
FreeBSD 文件計畫入門書

ii

FreeBSD 文件計畫入門書
修訂: 43126
2013-11-07 由 gabor.
版權 © 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007

DocEng

摘要

感謝您參與 FreeBSD 文件計劃(簡稱：FDP, FreeBSD Documentation
Project)，您的點滴貢獻，都相當寶貴。

本入手書內容包括：如何開始著手翻譯的各項細節，以及會用到的一些好用工
具(包括：必備工具、輔助工具) ，以及文件計畫的宗旨。

本文件還在草稿，尚未完稿。未完成的章節，我們會在章節名稱旁邊加註『*
』以作識別。

Copyright

Redistribution and use in source (XML DocBook) and 'compiled' forms (XML, HTML, PDF,
PostScript, RTF and so forth) with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code (XML DocBook) must retain the above copyright notice,

this list of conditions and the following disclaimer as the first lines of this

file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF,

PostScript, RTF and other formats) must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or other

materials provided with the distribution.

重要

THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

http://svnweb.freebsd.org/doc?view=revision&revision=43126

iii

ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

內容目錄
序言 .. ix

1. Shell 提示符號(Prompts) ix
2. 書中所用的編排風格 ... ix
3. 『Note、Tip、Important、Warning、Example』的運用 ix
4. 感謝 .. x

1. 概論 ... 1
1.1. FreeBSD 文件的組成部分 1
1.2. 在開工之前... ... 2
1.3. 快速上手篇 .. 2

2. 工具 ... 5
2.1. 必備工具 .. 6
2.2. 輔助工具 .. 7

3. SGML Primer .. 9
3.1. 簡介 .. 9
3.2. Elements, tags, and attributes 11
3.3. The DOCTYPE declaration 18
3.4. Escaping back to SGML 21
3.5. 註解 ... 22
3.6. Entities ... 23
3.7. Using entities to include files 26
3.8. Marked sections .. 30
3.9. Conclusion ... 34

4. SGML Markup ... 35
4.1. HTML ... 35
4.2. DocBook .. 47

5. * Stylesheets ... 83
5.1. * DSSSL .. 83
5.2. CSS .. 83

6. Structuring documents under doc/ 85

6.1. The top level, doc/ 85

6.2. The lang.encoding/ directories 86

6.3. Document specific information 86
7. The Documentation Build Process 89

7.1. The FreeBSD Documentation Build Toolset 89
7.2. Understanding Makefiles in the Documentation tree 90
7.3. FreeBSD Documentation Project make includes 92

8. 建構 Website .. 97
8.1. 事前準備 ... 97
8.2. Build the web pages from scratch 97
8.3. 在你的網頁伺服器上安裝網頁 98
8.4. 環境變數 ... 98

9. 翻譯時的常見問題 ... 101
10. 文件的撰寫風格 .. 107

10.1. Style guide .. 108

內容目錄

vi

10.2. 詞彙表 ... 111
11. Using sgml-mode with Emacs 113
12. 他山之石 .. 115

12.1. The FreeBSD Documentation Project 115
12.2. SGML ... 115
12.3. HTML ... 115
12.4. DocBook .. 115
12.5. The Linux Documentation Project 115

A. 範例 ... 117
A.1. DocBook book .. 117
A.2. DocBook article ... 118

A.3. Producing formatted output 119
索引 ... 123

範例目錄
1. 這是舉例說明 ... x
3.1. Using an element (start and end tags) 12
3.2. Using an element (start tag only) 13
3.3. Elements within elements; em 13

3.4. Using an element with an attribute 14
3.5. Single quotes around attributes 14
3.6. .profile, for sh(1) and bash(1) users 15
3.7. .cshrc, for csh(1) and tcsh(1) users 16
3.8. SGML generic comment .. 22
3.9. Erroneous SGML comments 22
3.10. Defining general entities 24
3.11. Defining parameter entities 25
3.12. Using general entities to include files 27
3.13. Using parameter entities to include files 28
3.14. Structure of a marked section 30
3.15. Using a CDATA marked section 32
3.16. Using INCLUDE and IGNORE in marked sections 32
3.17. Using a parameter entity to control a marked section 33
4.1. Normal HTML document structure 36
4.2. h1, h2, etc. .. 37
4.3. Bad ordering of hn elements 37

4.4. p ... 38

4.5. blockquote .. 38
4.6. ul and ol ... 39

4.7. Definition lists with dl 39

4.8. pre .. 40
4.9. Simple use of table .. 41
4.10. Using rowspan .. 42

4.11. Using colspan ... 42
4.12. Using rowspan and colspan together 43
4.13. em and strong .. 43

4.14. b and i .. 44
4.15. tt .. 44

4.16. big, small, and font ... 45
4.17. Using .. 45
4.18. Using ... 46
4.19. Linking to a named part of another document 46
4.20. Linking to a named part of the same document 47
4.21. Boilerplate book with bookinfo 49
4.22. Boilerplate article with articleinfo 50
4.23. A simple chapter ... 51
4.24. Empty chapters ... 51

http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=bash&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=tcsh&sektion=1

viii

4.25. Sections in chapters ... 51
4.26. para .. 53
4.27. blockquote ... 54
4.28. warning ... 55
4.29. itemizedlist, orderedlist, and procedure 56
4.30. programlisting .. 57
4.31. co and calloutlist .. 58

4.32. informaltable ... 59
4.33. Tables where frame="none" 60
4.34. screen, prompt, and userinput 61
4.35. emphasis .. 62
4.36. Quotations ... 63
4.37. Keys, mouse buttons, and combinations 63
4.38. Applications, commands, and options. 65
4.39. filename .. 66

4.40. filename tag with package role 67

4.41. devicename .. 68
4.42. hostid and roles .. 69
4.43. username .. 70
4.44. maketarget and makevar .. 71

4.45. literal ... 72
4.46. replaceable .. 72

4.47. errorname ... 73

4.48. id on chapters and sections .. 78
4.49. anchor .. 78
4.50. Using xref .. 79
4.51. Using link .. 80
4.52. ulink ... 81

A.1. DocBook book ... 117
A.2. DocBook article .. 118

A.3. 轉換 DocBook 為 HTML (完整模式) 119
A.4. 轉換 DocBook 為 HTML (章節模式) 120
A.5. 轉換 DocBook 為 Postscript(PS) 格式 120
A.6. 轉換 DocBook 為 PDF 格式 121

序言

1. Shell 提示符號(Prompts)

下表顯示出一般帳號與 root 的提示符號，在所有的文件例子中會用提示符號

(prompt) ，來提醒您該用哪種帳號才對。

帳號 提示符號(Prompt)

普通帳號 %

root #

2. 書中所用的編排風格

下表為本書中所使用編排風格方式：

代表意義 舉例

指令 使用 ls -a 來列出所有的檔案。

檔名 修改 .login 檔。

螢幕上會出現的訊息 You have mail.

輸入指令後，螢幕上會出現的對應內

容。

% su
Password:

要參考的線上手冊(manual) 以 su(1) 來切換帳號。

在講到帳號(user)、群組(group)的名稱

的時候...

只有 root 才可以做這件事。

語氣的強調 你『必須』這麼做才行。

打指令時，可替換的部份 要刪除檔案的話，請打 rm ######

環境變數設定 $HOME 是指帳號的家目錄所在處。

3. 『Note、Tip、Important、Warning、Example』的
運用

以下文字是『注意』、『技巧』、『重要訊息』、『警告』、『範例』的運用。

http://www.FreeBSD.org/cgi/man.cgi?query=su&sektion=1

感謝

x

注意

表示需要注意的事項，其中包括您需要注意的事情，因為這些

事情可能會影響到操作結果。

提示

提供可能對您有用或簡化操作方式的技巧說明。

重要

表示要特別注意的事情。一般來說，它們會包括操作指令時需

要加的額外參數。

警告

表示警告事項，比如如果您不注意則可能導致的損失。這些損

失可能是對您或硬體造成實際傷害， 也可能是無法估計的損

害，例如一時疏忽而刪除重要檔案...。

範例 1. 這是舉例說明

這是舉例說明而已，通常包含應遵循的指令範例，或顯示某些特定動作所

可能發生的結果。

4. 感謝

在此要感謝 Sue Blake, Patrick Durusau, Jon Hamilton, Peter Flynn,

Christopher Maden 這些人的協助與閱讀初期草稿，並提供許多寶貴的潤稿意見與

評論。

章 1. 概論
歡迎參與 FreeBSD 文件計劃。維持優秀質量的文件對 FreeBSD 的成功來說十分重
要， 而 FreeBSD 文件計劃(以下皆以 FDP 來代表 FreeBSD Documentation Project
的縮寫) 則與這些文件撰寫、更新息息相關，因此您的點滴貢獻都是十分寶貴的。

本文件最主要的目的，就是清楚告訴您：『FDP 的架構有哪些』、『如何撰寫並提
交文件給 FDP』、 『如何有效運用工具來協助撰稿』。

 我們歡迎每個熱心的志士來加入 FDP 行列。FDP 並不限定每月必須交出多少稿
量，才能加入。 您唯一須要作的就是訂閱 FreeBSD documentation project 郵遞
論壇 。

讀完本份文件，您將會：

•瞭解有哪些文件是由 FDP 所維護的。

•可以看懂 FDP 所維護的 SGML 原始文件。

•知道如何來對文件作修改。

•知道如何投稿自己的修改部份，並最後正式進入 FreeBSD 文件內。

1.1. FreeBSD 文件的組成部分

FDP 總共負責 FreeBSD 的 4 種類別的文件：

線上手冊(manual)

英文版的系統 manual 並不是由 FDP 所撰寫的，因為它們是屬於 base system

的部份。 然而，FDP 可以(也曾這麼做過)修改這些文件，來讓這些文件寫得更

清楚，甚至是勘正錯誤的地方。

翻譯團隊負責將系統的線上手冊翻譯為不同的語言。 這些譯本都由 FDP 維

護。

FAQ

FAQ 主要是收集在各論壇或 newsgroup 會常問到或有可能會問到的 FreeBSD

相關問題與答案 。 (簡單講，就是『問答集』格式) 通常會擺在這裡面的問答

格式，不會放太長的詳細內容。

使用手冊(Handbook)

使用手冊主要是給 FreeBSD 使用者提供詳盡的線上參考資料。

Web site

FreeBSD 主要各項介紹方面的 WWW 部份，歡迎逛逛 http://www.FreeBSD.org/

以及許多其他 mirror 站。這網站是許多人第一次接觸 FreeBSD 的地方。

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
../../../../index.html

在開工之前...

2

這四個文件組成部分都可透過 FreeBSD CVS tree 來取得。也就是說，這些文件的

修改記錄對於任何人都是公開的， 而且無論是誰都可以用像是 CSup, CVSup 或

CTM 將文件取出來(checkout)並放在自己機器上做備份或副本參考等用途。

此外，許多人會寫些教學文件或維護有關 FreeBSD 內容的網站。(若作者同意的

話)其中有些資料會保存在 FreeBSD 正式 CVS repository 內。而其他的文件，可

能作者不希望被放在 FreeBSD repository 內而另存他處。 總之，FDP 會盡力提

供這些文件的連結。

1.2. 在開工之前...

本文假設您已經瞭解：

•如何從 FreeBSD CVS repository 更新自己電腦上的 FreeBSD 文件部份(以 CVS

或 CSup 或 CVSup 或是 CTM) 或是用 CVSup 來下載 checked-out 的副本

•如何用 FreeBSD Ports 套件管理機制或 pkg_add(1) 來下載、安裝軟體。

1.3. 快速上手篇

若想先自行試試看，並有信心可以作得到，那麼就照下面步驟吧。

1. 安裝 textproc/docproj 這個組合型 port(meta-port)。

cd -/usr/ports/textproc/docproj
make JADETEX=no install

2. 下載 FreeBSD doc tree 到本機上： 無論是用 CSup 或 CVSup 的 checkout 模
式， 或是複製完整的 CVS repository 到本機上都可以。

若想在本機上只跑最低限度的 CVS repository 就好，那麼必須要 checkout

出 doc/share 以及 doc/en_US.ISO8859-1/share 這兩個目錄才行。

% cvs checkout doc/share
% cvs checkout doc/en_US.ISO8859-1/share

若硬碟空間還算可以的話，那可以把所有語系的 doc 都 check out 出來：

% cvs checkout doc

3. 可依需要從 repository 中 checkout 出來你想修改某份現有的書籍或文章內

容。 若打算撰寫新書或新文章的話，可以參考現有的部分作為實例來做。

舉例來說，若想寫篇新文章，內容是有關在 FreeBSD 與 Windows 2000 之間建

立 VPN 連線， 那麼可以照類似下面這樣的作法：

http://www.FreeBSD.org/cgi/man.cgi?query=pkg_add&sektion=1

章 1. 概論

3

1. Check out articles 目錄：

% cvs checkout doc/en_US.ISO8859-1/articles

2. 複製現有的文章作為範本。在這個例子中，您打算決定把新文章放在

vpn-w2k 的目錄下。

% cd doc/en_US.ISO8859-1/articles
% cp --R committers-guide vpn-w2k

若是要修改現有文章，像是 FAQ(擺在 doc/en_US.ISO8859-1/books/faq) ，那麼

要從 repository 中取出來(check out)：

% cvs checkout doc/en_US.ISO8859-1/books/faq

4. 以編輯器來編寫 .xml 檔。

5. 以 lint 當輔助參數，來快速檢測文件結構及連結有無錯誤， 以下這個指令，

實際上不會進行耗時的編書過程，只是先測試文件有無錯誤。

% make lint

當編書的一切都就緒時，這時你可以用 FORMATS 變數來指定產生的格式為

哪一種。 目前支援的格式共有： html, html-split, txt, ps, pdf, rtf 。

所支援的格式列表最新版，可參考 doc/share/mk/doc.docbook.mk 檔。 請記

得： 在單一指令中，若要同時產生多種格式的話，應使用引號(quotes)來將

這些格式括起來。

舉例來說，若只要產生 html 格式就好，那麼就打：

% make FORMATS=html

但若希望有 html 及 txt 格式的話， 你可能要打兩次 make(1) 指令才能完成：

% make FORMATS=html
% make FORMATS=txt

其實，也可以用單一指令來完成：

% make FORMATS="html txt"

6. 最後，以 send-pr(1) 來提交修改的部份。

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1

章 2. 工具
FDP 使用一堆工具來協助管理 FreeBSD 文件、轉換文件格式等等。 因此，若要進
行 FDP 工作的話，必須要學會這些工具才行。

這些工具都可以用 Ports 或 Packages 來安裝，以節省許多安裝的工夫。

您必須安裝這些工具，才能使用接下來各章節會介紹到的例子。 這些工具的用
法，會在後續相關章節談到。

建議安裝 textproc/docproj

裝了 textproc/docproj 可以更省時省力，它是個 組合型
的 port(meta-port)，本身並非軟體，只是將一些常用工具組
合起來而已。 裝了這個 port 之後，『應該』就會自動下載、
安裝本章所會介紹到的工具了。 若要處理中文的話，建議再
裝 chinese/docproj 會比較好。

在這些 packages 當中，你可能會需要使用 JadeTeX 這個
macro 設定， 一旦選擇使用該 macro 的話，它會接著去
裝 TeX。由於 TeX 算是個蠻大的套件， 除非你需要輸出
Postscript 或 PDF 格式，否則就不必裝了。

所以請考慮是否要節省編譯時間、硬碟空間，以判定要不要裝
JadeTeX (以及 TeX) 了。若要一併裝起來的話：

make JADETEX=yes install

或是，不裝的話：

make JADETEX=no install

或者，也可以選擇 textproc/docproj-jadetex 或是
textproc/docproj-nojadetex 這兩個之一來裝， 它們都是已
事先設定 JADETEX 變數的 slave ports， 都一樣會裝

docproj 差別僅在於有沒有 JadeTeX 而已。 請注意：若只要
輸出 HTML 或 ASCII 格式文件，那就不用裝 JadeTeX， 而若
要輸出 PostScript、PDF 格式，就需要裝 TeX 才行。

必備工具

6

2.1. 必備工具

2.1.1. 軟體

這些都是在進行 FreeeBSD 文件計劃時所會需要用上的工具程式， 而且可以用來轉

換文件為 HTML、plain text以及 RTF 格式。這些相關套件在 textproc/docproj

都已經全部收錄了。

Jade (textproc/jade)

DSSSL 規格的實作程式，可用來把標記語言的文件(marked up)轉換為其他格

式，像是：HTML 及 TeX。

Tidy (www/tidy)

HTML “pretty printer”，可用來把自動產生的 HTML 內容整理得更易閱讀、

以便日後維護。

Links (www/links)

文字操作模式的 WWW 瀏覽器(browser)可以把 HTML 檔轉為 plain text 格式。

peps (graphics/peps)

文件中有些圖是存成 EPS 格式的，這些必須要轉為 PNG 格式， 才能讓一般瀏

覽器可以正常觀看。

2.1.2. DTD 及 Entity

由於 FDP 有用到許多 DTD 跟 Entity，因此在開工前，要裝上這些才行。

HTML DTD (textproc/html)

HTML 是用於 WWW 的標記語言，且也是 FreeBSD 網頁所使用的格式。

DocBook DTD (textproc/docbook)

DocBook 是專門用來製作技術文件的標示語言版本， FreeBSD 全部文件都是以

DocBook 所寫成的。

ISO 8879 entities (textproc/iso8879)

在 ISO 8879:1986 之中有 19 個 entity 被許多 DTD 所大量使用， 包括了數

學符號、拉丁字母符號(尖重音等音節符號也是)以及希臘符號。

2.1.3. 樣式表(Stylesheets)

這些樣式表都是用來轉換、重排文件的螢幕顯示、列印等效果處理

Modular DocBook 樣式表 (textproc/dsssl-docbook-modular)

Modular DocBook 樣式表，是用來把 DocBook 的標記語言文件轉換為其他格

式，像是： HTML 或 RTF。

章 2. 工具

7

2.2. 輔助工具

不一定得裝下列的工具才行，但是，裝了之後會更容易進行各項工作， 而且可輸

出的格式也更具彈性。

2.2.1. 軟體

JadeTeX 及 teTeX (print/jadetex 及 print/teTeX)

Jade 與 teTeX 可用來把 DocBook 格式文件轉為 DVI, Postscript 及 PDF 格

式。安裝時請記得加上 JadeTeX 這個 macro，這樣才會順便裝上這兩個套件。

若無意把文件轉換更多格式的話(舉例：只要 HTML, plain text, RTF 這些格

式就夠的話) ，那麼就不用裝 JadeTeX 與 teTeX。 如此一來可省下一些的編

譯時間、安裝空間， 因為 teTeX 大約要至少 30MB 空間。

重要

若決定要裝 JadeTeX 以及 teTeX 的話，那麼在裝完

JadeTeX 之後， 要記得設定 teTeX 才行。 print/jadetex/
pkg-message 內有詳細介紹相關步驟。

Emacs 或 XEmacs (editors/emacs 或 editors/xemacs)

這兩者編輯器都具有處理 SGML DTD 標記文件的特殊模式。 該模式提供一些指

令，來簡化所需的打字次數，而且可以減少可能發生的錯誤。

不過，這些編輯器並不是必備的；任何文字編輯器都可以用來編輯標記語言文

件。 不過，你可以透過類似上述這樣的編輯器，來讓這些繁瑣作業更輕鬆有

效率些。

若有推薦其他好用的處理 SGML 文件程式，請來信讓 Documentation Engineering

Team <doceng@FreeBSD.org> 知道， 如此一來，該軟體就會列入這裡介紹了。

mailto:doceng@FreeBSD.org

章 3. SGML Primer
FDP 文件幾乎都是以 SGML 相關程式寫的。本章會介紹 SGML 是什麼、 如何閱讀、
理解這些 SGML 原稿，以及本文件中所運用的各項 SGML 技巧。

本節部分靈感啟發來自 Mark Galassi 的這篇 Get Going With DocBook。

3.1. 簡介

Way back when, electronic text was simple to deal with. Admittedly, you had

to know which character set your document was written in (ASCII, EBCDIC, or

one of a number of others) but that was about it. Text was text, and what

you saw really was what you got. No frills, no formatting, no intelligence.

Inevitably, this was not enough. Once you have text in a machine-usable

format, you expect machines to be able to use it and manipulate it

intelligently. You would like to indicate that certain phrases should

be emphasized, or added to a glossary, or be hyperlinks. You might want

filenames to be shown in a “typewriter” style font for viewing on screen,

but as “italics” when printed, or any of a myriad of other options for

presentation.

It was once hoped that Artificial Intelligence (AI) would make this easy.

Your computer would read in the document and automatically identify key

phrases, filenames, text that the reader should type in, examples, and

more. Unfortunately, real life has not happened quite like that, and our

computers require some assistance before they can meaningfully process

our text.

More precisely, they need help identifying what is what. You or I can

look at

To remove /tmp/foo use rm(1).

% rm -/tmp/foo

and easily see which parts are filenames, which are commands to be typed

in, which parts are references to manual pages, and so on. But the computer

processing the document cannot. For this we need markup.

“Markup” is commonly used to describe “adding value” or “increasing

cost”. The term takes on both these meanings when applied to text.

Markup is additional text included in the document, distinguished from

http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro/docbook-intro.html
http://www.FreeBSD.org/cgi/man.cgi?query=rm&sektion=1

簡介

10

the document's content in some way, so that programs that process the

document can read the markup and use it when making decisions about the

document. Editors can hide the markup from the user, so the user is not

distracted by it.

The extra information stored in the markup adds value to the document.

Adding the markup to the document must typically be done by a person—

after all, if computers could recognize the text sufficiently well to add

the markup then there would be no need to add it in the first place. This

increases the cost (i.e., the effort required) to create the document.

The previous example is actually represented in this document like this:

<para>To remove <filename>/tmp/foo</filename> use &man.rm.1;.</para>

<screen>&prompt.user; <userinput>rm -/tmp/foo</userinput></screen>

As you can see, the markup is clearly separate from the content.

Obviously, if you are going to use markup you need to define what your

markup means, and how it should be interpreted. You will need a markup

language that you can follow when marking up your documents.

Of course, one markup language might not be enough. A markup language

for technical documentation has very different requirements than a markup

language that was to be used for cookery recipes. This, in turn, would be

very different from a markup language used to describe poetry. What you

really need is a first language that you use to write these other markup

languages. A meta markup language.

This is exactly what the Standard Generalized Markup Language (SGML) is.

Many markup languages have been written in SGML, including the two most

used by the FDP, HTML and DocBook.

Each language definition is more properly called a Document Type Definition

(DTD). The DTD specifies the name of the elements that can be used, what

order they appear in (and whether some markup can be used inside other

markup) and related information. A DTD is sometimes referred to as an

application of SGML.

A DTD is a complete specification of all the elements that are allowed

to appear, the order in which they should appear, which elements are

mandatory, which are optional, and so forth. This makes it possible to

write an SGML parser which reads in both the DTD and a document which

claims to conform to the DTD. The parser can then confirm whether or not

all the elements required by the DTD are in the document in the right

章 3. SGML Primer

11

order, and whether there are any errors in the markup. This is normally

referred to as “validating the document”.

注意

This processing simply confirms that the choice of

elements, their ordering, and so on, conforms to that

listed in the DTD. It does not check that you have used

appropriate markup for the content. If you tried to mark

up all the filenames in your document as function names,

the parser would not flag this as an error (assuming,

of course, that your DTD defines elements for filenames

and functions, and that they are allowed to appear in

the same place).

It is likely that most of your contributions to the Documentation Project

will consist of content marked up in either HTML or DocBook, rather than

alterations to the DTDs. For this reason this book will not touch on how

to write a DTD.

3.2. Elements, tags, and attributes

All the DTDs written in SGML share certain characteristics. This is hardly

surprising, as the philosophy behind SGML will inevitably show through.

One of the most obvious manifestations of this philosophy is that of

content and elements.

Your documentation (whether it is a single web page, or a lengthy book)

is considered to consist of content. This content is then divided (and

further subdivided) into elements. The purpose of adding markup is to name

and identify the boundaries of these elements for further processing.

For example, consider a typical book. At the very top level, the book

is itself an element. This “book” element obviously contains chapters,

which can be considered to be elements in their own right. Each chapter

will contain more elements, such as paragraphs, quotations, and footnotes.

Each paragraph might contain further elements, identifying content that

was direct speech, or the name of a character in the story.

You might like to think of this as “chunking” content. At the very

top level you have one chunk, the book. Look a little deeper, and you

Elements, tags, and attributes

12

have more chunks, the individual chapters. These are chunked further into

paragraphs, footnotes, character names, and so on.

Notice how you can make this differentiation between different elements of

the content without resorting to any SGML terms. It really is surprisingly

straightforward. You could do this with a highlighter pen and a printout of

the book, using different colors to indicate different chunks of content.

Of course, we do not have an electronic highlighter pen, so we need some

other way of indicating which element each piece of content belongs to.

In languages written in SGML (HTML, DocBook, et al) this is done by means

of tags.

A tag is used to identify where a particular element starts, and where

the element ends. The tag is not part of the element itself. Because each

DTD was normally written to mark up specific types of information, each

one will recognize different elements, and will therefore have different

names for the tags.

For an element called element-name the start tag will normally look like
<element-name>. The corresponding closing tag for this element is </element-
name>.

範例 3.1. Using an element (start and end tags)

HTML has an element for indicating that the content enclosed by

the element is a paragraph, called p. This element has both start
and end tags.

<p>This is a paragraph. It starts with the start tag for
 the -'p' element, and it will end with the end tag for the -'p'
 element.</p>

<p>This is another paragraph. But this one is much shorter.</p>

Not all elements require an end tag. Some elements have no content. For

example, in HTML you can indicate that you want a horizontal line to appear

in the document. Obviously, this line has no content, so just the start

tag is required for this element.

章 3. SGML Primer

13

範例 3.2. Using an element (start tag only)

HTML has an element for indicating a horizontal rule, called hr.
This element does not wrap content, so only has a start tag.

<p>This is a paragraph.</p>

<hr>

<p>This is another paragraph. A horizontal rule separates this
 from the previous paragraph.</p>

If it is not obvious by now, elements can contain other elements. In the

book example earlier, the book element contained all the chapter elements,

which in turn contained all the paragraph elements, and so on.

範例 3.3. Elements within elements; em

<p>This is a simple paragraph where some
 of the words have been emphasized.</p>

The DTD will specify the rules detailing which elements can contain other

elements, and exactly what they can contain.

重要

People often confuse the terms tags and elements, and use

the terms as if they were interchangeable. They are not.

An element is a conceptual part of your document. An

element has a defined start and end. The tags mark where

the element starts and end.

When this document (or anyone else knowledgeable about

SGML) refers to “the <p> tag” they mean the literal

text consisting of the three characters <, p, and >.

Elements, tags, and attributes

14

But the phrase “the <p> element” refers to the whole

element.

This distinction is very subtle. But keep it in mind.

Elements can have attributes. An attribute has a name and a value, and is

used for adding extra information to the element. This might be information

that indicates how the content should be rendered, or might be something

that uniquely identifies that occurrence of the element, or it might be

something else.

An element's attributes are written inside the start tag for that element,

and take the form attribute-name="attribute-value".

In sufficiently recent versions of HTML, the p element has an attribute
called align, which suggests an alignment (justification) for the paragraph
to the program displaying the HTML.

The align attribute can take one of four defined values, left, center, right
and justify. If the attribute is not specified then the default is left.

範例 3.4. Using an element with an attribute

<p align="left">The inclusion of the align attribute
 on this paragraph was superfluous, since the default is left.</p>

<p align="center">This may appear in the center.</p>

Some attributes will only take specific values, such as left or justify. Others
will allow you to enter anything you want. If you need to include quotes

(") within an attribute then use single quotes around the attribute value.

範例 3.5. Single quotes around attributes

<p align='right'>I am on the right!</p>

章 3. SGML Primer

15

Sometimes you do not need to use quotes around attribute values at all.

However, the rules for doing this are subtle, and it is far simpler just

to always quote your attribute values.

The information on attributes, elements, and tags is stored in SGML

catalogs. The various Documentation Project tools use these catalog files

to validate your work. The tools in textproc/docproj include a variety

of SGML catalog files. The FreeBSD Documentation Project includes its

own set of catalog files. Your tools need to know about both sorts of

catalog files.

3.2.1. For you to do…

In order to run the examples in this document you will need to install

some software on your system and ensure that an environment variable is

set correctly.

1. Download and install textproc/docproj from the FreeBSD ports system.

This is a meta-port that should download and install all of the programs

and supporting files that are used by the Documentation Project.

2. Add lines to your shell startup files to set SGML_CATALOG_FILES.
(If you are not working on the English version of the documentation,

you will want to substitute the correct directory for your language.)

範例 3.6. .profile, for sh(1) and bash(1)
users

SGML_ROOT=/usr/local/share/xml
SGML_CATALOG_FILES=${SGML_ROOT}/jade/catalog
SGML_CATALOG_FILES=${SGML_ROOT}/iso8879/catalog:
$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/html/catalog:
$SGML_CATALOG_FILES
SGML_CATALOG_FILES=${SGML_ROOT}/docbook/4.1/catalog:
$SGML_CATALOG_FILES
SGML_CATALOG_FILES=/usr/doc/share/xml/catalog:$SGML_CATALOG_FILES
SGML_CATALOG_FILES=/usr/doc/en_US.ISO8859-1/share/xml/catalog:
$SGML_CATALOG_FILES
export SGML_CATALOG_FILES

http://www.FreeBSD.org/cgi/man.cgi?query=sh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=bash&sektion=1

For you to do…

16

範例 3.7. .cshrc, for csh(1) and tcsh(1)
users

setenv SGML_ROOT -/usr/local/share/xml
setenv SGML_CATALOG_FILES ${SGML_ROOT}/jade/catalog
setenv SGML_CATALOG_FILES ${SGML_ROOT}/iso8879/catalog:
$SGML_CATALOG_FILES
setenv SGML_CATALOG_FILES ${SGML_ROOT}/html/catalog:
$SGML_CATALOG_FILES
setenv SGML_CATALOG_FILES ${SGML_ROOT}/docbook/4.1/catalog:
$SGML_CATALOG_FILES
setenv SGML_CATALOG_FILES -/usr/doc/share/xml/catalog:
$SGML_CATALOG_FILES
setenv SGML_CATALOG_FILES -/usr/doc/en_US.ISO8859-1/share/xml/catalog:
$SGML_CATALOG_FILES

Then either log out, and log back in again, or run those commands from

the command line to set the variable values.

1. Create example.xml, and enter the following text:

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0 Transitional//EN">

<html>
 <head>
 <title>An example HTML file</title>
 </head>

 <body>
 <p>This is a paragraph containing some text.</p>

 <p>This paragraph contains some more text.</p>

 <p align="right">This paragraph might be right-justified.</p>
 </body>
</html>

2. Try to validate this file using an SGML parser.

Part of textproc/docproj is the nsgmls validating parser [10].

Normally, nsgmls reads in a document marked up according to an SGML
DTD and returns a copy of the document's Element Structure Information

Set (ESIS, but that is not important right now).

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=tcsh&sektion=1

章 3. SGML Primer

17

However, when nsgmls is given the -s parameter, nsgmls will suppress
its normal output, and just print error messages. This makes it a

useful way to check to see if your document is valid or not.

Use nsgmls to check that your document is valid:

% nsgmls --s example.xml

As you will see, nsgmls returns without displaying any output. This
means that your document validated successfully.

3. See what happens when required elements are omitted. Try removing the

title and /title tags, and re-run the validation.

% nsgmls --s example.xml
nsgmls:example.xml:5:4:E: character data is not allowed here
nsgmls:example.xml:6:8:E: end tag for -"HEAD" which is not finished

The error output from nsgmls is organized into colon-separated groups,
or columns.

Column Meaning

1 The name of the program generating

the error. This will always be

nsgmls.

2 The name of the file that contains

the error.

3 Line number where the error appears.

4 Column number where the error

appears.

5 A one letter code indicating the

nature of the message. I indicates
an informational message, W is for

warnings, and E is for errorsa, and
X is for cross-references. As you

can see, these messages are errors.

6 The text of the error message.
aIt is not always the fifth column either. nsgmls -sv displays nsgmls:I: SP version "1.3"
(depending on the installed version). As you can see, this is an informational message.

Simply omitting the title tags has generated 2 different errors.

The DOCTYPE declaration

18

The first error indicates that content (in this case, characters,

rather than the start tag for an element) has occurred where the SGML

parser was expecting something else. In this case, the parser was

expecting to see one of the start tags for elements that are valid

inside head (such as title).

The second error is because head elements must contain a title element.
Because it does not nsgmls considers that the element has not been
properly finished. However, the closing tag indicates that the element

has been closed before it has been finished.

4. Put the title element back in.

3.3. The DOCTYPE declaration

The beginning of each document that you write must specify the name of

the DTD that the document conforms to. This is so that SGML parsers can

determine the DTD and ensure that the document does conform to it.

This information is generally expressed on one line, in the DOCTYPE

declaration.

A typical declaration for a document written to conform with version 4.0

of the HTML DTD looks like this:

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN">

That line contains a number of different components.

<!
Is the indicator that indicates that this is an SGML declaration. This

line is declaring the document type.

DOCTYPE
Shows that this is an SGML declaration for the document type.

html
Names the first element that will appear in the document.

PUBLIC "-//W3C//DTD HTML 4.0//EN"
Lists the Formal Public Identifier (FPI) for the DTD that this document

conforms to. Your SGML parser will use this to find the correct DTD

when processing this document.

章 3. SGML Primer

19

PUBLIC is not a part of the FPI, but indicates to the SGML processor

how to find the DTD referenced in the FPI. Other ways of telling the

SGML parser how to find the DTD are shown later.

>
Returns to the document.

3.3.1. Formal Public Identifiers (FPIs)

注意

You do not need to know this, but it is useful background,

and might help you debug problems when your SGML

processor can not locate the DTD you are using.

FPIs must follow a specific syntax. This syntax is as follows:

"Owner//Keyword Description//Language"

Owner
This indicates the owner of the FPI.

If this string starts with “ISO” then this is an ISO owned FPI. For

example, the FPI "ISO 8879:1986//ENTITIES Greek Symbols//EN" lists ISO
8879:1986 as being the owner for the set of entities for Greek symbols.
ISO 8879:1986 is the ISO number for the SGML standard.

Otherwise, this string will either look like -//Owner or +//Owner
(notice the only difference is the leading + or -).

If the string starts with - then the owner information is unregistered,
with a + it identifies it as being registered.

ISO 9070:1991 defines how registered names are generated; it might

be derived from the number of an ISO publication, an ISBN code, or

an organization code assigned according to ISO 6523. In addition, a

registration authority could be created in order to assign registered

names. The ISO council delegated this to the American National

Standards Institute (ANSI).

Because the FreeBSD Project has not been registered the owner string

is -//FreeBSD. And as you can see, the W3C are not a registered owner

either.

Formal Public Identifiers (FPIs)

20

Keyword
There are several keywords that indicate the type of information in the

file. Some of the most common keywords are DTD, ELEMENT, ENTITIES,
and TEXT. DTD is used only for DTD files, ELEMENT is usually used
for DTD fragments that contain only entity or element declarations.

TEXT is used for SGML content (text and tags).

Description
Any description you want to supply for the contents of this file. This

may include version numbers or any short text that is meaningful to

you and unique for the SGML system.

Language
This is an ISO two-character code that identifies the native language

for the file. EN is used for English.

3.3.1.1. catalog files

If you use the syntax above and process this document using an SGML

processor, the processor will need to have some way of turning the FPI

into the name of the file on your computer that contains the DTD.

In order to do this it can use a catalog file. A catalog file (typically

called catalog) contains lines that map FPIs to filenames. For example, if
the catalog file contained the line:

PUBLIC -"-//W3C//DTD HTML 4.0//EN" -"4.0/strict.dtd"

The SGML processor would know to look up the DTD from strict.dtd in the 4.0
subdirectory of whichever directory held the catalog file that contained
that line.

Look at the contents of /usr/local/share/xml/html/catalog. This is the catalog
file for the HTML DTDs that will have been installed as part of the

textproc/docproj port.

3.3.1.2. SGML_CATALOG_FILES

In order to locate a catalog file, your SGML processor will need to know
where to look. Many of them feature command line parameters for specifying

the path to one or more catalogs.

In addition, you can set SGML_CATALOG_FILES to point to the files.
This environment variable should consist of a colon-separated list of

catalog files (including their full path).

章 3. SGML Primer

21

Typically, you will want to include the following files:

•/usr/local/share/xml/docbook/4.1/catalog

•/usr/local/share/xml/html/catalog

•/usr/local/share/xml/iso8879/catalog

•/usr/local/share/xml/jade/catalog

You should already have done this.

3.3.2. Alternatives to FPIs

Instead of using an FPI to indicate the DTD that the document conforms

to (and therefore, which file on the system contains the DTD) you can

explicitly specify the name of the file.

The syntax for this is slightly different:

<!DOCTYPE html SYSTEM -"/path/to/file.dtd">

The SYSTEM keyword indicates that the SGML processor should locate the

DTD in a system specific fashion. This typically (but not always) means

the DTD will be provided as a filename.

Using FPIs is preferred for reasons of portability. You do not want to

have to ship a copy of the DTD around with your document, and if you

used the SYSTEM identifier then everyone would need to keep their DTDs

in the same place.

3.4. Escaping back to SGML

Earlier in this primer I said that SGML is only used when writing a DTD.

This is not strictly true. There is certain SGML syntax that you will

want to be able to use within your documents. For example, comments can

be included in your document, and will be ignored by the parser. Comments

are entered using SGML syntax. Other uses for SGML syntax in your document

will be shown later too.

Obviously, you need some way of indicating to the SGML processor that the

following content is not elements within the document, but is SGML that

the parser should act upon.

These sections are marked by <! ... > in your document. Everything between
these delimiters is SGML syntax as you might find within a DTD.

註解

22

As you may just have realized, the DOCTYPE declaration is an example of

SGML syntax that you need to include in your document…

3.5. 註解

Comments are an SGML construction, and are normally only valid inside a

DTD. However, as 節 3.4, “Escaping back to SGML” shows, it is possible

to use SGML syntax within your document.

The delimiter for SGML comments is the string “--”. The first occurrence

of this string opens a comment, and the second closes it.

範例 3.8. SGML generic comment
<!-- #### --->

<!-- #### --->

<!-- ##### --->

<!-- #########
 ######### --->

<!-- ####### ---
 --- ####### --->

If you have used HTML before you may have been shown different rules

for comments. In particular, you may think that the string <!-- opens a
comment, and it is only closed by -->.

This is not the case. A lot of web browsers have broken HTML parsers,

and will accept that as valid. However, the SGML parsers used by the

Documentation Project are much stricter, and will reject documents that

make that error.

範例 3.9. Erroneous SGML comments

<!-- This is in the comment ---

章 3. SGML Primer

23

 THIS IS OUTSIDE THE COMMENT!

 --- back inside the comment --->

The SGML parser will treat this as though it were actually:

<!THIS IS OUTSIDE THE COMMENT>

This is not valid SGML, and may give confusing error messages.

<!----- This is a very bad idea ------>

As the example suggests, do not write comments like that.

<!--===-->

That is a (slightly) better approach, but it still potentially

confusing to people new to SGML.

3.5.1. For you to do…

1. Add some comments to example.xml, and check that the file still

validates using nsgmls.

2. Add some invalid comments to example.xml, and see the error messages
that nsgmls gives when it encounters an invalid comment.

3.6. Entities

Entities are a mechanism for assigning names to chunks of content. As an

SGML parser processes your document, any entities it finds are replaced

by the content of the entity.

This is a good way to have re-usable, easily changeable chunks of content

in your SGML documents. It is also the only way to include one marked up

file inside another using SGML.

There are two types of entities which can be used in two different

situations; general entities and parameter entities.

3.6.1. General Entities

You cannot use general entities in an SGML context (although you define

them in one). They can only be used in your document. Contrast this with

parameter entities.

Parameter entities

24

Each general entity has a name. When you want to reference a general entity

(and therefore include whatever text it represents in your document),

you write &entity-name;. For example, suppose you had an entity called
current.version which expanded to the current version number of your product.
You could write:

<para>The current version of our product is
 ¤t.version;.</para>

When the version number changes you can simply change the definition of

the value of the general entity and reprocess your document.

You can also use general entities to enter characters that you could

not otherwise include in an SGML document. For example, < and & cannot

normally appear in an SGML document. When the SGML parser sees the <
symbol it assumes that a tag (either a start tag or an end tag) is about

to appear, and when it sees the & symbol it assumes the next text will

be the name of an entity.

Fortunately, you can use the two general entities < and & whenever
you need to include one or other of these.

A general entity can only be defined within an SGML context. Typically,

this is done immediately after the DOCTYPE declaration.

範例 3.10. Defining general entities
<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY current.version -"3.0-RELEASE">
<!ENTITY last.version -"2.2.7-RELEASE">
]>

Notice how the DOCTYPE declaration has been extended by adding a

square bracket at the end of the first line. The two entities are

then defined over the next two lines, before the square bracket is

closed, and then the DOCTYPE declaration is closed.

The square brackets are necessary to indicate that we are extending

the DTD indicated by the DOCTYPE declaration.

3.6.2. Parameter entities

Like general entities, parameter entities are used to assign names to

reusable chunks of text. However, where as general entities can only be

章 3. SGML Primer

25

used within your document, parameter entities can only be used within

an SGML context.

Parameter entities are defined in a similar way to general entities.

However, instead of using &entity-name; to refer to them, use %entity-name;1.
The definition also includes the % between the ENTITY keyword and the

name of the entity.

範例 3.11. Defining parameter entities

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % param.some -"some">
<!ENTITY % param.text -"text">
<!ENTITY % param.new -"%param.some more %param.text">
]>

This may not seem particularly useful. It will be.

3.6.3. For you to do…

1. Add a general entity to example.xml.

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0 Transitional//EN" [
<!ENTITY version -"1.1">
]>

<html>
 <head>
 <title>An example HTML file</title>
 </head>

 <body>
 <p>This is a paragraph containing some text.</p>

 <p>This paragraph contains some more text.</p>

 <p align="right">This paragraph might be right-justified.</p>

 <p>The current version of this document is: &version;</p>
 </body>
</html>

2. Validate the document using nsgmls.

1Parameter entities use the Percent symbol.

Using entities to include files

26

3. Load example.xml into your web browser (you may need to copy it to
example.html before your browser recognizes it as an HTML document).

Unless your browser is very advanced, you will not see the entity

reference &version; replaced with the version number. Most web browsers
have very simplistic parsers which do not handle proper SGML2.

4. The solution is to normalize your document using an SGML normalizer.

The normalizer reads in valid SGML and outputs equally valid SGML

which has been transformed in some way. One of the ways in which the

normalizer transforms the SGML is to expand all the entity references

in the document, replacing the entities with the text that they

represent.

You can use sgmlnorm to do this.

% sgmlnorm example.xml > example.html

You should find a normalized (i.e., entity references expanded) copy

of your document in example.html, ready to load into your web browser.

5. If you look at the output from sgmlnorm you will see that it does

not include a DOCTYPE declaration at the start. To include this you

need to use the -d option:

% sgmlnorm --d example.xml > example.html

3.7. Using entities to include files

Entities (both general and parameter) are particularly useful when used

to include one file inside another.

3.7.1. Using general entities to include files

Suppose you have some content for an SGML book organized into files, one

file per chapter, called chapter1.xml, chapter2.xml, and so forth, with a
book.xml file that will contain these chapters.

In order to use the contents of these files as the values for your entities,

you declare them with the SYSTEM keyword. This directs the SGML parser

to use the contents of the named file as the value of the entity.
2This is a shame. Imagine all the problems and hacks (such as Server Side Includes) that

could be avoided if they did.

章 3. SGML Primer

27

範例 3.12. Using general entities to include
files

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY chapter.1 SYSTEM -"chapter1.xml">
<!ENTITY chapter.2 SYSTEM -"chapter2.xml">
<!ENTITY chapter.3 SYSTEM -"chapter3.xml">
]>

<html>

 &chapter.1;
 &chapter.2;
 &chapter.3;
</html>

警告

When using general entities to include other files

within a document, the files being included (chapter1.xml,
chapter2.xml, and so on) must not start with a DOCTYPE
declaration. This is a syntax error.

3.7.2. Using parameter entities to include files

Recall that parameter entities can only be used inside an SGML context.

Why then would you want to include a file within an SGML context?

You can use this to ensure that you can reuse your general entities.

Suppose that you had many chapters in your document, and you reused these

chapters in two different books, each book organizing the chapters in a

different fashion.

You could list the entities at the top of each book, but this quickly

becomes cumbersome to manage.

Instead, place the general entity definitions inside one file, and use a

parameter entity to include that file within your document.

For you to do…

28

範例 3.13. Using parameter entities to include
files

First, place your entity definitions in a separate file, called

chapters.ent. This file contains the following:

<!ENTITY chapter.1 SYSTEM -"chapter1.xml">
<!ENTITY chapter.2 SYSTEM -"chapter2.xml">
<!ENTITY chapter.3 SYSTEM -"chapter3.xml">

Now create a parameter entity to refer to the contents of the file.

Then use the parameter entity to load the file into the document,

which will then make all the general entities available for use.

Then use the general entities as before:

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % chapters SYSTEM -"chapters.ent">
%chapters;
]>

<html>
 &chapter.1;
 &chapter.2;
 &chapter.3;
</html>

3.7.3. For you to do…

3.7.3.1. Use general entities to include files

1. Create three files, para1.xml, para2.xml, and para3.xml.

Put content similar to the following in each file:

<p>This is the first paragraph.</p>

2. Edit example.xml so that it looks like this:

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY version -"1.1">
<!ENTITY para1 SYSTEM -"para1.xml">
<!ENTITY para2 SYSTEM -"para2.xml">
<!ENTITY para3 SYSTEM -"para3.xml">
]>

<html>

章 3. SGML Primer

29

 <head>
 <title>An example HTML file</title>
 </head>

 <body>
 <p>The current version of this document is: &version;</p>

 ¶1;
 ¶2;
 ¶3;
 </body>
</html>

3. Produce example.html by normalizing example.xml.

% sgmlnorm --d example.xml > example.html

4. Load example.html into your web browser, and confirm that the paran.xml
files have been included in example.html.

3.7.3.2. Use parameter entities to include files

注意

You must have taken the previous steps first.

1. Edit example.xml so that it looks like this:

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % entities SYSTEM -"entities.xml"> %entities;
]>

<html>
 <head>
 <title>An example HTML file</title>
 </head>

 <body>
 <p>The current version of this document is: &version;</p>

 ¶1;
 ¶2;
 ¶3;
 </body>
</html>

2. Create a new file, entities.xml, with this content:

Marked sections

30

<!ENTITY version -"1.1">
<!ENTITY para1 SYSTEM -"para1.xml">
<!ENTITY para2 SYSTEM -"para2.xml">
<!ENTITY para3 SYSTEM -"para3.xml">

3. Produce example.html by normalizing example.xml.

% sgmlnorm --d example.xml > example.html

4. Load example.html into your web browser, and confirm that the paran.xml
files have been included in example.html.

3.8. Marked sections

SGML provides a mechanism to indicate that particular pieces of the

document should be processed in a special way. These are termed “marked

sections”.

範例 3.14. Structure of a marked section

<![KEYWORD [
 Contents of marked section
]]>

As you would expect, being an SGML construct, a marked section starts

with <!.

The first square bracket begins to delimit the marked section.

KEYWORD describes how this marked section should be processed by the

parser.

The second square bracket indicates that the content of the marked section

starts here.

The marked section is finished by closing the two square brackets, and

then returning to the document context from the SGML context with >.

章 3. SGML Primer

31

3.8.1. Marked section keywords

3.8.1.1. CDATA, RCDATA

These keywords denote the marked sections content model, and allow you

to change it from the default.

When an SGML parser is processing a document it keeps track of what is

called the “content model”.

Briefly, the content model describes what sort of content the parser is

expecting to see, and what it will do with it when it finds it.

The two content models you will probably find most useful are CDATA
and RCDATA.

CDATA is for “Character Data”. If the parser is in this content model

then it is expecting to see characters, and characters only. In this model

the < and & symbols lose their special status, and will be treated as

ordinary characters.

RCDATA is for “Entity references and character data” If the parser is

in this content model then it is expecting to see characters and entities.

< loses its special status, but & will still be treated as starting the

beginning of a general entity.

This is particularly useful if you are including some verbatim text that

contains lots of < and & characters. While you could go through the text

ensuring that every < is converted to a < and every & is converted to

a &, it can be easier to mark the section as only containing CDATA.
When the SGML parser encounters this it will ignore the < and & symbols

embedded in the content.

注意

When you use CDATA or RCDATA in examples of text

marked up in SGML, keep in mind that the content of

CDATA is not validated. You have to check the included

SGML text using other means. You could, for example,

write the example in another document, validate the

example code, and then paste it to your CDATA content.

Marked section keywords

32

範例 3.15. Using a CDATA marked section
<para>Here is an example of how you would include some text
 that contained many <literal><</literal>
 and <literal>&</literal> symbols. The sample
 text is a fragment of HTML. The surrounding text (<para> and
 <programlisting>) are from DocBook.</para>

<programlisting>
 <![CDATA[
 <p>This is a sample that shows you some of the elements within
 HTML. Since the angle brackets are used so many times, it is
 simpler to say the whole example is a CDATA marked section
 than to use the entity names for the left and right angle
 brackets throughout.</p>

 This is a listitem
 This is a second listitem
 This is a third listitem

 <p>This is the end of the example.</p>
 -]]>
</programlisting>

If you look at the source for this document you will see this

technique used throughout.

3.8.1.2. INCLUDE and IGNORE

If the keyword is INCLUDE then the contents of the marked section will
be processed. If the keyword is IGNORE then the marked section is ignored
and will not be processed. It will not appear in the output.

範例 3.16. Using INCLUDE and IGNORE in marked
sections
<![INCLUDE [
 This text will be processed and included.
]]>

<![IGNORE [
 This text will not be processed or included.

章 3. SGML Primer

33

]]>

By itself, this is not too useful. If you wanted to remove text from your

document you could cut it out, or wrap it in comments.

It becomes more useful when you realize you can use parameter entities to

control this. Remember that parameter entities can only be used in SGML

contexts, and the keyword of a marked section is an SGML context.

For example, suppose that you produced a hard-copy version of some

documentation and an electronic version. In the electronic version you

wanted to include some extra content that was not to appear in the hard-

copy.

Create a parameter entity, and set its value to INCLUDE. Write your
document, using marked sections to delimit content that should only appear

in the electronic version. In these marked sections use the parameter

entity in place of the keyword.

When you want to produce the hard-copy version of the document, change

the parameter entity's value to IGNORE and reprocess the document.

範例 3.17. Using a parameter entity to control
a marked section
<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % electronic.copy -"INCLUDE">
]]>

...

<![%electronic.copy [
 This content should only appear in the electronic
 version of the document.
]]>

When producing the hard-copy version, change the entity's definition

to:

<!ENTITY % electronic.copy -"IGNORE">

On reprocessing the document, the marked sections that use

%electronic.copy as their keyword will be ignored.

For you to do…

34

3.8.2. For you to do…

1. Create a new file, section.xml, that contains the following:

<!DOCTYPE html PUBLIC -"-//W3C//DTD HTML 4.0//EN" [
<!ENTITY % text.output -"INCLUDE">
]>

<html>
 <head>
 <title>An example using marked sections</title>
 </head>

 <body>
 <p>This paragraph <![CDATA[contains many <
 characters (< < < < <) so it is easier
 to wrap it in a CDATA marked section -]]></p>

 <![IGNORE[
 <p>This paragraph will definitely not be included in the
 output.</p>
 -]]>

 <![%text.output [
 <p>This paragraph might appear in the output, or it
 might not.</p>

 <p>Its appearance is controlled by the %text.output
 parameter entity.</p>
 -]]>
 </body>
</html>

2. Normalize this file using sgmlnorm(1) and examine the output. Notice

which paragraphs have appeared, which have disappeared, and what has

happened to the content of the CDATA marked section.

3. Change the definition of the text.output entity from INCLUDE to

IGNORE. Re-normalize the file, and examine the output to see what
has changed.

3.9. Conclusion

That is the conclusion of this SGML primer. For reasons of space and

complexity several things have not been covered in depth (or at all).

However, the previous sections cover enough SGML for you to be able to

follow the organization of the FDP documentation.

http://www.FreeBSD.org/cgi/man.cgi?query=sgmlnorm&sektion=1

章 4. SGML Markup
This chapter describes the two markup languages you will encounter when you
contribute to the FreeBSD documentation project. Each section describes
the markup language, and details the markup that you are likely to want
to use, or that is already in use.

These markup languages contain a large number of elements, and it can
be confusing sometimes to know which element to use for a particular
situation. This section goes through the elements you are most likely to
need, and gives examples of how you would use them.

This is not an exhaustive list of elements, since that would just reiterate
the documentation for each language. The aim of this section is to list
those elements more likely to be useful to you. If you have a question
about how best to markup a particular piece of content, please post it to
the FreeBSD documentation project 郵遞論壇.

Inline vs. block

In the remainder of this document, when describing
elements, inline means that the element can occur within
a block element, and does not cause a line break. A
block element, by comparison, will cause a line break
(and other processing) when it is encountered.

4.1. HTML

HTML, the HyperText Markup Language, is the markup language of choice on the

World Wide Web. More information can be found at <URL:http://www.w3.org/>.

HTML is used to markup pages on the FreeBSD web site. It should not

(generally) be used to mark up other documentation, since DocBook offers a

far richer set of elements to choose from. Consequently, you will normally

only encounter HTML pages if you are writing for the web site.

HTML has gone through a number of versions, 1, 2, 3.0, 3.2, and the latest,

4.0 (available in both strict and loose variants).

The HTML DTDs are available from the ports collection in the textproc/

html port. They are automatically installed as part of the textproc/

docproj port.

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://www.w3.org/

Formal Public Identifier (FPI)

36

4.1.1. Formal Public Identifier (FPI)

There are a number of HTML FPIs, depending upon the version (also known as

the level) of HTML that you want to declare your document to be compliant

with.

The majority of HTML documents on the FreeBSD web site comply with the

loose version of HTML 4.0.

PUBLIC -"-//W3C//DTD HTML 4.0 Transitional//EN"

4.1.2. Sectional elements

An HTML document is normally split into two sections. The first section,

called the head, contains meta-information about the document, such as its

title, the name of the author, the parent document, and so on. The second

section, the body, contains the content that will be displayed to the user.

These sections are indicated with head and body elements respectively.
These elements are contained within the top-level html element.

範例 4.1. Normal HTML document structure
<html>
 <head>

 <title>The document's title</title>
 </head>

 <body>

 …

 </body>
</html>

4.1.3. Block elements

4.1.3.1. Headings

HTML allows you to denote headings in your document, at up to six different

levels.

The largest and most prominent heading is h1, then h2, continuing down
to h6.

章 4. SGML Markup

37

The element's content is the text of the heading.

範例 4.2. h1, h2, etc.

Use:

<h1>First section</h1>

<!-- Document introduction goes here --->

<h2>This is the heading for the first section</h2>

<!-- Content for the first section goes here --->

<h3>This is the heading for the first sub-section</h3>

<!-- Content for the first sub-section goes here --->

<h2>This is the heading for the second section</h2>

<!-- Content for the second section goes here --->

Generally, an HTML page should have one first level heading (h1). This can
contain many second level headings (h2), which can in turn contain many
third level headings. Each hn element should have the same element, but
one further up the hierarchy, preceding it. Leaving gaps in the numbering

is to be avoided.

範例 4.3. Bad ordering of hn elements

Use:

<h1>First section</h1>

<!-- Document introduction --->

<h3>Sub-section</h3>

<!-- This is bad, <h2> has been left out --->

Block elements

38

4.1.3.2. Paragraphs

HTML supports a single paragraph element, p.

範例 4.4. p

Use:

<p>This is a paragraph. It can contain just about any
 other element.</p>

4.1.3.3. Block quotations

A block quotation is an extended quotation from another document that

should not appear within the current paragraph.

範例 4.5. blockquote

Use:

<p>A small excerpt from the US Constitution:</p>

<blockquote>We the People of the United States, in Order to form
 a more perfect Union, establish Justice, insure domestic
 Tranquility, provide for the common defence, promote the general
 Welfare, and secure the Blessings of Liberty to ourselves and our
 Posterity, do ordain and establish this Constitution for the
 United States of America.</blockquote>

4.1.3.4. Lists

You can present the user with three types of lists, ordered, unordered,

and definition.

Typically, each entry in an ordered list will be numbered, while each

entry in an unordered list will be preceded by a bullet point. Definition

lists are composed of two sections for each entry. The first section is the

term being defined, and the second section is the definition of the term.

章 4. SGML Markup

39

Ordered lists are indicated by the ol element, unordered lists by the ul
element, and definition lists by the dl element.

Ordered and unordered lists contain listitems, indicated by the li element.
A listitem can contain textual content, or it may be further wrapped in

one or more p elements.

Definition lists contain definition terms (dt) and definition descriptions
(dd). A definition term can only contain inline elements. A definition
description can contain other block elements.

範例 4.6. ul and ol

Use:

<p>An unordered list. Listitems will probably be
 preceded by bullets.</p>

 First item

 Second item

 Third item

<p>An ordered list, with list items consisting of multiple
 paragraphs. Each item (note: not each paragraph) will be
 numbered.</p>

 <p>This is the first item. It only has one paragraph.</p>

 <p>This is the first paragraph of the second item.</p>

 <p>This is the second paragraph of the second item.</p>

 <p>This is the first and only paragraph of the third
 item.</p>

範例 4.7. Definition lists with dl

Use:

Block elements

40

<dl>
 <dt>Term 1</dt>

 <dd><p>Paragraph 1 of definition 1.</p>

 <p>Paragraph 2 of definition 1.</p></dd>

 <dt>Term 2</dt>

 <dd><p>Paragraph 1 of definition 2.</p></dd>

 <dt>Term 3</dt>

 <dd><p>Paragraph 1 of definition 3.</p></dd>
</dl>

4.1.3.5. Pre-formatted text

You can indicate that text should be shown to the user exactly as it

is in the file. Typically, this means that the text is shown in a fixed

font, multiple spaces are not merged into one, and line breaks in the

text are significant.

In order to do this, wrap the content in the pre element.

範例 4.8. pre

You could use pre to mark up an email message:

<pre> From: nik@FreeBSD.org
 To: freebsd-doc@FreeBSD.org
 Subject: New documentation available

 There is a new copy of my primer for contributors to the FreeBSD
 Documentation Project available at

 <URL:http://people.FreeBSD.org/~nik/primer/index.html>

 Comments appreciated.

 N</pre>

Keep in mind that < and & still are recognized as special characters

in pre-formatted text. This is why the example shown had to use <
instead of <. For consistency, > was used in place of >, too.

章 4. SGML Markup

41

Watch out for the special characters that may appear in text copied

from a plain-text source, e.g., an email message or program code.

4.1.3.6. Tables

注意

Most text-mode browsers (such as Lynx) do not render

tables particularly effectively. If you are relying on

the tabular display of your content, you should consider

using alternative markup to prevent confusion.

Mark up tabular information using the table element. A table consists of
one or more table rows (tr), each containing one or more cells of table
data (td). Each cell can contain other block elements, such as paragraphs
or lists. It can also contain another table (this nesting can repeat

indefinitely). If the cell only contains one paragraph then you do not

need to include the p element.

範例 4.9. Simple use of table

Use:

<p>This is a simple 2x2 table.</p>

<table>
 <tr>
 <td>Top left cell</td>

 <td>Top right cell</td>
 </tr>

 <tr>
 <td>Bottom left cell</td>

 <td>Bottom right cell</td>
 </tr>
</table>

Block elements

42

A cell can span multiple rows and columns. To indicate this, add the

rowspan and/or colspan attributes, with values indicating the number of
rows of columns that should be spanned.

範例 4.10. Using rowspan

Use:

<p>One tall thin cell on the left, two short cells next to
 it on the right.</p>

<table>
 <tr>
 <td rowspan="2">Long and thin</td>
 </tr>

 <tr>
 <td>Top cell</td>

 <td>Bottom cell</td>
 </tr>
</table>

範例 4.11. Using colspan

Use:

<p>One long cell on top, two short cells below it.</p>

<table>
 <tr>
 <td colspan="2">Top cell</td>
 </tr>

 <tr>
 <td>Bottom left cell</td>

 <td>Bottom right cell</td>
 </tr>
</table>

章 4. SGML Markup

43

範例 4.12. Using rowspan and colspan together

Use:

<p>On a 3x3 grid, the top left block is a 2x2 set of
 cells merged into one. The other cells are normal.</p>

<table>
 <tr>
 <td colspan="2" rowspan="2">Top left large cell</td>

 <td>Top right cell</td>
 </tr>

 <tr>
 <td>Middle right cell</td>
 </tr>

 <tr>
 <td>Bottom left cell</td>

 <td>Bottom middle cell</td>

 <td>Bottom right cell</td>
 </tr>
</table>

4.1.4. In-line elements

4.1.4.1. Emphasizing information

You have two levels of emphasis available in HTML, em and strong. em is

for a normal level of emphasis and strong indicates stronger emphasis.

Typically, em is rendered in italic and strong is rendered in bold. This
is not always the case, however, and you should not rely on it.

範例 4.13. em and strong

Use:

<p>This has been emphasized, while

In-line elements

44

 this has been strongly emphasized.</p>

4.1.4.2. Bold and italics

Because HTML includes presentational markup, you can also indicate that

particular content should be rendered in bold or italic. The elements are

b and i respectively.

範例 4.14. b and i

<p>This is in bold, while <i>this</i> is
 in italics.</p>

4.1.4.3. Indicating fixed pitch text

If you have content that should be rendered in a fixed pitch (typewriter)

typeface, use tt (for “teletype”).

範例 4.15. tt

Use:

<p>This document was originally written by
 Nik Clayton, who can be reached by email as
 <tt>nik@FreeBSD.org</tt>.</p>

4.1.4.4. Content size

You can indicate that content should be shown in a larger or smaller font.

There are three ways of doing this.

1. Use big and small around the content you wish to change size. These tags
can be nested, so <big><big>This is much bigger</big></big> is possible.

2. Use font with the size attribute set to +1 or -1 respectively. This has
the same effect as using big or small. However, the use of this approach
is deprecated.

章 4. SGML Markup

45

3. Use font with the size attribute set to a number between 1 and 7. The
default font size is 3. This approach is deprecated.

範例 4.16. big, small, and font

The following fragments all do the same thing.

<p>This text is <small>slightly smaller</small>. But
 this text is <big>slightly bigger</big>.</p>

<p>This text is slightly smaller. But
 this text is slightly bigger</font.</p>

<p>This text is slightly smaller. But
 this text is slightly bigger.</p>

4.1.5. Links

注意

Links are also in-line elements.

4.1.5.1. Linking to other documents on the WWW

In order to include a link to another document on the WWW you must know

the URL of the document you want to link to.

The link is indicated with a, and the href attribute contains the URL of
the target document. The content of the element becomes the link, and is

normally indicated to the user in some way (underlining, change of color,

different mouse cursor when over the link, and so on).

範例 4.17. Using

Use:

<p>More information is available at the

Links

46

 FreeBSD web site.</p>

These links will take the user to the top of the chosen document.

4.1.5.2. Linking to other parts of documents

Linking to a point within another document (or within the same document)

requires that the document author include anchors that you can link to.

Anchors are indicated with a and the name attribute instead of href.

範例 4.18. Using

Use:

<p>This paragraph can be referenced
 in other links with the name <tt>para1</tt>.</p>

To link to a named part of a document, write a normal link to that document,

but include the name of the anchor after a # symbol.

範例 4.19. Linking to a named part of another
document

Assume that the para1 example resides in a document called foo.html.

<p>More information can be found in the
 first paragraph of
 <tt>foo.html</tt>.</p>

If you are linking to a named anchor within the same document then you can

omit the document's URL, and just include the name of the anchor (with

the preceding #).

章 4. SGML Markup

47

範例 4.20. Linking to a named part of the same
document

Assume that the para1 example resides in this document:

<p>More information can be found in the
 first paragraph of this
 document.</p>

4.2. DocBook

DocBook was originally developed by HaL Computer Systems and O'Reilly

& Associates to be a DTD for writing technical documentation 1. Since

1998 it is maintained by the DocBook Technical Committee. As such, and

unlike LinuxDoc and HTML, DocBook is very heavily oriented towards markup

that describes what something is, rather than describing how it should

be presented.

formal vs. informal

Some elements may exist in two forms, formal and

informal. Typically, the formal version of the element

will consist of a title followed by the informal version

of the element. The informal version will not have a

title.

The DocBook DTD is available from the ports collection in the textproc/

docbook port. It is automatically installed as part of the textproc/

docproj port.

4.2.1. FreeBSD extensions

The FreeBSD Documentation Project has extended the DocBook DTD by adding

some new elements. These elements serve to make some of the markup more

precise.

1A short history can be found under http://www.oasis-open.org/committees/docbook/

intro.shtml.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=docbook
http://www.oasis-open.org/committees/docbook/intro.shtml
http://www.oasis-open.org/committees/docbook/intro.shtml

Formal Public Identifier (FPI)

48

Where a FreeBSD specific element is listed below it is clearly marked.

Throughout the rest of this document, the term “DocBook” is used to mean

the FreeBSD extended DocBook DTD.

注意

There is nothing about these extensions that is FreeBSD

specific, it was just felt that they were useful

enhancements for this particular project. Should anyone

from any of the other *nix camps (NetBSD, OpenBSD, Linux,

…) be interested in collaborating on a standard DocBook

extension set, please get in touch with Documentation

Engineering Team <doceng@FreeBSD.org>.

The FreeBSD extensions are not (currently) in the ports collection. They

are stored in the FreeBSD CVS tree, as doc/share/xml/freebsd.dtd.

4.2.2. Formal Public Identifier (FPI)

In compliance with the DocBook guidelines for writing FPIs for DocBook

customizations, the FPI for the FreeBSD extended DocBook DTD is:

PUBLIC -"-//FreeBSD//DTD DocBook V4.1-Based Extension//EN"

4.2.3. Document structure

DocBook allows you to structure your documentation in several ways. In the

FreeBSD Documentation Project we are using two primary types of DocBook

document: the book and the article.

A book is organized into chapters. This is a mandatory requirement. There
may be parts between the book and the chapter to provide another layer of
organization. The Handbook is arranged in this way.

A chapter may (or may not) contain one or more sections. These are indicated

with the sect1 element. If a section contains another section then use the
sect2 element, and so on, up to sect5.

Chapters and sections contain the remainder of the content.

An article is simpler than a book, and does not use chapters. Instead,

the content of an article is organized into one or more sections, using

the same sect1 (and sect2 and so on) elements that are used in books.

mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/share/xml/freebsd.dtd

章 4. SGML Markup

49

Obviously, you should consider the nature of the documentation you are

writing in order to decide whether it is best marked up as a book or an

article. Articles are well suited to information that does not need to

be broken down into several chapters, and that is, relatively speaking,

quite short, at up to 20-25 pages of content. Books are best suited to

information that can be broken up into several chapters, possibly with

appendices and similar content as well.

The FreeBSD tutorials are all marked up as articles, while this document,

the FreeBSD FAQ, and the FreeBSD Handbook are all marked up as books.

4.2.3.1. Starting a book

The content of the book is contained within the book element. As well
as containing structural markup, this element can contain elements that

include additional information about the book. This is either meta-

information, used for reference purposes, or additional content used to

produce a title page.

This additional information should be contained within bookinfo.

範例 4.21. Boilerplate book with bookinfo

<book>
 <bookinfo>

 <title>Your title here</title>

 <author>

 <firstname>Your first name</firstname>

 <surname>Your surname</surname>
 <affiliation>

 <address><email>Your email address</email></address>
 </affiliation>
 </author>

 <copyright>

 <year>1998</year>

 <holder role="mailto:your email address">Your name</holder>
 </copyright>

 <releaseinfo>$FreeBSD$</releaseinfo>

 <abstract>

 <para>Include an abstract of the book's contents here.</para>
 </abstract>
 </bookinfo>

../../../../docs.html
../../../../doc/zh_TW.Big5/books/faq/index.html
../../../../doc/zh_TW.Big5/books/handbook/index.html

Document structure

50

 …

</book>

4.2.3.2. Starting an article

The content of the article is contained within the article element. As well
as containing structural markup, this element can contain elements that

include additional information about the article. This is either meta-

information, used for reference purposes, or additional content used to

produce a title page.

This additional information should be contained within articleinfo.

範例 4.22. Boilerplate article with articleinfo

<article>
 <articleinfo>

 <title>Your title here</title>

 <author>

 <firstname>Your first name</firstname>

 <surname>Your surname</surname>
 <affiliation>

 <address><email>Your email address</email></address>
 </affiliation>
 </author>

 <copyright>

 <year>1998</year>

 <holder role="mailto:your email address">Your name</holder>
 </copyright>

 <releaseinfo>$FreeBSD$</releaseinfo>

 <abstract>

 <para>Include an abstract of the article's contents here.</para>
 </abstract>
 </articleinfo>

 …

</article>

章 4. SGML Markup

51

4.2.3.3. Indicating chapters

Use chapter to mark up your chapters. Each chapter has a mandatory title.
Articles do not contain chapters, they are reserved for books.

範例 4.23. A simple chapter
<chapter>
 <title>The chapter's title</title>

 -...
</chapter>

A chapter cannot be empty; it must contain elements in addition to title.
If you need to include an empty chapter then just use an empty paragraph.

範例 4.24. Empty chapters
<chapter>
 <title>This is an empty chapter</title>

 <para></para>
</chapter>

4.2.3.4. Sections below chapters

In books, chapters may (but do not need to) be broken up into sections,

subsections, and so on. In articles, sections are the main structural

element, and each article must contain at least one section. Use the

sectn element. The n indicates the section number, which identifies the
section level.

The first sectn is sect1. You can have one or more of these in a chapter.
They can contain one or more sect2 elements, and so on, down to sect5.

範例 4.25. Sections in chapters
<chapter>

Document structure

52

 <title>A sample chapter</title>

 <para>Some text in the chapter.</para>

 <sect1>
 <title>First section (1.1)</title>

 …
 </sect1>

 <sect1>
 <title>Second section (1.2)</title>

 <sect2>
 <title>First sub-section (1.2.1)</title>

 <sect3>
 <title>First sub-sub-section (1.2.1.1)</title>

 …
 </sect3>
 </sect2>

 <sect2>
 <title>Second sub-section (1.2.2)</title>

 …
 </sect2>
 </sect1>
</chapter>

注意

This example includes section numbers in the section

titles. You should not do this in your documents. Adding

the section numbers is carried out by the stylesheets

(of which more later), and you do not need to manage

them yourself.

4.2.3.5. Subdividing using parts

You can introduce another layer of organization between book and chapter
with one or more parts. This cannot be done in an article.

<part>
 <title>Introduction</title>

章 4. SGML Markup

53

 <chapter>
 <title>Overview</title>

 -...
 </chapter>

 <chapter>
 <title>What is FreeBSD?</title>

 -...
 </chapter>

 <chapter>
 <title>History</title>

 -...
 </chapter>
</part>

4.2.4. Block elements

4.2.4.1. Paragraphs

DocBook supports three types of paragraphs: formalpara, para, and simpara.

Most of the time you will only need to use para. formalpara includes a
title element, and simpara disallows some elements from within para. Stick
with para.

範例 4.26. para

Use:

<para>This is a paragraph. It can contain just about any
 other element.</para>

Appearance:

This is a paragraph. It can contain just about any other element.

4.2.4.2. Block quotations

A block quotation is an extended quotation from another document that

should not appear within the current paragraph. You will probably only

need it infrequently.

Block elements

54

Blockquotes can optionally contain a title and an attribution (or they

can be left untitled and unattributed).

範例 4.27. blockquote

Use:

<para>A small excerpt from the US Constitution:</para>

<blockquote>
 <title>Preamble to the Constitution of the United States</title>

 <attribution>Copied from a web site somewhere</attribution>

 <para>We the People of the United States, in Order to form a more perfect
 Union, establish Justice, insure domestic Tranquility, provide for the
 common defence, promote the general Welfare, and secure the Blessings
 of Liberty to ourselves and our Posterity, do ordain and establish this
 Constitution for the United States of America.</para>
</blockquote>

Appearance:

Preamble to the Constitution of the United States

We the People of the United States, in Order

to form a more perfect Union, establish Justice,

insure domestic Tranquility, provide for the common

defence, promote the general Welfare, and secure the

Blessings of Liberty to ourselves and our Posterity,

do ordain and establish this Constitution for the

United States of America.

—Copied from a web site somewhere

4.2.4.3. Tips, notes, warnings, cautions, important information and
sidebars.

You may need to include extra information separate from the main body

of the text. Typically this is “meta” information that the user should

be aware of.

Depending on the nature of the information, one of tip, note, warning,
caution, and important should be used. Alternatively, if the information is
related to the main text but is not one of the above, use sidebar.

章 4. SGML Markup

55

The circumstances in which to choose one of these elements over another

is unclear. The DocBook documentation suggests:

•A Note is for information that should be heeded by all readers.

•An Important element is a variation on Note.

•A Caution is for information regarding possible data loss or software

damage.

•A Warning is for information regarding possible hardware damage or injury

to life or limb.

範例 4.28. warning

Use:

<warning>
 <para>Installing FreeBSD may make you want to delete Windows from your
 hard disk.</para>
</warning>

警告

Installing FreeBSD may make you want to delete Windows

from your hard disk.

4.2.4.4. Lists and procedures

You will often need to list pieces of information to the user, or present

them with a number of steps that must be carried out in order to accomplish

a particular goal.

In order to do this, use itemizedlist, orderedlist, or procedure2

itemizedlist and orderedlist are similar to their counterparts in HTML, ul and
ol. Each one consists of one or more listitem elements, and each listitem

2There are other types of list element in DocBook, but we are not concerned with those

at the moment.

Block elements

56

contains one or more block elements. The listitem elements are analogous to

HTML's li tags. However, unlike HTML, they are required.

procedure is slightly different. It consists of steps, which may in turn
consists of more steps or substeps. Each step contains block elements.

範例 4.29. itemizedlist, orderedlist, and procedure

Use:

<itemizedlist>
 <listitem>
 <para>This is the first itemized item.</para>
 </listitem>

 <listitem>
 <para>This is the second itemized item.</para>
 </listitem>
</itemizedlist>

<orderedlist>
 <listitem>
 <para>This is the first ordered item.</para>
 </listitem>

 <listitem>
 <para>This is the second ordered item.</para>
 </listitem>
</orderedlist>

<procedure>
 <step>
 <para>Do this.</para>
 </step>

 <step>
 <para>Then do this.</para>
 </step>

 <step>
 <para>And now do this.</para>
 </step>
</procedure>

Appearance:

•This is the first itemized item.

•This is the second itemized item.

章 4. SGML Markup

57

1. This is the first ordered item.

2. This is the second ordered item.

1. Do this.

2. Then do this.

3. And now do this.

4.2.4.5. Showing file samples

If you want to show a fragment of a file (or perhaps a complete file) to

the user, wrap it in the programlisting element.

White space and line breaks within programlisting are significant. In

particular, this means that the opening tag should appear on the same line

as the first line of the output, and the closing tag should appear on

the same line as the last line of the output, otherwise spurious blank

lines may be included.

範例 4.30. programlisting

Use:

<para>When you have finished, your program should look like
 this:</para>

<programlisting>#include <stdio.h>

int
main(void)
{
 printf("hello, world\n");
}</programlisting>

Notice how the angle brackets in the #include line need to be

referenced by their entities instead of being included literally.

Appearance:

When you have finished, your program should look like this:

#include <stdio.h>

int

Block elements

58

main(void)
{
 printf("hello, world\n");
}

4.2.4.6. Callouts

A callout is a mechanism for referring back to an earlier piece of text or

specific position within an earlier example without linking to it within

the text.

To do this, mark areas of interest in your example (programlisting, literallayout,
or whatever) with the co element. Each element must have a unique id
assigned to it. After the example include a calloutlist that refers back to
the example and provides additional commentary.

範例 4.31. co and calloutlist

<para>When you have finished, your program should look like
 this:</para>

<programlisting>#include <stdio.h> <co id="co-ex-include"/>

int <co id="co-ex-return"/>
main(void)
{
 printf("hello, world\n"); <co id="co-ex-printf"/>
}</programlisting>

<calloutlist>
 <callout arearefs="co-ex-include">
 <para>Includes the standard IO header file.</para>
 </callout>

 <callout arearefs="co-ex-return">
 <para>Specifies that <function>main()</function> returns an
 int.</para>
 </callout>

 <callout arearefs="co-ex-printf">
 <para>The <function>printf()</function> call that writes
 <literal>hello, world</literal> to standard output.</para>
 </callout>
</calloutlist>

Appearance:

章 4. SGML Markup

59

When you have finished, your program should look like this:

#include <stdio.h>

int
main(void)
{

 printf("hello, world\n");
}

Includes the standard IO header file.

Specifies that main() returns an int.
The printf() call that writes hello, world to standard output.

4.2.4.7. Tables

Unlike HTML, you do not need to use tables for layout purposes, as the

stylesheet handles those issues for you. Instead, just use tables for

marking up tabular data.

In general terms (and see the DocBook documentation for more detail) a

table (which can be either formal or informal) consists of a table element.
This contains at least one tgroup element, which specifies (as an attribute)
the number of columns in this table group. Within the tablegroup you can

then have one thead element, which contains elements for the table headings
(column headings), and one tbody which contains the body of the table.

Both tgroup and thead contain row elements, which in turn contain entry
elements. Each entry element specifies one cell in the table.

範例 4.32. informaltable

Use:

<informaltable frame="none" pgwide="1">
 <tgroup cols="2">
 <thead>
 <row>
 <entry>This is column head 1</entry>
 <entry>This is column head 2</entry>
 </row>
 </thead>

 <tbody>
 <row>

Block elements

60

 <entry>Row 1, column 1</entry>
 <entry>Row 1, column 2</entry>
 </row>

 <row>
 <entry>Row 2, column 1</entry>
 <entry>Row 2, column 2</entry>
 </row>
 </tbody>
 </tgroup>
</informaltable>

Appearance:

This is column head 1 This is column head 2

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

Always use the pgwide attribute with a value of 1 with the informaltable
element. A bug in Internet Explorer can cause the table to render

incorrectly if this is omitted.

If you do not want a border around the table the frame attribute can be
added to the informaltable element with a value of none (i.e., <informaltable
frame="none">).

範例 4.33. Tables where frame="none"

Appearance:

This is column head 1 This is column head 2

Row 1, column 1 Row 1, column 2

Row 2, column 1 Row 2, column 2

4.2.4.8. Examples for the user to follow

A lot of the time you need to show examples for the user to follow.

Typically, these will consist of dialogs with the computer; the user types

in a command, the user gets a response back, they type in another command,

and so on.

章 4. SGML Markup

61

A number of distinct elements and entities come into play here.

screen
Everything the user sees in this example will be on the computer

screen, so the next element is screen.

Within screen, white space is significant.

prompt, &prompt.root; and &prompt.user;
Some of the things the user will be seeing on the screen are prompts

from the computer (either from the operating system, command shell,

or application). These should be marked up using prompt.

As a special case, the two shell prompts for the normal user and

the root user have been provided as entities. Every time you want to

indicate the user is at a shell prompt, use one of &prompt.root; and
&prompt.user; as necessary. They do not need to be inside prompt.

注意

&prompt.root; and &prompt.user; are FreeBSD extensions
to DocBook, and are not part of the original DTD.

userinput
When displaying text that the user should type in, wrap it in userinput
tags. It will probably be displayed differently to the user.

範例 4.34. screen, prompt, and userinput

Use:

<screen>&prompt.user; <userinput>ls --1</userinput>
foo1
foo2
foo3
&prompt.user; <userinput>ls --1 -| grep foo2</userinput>
foo2
&prompt.user; <userinput>su</userinput>
<prompt>Password: </prompt>
&prompt.root; <userinput>cat foo2</userinput>
This is the file called -'foo2'</screen>

Appearance:

In-line elements

62

% ls --1
foo1
foo2
foo3

% ls --1 -| grep foo2
foo2

% su
Password:
cat foo2
This is the file called -'foo2'

注意

Even though we are displaying the contents of the file

foo2, it is not marked up as programlisting. Reserve

programlisting for showing fragments of files outside the
context of user actions.

4.2.5. In-line elements

4.2.5.1. Emphasizing information

When you want to emphasize a particular word or phrase, use emphasis. This
may be presented as italic, or bold, or might be spoken differently with

a text-to-speech system.

There is no way to change the presentation of the emphasis within your

document, no equivalent of HTML's b and i. If the information you are
presenting is important then consider presenting it in important rather
than emphasis.

範例 4.35. emphasis

Use:

<para>FreeBSD is without doubt <emphasis>the</emphasis>
 premiere Unix like operating system for the Intel architecture.</para>

Appearance:

章 4. SGML Markup

63

FreeBSD is without doubt the premiere Unix like operating system

for the Intel architecture.

4.2.5.2. Quotations

To quote text from another document or source, or to denote a phrase that

is used figuratively, use quote. Within a quote tag, you may use most of
the markup tags available for normal text.

範例 4.36. Quotations

Use:

<para>However, make sure that the search does not go beyond the
 <quote>boundary between local and public administration</quote>,
 as RFC 1535 calls it.</para>

Appearance:

However, make sure that the search does not go beyond the “boundary

between local and public administration”, as RFC 1535 calls it.

4.2.5.3. Keys, mouse buttons, and combinations

To refer to a specific key on the keyboard, use keycap. To refer to a mouse
button, use mousebutton. And to refer to combinations of key presses or
mouse clicks, wrap them all in keycombo.

keycombo has an attribute called action, which may be one of click, double-
click, other, press, seq, or simul. The last two values denote whether the
keys or buttons should be pressed in sequence, or simultaneously.

The stylesheets automatically add any connecting symbols, such as +,
between the key names, when wrapped in keycombo.

範例 4.37. Keys, mouse buttons, and
combinations

Use:

<para>To switch to the second virtual terminal, press
 <keycombo action="simul"><keycap>Alt</keycap>

In-line elements

64

 <keycap>F1</keycap></keycombo>.</para>

<para>To exit <command>vi</command> without saving your work, type
 <keycombo action="seq"><keycap>Esc</keycap><keycap>:</keycap>
 <keycap>q</keycap><keycap>!</keycap></keycombo>.</para>

<para>My window manager is configured so that
 <keycombo action="simul"><keycap>Alt</keycap>
 <mousebutton>right</mousebutton>
 </keycombo> mouse button is used to move windows.</para>

Appearance:

To switch to the second virtual terminal, press Alt+F1.

To exit vi without saving your work, type Esc : q !.

My window manager is configured so that Alt+right mouse button is

used to move windows.

4.2.5.4. Applications, commands, options, and cites

You will frequently want to refer to both applications and commands when

writing for the Handbook. The distinction between them is simple: an

application is the name for a suite (or possibly just 1) of programs that

fulfil a particular task. A command is the name of a program that the

user can run.

In addition, you will occasionally need to list one or more of the options

that a command might take.

Finally, you will often want to list a command with its manual section

number, in the “command(number)” format so common in Unix manuals.

Mark up application names with application.

When you want to list a command with its manual section number (which

should be most of the time) the DocBook element is citerefentry. This will
contain a further two elements, refentrytitle and manvolnum. The content of

refentrytitle is the name of the command, and the content of manvolnum is

the manual page section.

This can be cumbersome to write, and so a series of general entities have

been created to make this easier. Each entity takes the form &man.manual-
page.manual-section;.

The file that contains these entities is in doc/share/xml/man-refs.ent, and
can be referred to using this FPI:

章 4. SGML Markup

65

PUBLIC -"-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN"

Therefore, the introduction to your documentation will probably look like

this:

<!DOCTYPE book PUBLIC -"-//FreeBSD//DTD DocBook V4.1-Based Extension//EN" [

<!ENTITY % man PUBLIC -"-//FreeBSD//ENTITIES DocBook Manual Page Entities//EN">
%man;

…

]>

Use command when you want to include a command name “in-line” but

present it as something the user should type in.

Use option to mark up the options which will be passed to a command.

When referring to the same command multiple times in close proximity it

is preferred to use the &man.command.section; notation to markup the first
reference and use command to markup subsequent references. This makes
the generated output, especially HTML, appear visually better.

This can be confusing, and sometimes the choice is not always clear.

Hopefully this example makes it clearer.

範例 4.38. Applications, commands, and
options.

Use:

<para><application>Sendmail</application> is the most
 widely used Unix mail application.</para>

<para><application>Sendmail</application> includes the
 <citerefentry>
 <refentrytitle>sendmail</refentrytitle>
 <manvolnum>8</manvolnum>
 </citerefentry>, &man.mailq.8;, and &man.newaliases.8;
 programs.</para>

<para>One of the command line parameters to <citerefentry>
 <refentrytitle>sendmail</refentrytitle>
 <manvolnum>8</manvolnum>
 </citerefentry>, <option>-bp</option>, will display the current
 status of messages in the mail queue. Check this on the command
 line by running <command>sendmail --bp</command>.</para>

In-line elements

66

Appearance:

Sendmail is the most widely used Unix mail application.

Sendmail includes the sendmail(8), mailq(8), and newaliases(8)

programs.

One of the command line parameters to sendmail(8), -bp, will display
the current status of messages in the mail queue. Check this on the

command line by running sendmail -bp.

注意

Notice how the &man.command.section; notation is easier
to follow.

4.2.5.5. Files, directories, extensions

Whenever you wish to refer to the name of a file, a directory, or a file

extension, use filename.

範例 4.39. filename

Use:

<para>The SGML source for the Handbook in English can be
 found in <filename>/usr/doc/en/handbook/</filename>. The first
 file is called <filename>handbook.xml</filename> in that
 directory. You should also see a <filename>Makefile</filename>
 and a number of files with a <filename>.ent</filename>
 extension.</para>

Appearance:

The SGML source for the Handbook in English can be found in /usr/doc/
en/handbook/. The first file is called handbook.xml in that directory.
You should also see a Makefile and a number of files with a .ent
extension.

http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=mailq&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=newaliases&sektion=8
http://www.FreeBSD.org/cgi/man.cgi?query=sendmail&sektion=8

章 4. SGML Markup

67

4.2.5.6. The name of ports

FreeBSD extension

These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

You might need to include the name of a program from the FreeBSD Ports

Collection in the documentation. Use the filename tag with the role attribute
set to package to identify these. Since ports can be installed in any
number of locations, only include the category and the port name; do not

include /usr/ports.

範例 4.40. filename tag with package role

Use:

<para>Install the <filename role="package">net/ethereal</filename> port to view network -
traffic.</para>

Appearance:

Install the net/ethereal port to view network traffic.

4.2.5.7. Devices

FreeBSD extension

These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

When referring to devices you have two choices. You can either refer to

the device as it appears in /dev, or you can use the name of the device as
it appears in the kernel. For this latter course, use devicename.

Sometimes you will not have a choice. Some devices, such as networking

cards, do not have entries in /dev, or the entries are markedly different
from those entries.

In-line elements

68

範例 4.41. devicename

Use:

<para><devicename>sio</devicename> is used for serial
 communication in FreeBSD. <devicename>sio</devicename> manifests
 through a number of entries in <filename>/dev</filename>, including
 <filename>/dev/ttyd0</filename> and <filename>/dev/cuaa0</filename>.</para>

<para>By contrast, the networking devices, such as
 <devicename>ed0</devicename> do not appear in <filename>/dev</filename>.</para>

<para>In MS-DOS, the first floppy drive is referred to as
 <devicename>a:</devicename>. In FreeBSD it is
 <filename>/dev/fd0</filename>.</para>

Appearance:

sio is used for serial communication in FreeBSD. sio manifests through
a number of entries in /dev, including /dev/ttyd0 and /dev/cuaa0.

By contrast, the networking devices, such as ed0 do not appear in
/dev.

In MS-DOS, the first floppy drive is referred to as a:. In FreeBSD
it is /dev/fd0.

4.2.5.8. Hosts, domains, IP addresses, and so forth

FreeBSD extension

These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

You can markup identification information for networked computers (hosts)

in several ways, depending on the nature of the information. All of them

use hostid as the element, with the role attribute selecting the type of
the marked up information.

章 4. SGML Markup

69

No role attribute, or role="hostname"
With no role attribute (i.e., hostid.../hostid) the marked up information
is the simple hostname, such as freefall or wcarchive. You can explicitly
specify this with role="hostname".

role="domainname"
The text is a domain name, such as FreeBSD.org or ngo.org.uk. There is
no hostname component.

role="fqdn"
The text is a Fully Qualified Domain Name, with both hostname and

domain name parts.

role="ipaddr"
The text is an IP address, probably expressed as a dotted quad.

role="ip6addr"
The text is an IPv6 address.

role="netmask"
The text is a network mask, which might be expressed as a dotted quad,

a hexadecimal string, or as a / followed by a number.

role="mac"
The text is an Ethernet MAC address, expressed as a series of 2 digit

hexadecimal numbers separated by colons.

範例 4.42. hostid and roles

Use:

<para>The local machine can always be referred to by the
 name <hostid>localhost</hostid>, which will have the IP address
 <hostid role="ipaddr">127.0.0.1</hostid>.</para>

<para>The <hostid role="domainname">FreeBSD.org</hostid> domain
 contains a number of different hosts, including
 <hostid role="fqdn">freefall.FreeBSD.org</hostid> and
 <hostid role="fqdn">bento.FreeBSD.org</hostid>.</para>

<para>When adding an IP alias to an interface (using
 <command>ifconfig</command>) <emphasis>always</emphasis> use a
 netmask of <hostid role="netmask">255.255.255.255</hostid>
 (which can also be expressed as <hostid
 role="netmask">0xffffffff</hostid>.</para>

In-line elements

70

<para>The MAC address uniquely identifies every network card
 in existence. A typical MAC address looks like <hostid
 role="mac">08:00:20:87:ef:d0</hostid>.</para>

Appearance:

The local machine can always be referred to by the name localhost,
which will have the IP address 127.0.0.1.

The FreeBSD.org domain contains a number of different hosts,

including freefall.FreeBSD.org and bento.FreeBSD.org.

When adding an IP alias to an interface (using ifconfig) always use a
netmask of 255.255.255.255 (which can also be expressed as 0xffffffff.

The MAC address uniquely identifies every network card in existence.

A typical MAC address looks like 08:00:20:87:ef:d0.

4.2.5.9. Usernames

FreeBSD extension

These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

When you need to refer to a specific username, such as root or bin, use
username.

範例 4.43. username

Use:

<para>To carry out most system administration functions you
 will need to be <username>root</username>.</para>

Appearance:

To carry out most system administration functions you will need

to be root.

章 4. SGML Markup

71

4.2.5.10. Describing Makefiles

FreeBSD extension

These elements are part of the FreeBSD extension to

DocBook, and do not exist in the original DocBook DTD.

Two elements exist to describe parts of Makefiles, maketarget and makevar.

maketarget identifies a build target exported by a Makefile that can be
given as a parameter to make. makevar identifies a variable that can be
set (in the environment, on the make command line, or within the Makefile)
to influence the process.

範例 4.44. maketarget and makevar

Use:

<para>Two common targets in a <filename>Makefile</filename>
 are <maketarget>all</maketarget> and <maketarget>clean</maketarget>.</para>

<para>Typically, invoking <maketarget>all</maketarget> will rebuild the
 application, and invoking <maketarget>clean</maketarget> will remove
 the temporary files (<filename>.o</filename> for example) created by
 the build process.</para>

<para><maketarget>clean</maketarget> may be controlled by a number of
 variables, including <makevar>CLOBBER</makevar> and
 <makevar>RECURSE</makevar>.</para>

Appearance:

Two common targets in a Makefile are all and clean.

Typically, invoking all will rebuild the application, and invoking
clean will remove the temporary files (.o for example) created by
the build process.

clean may be controlled by a number of variables, including CLOBBER
and RECURSE.

In-line elements

72

4.2.5.11. Literal text

You will often need to include “literal” text in the Handbook. This is

text that is excerpted from another file, or which should be copied from

the Handbook into another file verbatim.

Some of the time, programlisting will be sufficient to denote this text.
programlisting is not always appropriate, particularly when you want to
include a portion of a file “in-line” with the rest of the paragraph.

On these occasions, use literal.

範例 4.45. literal

Use:

<para>The <literal>maxusers 10</literal> line in the kernel
 configuration file determines the size of many system tables, and is
 a rough guide to how many simultaneous logins the system will
 support.</para>

Appearance:

The maxusers 10 line in the kernel configuration file determines
the size of many system tables, and is a rough guide to how many

simultaneous logins the system will support.

4.2.5.12. Showing items that the user must fill in

There will often be times when you want to show the user what to do,

or refer to a file, or command line, or similar, where the user cannot

simply copy the examples that you provide, but must instead include some

information themselves.

replaceable is designed for this eventuality. Use it inside other elements
to indicate parts of that element's content that the user must replace.

範例 4.46. replaceable

Use:

<informalexample>
 <screen>&prompt.user; <userinput>man <replaceable>command</replaceable></
userinput></screen>

章 4. SGML Markup

73

</informalexample>

Appearance:

% man command

replaceable can be used in many different elements, including literal.
This example also shows that replaceable should only be wrapped around
the content that the user is meant to provide. The other content

should be left alone.

Use:

<para>The <literal>maxusers <replaceable>n</replaceable></literal>
 line in the kernel configuration file determines the size of many system
 tables, and is a rough guide to how many simultaneous logins the system will
 support.</para>

<para>For a desktop workstation, <literal>32</literal> is a good value
 for <replaceable>n</replaceable>.</para>

Appearance:

The maxusers n line in the kernel configuration file determines
the size of many system tables, and is a rough guide to how many

simultaneous logins the system will support.

For a desktop workstation, 32 is a good value for n.

4.2.5.13. Quoting system errors

You might want to show errors generated by FreeBSD. Mark these with

errorname. This indicates the exact error that appears.

範例 4.47. errorname

Use:

<screen><errorname>Panic: cannot mount root</errorname></screen> -

Appearance:

Panic: cannot mount root

Images

74

4.2.6. Images

重要

Image support in the documentation is currently

extremely experimental. I think the mechanisms described

here are unlikely to change, but that is not guaranteed.

You will also need to install the graphics/ImageMagick

port, which is used to convert between the different

image formats. This is a big port, and most of it is not

required. However, while we are working on the Makefiles
and other infrastructure it makes things easier. This

port is not in the textproc/docproj meta port, you must

install it by hand.

The best example of what follows in practice is the

doc/en_US.ISO8859-1/articles/vm-design/ document. If you are
unsure of the description that follows, take a look at

the files in that directory to see how everything hangs

together. Experiment with creating different formatted

versions of the document to see how the image markup

appears in the formatted output.

4.2.6.1. Image formats

We currently support two formats for images. The format you should use

will depend on the nature of your image.

For images that are primarily vector based, such as network diagrams, time

lines, and similar, use Encapsulated Postscript, and make sure that your

images have the .eps extension.

For bitmaps, such as screen captures, use the Portable Network Graphic

format, and make sure that your images have the .png extension.

These are the only formats in which images should be committed to the

CVS repository.

Use the right format for the right image. It is to be expected that your

documentation will have a mix of EPS and PNG images. The Makefiles ensure
that the correct format image is chosen depending on the output format

that you use for your documentation. Do not commit the same image to the

repository in two different formats.

章 4. SGML Markup

75

重要

It is anticipated that the Documentation Project will

switch to using the Scalable Vector Graphic (SVG) format

for vector images. However, the current state of SVG

capable editing tools makes this impractical.

4.2.6.2. Markup

The markup for an image is relatively simple. First, markup a mediaobject.
The mediaobject can contain other, more specific objects. We are concerned
with two, the imageobject and the textobject.

You should include one imageobject, and two textobject elements. The imageobject
will point to the name of the image file that will be used (without

the extension). The textobject elements contain information that will be
presented to the user as well as, or instead of, the image.

There are two circumstances where this can happen.

•When the reader is viewing the documentation in HTML. In this case,

each image will need to have associated alternate text to show the

user, typically whilst the image is loading, or if they hover the mouse

pointer over the image.

•When the reader is viewing the documentation in plain text. In this

case, each image should have an ASCII art equivalent to show the user.

An example will probably make things easier to understand. Suppose you

have an image, called fig1.png, that you want to include in the document.
This image is of a rectangle with an A inside it. The markup for this

would be as follows.

<mediaobject>
 <imageobject>

 <imagedata fileref="fig1">
 </imageobject>

 <textobject>

 <literallayout class="monospaced">+---------------+
| A -|
+---------------+</literallayout>
 </textobject>

 <textobject>

Images

76

 <phrase>A picture</phrase>
 </textobject>
</mediaobject>

Include an imagedata element inside the imageobject element. The fileref
attribute should contain the filename of the image to include, without

the extension. The stylesheets will work out which extension should

be added to the filename automatically.

The first textobject should contain a literallayout element, where the
class attribute is set to monospaced. This is your opportunity to
demonstrate your ASCII art skills. This content will be used if the

document is converted to plain text.

Notice how the first and last lines of the content of the literallayout
element butt up next to the element's tags. This ensures no extraneous

white space is included.

The second textobject should contain a single phrase element. The contents
of this will become the alt attribute for the image when this document
is converted to HTML.

4.2.6.3. Makefile entries

Your images must be listed in the Makefile in the IMAGES variable. This
variable should contain the name of all your source images. For example,

if you have created three figures, fig1.eps, fig2.png, fig3.png, then your
Makefile should have lines like this in it.

…
IMAGES= fig1.eps fig2.png fig3.png
…

or

…
IMAGES= fig1.eps
IMAGES+= fig2.png
IMAGES+= fig3.png
…

Again, the Makefile will work out the complete list of images it needs
to build your source document, you only need to list the image files

you provided.

4.2.6.4. Images and chapters in subdirectories

You must be careful when you separate your documentation into smaller files

(see 節 3.7.1, “Using general entities to include files”) in different

directories.

章 4. SGML Markup

77

Suppose you have a book with three chapters, and the chapters are stored

in their own directories, called chapter1/chapter.xml, chapter2/chapter.xml, and
chapter3/chapter.xml. If each chapter has images associated with it, I suggest
you place those images in each chapter's subdirectory (chapter1/, chapter2/,
and chapter3/).

However, if you do this you must include the directory names in the IMAGES
variable in the Makefile, and you must include the directory name in the
imagedata element in your document.

For example, if you have chapter1/fig1.png, then chapter1/chapter.xml should
contain:

<mediaobject>
 <imageobject>

 <imagedata fileref="chapter1/fig1">
 </imageobject>

 …

</mediaobject>

The directory name must be included in the fileref attribute.

The Makefile must contain:

…
IMAGES= chapter1/fig1.png
…

Then everything should just work.

4.2.7. Links

注意

Links are also in-line elements.

4.2.7.1. Linking to other parts of the same document

Linking within the same document requires you to specify where you are

linking from (i.e., the text the user will click, or otherwise indicate,

as the source of the link) and where you are linking to (the link's

destination).

Links

78

Each element within DocBook has an attribute called id. You can place text
in this attribute to uniquely name the element it is attached to.

This value will be used when you specify the link source.

Normally, you will only be linking to chapters or sections, so you would

add the id attribute to these elements.

範例 4.48. id on chapters and sections

<chapter id="chapter1">
 <title>Introduction</title>

 <para>This is the introduction. It contains a subsection,
 which is identified as well.</para>

 <sect1 id="chapter1-sect1">
 <title>Sub-sect 1</title>

 <para>This is the subsection.</para>
 </sect1>
</chapter>

Obviously, you should use more descriptive values. The values must be

unique within the document (i.e., not just the file, but the document the

file might be included in as well). Notice how the id for the subsection
is constructed by appending text to the id of the chapter. This helps to
ensure that they are unique.

If you want to allow the user to jump into a specific portion of the

document (possibly in the middle of a paragraph or an example), use anchor.
This element has no content, but takes an id attribute.

範例 4.49. anchor

<para>This paragraph has an embedded
 <anchor id="para1">link target in it. It will not show up in
 the document.</para>

章 4. SGML Markup

79

When you want to provide the user with a link they can activate (probably

by clicking) to go to a section of the document that has an id attribute,
you can use either xref or link.

Both of these elements have a linkend attribute. The value of this attribute
should be the value that you have used in a id attribute (it does not
matter if that value has not yet occurred in your document; this will work

for forward links as well as backward links).

If you use xref then you have no control over the text of the link. It
will be generated for you.

範例 4.50. Using xref

Assume that this fragment appears somewhere in a document that

includes the id example:

<para>More information can be found
 in <xref linkend="chapter1">.</para>

<para>More specific information can be found
 in <xref linkend="chapter1-sect1">.</para>

The text of the link will be generated automatically, and will look

like (emphasized text indicates the text that will be the link):

More information can be found in Chapter One.

More specific information can be found in the section

called Sub-sect 1.

Notice how the text from the link is derived from the section title or

the chapter number.

注意

This means that you cannot use xref to link to an id
attribute on an anchor element. The anchor has no content,
so the xref cannot generate the text for the link.

Links

80

If you want to control the text of the link then use link. This element
wraps content, and the content will be used for the link.

範例 4.51. Using link

Assume that this fragment appears somewhere in a document that

includes the id example.

<para>More information can be found in
 <link linkend="chapter1">the first chapter</link>.</para>

<para>More specific information can be found in
 <link linkend="chapter1-sect1">this</link> section.</para>

This will generate the following (emphasized text indicates the

text that will be the link):

More information can be found in the first chapter.

More specific information can be found in this

section.

注意

That last one is a bad example. Never use words like

“this” or “here” as the source for the link. The

reader will need to hunt around the surrounding context

to see where the link is actually taking them.

注意

You can use link to include a link to an id on an anchor
element, since the link content defines the text that
will be used for the link.

章 4. SGML Markup

81

4.2.7.2. Linking to documents on the WWW

Linking to external documents is much simpler, as long as you know the URL

of the document you want to link to. Use ulink. The url attribute is the
URL of the page that the link points to, and the content of the element

is the text that will be displayed for the user to activate.

範例 4.52. ulink

Use:

<para>Of course, you could stop reading this document and
 go to the <ulink url="&url.base;/index.html">FreeBSD
 home page</ulink> instead.</para>

Appearance:

Of course, you could stop reading this document and go to the FreeBSD

home page instead.

../../../../index.html
../../../../index.html

章 5. * Stylesheets
SGML says nothing about how a document should be displayed to the user,
or rendered on paper. To do that, various languages have been developed
to describe stylesheets, including DynaText, Panorama, SPICE, JSSS, FOSI,
CSS, and DSSSL.

For DocBook, we are using stylesheets written in DSSSL. For HTML we are
using CSS.

5.1. * DSSSL

The Documentation Project uses a slightly customized version of Norm

Walsh's modular DocBook stylesheets.

These can be found in textproc/dsssl-docbook-modular.

The modified stylesheets are not in the ports system. Instead they are

part of the Documentation Project source repository, and can be found

in doc/share/xml/freebsd.dsl. It is well commented, and pending completion of
this section you are encouraged to examine that file to see how some of

the available options in the standard stylesheets have been configured

in order to customize the output for the FreeBSD Documentation Project.

That file also contains examples showing how to extend the elements that

the stylesheet understands, which is how the FreeBSD specific elements

have been formatted.

5.2. CSS

Cascading Stylesheets (CSS) are a mechanism for attaching style information

(font, weight, size, color, and so forth) to elements in an HTML document

without abusing HTML to do so.

5.2.1. The Web site (HTML documents)

The FreeBSD web site does not currently use CSS. Unfortunately, the look

and feel is constructed using abuses of HTML of varying degrees. This

should be fixed, and would be a good project for someone looking to

contribute to the documentation project.

The DocBook documents

84

5.2.2. The DocBook documents

The FreeBSD DSSSL stylesheets include a reference to a stylesheet,

docbook.css, which is expected to appear in the same directory as the HTML
files. The project-wide CSS file is copied from doc/share/misc/docbook.css
when documents are converted to HTML, and is installed automatically.

章 6. Structuring documents
under doc/
The doc/ tree is organized in a particular fashion, and the documents that
are part of the FDP are in turn organized in a particular fashion. The
aim is to make it simple to add new documentation into the tree and:

1. make it easy to automate converting the document to other formats;

2. promote consistency between the different documentation organizations,

to make it easier to switch between working on different documents;

3. make it easy to decide where in the tree new documentation should be

placed.

In addition, the documentation tree has to accommodate documentation that
could be in many different languages and in many different encodings. It
is important that the structure of the documentation tree does not enforce
any particular defaults or cultural preferences.

6.1. The top level, doc/

There are two types of directory under doc/, each with very specific
directory names and meanings.

Directory: share/
Meaning: Contains files that are not specific to the various translations

and encodings of the documentation. Contains subdirectories to further

categorize the information. For example, the files that comprise the

make(1) infrastructure are in share/mk, while the additional SGML support
files (such as the FreeBSD extended DocBook DTD) are in share/xml.
Directory: lang.encoding/
Meaning: One directory exists for each available translation and encoding

of the documentation, for example en_US.ISO8859-1/ and zh_TW.Big5/. The
names are long, but by fully specifying the language and encoding we

prevent any future headaches should a translation team want to provide

the documentation in the same language but in more than one encoding.

This also completely isolates us from any problems that might be caused

by a switch to Unicode.

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

The lang.encoding/ directories

86

6.2. The lang.encoding/ directories

These directories contain the documents themselves. The documentation is

split into up to three more categories at this level, indicated by the

different directory names.

Directory: articles
Contents: Documentation marked up as a DocBook article (or equivalent).
Reasonably short, and broken up into sections. Normally only available

as one HTML file.

Directory: books
Contents: Documentation marked up as a DocBook book (or equivalent). Book
length, and broken up into chapters. Normally available as both one large

HTML file (for people with fast connections, or who want to print it easily

from a browser) and as a collection of linked, smaller files.

Directory: man
Contents: For translations of the system manual pages. This directory will

contain one or more mann directories, corresponding to the sections that
have been translated.

Not every lang.encoding directory will contain all of these directories. It
depends on how much translation has been accomplished by that translation

team.

6.3. Document specific information

This section contains specific notes about particular documents managed

by the FDP.

6.3.1. The Handbook

books/handbook/

The Handbook is written to comply with the FreeBSD DocBook extended DTD.

The Handbook is organized as a DocBook book. It is then divided into parts,
each of which may contain several chapters. chapters are further subdivided
into sections (sect1) and subsections (sect2, sect3) and so on.

6.3.1.1. Physical organization

There are a number of files and directories within the handbook directory.

章 6. Structuring documents under doc/

87

注意

The Handbook's organization may change over time, and

this document may lag in detailing the organizational

changes. If you have any questions about how the Handbook

is organized, please contact the FreeBSD documentation

project 郵遞論壇.

6.3.1.1.1. Makefile

The Makefile defines some variables that affect how the SGML source is
converted to other formats, and lists the various source files that make

up the Handbook. It then includes the standard doc.project.mk file, to bring
in the rest of the code that handles converting documents from one format

to another.

6.3.1.1.2. book.xml

This is the top level document in the Handbook. It contains the Handbook's

DOCTYPE declaration, as well as the elements that describe the Handbook's

structure.

book.xml uses parameter entities to load in the files with the .ent
extension. These files (described later) then define general entities that

are used throughout the rest of the Handbook.

6.3.1.1.3. directory/chapter.xml

Each chapter in the Handbook is stored in a file called chapter.xml in a
separate directory from the other chapters. Each directory is named after

the value of the id attribute on the chapter element.

For example, if one of the chapter files contains:

<chapter id="kernelconfiguration">
...
</chapter>

then it will be called chapter.xml in the kernelconfiguration directory. In
general, the entire contents of the chapter will be held in this file.

http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

The Handbook

88

When the HTML version of the Handbook is produced, this will yield

kernelconfiguration.html. This is because of the id value, and is not related
to the name of the directory.

In earlier versions of the Handbook the files were stored in the same

directory as book.xml, and named after the value of the id attribute on
the file's chapter element. Moving them into separate directories prepares
for future plans for the Handbook. Specifically, it will soon be possible

to include images in each chapter. It makes more sense for each image to

be stored in a directory with the text for the chapter than to try to keep

the text for all the chapters, and all the images, in one large directory.

Namespace collisions would be inevitable, and it is easier to work with

several directories with a few files in them than it is to work with one

directory that has many files in it.

A brief look will show that there are many directories with individual

chapter.xml files, including basics/chapter.xml, introduction/chapter.xml, and

printing/chapter.xml.

重要

Chapters and/or directories should not be named in

a fashion that reflects their ordering within the

Handbook. This ordering might change as the content

within the Handbook is reorganized; this sort of

reorganization should not (generally) include the need

to rename files (unless entire chapters are being

promoted or demoted within the hierarchy).

Each chapter.xml file will not be a complete SGML document. In particular,
they will not have their own DOCTYPE lines at the start of the files.

This is unfortunate as it makes it impossible to treat these as generic

SGML files and simply convert them to HTML, RTF, PS, and other formats

in the same way the main Handbook is generated. This would force you to

rebuild the Handbook every time you want to see the effect a change has

had on just one chapter.

章 7. The Documentation
Build Process
This chapter's main purpose is to clearly explain how the documentation
build process is organized, and how to affect modifications to this
process.

After you have finished reading this chapter you should:

•Know what you need to build the FDP documentation, in addition to those

mentioned in the SGML tools chapter.

•Be able to read and understand the make instructions that are present

in each document's Makefiles, as well as an overview of the doc.project.mk
includes.

•Be able to customize the build process by using make variables and make

targets.

7.1. The FreeBSD Documentation Build Toolset

Here are your tools. Use them every way you can.

•The primary build tool you will need is make, but specifically Berkeley

Make.

•Package building is handled by FreeBSD's pkg_create. If you are not

using FreeBSD, you will either have to live without packages, or compile

the source yourself.

•gzip is needed to create compressed versions of the document. bzip2

compression and zip archives are also supported. tar is supported, but

package building demands it.

•install is the default method to install the documentation. There are

alternatives, however.

Understanding Makefiles in the
Documentation tree

90

注意

It is unlikely you will have any trouble finding these

last two, they are mentioned for completeness only.

7.2. Understanding Makefiles in the
Documentation tree

There are three main types of Makefiles in the FreeBSD Documentation Project
tree.

•Subdirectory Makefiles simply pass commands to those directories below
them.

•Documentation Makefiles describe the document(s) that should be produced
from this directory.

•Make includes are the glue that perform the document production, and

are usually of the form doc.xxx.mk.

7.2.1. Subdirectory Makefiles

These Makefiles usually take the form of:

SUBDIR =articles
SUBDIR+=books

COMPAT_SYMLINK = en

DOC_PREFIX?= ${.CURDIR}/..
.include -"${DOC_PREFIX}/share/mk/doc.project.mk"

In quick summary, the first four non-empty lines define the make variables,

SUBDIR, COMPAT_SYMLINK, and DOC_PREFIX.

The first SUBDIR statement, as well as the COMPAT_SYMLINK statement,

shows how to assign a value to a variable, overriding any previous value.

The second SUBDIR statement shows how a value is appended to the current

value of a variable. The SUBDIR variable is now articles books.

The DOC_PREFIX assignment shows how a value is assigned to the variable,

but only if it is not already defined. This is useful if DOC_PREFIX

章 7. The Documentation Build Process

91

is not where this Makefile thinks it is - the user can override this and
provide the correct value.

Now what does it all mean? SUBDIR mentions which subdirectories below

this one the build process should pass any work on to.

COMPAT_SYMLINK is specific to compatibility symlinks (amazingly

enough) for languages to their official encoding (doc/en would point to
en_US.ISO-8859-1).

DOC_PREFIX is the path to the root of the FreeBSD Document Project tree.

This is not always that easy to find, and is also easily overridden, to

allow for flexibility. .CURDIR is a make builtin variable with the path

to the current directory.

The final line includes the FreeBSD Documentation Project's project-wide

make system file doc.project.mk which is the glue which converts these
variables into build instructions.

7.2.2. Documentation Makefiles

These Makefiles set a bunch of make variables that describe how to build
the documentation contained in that directory.

Here is an example:

MAINTAINER=nik@FreeBSD.org

DOC?= book

FORMATS?= html-split html

INSTALL_COMPRESSED?= gz
INSTALL_ONLY_COMPRESSED?=

SGML content
SRCS= book.xml

DOC_PREFIX?= ${.CURDIR}/../../..

.include -"$(DOC_PREFIX)/share/mk/docproj.docbook.mk"

The MAINTAINER variable is a very important one. This variable provides

the ability to claim ownership over a document in the FreeBSD Documentation

Project, whereby you gain the responsibility for maintaining it.

DOC is the name (sans the .xml extension) of the main document created
by this directory. SRCS lists all the individual files that make up

FreeBSD Documentation Project make
includes

92

the document. This should also include important files in which a change

should result in a rebuild.

FORMATS indicates the default formats that should be built

for this document. INSTALL_COMPRESSED is the default list of

compression techniques that should be used in the document build.

INSTALL_ONLY_COMPRESS, empty by default, should be non-empty if only
compressed documents are desired in the build.

注意

We covered optional variable assignments in the previous

section.

The DOC_PREFIX and include statements should be familiar already.

7.3. FreeBSD Documentation Project make includes

This is best explained by inspection of the code. Here are the system

include files:

•doc.project.mk is the main project include file, which includes all the
following include files, as necessary.

•doc.subdir.mk handles traversing of the document tree during the build
and install processes.

•doc.install.mk provides variables that affect ownership and installation
of documents.

•doc.docbook.mk is included if DOCFORMAT is docbook and DOC is set.

7.3.1. doc.project.mk

By inspection:

DOCFORMAT?= docbook
MAINTAINER?= doc@FreeBSD.org

PREFIX?= /usr/local
PRI_LANG?= en_US.ISO8859-1

.if defined(DOC)

.if ${DOCFORMAT} == -"docbook"

章 7. The Documentation Build Process

93

.include -"doc.docbook.mk"

.endif

.endif

.include -"doc.subdir.mk"

.include -"doc.install.mk"

7.3.1.1. Variables

DOCFORMAT and MAINTAINER are assigned default values, if these are

not set by the document make file.

PREFIX is the prefix under which the documentation building tools are

installed. For normal package and port installation, this is /usr/local.

PRI_LANG should be set to whatever language and encoding is natural

amongst users these documents are being built for. US English is the

default.

注意

PRI_LANG in no way affects what documents can, or

even will, be built. Its main use is creating links

to commonly referenced documents into the FreeBSD

documentation install root.

7.3.1.2. Conditionals

The .if defined(DOC) line is an example of a make conditional which, like
in other programs, defines behavior if some condition is true or if it

is false. defined is a function which returns whether the variable given
is defined or not.

.if ${DOCFORMAT} == "docbook", next, tests whether the DOCFORMAT
variable is "docbook", and in this case, includes doc.docbook.mk.

The two .endifs close the two above conditionals, marking the end of their
application.

7.3.2. doc.subdir.mk

This is too long to explain by inspection, you should be able to work it

out with the knowledge gained from the previous chapters, and a little

help given here.

doc.subdir.mk

94

7.3.2.1. Variables

•SUBDIR is a list of subdirectories that the build process should go

further down into.

•ROOT_SYMLINKS is the name of directories that should be linked to
the document install root from their actual locations, if the current

language is the primary language (specified by PRI_LANG).

•COMPAT_SYMLINK is described in the Subdirectory Makefile section.

7.3.2.2. Targets and macros

Dependencies are described by target: dependency1 dependency2 ... tuples, where
to build target, you need to build the given dependencies first.

After that descriptive tuple, instructions on how to build the target may

be given, if the conversion process between the target and its dependencies

are not previously defined, or if this particular conversion is not the

same as the default conversion method.

A special dependency .USE defines the equivalent of a macro.

_SUBDIRUSE: -.USE
.for entry in ${SUBDIR}
 @${ECHO} -"===> ${DIRPRFX}${entry}"
 @(cd ${.CURDIR}/${entry} && \
 ${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=
${DIRPRFX}${entry}/ -)
.endfor

In the above, _SUBDIRUSE is now a macro which will execute the given
commands when it is listed as a dependency.

What sets this macro apart from other targets? Basically, it is executed

after the instructions given in the build procedure it is listed as a

dependency to, and it does not adjust .TARGET, which is the variable
which contains the name of the target currently being built.

clean: _SUBDIRUSE
 rm --f ${CLEANFILES}

In the above, clean will use the _SUBDIRUSE macro after it has executed
the instruction rm -f ${CLEANFILES}. In effect, this causes clean to go
further and further down the directory tree, deleting built files as it

goes down, not on the way back up.

章 7. The Documentation Build Process

95

7.3.2.2.1. Provided targets

•install and package both go down the directory tree calling the real
versions of themselves in the subdirectories (realinstall and realpackage
respectively).

•clean removes files created by the build process (and goes down the
directory tree too). cleandir does the same, and also removes the object
directory, if any.

7.3.2.3. More on conditionals

•exists is another condition function which returns true if the given
file exists.

•empty returns true if the given variable is empty.

•target returns true if the given target does not already exist.

7.3.2.4. Looping constructs in make (.for)

.for provides a way to repeat a set of instructions for each space-separated
element in a variable. It does this by assigning a variable to contain

the current element in the list being examined.

_SUBDIRUSE: -.USE
.for entry in ${SUBDIR}
 @${ECHO} -"===> ${DIRPRFX}${entry}"
 @(cd ${.CURDIR}/${entry} && \
 ${MAKE} ${.TARGET:S/realpackage/package/:S/realinstall/install/} DIRPRFX=
${DIRPRFX}${entry}/ -)
.endfor

In the above, if SUBDIR is empty, no action is taken; if it has one or more

elements, the instructions between .for and .endfor would repeat for every
element, with entry being replaced with the value of the current element.

章 8. 建構 Website

8.1. 事前準備

請先準備約 200MB 空間，這些是要用來放 SGML 工具程式、CVS tree、 臨時編譯

用的空間，以及編譯好的網頁存放空間。若事先已有裝 SGML 工具程式、 CVS tree

的話，那麼只需頂多約 100MB 空間即可。

注意

請確認一下你的相關文件製作所會用到的 ports 都是最新版！

若不清楚所裝的版本為何，那麼就先以 pkg_delete(1) 指令

來移除舊版， 接著才去裝 port。 舉例來說，若已裝的是

jade-1.1， 但是我們目前需要的卻是 jade-1.2，那麼先用下

列方式來移除舊版：

pkg_delete jade-1.1

接著，就是設定 CVS repository。需要至少 www, doc, ports 這三樣 CVS tree(當

然還要加上 CVSROOT)。 請參閱 CVSup 簡介 以瞭解如何來 mirror a CVS tree

或部分 CVS tree。

最低需求的 cvsup collections 為：www, doc-all, cvs-base 以及 ports-base。

剛講的這些需要約 105MB 空間。

而完整的 CVS tree - 包括 src, doc, www 以及 ports - 目前約為 940MB。

8.2. Build the web pages from scratch

1. 先建立要編譯的目錄(至少要有 60MB 空間)，並切換到該目錄。

mkdir -/var/tmp/webbuild
cd -/var/tmp/webbuild

2. 從 CVS tree 內 checkout 相關的 SGML 檔。

cvs --R co www doc

3. 切到 www/en 目錄，然後打 make(1) all 來產生網頁。

http://www.FreeBSD.org/cgi/man.cgi?query=pkg_delete&sektion=1
../../../../doc/zh_TW.Big5/books/handbook/synching.html#CVSUP
http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

在你的網頁伺服器上安裝網頁

98

cd en
make all

8.3. 在你的網頁伺服器上安裝網頁

1. 如果你已經離開 en 這個目錄，請切換回這個目錄中。

cd path/www/en

2. 執行 make(1) install ， 並將 DESTDIR 設定為你想安裝檔案的目錄名稱。

make DESTDIR=/usr/local/www install

3. 如果你之前已經在相同的目錄中安裝了這些網頁， 安裝過程並不會刪除任何

既有或過期的網頁。 舉例來說，如果你每日建構和安裝新的網頁副本， 這個

指令將會搜尋並刪除在三天內沒有更新的檔案。

find -/usr/local/www --ctime 3 --print0 -| xargs --0 rm

8.4. 環境變數

CVSROOT
設定 CVS tree 的位置，此為必備條件。

CVSROOT=/home/ncvs; export CVSROOT

ENGLISH_ONLY
如果設定這個環境變數，而且值不為空白， makefiles 將只會建構和安裝英文

文件。 所以將會略過其他的各國翻譯。例如：

make ENGLISH_ONLY=YES all install

如果你想要取消變數 ENGLISH_ONLY 以及建構所有的頁面並包括翻譯，只

要將變數 ENGLISH_ONLY 的值設定成空白即可。

make ENGLISH_ONLY="" all install clean

WEB_ONLY
如果有設定這個變數的話， makefiles 將只會從 www 目錄建構及安裝

HTML 頁面。 所有從 doc 目錄下的文件全部都會被忽略 (Handbook, FAQ,

Tutorials)。 例如：

make WEB_ONLY=YES all install

http://www.FreeBSD.org/cgi/man.cgi?query=make&sektion=1

章 8. 建構 Website

99

NOPORTSCVS
如果設了這個變數，makefiles 就不會從 ports cvs repository 取出檔案。

取而代之會從 /usr/ports (或是 PORTSBASE 所設定的值) 內複製檔案。

CVSROOT 是環境變數。 你必須直接使用指令或是在 dot files (如：

~/.profile) 中 設定這個環境變數。

WEB_ONLY、ENGLISH_ONLY 及 NOPORTSCVS 都是 makefile 變數。 你可以

在 /etc/make.conf、Makefile.inc 中設定這些變數，作法就像是用命令列或使用 dot

files 來設定環境變數一般。

章 9. 翻譯時的常見問題
本章是翻譯 FreeBSD 文件(包含：FAQ, Handbook, tutorials, manual pages等)
的常見問題(FAQ)。

本文件 主要 是以 FreeBSD 德文翻譯計劃的翻譯 FAQ 為母本而來的， 原始
撰稿者為 Frank Gr nder <elwood@mc5sys.in-berlin.de> ，並由 Bernd Warken

<bwarken@mayn.de> 再翻譯回英文版。

The FAQ is maintained by the Documentation Engineering Team
<doceng@FreeBSD.org>.

問： FAQ 的目的是?

答： 隨著越來越多人參與 freebsd-doc 郵遞論壇，而且希望將 FreeBSD 文件翻
譯為各種語言版本。 我們希望這份 FAQ 能儘可能為這些參與翻譯者提供快
速的解惑。

問： i18n 跟 l10n 是什麼呢？

答： i18n 是 internationalization 的簡寫，而 l10n 則是 localization 的簡
寫。這些都是為了書寫方便而用的簡寫。

i18n 就是開頭為 “i” 後面有 18 個字母，最後接 “n”。 同理， l10n
則是開頭為 “l” 後面有 10 個字母，最後接 “n”。

問： 有專門給譯者參與討論的 mailing list 嗎？

答： 有啊，不同的語系翻譯者都各自有自屬的 mailing lists。這份 翻譯計劃清
單 有列出各翻譯計劃的詳細 mailing lists 及相關網站。

問： 需要更多人一起參與翻譯嗎？

答： 當然囉，越多人參與翻譯，那麼就能夠越快翻完，而且英文版文件若有增
減、更新的話， 各翻譯版也可以儘快同步囉。

不一定得是專業譯者，才能參與翻譯的。

問： 有要求哪些語言能力呢？

答： 理論上，必須要對英文非常熟稔，而且很明顯地，對想翻譯的語言必須要能
運用自如。

英文並非一定要會的。比如說，可以把西班牙文(Spanish)的 FAQ 翻譯為匈
牙利文(Hungarian)。

問： 該學會哪些程式的使用呢？

mailto:elwood@mc5sys.in-berlin.de
mailto:bwarken@mayn.de
mailto:doceng@FreeBSD.org
http://www.freebsd.org/docproj/translations.html
http://www.freebsd.org/docproj/translations.html

102

答： 強烈建議在自己機器上也建立 FreeBSD CVS repository 的備份(至少文件部
分)，可以用 CTM 或 CVSup 都可以。Handbook 中的 "更新、升級 FreeBSD"
一章內有提到如何使用這些程式。

此外，需要熟悉 CVS 用法。 如此一來，你可以查閱不同版本之間的差異處。

[XXX To Do(尚未撰稿，仍待補充) -- 寫份上手說明(tutorial)來介紹如何以
CVSup 取得文件部分，以及察看不同版本之間的差異。]

問： 要怎麼找出來還有誰要跟我一起翻譯的呢？

答： 文件計劃的翻譯 這列了目前已知的各翻譯者成果 ，如果已經有其他人也在
做跟你一樣的翻譯工作，那麼請不要重複浪費人力， 請與他們聯繫看看還有
哪些地方可以幫上忙的。

若上面並未列出你母語的翻譯，或是也有人要翻譯但還未公開宣布的話，那
麼就寄信到 FreeBSD documentation project 郵遞論壇 吧。

問： 都沒人翻譯為我所使用的語言，該怎麼辦？

答： 恭喜啊，你剛好踏上 “FreeBSD #### 文件翻譯計劃” 的啟程之路，歡迎上

船。

首先呢，先判斷是否有妥善規劃時間，因為你只有一個人在翻而已， 因此，
相關翻譯成果的公布、與其他可能會幫忙的志工們聯繫這些工作都是你的職
責所在。

寫信到 FreeBSD documentation project 郵遞論壇 向大家宣布你正準備要翻
譯，然後文件計劃的翻譯部分就會更新相關資料

若你的國家已經有人提供 FreeBSD 的 mirror(映設) 服務的話，那麼就先跟
他們聯繫， 並詢問你是否在上面可以有網頁空間來放相關計劃資料， 以及
是否可以有提供 email 帳號或 mailing list 服務。

然後，就開始翻文件囉，一開始翻譯的時候，先找些篇幅較短的文件會比較
容易些 — 像是 FAQ 啦，或是如何上手之類的說明文章。

問： 已經翻好一些文件了，該寄到哪呢？

答： 這要看情況而定。 若你是在翻譯團隊內做的話(像是日本、德國)， 他們會
有自己內部流程來決定翻譯文件怎麼送，這些大致流程會在他們網頁上面有
寫。

若你是某語系的唯一翻譯者(或你是負責某翻譯計劃，並想把成果回饋給
FreeBSD 計劃) ，那麼你就應該把自己的翻譯成果寄給 FreeBSD 計劃。(細
節請看下個問題)

問： 我是該語系的唯一翻譯者，該怎麼把翻譯成果寄出去呢？

或者

http://www.FreeBSD.org/docproj/translations.html
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc
http://lists.FreeBSD.org/mailman/listinfo/freebsd-doc

章 9. 翻譯時的常見問題

103

我們是翻譯團隊，該怎麼把我們成員翻譯成果寄出去呢？

答： 首先，請先確定你的翻譯成果組織條理分明，並可正確編譯，也就是說： 把
它擺到現有文件架構內是可以正確編譯成功的。

目前，FreeBSD 文件都是放在最上層的 doc/ 目錄內。 而該目錄下的則依其語

系來做分類命名的，依照 ISO639 定義(/usr/share/misc/iso639 的這個 FreeBSD

版本比 1999/01/20 還新)。

若你這個語系可能會有不同編碼方式(像是：中文) 那麼就應該會像下面這
樣，來依你所使用的編碼方式細分。

最後，你應該建立好各文件的目錄了。

舉例來說，假設有瑞典文(Swedish)版的翻譯，那麼應該會長像：

doc/
 sv_SE.ISO8859-1/
 Makefile
 books/
 faq/
 Makefile
 book.xml

sv_SE.ISO8859-1 是依照 ##(lang).##(encoding) 的規則來建立的譯名。 請注

意：其中有兩個 Makefiles 檔，它們是用來編書的。

然後請用 tar(1) 與 gzip(1) 來把你的翻譯文件壓縮起來，並寄到本計劃
來。

% cd doc
% tar cf swedish-docs.tar sv_SE.ISO8859-1
% gzip --9 swedish-docs.tar

接著，把 swedish-docs.tar.gz 放到網頁空間上，若你沒有自己網頁空間的話

(ISP不提供) ，那麼可以該檔寄到 Documentation Engineering Team
<doceng@FreeBSD.org> 來。

還有，記得用 send-pr(1) 以正式通知大家；你已經寄出翻譯文件了， 還
有，若有人可以幫忙檢閱、複審文件的話，對翻譯品質較好， 因為這也有助
於提升翻譯品質的流暢度。

最後，會有人(可能是文件計劃總管，或是 Documentation Engineering Team
<doceng@FreeBSD.org> 成員) 會檢閱你的翻譯文件，並確認是否可正常編

譯。此外，他們會特別注意下列幾點：

1.你的檔案是否都有用 RCS tag (像是 "ID" 之類的)？

http://www.FreeBSD.org/cgi/man.cgi?query=tar&sektion=1
http://www.FreeBSD.org/cgi/man.cgi?query=gzip&sektion=1
mailto:doceng@FreeBSD.org
http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1
mailto:doceng@FreeBSD.org

104

2. sv_SE.ISO8859-1 是否可以順利 make all 編譯呢？

3. make install 是否結果有正確？

若有問題的話，那麼檢閱者會叮嚀你，來讓這些翻譯成果可以正確使用。

若沒問題的話，那麼就會很快把你的翻譯成果 commit 進去了。

問： 可以加入某語系或某國家才有的東西到翻譯內容內嗎？

答： 我們希望不要這麼做。

舉例來說，假設你正準備把 Handbook 翻譯為韓文版， 並希望把韓國零售處
也加到你翻譯的 Handbook 韓文版內。

我們想不出來有啥原因，為什麼不把這些資訊提供給英文版呢？(或是德文、
西班牙文、日文等 …) 因為，有可能英語讀者跑去韓國時，會想買 FreeBSD
相關產品。 此外，這也可以提升 FreeBSD 的可見度，很顯然的，這並不是
件壞事啊。

若你有某國才有的資料，請(用 send-pr(1))提供給英文版 Handbook 以作為
修訂 ，然後再把英文版的修訂部分，翻為你要翻譯的 Handbook 吧。

感恩，謝謝。

問： 要怎麼把該語系特有的字元寫進去翻譯內容呢？

答： 文件內所有的非 ASCII(Non-ASCII) 字元，都要使用 SGML entities 才能寫
進去。

簡單來說，長相一開頭會是 & 符號(&)，然後是該 entity 名稱，最後接上
分號(;)。

這些 entity 名稱都是 ISO8879 所制訂的，而 port tree 內則在 textproc/
iso8879。

以下舉一些例子：
Entity名稱: é
實際樣子:
介紹: 小 “e”，並帶尖、重音(acute accent)
Entity名稱: É
實際樣子:
介紹: 大 “E”，並帶尖、重音(acute accent)
Entity名稱: ü
實際樣子:
介紹: 小 “u”，並帶日耳曼語系中的母音變化(umlaut)

http://www.FreeBSD.org/cgi/man.cgi?query=send-pr&sektion=1

章 9. 翻譯時的常見問題

105

在裝了 iso8879 這個 port 之後，就可以在 /usr/local/share/xml/iso8879 找到

這些的詳細列表。

問： 如何稱呼讀者呢？

答： 在英文文件內，讀者都是以 “you” 來稱呼，而有些語言並沒有正式/非正
式的區隔。

若你所要翻的語言可以區別這些差異，那麼請用該語系在一般技術文件上所
使用的稱呼吧。 如果容易造成困惑的話，那麼請改用較中性的稱呼來取代。

問： 翻譯成果內要不要附上一些其他訊息呢？

答： 當然要。

每份英文版原稿的開頭，通常會有像下面的內容：

<!--
 The FreeBSD Documentation Project

 $FreeBSD: doc/en_US.ISO8859-1/books/fdp-primer/translations/chapter.xml,v 1.5 -
2000/07/07 18:38:38 dannyboy Exp $
-->

實際上的內容可能稍有不同，但每份原稿都會附上 $FreeBSD$ 這一行以及
The FreeBSD Documentation Project 宣告。 請注意：$FreeBSD 開頭的這行是

會由 CVS 隨著每次異動而自動更改的， 所以，新檔案的話請保持原狀(也就
是只要寫 $FreeBSD$ 就好了)。

翻譯文件中，必須都要有 $FreeBSD$ 這行，並且把 FreeBSD Documentation
Project 這行改為 The FreeBSD #### Documentation Project。

此外，還必須加上第三行來指出你所翻譯的，到底是以英文版原稿的哪一版
本為母本所做的翻譯。

因此呢，西班牙文版(Spanish)的檔案開頭應該是長像這樣：

<!--
 The FreeBSD Spanish Documentation Project

 $FreeBSD: doc/es_ES.ISO8859-1/books/fdp-primer/translations/chapter.xml,v 1.3 -
1999/06/24 19:12:32 jesusr Exp $
 Original revision: 1.11
-->

章 10. 文件的撰寫風格
由於 FreeBSD 文件是由眾多作者所維護的，為了保持寫作風格的一貫性， 於是就
產生較有共識的寫作規則，請各位記得要遵守。

使用美式英語
同一個字在不同種類的英語會有著不同的拼法。 遇到拼字不同的情況，請採
用美式英語拼法。 像是： 請改用 “color”，而非 “colour”。 請改用
“rationalize”，而非 “rationalise” 等等類似字彙。

注意

若文章採用英式英語也可以接受，但必須全篇文章都採用
同一拼法才行 。 而文件的其他部份，像是書、網頁、
manual 說明等則必須採用美式英語。

不要用簡寫
請不要簡寫(contraction)。 請務必將完整的字寫出來。 比如： “Don't use
contractions” 這句有用到簡寫，就要避免。

正式書面寫法避免簡寫的原因，乃是因為如此一來字句意思較精準， 且對譯
者會比較輕鬆些。

正確使用 serial comma 以及頓號
英文段落通常會逗號(,)作為該句所提到的各項目的語氣區隔。 並且會在最後
一個提到的項目時，先加上逗號再接上 “and”， 最後才是最後的項目。

舉個例子，看看下面這句：

This is a list of one, two and three items.

那麼這一句到底是有三個項目(“one”、“two” 、“three”)呢？或者是只
有兩個項目(“one”、 “two and three”)呢？

因此較妥的方式是以 serial comma 的方式，才能正確表達語意：

This is a list of one, two, and three items.

然而，在翻譯過程中，建議把逗號(,)部份改為頓號(、)，並且 “and” 的部
份可略而不翻，以免語意頓塞。

避免使用贅詞
請試著避免使用贅詞(redundant phrase)。 尤其是 “這個指令”、“這個檔
案”、“man 指令” 這幾個通常都是不必要的贅詞。

Style guide

108

以指令(command)方面舉例，比較妥當的用法是第二句的例子：

使用 cvsup 指令來更新原始碼。

使用 cvsup 來更新原始碼。

以檔案(filename)方面舉例，比較妥當的用法是第二句的例子：

… 在這個 /etc/rc.local 檔案 …

… 在 /etc/rc.local 檔 …

以 man(manual)方面舉例，比較妥當的用法是第二句(有用到 SGML citerefentry
標籤)：

請打 man csh 指令以參閱詳情說明。

詳情請參閱 csh(1)。

每句後面加上兩個空白
為了使文章更易閱讀，以及讓 Emacs 之類的工具容易運用，請在每一完整句子
後面加上兩個空白。

不過，句號(.)後面有接大寫字母， 並不一定表示前一個句點所在處就是完整
句子， 尤其是名字部份常常會有這現象。 像是 “Jordan K. Hubbard” 這
人名就是很好的例證：句號後面接空白，然後是大寫的 H，然而這肯定並不是

兩段句子。

撰寫風格的相關細節，可參閱 William Strunk 所寫的 Elements of Style。

10.1. Style guide

由於 Handbook 是由眾多作者所維護，為了保持寫作風格的一貫性， 請遵守下列

撰寫風格。

10.1.1. 大小寫

Tag 的部份都是用小寫字母，譬如是用 <para> ，而非 <PARA>。

而 SGML 內文則是用大寫字母表示，像是： <!ENTITY…> 及 <!DOCTYPE…>，
而不是 <!entity…> 及 <!doctype…>。

10.1.2. 縮寫字

縮寫字(acronym)通常在書中第一次提到時，必須同時列出完整拼法， 比

如："Network Time Protocol (NTP)"。 定義縮寫字之後，應該儘量只使用該縮寫

http://www.FreeBSD.org/cgi/man.cgi?query=csh&sektion=1
http://www.bartleby.com/141/

章 10. 文件的撰寫風格

109

字(而非完整詞彙， 除非使用完整詞彙可以更能表達語意)來表達即可。 通常每本

書只會第一次提到時，才會列出完整詞彙， 但若您高興也可以在每章第一次提到

時又列出完整詞彙。

此外，同一縮寫字在前三次使用時，須使用 <acronym> 標籤， 並把完整詞彙附

在 role 屬性內做說明。 如此一來就會建立詞彙表，並且當滑鼠移至該縮寫字上方

時， 就會顯示完整詞彙。

10.1.3. 縮排

無論 檔案縮排設定為何， 每個檔案一開始的縮排(indentation)都是從 0 縱列開

始

未完的標籤會以多兩個空白來增加縮排， 結尾的標籤則少兩個空白來縮減縮排。

若已達 8 個空白，則以 tab 取代之。 此外，在 tab 前面不要再用空白，也不要

在每行後面加上空白。 每個 tag 的內文若超過一行的話，則接下來的就多兩個空

白以做縮排。

舉個例子，這節所用的寫法大致是下面這樣：

+--- ## 0 ##
V
<chapter>
 <title>...</title>

 <sect1>
 <title>...</title>

 <sect2>
 <title>##</title>

 <para><emphasis>##</emphasis> #########
 ##########(indentation)### 0 #####</para>

 -...
 </sect2>
 </sect1>
</chapter>

若用 Emacs 或 XEmacs 來編輯這檔，那麼會自動進入 sgml-mode 模式， 然後就

會強制使用每個檔案最下方的環境設定。

Vim 愛用者也可以用下列設定來調整：

augroup sgmledit
 autocmd FileType sgml set formatoptions=cq2l -" ######
 autocmd FileType sgml set textwidth=70 -" # 70 ########
 autocmd FileType sgml set shiftwidth=2 -" #### 2 ###
 autocmd FileType sgml set softtabstop=2 -" # Tab ###########
 autocmd FileType sgml set tabstop=8 -" # 8 ##### tab

Tag 風格

110

 autocmd FileType sgml set autoindent -" ####
augroup END

10.1.4. Tag 風格

10.1.4.1. Tag 空行

同一縮排等級的標籤要以空一行來做區隔，而不同縮排等級的則不必。 比如：

<article lang='zh_tw'>
 <articleinfo>
 <title>NIS</title>

 <pubdate>October 1999</pubdate>

 <abstract>
 <para>...
 ...
 ...</para>
 </abstract>
 </articleinfo>

 <sect1>
 <title>...</title>

 <para>...</para>
 </sect1>

 <sect1>
 <title>...</title>

 <para>...</para>
 </sect1>
</article>

10.1.4.2. 標籤的分行

像是 itemizedlist 這類的標籤事實上本身不含任何文字資料，必須得由其他標籤來

補充內文。 這類的標籤會獨用一整行。

另外，像是 para 及 term 這類的標籤並不需搭配其他標籤， 就可附上文字資料，

並且在標籤後面的同一行 內即可立即寫上這些內文。

當然，這兩類的標籤結尾時也是跟上面道理相同。

不過，當上述這兩種標籤混用時，會有很明顯的困擾。

當第一類標籤的後面接上第二類標籤的話， 那麼要把這兩類標籤各自分行來寫。

後者標籤的段落， 也是需要做適當縮排調整。

而第二類標籤結尾時，可以與第一類標籤的結尾放在同一行。

章 10. 文件的撰寫風格

111

10.1.5. 空白的更改

在 commit 修改時，請別在修改內容的同時， 也一起更改編排格式。

如此一來，像是 Handbook 翻譯團隊才能迅速找出你改了哪些內容， 而不用費心思

去判斷該行的改變，是由於格式重排或者內容異動。

舉例說明，若要在某段加上兩個句子，如此一來該段落的某行勢必會超出 80 縱

列，這時請先 commmit 修改。 接著，再修飾過長行落的換行，然後再次 commit

之。 而第二次的 commit 紀錄，請明確說明這只是 whitespace-only (修改空白而

已) 的更改，如此一來，翻譯團隊就可以忽略第二次 commit 了 。

10.1.6. Nonbreaking space

請避免一些情況下的斷行：造成版面醜醜的、或是須連貫表達的同一句子。 斷行

的情況會隨所閱讀的工具不同而有所不同。 尤其是透過純文字瀏覽器來看 HTML 時

會更明顯看到類似下面這樣不好的編排段落：

Data capacity ranges from 40 MB to 15
GB. Hardware compression …

請使用 以避免同句子之間的斷行， 以下示範如何使用 nonbreaking

spaces：

•在數字與單位之間：

57600 bps

•在程式名稱與版號之間：

FreeBSD 4.7

•multiword 之間 (使用時請小心，像是 “The FreeBSD Brazilian Portuguese

Documentation Project” 這類由三到四個字所組成的， 則不用加。)：

Sun Microsystems

10.2. 詞彙表

以下為 FreeBSD 文件計劃編排時所採用的小型詞彙表。 若找不到要找的詞彙，請

參閱 O'Reilly word list。

•2.2.X

•4.X-STABLE

•CD-ROM

http://www.oreilly.com/oreilly/author/stylesheet.html

詞彙表

112

•DoS (Denial of Service)

•Ports Collection

•IPsec

•Internet

•MHz

•Soft Updates

•Unix

•disk label

•email

•file system

•manual page

•mail server

•name server

•null-modem

•web server

章 11. Using sgml-mode with Emacs
Recent versions of Emacs or XEmacs (available from the ports collection)
contain a very useful package called PSGML. Automatically invoked when a
file with the .xml extension is loaded, or by typing M-x sgml-mode, it is
a major mode for dealing with SGML files, elements and attributes.

An understanding of some of the commands provided by this mode can make
working with SGML documents such as the Handbook much easier.

C-c C-e
Runs sgml-insert-element. You will be prompted for the name of the element
to insert at the current point. You can use the TAB key to complete
the element. Elements that are not valid at the current point will
be disallowed.

The start and end tags for the element will be inserted. If the element
contains other, mandatory, elements then these will be inserted as
well.

C-c =
Runs sgml-change-element-name. Place the point within an element and run
this command. You will be prompted for the name of the element to
change to. Both the start and end tags of the current element will
be changed to the new element.

C-c C-r
Runs sgml-tag-region. Select some text (move to start of text, C-space,
move to end of text, C-space) and then run this command. You will be
prompted for the element to use. This element will then be inserted
immediately before and after your marked region.

C-c -
Runs sgml-untag-element. Place the point within the start or end tag of
an element you want to remove, and run this command. The element's
start and end tags will be removed.

C-c C-q
Runs sgml-fill-element. Will recursively fill (i.e., reformat) content
from the current element in. The filling will affect content in which
whitespace is significant, such as within programlisting elements, so
run this command with care.

C-c C-a
Runs sgml-edit-attributes. Opens a second buffer containing a list of all
the attributes for the closest enclosing element, and their current

114

values. Use TAB to navigate between attributes, C-k to remove an
existing value and replace it with a new one, C-c C-c to close this
buffer and return to the main document.

C-c C-v
Runs sgml-validate. Prompts you to save the current document (if

necessary) and then runs an SGML validator. The output from the
validator is captured into a new buffer, and you can then navigate
from one troublespot to the next, fixing markup errors as you go.

C-c /
Runs sgml-insert-end-tag. Inserts the end tag for the current open element.

Doubtless there are other useful functions of this mode, but those are
the ones I use most often.

You can also use the following entries in .emacs to set proper spacing,
indentation, and column width for working with the Documentation Project.

 (defun local-sgml-mode-hook
 (setq fill-column 70
 indent-tabs-mode nil
 next-line-add-newlines nil
 standard-indent 4
 sgml-indent-data t)
 (auto-fill-mode t)
 (setq sgml-catalog-files -'("/usr/local/share/xml/catalog")))
 (add-hook -'psgml-mode-hook
 -'(lambda () (local-psgml-mode-hook)))

章 12. 他山之石
This document is deliberately not an exhaustive discussion of SGML, the
DTDs listed, and the FreeBSD Documentation Project. For more information
about these, you are encouraged to see the following web sites.

12.1. The FreeBSD Documentation Project

•The FreeBSD Documentation Project web pages

•The FreeBSD Handbook

12.2. SGML

•The SGML/XML web page, a comprehensive SGML resource

•Gentle introduction to SGML

12.3. HTML

•The World Wide Web Consortium

•The HTML 4.0 specification

12.4. DocBook

•The DocBook Technical Committee, maintainers of the DocBook DTD

•DocBook: The Definitive Guide, the online documentation for the DocBook

DTD.

•The DocBook Open Repository contains DSSSL stylesheets and other

resources for people using DocBook.

12.5. The Linux Documentation Project

•The Linux Documentation Project web pages

../../../../docproj/index.html
../../../../doc/zh_TW.Big5/books/handbook/index.html
http://www.oasis-open.org/cover/
http://etext.virginia.edu/bin/tei-tocs?div=DIV1&id=SG
http://www.w3.org/
http://www.w3.org/TR/REC-html40/
http://www.oasis-open.org/docbook/
http://www.docbook.org/
http://docbook.sourceforge.net/
http://www.linuxdoc.org/

附錄 A. 範例
本附錄收錄一些 SGML 檔範例，以及用來轉換格式的相關指令。 若已成功安裝文件
計畫工具包的話，那麼就可以直接照下面範例來使用。

這些例子並不是很詳細 — 並未包括你可能想用的元件， 尤其像是你文件的前頁
(正文前的書頁，包括扉頁、序言、目錄等) 若需參考更多 DocBook 標記語言文件
的話，那麼可以透過 CSup、CVSup 程式來抓 doc tree 部分，以察看本文件或其他

文件的 SGML 原稿。 或者，也可以線上瀏覽 http://www.FreeBSD.org/cgi/cvsweb.cgi/
doc/。

為了避免不必要的困擾，這些例子採用標準的 DocBook 4.1 DTD 而非 FreeBSD 額
外的 DTD。 同時並採用 Norm Walsh 氏的樣式表(stylesheets)，而非 FreeBSD 文
件計劃有自行改過的樣式表。 在一般使用 DocBook 的例子，這樣子會比較簡化環
境，而不會造成額外困擾。

A.1. DocBook book

範例 A.1. DocBook book

<!DOCTYPE book PUBLIC -"-//OASIS//DTD DocBook V4.1//EN">

<book lang='zh_tw'>
 <bookinfo>
 <title>######</title>

 <author>
 <firstname>#(first name)</firstname>
 <surname>#(surname)</surname>
 <affiliation>
 <address><email>foo@example.com</email></address>
 </affiliation>
 </author>

 <copyright>
 <year>2000</year>
 <holder>######</holder>
 </copyright>

 <abstract>
 <para>#############</para>
 </abstract>
 </bookinfo>

 <preface>

http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/
http://www.FreeBSD.org/cgi/cvsweb.cgi/doc/

附錄 A. 範例

118

 <title>##</title>

 <para>#############</para>
 </preface>

 <chapter>
 <title>###</title>

 <para>##########</para>

 <sect1>
 <title>###</title>

 <para>########</para>
 </sect1>
 </chapter>
</book>

A.2. DocBook article

範例 A.2. DocBook article

<!DOCTYPE article PUBLIC -"-//OASIS//DTD DocBook V4.1//EN">

<article lang='zh_tw'>
 <articleinfo>
 <title>####</title>

 <author>
 <firstname>#(first name)</firstname>
 <surname>#(surname)</surname>
 <affiliation>
 <address><email>foo@example.com</email></address>
 </affiliation>
 </author>

 <copyright>
 <year>2000</year>
 <holder>######</holder>
 </copyright>

 <abstract>
 <para>##############</para>
 </abstract>
 </articleinfo>

 <sect1>

附錄 A. 範例

119

 <title>###</title>

 <para>########</para>

 <sect2>
 <title>####(sub-section)</title>

 <para>########(sub-section)</para>
 </sect2>
 </sect1>
</article>

A.3. Producing formatted output

本節有些前提，假設：已經有裝 textproc/docproj 上面所安裝各軟體，無論它們

是用 port 方式安裝或是手動安裝。 此外，假設所裝的軟體都放在 /usr/local/ 下
的子目錄， 並且所安裝的相關執行檔，都有裝在你的 PATH 環境變數內的目錄。

如有必要的話，請依你的系統環境而調整相關路徑。

A.3.1. 使用 Jade

範例 A.3. 轉換 DocBook 為 HTML (完整模式)
% jade --V nochunks \
 --c -/usr/local/share/xml/docbook/dsssl/modular/catalog \
 --c -/usr/local/share/xml/docbook/catalog \
 --c -/usr/local/share/xml/jade/catalog \
 --d -/usr/local/share/xml/docbook/dsssl/modular/html/docbook.dsl \
 --t sgml file.xml > file.html

Specifies the nochunks parameter to the stylesheets, forcing all
output to be written to STDOUT (using Norm Walsh's stylesheets).

Specifies the catalogs that Jade will need to process.

Three catalogs are required. The first is a catalog that

contains information about the DSSSL stylesheets. The second

contains information about the DocBook DTD. The third contains

information specific to Jade.

Specifies the full path to the DSSSL stylesheet that Jade will

use when processing the document.

Instructs Jade to perform a transformation from one DTD to

another. In this case, the input is being transformed from the

DocBook DTD to the HTML DTD.

附錄 A. 範例

120

Specifies the file that Jade should process, and redirects

output to the specified .html file.

範例 A.4. 轉換 DocBook 為 HTML (章節模式)

% jade \
 --c -/usr/local/share/xml/docbook/dsssl/modular/catalog \
 --c -/usr/local/share/xml/docbook/catalog \
 --c -/usr/local/share/xml/jade/catalog \
 --d -/usr/local/share/xml/docbook/dsssl/modular/html/docbook.dsl \
 --t sgml file.xml

Specifies the catalogs that Jade will need to process.

Three catalogs are required. The first is a catalog that

contains information about the DSSSL stylesheets. The second

contains information about the DocBook DTD. The third contains

information specific to Jade.

Specifies the full path to the DSSSL stylesheet that Jade will

use when processing the document.

Instructs Jade to perform a transformation from one DTD to

another. In this case, the input is being transformed from the

DocBook DTD to the HTML DTD.

Specifies the file that Jade should process. The stylesheets

determine how the individual HTML files will be named, and the

name of the “root” file (i.e., the one that contains the

start of the document.

This example may still only generate one HTML file, depending on the

structure of the document you are processing, and the stylesheet's

rules for splitting output.

範例 A.5. 轉換 DocBook 為 Postscript(PS) 格式

The source SGML file must be converted to a TeX file.

% jade --Vtex-backend \
 --c -/usr/local/share/xml/docbook/dsssl/modular/catalog \
 --c -/usr/local/share/xml/docbook/catalog \
 --c -/usr/local/share/xml/jade/catalog \

附錄 A. 範例

121

 --d -/usr/local/share/xml/docbook/dsssl/modular/print/docbook.dsl \
 --t tex file.xml

Customizes the stylesheets to use various options specific to

producing output for TeX.

Specifies the catalogs that Jade will need to process.

Three catalogs are required. The first is a catalog that

contains information about the DSSSL stylesheets. The second

contains information about the DocBook DTD. The third contains

information specific to Jade.

Specifies the full path to the DSSSL stylesheet that Jade will

use when processing the document.

Instructs Jade to convert the output to TeX.

The generated .tex file must now be run through tex, specifying the
&jadetex macro package.

% tex -"&jadetex" file.tex

You have to run tex at least three times. The first run processes the
document, and determines areas of the document which are referenced

from other parts of the document, for use in indexing, and so on.

Do not be alarmed if you see warning messages such as LaTeX Warning:
Reference `136' on page 5 undefined on input line 728. at this point.

The second run reprocesses the document now that certain pieces of

information are known (such as the document's page length). This

allows index entries and other cross-references to be fixed up.

The third pass performs any final cleanup necessary.

The output from this stage will be file.dvi.

Finally, run dvips to convert the .dvi file to Postscript.

% dvips --o file.ps file.dvi

範例 A.6. 轉換 DocBook 為 PDF 格式

The first part of this process is identical to that when converting

DocBook to Postscript, using the same jade command line (範例 A.5,

“轉換 DocBook 為 Postscript(PS) 格式”).

附錄 A. 範例

122

When the .tex file has been generated you run pdfTeX. However, use
the &pdfjadetex macro package instead.

% pdftex -"&pdfjadetex" file.tex

Again, run this command three times.

This will generate file.pdf, which does not need to be processed any
further.

索引
F
Formal Public Identifier, 18, 19

M
Membership, 1

	FreeBSD 文件計畫入門書
	內容目錄
	序言
	1. Shell 提示符號(Prompts)
	2. 書中所用的編排風格
	3. 『Note、Tip、Important、Warning、Example』的運用
	4. 感謝

	章 1. 概論
	1.1. FreeBSD 文件的組成部分
	1.2. 在開工之前...
	1.3. 快速上手篇

	章 2. 工具
	2.1. 必備工具
	2.1.1. 軟體
	2.1.2. DTD 及 Entity
	2.1.3. 樣式表(Stylesheets)

	2.2. 輔助工具
	2.2.1. 軟體

	章 3. SGML Primer
	3.1. 簡介
	3.2. Elements, tags, and attributes
	3.2.1. For you to do…

	3.3. The DOCTYPE declaration
	3.3.1. Formal Public Identifiers (FPIs)
	3.3.1.1. catalog files
	3.3.1.2. SGML_CATALOG_FILES

	3.3.2. Alternatives to FPIs

	3.4. Escaping back to SGML
	3.5. 註解
	3.5.1. For you to do…

	3.6. Entities
	3.6.1. General Entities
	3.6.2. Parameter entities
	3.6.3. For you to do…

	3.7. Using entities to include files
	3.7.1. Using general entities to include files
	3.7.2. Using parameter entities to include files
	3.7.3. For you to do…
	3.7.3.1. Use general entities to include files
	3.7.3.2. Use parameter entities to include files

	3.8. Marked sections
	3.8.1. Marked section keywords
	3.8.1.1. CDATA, RCDATA
	3.8.1.2. INCLUDE and IGNORE

	3.8.2. For you to do…

	3.9. Conclusion

	章 4. SGML Markup
	4.1. HTML
	4.1.1. Formal Public Identifier (FPI)
	4.1.2. Sectional elements
	4.1.3. Block elements
	4.1.3.1. Headings
	4.1.3.2. Paragraphs
	4.1.3.3. Block quotations
	4.1.3.4. Lists
	4.1.3.5. Pre-formatted text
	4.1.3.6. Tables

	4.1.4. In-line elements
	4.1.4.1. Emphasizing information
	4.1.4.2. Bold and italics
	4.1.4.3. Indicating fixed pitch text
	4.1.4.4. Content size

	4.1.5. Links
	4.1.5.1. Linking to other documents on the WWW
	4.1.5.2. Linking to other parts of documents

	4.2. DocBook
	4.2.1. FreeBSD extensions
	4.2.2. Formal Public Identifier (FPI)
	4.2.3. Document structure
	4.2.3.1. Starting a book
	4.2.3.2. Starting an article
	4.2.3.3. Indicating chapters
	4.2.3.4. Sections below chapters
	4.2.3.5. Subdividing using parts

	4.2.4. Block elements
	4.2.4.1. Paragraphs
	4.2.4.2. Block quotations
	4.2.4.3. Tips, notes, warnings, cautions, important information and sidebars.
	4.2.4.4. Lists and procedures
	4.2.4.5. Showing file samples
	4.2.4.6. Callouts
	4.2.4.7. Tables
	4.2.4.8. Examples for the user to follow

	4.2.5. In-line elements
	4.2.5.1. Emphasizing information
	4.2.5.2. Quotations
	4.2.5.3. Keys, mouse buttons, and combinations
	4.2.5.4. Applications, commands, options, and cites
	4.2.5.5. Files, directories, extensions
	4.2.5.6. The name of ports
	4.2.5.7. Devices
	4.2.5.8. Hosts, domains, IP addresses, and so forth
	4.2.5.9. Usernames
	4.2.5.10. Describing Makefiles
	4.2.5.11. Literal text
	4.2.5.12. Showing items that the user must fill in
	4.2.5.13. Quoting system errors

	4.2.6. Images
	4.2.6.1. Image formats
	4.2.6.2. Markup
	4.2.6.3. Makefile entries
	4.2.6.4. Images and chapters in subdirectories

	4.2.7. Links
	4.2.7.1. Linking to other parts of the same document
	4.2.7.2. Linking to documents on the WWW

	章 5. * Stylesheets
	5.1. * DSSSL
	5.2. CSS
	5.2.1. The Web site (HTML documents)
	5.2.2. The DocBook documents

	章 6. Structuring documents under doc/
	6.1. The top level, doc/
	6.2. The lang.encoding/ directories
	6.3. Document specific information
	6.3.1. The Handbook
	6.3.1.1. Physical organization
	6.3.1.1.1. Makefile
	6.3.1.1.2. book.xml
	6.3.1.1.3. directory/chapter.xml

	章 7. The Documentation Build Process
	7.1. The FreeBSD Documentation Build Toolset
	7.2. Understanding Makefiles in the Documentation tree
	7.2.1. Subdirectory Makefiles
	7.2.2. Documentation Makefiles

	7.3. FreeBSD Documentation Project make includes
	7.3.1. doc.project.mk
	7.3.1.1. Variables
	7.3.1.2. Conditionals

	7.3.2. doc.subdir.mk
	7.3.2.1. Variables
	7.3.2.2. Targets and macros
	7.3.2.2.1. Provided targets

	7.3.2.3. More on conditionals
	7.3.2.4. Looping constructs in make (.for)

	章 8. 建構 Website
	8.1. 事前準備
	8.2. Build the web pages from scratch
	8.3. 在你的網頁伺服器上安裝網頁
	8.4. 環境變數

	章 9. 翻譯時的常見問題
	章 10. 文件的撰寫風格
	10.1. Style guide
	10.1.1. 大小寫
	10.1.2. 縮寫字
	10.1.3. 縮排
	10.1.4. Tag 風格
	10.1.4.1. Tag 空行
	10.1.4.2. 標籤的分行

	10.1.5. 空白的更改
	10.1.6. Nonbreaking space

	10.2. 詞彙表

	章 11. Using sgml-mode with Emacs
	章 12. 他山之石
	12.1. The FreeBSD Documentation Project
	12.2. SGML
	12.3. HTML
	12.4. DocBook
	12.5. The Linux Documentation Project

	附錄 A. 範例
	A.1. DocBook book
	A.2. DocBook article
	A.3. Producing formatted output
	A.3.1. 使用 Jade

	索引

