY last.version -"2.2.7-RELEASE">

1>

Notice how the DOCTYPE declaration has been extended by adding a
square bracket at the end of the first line. The two entities are
then defined over the next two lines, before the square bracket is
closed, and then the DOCTYPE declaration is closed.

The square brackets are necessary to indicate that we are extending
the DID indicated by the DOCTYPE declaration.

3.6.2. Parameter entities

Like general entities, parameter entities are used to assign names to
reusable chunks of text. However, where as general entities can only be

24

= 3. SGML Primer

used within your document, parameter entities can only be used within
an SGML context.

Parameter entities are defined in a similar way to general entities.
However, instead of using &entity—nane; to refer to them, use %entity—nane;l.
The definition also includes the % between the ENTITY keyword and the
name of the entity.

#iff] 3.11. Defining parameter entities

This may not seem particularly useful. It will be.

3.6.3. For you to do---

1. Add a general entity to examplexml.

2. Validate the document using nsgmls.

'Parameter entities use the Percent symbol.

25

Using entities to include files

3. Load exanple.xml into your web browser (you may need to copy it to
examplehtml before your browser recognizes it as an HTML document).

Unless your browser is very advanced, you will not see the entity
reference &verson, replaced with the version number. Most web browsers

have very simplistic parsers which do not handle proper SGMLZ.

4. The solution is to normalize your document using an SGML normalizer.
The normalizer reads in valid SGML and outputs equally valid SGML
which has been transformed in some way. One of the ways in which the
normalizer transforms the SGML is to expand all the entity references
in the document, replacing the entities with the text that they
represent.

You can use sgminorm to do this.

% sgminorm examplexml > example.html

You should find a normalized (i.e., entity references expanded) copy
of your document in examplehtml, ready to load into your web browser.

5. If you look at the output from sgmlnorm you will see that it does
not include a DOCTYPE declaration at the start. To include this you
need to use the -d option:

% sgmlinor m --d examplexml > examplehtml

3.7. Using entities to include files

Entities (both general and parameter) are particularly useful when used
to include one file inside another.

3.7.1. Using general entities to include files

Suppose you have some content for an SGML book organized into files, one
file per chapter, called chapterlxml, chapter2xml, and so forth, with a
book.xml file that will contain these chapters.

In order to use the contents of these files as the values for your entities,
you declare them with the SYSTEM keyword. This directs the SGML parser

to use the contents of the named file as the value of the entity.

2This is a shame. Imagine all the problems and hacks (such as Server Side Includes) that

could be avoided if they did.

26

= 3. SGML Primer

#if5 3.12. Using general entities to include
files

<IDOCTY PE html PUBLIC -"-//W3C//DTD HTML 4.0/EN" [
<IENTITY chapter.1 SYSTEM -"chapterl.xml">

<IENTITY chapter.2 SYSTEM -"chapter2.xml">

<IENTITY chapter.3 SYSTEM -"chapter3.xml">

1>

<html>

& chapter.1;

& chapter.2;

& chapter.3;
</html>

IU

A A
=

O)
When using general entities to include other files

within a document, the files being included (chapterlxml.
chapter2xml, and so on) must not start with a DOCTYPE

declaration. This is a syntax error.

3.7.2. Using parameter entities to include files

Recall that parameter entities can only be used inside an SGML context.
Why then would you want to include a file within an SGML context?

You can use this to ensure that you can reuse your general entities.

Suppose that you had many chapters in your document, and you reused these
chapters in two different books, each book organizing the chapters in a
different fashion.

You could list the entities at the top of each book, but this quickly

becomes cumbersome to manage.

Instead, place the general entity definitions inside one file, and use a
parameter entity to include that file within your document.

27

For you to do---

#ifl 3.13. Using parameter entities to include
files

First, place your entity definitions in a separate file, called
chaptersent. This file contains the following:

Now create a parameter entity to refer to the contents of the file.
Then use the parameter entity to load the file into the document,
which will then make all the general entities available for use.
Then use the general entities as before:

3.7.3. For you to do--:

3.7.3.1. Use general entities to include files
1. Create three files, paralxml, paa2xml, and para3.xml.

Put content similar to the following in each file:

2. Edit examplexml so that it looks like this:

28

= 3. SGML Primer

3. Produce examplehtml by normalizing examplexml.

4. Load examplehtml into your web browser, and confirm that the paranxml
files have been included in examplehtml.

3.7.3.2. Use parameter entities to include files

@ {-E/E‘\
You must have taken the previous SteDS first.

1. Edit examplexml so that it looks like this:

2. Create a new file, entitiesxml, with this content:

Marked sections

<IENTITY version-"1.1">

<IENTITY paral SYSTEM -"paral.xml">
<IENTITY para2 SYSTEM -"para2.xml">
<IENTITY para3 SYSTEM -"para3.xml">

3. Produce examplehtml by normalizing examplexml.

% sgmlinorm --d examplexml > examplehtml

4. Load examplehtml into your web browser, and confirm that the paran.xml
files have been included in examplehtml.

3.8. Marked sections

SGML provides a mechanism to indicate that particular pieces of the
document should be processed in a special way. These are termed ‘“marked
sections” .

#if 3.14. Structure of a marked section

<1 KEYWORD [
Contents of marked section
11>

As you would expect, being an SGML construct, a marked section starts
with <I.

The first square bracket begins to delimit the marked section.

KEYWORD describes how this marked section should be processed by the

parser.

The second square bracket indicates that the content of the marked section
starts here.

The marked section is finished by closing the two square brackets, and
then returning to the document context from the SGML context with >.

30

= 3. SGML Primer

3.8.1. Marked section keywords
3.8.1.1. CDATA, RCDATA

These keywords denote the marked sections content model, and allow you
to change it from the default.

When an SGML parser is processing a document it keeps track of what is

called the “content model”

Briefly, the content model describes what sort of content the parser is
expecting to see, and what it will do with it when it finds it.

The two content models you will probably find most useful are CDATA
and RCDATA.

CDATA is for “Character Data” . If the parser is in this content model
then it is expecting to see characters, and characters only. In this model
the < and & symbols lose their special status, and will be treated as

ordinary characters.

RCDATA is for “Entity references and character data” If the parser is
in this content model then it is expecting to see characters and entities.
< loses its special status, but & will still be treated as starting the

beginning of a general entity.

This is particularly useful if you are including some verbatim text that
contains lots of < and & characters. While you could go through the text
ensuring that every < is converted to a < and every & is converted to
a &a‘np;, it can be easier to mark the section as only containing CDATA.
When the SGML parser encounters this it will ignore the < and & symbols

embedded in the content.

NE T
@ TR
When you use CDATA or RCDATA in examples of text

marked up in SGML, keep in mind that the content of
CDATA is not validated. You have to check the included

SGML text using other means. You could, for example,

write the example in another document, validate the
example code, and then paste it to your CDATA content.

31

Marked section keywords

#iff] 3.15. Using a CDATA marked section

If you look at the source for this document you will see this
technique used throughout.

3.8.1.2. INCLUDE and IGNORE

If the keyword is INCLUDE then the contents of the marked section will
be processed. If the keyword is IGNORE then the marked section is ignored

and will not be processed. It will not appear in the output.

#ifl 3.16. Using INcLUDE and IGNORE in marked
sections

32

= 3. SGML Primer

11>

By itself, this is not too useful. If you wanted to remove text from your
document you could cut it out, or wrap it in comments.

It becomes more useful when you realize you can use parameter entities to
control this. Remember that parameter entities can only be used in SGML
contexts, and the keyword of a marked section is an SGML context.

For example, suppose that you produced a hard—copy version of some
documentation and an electronic version. In the electronic version you
wanted to include some extra content that was not to appear in the hard—

copy.

Create a parameter entity, and set its value to INCLUDE. Write your
document, using marked sections to delimit content that should only appear
in the electronic version. In these marked sections use the parameter
entity in place of the keyword.

When you want to produce the hard—copy version of the document, change
the parameter entity's value to IGNORE and reprocess the document.

#3f7 3.17. Using a parameter entity to control
a marked section
<IDOCTY PE html PUBLIC -"-//W3C//DTD HTML 4.0/EN" [

<IENTITY % electronic.copy -"INCLUDE">
11>

<![%electronic.copy [
This content should only appear in the electronic
version of the document.

11>

When producing the hard—copy version, change the entity's definition
to:

<IENTITY % electronic.copy -"IGNORE">

On reprocessing the document, the marked sections that use
96d€£ﬂ0nk;c0py as their keyword will be ignored.

33

For you to do---

3.8.2. For you to do---

1. Create a new file, sectionxml, that contains the following:

2. Normalize this file using sgmlnorm(l) and examine the output. Notice
which paragraphs have appeared, which have disappeared, and what has
happened to the content of the CDATA marked section.

3. Change the definition of the textoutput entity from INCLUDE to
IGNORE. Re—normalize the file, and examine the output to see what

has changed.

3.9. Conclusion

That is the conclusion of this SGML primer. For reasons of space and
complexity several things have not been covered in depth (or at all).
However, the previous sections cover enough SGML for you to be able to
follow the organization of the FDP documentation.

34

http://www.FreeBSD.org/cgi/man.cgi?query=sgmlnorm&sektion=1

= 4. SGML Markup

This chapter describes the two markup languages you will encounter when you
contribute to the FreeBSD documentation project. Each section describes
the markup language, and details the markup that you are likely to want
to use, or that is already in use.

These markup languages contain a large number of elements, and it can
be confusing sometimes to know which element to use for a particular
situation. This section goes through the elements you are most likely to
need, and gives examples of how you would use them.

This is not an exhaustive list of elements, since that would just reiterate
the documentation for each language. The aim of this section is to list
those elements more likely to be useful to you. If you have a question
about how best to markup a particular piece of content, please post it to
the FreeBSD documentation project E[EEmTE .

Inline vs. block

In the remainder of this document, when describing
elements, inline means that the element can occur within
a block element, and does not cause a line break. A
block element, by comparison, will cause a line break
(and other processing) when it is encountered.

4.1. HIML

HTML, the HyperText Markup Language, is the markup language of choice on the
World Wide Web. More information can be found at <URL=hﬁpJANMNVNW3LWgﬁ&

HTML is used to markup pages on the FreeBSD web site. It should not
(generally) be used to mark up other documentation, since DocBook offers a
far richer set of elements to choose from. Consequently, you will normally
only encounter HTML pages if you are writing for the web site.

HTML has gone through a number of versions, 1, 2, 3.0, 3.2, and the latest,
4.0 (available in both strict and loose variants).

The HTML DIDs are available from the ports collection in the textproc/
html port. They are automatically installed as part of the textproc/
docprogj port.

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.w3.org/

Formal Public Identifier (FPI)

4.1.1. Formal Public Identifier (FPI)

There are a number of HTML FPIs, depending upon the version (also known as
the level) of HTML that you want to declare your document to be compliant
with.

The magjority of HTIML documents on the FreeBSD web site comply with the
loose version of HIML 4.0.

4.1.2. Sectional elements

An HTML document is normally split into two sections. The first section,
called the head, contains meta—information about the document, such as its
title, the name of the author, the parent document, and so on. The second
section, the body, contains the content that will be displayed to the user.

These sections are indicated with head and body elements respectively.
These elements are contained within the top—level html element.

#iffl 4.1. Normal HTML document structure

4.1.3. Block elements
4.1.3.1. Headings

HTML allows you to denote headings in your document, at up to six different
levels.

The largest and most prominent heading is hl, then h2, continuing down

to h6.

36

= 4. SGML Markup

The element's content is the text of the heading.

i 4.2, n1, n2, etc.

Use:

Generally, an HTML page should have one first level heading (hl). This can
contain many second level headings (h2), which can in turn contain many
third level headings. Each hn element should have the same element, but

one further up the hierarchy, preceding it. Leaving gaps in the numbering
is to be avoided.

#3f5 4.3. Bad ordering of hn elements

Use:

37

Block elements

4.1.3.2. Paragraphs

HTML supports a single paragraph element, p.

i 4.4. p

Use:

<p>Thisisaparagraph. It can contain just about any
other element.</p>

4.1.3.3. Block quotations

A block quotation is an extended quotation from another document that
should not appear within the current paragraph.

#iffl 4.5. blockquote

Use:
<p>A small excerpt from the US Constitution:</p>

<blockquote>We the People of the United States, in Order to form
amore perfect Union, establish Justice, insure domestic
Tranquility, provide for the common defence, promote the general
Welfare, and secure the Blessings of Liberty to ourselves and our
Posterity, do ordain and establish this Constitution for the
United States of America.</blockquote>

4.1.3.4. Lists

You can present the user with three types of lists, ordered, unordered,

and definition.

Typically, each entry in an ordered list will be numbered, while each
entry in an unordered list will be preceded by a bullet point. Definition
lists are composed of two sections for each entry. The first section is the
term being defined, and the second section is the definition of the term.

38

= 4. SGML Markup

Ordered lists are indicated by the 0l element, unordered lists by the U
element, and definition lists by the dl element.

Ordered and unordered lists contain listitems, indicated by the |i element.
A listitem can contain textual content, or it may be further wrapped in
one or more P elements.

Definition lists contain definition terms (df) and definition descriptions
(dd). A definition term can only contain inline elements. A definition

description can contain other block elements.

#i5 4.6. w and o

Use:

#iffil 4.7. Definition lists with i

Use:

39

Block elements

4.1.3.5. Pre—formatted text

You can indicate that text should be shown to the user exactly as it

is in the file. Typically, this means that the text is shown in a fixed

font, multiple spaces are not merged into one, and line breaks in the

text are significant.

In order to do this, wrap the content in the pre element.

40

#if 4.8. pre

You could use pre to mark up an email message:

Keep in mind that < and & still are recognized as special characters

in pre—formatted text. This is why the example shown had to use &lIt;

instead of <. For consistency,<> was used in place of >, too.

= 4. SGML Markup

Watch out for the special characters that may appear in text copied
from a plain—text source, e.g., an email message or program code.

4.1.3.6. Tables

FE
&N
S Most text—mode browsers (such as Lynx) do not render

tables particularly effectively. If you are relying on

the tabular display of your content, you should consider
using alternative markup to prevent confusion.

Mark up tabular information using the table element. A table consists of
one or more table rows (tr), each containing one or more cells of table
data (td). Each cell can contain other block elements, such as paragraphs
or lists. It can also contain another table (this nesting can repeat
indefinitely). If the cell only contains one paragraph then you do not
need to include the p element.

#if7 4.9. Simple use of table

Use:

41

Block elements

A cell can span multiple rows and columns. To indicate this, add the
rowspan and/or colspen attributes, with values indicating the number of
rows of columns that should be spanned.

%ﬁfﬁﬂ 4.10. Using rowspan

Use:

#iff] 4.11. Using colspan

Use:

42

= 4. SGML Markup

#iff] 4.12. Using rowgpan and cogan together

Use:

4.1.4. In—line elements
4.1.4.1. Emphasizing information

You have two levels of emphasis available in HIML, em and drong. em is
for a normal level of emphasis and drong indicates stronger emphasis.

Typically, em is rendered in italic and grong is rendered in bold. This

is not always the case, however, and you should not rely on it.

%ﬁﬁm 4.13. em and drong

Use:

43

In—line elements

this has been strongly emphasized.</p>

4.1.4.2. Bold and italics

Because HTML includes presentational markup, you can also indicate that
particular content should be rendered in bold or italic. The elements are
b and i respectively.

#iff 4.14. b and i

<p>This isin bold, while <i>this</i> is
initalics.</p>

4.1.4.3. Indicating fixed pitch text

If you have content that should be rendered in a fixed pitch (typewriter)
typeface, use tt (for “teletype”).

il 4.15. w

Use:

<p>This document was originally written by
Nik Clayton, who can be reached by email as
<tt>nik@FreeBSD.org</tt>.</p>

4.1.4.4. Content size

You can indicate that content should be shown in a larger or smaller font.
There are three ways of doing this.

1. Use big and gmdl around the content you wish to change size. These tags
can be nested, so <hig><big>Thisismuch bigger</big></big> is possible.

2.Use font with the gze attribute set to +1 or -1 respectively. This has
the same effect as using Ug or gmall. However, the use of this approach

is deprecated.

44

= 4. SGML Markup

3. Use font with the Sze attribute set to a number between 1 and 7. The

default font size is 3. This approach is deprecated.

#ifl 4.16. big, smal, and font

The following fragments all do the same thing.

<p>Thistext is <small>dlightly smaller</small>. But
thistext is <big>dlightly bigger</big>.</p>

<p>Thistext is dlightly smaller. But
thistext is dlightly bigger</font.</p>

<p>Thistext is dlightly smaller. But
thistext is dlightly bigger.</p>

4.1.5. Links

NETETN
@ TR
Links are also in—line elements.

4.1.5.1. Linking to other documents on the WWW

In order to include a link to another document on the WWW you must know

the URL of the document you want to link to.

The 1link is indicated with a, and the href attribute contains the URL of

the target document. The content of the element becomes the link, and is

normally indicated to the user in some way (underlining, change of color,

different mouse cursor when over the link, and so on).

#iffl 4.17. Using <ahref=".">

Use:

<p>More information is available at the

45

Links

FreeBSD web site.</p>

These links will take the user to the top of the chosen document.
4.1.5.2. Linking to other parts of documents

Linking to a point within another document (or within the same document)
requires that the document author include anchors that you can link to.

Anchors are indicated with @ and the name attribute instead of href.

#iffil 4.18. Using <aname=".>

Use:

<p><aname="paral">This paragraph can be referenced
in other links with the name <tt>paral</tt>.</p>

To 1ink to a named part of a document, write a normal link to that document,
but include the name of the anchor after a # symbol.

#3 4.19. Linking to a named part of another
document

Assume that the paral example resides in a document called foo.html .
<p>More information can be found in the

first paragraph of
<tt>foo.html</tt>.</p>

If you are linking to a named anchor within the same document then you can
omit the document's URL, and just include the name of the anchor (with
the preceding #) .

46

= 4. SGML Markup

#if 4.20. Linking to a named part of the same
document

Assume that the m]al example resides in this document:
<p>More information can be found in the

<ahref="#paral">first paragraph of this
document.</p>

4.2. DocBook

DocBook was originally developed by Hal. Computer Systems and O'Reilly
& Associates to be a DID for writing technical documentation 1. Since
1998 it is maintained by the DocBook Technical Committee. As such, and
unlike LinuxDoc and HTML, DocBook is very heavily oriented towards markup
that describes what something is, rather than describing how it should
be presented.

formal VS. informal
Some elements may exist in two forms, formal and

informal. Typically, the formal version of the element

will consist of a title followed by the informal version
of the element. The informal version will not have a
title.

The DocBook DID is available from the ports collection in the textproc/
docbook port. It is automatically installed as part of the textproc/
docprogj port.

4.2.1. FreeBSD extensions

The FreeBSD Documentation Project has extended the DocBook DTD by adding
some new elements. These elements serve to make some of the markup more
precise.

A short history can be found under http://www.oasis—open.org/committees/docbook/

intro.shtml.

47

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.oasis-open.org/committees/docbook/intro.shtml
http://www.oasis-open.org/committees/docbook/intro.shtml

Formal Public Identifier (FPI)

Where a FreeBSD specific element is listed below it is clearly marked.

Throughout the rest of this document, the term “DocBook” is used to mean
the FreeBSD extended DocBook DTD.

ijijﬁ:

{ AT

! There is nothing about these extensions that is FreeBSD
specific, it was Jjust felt that they were useful

enhancements for this particular project. Should anyone
from any of the other *nix camps (NetBSD, OpenBSD, Linux,
--+) be interested in collaborating on a standard DocBook
extension set, please get in touch with Documentation
Engineering Team <doceng@FreeBSD.org>.

The FreeBSD extensions are not (currently) in the ports collection. They
are stored in the FreeBSD CVS tree, as doc/share/xml/freebsd.dtd.

4.2.2. Formal Public Identifier (FPI)

In compliance with the DocBook guidelines for writing FPIs for DocBook
customizations, the FPI for the FreeBSD extended DocBook DTD is:

PUBLIC -"-//[FreeBSD//DTD DocBook V4.1-Based Extension//EN"

4.2.3. Document structure

DocBook allows you to structure your documentation in several ways. In the
FreeBSD Documentation Project we are using two primary types of DocBook
document: the book and the article.

A book is organized into Chepters. This is a mandatory requirement. There
may be parts between the book and the chapter to provide another layer of

organization. The Handbook is arranged in this way.

A chapter may (or may not) contain one or more sections. These are indicated
with the sectl element. If a section contains another section then use the

ct?2 element, and so on, up to Sectb.
Chapters and sections contain the remainder of the content.

An article is simpler than a book, and does not use chapters. Instead,
the content of an article is organized into one or more sections, using
the same sectl (and sect? and so on) elements that are used in books.

48

mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/share/xml/freebsd.dtd

= 4. SGML Markup

Obviously, you should consider the nature of the documentation you are
writing in order to decide whether it is best marked up as a book or an
article. Articles are well suited to information that does not need to
be broken down into several chapters, and that is, relatively speaking,
quite short, at up to 20-25 pages of content. Books are best suited to
information that can be broken up into several chapters, possibly with
appendices and similar content as well.

The FreeBSD tutorials are all marked up as articles, while this document,
the FreeBSD FAQ, and the FreeBSD Handbook are all marked up as books.

4.2.3.1. Starting a book

The content of the book is contained within the book element. As well
as containing structural markup, this element can contain elements that
include additional information about the book. This is either meta—
information, used for reference purposes, or additional content used to
produce a title page.

This additional information should be contained within bookinfo.

#iffl] 4.21. Boilerplate book With bookinfo

49

../../../../docs.html
../../../../doc/zh_TW.Big5/books/faq/index.html
../../../../doc/zh_TW.Big5/books/handbook/index.html

Document structure

4.2.3.2. Starting an article

The content of the article is contained within the article element. As well
as containing structural markup, this element can contain elements that
include additional information about the article. This is either meta—
information, used for reference purposes, or additional content used to
produce a title page.

This additional information should be contained within articleinfo.

#iff] 4.22. Boilerplate artide with artideinfo

50

= 4. SGML Markup

4.2.3.3. Indicating chapters

Use chapter to mark up your chapters. Each chapter has a mandatory ftitle.

Articles do not contain chapters, they are reserved for books.

#i 4.23. A simple chapter

<chapter>
<title>The chapter's title</title>

</chapter>

A chapter cannot be empty; it must contain elements in addition to title.

If you need to include an empty chapter then just use an empty paragraph.

#7 4.24. Empty chapters

<chapter>
<title>Thisis an empty chapter</title>

<para></para>
</chapter>

4.2.3.4. Sections below chapters

In books, chapters may (but do not need to) be broken up into sections,
subsections, and so on. In articles, sections are the main structural
element, and each article must contain at least one section. Use the
sctn element. The N indicates the section number, which identifies the
section level.

The first sectn is sectl. You can have one or more of these in a chapter.

They can contain one or more Sect?2 elements, and so on, down to Sectb.

#if7 4.25. Sections in chapters

<chapter>

51

Document structure

NETEETN
ey
This example includes section numbers in the section

titles. You should not do this in your documents. Adding
the section numbers is carried out by the stylesheets
(of which more later), and you do not need to manage

them yourself.

4.2.3.5. Subdividing using parts

You can introduce another layer of organization between booOk and chapter
with one or more pats. This cannot be done in an aticle.

52

= 4. SGML Markup

4.2.4. Block elements

4.2.4.1. Paragraphs
DocBook supports three types of paragraphs: formdpara, para, and simpara.

Most of the time you will only need to use para. formdpaa includes a
title element, and Smpara disallows some elements from within para. Stick
with para.

Hif 4.26. para

Use:

Appearance:

This is a paragraph. It can contain just about any other element.

4.2.4.2. Block quotations

A block quotation is an extended quotation from another document that
should not appear within the current paragraph. You will probably only
need it infrequently.

53

Block elements

Blockquotes can optionally contain a title and an attribution (or they
can be left untitled and unattributed).

#Hifl 4.27. blockquote

Use:
<para>A small excerpt from the US Constitution:</para>

<blockquote>
<title>Preamble to the Constitution of the United States</title>

<attribution>Copied from aweb site somewhere</attribution>

<para>We the People of the United States, in Order to form a more perfect
Union, establish Justice, insure domestic Tranquility, provide for the
common defence, promote the general Welfare, and secure the Blessings
of Liberty to ourselves and our Posterity, do ordain and establish this
Constitution for the United States of America.</para>
</blockquote>

Appearance:

Preamble to the Constitution of the United States

We the People of the United States, in Order
to form a more perfect Union, establish Justice,
insure domestic Tranquility, provide for the common
defence, promote the general Welfare, and secure the
Blessings of Liberty to ourselves and our Posterity,
do ordain and establish this Constitution for the
United States of America.

—Copied from a web site somewhere

4.2.4.3. Tips, notes, warnings, cautions, important information and
sidebars.

You may need to include extra information separate from the main body
of the text. Typically this is “meta” information that the user should
be aware of.

Depending on the nature of the information, one of tip, note, warning.
caution, and important should be used. Alternatively, if the information is
related to the main text but is not one of the above, use Sdebar.

54

= 4. SGML Markup

The circumstances in which to choose one of these elements over another
is unclear. The DocBook documentation suggests:

+ A Note is for information that should be heeded by all readers.
+ An Important element is a variation on Note.

+ A Caution is for information regarding possible data loss or software

damage.

+ A Warning is for information regarding possible hardware damage or injury
to life or 1limb.

#if5 4.28. warning

Use:

<warning>
<para>Installing FreeBSD may make you want to delete Windows from your
hard disk.</para>
</warning>

oy
=

T

Installing FreeBSD may make you want to delete Windows
from your hard disk.

4.2.4.4. Lists and procedures

You will often need to list pieces of information to the user, or present
them with a number of steps that must be carried out in order to accomplish

a particular goal.
In order to do this, use itemizedlist, orderedlist. or procedure”

itemizedlist and orderedlig are similar to their counterparts in HTML, ul and
ol. Each one consists of one or more ligitem elements, and each ligitem

QThcro are other types of 1list element in DocBook, but we are not concerned with those

at the moment.

55

Block elements

contains one or more block elements. The ligitem elements are analogous to
HTIML's |li tags. However, unlike HTML, they are required.

ptcemje is slightly different. It consists of geps, which may in turn
consists of more Seps or subaeps. Each gep contains block elements.

#iffl 4.29. itemizedlit, orderedlit, and procedure

Use:

Appearance:

+ This is the first itemized item.

+ This is the second itemized item.

56

= 4. SGML Markup

1. This is the first ordered item.

2.This is the second ordered item.

2.

3.

Do this.

Then do this.

And now do this.

4.2.4.5. Showing file samples

If you want to show a fragment of a file (or perhaps a complete file) to
the user, wrap it in the programliging element.

White space and line breaks within progra‘nlising are significant.

particular, this means that the opening tag should appear on the same line

as the first line of the output, and the closing tag should appear

the same line as the last line of the output,

lines may be included.

In

on

otherwise spurious blank

%@Wﬂ 4.30. programlisting

Use:

Notice how the angle brackets in the #indude line need to be

referenced by their entities instead of being included literally.
Appearance:

When you have finished, your program should look like this:

57

Block elements

4.2.4.6. Callouts

A callout is a mechanism for referring back to an earlier piece of text or
specific position within an earlier example without linking to it within
the text.

To do this, mark areas of interest in your example (programlising. literdlayout.
or whatever) with the cO element. Each element must have a unique id
assigned to it. After the example include a cdloutlig that refers back to
the example and provides additional commentary.

#if 4.31. o and calloutlist

Appearance:

58

= 4. SGML Markup

When you have finished, your program should look like this:

1

(1] Includes the standard 10 header file.
@ Specifies that man() returns an int.

©® The printf() call that writes helo,world to standard output.

4.2.4.7. Tables

Unlike HTML, you do not need to use tables for layout purposes, as the
stylesheet handles those issues for you. Instead, just use tables for
marking up tabular data.

In general terms (and see the DocBook documentation for more detail) a
table (which can be either formal or informal) consists of a table element.
This contains at least one tgroup element, which specifies (as an attribute)
the number of columns in this table group. Within the tablegroup you can
then have one thead element, which contains elements for the table headings
(column headings), and one tbody which contains the body of the table.

Both tgroup and thead contain row elements, which in turn contain entry
elements. Each entry element specifies one cell in the table.

#ifF 4.32. informaltable

Use:

59

Block elements

Appearance:

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

Always use the pgwide attribute with a value of 1 with the informatable
element. A bug in Internet Explorer can cause the table to render
incorrectly if this is omitted.

If you do not want a border around the table the frame attribute can be
added to the informaltable element with a value of none (i.e., <informatable
frame="none">) .

#3f5 4.33. Tables where frame="none"

Appearance:

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

4.2.4.8. Examples for the user to follow

A lot of the time you need to show examples for the user to follow.
Typically, these will consist of dialogs with the computer; the user types
in a command, the user gets a response back, they type in another command,
and so on.

60

= 4. SGML Markup

A number of distinct elements and entities come into play here.

creen
Everything the user sees in this example will be on the computer
screen, so the next element is SCreen.

Within screen, white space is significant.

prompt, &prompt.root; and &prompt.user;
Some of the things the user will be seeing on the screen are prompts
from the computer (either from the operating system, command shell,
or application). These should be marked up using prompt.

As a special case, the two shell prompts for the normal user and
the root user have been provided as entities. Every time you want to
indicate the user is at a shell prompt, use one of &prompt.root; and
&prompt.user; as necessary. They do not need to be inside prompt.

R
&prompt.root; and &prompt.user; are FreeBSD extensions

to DocBook, and are not part of the original DID.

userinput
When displaying text that the user should type in, wrap it in usaﬁnput
tags. It will probably be displayed differently to the user.

B 4.34. soreen, prompt, and userinput

Use:

<screen>& prompt.user; <userinput>ls --1</userinput>
fool

foo2

foo3

& prompt.user; <userinput>ls --1 -| grep foo2</userinput>
foo2

& prompt.user; <userinput>su</userinput>
<prompt>Password: </prompt>

& prompt.root; <userinput>cat foo2</userinput>
Thisisthefile called -'foo2'</screen>

Appearance:

61

In—line elements

%ls--1
fool
foo2
foo3

%Is--1-| grep foo2
foo2

% su

Password:

cat foo2
Thisisthefile caled -'foo2'

NETECUN
EE
@ Even though we are displaying the contents of the file

foo2. it is not marked up as programlisting. Reserve
programlisting for showing fragments of files outside the

context of user actions.

4.2.5. In—line elements
4.2.5.1. Emphasizing information

When you want to emphasize a particular word or phrase, use e"npha's. This
may be presented as italic, or bold, or might be spoken differently with
a text—to—speech system.

There is no way to change the presentation of the emphasis within your
document, no equivalent of HIML's b and i. If the information you are
presenting is important then consider presenting it in importa’rt rather
than emphasis.

#if 4.35. emphasis

Use:

<para>FreeBSD is without doubt <emphasi s>the</emphasis>
premiere Unix like operating system for the Intel architecture.</para>

Appearance:

62

= 4. SGML Markup

FreeBSD is without doubt the premiere Unix like operating system
for the Intel architecture.

4.2.5.2. Quotations

To quote text from another document or source, or to denote a phrase that
is used figuratively, use quote. Within a quote tag, you may use most of

the markup tags available for normal text.

#iffl 4.36. Quotations

Use:

<para>However, make sure that the search does not go beyond the
<quote>boundary between local and public administration</quote>,
as RFC 1535 cdllsit.</para>

Appearance:

However, make sure that the search does not go beyond the “boundary
between local and public administration” , as RFC 1535 calls it.

4.2.5.3. Keys, mouse buttons, and combinations

To refer to a specific key on the keyboard, use kQ/C&‘p. To refer to a mouse
button, use mousebutton. And to refer to combinations of key presses or
mouse clicks, wrap them all in keycombo.

keycombo has an attribute called action. which may be one of click. double-
cdick, other, press. seg. or smul. The last two values denote whether the

keys or buttons should be pressed in sequence, or simultaneously.

The stylesheets automatically add any connecting symbols, such as +,

between the key names, when wrapped in keycombo.

%ﬁﬁm 4.37. Keys, mouse buttons, and
combinations

Use:

<para>To switch to the second virtual terminal, press
<keycombo action="simul"><keycap>Alt</keycap>

63

In—line elements

<keycap>F1</keycap></keycombo>.</para>

<para>To exit <command>vi</command> without saving your work, type
<keycombo action="seq"><keycap>Esc</keycap><keycap>:</keycap>
<keycap>q</keycap><keycap>!</keycap></keycombo>.</para>

<para>My window manager is configured so that
<keycombo action="simul"><keycap>Alt</keycap>
<mousebutton>right</mousebutton>
</keycombo> mouse button is used to move windows.</para>
Appearance:
To switch to the second virtual terminal, press Alt+F1.

To exit Vi without saving your work, type Esc : q !.

My window manager is configured so that Alt+right mouse button is
used to move windows.

4.2.5.4. Applications, commands, options, and cites

You will frequently want to refer to both applications and commands when
writing for the Handbook. The distinction between them is simple: an
application is the name for a suite (or possibly just 1) of programs that
fulfil a particular task. A command is the name of a program that the

user can run.

In addition, you will occasionally need to list one or more of the options
that a command might take.

Finally, you will often want to list a command with its manual section
number, in the “command(number)” format so common in Unix manuals.

Mark up application names with gpplication.

When you want to list a command with its manual section number (which
should be most of the time) the DocBook element is citerefentry. This will
contain a further two elements, refentrytitte and manvolnum. The content of
refentrytitte is the name of the command, and the content of manvolnum is

the manual page section.

This can be cumbersome to write, and so a series of general entities have
been created to make this easier. Each entity takes the form & man.manua-

page.manud-section; .

The file that contains these entities is in dog/share/xml/manrefsent, and

can be referred to using this FPI:

64

= 4. SGML Markup

Therefore, the introduction to your documentation will probably look like
this:

Use command when you want to include a command name “in—line” but

present it as something the user should type in.
Use opﬁon to mark up the options which will be passed to a command.

When referring to the same command multiple times in close proximity it
is preferred to use the &man.command.section; notation to markup the first
reference and use command to markup subsequent references. This makes

the generated output, especially HIML, appear visually better.

This can be confusing, and sometimes the choice is not always clear.
Hopefully this example makes it clearer.

#f 4.38. Applications, commands, and
options.

Use:

In—line elements

Appearance:
Sendmail is the most widely used Unix mail application.

Sendmail includes the sendmail(8), mailq(8), and newaliases(®)

programs.

One of the command line parameters to sendmail(8), —bp, will display
the current status of messages in the mail queue. Check this on the
command line by running sendmail -bp.

“_Ijzin
@ .
Notice how the &man.command.section; notation is easier

to follow.

4.2.5.5. Files, directories, extensions

Whenever you wish to refer to the name of a file, a directory, or a file
extension, use filename.

& 4.39. filename

Use:

<para>The SGML source for the Handbook in English can be
found in <filename>/usr/doc/en/handbook/</filename>. Thefirst
fileis called <filename>handbook.xml</filename> in that
directory. You should also see a <filename>Makefile</filename>
and a number of files with a <filename>.ent</filename>
extension.</para>

Appearance:

The SGML source for the Handbook in English can be found in [/usr/doc/
en/handbook/. The first file is called handbook.xml in that directory.
You should also see a Makefile and a number of files with a .ent

extension.

66

http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=mailq&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=newaliases&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8

= 4. SGML Markup

4.2.5.6. The name of ports

FreeBSD extension
S These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

You might need to include the name of a program from the FreeBSD Ports
Collection in the documentation. Use the filename tag with the role attribute
set to pa:kage to identify these. Since ports can be installed in any
number of locations, only include the category and the port name; do not
include [usr/ports.

#if5] 4.40. filename tag with package role

Use:

<para>Install the <filename role="package">net/ethereal </filename> port to view network -
traffic.</para>

Appearance:

Install the net/ethereal port to view network traffic.

4.2.5.7. Devices

FreeBSD extension
@ These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

When referring to devices you have two choices. You can either refer to
the device as it appears in /dev, or you can use the name of the device as

it appears in the kernel. For this latter course, use devicename.

Sometimes you will not have a choice. Some devices, such as networking
cards, do not have entries in /dev, or the entries are markedly different

from those entries.

67

In—line elements

%ﬁ{ﬂ 4.41. devicename

Use:

<para><devicename>sio</devicename> is used for serial
communication in FreeBSD. <devicename>sio</devicename> manifests
through a number of entries in <filename>/dev</filename>, including
<filename>/dev/ttydO</filename> and <filename>/dev/cuaal</filename>.</para>

<para>By contrast, the networking devices, such as
<devicename>ed0</devicename> do not appear in <filename>/dev</filename>.</para>

<para>In MS-DOS, thefirst floppy driveisreferred to as

<devicename>a:</devicename>. In FreeBSD itis
<filename>/dev/fd0</filename>.</para>

Appearance:

S0 is used for serial communication in FreeBSD. 90 manifests through
a number of entries in /dev, including /dev/ttyd0 and /dev/cuag0.

By contrast, the networking devices, such as edQ do not appear in

/dev.

In MS-DOS, the first floppy drive is referred to as &. In FreeBSD
it is /dev/fdO.

4.2.5.8. Hosts, domains, IP addresses, and so forth

S FreeBSD extension
These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

You can markup identification information for networked computers (hosts)
in several ways, depending on the nature of the information. All of them
use hostid as the element, with the role attribute selecting the type of
the marked up information.

68

= 4. SGML Markup

No role attribute, or role="hostname"
With no role attribute (i.e., hogdid.../hostid) the marked up information
is the simple hostname, such as fregfdl or wcarchive. You can explicitly
specify this with role="hostname".

role="domainname'
The text is a domain name, such as FreeBSD,org or ngo.org.uk. There is

no hostname component.

role="fgdn"
The text is a Fully Qualified Domain Name, with both hostname and

domain name parts.

role="ipaddr"

The text is an IP address, probably expressed as a dotted quad.

role="ip6addr"

The text is an IPv6 address.

role="netmask"
The text is a network mask, which might be expressed as a dotted quad,

a hexadecimal string, or as a / followed by a number.

role="mac"
The text is an Ethernet MAC address, expressed as a series of 2 digit
hexadecimal numbers separated by colons.

#5] 4.42. hosid and roles

Use:

<para>The local machine can always be referred to by the
name <hostid>local host</hostid>, which will have the | P address
<hostid role="ipaddr">127.0.0.1</hostid>.</para>

<para>The <hostid role="domainname">FreeBSD.org</hostid> domain
contains a number of different hosts, including
<hostid role="fqdn">freefal|.FreeBSD.org</hostid> and
<hostid role="fqdn">bento.FreeBSD.org</hostid>.</para>

<para>When adding an IP alias to an interface (using
<command>ifconfig</command>) <emphasis>always</emphasis> use a
netmask of <hostid role="netmask">255.255.255.255</hostid>
(which can also be expressed as <hostid
role="netmask" >0xffffffff</hostid>.</para>

69

In—line elements

<para>The MAC address uniquely identifies every network card
in existence. A typical MAC address looks like <hostid
role="mac">08:00:20:87:¢&f:d0</hostid>.</para>

Appearance:

The local machine can always be referred to by the name |ocahost,
which will have the IP address 127.0.0.1.

The FreeBSD.org domain contains a number of different hosts,
including freefdl.FreeBSD.org and bento.FreeBSD.org.

When adding an IP alias to an interface (using ifconfig) always use a
netmask of 255.255.255.255 (which can also be expressed as Oxffffffff.

The MAC address uniquely identifies every network card in existence.
A typical MAC address looks like 08:00:20:87:€f:d0.

4.2.5.9. Usernames

FreeBSD extension
S These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

When you need to refer to a specific username, such as root or bin, use

username.

#F] 4.43. username

Use:

<para>To carry out most system administration functions you
will need to be <username>root</username>.</para>

Appearance:

To carry out most system administration functions you will need
to be root.

70

= 4. SGML Markup

4.2.5.10. Describing Makefiles

FreeBSD extension
@ These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

Two elements exist to describe parts of Makefiles, maketarget and makevar.

md(da’gd identifies a build target exported by a Makefile that can be
given as a parameter to make. mekevar identifies a variable that can be
set (in the environment, on the make command line, or within the Makefile)

to influence the process.

B 4.44. maketarge and makevar

Use:

<para>Two common targets in a <filename>M akefile</filename>
are <maketarget>all</maketarget> and <maketarget>clean</maketarget>.</para>

<para>Typically, invoking <maketarget>al|</maketarget> will rebuild the
application, and invoking <maketarget>clean</maketarget> will remove
the temporary files (<filename>.o</filename> for example) created by
the build process.</para>

<para><maketarget>clean</maketarget> may be controlled by a number of

variables, including <makevar>CL OBBER</makevar> and
<makevar>RECURSE</makevar>.</para>

Appearance:
Two common targets in a Makefile are dl and clean.

Typically, invoking all will rebuild the application, and invoking
clean will remove the temporary files (.0 for example) created by

the build process.

clean may be controlled by a number of variables, including CLOBBER
and RECURSE.

71

In—line elements

4.2.5.11. Literal text

You will often need to include “literal” text in the Handbook. This is
text that is excerpted from another file, or which should be copied from
the Handbook into another file verbatim.

Some of the time, programlisting will be sufficient to denote this text.
programlisting is not always appropriate, particularly when you want to

include a portion of a file “in—line” with the rest of the paragraph.

On these occasions, use literd.

i 4.45. literal

Use:

<para>The <literal>maxusers 10</literal> line in the kernel
configuration file determines the size of many system tables, and is
arough guide to how many simultaneous logins the system will
support.</para>

Appearance:

The maxusars 10 line in the kernel configuration file determines
the size of many system tables, and is a rough guide to how many
simultaneous logins the system will support.

4.2.5.12. Showing items that the user must fill in

There will often be times when you want to show the user what to do,
or refer to a file, or command line, or similar, where the user cannot
simply copy the examples that you provide, but must instead include some
information themselves.

replacesble is designed for this eventuality. Use it inside other elements
to indicate parts of that element's content that the user must replace.

#Eif 4.46. replaceable

Use:

<informalexample>
<screen>& prompt.user; <userinput>man <replaceable>command</replaceable></
userinput></screen>

72

= 4. SGML Markup

</informal example>

Appearance:

% man command

replacesble can be used in many different elements, including literd.
This example also shows that replaceable should only be wrapped around

the content that the user is meant to provide. The other content
should be left alone.

Use:

<para>The <literal>maxusers <repl aceable>n</replaceable></literal>
line in the kernel configuration file determines the size of many system
tables, and is arough guide to how many simultaneous logins the system will
support.</para>

<para>For a desktop workstation, <literal>32</literal> is agood value
for <replaceable>n</replaceable>.</para>

Appearance:

The maxusarsn line in the kernel configuration file determines
the size of many system tables, and is a rough guide to how many
simultaneous logins the system will support.

For a desktop workstation, 32 is a good value for n.

4.2.5.13. Quoting system errors

You might want to show errors generated by FreeBSD. Mark these with
grorname. This indicates the exact error that appears.

%ﬁ{ﬂ 4.47. erorname

Use:

<screen><errorname>Panic: cannot mount root</errorname></screen> -

Appearance:

Panic: cannot mount root

73

Images

4.2.6. Images

A Image support in the documentation is currently

extremely experimental. I think the mechanisms described

here are unlikely to change, but that is not guaranteed.

You will also need to install the graphics/ImageMagick
port, which is used to convert between the different
image formats. This is a big port, and most of it is not
required. However, while we are working on the Makefiles
and other infrastructure it makes things easier. This
port is not in the textproc/docproj meta port, you must
install it by hand.

The best example of what follows in practice is the
doc/en_US.I1SO8859-Varticlesvm-design/ document. If you are
unsure of the description that follows, take a look at
the files in that directory to see how everything hangs
together. Experiment with creating different formatted
versions of the document to see how the image markup

appears in the formatted output.

4.2.6.1. Image formats

We currently support two formats for images. The format you should use
will depend on the nature of your image.

For images that are primarily vector based, such as network diagrams, time
lines, and similar, use Encapsulated Postscript, and make sure that your
images have the .g0S extension.

For bitmaps, such as screen captures, use the Portable Network Graphic
format, and make sure that your images have the .png extension.

These are the only formats in which images should be committed to the
CVS repository.

Use the right format for the right image. It is to be expected that your
documentation will have a mix of EPS and PNG images. The Makefiles ensure
that the correct format image is chosen depending on the output format
that you use for your documentation. Do not commit the same image to the
repository in two different formats.

74

= 4. SGML Markup

A It is anticipated that the Documentation Project will

switch to using the Scalable Vector Graphic (SVG) format
for vector images. However, the current state of SVG
capable editing tools makes this impractical.

4.2.6.2. Markup

The markup for an image is relatively simple. First, markup a mediaobject.
The mediaobject can contain other, more specific objects. We are concerned

with two, the imageobject and the textobject.

You should include one imageobject, and two textobject elements. The imageobject
will point to the name of the image file that will be used (without
the extension). The t@(tobject elements contain information that will be

presented to the user as well as, or instead of, the image.
There are two circumstances where this can happen.

- When the reader is viewing the documentation in HTML. In this case,
each image will need to have associated alternate text to show the
user, typically whilst the image is loading, or if they hover the mouse
pointer over the image.

+ When the reader is viewing the documentation in plain text. In this
case, each image should have an ASCII art equivalent to show the user.

An example will probably make things easier to understand. Suppose you
have an image, called figl,png, that you want to include in the document.
This image is of a rectangle with an A inside it. The markup for this
would be as follows.

<mediaobj ect>
<imageobject>
<imagedata fileref="figl"> @
</imageobject>

<textobject>
<literallayout class="monospaced">+--------------- +0
A
o +</literallayout>
</textobject>

<textobject>

75

Images

<phrase>A picture</phrase> €
</textobject>
</mediaobject>

© Include an imagedata element inside the imageohject element. The fileref
attribute should contain the filename of the image to include, without
the extension. The stylesheets will work out which extension should
be added to the filename automatically.

® The first textobject should contain a literdllayout element, where the
class attribute is set to monospaced. This is your opportunity to
demonstrate your ASCII art skills. This content will be used if the
document is converted to plain text.

Notice how the first and last lines of the content of the literalayout
element butt up next to the element's tags. This ensures no extraneous
white space is included.

® The second te(tobject should contain a single phrase element. The contents
of this will become the dAlt attribute for the image when this document
is converted to HTML.

4.2.6.3. Makefile entries

Your images must be listed in the Maéakefile in the IMAGES variable. This
variable should contain the name of all your source images. For example,
if you have created three figures, figleps, fig2.png. fig3.png. then your
Makefile should have lines like this in it.

IMAGES= figl.eps fig2.png fig3.png

or

IMAGES= figl.eps
IMAGES+= fig2.png
IMAGES+= fig3.png

Again, the Makefile will work out the complete list of images it needs
to build your source document, you only need to list the image files
you provided.

4.2.6.4. Images and chapters in subdirectories

You must be careful when you separate your documentation into smaller files
(see ffi#3.7.1, “Using general entities to include files”) in different
directories.

76

= 4. SGML Markup

Suppose you have a book with three chapters, and the chapters are stored
in their own directories, called chapterl/chapter.xml. chapter2/chapterxml, and

chapter3/chapter.xml. If each chapter has images associated with it, I suggest
you place those images in each chapter's subdirectory (chapterd/. chapter?/.
and chapter3)) .

However, if you do this you must include the directory names in the IMAGES
variable in the Makefile, and you must include the directory name in the
imagedata element in your document.

For example, if you have chapterd/figl.png. then chapterl/chapter.xml should

contain:

<mediaobj ect>
<imageobject>
<imagedata fileref="chapter1/figl"> @
</imageobject>

</mediaobject>
©® The directory name must be included in the fileref attribute.

The Makefile must contain:

IMAGES= chapterl/figl.png

Then everything should Jjust work.

4.2.7. Links

=7
=]

EE
Links are also in—line elements.

4.2.7.1. Linking to other parts of the same document

Linking within the same document requires you to specify where you are
linking from (i.e., the text the user will click, or otherwise indicate,
as the source of the 1link) and where you are linking to (the 1link's
destination) .

7

Links

Each element within DocBook has an attribute called id. You can place text

in this attribute to uniquely name the element it is attached to.
This value will be used when you specify the link source.

Normally, you will only be linking to chapters or sections, so you would
add the id attribute to these elements.

#ifl 4.48. idon chaptersand sections

<chapter id="chapterl">
<title>Introduction</title>

<para>Thisisthe introduction. It contains a subsection,
which isidentified as well.</para>

<sectl id="chapterl-sect1">
<title>Sub-sect 1</title>

<para>This s the subsection.</para>
</sect1l>
</chapter>

Obviously, you should use more descriptive values. The values must be
unique within the document (i.e., not Jjust the file, but the document the
file might be included in as well). Notice how the id for the subsection
is constructed by appending text to the id of the chapter. This helps to
ensure that they are unique.

If you want to allow the user to Jjump into a specific portion of the
document (possibly in the middle of a paragraph or an example), use anchor.

This element has no content, but takes an id attribute.

ﬁ[ﬂﬁﬂ 4.49. anchor

<para>This paragraph has an embedded
<anchor id="paral">link target init. It will not show upin
the document.</para>

78

= 4. SGML Markup

When you want to provide the user with a link they can activate (probably
by clicking) to go to a section of the document that has an id attribute,
you can use either xref or link.

Both of these elements have a linkend attribute. The value of this attribute
should be the value that you have used in a id attribute (it does not
matter if that value has not yet occurred in your document: this will work
for forward links as well as backward links).

If you use xref then you have no control over the text of the link. It

will be generated for you.

#if] 4.50. Using xref

Assume that this fragment appears somewhere in a document that
includes the id example:

<para>More information can be found
in <xref linkend="chapter1">.</para>

<para>More specific information can be found
in <xref linkend="chapterl-sect1">.</para>

The text of the link will be generated automatically, and will look
like (emphasized text indicates the text that will be the 1link):

More information can be found in Chapter One.

More specific information can be found in the section
called Sub—sect 1.

Notice how the text from the link is derived from the section title or
the chapter number.

‘/ JN
This means that you cannot use Xref to link to an id

attribute on an anchor element. The anchor has no content,
so the Xref cannot generate the text for the link.

79

Links

If you want to control the text of the 1link then use link. This element

wraps content, and the content will be used for the link.

#ifil 4.51. Using link

Assume that this fragment appears somewhere in a document that
includes the id example.

<para>More information can be found in
<link linkend="chapter1">the first chapter</link>.</para>

<para>More specific information can be found in
<link linkend="chapter1-sect1">this</link> section.</para>

This will generate the following (emphasized text indicates the
text that will be the 1link):

More information can be found in the first chapter.

More specific information can be found in this
section.

l_lj:_:)
@ AN
That last one is a bad e}\alllple. Neve use words like

“this” or “here” as the source for the link. The
reader will need to hunt around the surrounding context
to see where the link is actually taking them.

\/Eﬁa
@ I
You can use Ilnk to include a link to an |d on an EnC'IOI

element, since the link content defines the text that
will be used for the link.

80

= 4. SGML Markup

4.2.7.2. Linking to documents on the WWW

Linking to external documents is much simpler, as long as you know the URL
of the document you want to link to. Use ulink. The url attribute is the
URL of the page that the 1link points to, and the content of the element
is the text that will be displayed for the user to activate.

%ﬁﬁ” 4.52. ulink

Use:
<para>Of course, you could stop reading this document and

go to the <ulink url="&url .base;/index.html">FreeBSD
home page</ulink> instead.</para>

Appearance:

Of course, you could stop reading this document and go to the FreeBSD
home page instead.

81

../../../../index.html
../../../../index.html

= 5. * Stylesheets

SGML says nothing about how a document should be displayed to the user,
or rendered on paper. To do that, various languages have been developed
to describe stylesheets, including DynaText, Panorama, SPICE, JSSS, FOSI,
CSS, and DSSSL.

For DocBook, we are using stylesheets written in DSSSL. For HTML we are
using CSS.

5.1. * DSSSL

The Documentation Project uses a slightly customized version of Norm
Walsh's modular DocBook stylesheets.

These can be found in textproc/dsssl—docbook—modular.

The modified stylesheets are not in the ports system. Instead they are
part of the Documentation Project source repository, and can be found
in doc/share/xml/freebsd.dd. It is well commented, and pending completion of
this section you are encouraged to examine that file to see how some of
the available options in the standard stylesheets have been configured
in order to customize the output for the FreeBSD Documentation Project.
That file also contains examples showing how to extend the elements that
the stylesheet understands, which is how the FreeBSD specific elements
have been formatted.

5.2. CSS

Cascading Stylesheets (CSS) are a mechanism for attaching style information
(font, weight, size, color, and so forth) to elements in an HTML document
without abusing HTML to do so.

5.2.1. The Web site (HTML documents)

The FreeBSD web site does not currently use CSS. Unfortunately, the look
and feel is constructed using abuses of HIML of varying degrees. This
should be fixed, and would be a good project for someone looking to
contribute to the documentation project.

The DocBook documents

5.2.2. The DocBook documents

The FreeBSD DSSSLL stylesheets include a reference to a stylesheet,
dochook.css, which is expected to appear in the same directory as the HTML
files. The project—wide CSS file is copied from doc/share/misc/dochook.css

when documents are converted to HIML, and is installed automatically.

84

= 6. Structuring documents
under doc/

The dog/ tree is organized in a particular fashion, and the documents that
are part of the FDP are in turn organized in a particular fashion. The
aim is to make it simple to add new documentation into the tree and:

1. make it easy to automate converting the document to other formats:

2. promote consistency between the different documentation organizations,
to make it easier to switch between working on different documents:

3.make it easy to decide where in the tree new documentation should be

placed.

In addition, the documentation tree has to accommodate documentation that
could be in many different languages and in many different encodings. It
is important that the structure of the documentation tree does not enforce
any particular defaults or cultural preferences.

6.1. The top level, doc/

There are two types of directory under doc/, each with very specific
directory names and meanings.

Directory: sharel

Meaning: Contains files that are not specific to the various translations
and encodings of the documentation. Contains subdirectories to further
categorize the information. For example, the files that comprise the
make (1) infrastructure are in sharelmk, while the additional SGML support
files (such as the FreeBSD extended DocBook DTD) are in share/xml.
Directory: lang.encoding/

Meaning: One directory exists for each available translation and encoding
of the documentation, for example en USISO8859-1/ and zh TW.Big5/. The
names are long, but by fully specifying the language and encoding we
prevent any future headaches should a translation team want to provide
the documentation in the same language but in more than one encoding.
This also completely isolates us from any problems that might be caused

by a switch to Unicode.

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

The lang.encoding/ directories

6.2. The lang.encoding/ directories

These directories contain the documents themselves. The documentation is
split into up to three more categories at this level, indicated by the
different directory names.

Directory: articles

Contents: Documentation marked up as a DocBook article (or equivalent).
Reasonably short, and broken up into sections. Normally only available
as one HTML file.

Directory: books

Contents: Documentation marked up as a DocBook book (or equivalent). Book
length, and broken up into chapters. Normally available as both one large
HTML file (for people with fast connections, or who want to print it easily
from a browser) and as a collection of linked, smaller files.

Directory: man

Contents: For translations of the system manual pages. This directory will
contain one or more mann directories, corresponding to the sections that

have been translated.

Not every lang.encoding directory will contain all of these directories. It
depends on how much translation has been accomplished by that translation
team.

6.3. Document specific information

This section contains specific notes about particular documents managed
by the FDP.

6.3.1. The Handbook
books/handbook/

The Handbook is written to comply with the FreeBSD DocBook extended DTD.

The Handbook is organized as a DocBook book. It is then divided into parts.
each of which may contain several ChapK!s. ChqﬁeS are further subdivided
into sections (sectl) and subsections (sect?., sect3) and so on.

6.3.1.1. Physical organization

There are a number of files and directories within the handbook directory.

86

= 6. Structuring documents under doc/

[Siil { N
The Handbook's organization may change over time, and

this document may lag in detailing the organizational
changes. If you have any questions about how the Handbook
is organized, please contact the FreeBSD documentation
project EIEAmIE.

6.3.1.1.1. Makefile

The Makefile defines some variables that affect how the SGML source is
converted to other formats, and lists the various source files that make
up the Handbook. It then includes the standard doc.projectmk file, to bring
in the rest of the code that handles converting documents from one format
to another.

6.3.1.1.2. book.xml

This is the top level document in the Handbook. It contains the Handbook's
DOCTYPE declaration, as well as the elements that describe the Handbook's
structure.

bookxml uses parameter entities to load in the files with the .ent
extension. These files (described later) then define general entities that
are used throughout the rest of the Handbook.

6.3.1.1.3. directory/chapter.xml
Each chapter in the Handbook is stored in a file called chgpterxml in a
separate directory from the other chapters. Each directory is named after

the value of the id attribute on the chapter element.

For example, if one of the chapter files contains:

<chapter id="kernelconfiguration">

</chapter>

then it will be called chapterxml in the kernelconfiguration directory. In
general, the entire contents of the chapter will be held in this file.

87

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

The Handbook

When the HTML version of the Handbook is produced, this will vyield
kerndconfiguration.html. This is because of the id value, and is not related

to the name of the directory.

In earlier versions of the Handbook the files were stored in the same
directory as bookxml, and named after the value of the id attribute on
the file's Chqdf{ element. Moving them into separate directories prepares
for future plans for the Handbook. Specifically, it will soon be possible
to include images in each chapter. It makes more sense for each image to
be stored in a directory with the text for the chapter than to try to keep
the text for all the chapters, and all the images, in one large directory.
Namespace collisions would be inevitable, and it is easier to work with
several directories with a few files in them than it is to work with one
directory that has many files in it.

A brief look will show that there are many directories with individual

chagpterxml files, including basicg/chapterxml. introduction/chapterxml, and
printing/chapter.xml .

A Chapters and/or directories should not be named in

a fashion that reflects their ordering within the

Handbook. This ordering might change as the content
within the Handbook is reorganized: this sort of
reorganization should not (generally) include the need
to rename files (unless entire chapters are being
promoted or demoted within the hierarchy).

Each ChapELXnﬂ file will not be a complete SGML document. In particular,
they will not have their own DOCTYPE lines at the start of the files.

This is unfortunate as it makes it impossible to treat these as generic
SGML files and simply convert them to HTML, RTF, PS, and other formats
in the same way the main Handbook is generated. This would force you to
rebuild the Handbook every time you want to see the effect a change has
had on just one chapter.

88

= 7. The Documentation
Build Process

This chapter's main purpose is to clearly explain how the documentation
build process is organized, and how to affect modifications to this
process.

After you have finished reading this chapter you should:

+ Know what you need to build the FDP documentation, in addition to those
mentioned in the SGML tools chapter.

- Be able to read and understand the make instructions that are present
in each document's Makefiles, as well as an overview of the doc.project.mk

includes.

- Be able to customize the build process by using make variables and make
targets.

7.1. The FreeBSD Documentation Build Toolset
Here are your tools. Use them every way you can.

+ The primary build tool you will need is make, but specifically Berkeley
Make.

+ Package building is handled by FreeBSD's pkg create. If you are not
using FreeBSD, you will either have to live without packages, or compile
the source yourself.

- gzip is needed to create compressed versions of the document. bzip2
compression and zip archives are also supported. tar is supported, but
package building demands it.

+ install is the default method to install the documentation. There are
alternatives, however.

Understanding Makefiles in the
Documentation tree

FE
TN
S It is unlikely you will have any trouble finding these

last two, they are mentioned for completeness only.

7.2. Understanding Makefiles in the
Documentation tree

There are three main types of Makefiles in the FreeBSD Documentation Project

tree.

- Subdirectory Makefiles simply pass commands to those directories below
them.

- Documentation Makefiles describe the document(s) that should be produced

from this directory.

» Make includes are the glue that perform the document production, and
are usually of the form doc.xxX.mK.

7.2.1. Subdirectory Makefiles
These Makefiles usually take the form of:

SUBDIR =articles
SUBDIR+=books

COMPAT_SYMLINK =en

DOC_PREFIX?= ${.CURDIR}/..
.include -"${ DOC_PREFI X} /share/mk/doc.project.mk"

In quick summary, the first four non—empty lines define the make variables,

SUBDIR., COMPAT_SYMLINK, and DOC_PREFIX.

The first SUBDIR statement, as well as the COMPAT_SYMLINK statement,

shows how to assign a value to a variable, overriding any previous value.

The second SUBDIR statement shows how a value is appended to the current
value of a variable. The SUBDIR variable is now articlesbooks.

The DOC PREFIX assignment shows how a value is assigned to the variable,
but only if it is not already defined. This is useful if DOC_PREFIX

90

7. The Documentation Build Process

is not where this Makefile thinks it is — the user can override this and

provide the correct value.

Now what does it all mean? SUBDIR mentions which subdirectories below

this one the build process should pass any work on to.

COMPAT SYMLINK is specific to compatibility symlinks (amazingly
enough) for languages to their official encoding (doc/en would point to
en USIS0-8859-1) .

DOC PREFIX is the path to the root of the FreeBSD Document Project tree.
This is not always that easy to find, and is also easily overridden, to
allow for flexibility. .CURDIR is a make builtin variable with the path

to the current directory.

The final line includes the FreeBSD Documentation Project's project—wide
make system file docprojectmk which is the glue which converts these
variables into build instructions.

7.2.2. Documentation Makefiles

These Méakefiles set a bunch of make variables that describe how to build

the documentation contained in that directory.

Here is an example:

The MAINTAINER variable is a very important one. This variable provides
the ability to claim ownership over a document in the FreeBSD Documentation
Project, whereby you gain the responsibility for maintaining it.

DOC is the name (sans the .Xml extension) of the main document created
by this directory. SRCS lists all the individual files that make up

91

FreeBSD Documentation Project make
includes

the document. This should also include important files in which a change
should result in a rebuild.

FORMATS indicates the default formats that should be built
for this document. INSTALL_COMPRESSED is the default 1list of
compression techniques that should be used in the document build.
INSTALL_ONLY_COMPRESS. empty by default, should be non—empty if only

compressed documents are desired in the build.

EE
PIATA
We covered optional variable assignments in the previous

section.

The DOC PREFIX and include statements should be familiar already.

7.3. FreeBSD Documentation Project make includes

This is best explained by inspection of the code. Here are the system
include files:

'dOQpﬂjejJnk is the main project include file, which includes all the
following include files, as necessary.

- doc.subdir.mk handles traversing of the document tree during the build
and install processes.

- docinstal.mk provides variables that affect ownership and installation
of documents.

- doc.docbook.mk is included if DOCFORMAT is docbook and DOC is set.

7.3.1. doc.project.mk

By inspection:

DOCFORMAT ?= docbook
MAINTAINER?= doc@FreeBSD.org

PREFIX 2= /usr/local
PRI_LANG?= en_US.ISO88509-1

if defined(DOC)
if ${ DOCFORMAT} == -"docbook”

92

7. The Documentation Build Process

.include -"doc.docbook.mk"
.endif
.endif

.include -"doc.subdir.mk"
.include -"doc.install.mk"

7.3.1.1. Variables

DOCFORMAT and MAINTAINER are assigned default values, if these are

not set by the document make file.

PREFIX is the prefix under which the documentation building tools are
installed. For normal package and port installation, this is /ug/loca.

PRI_LANG should be set to whatever language and encoding is natural
amongst users these documents are being built for. US English is the
default.

:Ei;:.
5
PRI_LANG in no way affects what documents can, or

even will, be built. Its main use is creating links

to commonly referenced documents into the FreeBSD
documentation install root.

7.3.1.2. Conditionals

The .if defined(DOC) line is an example of a make conditional which, like
in other programs, defines behavior if some condition is true or if it
is false. defined is a function which returns whether the variable given

is defined or not.

if ${DOCFORMAT} == "dochook". next, tests whether the DOCFORMAT
variable is "docbook"., and in this case, includes doc.docbook.mk.

The two .endifs close the two above conditionals, marking the end of their

application.

7.3.2. doc.subdir.mk
This is too long to explain by inspection, you should be able to work it

out with the knowledge gained from the previous chapters, and a little
help given here.

93

doc.subdir.mk

7.3.2.1. Variables

- SUBDIR is a list of subdirectories that the build process should go

further down into.

- ROOT_SYMLINKS is the name of directories that should be linked to
the document install root from their actual locations, if the current
language is the primary language (specified by PRI_LANG).

- COMPAT _SYMLINK is described in the Subdirectory Makefile section.

7.3.2.2. Targets and macros

Dependencies are described by target: dependencyl dependency? ... tuples, where
to build target, you need to build the given dependencies first.

After that descriptive tuple, instructions on how to build the target may
be given, if the conversion process between the target and its dependencies
are not previously defined, or if this particular conversion is not the
same as the default conversion method.

A special dependency .USE defines the equivalent of a macro.

_SUBDIRUSE: -.USE

for entry in ${ SUBDIR}

@${ECHO} -"===> ${ DIRPRFX} ${entry}"

@(cd ${.CURDIR} /${entry} && \

${MAKE} $.TARGET:S/real package/package/:S/realinstall/install/} DIRPRFX=
${ DIRPRFX} ${ entry}/ -)

.endfor

In the above, _SUBDIRUSE is now a macro which will execute the given

commands when it is listed as a dependency.

What sets this macro apart from other targets? Basically, it is executed
after the instructions given in the build procedure it is listed as a
dependency to, and it does not adjust .TARGET. which is the variable

which contains the name of the target currently being built.

clean: _SUBDIRUSE
rm --f ${ CLEANFILES}

In the above, clean will use the _SUBDIRUSE macro after it has executed
the instruction rm-f ${CLEANFILES}. In effect, this causes clean to go
further and further down the directory tree, deleting built files as it
goes down, not on the way back up.

94

7. The Documentation Build Process

7.3.2.2.1. Provided targets

-ingdl and package both go down the directory tree calling the real
versions of themselves in the subdirectories (redingal and redpackage

respectively) .

- cdean removes files created by the build process (and goes down the
directory tree too). cleandir does the same, and also removes the object

directory, if any.
7.3.2.3. More on conditionals

- eXids is another condition function which returns true if the given

file exists.
s empty returns true if the given variable is empty.
- target returns true if the given target does not already exist.

7.3.2.4. Looping constructs in make (.for)

for provides a way to repeat a set of instructions for each space—separated
element in a variable. It does this by assigning a variable to contain
the current element in the list being examined.

_SUBDIRUSE: -.USE

for entry in $§{ SUBDIR}

@${ECHO} -"===> ${ DIRPRFX} ${ entry}"

@(cd ${ .CURDIR}/${ entry} && \

${MAKE} ${.TARGET:S/real package/package/:S/realinstall/install/} DIRPRFX=
${DIRPRFX} ${ entry}/ -)

.endfor

In the above, if SUBDIR is empty, no action is taken: if it has one or more
elements, the instructions between for and .endfor would repeat for every

element, with entry being replaced with the value of the current element.

95

= 8. ZEi: Website

8.1. Faldfh

AROCIEMEAY 200MB] o GEEEEAAGN SGML T AR - CVS tree
R - DU R H AP] - A HIEE A S SoL TR~ CVS tree

(35 » BN R TS 4T 100MB ZSREENT o

K

Ve =
FE

AR — N URBIAHBR SRR & 2R ports A2 HoBTAR |
A NBREPTRIIRRA R (T » ARERLITLL pke_delete(l) FHL
KREPRERR > BEEAEE porte BEIAGH HCEMZ
Jade-1.1> (HEFMIHRIFHEAAE jade-1.2 > FUESLAHT
5175 FAREBREE AR -

#pkg_deetejade-1.1

BEE > g EETE CVS repository o EBLZE /D www, doc, ports jB =t CVS tree (&

SRIZENN | CVSROOT) o EFEREH CVSup &/ LIBRMEUN{A[ZR mirror a CVS tree

B4 CVS tree o

BAKFEKAY cvsup collections £ : www, doc-al, cvsbase DA ports-base e

MIFERIE LT/ LY 105MB ZXfH]

M5E8AY CVS tree — f$F src. doc. www LUK ports — HET47%s 940MB o

8.2. Build the web pages from scratch

1. SRR BRI H #k (BB eoMB ZEfH) o WHEIZ HER

#mkdir -/var tmp/webbuild
cd -/var /tmp/webbuild

2. 1% CVS tree N checkout FHREEAY SGML i o

cvs--R co www doc

3. UIE] wwwien H$k > SRRIT make (1) dl ZREEAH o

R G

http://www.FreeBSD.org/cgi/man.cgi?query=pkg_delete&sektion=1
../../../../doc/zh_TW.Big5/books/handbook/synching.html#CVSUP
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

FEIRROAE H A s L2 S E

#cd en
makeall

8.3. ERHMAFRMRE LREKMAA
1. WMRIRCABER en E1EH & - s5Y)HEEEH g%+ o
cd path/imww/en

2. BT make(1) ingdl » ifif% DESTDIR #% & BI/RIEZ S M B k2
make DEST DI R=/usr/local iwvww install

3. MRRZEIEAAEMFR S Z R T ELHEE - ZRBEL G HERER
WA SRR E o BEZCH » RIS H B SHNEERA - EHE
R F R MBRAE =R AR A EHRAESR -

#find -/usr/local iwvww --ctime 3 --print0 -| xargs--0rm

8.4. RREK

CVSROOT
BE CVS tree PUNLE » MANHERRLE -

CVSROOT=/home/ncvs, export CVSROOT

ENGLISH_ONLY
IR B ERG S S - MHEARZSH » makefiles 1§ A G R L4
SCHE o B LUGHE S i A A BRI © filan

#make ENGLISH_ONLY=YESall ingall

IR RAE RS S8 ENGLISH_ONLY DU BHERTE 0 B i A5 EEE » B
B8 ENGLISH ONLY HIMERREARLZE ARITAT -

#make ENGLISH_ONLY="" all install clean

WEB_ONLY
WRAREEABEAEE > makefiles FFHEFRE wow HEREBENLLE
HOML EHH o A doc HEk FHSUFRERE G 20 (Handbook, FAQ,
Tutorials) o 40 :

#makeWEB_ONLY=YESall ingall

98

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

= 8. B Website

NOPORTSCVS
MR TEEBEL > makefiles FLAEE ports cvs repository BUHIMEZ o
Bz &% Jus/ports (22 PORTSBASE FrEfifE) MHEEIMES o

CVSROOT @IRIEEE - (RUOEBEEEMRIECEEE dot files (A0:
~/.vrofile) H FAEIEHIRIFAEL -

WEB_ONLY ~ ENGLISH ONLY % NOPORTSCVS #/2& makefile %% o {RALL
£ /letc/make.conf ~ Makefileinc HVEE B SO E » (EEMGEA ML FISEA dot
files ZREEIRFHE—M

99

= 9. FERFT LA

ARNEZFNZE FreeBSD {4 (H4 : FAQ, Handbook, tutorials, manual pagesZ¥)
[LR (FAQ) -

A FEE ZDL FreeBSD ENHENERTEINVENE FAQ ARRMREY RIS
& B Frank Griinder <elwood@mc5sys.in-berlin.de> » A Bernd Warken
<bwarken@mayn.de> FEEEE[E] Z SRR ©

The FAQ is maintained by the Documentation Engineering Team

<doceng@FreeBSD.org>.

fl: FAQ MUEM)RZ?

o MEEEIEME AR freebsd—doc FEFFIE > T HA LN FreeBSD UHHHH
EARMEEEIRA o WMAEER FAQ BERETTAE R IE LS BRI E R AL
AR o

R9: i18n B 110n ZfFEEVE ?

. 118n J& internationalization HYFHES » Jij 110n HIJJE localization HYFE
B BUEES T ERTEMANEE

ilsn FARMEA 1" REA 18 AT KEHE " o FHE- 1l0n
HIZRBER 17 ®REA 10 @FH - &E&RE ™"

] AEFIGEE AR nailing list 17

& AW ARAEEAREEE HA B A BB mailing lists o i@y B ENE
B A AARERTEIRREAD mailing lists NAHBAAHEYS o

] © FEE L A2 BRI ?

B OEIRUE - W NSEERE - ARSI E 5E - T BSOSO B
TR~ BEHTHORS - S REERRH AT UG R R A o

AT H R - RS HRIRER -
fi] © AEKRURLEEEFREAIVE ?

o Hgm b WHEER SRR RS - T EARMIBU - BERERRE S LA
A B

ST H o WAL - T LURFEF L (Spanish) 0 FAQ EHEEA D
ZFHF|SC (Hungarian) o

Ml © ZEEE TR AR E AR ?

i

mailto:elwood@mc5sys.in-berlin.de
mailto:bwarken@mayn.de
mailto:doceng@FreeBSD.org
http://www.freebsd.org/docproj/translations.html
http://www.freebsd.org/docproj/translations.html

¥

¥

Ftﬁ .
DOISEW > JREIGFEE | “FreeBSD #tt SUMFENEGTE]T RUSTRZES > BoD b

¥

¥

fi -

102

D BRFIEEEEYE H OSSP, FreeBSD CVS repository A1) (F/DSC4EER

43) o ATCLE CTM BF CVSup #HPAJLA o Handbook FHFY "BE3r ~ F14% FreeBSD"
—RENH RO EERER -

A - FEFE CvS FITE o b —2K - AR AT LA BN RIRRCA 2 PRI 22 2R ©

[XXX To Do (iR #AG » i) — 540 L FHM (tutorial) FAFEANALL
CvSup BUSSCAFERSY » DARERE AFIRRA Z FHIfZEE - |

D BB OR A R R R 3 — R e 7
DOCHEHEIRELE GBS T HRIC MM A BRRE BCR WREAE HA AR

MERIR—ERRORIERE TR » BEAEERRENT - FHEMPIHRERERES
WL 75 T LUK AR o

LR HAREEERGE - SR A NERREERAR N EMIEE » I
JEF 22 %] FreeBSD documentation project B EEmIE AE o

WERNABR BT HERES - 2 BB 2

i o

EIEUR o BT R T ZEHRERN > HAKRE—EAERNE - Hit -
*ﬁ%ﬁ%ﬂ%ﬁﬁk%ﬁ@/ﬁ?ﬁ ~ B R BE o B AR T S L TR R RO
BATE -

2% FreeBSD documentation project HiEamIE [KK EARIRE MR EHY
B RIE SR EIRRIEE o st e T A B R

EIRIE R E8H ANFEME FreeBSD AY mirror (BEEY) ARFBHIEE » FRJEFL SR
MR > SRR AE DA LU A E SRR AT E R 0 DR
EE AR email MRHYEL mailing list ARFES o

R1% > FUBAIARI SRR - —BRUARIGEAVIR » SEH Lo iR IR B A U & L
B — B2 FAQ i+ BURINT BT 2 BRI SCE -

© DA SO T o R EIR0E 2
COEEERWNE o AHIRSTERIFEER AMAYEE (B HA ~ R - e

g B CARRRAZ AR IR EBIRE S B - BEAREIR RS MM E LA

IR RAE AR — RS (R A B RN AR AR [FI R AR
FreeBSD #t&l) - HVE(REUIERZILH CHIBIRERR S 4 FreeBSD #HE| o (A
fiiEE NERE)

AR AN TS - ZEE TR T HRE ?

ey

http://www.FreeBSD.org/docproj/translations.html
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

9. BIREREROH RRIRE

HAE R MR - % BEECH M A AR AR 5 IR 2

DB ATRUEVRAORIRR AR AR SR R o I If AT IERREARREE - il d o 4T

ERENBUA I AAE A 2 T UEHESR BN -

FIBT » FreeBSD SCHHF27E R LIEHY dod/ HEkA Ta% H #% T AIRIKHEEE
AR AT 4R » KR 150639 TE# (Jusr/share/misc/iso639 HIiE(E FreeBSD
FRAEL 1999/01/20 J=HT) ©

HirEEFEAM T A NS (B P30 BB SR T E
B SRR P 6 A A S 7 Al 4

R » IRIBRZ LA SR H 8k T
SR ARE, » RS R LT (Swedish) REVEHRE » IOBEEZ G EG

doc/
sv_SE.|S08859-1/
Makefile
books/
fag/
Makefile
book.xml

i

SE.ISO8859-1 &Mk ##(lang) ##(encoding) HIRLRIACE S HIFES o FEIE

sV
B HoEWE Makefiles 1 » BAFERAARGREN o

??ﬁéﬁﬁﬁ tar (1) B2 gzip(1) ZACVREOBHRESCIFBEAEAR AR » 77 B AR

% cd doc
% tar cf swedish-docstar sv_SE.| SO8859-1
% gzip --9 swedish-docsitar

P - L swedish-docstar.gz HEIEHZH L - FIRZH H CHEZSHAUEE
(ISPAHEAL) ’ ﬁﬁﬁﬂﬂuiﬁ*’%%@] Documentation Engineering Team
<doceng@FreeBSD.org> 7K e

B BSH sendpr (1) DUERGEAARK : REKSFHEREUGT » &
B HENRTLCECRE ~ B U ES - RS ERY » FAEWAER
NIRRT ERTGE o

) %ﬁﬂ (Efﬁ%%j{{#%‘l‘%ﬁ%‘% » BY /& Documentation Engineering Team
<doceng@FreeBSD.org> A E) EMRBIIRAEIRESCH: o WAERD 2 5 AT IEH SR
3 o ILAh o MM ERR IR N A AR

1. IREHE R EEEAEH RCS tag (B2 "ID" ZHEAY) 2

103

http://www.FreeBSD.org/cgi/man.cgi?query=tar&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=gzip&sektion=1
mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1
mailto:doceng@FreeBSD.org

¥

104

2. sv_SE.ISO8859-1 s&7 A LAER] mekedl #wiEle ?

3. makeingal f&&4ERA ERE ?

A FRERIER - ARSI I T I R » AGRIE LR RCR AT LUERERE A -
R RS - B R AT ARARIEE AR commit JEXRT o

DOATDAIIAZERE R BB R A R SR PG FR R A A A 2
DRI RN B o

BB > B IRIEERIE Handbook EHRRAFESCR - WA BEILHRETER
WM IREIEER) Handbook HEICARA °

B AR » BRI 2 TR A ST 2 (SR
FHEF ~ HC%) B o G R M A RS » @8 FrecBSD
HBER o JLSN » HHATLURTF FroeBSD HUR] R » MREAAM » IR
(AR o

HIREERAEHIER > 58 (A send-pr (1))RBUATEIUR Handbook LLIE Ay
Bal - RRFELESURIVERT 5 - 85 R ERIEERY Handbook ME -

SR T -

D BEBEZERTENFEEEERFEARE ?
T AN FTERIIE ASCITI (Non—ASCIT) FJT » #PE(FFH SGML entities A BEE

i o

AR RAH—BIEE R ¢ MR » RERZ entity £ HEEL
EECG) o

B entity ZRBELE 1508879 FRHIETHY » T port tree NEIYE textproc/
1508879 °

DU B — BT -
Entity%4f§: é:

T 2

R /N Te” o liFSe ~ B (acute accent)
Entity44f#: É:

W : ¢

NEB: Kk “E” > Wiy ~ F (acute accent)
Entity%4f#: ü

HEET: #

fréa: /N "o A HE- 2R R PRV EEE B (umlaut)

http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1

. BURERSAYH R

TEEET 1508879 EME port 1% » BRI LATE /us/local/share/xml/iso8879 #4E)
B LR EEAN A3 -

DOI{TREMEREE R ?
DB o EEEGELL Tyou” PR - TR LEEEE MR A ES/HELE

Y -

R T B EIAOEE W LR AR L B - IRJREAS F AR AR AE — B S BT
i FIAORERPIE o ANSRZR 516 B IR R HRS » AIOEERE SO B R AR AR

o BIRERACOR A BB B — A ERUE R ?

REL

B R RERRRIBE - EEE AR TEIAR

Al
The FreeBSD Documentation Project

$FreeBSD: doc/en_US.ISO8859-1/books/fdp-primer/translations/chapter.xml,v 1.5 -
2000/07/07 18:38:38 dannyboy Exp $
>

B ERIAR AR A AR > HEHREREEH £ SFreeBsDS E—1TLAK
The FreeBSD Documentation Project E 15 © §51EE : SFreeBSD BHEAMYEIT &
T Cvs MEEBEHT A ENRE > FTLL > FERAEEHE RER AR (L Eh
RHEE $FreeBSDS$ HLiF 1) ©

BIRESLM A - IHERELR SFreeBSDS 3517 0 i HiL FreeBSD Documentation
Project iZ17(% The FreeBSD #### Documentation Project ©

HEAh » EAZEAN 5 = AT AE HARFTEIRRR » BIJRE LASE SO E RS O BR— it
AR BEAS T BRE

DRILIE » PHHESF SCHR (Spanish) (RS ZEBRTEERZ & R RS

<l--
The FreeBSD Spanish Documentation Project

$FreeBSD: doc/es_ES.I SO8859-1/books/fdp-primer/translations/chapter.xml,v 1.3 -
1999/06/24 19:12:32 jesusr Exp $

Original revision: 1.11
==

105

= 10. XH8IEE R

HIFY FreeBSD IR HREIEE FTHEER) - K T RIFHIERMI—ENE - 2
P BUH HRA R AR A - AL BT -

MR
B TR ISER T E TR « BRI RRIONR - #E
RERIEE - @R MEGE color” o+ TdE “colow” o A

“rationalize” » JIEF “rationalise” ZEZEHIFH o

Eil R

EERAFERTEGE W LA » [HNEE R SCEARA
F—BHEAT o TSCHEROEAMERG - BEE - fHH
manual FiAASERIAEER SR -

ANEREE
FHAERE (contraction) o RS TERIIFEHAK o LIl : “Don't use
contractions” iEA)AMEIME > MERA o

FR B E R MR »)RR AT O B RS
BRI -

ERE(FH serial comma LN fE5E
P B R T GRS (O ERZ AT REINSH B R RIEE - B gERR
—AIREIMIIE HEF » o0 LESEE L “and” o REAEHEMIEA -
HEGT - BF NHIEA :

This is a list of one, two and three items.

EEE — R BT = MEHE (“one” ~ “two” ~ “three” Y ?8FEER
EWEER (“one” ~ “two and three”)UE ?

Rl #2177 E LA serial comma B > ABEIEMEFREE R ¢
This is a list of one, two, and three items.

SR RGBT ERTESE QORI ECRIESR (~) - dEH “and” AYEL
{7 AT T ANEY - DA AR RHZE -

Tk G (5 FF 2
FHEE R SR (redundant phrase) o JLHE “EBERLT ~ “EEE
£” - “man 1§47 EREEFEITENLEERA -

Style guide

LAFE4 (command) 77 TR » UMK 22 5 0 AR — ARG T
FER cvsup FE ST R 1A ©

R ovsup ACEHTFIANS

LIt SR (Filename) 7 MR » LUBCZ A FIVE R 3 — ARG T
-+ fEiE(E Jetchrclocal HEZE -

- 1£ letc/rclocd 1 -

Ll man (manual) TR » HLERZE I FERSE —A) (B A% SGML citerefentry
) -

FH1T mancsh F84 LIS BERIE ST

HIEFH2MH csh(1)

BAREMNEMEZR
o THECEE G RRE > LUNGE Enacs 2R T ARSEM » S — 7 RA T
BEMN_EMEZ S -

N - R O REEBEARFE > M A—EFoRE— (BRI R T
AT RHEZTFHOEEEEESRS - BE& “Jordan K. Hubbard” jE
NEHARERIFIRE « ASRIET H - RRERNREN H - REEELAE
LIEGIESE

PR AR AR B4 ET - 2B William Strunk FTEHY Elements of Style o

]]

10.1. Style guide

HIfY Handbook EHREIFEFTMEE » KT RIFFHIERMS—EN - FHET TS
M -

10.1.1. K8
Tag WIEMA#E /NG FE: » BALEA <para> » MIE <PARA> ©

T SGML PASCAIER REFERET » 85 <IENTITY...> N <IDOCTYFE...>>
MR <lentity...> & <!doctype...> °

10.1.2. &3

HEESF (acronym) M E FEEHEHH— {J\%@JET » WAJB [RIFRE 371 H 5 ki =d
40 : "Network Time Protocol (NTP)" e BUEET 1% Ezfde A HZES

108

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.bartleby.com/141/

10, UHRIBE R

T (MR RS - BRAF(E M SE B R W] U REFOERER) AERIA] - d@H A
FERAGHE-KRENN - A EIHERAR > (A ERHEE T SRS KRS
IRF X3 SE B R B

WA A — MR TR = IR » A <acronym> 1REE - MITSE R A
£ role BYEAMSE o At —RKEiE R FRE - I HERRBEZER T L7
o B BURE BAARE -

10.1.3. %3k
My WREHRCERM » BEER—BIAASEHE (indentation) FEMR 0 4E5IBH
iz

RIEEHIEE & L2 W (E 2 AACEINgEHE - AR AOERERAN D W8 == B AR A 1
HEoE 8 HxH » AL tab BURZ » B4k - 7 tab BIHAEHAZSH » HAE
FERTRENEZEA o Bf tag WASCHEB—ITHIES » QIET RO L W E=
A LU -

BAA G5 - FZEIPTH A RIERECE T EER -

&M Emacs B XEmacs HAWEEEME - ANEE HEEA sgml-mode # o AR
o 9) (5 S E A S T T RYBRBERUE

Vim % F] DUA N SR AR

109

Tag JAM%

10.1.4. Tag &AM

10.1.4.1. Tag %47

] —KEHFSSE SR AR R L DL — A7 MR B - TR R ARHESS SRR » Hedn

10.1.4.2. B2ERG»4T

B2 itemizedist SEFHERFE LASGANSELMCTER - LEGHEMREEK
A - BRAER BT -

AN B paa K term EHAEE U ATHEC MRS - B TR
i BAERSRERIFE—1T ARIAT SRR EiELE AL -

R o B R A B R EE AR o
AN - B teiE AR SR A - A RO IR -

EE-FERNREE LB SRR > VBRI E MR ES B TR
REFRENERE - thETEHEEMHRRE -

T 58 —REIR RS R » W] LLBE S — R B A B e A — 1T -

110

10, SCHFRIERE AR

10.1.5. ZEAHF K
f£ commit BT - FERITEMEARIERE » t—H 5 i dmHEE S -

Wtk —2k » {§7 Handbook RHARMIPKA BEMEAL HIREL THREEAE » T AHE LA
EHERZATHI S > 2 S S E e AR E

BB - & BRI LM E T it — R BOER TR gl 80 4t
3| > ERFARSE commmit {BEL - 3 - HEAHRRITHEIERAT » REFEIR commit
Z oo TS ZIKHY commit Z08% > sEAAREFIIIE & whitespace—only (BE(Z5HIM
B) AVEH - it —2K - BRREIKEU DUZRESE IR commit T o

10.1.6. Nonbreaking space
AR A — LB IE L T BT ¢ SRR I ERERGY ~ sl HE B FENIR A o BT

Al Il G RERTBRE R T AR T A FTAE o THZE BT RITERRACE HIML
& IRR BT EhE R N RS HE B

Data capacity ranges from 40 MB to 15
GB. Hardware compression ...

AAfEH , LUEBEGR[R AT ZRIAIEIT > DUN REEAAMIEA nonbreaking

spaces .

BT BRI
57600& nbsp;bps

- TR AL R B RRSR 2]
FreeBSD& nbsp;4.7

- multiword Z[((FRHREE/ D » B2 “The FreeBSD Brazilian Portuguese
Documentation Project” iE%HHH =2 IU{E SRR > RISHM <) -

Sun& nbsp;Microsystems

10.2. # & &
DT % FreeBSD O3t BISGHIERFTERA M VUSRS « EHATBRAFR - 3

2B 0'Reilly word list e
c2.2.X
+ 4 . X—STABLE

+ CD-ROM

111

http://www.oreilly.com/oreilly/author/stylesheet.html

A B

- DoS (Denial of Service)
+ Ports Collection
+ [Psec

+ Internet

+ MHz

+ Soft Updates

+ Unix

+ disk label

+ email

- file system

- manual page

s mail server

* name server

+ null-modem

+ web server

112

=

= 11. Using gume With Emacs

Recent versions of Emacs or XEmacs (available from the ports collection)
contain a very useful package called PSGML. Automatically invoked when a
file with the Xml extension is loaded, or by typing M-xsgml-mode, it is
a major mode for dealing with SGML files, elements and attributes.

An understanding of some of the commands provided by this mode can make
working with SGML documents such as the Handbook much easier.

C-cCe
Runs ggml-insert-edlement. You will be prompted for the name of the element
to insert at the current point. You can use the TAB key to complete
the element. Elements that are not valid at the current point will
be disallowed.

The start and end tags for the element will be inserted. If the element
contains other, mandatory, elements then these will be inserted as
well.

C-c=
Runs sgml-change-dlement-name. Place the point within an element and run
this command. You will be prompted for the name of the element to
change to. Both the start and end tags of the current element will
be changed to the new element.

C-cCr
Runs &Jml-ta‘g-region. Select some text (move to start of text, C—space,
move to end of text, C—space) and then run this command. You will be
prompted for the element to use. This element will then be inserted
immediately before and after your marked region.

C-c-
Runs sgml-untag—elemmt. Place the point within the start or end tag of

an element you want to remove, and run this command. The element's
start and end tags will be removed.

C-cCq
Runs sgml-fill-dement. Will recursively fill (i.e., reformat) content
from the current element in. The filling will affect content in which
whitespace is significant, such as within programlising elements, so
run this command with care.

C-cCa
Runs ggml-edit-attributes. Opens a second buffer containing a list of all
the attributes for the closest enclosing element, and their current

values. Use TAB to navigate between attributes, C-K to remove an
existing value and replace it with a new one, C-cC-C to close this
buffer and return to the main document.

C-cCv
Runs sgml-vaidate. Prompts you to save the current document (if
necessary) and then runs an SGML validator. The output from the
validator is captured into a new buffer, and you can then navigate
from one troublespot to the next, fixing markup errors as you go.

C-c/
Runs sgml-insert-end-tag. Inserts the end tag for the current open element.

Doubtless there are other useful functions of this mode, but those are
the ones [use most often.

You can also use the following entries in .emacS to set proper spacing,

indentation, and column width for working with the Documentation Progject.

114

= 12, L A

This document is deliberately not an exhaustive discussion of SGML, the
DIDs listed, and the FreeBSD Documentation Project. For more information
about these, you are encouraged to see the following web sites.

12.1. The FreeBSD Documentation Progject
+ The FreeBSD Documentation Project web pages

+ The FreeBSD Handbook

12.2. SGML

- The SGML/XML web page, a comprehensive SGML resource

+ Gentle introduction to SGML

12.3. HIML

+ The World Wide Web Consortium

+ The HTML 4.0 specification

12.4. DocBook

» The DocBook Technical Committee, maintainers of the DocBook DTD

* DocBook: The Definitive Guide, the online documentation for the DocBook
DTD.

- The DocBook Open Repository contains DSSSL stylesheets and other
resources for people using DocBook.

12.5. The Linux Documentation Progject

» The Linux Documentation Project web pages

../../../../docproj/index.html
../../../../doc/zh_TW.Big5/books/handbook/index.html
http://www.oasis-open.org/cover/
http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG
http://www.w3.org/
http://www.w3.org/TR/REC-html40/
http://www.oasis-open.org/docbook/
http://www.docbook.org/
http://docbook.sourceforge.net/
http://www.linuxdoc.org/

MHék A, F3)

AP SRR — L8 SGML HEEE (] - LUK AR RO MBITE < » 5 E R H A
At TR ERES - AR AT DUE R R R i #E I A o

BLAIFIARREMN — WAREIERATRERNTE - THGRRFIETE
(EXHIFEH » G - F5 - B#%) BEFSFHEL DocBook FEliEE U
HIEE » AREERTLLEHE CSup ~ CVSup FERZKEHN doc tree #F5y » LASREBE ARSI HAth
SCARR) SGML JRFR o BiEE » tBATLUAR HBIE hitp:/Mww.FreeBSD.org/cgi/cvaweb.cgi/
doc/ °

R TR AL BN B > 35 Ll PR I FRHERY DocBook 4.1 DID TjHF FreeBSD
ANEY DID o [EIFRFIGER A Norm Walsh [EHIERTLFE (stylesheets) » M IF FreeBSD X
HEEE BATBORAEE R o fE—MAEH DocBook HUFIT » iEEET & HEE (LIR
5o MAGEREIMEE -

A.1. DocBook book

#i7 A.1. DocBook book

http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/
http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/

Fifdk A. #EH

A.2. DocBook artide

#37 A.2. DocBook artide

118

Ffek A. i

<title>#<iitle>
<para>H</para>

<sect2>
<title>#####(sub-section)</title>

<para>tHHHH#H sub-section)</para>
</sect2>
</sectl>
<[article>

A.3. Producing formatted output

AEIELEE » R3% - 2&F S textproc/docprog LTHIFTLEEAEEE » EinE M
& port FHLHEMEFEHLYE o Mo BEITENEEENTE Jugllocdl T
BT Hek o A BT ZHERAMHBRHITRE - BEFERE PATH REEEEAL H &
WELERIEE » FEMRIRE) R STERIRE 1 28 B A B R A o

A.3.1. 1 H Jade

#if] A.3. EEHE DocBook Ay HTML (SEEEREF)

% jade--V nochunks\ @
--C -/usr /local/shar e/xml/docbook/dssd/modular/catalog \@
--C -/usr /local/shar e/xml/docbook/catalog \
--C -/lugr/local/shar e/xml/jade/catalog \
--d -/usr/local/shar e/xml/dochook/dsss/modular /html/docbook.dsl &
-t sgml @ filexml > filehtml &

© Specifies the nochunks parameter to the stylesheets, forcing all
output to be written to STDOUT (using Norm Walsh's stylesheets).

@ Specifies the catalogs that Jade will need to process.
Three catalogs are required. The first is a catalog that
contains information about the DSSSL stylesheets. The second
contains information about the DocBook DTD. The third contains
information specific to Jade.

€@ Specifies the full path to the DSSSL stylesheet that Jade will
use when processing the document.

(4] Instructs Jade to perform a transformation from one DID to
another. In this case, the input is being transformed from the
DocBook DTD to the HTML DTD.

119

Fifdk A. #EH

© Specifies the file that Jade should process, and redirects
output to the specified .html file.

#iff] A.4. B DocBook Ay HTML (FEHIHLZ)

% jade\
--C -/lusr/local/shar e/xml/docbook/dsssd/modular/catalog \©@
--C -/usr /local/shar e/xml/docbook/catalog \
--C -/lusr/local/shar e/xml/jade/catalog \
--d -/usr/local/shar e/xml/dochook/dsss/modular /html/docbook.dsl &
-t sgml @ filexml ©

@ Specifies the catalogs that Jade will need to process.
Three catalogs are required. The first is a catalog that
contains information about the DSSSL stylesheets. The second
contains information about the DocBook DTD. The third contains
information specific to Jade.

8 Specifies the full path to the DSSSL stylesheet that Jade will
use when processing the document.

® Instructs Jade to perform a transformation from one DTD to
another. In this case, the input is being transformed from the
DocBook DTD to the HTML DTD.

© Specifies the file that Jade should process. The stylesheets
determine how the individual HTML files will be named, and the
name of the “root” file (i.e., the one that contains the
start of the document.

This example may still only generate one HTML file, depending on the
structure of the document you are processing, and the stylesheet's
rules for splitting output.

#i5 A.5. BEHL DocBook /% Postscript(PS) #&=

The source SGML file must be converted to a TeX file.

% jade--Vtex-backend \ @
--C -/usr /local/shar e/xml/docbook/dssd/modular/catalog \@
--C -/usr /local/shar e/xml/docbook/catalog \
--C -/lusr/local/shar e/xml/jade/catalog \

120

Ffek A. i

--d -/usr/local/shar e/xml/docbook/dssd/modular/print/docbook.dd &
--t tex@ filexml

@ Customizes the stylesheets to use various options specific to
producing output for TeX.

©® Specifies the catalogs that Jade will need to process.
Three catalogs are required. The first is a catalog that
contains information about the DSSSL stylesheets. The second
contains information about the DocBook DTD. The third contains
information specific to Jade.

€© Specifies the full path to the DSSSL stylesheet that Jade will
use when processing the document.

(4] Instructs Jade to convert the output to TeX.

The generated .tex file must now be run through teX, specifying the
&jadetex macro package.

% tex -" &jadetex” filetex

You have to run tex at least three times. The first run processes the
document, and determines areas of the document which are referenced
from other parts of the document, for use in indexing, and so on.

Do not be alarmed if you see warning messages such as LaleX Wa‘ning:
Reference “136' on page 5 undefined oninput line 728. at this point.

The second run reprocesses the document now that certain pieces of
information are known (such as the document's page length). This
allows index entries and other cross—references to be fixed up.

The third pass performs any final cleanup necessary.
The output from this stage will be filedvi.
Finally, run dvips to convert the .dvi file to Postscript.

% dvips--ofilepsfiledvi

#if A.6. HEIL DocBook A PDF R

The first part of this process is identical to that when converting
DocBook to Postscript, using the same]ede command line (%ﬁﬁﬂm\S,

“i#5 DocBook £y Postscript(PS) =").

121

Fifdk A. #EH

When the .tex file has been generated you run pdfTeX. However, use

the &pdfjadetex macro package instead.
% pdftex -" & pdfjadetex" filetex
Again, run this command three times.

This will generate filepdf, which does not need to be processed any
further.

122

7l

F

Formal Public Identifier, 18, 19

M

Membership, 1

	FreeBSD 文件計畫入門書
	內容目錄
	序言
	1. Shell 提示符號(Prompts)
	2. 書中所用的編排風格
	3. 『Note、Tip、Important、Warning、Example』的運用
	4. 感謝

	章 1. 概論
	1.1. FreeBSD 文件的組成部分
	1.2. 在開工之前...
	1.3. 快速上手篇

	章 2. 工具
	2.1. 必備工具
	2.1.1. 軟體
	2.1.2. DTD 及 Entity
	2.1.3. 樣式表(Stylesheets)

	2.2. 輔助工具
	2.2.1. 軟體

	章 3. SGML Primer
	3.1. 簡介
	3.2. Elements, tags, and attributes
	3.2.1. For you to do…

	3.3. The DOCTYPE declaration
	3.3.1. Formal Public Identifiers (FPIs)
	3.3.1.1. catalog files
	3.3.1.2. SGML_CATALOG_FILES

	3.3.2. Alternatives to FPIs

	3.4. Escaping back to SGML
	3.5. 註解
	3.5.1. For you to do…

	3.6. Entities
	3.6.1. General Entities
	3.6.2. Parameter entities
	3.6.3. For you to do…

	3.7. Using entities to include files
	3.7.1. Using general entities to include files
	3.7.2. Using parameter entities to include files
	3.7.3. For you to do…
	3.7.3.1. Use general entities to include files
	3.7.3.2. Use parameter entities to include files

	3.8. Marked sections
	3.8.1. Marked section keywords
	3.8.1.1. CDATA, RCDATA
	3.8.1.2. INCLUDE and IGNORE

	3.8.2. For you to do…

	3.9. Conclusion

	章 4. SGML Markup
	4.1. HTML
	4.1.1. Formal Public Identifier (FPI)
	4.1.2. Sectional elements
	4.1.3. Block elements
	4.1.3.1. Headings
	4.1.3.2. Paragraphs
	4.1.3.3. Block quotations
	4.1.3.4. Lists
	4.1.3.5. Pre-formatted text
	4.1.3.6. Tables

	4.1.4. In-line elements
	4.1.4.1. Emphasizing information
	4.1.4.2. Bold and italics
	4.1.4.3. Indicating fixed pitch text
	4.1.4.4. Content size

	4.1.5. Links
	4.1.5.1. Linking to other documents on the WWW
	4.1.5.2. Linking to other parts of documents

	4.2. DocBook
	4.2.1. FreeBSD extensions
	4.2.2. Formal Public Identifier (FPI)
	4.2.3. Document structure
	4.2.3.1. Starting a book
	4.2.3.2. Starting an article
	4.2.3.3. Indicating chapters
	4.2.3.4. Sections below chapters
	4.2.3.5. Subdividing using parts

	4.2.4. Block elements
	4.2.4.1. Paragraphs
	4.2.4.2. Block quotations
	4.2.4.3. Tips, notes, warnings, cautions, important information and sidebars.
	4.2.4.4. Lists and procedures
	4.2.4.5. Showing file samples
	4.2.4.6. Callouts
	4.2.4.7. Tables
	4.2.4.8. Examples for the user to follow

	4.2.5. In-line elements
	4.2.5.1. Emphasizing information
	4.2.5.2. Quotations
	4.2.5.3. Keys, mouse buttons, and combinations
	4.2.5.4. Applications, commands, options, and cites
	4.2.5.5. Files, directories, extensions
	4.2.5.6. The name of ports
	4.2.5.7. Devices
	4.2.5.8. Hosts, domains, IP addresses, and so forth
	4.2.5.9. Usernames
	4.2.5.10. Describing Makefiles
	4.2.5.11. Literal text
	4.2.5.12. Showing items that the user must fill in
	4.2.5.13. Quoting system errors

	4.2.6. Images
	4.2.6.1. Image formats
	4.2.6.2. Markup
	4.2.6.3. Makefile entries
	4.2.6.4. Images and chapters in subdirectories

	4.2.7. Links
	4.2.7.1. Linking to other parts of the same document
	4.2.7.2. Linking to documents on the WWW

	章 5. * Stylesheets
	5.1. * DSSSL
	5.2. CSS
	5.2.1. The Web site (HTML documents)
	5.2.2. The DocBook documents

	章 6. Structuring documents under doc/
	6.1. The top level, doc/
	6.2. The lang.encoding/ directories
	6.3. Document specific information
	6.3.1. The Handbook
	6.3.1.1. Physical organization
	6.3.1.1.1. Makefile
	6.3.1.1.2. book.xml
	6.3.1.1.3. directory/chapter.xml

	章 7. The Documentation Build Process
	7.1. The FreeBSD Documentation Build Toolset
	7.2. Understanding Makefiles in the Documentation tree
	7.2.1. Subdirectory Makefiles
	7.2.2. Documentation Makefiles

	7.3. FreeBSD Documentation Project make includes
	7.3.1. doc.project.mk
	7.3.1.1. Variables
	7.3.1.2. Conditionals

	7.3.2. doc.subdir.mk
	7.3.2.1. Variables
	7.3.2.2. Targets and macros
	7.3.2.2.1. Provided targets

	7.3.2.3. More on conditionals
	7.3.2.4. Looping constructs in make (.for)

	章 8. 建構 Website
	8.1. 事前準備
	8.2. Build the web pages from scratch
	8.3. 在你的網頁伺服器上安裝網頁
	8.4. 環境變數

	章 9. 翻譯時的常見問題
	章 10. 文件的撰寫風格
	10.1. Style guide
	10.1.1. 大小寫
	10.1.2. 縮寫字
	10.1.3. 縮排
	10.1.4. Tag 風格
	10.1.4.1. Tag 空行
	10.1.4.2. 標籤的分行

	10.1.5. 空白的更改
	10.1.6. Nonbreaking space

	10.2. 詞彙表

	章 11. Using sgml-mode with Emacs
	章 12. 他山之石
	12.1. The FreeBSD Documentation Project
	12.2. SGML
	12.3. HTML
	12.4. DocBook
	12.5. The Linux Documentation Project

	附錄 A. 範例
	A.1. DocBook book
	A.2. DocBook article
	A.3. Producing formatted output
	A.3.1. 使用 Jade

	索引

