
Inets

version 5.0

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 Inets User’s Guide 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Prerequisites . 1

1.1.3 The Service Concept . 1

1.2 FTP Client . 2

1.2.1 Introduction . 2

1.2.2 Using the FTP Client API . 2

1.3 HTTP Client . 2

1.3.1 Introduction . 2

1.3.2 Configuration . 3

1.3.3 Using the HTTP Client API . 3

1.4 HTTP server . 4

1.4.1 Introduction . 4

1.4.2 Configuration . 5

1.4.3 Using the HTTP Server API . 5

1.4.4 Htaccess - User Configurable Authentication. 6

1.4.5 Dynamic Web Pages . 8

1.4.6 Logging . 10

1.4.7 Server Side Includes . 10

1.4.8 The Erlang Web Server API . 12

1.4.9 Inets Web Server Modules . 13

iiiInets

2 Inets Reference Manual 19

2.1 ftp . 30

2.2 http . 39

2.3 httpd . 45

2.4 httpd conf . 58

2.5 httpd socket . 60

2.6 httpd util . 61

2.7 inets . 66

2.8 mod alias . 69

2.9 mod auth . 71

2.10 mod esi . 76

2.11 mod security . 78

2.12 tftp . 81

Glossary 91

iv Inets

Chapter 1

Inets User’s Guide

The Inets Application provides a set of Internet related services. Currently supported are a HTTP client,
a HTTP server a FTP client and a TFTP client and server.

1.1 Introduction

1.1.1 Purpose

Inets is a container for Internet clients and servers. Currently, an HTTP client and server, a TFPT client
and server, and a FTP client has been incorporated into Inets. The HTTP server and client is HTTP 1.1
compliant as defined in RFC 2616.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP and
has a basic understanding of the HTTP, TFTP and FTP protocols.

1.1.3 The Service Concept

Each client and server in inets is viewed as service. Services may be configured to be started at
application startup or started dynamically in runtime. If you want to run intes as an distributed
application that should handle application failover and takeover, services should be configured to be
started at application startup. When starting the inets application the inets top supervisor will start a
number of subsupervisors and worker processes for handling the different services provided. When
starting services dynamically new children will be added to the supervision tree, unless the service is
started with the stand alone option, in which case the service is linked to the calling process and all
OTP application features such as soft upgrade are lost.

Services that should be configured for startup at application startup time should be put into the erlang
node configuration file on the form:

[finets, [fservices, ListofConfiguredServicesg]g].

For details of exactly what to put in the list of configured services see the documentation for the
services that should be configured.

1Inets

Chapter 1: Inets User’s Guide

1.2 FTP Client

1.2.1 Introduction

Ftp clients are consider to be rather temporary and are for that reason only started and stopped during
runtime and can not be started at application startup. Due to the design of FTP client API, letting some
functions return intermediate results, only the process that started the ftp client will be able to access it
in order to preserve sane semantics. (This could be solved by changing the API and using the concept of
a controlling process more in line with other OTP applications, but that is perhaps something for the
future.) If the process that started the ftp session dies the ftp client process will terminate.

The client supports ipv6 as long as the underlying mechanisms also do so.

1.2.2 Using the FTP Client API

The following is a simple example of an ftp session, where the user guest with password password logs
on to the remote host erlang.org, and where the file appl.erl is transferred from the remote to the
local host. When the session is opened, the current directory at the remote host is /home/guest, and
/home/fred at the local host. Before transferring the file, the current local directory is changed to
/home/eproj/examples, and the remote directory is set to /home/guest/appl/examples.

1> inets:start().
ok
2> {ok, Pid} = inets:start(ftpc, [{host, "erlang.org"}]).
{ok,<0.22.0>}
3> ftp:user(Pid, "guest", "password").
ok
4> ftp:pwd(Pid).
{ok, "/home/guest"}
5> ftp:cd(Pid, "appl/examples").
ok
6> ftp:lpwd(Pid).
{ok, "/home/fred"}.
7> ftp:lcd(Pid, "/home/eproj/examples").
ok
8> ftp:recv(Pid, "appl.erl").
ok
9> inets:stop(ftpc, Pid).
ok

1.3 HTTP Client

1.3.1 Introduction

The HTTP client default profile will be started when the inets application is started and is then
available to all processes on that erlang node. Other profiles may also be started at application startup,
or profiles can be started and stopped dynamically in runtime. Each client profile will spawn a new
process to handle each request unless there is a possibility to pipeline a request. The client will add a
host header and an empty te header if there are no such headers present in the request.

The clients supports ipv6 as long as the underlying mechanisms also do so.

2 Inets

1.3: HTTP Client

1.3.2 Configuration

What to put in the erlang node application configuration file in order to start a profile at application
startup.

[finets, [fservices, [fhttpc, PropertyListg]g]g]

For valid properties see http(3) [page 39]

1.3.3 Using the HTTP Client API

1 > inets:start().
ok

The following calls uses the default client profile. Use the proxy “www-proxy.mycompany.com:8000”,
but not for requsts to localhost. This will apply to all subsequent requests

2 > http:set_options([{proxy, {{"www-proxy.mycompany.com", 8000},
["localhost"]}}]).
ok

An ordinary synchronous request.

3 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
http:request(get, {"http://www.erlang.org", []}, [], []).

With all default values, as above, a get request can also be written like this.

4 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
http:request("http://www.erlang.org").

An ordinary asynchronous request. The result will be sent to the calling process on the form fhttp,
fReqestId, Resultgg

5 > {ok, RequestId} =
http:request(get, {"http://www.erlang.org", []}, [], [{sync, false}]).

In this case the calling process is the shell, so we receive the result.

6 > receive {http, {RequestId, Result}} -> ok after 500 -> error end.
ok

Send a request with a specified connection header.

7 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
http:request(get, {"http://www.erlang.org", [{"connection", "close"}]},
[], []).

Start a HTTP client profile.

3Inets

Chapter 1: Inets User’s Guide

8 > {ok, Pid} = inets:start(httpc, [{profile, foo}]).
{ok, <0.45.0>}

The new profile has no proxy settings so the connetion will be refused

9 > http:request("http://www.erlang.org", foo).
{error,econnrefused}

Stop a HTTP client profile.

10 > inets:stop(httpc, foo).
ok

Alternatively:

10 > inets:stop(httpc, Pid).
ok

1.4 HTTP server

1.4.1 Introduction

The HTTP server, also referred to as httpd, handles HTTP requests as described in RFC 2616 with a
few exceptions such as gateway and proxy functionality. The server supports ipv6 as long as the
underlying mechanisms also do so.

The server implements numerous features such as SSL (Secure Sockets Layer), ESI (Erlang Scripting
Interface), CGI (Common Gateway Interface), User Authentication(using Mnesia, dets or plain text
database), Common Logfile Format (with or without disk log(3) support), URL Aliasing, Action
Mappings, Directory Listings and SSI (Server-Side Includes).

The configuration of the server is provided as an erlang property list, and for backwards compatibility
also a configuration file using apache-style configuration directives is supported.

As of inets version 5.0 the HTTP server is an easy to start/stop and customize web server that provides
the most basic web server functionality. Depending on your needs there are also other erlang based web
servers that may be of interest such as Yaws, http://yaws.hyber.org, that for instance has its own markup
support to generate html, and supports certain buzzword technologies such as SOAP.

Allmost all server functionality has been implemented using an especially crafted server API, it is
described in the Erlang Web Server API. This API can be used to advantage by all who wants to
enhance the server core functionality, for example custom logging and authentication.

4 Inets

1.4: HTTP server

1.4.2 Configuration

What to put in the erlang node application configuration file in order to start a http server at application
startup.

[{inets, [{services, [{httpd, [{proplist_file,
"/var/tmp/server_root/conf/8888_props.conf"}]},

{httpd, [{proplist_file,
"/var/tmp/server_root/conf/8080_props.conf"}]}]}]}].

The server is configured using an erlang property list. For the available properties see [httpd(3)] For
backwards compatibility also apache-like config files are supported.

All possible config properties are as follows

httpd_service() -> {httpd, httpd()}
httpd() -> [httpd_config()]
httpd_config() -> {file, file()} |

{proplist_file, file()}
{debug, debug()} |
{accept_timeout, integer()}

debug() -> disable | [debug_options()]
debug_options() -> {all_functions, modules()} |

{exported_functions, modules()} |
{disable, modules()}

modules() -> [atom()]

fproplist file, file()g File containing an erlang property list, followed by a full stop, describing the HTTP
server configuration.

ffile, file()g If you use an old apace-like configuration file.

fdebug, debug()g - Can enable trace on all functions or only exported functions on chosen modules.

faccept timeout, integer()g sets the wanted timeout value for the server to set up a request connection.

1.4.3 Using the HTTP Server API

1 > inets:start().
ok

Start a HTTP server with minimal required configuration. Note that if you specify port 0 an arbitrary
available port will be used and you can use the info function to find out which port number that was
picked.

2 > {ok, Pid} = inets:start(httpd, [{port, 0},
{server_name,"httpd_test"}, {server_root,"/tmp"},
{document_root,"/tmp/htdocs"}, {bind_address, "localhost"}]).
{ok, 0.79.0}

5Inets

Chapter 1: Inets User’s Guide

3 > httpd:info(Pid).
[{mime_types,[{"html","text/html"},{"htm","text/html"}]},
{server_name,"httpd_test"},
{bind_address, {127,0,0,1}},
{server_root,"/tmp"},
{port,59408},
{document_root,"/tmp/htdocs"}]

Reload the configuration without restarting the server. Note port and bind address can not be changed.
Clients trying to acessess the server during the reload will get a service temporary unavailable answer.

4 > httpd:reload_config([{port, 59408},
{server_name,"httpd_test"}, {server_root,"/tmp/www_test"},
{document_root,"/tmp/www_test/htdocs"},
{bind_address, "localhost"}], non_disturbing).

ok.

5 > httpd:info(Pid, [server_root, document_root]).
[{server_root,"/tmp/www_test"},{document_root,"/tmp/www_test/htdocs"}]

6 > ok = inets:stop(httpd, Pid).

Alternative:

6 > ok = inets:stop(httpd, {{127,0,0,1}, 59408}).

Note that bind address has to be the ip address reported by the info function and can not be the
hostname that is allowed when inputing bind address.

1.4.4 Htaccess - User Configurable Authentication.

If users of the web server needs to manage authentication of web pages that are local to their user and
do not have server administrative privileges. They can use the per-directory runtime configurable
user-authentication scheme that Inets calls htaccess. It works the following way:

� Each directory in the path to the requested asset is searched for an access-file (default .htaccess),
that restricts the web servers rights to respond to a request. If an access-file is found the rules in
that file is applied to the request.

� The rules in an access-file applies both to files in the same directories and in subdirectories. If
there exists more than one access-file in the path to an asset, the rules in the access-file nearest the
requested asset will be applied.

� To change the rules that restricts the use of an asset. The user only needs to have write access to
the directory where the asset exists.

� All the access-files in the path to a requested asset is read once per request, this means that the
load on the server will increase when this scheme is used.

� If a directory is limited both by auth directives in the HTTP server configuration file and by the
htaccess files. The user must be allowed to get access the file by both methods for the request to
succeed.

6 Inets

1.4: HTTP server

Access Files Directives

In every directory under the DocumentRoot or under an Alias a user can place an access-file. An
access-file is a plain text file that specify the restrictions that shall be considered before the web server
answer to a request. If there are more than one access-file in the path to the requested asset, the
directives in the access-file in the directory nearest the asset will be used.

� DIRECTIVE: “allow”
Syntax:Allow from subnet subnet|from all
Default:from all
Same as the directive allow for the server config file.

� DIRECTIVE: “AllowOverRide”
Syntax:AllowOverRide all | none | Directives
Default:- None -
AllowOverRide Specify which parameters that not access-files in subdirectories are allowed to
alter the value for. If the parameter is set to none no more access-files will be parsed.
If only one access-file exists setting this parameter to none can lessen the burden on the server
since the server will stop looking for access-files.

� DIRECTIVE: “AuthGroupfile”
Syntax:AuthGroupFile Filename
Default:- None -
AuthGroupFile indicates which file that contains the list of groups. Filename must contain the
absolute path to the file. The format of the file is one group per row and every row contains the
name of the group and the members of the group separated by a space, for example:

GroupName: Member1 Member2 MemberN

� DIRECTIVE: “AuthName”
Syntax:AuthName auth-domain
Default:- None -
Same as the directive AuthName for the server config file.

� DIRECTIVE: “AuthType”
Syntax:AuthType Basic
Default:Basic
AuthType Specify which authentication scheme that shall be used. Today only Basic
Authenticating using UUEncoding of the password and user ID is implemented.

� DIRECTIVE: “AuthUserFile”
Syntax:AuthUserFile Filename
Default:- None -
AuthUserFile indicate which file that contains the list of users. Filename must contain the
absolute path to the file. The users name and password are not encrypted so do not place the file
with users in a directory that is accessible via the web server. The format of the file is one user per
row and every row contains User Name and Password separated by a colon, for example:

UserName:Password
UserName:Password

� DIRECTIVE: “deny”
Syntax:deny from subnet subnet|from all

7Inets

Chapter 1: Inets User’s Guide

Context: Limit
Same as the directive deny for the server config file.

� DIRECTIVE: “Limit”
Syntax:<Limit RequestMethods>
Default: - None -
<Limit> and </Limit> are used to enclose a group of directives which applies only to requests
using the specified methods. If no request method is specified all request methods are verified
against the restrictions.

<Limit POST GET HEAD>
order allow deny
require group group1
allow from 123.145.244.5
</Limit>

� DIRECTIVE: “order”
Syntax:order allow deny | deny allow
Default: allow deny
order, defines if the deny or allow control shall be preformed first.
If the order is set to allow deny, then first the users network address is controlled to be in the
allow subset. If the users network address is not in the allowed subset he will be denied to get the
asset. If the network-address is in the allowed subset then a second control will be preformed,
that the users network address is not in the subset of network addresses that shall be denied as
specified by the deny parameter.
If the order is set to deny allow then only users from networks specified to be in the allowed
subset will succeed to request assets in the limited area.

� DIRECTIVE: “require”
Syntax:require group group1 group2...|user user1 user2...
Default:- None -
Context: Limit
See the require directive in the documentation of mod auth(3) for more information.

1.4.5 Dynamic Web Pages

The Inets HTTP server provides two ways of creating dynamic web pages, each with its own advantages
and disadvantages.

First there are CGI-scripts that can be written in any programming language. CGI-scripts are
standardized and supported by most web servers. The drawback with CGI-scripts is that they are
resource intensive because of their design. CGI requires the server to fork a new OS process for each
executable it needs to start.

Second there are ESI-functions that provide a tight and efficient interface to the execution of Erlang
functions, this interface on the other hand is Inets specific.

The Common Gateway Interface (CGI) Version 1.1, RFC 3875.

The mod cgi module makes it possible to execute CGI scripts in the server. A file that matches the
definition of a ScriptAlias config directive is treated as a CGI script. A CGI script is executed by the
server and it’s output is returned to the client.

8 Inets

1.4: HTTP server

The CGI Script response comprises a message-header and a message-body, separated by a blank line.
The message-header contains one or more header fields. The body may be empty. Example:

"Content-Type:text/plain\nAccept-Ranges:none\n\nsome very
plain text"

The server will interpret the cgi-headers and most of them will be transformed into HTTP headers and
sent back to the client together with the body.

Support for CGI-1.1 is implemented in accordance with the RFC 3875.

Erlang Server Interface (ESI)

The erlang server interface is implemented by the module mod esi.

ERL Scheme The erl scheme is designed to mimic plain CGI, but without the extra overhead. An
URL which calls an Erlang erl function has the following syntax (regular expression):

http://your.server.org/***/Module[:/]Function(?QueryString|/PathInfo)

*** above depends on how the ErlScriptAlias config directive has been used

The module (Module) referred to must be found in the code path, and it must define a function
(Function) with an arity of two or three. It is preferable to implement a funtion with arity three as it
permitts you to send chunks of the webpage beeing generated to the client during the generation phase
instead of first generating the whole web page and then sending it to the client. The option to
implement a function with arity two is only keept for backwardcompatibilty reasons. See mod esi(3)
[page 76] for implementation details of the esi callback function.

EVAL Scheme The eval scheme is straight-forward and does not mimic the behavior of plain CGI.
An URL which calls an Erlang eval function has the following syntax:

http://your.server.org/***/Mod:Func(Arg1,...,ArgN)

*** above depends on how the ErlScriptAlias config directive has been used

The module (Mod) referred to must be found in the code path, and data returned by the function
(Func) is passed back to the client. Data returned from the function must furthermore take the form as
specified in the CGI specification. See mod esi(3) [page 76] for implementation details of the esi
callback function.

Note:
The eval scheme can seriously threaten the integrity of the Erlang node housing a Web server, for
example:

http://your.server.org/eval?httpd_example:print(atom_to_list(apply(erlang,halt,[])))

which effectively will close down the Erlang node, that is use the erl scheme instead, until this
security breach has been fixed.

Today there are no good way of solving this problem and therefore Eval Scheme may be removed in
future release of Inets.

9Inets

Chapter 1: Inets User’s Guide

1.4.6 Logging

There are three types of logs supported. Transfer logs, security logs and error logs. The de-facto standard
Common Logfile Format is used for the transfer and security logging. There are numerous statistics
programs available to analyze Common Logfile Format. The Common Logfile Format looks as follows:

remotehost rfc931 authuser [date] “request” status bytes

remotehost Remote hostname

rfc931 The client’s remote username (RFC 931).

authuser The username with which the user authenticated himself.

[date] Date and time of the request (RFC 1123).

“request” The request line exactly as it came from the client (RFC 1945).

status The HTTP status code returned to the client (RFC 1945).

bytes The content-length of the document transferred.

Internal server errors are recorde in the error log file. The format of this file is a more ad hoc format
than the logs using Common Logfile Format, but conforms to the following syntax:

[date] access to path failed for remotehost, reason: reason

1.4.7 Server Side Includes

Server Side Includes enables the server to run code embedded in HTML pages to generate the response
to the client.

Note:
Having the server parse HTML pages is a double edged sword! It can be costly for a heavily loaded
server to perform parsing of HTML pages while sending them. Furthermore, it can be considered a
security risk to have average users executing commands in the name of the Erlang node user.
Carefully consider these items before activating server-side includes.

SERVER-SIDE INCLUDES (SSI) SETUP

The server must be told which filename extensions to be used for the parsed files. These files, while very
similar to HTML, are not HTML and are thus not treated the same. Internally, the server uses the magic
MIME type text/x-server-parsed-html to identify parsed documents. It will then perform a format
conversion to change these files into HTML for the client. Update the mime.types file, as described in
the Mime Type Settings, to tell the server which extension to use for parsed files, for example:

text/x-server-parsed-html shtml shtm

This makes files ending with .shtml and .shtm into parsed files. Alternatively, if the performance hit is
not a problem, all HTML pages can be marked as parsed:

text/x-server-parsed-html html htm

10 Inets

1.4: HTTP server

Server-Side Includes (SSI) Format

All server-side include directives to the server are formatted as SGML comments within the HTML
page. This is in case the document should ever find itself in the client’s hands unparsed. Each directive
has the following format:

<!--#command tag1="value1" tag2="value2" -->

Each command takes different arguments, most only accept one tag at a time. Here is a breakdown of
the commands and their associated tags:

The config directive controls various aspects of the file parsing. There are two valid tags:

errmsg controls the message sent back to the client if an error occurred while parsing the document.
All errors are logged in the server’s error log.

sizefmt determines the format used to display the size of a file. Valid choices are bytes or abbrev.
bytes for a formatted byte count or abbrev for an abbreviated version displaying the number of
kilobytes.

The include directory will insert the text of a document into the parsed document. This command
accepts two tags:

virtual gives a virtual path to a document on the server. Only normal files and other parsed
documents can be accessed in this way.

file gives a pathname relative to the current directory. ../ cannot be used in this pathname, nor can
absolute paths. As above, you can send other parsed documents, but you cannot send CGI scripts.

The echo directive prints the value of one of the include variables (defined below). The only valid tag to
this command is var, whose value is the name of the variable you wish to echo.

The fsize directive prints the size of the specified file. Valid tags are the same as with the include
command. The resulting format of this command is subject to the sizefmt parameter to the config
command.

The lastmod directive prints the last modification date of the specified file. Valid tags are the same as
with the include command.

The exec directive executes a given shell command or CGI script. Valid tags are:

cmd executes the given string using /bin/sh. All of the variables defined below are defined, and can be
used in the command.

cgi executes the given virtual path to a CGI script and includes its output. The server does not
perform error checking on the script output.

11Inets

Chapter 1: Inets User’s Guide

Server-Side Includes (SSI) Environment Variables

A number of variables are made available to parsed documents. In addition to the CGI variable set, the
following variables are made available:

DOCUMENT NAME The current filename.

DOCUMENT URI The virtual path to this document (such as /docs/tutorials/foo.shtml).

QUERY STRING UNESCAPED The unescaped version of any search query the client sent, with all
shell-special characters escaped with \.

DATE LOCAL The current date, local time zone.

DATE GMT Same as DATE LOCAL but in Greenwich mean time.

LAST MODIFIED The last modification date of the current document.

1.4.8 The Erlang Web Server API

The process of handling a HTTP request involves several steps such as:

� Seting up connections, sending and receiving data.

� URI to filename translation

� Authenication/access cheks.

� Retriving/generating the response.

� Logging

To provide customization and extensibility of the HTTP servers request handling most of these steps
are handled by one or more modules that may be replaced or removed at runtime, and ofcourse new
ones can be added. For each request all modules will be traversed in the order specified by the modules
directive in the server configuration file. Some parts mainly the communication related steps are
considered server core functionallity and are not implemented using the Erlang Web Server API. A
description of functionality implemented by the Erlang Webserver API is described in the section Inets
Webserver Modules.

A module can use data generated by previous modules in the Erlang Webserver API module sequence
or generate data to be used by consecutive Erlang Web Server API modules. This is made possible due
to an internal list of key-value tuples, also refered to as interaction data.

Note:
Interaction data enforces module dependencies and should be avoided if possible. This means the
order of modules in the Modules property is significant.

12 Inets

1.4: HTTP server

API Description

Each module implements server functionality using the Erlang Web Server API should implement the
following call back functions:

� do/1 (mandatory) - the function called when a request should be handled.

� load/2

� store/2

� remove/1

The latter functions are needed only when new config directives are to be introduced. For details see
httpd(3) [page 45]

1.4.9 Inets Web Server Modules

The convention is that all modules implementing some webserver functionallity has the name mod *.
When configuring the web server an appropriate selection of these modules should be present in the
Module directve. Please note that there are some interaction dependencies to take into account so the
order of the modules can not be totally random.

mod action - Filetype/Method-Based Script Execution.

Runs CGI scripts whenever a file of a certain type or HTTP method (See RFC 1945) is requested.

Uses the following Erlang Web Server API interaction data:

� real name - from mod alias

Exports the following Erlang Web Server API interaction data, if possible:

fnew request uri, RequestURIg An alternative RequestURI has been generated.

mod alias - URL Aliasing

This module makes it possible to map different parts of the host file system into the document tree e.i.
creates aliases and redirections.

Exports the following Erlang Web Server API interaction data, if possible:

freal name, PathDatag PathData is the argument used for API function mod alias:path/3.

mod auth - User Authentication

This module provides for basic user authentication using textual files, dets databases as well as mnesia
databases.

Uses the following Erlang Web Server API interaction data:

� real name - from mod alias

Exports the following Erlang Web Server API interaction data:

fremote user, Userg The user name with which the user has authenticated himself.

13Inets

Chapter 1: Inets User’s Guide

Mnesia as Authentication Database If Mnesia is used as storage method, Mnesia must be started
prio to the HTTP server. The first time Mnesia is started the schema and the tables must be created
before Mnesia is started. A naive example of a module with two functions that creates and start mnesia
is provided here. The function shall be used the first time. first start/0 creates the schema and the
tables. The second function start/0 shall be used in consecutive startups. start/0 Starts Mnesia and wait
for the tables to be initiated. This function must only be used when the schema and the tables already is
created.

-module(mnesia_test).
-export([start/0,load_data/0]).
-include("mod_auth.hrl").

first_start()->
mnesia:create_schema([node()]),
mnesia:start(),
mnesia:create_table(httpd_user,
[{type,bag},{disc_copies,[node()]},
{attributes,record_info(fields,httpd_user)}]),
mnesia:create_table(httpd_group,

[{type,bag},{disc_copies,[node()]},
{attributes,record_info(fields,httpd_group)}]),
mnesia:wait_for_tables([httpd_user,httpd_group],60000).

start()->
mnesia:start(),
mnesia:wait_for_tables([httpd_user,httpd_group],60000).

To create the Mnesia tables we use two records defined in mod auth.hrl so the file must be included.
The first function first start/0 creates a schema that specify on which nodes the database shall reside.
Then it starts Mnesia and creates the tables. The first argument is the name of the tables, the second
argument is a list of options how the table will be created, see Mnesia documentation for more
information. Since the current implementation of the mod auth mnesia saves one row for each user the
type must be bag. When the schema and the tables is created the second function start/0 shall be used
to start Mensia. It starts Mnesia and wait for the tables to be loaded. Mnesia use the directory specified
as mnesia dir at startup if specified, otherwise Mnesia use the current directory. For security reasons,
make sure that the Mnesia tables are stored outside the document tree of the HTTP server. If it is
placed in the directory which it protects, clients will be able to download the tables. Only the dets and
mnesia storage methods allow writing of dynamic user data to disk. plain is a read only method.

mod cgi - CGI Scripts

This module handles invoking of CGI scripts

mod dir - Directories

This module generates an HTML directory listing (Apache-style) if a client sends a request for a
directory instead of a file. This module needs to be removed from the Modules config directive if
directory listings is unwanted.

Uses the following Erlang Web Server API interaction data:

� real name - from mod alias

14 Inets

1.4: HTTP server

Exports the following Erlang Web Server API interaction data:

fmime type, MimeTypeg The file suffix of the incoming URL mapped into a MimeType.

mod disk log - Logging Using disk log.

Standard logging using the “Common Logfile Format” and disk log(3).

Uses the following Erlang Web Server API interaction data:

� remote user - from mod auth

mod esi - Erlang Server Interface

This module implements the Erlang Server Interface (ESI) that provides a tight and efficient interface
to the execution of Erlang functions.

Uses the following Erlang Web Server API interaction data:

� remote user - from mod auth

Exports the following Erlang Web Server API interaction data:

fmime type, MimeTypeg The file suffix of the incoming URL mapped into a MimeType

mod get - Regular GET Requests

This module is responsible for handling GET requests to regular files. GET requests for parts of files is
handled by mod range.

Uses the following Erlang Web Server API interaction data:

� real name - from mod alias

mod head - Regular HEAD Requests

This module is responsible for handling HEAD requests to regular files. HEAD requests for dynamic
content is handled by each module responsible for dynamic content.

Uses the following Erlang Web Server API interaction data:

� real name - from mod alias

mod htacess - User Configurable Access

This module provides per-directory user configurable access control.

Uses the following Erlang Web Server API interaction data:

� real name - from mod alias

Exports the following Erlang Web Server API interaction data:

fremote user name, Userg The user name with which the user has authenticated himself.

15Inets

Chapter 1: Inets User’s Guide

mod include - SSI

This module makes it possible to expand “macros” embedded in HTML pages before they are delivered
to the client, that is Server-Side Includes (SSI).

Uses the following Erlang Webserver API interaction data:

� real name - from mod alias

� remote user - from mod auth

Exports the following Erlang Webserver API interaction data:

fmime type, MimeTypeg The file suffix of the incoming URL mapped into a MimeType as defined in
the Mime Type Settings section.

mod log - Logging Using Text Files.

Standard logging using the “Common Logfile Format” and text files.

Uses the following Erlang Webserver API interaction data:

� remote user - from mod auth

mod range - Requests with Range Headers

This module response to requests for one or many ranges of a file. This is especially useful when
downloading large files, since a broken download may be resumed.

Note that request for multiple parts of a document will report a size of zero to the log file.

Uses the following Erlang Webserver API interaction data:

� real name - from mod alias

mod response control - Requests with If* Headers

This module controls that the conditions in the requests is fullfilled. For example a request may specify
that the answer only is of interest if the content is unchanged since last retrieval. Or if the content is
changed the range-request shall be converted to a request for the whole file instead.

If a client sends more then one of the header fields that restricts the servers right to respond, the
standard does not specify how this shall be handled. httpd will control each field in the following order
and if one of the fields not match the current state the request will be rejected with a proper response.
1.If-modified
2.If-Unmodified
3.If-Match
4.If-Nomatch
Uses the following Erlang Webserver API interaction data:

� real name - from mod alias

Exports the following Erlang Webserver API interaction data:

fif range, send fileg The conditions for the range request was not fullfilled. The response must not
be treated as a range request, instead it must be treated as a ordinary get request.

16 Inets

1.4: HTTP server

mod security - Security Filter

This module serves as a filter for authenticated requests handled in mod auth. It provides possibility to
restrict users from access for a specified amount of time if they fail to authenticate several times. It logs
failed authentication as well as blocking of users, and it also calls a configurable call-back module when
the events occur.

There is also an API to manually block, unblock and list blocked users or users, who have been
authenticated within a configurable amount of time.

mod trace - TRACE Request

mod trace is responsible for handling of TRACE requests. Trace is a new request method in HTTP/1.1.
The intended use of trace requests is for testing. The body of the trace response is the request message
that the responding Web server or proxy received.

17Inets

Chapter 1: Inets User’s Guide

18 Inets

Inets Reference Manual

Short Summaries

� Erlang Module ftp [page 30] – A File Transfer Protocol client

� Erlang Module http [page 39] – An HTTP/1.1 client

� Erlang Module httpd [page 45] – An implementation of an HTTP 1.1 compliant
Web server, as defined in RFC 2616.

� Erlang Module httpd conf [page 58] – Configuration utility functions to be used
by the Erlang Web server API programmer.

� Erlang Module httpd socket [page 60] – Communication utility functions to be
used by the Erlang Web server API programmer.

� Erlang Module httpd util [page 61] – Miscellaneous utility functions to be used
when implementing Erlang Web server API modules.

� Erlang Module inets [page 66] – The inets services API

� Erlang Module mod alias [page 69] – URL ailasing.

� Erlang Module mod auth [page 71] – User authentication using text files, dets or
mnesia database.

� Erlang Module mod esi [page 76] – Erlang Server Interface

� Erlang Module mod security [page 78] – Security Audit and Trailing Functionality

� Erlang Module tftp [page 81] – Trivial FTP

ftp

The following functions are exported:

� account(Pid, Account) -> ok | ferror, Reasong
[page 32] Specify which account to use.

� append(Pid, LocalFile) ->
[page 32] Transfer file to remote server, and append it to Remotefile.

� append(Pid, LocalFile, RemoteFile) -> ok | ferror, Reasong
[page 32] Transfer file to remote server, and append it to Remotefile.

� append bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong
[page 32] Transfer a binary into a remote file.

� append chunk(Pid, Bin) -> ok | ferror, Reasong
[page 32] append a chunk to the remote file.

� append chunk start(Pid, File) -> ok | ferror, Reasong
[page 33] Start transfer of file chunks for appending to File.

19Inets

Inets Reference Manual

� append chunk end(Pid) -> ok | ferror, Reasong
[page 33] Stop transfer of chunks for appending.

� cd(Pid, Dir) -> ok | ferror, Reasong
[page 33] Change remote working directory.

� delete(Pid, File) -> ok | ferror, Reasong
[page 33] Delete a file at the remote server..

� formaterror(Tag) -> string()
[page 33] Return error diagnostics.

� lcd(Pid, Dir) -> ok | ferror, Reasong
[page 33] Change local working directory.

� lpwd(Pid) -> fok, Dirg
[page 34] Get local current working directory.

� ls(Pid) ->
[page 34] List contents of remote directory.

� ls(Pid, Dir) -> fok, Listingg | ferror, Reasong
[page 34] List contents of remote directory.

� mkdir(Pid, Dir) -> ok | ferror, Reasong
[page 34] Create remote directory.

� nlist(Pid) ->
[page 34] List contents of remote directory.

� nlist(Pid, Dir) -> fok, Listingg | ferror, Reasong
[page 34] List contents of remote directory.

� pwd(Pid) -> fok, Dirg | ferror, Reasong
[page 34] Get remote current working directory.

� recv(Pid, RemoteFile) ->
[page 35] Transfer file from remote server.

� recv(Pid, RemoteFile, LocalFile) -> ok | ferror, Reasong
[page 35] Transfer file from remote server.

� recv bin(Pid, RemoteFile) -> fok, Bing | ferror, Reasong
[page 35] Transfer file from remote server as a binary.

� recv chunk start(Pid, RemoteFile) -> ok | ferror, Reasong
[page 35] Start chunk-reading of the remote file.

� recv chunk(Pid) -> ok | fok, Bing | ferror, Reasong
[page 35] Receive a chunk of the remote file.

� rename(Pid, Old, New) -> ok | ferror, Reasong
[page 36] Rename a file at the remote server..

� rmdir(Pid, Dir) -> ok | ferror, Reasong
[page 36] Remove a remote directory.

� send(Pid, LocalFile) ->
[page 36] Transfer file to remote server.

� send(Pid, LocalFile, RemoteFile) -> ok | ferror, Reasong
[page 36] Transfer file to remote server.

� send bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong
[page 36] Transfer a binary into a remote file.

� send chunk(Pid, Bin) -> ok | ferror, Reasong
[page 36] Write a chunk to the remote file.

20 Inets

Inets Reference Manual

� send chunk start(Pid, File) -> ok | ferror, Reasong
[page 36] Start transfer of file chunks.

� send chunk end(Pid) -> ok | ferror, Reasong
[page 37] Stop transfer of chunks.

� type(Pid, Type) -> ok | ferror, Reasong
[page 37] Set transfer type to asciior binary.

� user(Pid, User, Password) -> ok | ferror, Reasong
[page 37] User login.

� user(Pid, User, Password,Account) -> ok | ferror, Reasong
[page 37] User login.

� quote(Pid, Command) -> [FTPLine]
[page 37] Sends an arbitary FTP command.

http

The following functions are exported:

� cancel request(RequestId) ->
[page 41] Cancels an asynchronous HTTP-request.

� cancel request(RequestId, Profile) -> ok
[page 41] Cancels an asynchronous HTTP-request.

� request(Url) ->
[page 41] Sends a get HTTP-request

� request(Url, Profile) -> fok, Resultg | ferror, Reasong
[page 41] Sends a get HTTP-request

� request(Method, Request, HTTPOptions, Options) ->
[page 41] Sends a HTTP-request

� request(Method, Request, HTTPOptions, Options, Profile) -> fok,
Resultg | fok, saved to fileg | ferror, Reasong
[page 41] Sends a HTTP-request

� set options(Options) ->
[page 42] Sets options to be used for subsequent requests.

� set options(Options, Profile) -> ok | ferror, Reasong
[page 42] Sets options to be used for subsequent requests.

� stream next(Pid) -> ok
[page 43] Triggers the next message to be streamed, e.i. same behavior as active
once for sockets.

� verify cookie(SetCookieHeaders, Url) ->
[page 43] Saves the cookies defined in SetCookieHeaders in the client profile’s
cookie database.

� verify cookie(SetCookieHeaders, Url, Profile) -> ok | ferror,
Reasong
[page 43] Saves the cookies defined in SetCookieHeaders in the client profile’s
cookie database.

� cookie header(Url) ->
[page 44] Returns the cookie header that would be sent when making a request to
Url using the profile Profile.

� cookie header(Url, Profile) -> header() | ferror, Rasong
[page 44] Returns the cookie header that would be sent when making a request to
Url using the profile Profile.

21Inets

Inets Reference Manual

httpd

The following functions are exported:

� info(Pid) ->
[page 52] Fetches information about the HTTP server

� info(Pid, Properties) -> [fOption, Valueg]
[page 52] Fetches information about the HTTP server

� info(Address, Port) ->
[page 52] Fetches information about the HTTP server

� info(Address, Port, Properties) -> [fOption, Valueg]
[page 53] Fetches information about the HTTP server

� reload config(Config, Mode) -> ok | ferror, Reasong
[page 53] Reloads the HTTP server configuration without restarting the server.

� Module:do(ModData)-> fproceed, OldDatag | fproceed, NewDatag |
fbreak, NewDatag | done
[page 55] Called for each request to the Web server.

� Module:load(Line, AccIn)-> eof | ok | fok, AccOutg | fok, AccOut,
fOption, Valuegg | fok, AccOut, [fOption, Valueg]g | ferror, Reasong
[page 55] Load is used to convert a line in a Apache like config file to a fOption,
Valueg tuple.

� Module:store(fOption, Valueg, Config)-> fok, fOption, NewValuegg |
ferror, Reasong
[page 56]

� Module:remove(ConfigDB) -> ok | ferror, Reasong
[page 56] Callback function that is called when the Web server is closed.

� parse query(QueryString) -> [fKey,Valueg]
[page 56] Parse incoming data to erl and eval scripts.

httpd conf

The following functions are exported:

� check enum(EnumString,ValidEnumStrings) -> Result
[page 58] Check if string is a valid enumeration.

� clean(String) -> Stripped
[page 58] Remove leading and/or trailing white spaces.

� custom clean(String,Before,After) -> Stripped
[page 58] Remove leading and/or trailing white spaces and custom characters.

� is directory(FilePath) -> Result
[page 58] Check if a file path is a directory.

� is file(FilePath) -> Result
[page 59] Check if a file path is a regular file.

� make integer(String) -> Result
[page 59] Return an integer representation of a string.

22 Inets

Inets Reference Manual

httpd socket

The following functions are exported:

� deliver(SocketType, Socket, Data) -> Result
[page 60] Send binary data over socket.

� peername(SocketType,Socket) -> fPort,IPAddressg
[page 60] Return the port and IP-address of the remote socket.

� resolve() -> HostName
[page 60] Return the official name of the current host.

httpd util

The following functions are exported:

� convert request date(DateString) -> ErlDate|bad date
[page 61] Convert The the date to the Erlang date format.

� create etag(FileInfo) -> Etag
[page 61] Calculates the Etag for a file.

� decode hex(HexValue) -> DecValue
[page 61] Convert a hex value into its decimal equivalent.

� day(NthDayOfWeek) -> DayOfWeek
[page 61] Convert the day of the week (integer [1-7]) to an abbreviated string.

� flatlength(NestedList) -> Size
[page 61] Compute the size of a possibly nested list.

� header(StatusCode,PersistentConn)
[page 62] Generate a HTTP 1.1 header.

� header(StatusCode,Date)
[page 62] Generate a HTTP 1.1 header.

� header(StatusCode,MimeType,Date)
[page 62] Generate a HTTP 1.1 header.

� header(StatusCode,MimeType,PersistentConn,Date) -> HTTPHeader
[page 62] Generate a HTTP 1.1 header.

� hexlist to integer(HexString) -> Number
[page 62] Convert a hexadecimal string to an integer.

� integer to hexlist(Number) -> HexString
[page 62] Convert an integer to a hexadecimal string.

� lookup(ETSTable,Key) -> Result
[page 62] Extract the first value associated with a key in an ETS table.

� lookup(ETSTable,Key,Undefined) -> Result
[page 62] Extract the first value associated with a key in an ETS table.

� lookup mime(ConfigDB,Suffix)
[page 63] Return the mime type associated with a specific file suffix.

� lookup mime(ConfigDB,Suffix,Undefined) -> MimeType
[page 63] Return the mime type associated with a specific file suffix.

� lookup mime default(ConfigDB,Suffix)
[page 63] Return the mime type associated with a specific file suffix or the value of
the DefaultType.

23Inets

Inets Reference Manual

� lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType
[page 63] Return the mime type associated with a specific file suffix or the value of
the DefaultType.

� message(StatusCode,PhraseArgs,ConfigDB) -> Message
[page 63] Return an informative HTTP 1.1 status string in HTML.

� month(NthMonth) -> Month
[page 63] Convert the month as an integer (1-12) to an abbreviated string.

� multi lookup(ETSTable,Key) -> Result
[page 64] Extract the values associated with a key in a ETS table.

� reason phrase(StatusCode) -> Description
[page 64] Return the description of an HTTP 1.1 status code.

� rfc1123 date() -> RFC1123Date
[page 64] Return the current date in RFC 1123 format.

� rfc1123 date(ffYYYY,MM,DDg,fHour,Min,Secggg) -> RFC1123Date
[page 64] Return the current date in RFC 1123 format.

� split(String,RegExp,N) -> SplitRes
[page 64] Split a string in N chunks using a regular expression.

� split script path(RequestLine) -> Splitted
[page 64] Split a RequestLinein a file reference to an executable and
aQueryStringor a PathInfostring.

� split path(RequestLine) -> fPath,QueryStringOrPathInfog
[page 65] Split a RequestLinein a file reference and a QueryStringor
aPathInfostring.

� strip(String) -> Stripped
[page 65] Returns String where the leading and trailing space and tabs has been
removed.

� suffix(FileName) -> Suffix
[page 65] Extract the file suffix from a given filename.

inets

The following functions are exported:

� services() -> [fService, Pidg]
[page 66] Returns a list of currently running services.

� service info() -> [fService, Pid, Infog]
[page 66] Returns a list of currently running services where each service is
described by a [fOption, Valueg] list.

� service names() -> [Service]
[page 67] Returns a list of available service names.

� start() ->
[page 67] Starts the Inets application.

� start(Type) -> ok | ferror, Reasong
[page 67] Starts the Inets application.

� stop() -> ok
[page 67] Stops the inets application.

24 Inets

Inets Reference Manual

� start(Service, ServiceConfig) ->
[page 67] Dynamically starts an inets service after the inets application has been
started.

� start(Service, ServiceConfig, How) -> fok, Pidg | ferror, Reasong
[page 67] Dynamically starts an inets service after the inets application has been
started.

� stop(Service, Reference) ->
[page 67] Stops a started service of the inets application or takes down a
”stand alone-service” gracefully.

mod alias

The following functions are exported:

� default index(ConfigDB, Path) -> NewPath
[page 69] Return a new path with the default resource or file appended.

� path(PathData, ConfigDB, RequestURI) -> Path
[page 69] Return the actual file path to a URL.

� real name(ConfigDB, RequestURI, Aliases) -> Ret
[page 69] Expand a request uri using Alias config directives.

� real script name(ConfigDB,RequestURI,ScriptAliases) -> Ret
[page 70] Expand a request uri using ScriptAlias config directives.

mod auth

The following functions are exported:

� add user(UserName, Options) -> true| ferror, Reasong
[page 71] Add a user to the user database.

� add user(UserName, Password, UserData, Port, Dir) -> true | ferror,
Reasong
[page 71] Add a user to the user database.

� add user(UserName, Password, UserData, Address, Port, Dir) -> true |
ferror, Reasong
[page 71] Add a user to the user database.

� delete user(UserName,Options) -> true | ferror, Reasong
[page 71] Delete a user from the user database.

� delete user(UserName, Port, Dir) -> true | ferror, Reasong
[page 71] Delete a user from the user database.

� delete user(UserName, Address, Port, Dir) -> true | ferror, Reasong
[page 71] Delete a user from the user database.

� get user(UserName,Options) -> fok, #httpd userg |ferror, Reasong
[page 72] Returns a user from the user database.

� get user(UserName, Port, Dir) -> fok, #httpd userg | ferror, Reasong
[page 72] Returns a user from the user database.

� get user(UserName, Address, Port, Dir) -> fok, #httpd userg |
ferror, Reasong
[page 72] Returns a user from the user database.

25Inets

Inets Reference Manual

� list users(Options) -> fok, Usersg | ferror, Reasong
<name>list users(Port, Dir) -> fok, Usersg | ferror, Reasong
[page 72] List users in the user database.

� list users(Address, Port, Dir) -> fok, Usersg | ferror, Reasong
[page 72] List users in the user database.

� add group member(GroupName, UserName, Options) -> true | ferror,
Reasong
[page 72] Add a user to a group.

� add group member(GroupName, UserName, Port, Dir) -> true | ferror,
Reasong
[page 72] Add a user to a group.

� add group member(GroupName, UserName, Address, Port, Dir) -> true |
ferror, Reasong
[page 72] Add a user to a group.

� delete group member(GroupName, UserName, Options) -> true | ferror,
Reasong
[page 73] Remove a user from a group.

� delete group member(GroupName, UserName, Port, Dir) -> true |
ferror, Reasong
[page 73] Remove a user from a group.

� delete group member(GroupName, UserName, Address, Port, Dir) -> true
| ferror, Reasong
[page 73] Remove a user from a group.

� list group members(GroupName, Options) -> fok, Usersg | ferror,
Reasong
[page 73] List the members of a group.

� list group members(GroupName, Port, Dir) -> fok, Usersg | ferror,
Reasong
[page 73] List the members of a group.

� list group members(GroupName, Address, Port, Dir) -> fok, Usersg |
ferror, Reasong
[page 73] List the members of a group.

� list groups(Options) -> fok, Groupsg | ferror, Reasong
[page 74] List all the groups.

� list groups(Port, Dir) -> fok, Groupsg | ferror, Reasong
[page 74] List all the groups.

� list groups(Address, Port, Dir) -> fok, Groupsg | ferror, Reasong
[page 74] List all the groups.

� delete group(GroupName, Options) -> true | ferror,Reasong
<name>delete group(GroupName, Port, Dir) -> true | ferror, Reasong
[page 74] Deletes a group

� delete group(GroupName, Address, Port, Dir) -> true | ferror,
Reasong
[page 74] Deletes a group

� update password(Port, Dir, OldPassword, NewPassword, NewPassword) ->
ok | ferror, Reasong
[page 74] Change the AuthAcessPassword

� update password(Address,Port, Dir, OldPassword, NewPassword,
NewPassword) -> ok | ferror, Reasong
[page 74] Change the AuthAcessPassword

26 Inets

Inets Reference Manual

mod esi

The following functions are exported:

� deliver(SessionID, Data) -> ok | ferror, Reasong
[page 76] Sends Data back to client.

� Module:Function(SessionID, Env, Input)->
[page 76] Creates a dynamic web page and returns it chunk by chunk to the server
process by calling mod esi:deliver/2.

� Module:Function(Env, Input)-> Response
[page 77] Creates a dynamic web page and return it as a list. This functions is
deprecated and only keept for backwards compability.

mod security

The following functions are exported:

� list auth users(Port) -> Users | []
[page 78] List users that have authenticated within the SecurityAuthTimeout time
for a given address (if specified), port number and directory (if specified).

� list auth users(Address, Port) -> Users | []
[page 78] List users that have authenticated within the SecurityAuthTimeout time
for a given address (if specified), port number and directory (if specified).

� list auth users(Port, Dir) -> Users | []
[page 78] List users that have authenticated within the SecurityAuthTimeout time
for a given address (if specified), port number and directory (if specified).

� list auth users(Address, Port, Dir) -> Users | []
[page 78] List users that have authenticated within the SecurityAuthTimeout time
for a given address (if specified), port number and directory (if specified).

� list blocked users(Port) -> Users | []
[page 78] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Address, Port) -> Users | []
[page 78] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Port, Dir) -> Users | []
[page 78] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Address, Port, Dir) -> Users | []
[page 78] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� block user(User, Port, Dir, Seconds) -> true | ferror, Reasong
[page 78] Block user from access to a directory for a certain amount of time.

� block user(User, Address, Port, Dir, Seconds) -> true | ferror,
Reasong
[page 78] Block user from access to a directory for a certain amount of time.

� unblock user(User, Port) -> true | ferror, Reasong
[page 79] Remove a blocked user from the block list

27Inets

Inets Reference Manual

� unblock user(User, Address, Port) -> true | ferror, Reasong
[page 79] Remove a blocked user from the block list

� unblock user(User, Port, Dir) -> true | ferror, Reasong
[page 79] Remove a blocked user from the block list

� unblock user(User, Address, Port, Dir) -> true | ferror, Reasong
[page 79] Remove a blocked user from the block list

� event(What, Port, Dir, Data) -> ignored
[page 79] This function is called whenever an event occurs in mod security

� event(What, Address, Port, Dir, Data) -> ignored
[page 79] This function is called whenever an event occurs in mod security

tftp

The following functions are exported:

� start(Options) -> fok, Pidg | ferror, Reasong
[page 83] Start a daemon process

� read file(RemoteFilename, LocalFilename, Options) -> fok,
LastCallbackStateg | ferror, Reasong
[page 83] Read a (virtual) file from a TFTP server

� write file(RemoteFilename, LocalFilename, Options) -> fok,
LastCallbackStateg | ferror, Reasong
[page 84] Write a (virtual) file to a TFTP server

� info(daemons) -> [fPid, Optionsg]
[page 84] Return information about all daemons

� info(servers) -> [fPid, Optionsg]
[page 84] Return information about all servers

� info(Pid) -> fok, Optionsg | ferror, Reasong
[page 84] Return information about a daemon, server or client process

� change config(daemons, Options) -> [fPid, Resultg]
[page 85] Changes config for all daemons

� change config(servers, Options) -> [fPid, Resultg]
[page 85] Changes config for all servers

� change config(Pid, Options) -> Result
[page 85] Changes config for a TFTP daemon, server or client process

� start() -> ok | ferror, Reasong
[page 85] Start the Inets application

� prepare(Peer, Access, Filename, Mode, SuggestedOptions,
InitialState) -> fok, AcceptedOptions, NewStateg | ferror, fCode,
Textgg
[page 86] Prepare to open a file on the client side

� open(Peer, Access, Filename, Mode, SuggestedOptions, State) -> fok,
AcceptedOptions, NewStateg | ferror, fCode, Textgg
[page 87] Open a file for read or write access

� read(State) -> fmore, Bin, NewStateg | flast, Bin, FileSizeg |
ferror, fCode, Textgg
[page 87] Read a chunk from the file

28 Inets

Inets Reference Manual

� write(Bin, State) -> fmore, NewStateg | flast, FileSizeg | ferror,
fCode, Textgg
[page 88] Write a chunk to the file

� abort(Code, Text, State) -> ok
[page 88] Abort the file transfer

� error msg(Format, Data) -> ok | exit(Reason)
[page 89] Log an error message

� warning msg(Format, Data) -> ok | exit(Reason)
[page 89] Log an error message

� info msg(Format, Data) -> ok | exit(Reason)
[page 89] Log an error message

29Inets

ftp Inets Reference Manual

ftp
Erlang Module

The ftp module implements a client for file transfer according to a subset of the File
Transfer Protocol (see RFC 959). Starting from inets version 4.4.1 the ftp client will
always try to use passive ftp mode and only resort to active ftp mode if this fails. There
is a start option mode where this default behavior may be changed.

For a simple example of an ftp session see Inets User’s Guide. [page 2]

In addition to the ordinary functions for receiving and sending files (see recv/2, recv/3,
send/2 and send/3) there are functions for receiving remote files as binaries (see
recv bin/2) and for sending binaries to to be stored as remote files (see send bin/3).

There is also a set of functions for sending and receiving contiguous parts of a file to be
stored in a remote file (for send see send chunk start/2, send chunk/2 and
send chunk end/1 and for receive see recv chunk start/2 and recv chunk/).

The particular return values of the functions below depend very much on the
implementation of the FTP server at the remote host. In particular the results from ls
and nlist varies. Often real errors are not reported as errors by ls, even if for instance
a file or directory does not exist. nlist is usually more strict, but some
implementations have the peculiar behaviour of responding with an error, if the request
is a listing of the contents of directory which exists but is empty.

FTP CLIENT SERVICE START/STOP

The FTP client can be started and stopped dynamically in runtime by calling the Inets
application API inets:start(ftpc, ServiceConfig), or inets:start(ftpc,
ServiceConfig, How), and inets:stop(ftpc, Pid) see inets(3) [page 66] Below
follows a description of the available configuration options.

fhost, Hostg Host = string() | ip address()

fport, Portg Port = integer() - default is 21

fmode, Modeg Mode = active | passive - Passive is default.

fflags, Flagsg Flags = [Flag], Flag = verbose | debug | ip v6 disabled,

ftimeout, Timeoutg Timeout = integer() - default is 60000 milliseconds.

fprogress, ProgressOptiong ProgressOption = ignore | fCBModule, CBFunction,
InitProgressg CallBackModule = atom(), CallBackFunction = atom(), InitProgress
= term()

The progress option is intended to be used by applications that want create some type
of progress report such as a progress bar in a GUI. The default value for the progress
option is ignore e.i. the option is not used. When the progress option is specified the
following will happen when ftp:send/[3,4] or ftp:recv/[3,4] are called.

30 Inets

Inets Reference Manual ftp

� Before a file is transfered the following call will be made to indicate the start of the
file transfer and how big the file is. The return value of the callback function
should be a new value for the UserProgressTerm that will bu used as input next
time the callback function is called.

CBModule:CBFunction(InitProgress, File, ffile size, FileSizeg)

� Every time a chunk of bytes is transfered the following call will be made:

CBModule:CBFunction(UserProgressTerm, File, ftransfer size,
TransferSizeg)

� At the end of the file the following call will be made to indicate the end of the
transfer.

CBModule:CBFunction(UserProgressTerm, File, ftransfer size, 0g)

The callback function should be defined as

CBModule:CBFunction(UserProgressTerm, File, Size) -> UserProgressTerm

CBModule = CBFunction = atom()

UserProgressTerm = term()

File = string()

Size = ftransfer size, integer()g | ffile size, integer()g | ffile size,
unknowng

Alas for remote files it is not possible for ftp to determine the file size in a platform
independent way. In this case the size will be unknown and it is left to the application to
find out the size.

Note:
The callback is made by a middleman process, hence the file transfer will not be
affected by the code in the progress callback function. If the callback should crash
this will be detected by the ftp connection process that will print an info-report and
then go one as if the progress option was set to ignore.

The file transfer type is set to the default of the FTP server when the session is opened.
This is usually ASCCI-mode.

The current local working directory (cf. lpwd/1) is set to the value reported by
file:get cwd/1. the wanted local directory.

The return value Pid is used as a reference to the newly created ftp client in all other
functions, and they should be called by the process that created the connection. The ftp
client process monitors the process that created it and will terminate if that process
terminates.

31Inets

ftp Inets Reference Manual

COMMON DATA TYPES

Here follows type definitions that are used by more than one function in the FTP client
API.

pid() - identifier of an ftp connection.

string() = list of ASCII characters.

shortage reason() = etnospc | epnospc

restriction reason() = epath | efnamena | elogin | enotbinary - note
not all restrictions may always relevant to all functions

common reason() = econn | eclosed | term() - some kind of explanation of
what went wrong.

Exports

account(Pid, Account) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Account = string()
� Reason = eacct | common reason()

If an account is needed for an operation set the account with this operation.

append(Pid, LocalFile) ->

append(Pid, LocalFile, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� LocalFile = RemoteFile = string()
� Reason = epath | elogin | etnospc | epnospc | efnamena | common reason

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name
of the remote file that the file will be appended to is set to RemoteFile; otherwise the
name is set to LocalFile If the file does not exists the file will be created.

append bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()()
� RemoteFile = string()
� Reason = restriction reason()| shortage reason() | common reason()

Transfers the binary Bin to the remote server and append it to the file RemoteFile. If
the file does not exists it will be created.

append chunk(Pid, Bin) -> ok | ferror, Reasong

Types:

� Pid = pid()

32 Inets

Inets Reference Manual ftp

� Bin = binary()
� Reason = echunk | restriction reason() | common reason()

Transfer the chunk Bin to the remote server, which append it into the file specified in
the call to append chunk start/2.

Note that for some errors, e.g. file system full, it is neccessery to to call
append chunk end to get the proper reason.

append chunk start(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = restriction reason() | common reason()

Start the transfer of chunks for appending to the file File at the remote server. If the
file does not exists it will be created.

append chunk end(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = echunk | restriction reason() | shortage reason()

Stops transfer of chunks for appending to the remote server. The file at the remote
server, specified in the call to append chunk start/2 is closed by the server.

cd(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason() | common reason()

Changes the working directory at the remote server to Dir.

delete(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = restriction reason() | common reason()

Deletes the file File at the remote server.

formaterror(Tag) -> string()

Types:

� Tag = ferror, atom()g | atom()

Given an error return value ferror, AtomReasong, this function returns a readable
string describing the error.

lcd(Pid, Dir) -> ok | ferror, Reasong

33Inets

ftp Inets Reference Manual

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason()

Changes the working directory to Dir for the local client.

lpwd(Pid) -> fok, Dirg

Types:

� Pid = pid()

Returns the current working directory at the local client.

ls(Pid) ->

ls(Pid, Dir) -> fok, Listingg | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Listing = string()
� Reason = restriction reason() | common reason()

Returns a listing of the contents of the remote current directory (ls/1) or the specified
directory (ls/2). The format of Listing is operating system dependent (on UNIX it is
typically produced from the output of the ls -l shell command).

mkdir(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason() | common reason()

Creates the directory Dir at the remote server.

nlist(Pid) ->

nlist(Pid, Dir) -> fok, Listingg | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Listing = string()
� Reason = restriction reason() | common reason()

Returns a listing of the contents of the remote current directory (nlist/1) or the
specified directory (nlist/2). The format of Listing is a stream of file names, where
each name is separated by <CRLF> or <NL>. Contrary to the ls function, the
purpose of nlist is to make it possible for a program to automatically process file name
information.

pwd(Pid) -> fok, Dirg | ferror, Reasong

Types:

34 Inets

Inets Reference Manual ftp

� Pid = pid()
� Reason = restriction reason() | common reason()

Returns the current working directory at the remote server.

recv(Pid, RemoteFile) ->

recv(Pid, RemoteFile, LocalFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� RemoteFile = LocalFile = string()
� Reason = restriction reason() | common reason() | file write error reason()
� file write error reason() = see file:write/2

Transfer the file RemoteFile from the remote server to the the file system of the local
client. If LocalFile is specified, the local file will be LocalFile; otherwise it will be
RemoteFile.

If the file write failes (e.g. enospc), then the command is aborted and ferror,
file write error reason()g is returned. The file is however not removed.

recv bin(Pid, RemoteFile) -> fok, Bing | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� RemoteFile = string()
� Reason = restriction reason() | common reason()

Transfers the file RemoteFile from the remote server and receives it as a binary.

recv chunk start(Pid, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� RemoteFile = string()
� Reason = restriction reason() | common reason()

Start transfer of the file RemoteFile from the remote server.

recv chunk(Pid) -> ok | fok, Bing | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = restriction reason() | common reason()

Receive a chunk of the remote file (RemoteFile of recv chunk start). The return
values has the following meaning:

� ok the transfer is complete.

� fok, Bing just another chunk of the file.

� ferror, Reasong transfer failed.

35Inets

ftp Inets Reference Manual

rename(Pid, Old, New) -> ok | ferror, Reasong

Types:

� Pid = pid()
� CurrFile = NewFile = string()
� Reason = restriction reason() | common reason()

Renames Old to New at the remote server.

rmdir(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason() | common reason()

Removes directory Dir at the remote server.

send(Pid, LocalFile) ->

send(Pid, LocalFile, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� LocalFile = RemoteFile = string()
� Reason = restriction reason() | common reason() | shortage reason()

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name
of the remote file is set to RemoteFile; otherwise the name is set to LocalFile.

send bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()()
� RemoteFile = string()
� Reason = restriction reason() | common reason() | shortage reason()

Transfers the binary Bin into the file RemoteFile at the remote server.

send chunk(Pid, Bin) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = echunk | restriction reason() | common reason()

Transfer the chunk Bin to the remote server, which writes it into the file specified in the
call to send chunk start/2.

Note that for some errors, e.g. file system full, it is neccessery to to call send chunk end
to get the proper reason.

send chunk start(Pid, File) -> ok | ferror, Reasong

Types:

36 Inets

Inets Reference Manual ftp

� Pid = pid()
� File = string()
� Reason = restriction reason() | common reason()

Start transfer of chunks into the file File at the remote server.

send chunk end(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = restriction reason() | common reason() | shortage reason()

Stops transfer of chunks to the remote server. The file at the remote server, specified in
the call to send chunk start/2 is closed by the server.

type(Pid, Type) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Type = ascii | binary
� Reason = etype | restriction reason() | common reason()

Sets the file transfer type to ascii or binary. When an ftp session is opened, the
default transfer type of the server is used, most often ascii, which is the default
according to RFC 959.

user(Pid, User, Password) -> ok | ferror, Reasong

Types:

� Pid = pid()
� User = Password = string()
� Reason = euser | common reason()

Performs login of User with Password.

user(Pid, User, Password,Account) -> ok | ferror, Reasong

Types:

� Pid = pid()
� User = Password = string()
� Reason = euser | common reason()

Performs login of User with Passwordto the acccount specified by Account .

quote(Pid, Command) -> [FTPLine]

Types:

� Pid = pid()
� Command = string()
� FTPLine = string() - Note the telnet end of line characters, from the ftp protocol

definition, CRLF e.g. ”\r\ ” has been removed.

37Inets

ftp Inets Reference Manual

Sends an arbitrary FTP command and returns verbatimly a list of the lines sent back by
the FTP server. This functions is intended to give an application accesses to FTP
commands that are server specific or that may not be provided by this FTP client.

Note:
FTP commands that require a data connection can not be successfully issued with
this function.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
formaterror/1 are as follows:

echunk Synchronisation error during chunk sending.
A call has been made to send chunk/2 or send chunk end/1, before a call to
send chunk start/2; or a call has been made to another transfer function during
chunk sending, i.e. before a call to send chunk end/1.

eclosed The session has been closed.

econn Connection to remote server prematurely closed.

ehost Host not found, FTP server not found, or connection rejected by FTP server.

elogin User not logged in.

enotbinary Term is not a binary.

epath No such file or directory, or directory already exists, or permission denied.

etype No such type.

euser User name or password not valid.

etnospc Insufficient storage space in system [452].

epnospc Exceeded storage allocation (for current directory or dataset) [552].

efnamena File name not allowed [553].

SEE ALSO

file, filename, J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

38 Inets

Inets Reference Manual http

http
Erlang Module

This module provides the API to a HTTP/1.1 client according to RFC 2616, caching is
currentyl not supported.

Note:
When starting the Inets application a manager process for the default profile will be
started. The functions in this API that does not explicitly use a profile will acesses the
default profile. A profile keeps track of proxy options, cookies and other options that
can be applied to more than one request.

If the scheme https is used the ssl application needs to be started.

Also note that an application that does not set the pipeline-timeout value will benefit
very little from pipelining as the default timeout is 0.

There are some usage examples in the Inets User’s Guide. [page 2]

COMMON DATA TYPES

Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

request id() = ref()

profile() = atom()

path() = string() representing a file path or directory path

HTTP CLIENT SERVICE START/STOP

A HTTP client can be configured to start when starting the inets application or started
dynamically in runtime by calling the inets application API inets:start(httpc,
ServiceConfig), or inets:start(httpc, ServiceConfig, How) see inets(3) [page
66] Below follows a description of the available configuration options.

fprofile, profile()g Name of the profile, see common data types below, this option is
mandantory.

fdata dir, path()g Directory where the profile may save persistent data, if omitted all
cookies will be treated as session cookies.

The client can be stopped using inets:stop(httpc, Pid) or inets:stop(httpc, Profile).

39Inets

http Inets Reference Manual

HTTP DATA TYPES

Type definitions that are related to HTTP:

For more information about HTTP see rfc 2616

method() = head | get | put | post | trace | options | delete

request() - furl(), headers()g | furl(), headers(), content type(),
body()g

url() = string() - Syntax according to the URI definition in rfc 2396,
ex: "http://www.erlang.org"

status line() = fhttp version(), status code(), reason phrase()g

http version() = string() ex: "HTTP/1.1"

status code() = integer()

reason phrase() = string()

content type() = string()

headers() = [ffield(), value()g]

field() = string()

value() = string()

body() = string() | binary()

filename = string()

SSL DATA TYPES

Some type definitions relevant when using https, for details [ssl(3)]:

ssl options() = fverify, code()g | fdepth, depth()g | fcertfile, path()g
| fkeyfile, path()g | fpassword, string()g | fcacertfile, path()g |
fciphers, string()g

40 Inets

Inets Reference Manual http

Exports

cancel request(RequestId) ->

cancel request(RequestId, Profile) -> ok

Types:

� RequestId = request id() - A unique identifier as returned by request/4
� Profile = profile()

Cancels an asynchronous HTTP-request.

request(Url) ->

request(Url, Profile) -> fok, Resultg | ferror, Reasong

Types:

� Url = url()
� Result = fstatus line(), headers(), body()g | fstatus code(), body()g | request id()
� Profile = profile()
� Reason = term()

Equivalent to http:request(get, fUrl, []g, [], []).

request(Method, Request, HTTPOptions, Options) ->

request(Method, Request, HTTPOptions, Options, Profile) -> fok, Resultg | fok,
saved to fileg | ferror, Reasong

Types:

� Method = method()
� Request - request()
� HTTPOptions - [HttpOption]
� HTTPOption - ftimeout, integer()g | fssl, ssl options()g | fautoredirect, boolean()g
| fproxy auth, fuserstring(), passwordstring()gg | fversion, http version()g |
frelaxed, boolean()g

� autoredirect
This option is true by default i.e. the client will automatically retrive the information
from the new URI and return that as the result instead of a 30X-result code. Note
that for some 30X-result codes automatic redirect is not allowed in these cases the
30X-result will always be returned.

� proxy auth
A proxy-authorization header using the provided user name and password will be
added to the request.

� version
Can be used to make the client act as an HTTP/1.0 or HTTP/0.9 client. By default this
is an HTTP/1.1 client. When using HTTP/1.0 persistent connections will not be used.

� relaxed
If set to true workarounds for known server deviations from the HTTP-standard are
enabled, defaults to false.

� Options - [option()]
� Option - fsync, boolean()g | fstream, StreamTog | fbody format, body format()g |
ffull result, boolean()g | fheaders as is, boolean()g
The request function will be synchronous and return a full http response by default.

41Inets

http Inets Reference Manual

� StreamTo = self | fself, onceg | filename()
Streams the body of a 200 response to the calling process or to a file. When
streaming to the calling process using the option self the the following stream
messages will be sent to that process: fhttp, fRequestId, stream start, Headersg,
fhttp, fRequestId, stream, BinBodyPartg, fhttp, fRequestId, stream end, Headersg.
When streaming to to the calling processes using the option fself onceg the first
message will have an additional element e.i. fhttp, fRequestId, stream start, Headers,
Pidg, this is the process id that should be used as an argument to http:stream next/1
to trigger the next message to be sent to the calling process. Note that it is possible
that chunked encoding will add headers so that there are more headers in the
stream end message than in the stream start. When streaming to a file and the
request is asynchronous the message fhttp, fRequestId, saved to filegg will be sent.

� body format() = string() | binary()
The body format option is only valid for the synchronous request and the default is
string. When making an asynchronous request the body will always be received as a
binary.

� headers as is
The headers as is option is by default false, if set to true the headers provided by the
user will be regarded as case sensitive. Note that the http standard requires them to
be case insenstive. This feature should only be used if there is no other way to
communicate with the server or for testing purpose. Also note that when this option
is used no headers will be automatically added, all necessary headers has to be
provided by the user.

� Result = fstatus line(), headers(), body()g | fstatus code(), body()g | request id()
� Profile = profile()
� Reason = term()

Sends a HTTP-request. The function can be both synchronous and asynchronous in the
later case the function will return fok, RequestIdg and later on message/messages will
be sent to the calling process on the format fhttp, fRequestId, Resultgg fhttp,
fRequestId, ferror, Reasonggg, fhttp, fRequestId, stream start, Headersg, fhttp,
fRequestId, stream, BinBodyPartg, fhttp, fRequestId, stream end, Headersg or fhttp,
fRequestId, saved to filegg.

set options(Options) ->

set options(Options, Profile) -> ok | ferror, Reasong

Types:

� Options = [Option]
� Option = fproxy, fProxy, NoProxygg | fmax sessions, MaxSessionsg |
fmax pipeline length, MaxPipelineg | fpipeline timeout, PipelineTimeoutg |
fcookies | CookieModeg | fipv6, Ipv6Modeg | fverbose, VerboseModeg

� Proxy = fHostname, Portg
� Hostname = string()

ex: ”localhost” or ”foo.bar.se”
� Port = integer()

ex: 8080
� NoProxy = [NoProxyDesc]
� NoProxyDesc = DomainDesc | HostName | IPDesc
� DomainDesc = ”*.Domain”

ex: ”*.ericsson.se”

42 Inets

Inets Reference Manual http

� IpDesc = string()
ex: ”134.138” or ”[FEDC:BA98” (all IP-adresses starting with 134.138 or
FEDC:BA98), ”66.35.250.150” or ”[2010:836B:4179::836B:4179]” (a complete
IP-address).

� MaxSessions = integer()
Maximum number of persistent connections to a host.Default is 2.

� MaxPipeline = integer()
Maximum number of outstanding requests on the same connection to a host. Default
is 2.

� PipelineTimeout = integer()
If a persistent connection is idle longer than the pipeline timeout the client will close
the connection. Default is 0. The server may also have a such a time out but you
should not count on it!

� CookieMode = enabled | disabled | verify
Default is disabled. If Cookies are enabled all valid cookies will automatically be
saved in the client manager’s cookie database. If the option verify is used the function
http:verify cookie/2 has to be called for the cookie to be saved.

� ipv6Mode = enabled | disabled
By default enabled. This should normally be what you want. When it is enabled you
can use both ipv4 and ipv6. The option is here to provide a workaround for buggy
ipv6 stacks to ensure that ipv4 will always work.

� VerboseMode = false | verbose |debug | trace
By default false. This option unless it is set to false switches on different levels of
erlang trace on the client. It is a debug feature.

� Profile = profile()

Sets options to be used for subsequent requests.

Note:
If possible the client will keep its connections alive and use them to pipeline requests
whenever the circumstances allow. The HTTP/1.1 specification does not provide a
guideline for how many requests that would be ideal to pipeline, this very much
depends on the application. Note that a very long pipeline may cause a user
perceived delays as earlier request may take a long time to complete. The HTTP/1.1
specification does suggest a limit of 2 persistent connections per server, which is the
default value of the max sessions option.

stream next(Pid) -> ok

Types:

� Pid = pid() - as received in the stream start message

Triggers the next message to be streamed, e.i. same behavior as active once for sockets.

verify cookie(SetCookieHeaders, Url) ->

verify cookie(SetCookieHeaders, Url, Profile) -> ok | ferror, Reasong

Types:

� SetCookieHeaders = headers() - where field = ”set-cookie”
� Url = url()

43Inets

http Inets Reference Manual

� Profile = profile()

Saves the cookies defined in SetCookieHeaders in the client profile’s cookie database.
You need to call this function if you set the option cookies to verify. If no profile is
specifed the default profile will be used.

cookie header(Url) ->

cookie header(Url, Profile) -> header() | ferror, Rasong

Types:

� Url = url()
� Profile = profile()

Returns the cookie header that would be sent when making a request to Url using the
profile Profile. If no profile is specifed the default profile will be used.

SEE ALSO

RFC 2616, inets(3) [page 66], [ssl(3)]

44 Inets

Inets Reference Manual httpd

httpd
Erlang Module

Documents the HTTP server start options, some administrative functions and also
specifies the Erlang Web server callback API

COMMON DATA TYPES

Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

path() = string() - representing a file or directory path.

ip address() = fN1,N2,N3,N4g % IPv4 | fK1,K2,K3,K4,K5,K6,K7,K8g % IPv6

hostname() = string() - representing a host ex "foo.bar.com"

property() = atom()

ERLANG HTTP SERVER SERVICE START/STOP

A web server can be configured to start when starting the inets application or started
dynamically in runtime by calling the Inets application API inets:start(httpd,
ServiceConfig), or inets:start(httpd, ServiceConfig, How), see inets(3) [page
66] Below follows a description of the available configuration options, also called
properties.

File properties

When the web server is started at application start time the properties should be
fetched from a configuration file that could consist of a regular erlang property list, e.i.
[fOption, Valueg] where Option = property() and Value = term(), followed
by a full stop, or for backwards compatibility a Apache like configuration file. If the web
server is started dynamically at runtime you may still specify a file but you could also
just specify the compleat property list.

fproplist file, path()g If this property is defined inets will expect to find all other
properties defined in this file. Note that the file must include all properties listed
under mandatory properties.

ffile, path()g If this property is defined inets will expect to find all other properties
defined in this file, that uses Apache like syntax. Note that the file must include all
properties listed under mandantory properties. The Apache like syntax is the
property, written as one word where each new word begins with a capital,
followed by a withe-space followed by the value followed by a new line. Ex:

{server_root, "/urs/local/www"} -> ServerRoot /usr/local/www

45Inets

httpd Inets Reference Manual

With a few exceptions, that are documented for each property that behaves
differently, and the special case fdirectory, fpath(), PropertyListgg and
fsecurity directory, fDir, PropertyListgg that are represented as:

<Directory Dir>
<Properties handled as described above>
</Directory>

Note:
The properties proplist file and file are mutually exclusive.

Mandatory properties

fport, integer()g The port that the HTTP server shall listen on. If zero is specified as
port, an arbitrary available port will be picked and you can use the httpd:info/2
function to find out which port was picked.

fserver name, string()g The name of your server, normally a fully qualified domain
name.

fserver root, path()g Defines the servers home directory where log files etc can be
stored. Relative paths specified in other properties refer to this directory.

fdocument root, path()g Defines the top directory for the documents that are available
on the HTTP server.

Communication properties

fbind address, ip address() | hostname() | anyg Defaults to any. Note any is denoted
* in the apache like configuration file.

fsocket type, ip comm | sslg Defaults to ip comm

Erlang Web server API moudles

fmodules, [atom() g] Defines which modules the HTTP server will use to handle
requests. Defaults to: [mod alias, mod auth, mod esi, mod actions,
mod cgi, mod dir, mod get, mod head, mod log, mod disk log] Note that
some mod-modules are dependent on others see the Inets Web server Modules in
the Users guide [page 4]. So the order can not be entirely arbitrary.

Limit properties

fdisable chunked transfer encoding send, boolean()g This property allows you to
disable chunked transfer-encoding when sending a response to a HTTP/1.1 client,
by default this is false.

fkeep alive, boolean()g Instructs the server whether or not to use persistent
connections when the client claims to be HTTP/1.1 compliant, default is true.

fkeep alive timeoute, integer()g The number of seconds the server will wait for a
subsequent request from the client before closing the connection. Default is 150.

46 Inets

Inets Reference Manual httpd

fmax body size, integer()g Limits the size of the message body of HTTP request. By
the default there is no limit.

fmax clients, integer()g Limits the number of simultaneous requests that can be
supported. Defaults to 150.

fmax header size, integer()g Limits the size of the message header of HTTP request.
Defaults to 10240.

fmax uri, integer()g Limits the size of the HTTP request URI. By default there is no
limit.

fmax keep alive requests, integer()g The number of request that a client can do on
one connection. When the server has responded to the number of requests defined
by max keep alive requests the server close the connection. The server will close it
even if there are queued request. Defaults to no limit.

Administrative properties

fmime types, [fMimeType, Extensiong | path()g] Where MimeType = string() and
Extension = string(). Files delivered to the client are MIME typed according to
RFC 1590. File suffixes are mapped to MIME types before file delivery. The
mapping between file suffixes and MIME types can be specified as an apache like
file as well as directly in the property list. Such a file may look like:

MIME type Extension
text/html html htm
text/plain asc txt

Defaults to [f“html”,“text/html”g,f“htm”,“text/html”g]

fmime type, string()g When the server is asked to provide a document type which
cannot be determined by the MIME Type Settings, the server will use this default
type.

fserver admin, string()g ServerAdmin defines the email-address of the server
administrator, to be included in any error messages returned by the server.

flog format, common | combinedg Defines if access logs should be written according
to the common log format or to the extended common log format. The common
format is one line that looks like this: remotehost rfc931 authuser [date]
"request" status bytes

remotehost
Remote

rfc931
The client’s remote username (RFC 931).

authuser
The username with which the user authenticated himself.

[date]
Date and time of the request (RFC 1123).

"request"
The request line exactly as it came from the client(RFC 1945).

status
The HTTP status code returned to the client (RFC 1945).

bytes

47Inets

httpd Inets Reference Manual

The content-length of the document transferred.

The combined format is on line that look like this: remotehost rfc931 authuser
[date] "request" status bytes "referer" "user agent"

"referer"
The url the client was on before
requesting your url. (If it could not be determined a minus
sign will be placed in this field)

"user agent"
The software the client claims to be using. (If it
could not be determined a minus sign will be placed in
this field)

This affects the access logs written by mod log and mod disk log.

ferror log format, pretty | compactg Defaults to pretty. If the error log is meant to be
read directly by a human pretty will be the best option. pretty has the format
corresponding to:

io:format("[~s] ~s, reason: ~n ~p ~n~n", [Date, Msg, Reason]).

compact has the format corresponding to:

io:format("[~s] ~s, reason: ~w ~n", [Date, Msg, Reason]).

This affects the error logs written by mod log and mod disk log.

ssl properties

fssl ca certificate file, path()g Used as cacertfile option in ssl:listen/2 see [ssl(3)]

fssl certificate file, path()g Used as certfile option in ssl:listen/2 see [ssl(3)]

fssl ciphers, list()g Used as ciphers option in ssl:listen/2 see [ssl(3)]

fssl verify client, integer()g Used as verify option in ssl:listen/2 see [ssl(3)]

fssl verify depth, integer()g Used as depth option in ssl:listen/2 see [ssl(3)]

fssl password callback function, atom()g Used together with
ssl password callback module to retrieve a value to use as password option to
ssl:listen/2 see [ssl(3)]

fssl password callback module, atom()g Used together with
ssl password callback function to retrieve a value to use as password option to
ssl:listen/2 see [ssl(3)]

URL aliasing properties - requires mod alias

falias, fAlias, RealNamegg Where Alias = string() and RealName = string(). The Alias
property allows documents to be stored in the local file system instead of the
document root location. URLs with a path that begins with url-path is mapped to
local files that begins with directory-filename, for example:

{alias, {"/image", "/ftp/pub/image"}

and an access to http://your.server.org/image/foo.gif would refer to the file
/ftp/pub/image/foo.gif.

48 Inets

Inets Reference Manual httpd

fdirectory index, [string() g] DirectoryIndex specifies a list of resources to look for if a
client requests a directory using a / at the end of the directory name. file depicts
the name of a file in the directory. Several files may be given, in which case the
server will return the first it finds, for example:

{directory_index, ["index.hml", "welcome.html"]}

and access to http://your.server.org/docs/ would return
http://your.server.org/docs/index.html or
http://your.server.org/docs/welcome.html if index.html do not exist.

CGI properties - requires mod cgi

fscript alias, fAlias, RealNamegg Where Alias = string() and RealName = string(). Has
the same behavior as the Alias property, except that it also marks the target
directory as containing CGI scripts. URLs with a path beginning with url-path are
mapped to scripts beginning with directory-filename, for example:

{script_alias, {"/cgi-bin/", "/web/cgi-bin/"}

and an access to http://your.server.org/cgi-bin/foo would cause the server to run
the script /web/cgi-bin/foo.

fscript nocache, boolean()g If ScriptNoCache is set to true the HTTP server will by
default add the header fields necessary to prevent proxies from caching the page.
Generally this is something you want. Defaults to false.

fscript timeout, integer()g The time in seconds the web server will wait between each
chunk of data from the script. If the CGI-script not delivers any data before the
timeout the connection to the client will be closed. Defaults to 15.

faction, fMimeType, CgiScriptgg - requires mod action Where MimeType = string()
and CgiScript = string(). Action adds an action, which will activate a cgi-script
whenever a file of a certain mime-type is requested. It propagates the URL and file
path of the requested document using the standard CGI PATH INFO and
PATH TRANSLATED environment variables.

{action, {"text/plain", "/cgi-bin/log_and_deliver_text"}

fscript, fMethod, CgiScriptgg - requires mod action Where Method = string() and
CgiScript = string(). Script adds an action, which will activate a cgi-script
whenever a file is requested using a certain HTTP method. The method is either
GET or POST as defined in RFC 1945. It propagates the URL and file path of the
requested document using the standard CGI PATH INFO and
PATH TRANSLATED environment variables.

{script, {"PUT", "/cgi-bin/put"}

ESI properties - requires mod esi

ferl script alias, fURLPath, [AllowedModule gg] Where URLPath = string() and
AllowedModule = atom(). erl script alias marks all URLs matching url-path as erl
scheme scripts. A matching URL is mapped into a specific module and function.
For example:

{erl_script_alias, {"/cgi-bin/example" [httpd_example]}

and a request to http://your.server.org/cgi-bin/example/httpd example:yahoo
would refer to httpd example:yahoo/2 and
http://your.server.org/cgi-bin/example/other:yahoo would not be allowed to
execute.

49Inets

httpd Inets Reference Manual

ferl script nocache, boolean()g If erl script nocache is set to true the server will add
http header fields that prevents proxies from caching the page. This is generally a
good idea for dynamic content, since the content often vary between each request.
Defaults to false.

ferl script timeout, integer()g If erl script timeout sets the time in seconds the server
will wait between each chunk of data to be delivered through mod esi:deliver/2.
Defaults to 15. This is only relevant for scripts that uses the erl scheme.

feval script alias, fURLPath, [AllowedModule gg] Where URLPath = string() and
AllowedModule = atom(). Same as erl script alias but for scripts using the eval
scheme. Note that this is only supported for backwards compatibility. The eval
scheme is deprecated.

Log properties - requires mod log

ferror log, path()g Defines the filename of the error log file to be used to log server
errors. If the filename does not begin with a slash (/) it is assumed to be relative to
the server root

fsecurity log, path()g Defines the filename of the access log file to be used to log
security events. If the filename does not begin with a slash (/) it is assumed to be
relative to the server root.

ftransfer log, path()g Defines the filename of the access log file to be used to log
incoming requests. If the filename does not begin with a slash (/) it is assumed to
be relative to the server root.

Disk Log properties - requires mod disk log

fdisk log format, internal | externalg Defines the file-format of the log files see disk log
for more information. If the internal file-format is used, the logfile will be repaired
after a crash. When a log file is repaired data might get lost. When the external
file-format is used httpd will not start if the log file is broken. Defaults to external.

ferror disk log, internal | externalg Defines the filename of the (disk log(3)) error log
file to be used to log server errors. If the filename does not begin with a slash (/) it
is assumed to be relative to the server root.

ferror disk log size, fMaxBytes, MaxFilesgg Where MaxBytes = integer() and
MaxFiles = integer() Defines the properties of the (disk log(3)) error log file. The
disk log(3) error log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

fsecurity disk log, path()g Defines the filename of the (disk log(3)) access log file
which logs incoming security events i.e authenticated requests. If the filename
does not begin with a slash (/) it is assumed to be relative to the server root.

fsecurity disk log size, fMaxBytes, MaxFilesgg Where MaxBytes = integer() and
MaxFiles = integer(). Defines the properties of the disk log(3) access log file. The
disk log(3) access log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

ftransfer disk log, path()g Defines the filename of the (disk log(3)) access log file
which logs incoming requests. If the filename does not begin with a slash (/) it is
assumed to be relative to the server root.

ftransfer disk log size, fMaxBytes, MaxFilesgg Where MaxBytes = integer() and
MaxFiles = integer(). Defines the properties of the disk log(3) access log file. The
disk log(3) access log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

50 Inets

Inets Reference Manual httpd

Authentication properties - requires mod auth

fdirectory, fpath(), [fproperty(), term()g]gg

Here follows the valid properties for directorys

fallow from, all | [RegxpHostString g] Defines a set of hosts which should be granted
access to a given directory. For example:

{allow_from, ["123.34.56.11", "150.100.23"]

The host 123.34.56.11 and all machines on the 150.100.23 subnet are allowed
access.

fdeny from, all | [RegxpHostString g] Defines a set of hosts which should be denyed
access to a given directory. For example:

{deny_from, ["123.34.56.11", "150.100.23"]

The host 123.34.56.11 and all machines on the 150.100.23 subnet are not allowed
access.

fauth type, plain | dets | mnesiag Sets the type of authentication database that is used
for the directory.The key difference between the different methods is that dynamic
data can be saved when Mnesia and Dets is used. This property is called
AuthDbType in the apache like configuration files.

fauth user file, path()g Sets the name of a file which contains the list of users and
passwords for user authentication. filename can be either absolute or relative to the
server root. If using the plain storage method, this file is a plain text file, where
each line contains a user name followed by a colon, followed by the non-encrypted
password. If user names are duplicated, the behavior is undefined. For example:

ragnar:s7Xxv7
edward:wwjau8

If using the dets storage method, the user database is maintained by dets and
should not be edited by hand. Use the API functions in mod auth module to
create / edit the user database. This directive is ignored if using the mnesia storage
method. For security reasons, make sure that the auth user file is stored outside
the document tree of the Web server. If it is placed in the directory which it
protects, clients will be able to download it.

fauth group file, path()g Sets the name of a file which contains the list of user groups
for user authentication. Filename can be either absolute or relative to the
server root. If you use the plain storage method, the group file is a plain text file,
where each line contains a group name followed by a colon, followed by the
member user names separated by spaces. For example:

group1: bob joe ante

If using the dets storage method, the group database is maintained by dets and
should not be edited by hand. Use the API for mod auth module to create / edit
the group database. This directive is ignored if using the mnesia storage method.
For security reasons, make sure that the auth group file is stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download it.

fauth name, string()g Sets the name of the authorization realm (auth-domain) for a
directory. This string informs the client about which user name and password to
use.

51Inets

httpd Inets Reference Manual

fauth access password, string()g If set to other than “NoPassword” the password is
required for all API calls. If the password is set to “DummyPassword” the password
must be changed before any other API calls. To secure the authenticating data the
password must be changed after the web server is started since it otherwise is
written in clear text in the configuration file.

frequire user, [string() g] Defines users which should be granted access to a given
directory using a secret password.

frequire group, [string() g] Defines users which should be granted access to a given
directory using a secret password.

Htacess authenication properties - requires mod htacess

faccess files, [path() g] Specify which filenames that are used for access-files. When a
request comes every directory in the path to the requested asset will be searched
after files with the names specified by this parameter. If such a file is found the file
will be parsed and the restrictions specified in it will be applied to the request.

Authentication properties - requires mod security

fsecurity directory, fpath(), [fproperty(), term()g]g

Here follows the valid properties for security directorys

fsecurity data file, path()g Name of the security data file. The filename can either
absolute or relative to the server root. This file is used to store persistent data for
the mod security module.

fsecurity max retries, integer()g Specifies the maximum number of tries to
authenticate, a user has before the user is blocked out. If a user successfully
authenticates when the user has been blocked, the user will receive a 403
(Forbidden) response from the server. If the user makes a failed attempt while
blocked the server will return 401 (Unauthorized), for security reasons. Defaults
to 3 may also be set to infinity.

fsecurity block time, integer()g Specifies the number of minutes a user is blocked.
After this amount of time, he automatically regains access. Defaults to 60

fsecurity fail expire time, integer()g Specifies the number of minutes a failed user
authentication is remembered. If a user authenticates after this amount of time, his
previous failed authentications are forgotten. Defaults to 30

fsecurity auth timeout, integer()g Specifies the number of seconds a successful user
authentication is remembered. After this time has passed, the authentication will
no longer be reported. Defaults to 30.

Exports

info(Pid) ->

info(Pid, Properties) -> [fOption, Valueg]

Types:

� Properties = [property()]
� Option = property()
� Value = term()

52 Inets

Inets Reference Manual httpd

Fetches information about the HTTP server. When called with only the pid all
properties are fetched, when called with a list of specific properties they are fetched.
Available properties are the same as the servers start options.

Note:
Pid is the pid returned from inets:start/[2,3]. Can also be retrieved form
inets:services/0, inets:services/0 see inets(3) [page 66]

info(Address, Port) ->

info(Address, Port, Properties) -> [fOption, Valueg]

Types:

� Address = ip address()
� Port = integer()
� Properties = [property()]
� Option = property()
� Value = term()

Fetches information about the HTTP server. When called with only the Address and
Port all properties are fetched, when called with a list of specific properties they are
fetched. Available properties are the same as the servers start options.

Note:
Address has to be the ip-address and can not be the hostname.

reload config(Config, Mode) -> ok | ferror, Reasong

Types:

� Config = path() | [fOption, Valueg]
� Option = property()
� Value = term()
� Mode = non disturbing | disturbing

Reloads the HTTP server configuration without restarting the server. Incoming requests
will be answered with a temporary down message during the time the it takes to reload.

Note:
Available properties are the same as the servers start options, although the properties
bind address and port can not be changed.

If mode is disturbing, the server is blocked forcefully and all ongoing requests are
terminated and the reload will start immediately. If mode is non-disturbing, no new
connections are accepted, but the ongoing requests are allowed to complete before the
reload is done.

53Inets

httpd Inets Reference Manual

ERLANG WEB SERVER API DATA TYPES

ModData = #mod{}

-record(mod, {
data = [],
socket_type = ip_comm,
socket,
config_db,
method,
absolute_uri,
request_uri,
http_version,
request_line,
parsed_header = [],
entity_body,
connection

}).

The fields of the mod record has the following meaning:

data Type [fInteractionKey,InteractionValueg] is used to propagate data
between modules. Depicted interaction data() in function type declarations.

socket type socket type(), Indicates whether it is a ip socket or a ssl socket.

socket The actual socket in ip comm or ssl format depending on the socket type.

config db The config file directives stored as key-value tuples in an ETS-table.
Depicted config db() in function type declarations.

method Type "GET" | "POST" | "HEAD" | "TRACE", that is the HTTP metod.

absolute uri If the request is a HTTP/1.1 request the URI might be in the absolute
URI format. In that case httpd will save the absolute URI in this field. An Example
of an absolute URI could
be"http://ServerName:Part/cgi-bin/find.pl?person=jocke"

request uri The Request-URI as defined in RFC 1945, for example
"/cgi-bin/find.pl?person=jocke"

http version The HTTP version of the request, that is “HTTP/0.9”, “HTTP/1.0”, or
“HTTP/1.1”.

request line The Request-Line as defined in RFC 1945, for example "GET
/cgi-bin/find.pl?person=jocke HTTP/1.0".

parsed header Type [fHeaderKey,HeaderValueg], parsed header contains all HTTP
header fields from the HTTP-request stored in a list as key-value tuples. See RFC
2616 for a listing of all header fields. For example the date field would be stored as:
f"date","Wed, 15 Oct 1997 14:35:17 GMT"g. RFC 2616 defines that
HTTP is a case insensitive protocol and the header fields may be in
lowercase or upper case. Httpd will ensure that all header field
names are in lowe case.

entity body The Entity-Body as defined in RFC 2616, for example data sent from a
CGI-script using the POST method.

connection true | false If set to true the connection to the client is a persistent
connections and will not be closed when the request is served.

54 Inets

Inets Reference Manual httpd

ERLANG WEB SERVER API CALLBACK FUNCTIONS

Exports

Module:do(ModData)-> fproceed, OldDatag | fproceed, NewDatag | fbreak, NewDatag |
done

Types:

� OldData = list()
� NewData = [fresponse,fStatusCode,Bodygg] |

[fresponse,fresponse,Head,NewBodygg] |
[fresponse,falready sent,Statuscode,Sizeg]

� StausCode = integer()
� Body = io list() | nobody | fFun, Argg
� Head = [HeaderOption]
� HeaderOption = fOption, Valueg | fcode, StatusCodeg
� Option = allow | cache control | content MD5 | content encoding |

content encoding | content language | content length | content location |
content range | content type | date | etag | expires | last modified | location |
pragma | retry after | server | trailer | transfer encoding

� Value = string()
� Fun = fun(Arg) -> sent| close | Body
� Arg = [term()]

When a valid request reaches httpd it calls do/1 in each module defined by the Modules
configuration option. The function may generate data for other modules or a response
that can be sent back to the client.

The field data in ModData is a list. This list will be the list returned from the from the
last call to do/1.

Body is the body of the http-response that will be sent back to the client an appropriate
header will be appended to the message. StatusCode will be the status code of the
response see RFC2616 for the appropriate values.

Head is a key value list of HTTP header fields. the server will construct a HTTP header
from this data. See RFC 2616 for the appropriate value for each header field. If the
client is a HTTP/1.0 client then the server will filter the list so that only HTTP/1.0
header fields will be sent back to the client.

If NewBody is returned and equal to fFun,Argg The Web server will try apply/2. on Fun
with Arg as argument and excpect that the fun either returns a list (Body) that is a
HTTP-repsonse or the atom sent if the HTTP-response is sent back to the client. If
close is returned from the fun something has gone wrong and the server will signal this
to the client by closing the connection.

Module:load(Line, AccIn)-> eof | ok | fok, AccOutg | fok, AccOut, fOption, Valuegg |
fok, AccOut, [fOption, Valueg]g | ferror, Reasong

Types:

� Line = string()
� AccIn = [fOption, Valueg]
� AccOut = [fOption, Valueg]

55Inets

httpd Inets Reference Manual

� Option = property()
� Value = term()
� Reason = term()

Load is used to convert a line in a Apache like configuration file to a fOption, Valueg
tuple. Some more complex configuration options such as directory and
security directory will create an accumulator.This function does only need clauses
for the options implemented by this particular callback module.

Module:store(fOption, Valueg, Config)-> fok, fOption, NewValuegg | ferror, Reasong

Types:

� Line = string()
� Option = property()
� Config = [fOption, Valueg]
� Value = term()
� Reason = term()

This function is used to check the validity of the configuration options before saving
them in the internal database. This function may also have a side effect e.i. setup
necessary extra resources implied by the configuration option. It can also resolve
possible dependencies among configuration options by changing the value of the option.
This function does only need clauses for the options implemented by this particular
callback module .

Module:remove(ConfigDB) -> ok | ferror, Reasong

Types:

� ConfigDB = ets table()
� Reason = term()

When httpd is shutdown it will try to execute remove/1 in each Erlang web server
callback module. The programmer may use this to function to clean up resources that
may have been crated in the store function.

ERLANG WEB SERVER API HELP FUNCTIONS

Exports

parse query(QueryString) -> [fKey,Valueg]

Types:

� QueryString = string()
� Key = string()
� Value = string()

parse query/1 parses incoming data to erl and eval scripts (See mod esi(3) [page
76]) as defined in the standard URL format, that is ’+’ becomes ’space’ and decoding of
hexadecimal characters (%xx).

56 Inets

Inets Reference Manual httpd

SEE ALSO

RFC 2616, inets(3) [page 66], [ssl(3)]

57Inets

httpd conf Inets Reference Manual

httpd conf
Erlang Module

This module provides the Erlang Webserver API programmer with utility functions for
adding run-time configuration directives.

Exports

check enum(EnumString,ValidEnumStrings) -> Result

Types:

� EnumString = string()
� ValidEnumStrings = [string()]
� Result = fok,atom()g | ferror,not validg

check enum/2 checks if EnumString is a valid enumeration of ValidEnumStrings in
which case it is returned as an atom.

clean(String) -> Stripped

Types:

� String = Stripped = string()

clean/1 removes leading and/or trailing white spaces from String.

custom clean(String,Before,After) -> Stripped

Types:

� Before = After = regexp()
� String = Stripped = string()

custom clean/3 removes leading and/or trailing white spaces and custom characters
from String. Before and After are regular expressions, as defined in regexp(3),
describing the custom characters.

is directory(FilePath) -> Result

Types:

� FilePath = string()
� Result = fok,Directoryg | ferror,Reasong
� Directory = string()
� Reason = string() | enoent | eaccess | enotdir | FileInfo
� FileInfo = File info record

58 Inets

Inets Reference Manual httpd conf

is directory/1 checks if FilePath is a directory in which case it is returned. Please
read file(3) for a description of enoent, eaccess and enotdir. The definition of the
file info record can be found by including file.hrl from the kernel application, see
file(3).

is file(FilePath) -> Result

Types:

� FilePath = string()
� Result = fok,Fileg | ferror,Reasong
� File = string()
� Reason = string() | enoent | eaccess | enotdir | FileInfo
� FileInfo = File info record

is file/1 checks if FilePath is a regular file in which case it is returned. Read
file(3) for a description of enoent, eaccess and enotdir. The definition of the file
info record can be found by including file.hrl from the kernel application, see file(3).

make integer(String) -> Result

Types:

� String = string()
� Result = fok,integer()g | ferror,nomatchg

make integer/1 returns an integer representation of String.

SEE ALSO

httpd(3) [page 45]

59Inets

httpd socket Inets Reference Manual

httpd socket
Erlang Module

This module provides the Erlang Web server API module programmer with utility
functions for generic sockets communication. The appropriate communication
mechanism is transparently used, that is ip comm or ssl.

Exports

deliver(SocketType, Socket, Data) -> Result

Types:

� SocketType = socket type()
� Socket = socket()
� Data = io list() | binary()
� Result = socket closed | void()

deliver/3 sends the Binary over the Socket using the specified SocketType. Socket
and SocketType should be the socket and the socket type form the mod record as
defined in httpd.hrl

peername(SocketType,Socket) -> fPort,IPAddressg

Types:

� SocketType = socket type()
� Socket = socket()
� Port = integer()
� IPAddress = string()

peername/3 returns the Port and IPAddress of the remote Socket.

resolve() -> HostName

Types:

� HostName = string()

resolve/0 returns the official HostName of the current host.

SEE ALSO

httpd(3) [page 45]

60 Inets

Inets Reference Manual httpd util

httpd util
Erlang Module

This module provides the Erlang Web Server API module programmer with
miscellaneous utility functions.

Exports

convert request date(DateString) -> ErlDate|bad date

Types:

� DateString = string()
� ErlDate = ffYear,Month,Dateg,fHour,Min,Secgg
� Year = Month = Date = Hour = Min = Sec = integer()

convert request date/1 converts DateString to the Erlang date format. DateString
must be in one of the three date formats that is defined in the RFC 2616.

create etag(FileInfo) -> Etag

Types:

� FileInfo = file info()
� Etag = string()

create etag/1 calculates the Etag for a file, from it’s size and time for last
modification. fileinfo is a record defined in kernel/include/file.hrl

decode hex(HexValue) -> DecValue

Types:

� HexValue = DecValue = string()

Converts the hexadecimal value HexValue into it’s decimal equivalent (DecValue).

day(NthDayOfWeek) -> DayOfWeek

Types:

� NthDayOfWeek = 1-7
� DayOfWeek = string()

day/1 converts the day of the week (NthDayOfWeek) as an integer (1-7) to an
abbreviated string, that is:

1 = “Mon”, 2 = “Tue”, ..., 7 = “Sat”.

flatlength(NestedList) -> Size

61Inets

httpd util Inets Reference Manual

Types:

� NestedList = list()
� Size = integer()

flatlength/1 computes the size of the possibly nested list NestedList. Which may
contain binaries.

header(StatusCode,PersistentConn)

header(StatusCode,Date)

header(StatusCode,MimeType,Date)

header(StatusCode,MimeType,PersistentConn,Date) -> HTTPHeader

Types:

� StatusCode = integer()
� Date = rfc1123 date()
� MimeType = string()
� PersistentConn = true | false

header returns a HTTP 1.1 header string. The StatusCode is one of the status codes
defined in RFC 2616 and the Date string is RFC 1123 compliant. (See rfc1123 date/0
[page 64]).

Note that the two version of header/n that does not has a PersistentConn argument is
there only for backward compability, and must not be used in new Erlang Webserver
API modules. that will support persistent connections.

hexlist to integer(HexString) -> Number

Types:

� Number = integer()
� HexString = string()

hexlist to integer Convert the Hexadecimal value of HexString to an integer.

integer to hexlist(Number) -> HexString

Types:

� Number = integer()
� HexString = string()

integer to hexlist/1 Returns a string that represents the Number in a Hexadecimal
form.

lookup(ETSTable,Key) -> Result

lookup(ETSTable,Key,Undefined) -> Result

Types:

� ETSTable = ets table()
� Key = term()
� Result = term() | undefined | Undefined
� Undefined = term()

62 Inets

Inets Reference Manual httpd util

lookup extracts fKey,Valueg tuples from ETSTable and returns the Value associated
with Key. If ETSTable is of type bag only the first Value associated with Key is returned.
lookup/2 returns undefined and lookup/3 returns Undefined if no Value is found.

lookup mime(ConfigDB,Suffix)

lookup mime(ConfigDB,Suffix,Undefined) -> MimeType

Types:

� ConfigDB = ets table()
� Suffix = string()
� MimeType = string() | undefined | Undefined
� Undefined = term()

lookup mime returns the mime type associated with a specific file suffix as specified in
the mime.types file (located in the config directory1).

lookup mime default(ConfigDB,Suffix)

lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType

Types:

� ConfigDB = ets table()
� Suffix = string()
� MimeType = string() | undefined | Undefined
� Undefined = term()

lookup mime default returns the mime type associated with a specific file suffix as
specified in the mime.types file (located in the config directory2). If no appropriate
association can be found the value of DefaultType is returned.

message(StatusCode,PhraseArgs,ConfigDB) -> Message

Types:

� StatusCode = 301 | 400 | 403 | 404 | 500 | 501 | 504
� PhraseArgs = term()
� ConfigDB = ets table
� Message = string()

message/3 returns an informative HTTP 1.1 status string in HTML. Each StatusCode
requires a specific PhraseArgs:

301 string(): A URL pointing at the new document position.

400 | 401 | 500 none (No PhraseArgs)

403 | 404 string(): A Request-URI as described in RFC 2616.

501 fMethod,RequestURI,HTTPVersiong: The HTTP Method, Request-URI and
HTTP-Version as defined in RFC 2616.

504 string(): A string describing why the service was unavailable.

month(NthMonth) -> Month

1In Windows: %SERVER ROOT%\\conf\\mime.types. In UNIX: $SERVER ROOT/conf/mime.types.
2In Windows: %SERVER ROOT%\\conf\\mime.types. In UNIX: $SERVER ROOT/conf/mime.types.

63Inets

httpd util Inets Reference Manual

Types:

� NthMonth = 1-12
� Month = string()

month/1 converts the month NthMonth as an integer (1-12) to an abbreviated string,
that is:

1 = “Jan”, 2 = “Feb”, ..., 12 = “Dec”.

multi lookup(ETSTable,Key) -> Result

Types:

� ETSTable = ets table()
� Key = term()
� Result = [term()]

multi lookup extracts all fKey,Valueg tuples from an ETSTable and returns allValues
associated with the Key in a list.

reason phrase(StatusCode) -> Description

Types:

� StatusCode = 100| 200 | 201 | 202 | 204 | 205 | 206 | 300 | 301 | 302 | 303 |
304 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 410 411 | 412 | 413 | 414 415 |
416 | 417 | 500 | 501 | 502 | 503 | 504 | 505

� Description = string()

reason phrase returns the Description of an HTTP 1.1 StatusCode, for example 200
is “OK” and 201 is “Created”. Read RFC 2616 for further information.

rfc1123 date() -> RFC1123Date

rfc1123 date(ffYYYY,MM,DDg,fHour,Min,Secggg) -> RFC1123Date

Types:

� YYYY = MM = DD = Hour = Min =Sec = integer()
� RFC1123Date = string()

rfc1123 date/0 returns the current date in RFC 1123 format. rfc date/1 converts the
date in the Erlang format to the RFC 1123 date format.

split(String,RegExp,N) -> SplitRes

Types:

� String = RegExp = string()
� SplitRes = fok, FieldListg | ferror, errordesc()g
� Fieldlist = [string()]
� N = integer

split/3 splits the String in N chunks using the RegExp. split/3 is is equivalent to
regexp:split/2 with one exception, that is N defines the number of maximum number
of fields in the FieldList.

split script path(RequestLine) -> Splitted

Types:

64 Inets

Inets Reference Manual httpd util

� RequestLine = string()
� Splitted = not a script | fPath, PathInfo, QueryStringg
� Path = QueryString = PathInfo = string()

split script path/1 is equivalent to split path/1 with one exception. If the longest
possible path is not a regular, accessible and executable file not a script is returned.

split path(RequestLine) -> fPath,QueryStringOrPathInfog

Types:

� RequestLine = Path = QueryStringOrPathInfo = string()

split path/1 splits the RequestLine in a file reference (Path) and a QueryString or a
PathInfo string as specified in RFC 2616. A QueryString is isolated from the Path
with a question mark (?) and PathInfo with a slash (/). In the case of a QueryString,
everything before the ? is a Path and everything after a QueryString. In the case of a
PathInfo the RequestLine is scanned from left-to-right on the hunt for longest
possible Path being a file or a directory. Everything after the longest possible Path,
isolated with a /, is regarded as PathInfo. The resulting Path is decoded using
decode hex/1 before delivery.

strip(String) -> Stripped

Types:

� String = Stripped = string()

strip/1 removes any leading or trailing linear white space from the string. Linear white
space should be read as horisontal tab or space.

suffix(FileName) -> Suffix

Types:

� FileName = Suffix = string()

suffix/1 is equivalent to filename:extension/1 with one exception, that is Suffix is
returned without a leading dot (.).

SEE ALSO

httpd(3) [page 45]

65Inets

inets Inets Reference Manual

inets
Erlang Module

This module provides the most basic API to the clients and servers, that are part of the
Inets application, such as start and stop.

COMMON DATA TYPES

Type definitions that are used more than once in this module:

service() = ftpc | tfptd | httpc | httpd

property() = atom()

Exports

services() -> [fService, Pidg]

Types:

� Service = service()
� Pid = pid()

Returns a list of currently running services.

Note:
Services started as stand alone will not be listed.

service info() -> [fService, Pid, Infog]

Types:

� Service = service()
� Pid = pid()
� Info = [fOption, Valueg]
� Option = property()
� Value = term()

Returns a list of currently running services where each service is described by a
[fOption, Valueg] list. The information given in the list is specific for each service and
it is probable that each service will have its own info function that gives you even more
details about the service.

66 Inets

Inets Reference Manual inets

service names() -> [Service]

Types:

� Service = service()

Returns a list of available service names.

start() ->

start(Type) -> ok | ferror, Reasong

Types:

� Type = permanent | transient | temporary

Starts the Inets application. Default type is temporary. See also [application(3)]

stop() -> ok

Stops the inets application. See also [application(3)]

start(Service, ServiceConfig) ->

start(Service, ServiceConfig, How) -> fok, Pidg | ferror, Reasong

Types:

� Service = service()
� ServiceConfig = [fOption, Valueg]
� Option = property()
� Value = term()
� How = inets | stand alone - default is inets

Dynamically starts an inets service after the inets application has been started.

Note:
Dynamically started services will not be handled by application takeover and failover
behavior when inets is run as a distributed application. Nor will they be automaticly
restarted when the inets application is restarted, but as long as the inets application is
up and running they will be supervised and may be soft code upgraded. Services
started as stand alone, e.i. the service is not started as part of the inets application,
will lose all OTP application benefits such as soft upgrade. The “stand alone-service”
will be linked to the process that started it. In most cases some of the supervison
functionallity will still be in place and in some sense the calling process has now
become the top supervisor.

stop(Service, Reference) ->

Types:

� Service = service() | stand alone
� Reference = pid() | term() - service specified reference

Stops a started service of the inets application or takes down a “stand alone-service”
gracefully. When the stand alone option is used in start, only the pid is a valid
argument to stop.

67Inets

inets Inets Reference Manual

SEE ALSO

ftp(3) [page 30], http(3) [page 39], httpd(3) [page 45], tftp(3) [page 81]

68 Inets

Inets Reference Manual mod alias

mod alias
Erlang Module

Erlang Webserver Server internal API for handling of things such as interaction data
exported by the mod alias module.

Exports

default index(ConfigDB, Path) -> NewPath

Types:

� ConfigDB = config db()
� Path = NewPath = string()

If Path is a directory, default index/2, it starts searching for resources or files that are
specified in the config directive DirectoryIndex. If an appropriate resource or file is
found, it is appended to the end of Path and then returned. Path is returned unaltered,
if no appropriate file is found, or if Path is not a directory. config db() is the server
config file in ETS table format as described in Inets Users Guide. [page 4].

path(PathData, ConfigDB, RequestURI) -> Path

Types:

� PathData = interaction data()
� ConfigDB = config db()
� RequestURI = Path = string()

path/3 returns the actual file Path in the RequestURI (See RFC 1945). If the
interaction data freal name,fPath,AfterPathgg has been exported by mod alias; Path
is returned. If no interaction data has been exported, ServerRoot is used to generate a
file Path. config db() and interaction data() are as defined in Inets Users Guide
[page 4].

real name(ConfigDB, RequestURI, Aliases) -> Ret

Types:

� ConfigDB = config db()
� RequestURI = string()
� Aliases = [fFakeName,RealNameg]
� Ret = fShortPath,Path,AfterPathg
� ShortPath = Path = AfterPath = string()

69Inets

mod alias Inets Reference Manual

real name/3 traverses Aliases, typically extracted from ConfigDB, and matches each
FakeName with RequestURI. If a match is found FakeName is replaced with RealName in
the match. The resulting path is split into two parts, that is ShortPath and AfterPath
as defined in httpd util:split path/1 [page 65]. Path is generated from ShortPath, that
is the result from default index/2 [page 69] with ShortPath as an argument.
config db() is the server config file in ETS table format as described in Inets User
Guide. [page 4].

real script name(ConfigDB,RequestURI,ScriptAliases) -> Ret

Types:

� ConfigDB = config db()
� RequestURI = string()
� ScriptAliases = [fFakeName,RealNameg]
� Ret = fShortPath,AfterPathg | not a script
� ShortPath = AfterPath = string()

real name/3 traverses ScriptAliases, typically extracted from ConfigDB, and matches
each FakeName with RequestURI. If a match is found FakeName is replaced with
RealName in the match. If the resulting match is not an executable script not a script
is returned. If it is a script the resulting script path is in two parts, that is ShortPath and
AfterPath as defined in httpd util:split script path/1 [page 65]. config db() is the
server config file in ETS table format as described in Inets Users Guide. [page 4].

70 Inets

Inets Reference Manual mod auth

mod auth
Erlang Module

This module provides for basic user authentication using textual files, dets databases as
well as mnesia databases.

Exports

add user(UserName, Options) -> true| ferror, Reasong

add user(UserName, Password, UserData, Port, Dir) -> true | ferror, Reasong

add user(UserName, Password, UserData, Address, Port, Dir) -> true | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fpassword,Passwordg | fuserData,UserDatag | fport,Portg |
faddr,Addressg | fdir,Directoryg | fauthPassword,AuthPasswordg

� Password = string()
� UserData = term()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword =string()
� Reason = term()

add user/2, add user/5 and add user/6 adds a user to the user database. If the
operation is succesful, this function returns true. If an error occurs, ferror,Reasong is
returned. When add user/2 is called the Password, UserData Port and Dir options is
mandatory.

delete user(UserName,Options) -> true | ferror, Reasong

delete user(UserName, Port, Dir) -> true | ferror, Reasong

delete user(UserName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()

71Inets

mod auth Inets Reference Manual

� AuthPassword = string()
� Reason = term()

delete user/2, delete user/3 and delete user/4 deletes a user from the user
database. If the operation is succesful, this function returns true. If an error occurs,
ferror,Reasong is returned. When delete user/2 is called the Port and Dir options
are mandatory.

get user(UserName,Options) -> fok, #httpd userg |ferror, Reasong

get user(UserName, Port, Dir) -> fok, #httpd userg | ferror, Reasong

get user(UserName, Address, Port, Dir) -> fok, #httpd userg | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

get user/2, get user/3 and get user/4 returns a httpd user record containing the
userdata for a specific user. If the user cannot be found, ferror, Reasong is returned.
When get user/2 is called the Port and Dir options are mandatory.

list users(Options) -> fok, Usersg | ferror, Reasong <name>list users(Port, Dir) ->
fok, Usersg | ferror, Reasong

list users(Address, Port, Dir) -> fok, Usersg | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list()
� AuthPassword = string()
� Reason = atom()

list users/1, list users/2 and list users/3 returns a list of users in the user
database for a specific Port/Dir. When list users/1 is called the Port and Dir options
are mandatory.

add group member(GroupName, UserName, Options) -> true | ferror, Reasong

add group member(GroupName, UserName, Port, Dir) -> true | ferror, Reasong

add group member(GroupName, UserName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� GroupName = string()

72 Inets

Inets Reference Manual mod auth

� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

add group member/3, add group member/4 and add group member/5 adds a user to a
group. If the group does not exist, it is created and the user is added to the group. Upon
successful operation, this function returns true. When add group members/3 is called
the Port and Dir options are mandatory.

delete group member(GroupName, UserName, Options) -> true | ferror, Reasong

delete group member(GroupName, UserName, Port, Dir) -> true | ferror, Reasong

delete group member(GroupName, UserName, Address, Port, Dir) -> true | ferror,
Reasong

Types:

� GroupName = string()
� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

delete group member/3, delete group member/4 and delete group member/5
deletes a user from a group. If the group or the user does not exist, this function returns
an error, otherwise it returns true. When delete group member/3 is called the Port
and Dir options are mandatory.

list group members(GroupName, Options) -> fok, Usersg | ferror, Reasong

list group members(GroupName, Port, Dir) -> fok, Usersg | ferror, Reasong

list group members(GroupName, Address, Port, Dir) -> fok, Usersg | ferror, Reasong

Types:

� GroupName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list()

73Inets

mod auth Inets Reference Manual

� AuthPassword = string()
� Reason = term()

list group members/2, list group members/3 and list group members/4 lists the
members of a specified group. If the group does not exist or there is an error, ferror,
Reasong is returned. When list group members/2 is called the Port and Dir options
are mandatory.

list groups(Options) -> fok, Groupsg | ferror, Reasong

list groups(Port, Dir) -> fok, Groupsg | ferror, Reasong

list groups(Address, Port, Dir) -> fok, Groupsg | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Groups = list()
� AuthPassword = string()
� Reason = term()

list groups/1, list groups/2 and list groups/3 lists all the groups available. If
there is an error, ferror, Reasong is returned. When list groups/1 is called the Port
and Dir options are mandatory.

delete group(GroupName, Options) -> true | ferror,Reasong
<name>delete group(GroupName, Port, Dir) -> true | ferror, Reasong

delete group(GroupName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� GroupName = string()
� AuthPassword = string()
� Reason = term()

delete group/2, delete group/3 and delete group/4 deletes the group specified
and returns true. If there is an error, ferror, Reasong is returned. When
delete group/2 is called the Port and Dir options are mandatory.

update password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | ferror,
Reasong

update password(Address,Port, Dir, OldPassword, NewPassword, NewPassword) -> ok |
ferror, Reasong

Types:

74 Inets

Inets Reference Manual mod auth

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� GroupName = string()
� OldPassword = string()
� NewPassword = string()
� Reason = term()

update password/5 and update password/6 Updates the AuthAccessPassword for the
specified directory. If NewPassword is equal to “NoPassword” no password is requires to
change authorisation data. If NewPassword is equal to “DummyPassword” no changes
can be done without changing the password first.

SEE ALSO

httpd(3) [page 45], mod alias(3) [page 69],

75Inets

mod esi Inets Reference Manual

mod esi
Erlang Module

This module defines the API - Erlang Server Interface (ESI). Which is a more efficient
way of writing erlang scripts for your Inets web server than writing them as common
CGI scripts.

Exports

deliver(SessionID, Data) -> ok | ferror, Reasong

Types:

� SessionID = term()
� Data = string() | io list()
� Reason = term()

This function is only intended to be used from functions called by the Erl Scheme
interface to deliver parts of the content to the user.

Sends data from a Erl Scheme script back to the client. Note that if any HTTP-header
fields should be added by the script they must be in the first call to deliver/2 and the
data in the call must be a string. Do not assume anything about the data type of
SessionID, the SessionID must be the value given as input to the esi call back function
that you implemented.

ESI Callback Functions

Exports

Module:Function(SessionID, Env, Input)->

Types:

� SessionID = term()
� Env = [EnvironmentDirectives] ++ ParsedHeader
� EnvironmentDirectives = fKey,Valueg
� Key = query string | content length | server software | gateway interface |

server protocol | server port | request method | remote addr | script name.
<v>Input = string()

76 Inets

Inets Reference Manual mod esi

The Module must be found in the code path and export Function with an arity of two.
An erlScriptAlias must also be set up in the configuration file for the Web server.

If the HTTP request is a post request and a body is sent then content length will be the
length of the posted data. If get is used query string will be the data after ? in the url.

ParsedHeader is the HTTP request as a key value tuple list. The keys in parsed header
will be the in lower case.

SessionID is a identifier the server use when deliver/2 is called, do not assume
any-thing about the datatype.

Use this callback function to dynamicly generate dynamic web content. when a part of
the page is generated send the data back to the client through deliver/2. Note that the
first chunk of data sent to the client must at least contain all HTTP header fields that
the response will generate. If the first chunk not contains End of HTTP header that is
"\r\ \r\ " the server will assume that no HTTP header fields will be generated.

Module:Function(Env, Input)-> Response

Types:

� Env = [EnvironmentDirectives] ++ ParsedHeader
� EnvironmentDirectives = fKey,Valueg
� Key = query string | content length | server software | gateway interface |

server protocol | server port | request method | remote addr | script name.
<v>Input = string()

� Response = string()

This callback format consumes quite much memory since the whole response must be
generated before it is sent to the user.This functions is deprecated and only keept for
backwards compability. For new development Module:Function/3 should be used.

77Inets

mod security Inets Reference Manual

mod security
Erlang Module

Security Audit and Trailing Functionality

Exports

list auth users(Port) -> Users | []

list auth users(Address, Port) -> Users | []

list auth users(Port, Dir) -> Users | []

list auth users(Address, Port, Dir) -> Users | []

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list() = [string()]

list auth users/1, list auth users/2 and list auth users/3 returns a list of users
that are currently authenticated. Authentications are stored for SecurityAuthTimeout
seconds, and are then discarded.

list blocked users(Port) -> Users | []

list blocked users(Address, Port) -> Users | []

list blocked users(Port, Dir) -> Users | []

list blocked users(Address, Port, Dir) -> Users | []

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list() = [string()]

list blocked users/1, list blocked users/2 and list blocked users/3 returns a
list of users that are currently blocked from access.

block user(User, Port, Dir, Seconds) -> true | ferror, Reasong

block user(User, Address, Port, Dir, Seconds) -> true | ferror, Reasong

Types:

� User = string()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined

78 Inets

Inets Reference Manual mod security

� Dir = string()
� Seconds = integer() | infinity
� Reason = no such directory

block user/4 and block user/5 blocks the user User from the directory Dir for a
specified amount of time.

unblock user(User, Port) -> true | ferror, Reasong

unblock user(User, Address, Port) -> true | ferror, Reasong

unblock user(User, Port, Dir) -> true | ferror, Reasong

unblock user(User, Address, Port, Dir) -> true | ferror, Reasong

Types:

� User = string()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Reason = term()

unblock user/2, unblock user/3 and unblock user/4 removes the user User from
the list of blocked users for the Port (and Dir) specified.

The SecurityCallbackModule

The SecurityCallbackModule is a user written module that can receive events from the
mod security Erlang Webserver API module. This module only exports one function,
event/4 [page 79], which is described below.

Exports

event(What, Port, Dir, Data) -> ignored

event(What, Address, Port, Dir, Data) -> ignored

Types:

� What = atom()
� Port = integer()
� Address = fA,B,C,Dg | string() <v>Dir = string()
� What = [Info]
� Info = fName, Valueg

event/4 or event/4 is called whenever an event occurs in the mod security Erlang
Webserver API module (event/4 is called if Address is undefined and event/5
otherwise). The What argument specifies the type of event that has occurred, and
should be one of the following reasons; auth fail (a failed user authentication),
user block (a user is being blocked from access) or user unblock (a user is being
removed from the block list).

79Inets

mod security Inets Reference Manual

Note:
Note that the user unblock event is not triggered when a user is removed from the
block list explicitly using the unblock user function.

80 Inets

Inets Reference Manual tftp

tftp
Erlang Module

This is a complete implementation of the following IETF standards:

� RFC 1350, The TFTP Protocol (revision 2).

� RFC 2347, TFTP Option Extension.

� RFC 2348, TFTP Blocksize Option.

� RFC 2349, TFTP Timeout Interval and Transfer Size Options.

The only feature that not is implemented in this release is the “netascii” transfer mode.

The start/1 [page 83] function starts a daemon process which listens for UDP packets
on a port. When it receives a request for read or write it spawns a temporary server
process which handles the actual transfer of the file.

On the client side the read file/3 [page 83] and write file/3 [page 84] functions spawns
a temporary client process which establishes contact with a TFTP daemon and performs
the actual transfer of the file.

tftp uses a callback module to handle the actual file transfer. Two such callback
modules are provided, tftp binary and tftp file. See read file/3 [page 83] and
write file/3 [page 84] for more information about these. The user can also implement
own callback modules, see CALLBACK FUNCTIONS [page 86] below. A callback
module provided by the user is registered using the callback option, see DATA TYPES
[page 82] below.

TFTP SERVER SERVICE START/STOP

A TFTP server can be configured to start statically when starting the Inets application.
Alternatively it can be started dynamically (when Inets already is started) by calling the
Inets application API inets:start(tftpd, ServiceConfig), or inets:start(tftpd,
ServiceConfig, How), see inets(3) [page 66] for details. The ServiceConfig for TFTP
is described below in the COMMON DATA TYPES [page 82] section.

The TFTP server can be stopped using inets:stop(tftpd, Pid), see inets(3) [page
66] for details.

The TPFT client is of such a temporary nature that it is not handled as a service in the
Inets service framework.

81Inets

tftp Inets Reference Manual

COMMON DATA TYPES

ServiceConfig = Options
Options = [option()]
option() -- see below

Most of the options are common for both the client and the server side, but some of
them differs a little. Here are the available options:

fdebug, Levelg Level = none | error | warning | brief | normal | verbose
| all

Controls the level of debug printouts. The default is none.

fhost, Hostg Host = hostname() see [inet(3)]
The name or IP address of the host where the TFTP daemon resides. This option is
only used by the client.

fport, Portg Port = int()

The TFTP port where the daemon listens. It defaults to the standardized number
69. On the server side it may sometimes make sense to set it to 0, which means
that the daemon just will pick a free port (which one is returned by the info/1
function).
If a socket has somehow already has been connected, the fudp, [ffd, integer()g]g
option can be used to pass the open file descriptor to gen udp. This can be
automated a bit by using a command line argument stating the prebound file
descriptor number. For example, if the Port is 69 and the file descriptor 22 has
been opened by setuid socket wrap. Then the command line argument “-tftpd 69
22” will trigger the prebound file descriptor 22 to be used instead of opening port
69. The UDP option fudp, [ffd, 22g]g autmatically be added. See
init:get argument/ about command line arguments and gen udp:open/2 about
UDP options.

fport policy, Policyg Policy = random | Port | frange, MinPort, MaxPortg
Port = MinPort = MaxPort = int()

Policy for the selection of the temporary port which is used by the server/client
during the file transfer. It defaults to random which is the standardized policy.
With this policy a randomized free port used. A single port or a range of ports can
be useful if the protocol should pass through a firewall.

fudp, Optionsg Options = [Opt] see [gen udp:open/2]

fuse tsize, Boolg Bool = bool()

Flag for automated usage of the tsize option. With this set to true, the
write file/3 client will determine the filesize and send it to the server as the
standardized tsize option. A read file/3 client will just acquire filesize from the
server by sending a zero tsize.

fmax tsize, MaxTsizeg MaxTsize = int() | infinity

Threshold for the maximal filesize in bytes. The transfer will be aborted if the limit
is exceeded. It defaults to infinity.

fmax conn, MaxConng MaxConn = int() | infinity

Threshold for the maximal number of active connections. The daemon will reject
the setup of new connections if the limit is exceeded. It defaults to infinity.

82 Inets

Inets Reference Manual tftp

fTftpKey, TftpValg TftpKey = string()
TftpVal = string()

The name and value of a TFTP option.

freject, Featureg Feature = Mode | TftpKey
Mode = read | write
TftpKey = string()

Control which features that should be rejected. This is mostly useful for the server
as it may restrict usage of certain TFTP options or read/write access.

fcallback, fRegExp, Module, Stategg RegExp = string()
Module = atom()
State = term()

Registration of a callback module. When a file is to be transferred, its local
filename will be matched to the regular expressions of the registered callbacks. The
first matching callback will be used the during the transfer. See read file/3 [page
83] and write file/3 [page 84].
The callback module must implement the tftp behavior, CALLBACK
FUNCTIONS [page 86].

flogger, Moduleg Module = module()()

Callback module for customized logging of error, warning and info messages. >The
callback module must implement the tftp logger behavior, LOGGER
FUNCTIONS [page 88]. The default module is tftp logger.

fmax retries, MaxRetriesg MaxRetries = int()

Threshold for the maximal number of retries. By default the server/client will try
to resend a message up to 5 times when the timeout expires.

Exports

start(Options) -> fok, Pidg | ferror, Reasong

Types:

� Options = [option()]
� Pid = pid()
� Reason = term()

Starts a daemon process which listens for udp packets on a port. When it receives a
request for read or write it spawns a temporary server process which handles the actual
transfer of the (virtual) file.

read file(RemoteFilename, LocalFilename, Options) -> fok, LastCallbackStateg |
ferror, Reasong

Types:

� RemoteFilename = string()
� LocalFilename = binary | string()
� Options = [option()]
� LastCallbackState = term()
� Reason = term()

83Inets

tftp Inets Reference Manual

Reads a (virtual) file RemoteFilename from a TFTP server.

If LocalFilename is the atom binary, tftp binary is used as callback module. It
concatenates all transferred blocks and returns them as one single binary in
LastCallbackState.

If LocalFilename is a string and there are no registered callback modules, tftp file is
used as callback module. It writes each transferred block to the file named
LocalFilename and returns the number of transferred bytes in LastCallbackState.

If LocalFilename is a string and there are registered callback modules, LocalFilename
is tested against the regexps of these and the callback module corresponding to the first
match is used, or an error tuple is returned if no matching regexp is found.

write file(RemoteFilename, LocalFilename, Options) -> fok, LastCallbackStateg |
ferror, Reasong

Types:

� RemoteFilename = string()
� LocalFilename = binary() | string()
� Options = [option()]
� LastCallbackState = term()
� Reason = term()

Writes a (virtual) file RemoteFilename to a TFTP server.

If LocalFilename is a binary, tftp binary is used as callback module. The binary is
transferred block by block and the number of transferred bytes is returned in
LastCallbackState.

If LocalFilename is a string and there are no registered callback modules, tftp file is
used as callback module. It reads the file named LocalFilename block by block and
returns the number of transferred bytes in LastCallbackState.

If LocalFilename is a string and there are registered callback modules, LocalFilename
is tested against the regexps of these and the callback module corresponding to the first
match is used, or an error tuple is returned if no matching regexp is found.

info(daemons) -> [fPid, Optionsg]

Types:

� Pid = [pid()()]
� Options = [option()]
� Reason = term()

Returns info about all TFTP daemon processes.

info(servers) -> [fPid, Optionsg]

Types:

� Pid = [pid()()]
� Options = [option()]
� Reason = term()

Returns info about all TFTP server processes.

info(Pid) -> fok, Optionsg | ferror, Reasong

84 Inets

Inets Reference Manual tftp

Types:

� Options = [option()]
� Reason = term()

Returns info about a TFTP daemon, server or client process.

change config(daemons, Options) -> [fPid, Resultg]

Types:

� Options = [option()]
� Pid = pid()
� Result = ok | ferror, Reasong
� Reason = term()

Changes config for all TFTP daemon processes

change config(servers, Options) -> [fPid, Resultg]

Types:

� Options = [option()]
� Pid = pid()
� Result = ok | ferror, Reasong
� Reason = term()

Changes config for all TFTP server processes

change config(Pid, Options) -> Result

Types:

� Pid = pid()
� Options = [option()]
� Result = ok | ferror, Reasong
� Reason = term()

Changes config for a TFTP daemon, server or client process

start() -> ok | ferror, Reasong

Types:

� Reason = term()

Starts the Inets application.

85Inets

tftp Inets Reference Manual

CALLBACK FUNCTIONS

A tftp callback module should be implemented as a tftp behavior and export the
functions listed below.

On the server side the callback interaction starts with a call to open/5 with the
registered initial callback state. open/5 is expected to open the (virtual) file. Then
either the read/1 or write/2 functions are invoked repeatedly, once per transfererred
block. At each function call the state returned from the previous call is obtained. When
the last block has been encountered the read/1 or write/2 functions is expected to
close the (virtual) file and return its last state. The abort/3 function is only used in
error situations. prepare/5 is not used on the server side.

On the client side the callback interaction is the same, but it starts and ends a bit
differently. It starts with a call to prepare/5 with the same arguments as open/5 takes.
prepare/5 is expected to validate the TFTP options, suggested by the user and return
the subset of them that it accepts. Then the options is sent to the server which will
perform the same TFTP option negotiation procedure. The options that are accepted by
the server are forwarded to the open/5 function on the client side. On the client side
the open/5 function must accept all option as is or reject the transfer. Then the callback
interaction follows the same pattern as described above for the server side. When the
last block is encountered in read/1 or write/2 the returned state is forwarded to the
user and returned from read file/3 or write file/3.

If a callback (which performs the file access in the TFTP server) takes too long time
(more than the double TFTP timeout), the server will abort the connection and send an
error reply to the client. This implies that the server will release resources attached to
the connection faster than before. The server simply assumes that the client has given
up.

If the TFTP server receives yet another request from the same client (same host and
port) while it already has an active connection to the client, it will simply ignore the
new request if the request is equal with the first one (same filename and options). This
implies that the (new) client will be served by the already ongoing connection on the
server side. By not setting up yet another connection, in parallel with the ongoing one,
the server will consumer lesser resources.

Exports

prepare(Peer, Access, Filename, Mode, SuggestedOptions, InitialState) -> fok,
AcceptedOptions, NewStateg | ferror, fCode, Textgg

Types:

� Peer = fPeerType, PeerHost, PeerPortg
� PeerType = inet | inet6
� PeerHost = ip address()
� PeerPort = integer()
� Access = read | write
� Filename = string()
� Mode = string()
� SuggestedOptions = AcceptedOptions = [fKey, Valueg]
� Key = Value = string()

86 Inets

Inets Reference Manual tftp

� InitialState = [] | [froot dir, string()g]
� NewState = term()
� Code = undef | enoent | eacces | enospc
� | badop | eexist | baduser | badopt
� | int()
� Text = string()

Prepares to open a file on the client side.

No new options may be added, but the ones that are present in SuggestedOptionsmay
be omitted or replaced with new values in AcceptedOptions.

Will be followed by a call to open/4 before any read/write access is performed.
AcceptedOptions is sent to the server which replies with those options that it accepts.
These will be forwarded to open/4 as SuggestedOptions.

open(Peer, Access, Filename, Mode, SuggestedOptions, State) -> fok, AcceptedOptions,
NewStateg | ferror, fCode, Textgg

Types:

� Peer = fPeerType, PeerHost, PeerPortg
� PeerType = inet | inet6
� PeerHost = ip address()
� PeerPort = integer()
� Access = read | write
� Filename = string()
� Mode = string()
� SuggestedOptions = AcceptedOptions = [fKey, Valueg]
� Key = Value = string()
� State = InitialState | term()
� InitialState = [] | [froot dir, string()g]
� NewState = term()
� Code = undef | enoent | eacces | enospc
� | badop | eexist | baduser | badopt
� | int()
� Text = string()

Opens a file for read or write access.

On the client side where the open/5 call has been preceeded by a call to prepare/5, all
options must be accepted or rejected.

On the server side, where there is no preceeding prepare/5 call, no new options may
be added, but the ones that are present in SuggestedOptionsmay be omitted or
replaced with new values in AcceptedOptions.

read(State) -> fmore, Bin, NewStateg | flast, Bin, FileSizeg | ferror, fCode, Textgg

Types:

� State = NewState = term()
� Bin = binary()
� FileSize = int()
� Code = undef | enoent | eacces | enospc

87Inets

tftp Inets Reference Manual

� | badop | eexist | baduser | badopt
� | int()
� Text = string()

Read a chunk from the file.

The callback function is expected to close the file when the last file chunk is
encountered. When an error is encountered the callback function is expected to clean
up after the aborted file transfer, such as closing open file descriptors etc. In both cases
there will be no more calls to any of the callback functions.

write(Bin, State) -> fmore, NewStateg | flast, FileSizeg | ferror, fCode, Textgg

Types:

� Bin = binary()
� State = NewState = term()
� FileSize = int()
� Code = undef | enoent | eacces | enospc
� | badop | eexist | baduser | badopt
� | int()
� Text = string()

Write a chunk to the file.

The callback function is expected to close the file when the last file chunk is
encountered. When an error is encountered the callback function is expected to clean
up after the aborted file transfer, such as closing open file descriptors etc. In both cases
there will be no more calls to any of the callback functions.

abort(Code, Text, State) -> ok

Types:

� Code = undef | enoent | eacces | enospc
� | badop | eexist | baduser | badopt
� | int()
� Text = string()
� State = term()

Invoked when the file transfer is aborted.

The callback function is expected to clean up its used resources after the aborted file
transfer, such as closing open file descriptors etc. The function will not be invoked if any
of the other callback functions returns an error, as it is expected that they already have
cleaned up the necessary resources. It will however be invoked if the functions fails
(crashes).

LOGGER FUNCTIONS

A tftp logger callback module should be implemented as a tftp logger behavior and
export the functions listed below.

88 Inets

Inets Reference Manual tftp

Exports

error msg(Format, Data) -> ok | exit(Reason)

Types:

� Format = string()
� Data = [term()]
� Reason = term()

Log an error message. See error logger:error msg/2 for details.

warning msg(Format, Data) -> ok | exit(Reason)

Types:

� Format = string()
� Data = [term()]
� Reason = term()

Log a warning message. See error logger:warning msg/2 for details.

info msg(Format, Data) -> ok | exit(Reason)

Types:

� Format = string()
� Data = [term()]
� Reason = term()

Log an info message. See error logger:info msg/2 for details.

89Inets

tftp Inets Reference Manual

90 Inets

Glossary

HTTP

Hypertext Transfer Protocol.

RFC

A ”Request for Comments” used as a proposed standard by IETF.

91Inets

Glossary

92 Inets

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

abort/3
tftp , 88

account/2
ftp , 32

add_group_member/3
mod auth , 72

add_group_member/4
mod auth , 72

add_group_member/5
mod auth , 72

add_user/2
mod auth , 71

add_user/5
mod auth , 71

add_user/6
mod auth , 71

append/2
ftp , 32

append/3
ftp , 32

append_bin/3
ftp , 32

append_chunk/2
ftp , 32

append_chunk_end/1
ftp , 33

append_chunk_start/2
ftp , 33

block_user/4
mod security , 78

block_user/5
mod security , 78

cancel_request/1
http , 41

cancel_request/2
http , 41

cd/2
ftp , 33

change_config/2
tftp , 85

check_enum/2
httpd conf , 58

clean/1
httpd conf , 58

convert_request_date/1
httpd util , 61

cookie_header/1
http , 44

cookie_header/2
http , 44

create_etag/1
httpd util , 61

custom_clean/3
httpd conf , 58

day/1
httpd util , 61

decode_hex/1
httpd util , 61

default_index/2
mod alias , 69

delete/2
ftp , 33

delete_group/2
mod auth , 74

delete_group/4

93Inets

Index of Modules and Functions

mod auth , 74

delete_group_member/3
mod auth , 73

delete_group_member/4
mod auth , 73

delete_group_member/5
mod auth , 73

delete_user/2
mod auth , 71

delete_user/3
mod auth , 71

delete_user/4
mod auth , 71

deliver/2
mod esi , 76

deliver/3
httpd socket , 60

error_msg/2
tftp , 89

event/4
mod security , 79

event/5
mod security , 79

flatlength/1
httpd util , 61

formaterror/1
ftp , 33

ftp
account/2, 32
append/2, 32
append/3, 32
append_bin/3, 32
append_chunk/2, 32
append_chunk_end/1, 33
append_chunk_start/2, 33
cd/2, 33
delete/2, 33
formaterror/1, 33
lcd/2, 33
lpwd/1, 34
ls/1, 34
ls/2, 34
mkdir/2, 34
nlist/1, 34
nlist/2, 34

pwd/1, 34
quote/2, 37
recv/2, 35
recv/3, 35
recv_bin/2, 35
recv_chunk/1, 35
recv_chunk_start/2, 35
rename/3, 36
rmdir/2, 36
send/2, 36
send/3, 36
send_bin/3, 36
send_chunk/2, 36
send_chunk_end/1, 37
send_chunk_start/2, 36
type/2, 37
user/3, 37
user/4, 37

get_user/2
mod auth , 72

get_user/3
mod auth , 72

get_user/4
mod auth , 72

header/2
httpd util , 62

header/3
httpd util , 62

header/4
httpd util , 62

hexlist_to_integer/1
httpd util , 62

http
cancel_request/1, 41
cancel_request/2, 41
cookie_header/1, 44
cookie_header/2, 44
request/1, 41
request/2, 41
request/4, 41
request/5, 41
set_options/1, 42
set_options/2, 42
stream_next/1, 43
verify_cookie/2, 43
verify_cookie/3, 43

httpd

94 Inets

Index of Modules and Functions

info/1, 52
info/2, 52, 53
info/3, 53
Module:do/1, 55
Module:load/2, 55
Module:remove/1, 56
Module:store/3, 56
parse_query/1, 56
reload_config/2, 53

httpd conf
check_enum/2, 58
clean/1, 58
custom_clean/3, 58
is_directory/1, 58
is_file/1, 59
make_integer/1, 59

httpd socket
deliver/3, 60
peername/2, 60
resolve/0, 60

httpd util
convert_request_date/1, 61
create_etag/1, 61
day/1, 61
decode_hex/1, 61
flatlength/1, 61
header/2, 62
header/3, 62
header/4, 62
hexlist_to_integer/1, 62
integer_to_hexlist/1, 62
lookup/2, 62
lookup/3, 62
lookup_mime/2, 63
lookup_mime/3, 63
lookup_mime_default/2, 63
lookup_mime_default/3, 63
message/3, 63
month/1, 63
multi_lookup/2, 64
reason_phrase/1, 64
rfc1123_date/0, 64
rfc1123_date/6, 64
split/3, 64
split_path/1, 65
split_script_path/1, 64
strip/1, 65
suffix/1, 65

inets
service_info/0, 66

service_names/0, 67
services/0, 66
start/0, 67
start/1, 67
start/2, 67
start/3, 67
stop/0, 67
stop/2, 67

info/1
httpd , 52
tftp , 84

info/2
httpd , 52, 53

info/3
httpd , 53

info_msg/2
tftp , 89

integer_to_hexlist/1
httpd util , 62

is_directory/1
httpd conf , 58

is_file/1
httpd conf , 59

lcd/2
ftp , 33

list_auth_users/1
mod security , 78

list_auth_users/2
mod security , 78

list_auth_users/3
mod security , 78

list_blocked_users/1
mod security , 78

list_blocked_users/2
mod security , 78

list_blocked_users/3
mod security , 78

list_group_members/2
mod auth , 73

list_group_members/3
mod auth , 73

list_group_members/4
mod auth , 73

list_groups/1

95Inets

Index of Modules and Functions

mod auth , 74

list_groups/2
mod auth , 74

list_groups/3
mod auth , 74

list_users/1
mod auth , 72

list_users/3
mod auth , 72

lookup/2
httpd util , 62

lookup/3
httpd util , 62

lookup_mime/2
httpd util , 63

lookup_mime/3
httpd util , 63

lookup_mime_default/2
httpd util , 63

lookup_mime_default/3
httpd util , 63

lpwd/1
ftp , 34

ls/1
ftp , 34

ls/2
ftp , 34

make_integer/1
httpd conf , 59

message/3
httpd util , 63

mkdir/2
ftp , 34

mod alias
default_index/2, 69
path/3, 69
real_name/3, 69
real_script_name/3, 70

mod auth
add_group_member/3, 72
add_group_member/4, 72
add_group_member/5, 72
add_user/2, 71
add_user/5, 71

add_user/6, 71
delete_group/2, 74
delete_group/4, 74
delete_group_member/3, 73
delete_group_member/4, 73
delete_group_member/5, 73
delete_user/2, 71
delete_user/3, 71
delete_user/4, 71
get_user/2, 72
get_user/3, 72
get_user/4, 72
list_group_members/2, 73
list_group_members/3, 73
list_group_members/4, 73
list_groups/1, 74
list_groups/2, 74
list_groups/3, 74
list_users/1, 72
list_users/3, 72
update_password/5, 74
update_password/6, 74

mod esi
deliver/2, 76
Module:Function/2, 77
Module:Function/3, 76

mod security
block_user/4, 78
block_user/5, 78
event/4, 79
event/5, 79
list_auth_users/1, 78
list_auth_users/2, 78
list_auth_users/3, 78
list_blocked_users/1, 78
list_blocked_users/2, 78
list_blocked_users/3, 78
unblock_user/2, 79
unblock_user/3, 79
unblock_user/4, 79

Module:do/1
httpd , 55

Module:Function/2
mod esi , 77

Module:Function/3
mod esi , 76

Module:load/2
httpd , 55

Module:remove/1

96 Inets

Index of Modules and Functions

httpd , 56

Module:store/3
httpd , 56

month/1
httpd util , 63

multi_lookup/2
httpd util , 64

nlist/1
ftp , 34

nlist/2
ftp , 34

open/6
tftp , 87

parse_query/1
httpd , 56

path/3
mod alias , 69

peername/2
httpd socket , 60

prepare/6
tftp , 86

pwd/1
ftp , 34

quote/2
ftp , 37

read/1
tftp , 87

read_file/3
tftp , 83

real_name/3
mod alias , 69

real_script_name/3
mod alias , 70

reason_phrase/1
httpd util , 64

recv/2
ftp , 35

recv/3
ftp , 35

recv_bin/2

ftp , 35

recv_chunk/1
ftp , 35

recv_chunk_start/2
ftp , 35

reload_config/2
httpd , 53

rename/3
ftp , 36

request/1
http , 41

request/2
http , 41

request/4
http , 41

request/5
http , 41

resolve/0
httpd socket , 60

rfc1123_date/0
httpd util , 64

rfc1123_date/6
httpd util , 64

rmdir/2
ftp , 36

send/2
ftp , 36

send/3
ftp , 36

send_bin/3
ftp , 36

send_chunk/2
ftp , 36

send_chunk_end/1
ftp , 37

send_chunk_start/2
ftp , 36

service_info/0
inets , 66

service_names/0
inets , 67

services/0

97Inets

Index of Modules and Functions

inets , 66

set_options/1
http , 42

set_options/2
http , 42

split/3
httpd util , 64

split_path/1
httpd util , 65

split_script_path/1
httpd util , 64

start/0
inets , 67
tftp , 85

start/1
inets , 67
tftp , 83

start/2
inets , 67

start/3
inets , 67

stop/0
inets , 67

stop/2
inets , 67

stream_next/1
http , 43

strip/1
httpd util , 65

suffix/1
httpd util , 65

tftp
abort/3, 88
change_config/2, 85
error_msg/2, 89
info/1, 84
info_msg/2, 89
open/6, 87
prepare/6, 86
read/1, 87
read_file/3, 83
start/0, 85
start/1, 83
warning_msg/2, 89
write/2, 88

write_file/3, 84

type/2
ftp , 37

unblock_user/2
mod security , 79

unblock_user/3
mod security , 79

unblock_user/4
mod security , 79

update_password/5
mod auth , 74

update_password/6
mod auth , 74

user/3
ftp , 37

user/4
ftp , 37

verify_cookie/2
http , 43

verify_cookie/3
http , 43

warning_msg/2
tftp , 89

write/2
tftp , 88

write_file/3
tftp , 84

98 Inets

