
Kernel Application (KERNEL)

version 2.12

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 Kernel Reference Manual 1

1.1 kernel . 32

1.2 application . 36

1.3 auth . 45

1.4 code . 47

1.5 disk log . 56

1.6 erl boot server . 70

1.7 erl ddll . 72

1.8 erl prim loader . 87

1.9 erlang . 90

1.10 error handler . 165

1.11 error logger . 167

1.12 file . 174

1.13 gen sctp . 197

1.14 gen tcp . 211

1.15 gen udp . 218

1.16 global . 221

1.17 global group . 226

1.18 heart . 230

1.19 inet . 232

1.20 init . 243

1.21 net adm . 248

1.22 net kernel . 251

1.23 os . 255

1.24 packages . 258

1.25 pg2 . 261

1.26 rpc . 264

1.27 seq trace . 271

1.28 user . 279

1.29 wrap log reader . 280

iiiKernel Application (KERNEL)

1.30 zlib . 282

1.31 app . 291

1.32 config . 294

iv Kernel Application (KERNEL)

Kernel Reference Manual

Short Summaries

� Application kernel [page 32] – The Kernel Application

� Erlang Module application [page 36] – Generic OTP application functions

� Erlang Module auth [page 45] – Erlang Network Authentication Server

� Erlang Module code [page 47] – Erlang Code Server

� Erlang Module disk log [page 56] – A disk based term logging facility

� Erlang Module erl boot server [page 70] – Boot Server for Other Erlang Machines

� Erlang Module erl ddll [page 72] – Dynamic Driver Loader and Linker

� Erlang Module erl prim loader [page 87] – Low Level Erlang Loader

� Erlang Module erlang [page 90] – The Erlang BIFs

� Erlang Module error handler [page 165] – Default System Error Handler

� Erlang Module error logger [page 167] – Erlang Error Logger

� Erlang Module file [page 174] – File Interface Module

� Erlang Module gen sctp [page 197] – The gen sctp module provides functions for
communicating with sockets using the SCTP protocol.

� Erlang Module gen tcp [page 211] – Interface to TCP/IP sockets

� Erlang Module gen udp [page 218] – Interface to UDP sockets

� Erlang Module global [page 221] – A Global Name Registration Facility

� Erlang Module global group [page 226] – Grouping Nodes to Global Name
Registration Groups

� Erlang Module heart [page 230] – Heartbeat Monitoring of an Erlang Runtime
System

� Erlang Module inet [page 232] – Access to TCP/IP Protocols

� Erlang Module init [page 243] – Coordination of System Startup

� Erlang Module net adm [page 248] – Various Erlang Net Administration Routines

� Erlang Module net kernel [page 251] – Erlang Networking Kernel

� Erlang Module os [page 255] – Operating System Specific Functions

� Erlang Module packages [page 258] – Packages in Erlang

� Erlang Module pg2 [page 261] – Distributed Named Process Groups

� Erlang Module rpc [page 264] – Remote Procedure Call Services

� Erlang Module seq trace [page 271] – Sequential Tracing of Messages

1Kernel Application (KERNEL)

Kernel Reference Manual

� Erlang Module user [page 279] – Standard I/O Server

� Erlang Module wrap log reader [page 280] – A function to read internally
formatted wrap disk logs

� Erlang Module zlib [page 282] – Zlib Compression interface.

� File app [page 291] – Application resource file.

� File config [page 294] – Configuration file.

kernel

No functions are exported.

application

The following functions are exported:

� get all env() -> Env
[page 36] Get the configuration parameters for an application

� get all env(Application) -> Env
[page 36] Get the configuration parameters for an application

� get all key() -> fok, Keysg | []
[page 36] Get the application specification keys

� get all key(Application) -> fok, Keysg | undefined
[page 36] Get the application specification keys

� get application() -> fok, Applicationg | undefined
[page 37] Get the name of an application containing a certain process or module

� get application(Pid | Module) -> fok, Applicationg | undefined
[page 37] Get the name of an application containing a certain process or module

� get env(Par) -> fok, Valg | undefined
[page 37] Get the value of a configuration parameter

� get env(Application, Par) -> fok, Valg | undefined
[page 37] Get the value of a configuration parameter

� get key(Key) -> fok, Valg | undefined
[page 37] Get the value of an application specification key

� get key(Application, Key) -> fok, Valg | undefined
[page 37] Get the value of an application specification key

� load(AppDescr) -> ok | ferror, Reasong
[page 37] Load an application

� load(AppDescr, Distributed) -> ok | ferror, Reasong
[page 37] Load an application

� loaded applications() -> [fApplication, Description, Vsng]
[page 38] Get the currently loaded applications

� permit(Application, Bool) -> ok | ferror, Reasong
[page 38] Change an application’s permission to run on a node.

� set env(Application, Par, Val) -> ok
[page 39] Set the value of a configuration parameter

2 Kernel Application (KERNEL)

Kernel Reference Manual

� set env(Application, Par, Val, Timeout) -> ok
[page 39] Set the value of a configuration parameter

� start(Application) -> ok | ferror, Reasong
[page 39] Load and start an application

� start(Application, Type) -> ok | ferror, Reasong
[page 39] Load and start an application

� start type() -> StartType | local | undefined
[page 40] Get the start type of an ongoing application startup.

� stop(Application) -> ok | ferror, Reasong
[page 40] Stop an application

� takeover(Application, Type) -> ok | ferror, Reasong
[page 41] Take over a distributed application

� unload(Application) -> ok | ferror, Reasong
[page 41] Unload an application

� unset env(Application, Par) -> ok
[page 41] Unset the value of a configuration parameter

� unset env(Application, Par, Timeout) -> ok
[page 41] Unset the value of a configuration parameter

� which applications() -> [fApplication, Description, Vsng]
[page 42] Get the currently running applications

� which applications(Timeout) -> [fApplication, Description, Vsng]
[page 42] Get the currently running applications

� Module:start(StartType, StartArgs) -> fok, Pidg | fok, Pid, Stateg |
ferror, Reasong
[page 42] Start an application

� Module:start phase(Phase, StartType, PhaseArgs) -> ok | ferror,
Reasong
[page 43] Extended start of an application

� Module:prep stop(State) -> NewState
[page 43] Prepare an application for termination

� Module:stop(State)
[page 44] Clean up after termination of an application

� Module:config change(Changed, New, Removed) -> ok
[page 44] Update the configuration parameters for an application.

auth

The following functions are exported:

� is auth(Node) -> yes | no
[page 45] Status of communication authorization (deprecated)

� cookie() -> Cookie
[page 45] Magic cookie for local node (deprecated)

� cookie(TheCookie) -> true
[page 45] Set the magic for the local node (deprecated)

� node cookie([Node, Cookie]) -> yes | no
[page 45] Set the magic cookie for a node and verify authorization (deprecated)

� node cookie(Node, Cookie) -> yes | no
[page 45] Set the magic cookie for a node and verify authorization (deprecated)

3Kernel Application (KERNEL)

Kernel Reference Manual

code

The following functions are exported:

� set path(Path) -> true | ferror, Whatg
[page 49] Set the code server search path

� get path() -> Path
[page 49] Return the code server search path

� add path(Dir) -> true | ferror, Whatg
[page 49] Add a directory to the end of the code path

� add pathz(Dir) -> true | ferror, Whatg
[page 49] Add a directory to the end of the code path

� add patha(Dir) -> true | ferror, Whatg
[page 49] Add a directory to the beginning of the code path

� add paths(Dirs) -> ok
[page 50] Add directories to the end of the code path

� add pathsz(Dirs) -> ok
[page 50] Add directories to the end of the code path

� add pathsa(Dirs) -> ok
[page 50] Add directories to the beginning of the code path

� del path(Name | Dir) -> true | false | ferror, Whatg
[page 50] Delete a directory from the code path

� replace path(Name, Dir) -> true | ferror, Whatg
[page 50] Replace a directory with another in the code path

� load file(Module) -> fmodule, Moduleg | ferror, Whatg
[page 51] Load a module

� load abs(Filename) -> fmodule, Moduleg | ferror, Whatg
[page 51] Load a module, residing in a given file

� ensure loaded(Module) -> fmodule, Moduleg | ferror, Whatg
[page 51] Ensure that a module is loaded

� load binary(Module, Filename, Binary) -> fmodule, Moduleg | ferror,
Whatg
[page 51] Load object code for a module

� delete(Module) -> true | false
[page 52] Removes current code for a module

� purge(Module) -> true | false
[page 52] Removes old code for a module

� soft purge(Module) -> true | false
[page 52] Removes old code for a module, unless no process uses it

� is loaded(Module) -> ffile, Loadedg | false
[page 52] Check if a module is loaded

� all loaded() -> [fModule, Loadedg]
[page 53] Get all loaded modules

� which(Module) -> Which
[page 53] The object code file of a module

� get object code(Module) -> fModule, Binary, Filenameg | error
[page 53] Get the object code for a module

4 Kernel Application (KERNEL)

Kernel Reference Manual

� root dir() -> string()
[page 53] Root directory of Erlang/OTP

� lib dir() -> string()
[page 53] Library directory of Erlang/OTP

� lib dir(Name) -> string() | ferror, bad nameg
[page 54] Library directory for an application

� compiler dir() -> string()
[page 54] Library directory for the compiler

� priv dir(Name) -> string() | ferror, bad nameg
[page 54] Priv directory for an application

� objfile extension() -> ".beam"
[page 54] Object code file extension

� stick dir(Dir) -> ok | ferror, Whatg
[page 55] Mark a directory as sticky

� unstick dir(Dir) -> ok | ferror, Whatg
[page 55] Remove a sticky directory mark

� rehash() -> ok
[page 55] Rehash or create code path cache

� where is file(Filename) -> Absname | non existing
[page 55] Full name of a file located in the code path

� clash() -> ok
[page 55] Searche for modules with identical names.

disk log

The following functions are exported:

� accessible logs() -> f[LocalLog], [DistributedLog]g
[page 58] Return the accessible disk logs on the current node.

� alog(Log, Term)
[page 58] Asynchronously log an item onto a disk log.

� balog(Log, Bytes) -> ok | ferror, Reasong
[page 58] Asynchronously log an item onto a disk log.

� alog terms(Log, TermList)
[page 58] Asynchronously log several items onto a disk log.

� balog terms(Log, BytesList) -> ok | ferror, Reasong
[page 58] Asynchronously log several items onto a disk log.

� block(Log)
[page 59] Block a disk log.

� block(Log, QueueLogRecords) -> ok | ferror, Reasong
[page 59] Block a disk log.

� change header(Log, Header) -> ok | ferror, Reasong
[page 59] Change the head or head func option for an owner of a disk log.

� change notify(Log, Owner, Notify) -> ok | ferror, Reasong
[page 59] Change the notify option for an owner of a disk log.

� change size(Log, Size) -> ok | ferror, Reasong
[page 60] Change the size of an open disk log.

5Kernel Application (KERNEL)

Kernel Reference Manual

� chunk(Log, Continuation)
[page 60] Read a chunk of items written to a disk log.

� chunk(Log, Continuation, N) -> fContinuation2, Termsg |
fContinuation2, Terms, Badbytesg | eof | ferror, Reasong
[page 60] Read a chunk of items written to a disk log.

� bchunk(Log, Continuation)
[page 60] Read a chunk of items written to a disk log.

� bchunk(Log, Continuation, N) -> fContinuation2, Binariesg |
fContinuation2, Binaries, Badbytesg | eof | ferror, Reasong
[page 60] Read a chunk of items written to a disk log.

� chunk info(Continuation) -> InfoList | ferror, Reasong
[page 61] Return information about a chunk continuation of a disk log.

� chunk step(Log, Continuation, Step) -> fok, Continuation2g | ferror,
Reasong
[page 61] Step forward or backward among the wrap log files of a disk log.

� close(Log) -> ok | ferror, Reasong
[page 62] Close a disk log.

� format error(Error) -> Chars
[page 62] Return an English description of a disk log error reply.

� inc wrap file(Log) -> ok | ferror, Reasong
[page 62] Change to the next wrap log file of a disk log.

� info(Log) -> InfoList | ferror, no such logg
[page 62] Return information about a disk log.

� lclose(Log)
[page 64] Close a disk log on one node.

� lclose(Log, Node) -> ok | ferror, Reasong
[page 64] Close a disk log on one node.

� log(Log, Term)
[page 64] Log an item onto a disk log.

� blog(Log, Bytes) -> ok | ferror, Reasong
[page 64] Log an item onto a disk log.

� log terms(Log, TermList)
[page 64] Log several items onto a disk log.

� blog terms(Log, BytesList) -> ok | ferror, Reasong
[page 65] Log several items onto a disk log.

� open(ArgL) -> OpenRet | DistOpenRet
[page 65] Open a disk log file.

� pid2name(Pid) -> fok, Logg | undefined
[page 68] Return the name of the disk log handled by a pid.

� reopen(Log, File)
[page 68] Reopen a disk log and save the old log.

� reopen(Log, File, Head)
[page 68] Reopen a disk log and save the old log.

� breopen(Log, File, BHead) -> ok | ferror, Reasong
[page 68] Reopen a disk log and save the old log.

� sync(Log) -> ok | ferror, Reasong
[page 69] Flush the contents of a disk log to the disk.

6 Kernel Application (KERNEL)

Kernel Reference Manual

� truncate(Log)
[page 69] Truncate a disk log.

� truncate(Log, Head)
[page 69] Truncate a disk log.

� btruncate(Log, BHead) -> ok | ferror, Reasong
[page 69] Truncate a disk log.

� unblock(Log) -> ok | ferror, Reasong
[page 69] Unblock a disk log.

erl boot server

The following functions are exported:

� start(Slaves) -> fok, Pidg | ferror, Whatg
[page 70] Start the boot server

� start link(Slaves) -> fok, Pidg | ferror, Whatg
[page 70] Start the boot server and links the caller

� add slave(Slave) -> ok | ferror, Whatg
[page 70] Add a slave to the list of allowed slaves

� delete slave(Slave) -> ok | ferror, Whatg
[page 70] Delete a slave from the list of allowed slaves

� which slaves() -> Slaves
[page 71] Return the current list of allowed slave hosts

erl ddll

The following functions are exported:

� demonitor(MonitorRef) -> ok
[page 74] Remove a monitor for a driver

� info() -> AllInfoList
[page 74] Retrieve information about all drivers

� info(Name) -> InfoList
[page 74] Retrieve information about one driver

� info(Name, Tag) -> Value
[page 75] Retrieve specific information about one driver

� load(Path, Name) -> ok | ferror, ErrorDescg
[page 75] Load a driver

� load driver(Path, Name) -> ok | ferror, ErrorDescg
[page 76] Load a driver

� monitor(Tag, Item) -> MonitorRef
[page 77] Create a monitor for a driver

� reload(Path, Name) -> ok | ferror, ErrorDescg
[page 78] Replace a driver

� reload driver(Path, Name) -> ok | ferror, ErrorDescg
[page 79] Replace a driver

7Kernel Application (KERNEL)

Kernel Reference Manual

� try load(Path, Name, OptionList) -> fok,Statusg | fok,
PendingStatus, Refg | ferror, ErrorDescg
[page 80] Load a driver

� try unload(Name, OptionList) -> fok,Statusg | fok, PendingStatus,
Refg | ferror, ErrorAtomg
[page 83] Unload a driver

� unload(Name) -> ok | ferror, ErrorDescg
[page 85] Unload a driver

� unload driver(Name) -> ok | ferror, ErrorDescg
[page 85] Unload a driver

� loaded drivers() -> fok, Driversg
[page 86] List loaded drivers

� format error(ErrorDesc) -> string()
[page 86] Format an error descriptor

erl prim loader

The following functions are exported:

� start(Id, Loader, Hosts) -> fok, Pidg | ferror, Whatg
[page 87] Start the Erlang low level loader

� get file(File) -> fok, Bin, FullNameg | error
[page 87] Get a file

� get path() -> fok, Pathg
[page 88] Get the path set in the loader

� set path(Path) -> ok
[page 88] Set the path of the loader

erlang

The following functions are exported:

� abs(Number) -> int() | float()
[page 90] Arithmetical absolute value

� adler32(Data) -> int()
[page 90] Compute adler32 checksum

� adler32(OldAdler, Data) -> int()
[page 91] Compute adler32 checksum

� adler32 combine(FirstAdler, SecondAdler, SecondSize) -> int()
[page 91] Combine two adler32 checksums

� erlang:append element(Tuple1, Term) -> Tuple2
[page 91] Append an extra element to a tuple

� apply(Fun, Args) -> term() | empty()
[page 91] Apply a function to an argument list

� apply(Module, Function, Args) -> term() | empty()
[page 92] Apply a function to an argument list

� atom to list(Atom) -> string()
[page 92] Text representation of an atom

8 Kernel Application (KERNEL)

Kernel Reference Manual

� binary to list(Binary) -> [char()]
[page 92] Convert a binary to a list

� binary to list(Binary, Start, Stop) -> [char()]
[page 93] Convert part of a binary to a list

� bitstring to list(Bitstring) -> [char()|bitstring()]
[page 93] Convert a bitstring to a list

� binary to term(Binary) -> term()
[page 93] Decode an Erlang external term format binary

� bit size(Bitstring) -> int()
[page 93] Return the size of a bitstring

� erlang:bump reductions(Reductions) -> void()
[page 93] Increment the reduction counter

� byte size(Bitstring) -> int()
[page 94] Return the size of a bitstring (or binary)

� erlang:cancel timer(TimerRef) -> Time | false
[page 94] Cancel a timer

� check process code(Pid, Module) -> bool()
[page 94] Check if a process is executing old code for a module

� concat binary(ListOfBinaries)
[page 95] Concatenate a list of binaries (deprecated)

� crc32(Data) -> int()
[page 95] Compute crc32 (IEEE 802.3) checksum

� crc32(OldCrc, Data) -> int()
[page 95] Compute crc32 (IEEE 802.3) checksum

� crc32 combine(FirstCrc, SecondCrc, SecondSize) -> int()
[page 95] Combine two crc32 (IEEE 802.3) checksums

� date() -> fYear, Month, Dayg
[page 95] Current date

� delete module(Module) -> true | undefined
[page 96] Make the current code for a module old

� erlang:demonitor(MonitorRef) -> true
[page 96] Stop monitoring

� erlang:demonitor(MonitorRef, OptionList) -> true
[page 97] Stop monitoring

� disconnect node(Node) -> bool() | ignored
[page 97] Force the disconnection of a node

� erlang:display(Term) -> true
[page 97] Print a term on standard output

� element(N, Tuple) -> term()
[page 98] Get Nth element of a tuple

� erase() -> [fKey, Valg]
[page 98] Return and delete the process dictionary

� erase(Key) -> Val | undefined
[page 98] Return and delete a value from the process dictionary

� erlang:error(Reason)
[page 98] Stop execution with a given reason

9Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:error(Reason, Args)
[page 99] Stop execution with a given reason

� exit(Reason)
[page 99] Stop execution with a given reason

� exit(Pid, Reason) -> true
[page 99] Send an exit signal to a process

� erlang:fault(Reason)
[page 99] Stop execution with a given reason

� erlang:fault(Reason, Args)
[page 100] Stop execution with a given reason

� float(Number) -> float()
[page 100] Convert a number to a float

� float to list(Float) -> string()
[page 100] Text representation of a float

� erlang:fun info(Fun) -> [fItem, Infog]
[page 100] Information about a fun

� erlang:fun info(Fun, Item) -> fItem, Infog
[page 101] Information about a fun

� erlang:fun to list(Fun) -> string()
[page 102] Text representation of a fun

� erlang:function exported(Module, Function, Arity) -> bool()
[page 102] Check if a function is exported and loaded

� garbage collect() -> true
[page 102] Force an immediate garbage collection of the calling process

� garbage collect(Pid) -> bool()
[page 102] Force an immediate garbage collection of a process

� get() -> [fKey, Valg]
[page 102] Return the process dictionary

� get(Key) -> Val | undefined
[page 103] Return a value from the process dictionary

� erlang:get cookie() -> Cookie | nocookie
[page 103] Get the magic cookie of the local node

� get keys(Val) -> [Key]
[page 103] Return a list of keys from the process dictionary

� erlang:get stacktrace() -> [fModule, Function, Arity | Argsg]
[page 103] Get the call stack back-trace of the last exception

� group leader() -> GroupLeader
[page 104] Get the group leader for the calling process

� group leader(GroupLeader, Pid) -> true
[page 104] Set the group leader for a process

� halt()
[page 104] Halt the Erlang runtime system and indicate normal exit to the calling
environment

� halt(Status)
[page 104] Halt the Erlang runtime system

� erlang:hash(Term, Range) -> Hash
[page 104] Hash function (deprecated)

10 Kernel Application (KERNEL)

Kernel Reference Manual

� hd(List) -> term()
[page 105] Head of a list

� erlang:hibernate(Module, Function, Args)
[page 105] Hibernate a process until a message is sent to it

� integer to list(Integer) -> string()
[page 105] Text representation of an integer

� erlang:integer to list(Integer, Base) -> string()
[page 105] Text representation of an integer

� iolist to binary(IoListOrBinary) -> binary()
[page 106] Convert an iolist to a binary

� iolist size(Item) -> int()
[page 106] Size of an iolist

� is alive() -> bool()
[page 106] Check whether the local node is alive

� is atom(Term) -> bool()
[page 106] Check whether a term is an atom

� is binary(Term) -> bool()
[page 106] Check whether a term is a binary

� is bitstring(Term) -> bool()
[page 107] Check whether a term is a bitstring

� is boolean(Term) -> bool()
[page 107] Check whether a term is a boolean

� erlang:is builtin(Module, Function, Arity) -> bool()
[page 107] Check if a function is a BIF implemented in C

� is float(Term) -> bool()
[page 107] Check whether a term is a float

� is function(Term) -> bool()
[page 107] Check whether a term is a fun

� is function(Term, Arity) -> bool()
[page 107] Check whether a term is a fun with a given arity

� is integer(Term) -> bool()
[page 108] Check whether a term is an integer

� is list(Term) -> bool()
[page 108] Check whether a term is a list

� is number(Term) -> bool()
[page 108] Check whether a term is a number

� is pid(Term) -> bool()
[page 108] Check whether a term is a pid

� is port(Term) -> bool()
[page 108] Check whether a term is a port

� is process alive(Pid) -> bool()
[page 108] Check whether a process is alive

� is record(Term, RecordTag) -> bool()
[page 109] Check whether a term appears to be a record

� is record(Term, RecordTag, Size) -> bool()
[page 109] Check whether a term appears to be a record

11Kernel Application (KERNEL)

Kernel Reference Manual

� is reference(Term) -> bool()
[page 109] Check whether a term is a reference

� is tuple(Term) -> bool()
[page 109] Check whether a term is a tuple

� length(List) -> int()
[page 110] Length of a list

� link(Pid) -> true
[page 110] Create a link to another process (or port)

� list to atom(String) -> atom()
[page 110] Convert from text representation to an atom

� list to binary(IoList) -> binary()
[page 110] Convert a list to a binary

� list to bitstring(BitstringList) -> bitstring()
[page 111] Convert a list to a bitstring

� list to existing atom(String) -> atom()
[page 111] Convert from text representation to an atom

� list to float(String) -> float()
[page 111] Convert from text representation to a float

� list to integer(String) -> int()
[page 111] Convert from text representation to an integer

� erlang:list to integer(String, Base) -> int()
[page 112] Convert from text representation to an integer

� list to pid(String) -> pid()
[page 112] Convert from text representation to a pid

� list to tuple(List) -> tuple()
[page 112] Convert a list to a tuple

� load module(Module, Binary) -> fmodule, Moduleg | ferror, Reasong
[page 112] Load object code for a module

� erlang:loaded() -> [Module]
[page 113] List of all loaded modules

� erlang:localtime() -> fDate, Timeg
[page 113] Current local date and time

� erlang:localtime to universaltime(fDate1, Time1g) -> fDate2, Time2g
[page 113] Convert from local to Universal Time Coordinated (UTC) date and
time

� erlang:localtime to universaltime(fDate1, Time1g, IsDst) -> fDate2,
Time2g
[page 113] Convert from local to Universal Time Coordinated (UTC) date and
time

� make ref() -> ref()
[page 114] Return an almost unique reference

� erlang:make tuple(Arity, InitialValue) -> tuple()
[page 114] Create a new tuple of a given arity

� erlang:md5(Data) -> Digest
[page 114] Compute an MD5 message digest

12 Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:md5 final(Context) -> Digest
[page 115] Finish the update of an MD5 context and return the computed MD5
message digest

� erlang:md5 init() -> Context
[page 115] Create an MD5 context

� erlang:md5 update(Context, Data) -> NewContext
[page 115] Update an MD5 context with data, and return a new context

� erlang:memory() -> [fType, Sizeg]
[page 115] Information about dynamically allocated memory

� erlang:memory(Type | [Type]) -> Size | [fType, Sizeg]
[page 117] Information about dynamically allocated memory

� module loaded(Module) -> bool()
[page 117] Check if a module is loaded

� erlang:monitor(Type, Item) -> MonitorRef
[page 117] Start monitoring

� monitor node(Node, Flag) -> true
[page 119] Monitor the status of a node

� erlang:monitor node(Node, Flag, Options) -> true
[page 119] Monitor the status of a node

� node() -> Node
[page 119] Name of the local node

� node(Arg) -> Node
[page 119] At which node is a pid, port or reference located

� nodes() -> Nodes
[page 120] All visible nodes in the system

� nodes(Arg | [Arg]) -> Nodes
[page 120] All nodes of a certain type in the system

� now() -> fMegaSecs, Secs, MicroSecsg
[page 120] Elapsed time since 00:00 GMT

� open port(PortName, PortSettings) -> port()
[page 120] Open a port

� erlang:phash(Term, Range) -> Hash
[page 123] Portable hash function

� erlang:phash2(Term [, Range]) -> Hash
[page 123] Portable hash function

� pid to list(Pid) -> string()
[page 123] Text representation of a pid

� port close(Port) -> true
[page 123] Close an open port

� port command(Port, Data) -> true
[page 124] Send data to a port

� port connect(Port, Pid) -> true
[page 124] Set the owner of a port

� port control(Port, Operation, Data) -> Res
[page 125] Perform a synchronous control operation on a port

� erlang:port call(Port, Operation, Data) -> term()
[page 125] Synchronous call to a port with term data

13Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:port info(Port) -> [fItem, Infog] | undefined
[page 126] Information about a port

� erlang:port info(Port, Item) -> fItem, Infog | undefined | []
[page 126] Information about a port

� erlang:port to list(Port) -> string()
[page 126] Text representation of a port identifier

� erlang:ports() -> [port()]
[page 126] All open ports

� pre loaded() -> [Module]
[page 127] List of all pre-loaded modules

� erlang:process display(Pid, Type) -> void()
[page 127] Write information about a local process on standard error

� process flag(Flag, Value) -> OldValue
[page 127] Set process flags for the calling process

� process flag(Pid, Flag, Value) -> OldValue
[page 129] Set process flags for a process

� process info(Pid) -> InfoResult
[page 129] Information about a process

� process info(Pid, ItemSpec) -> InfoResult
[page 130] Information about a process

� processes() -> [pid()]
[page 132] All processes

� purge module(Module) -> void()
[page 132] Remove old code for a module

� put(Key, Val) -> OldVal | undefined
[page 132] Add a new value to the process dictionary

� erlang:raise(Class, Reason, Stacktrace)
[page 133] Stop execution with an exception of given class, reason and call stack
backtrace

� erlang:read timer(TimerRef) -> int() | false
[page 134] Number of milliseconds remaining for a timer

� erlang:ref to list(Ref) -> string()
[page 134] Text representation of a reference

� register(RegName, Pid | Port) -> true
[page 134] Register a name for a pid (or port)

� registered() -> [RegName]
[page 134] All registered names

� erlang:resume process(Suspendee) -> true
[page 134] Resume a suspended process

� round(Number) -> int()
[page 135] Return an integer by rounding a number

� self() -> pid()
[page 135] Pid of the calling process

� erlang:send(Dest, Msg) -> Msg
[page 135] Send a message

� erlang:send(Dest, Msg, [Option]) -> Res
[page 136] Send a message conditionally

14 Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:send after(Time, Dest, Msg) -> TimerRef
[page 136] Start a timer

� erlang:send nosuspend(Dest, Msg) -> bool()
[page 136] Try to send a message without ever blocking

� erlang:send nosuspend(Dest, Msg, Options) -> bool()
[page 137] Try to send a message without ever blocking

� erlang:set cookie(Node, Cookie) -> true
[page 138] Set the magic cookie of a node

� setelement(Index, Tuple1, Value) -> Tuple2
[page 138] Set Nth element of a tuple

� size(Item) -> int()
[page 138] Size of a tuple or binary

� spawn(Fun) -> pid()
[page 139] Create a new process with a fun as entry point

� spawn(Node, Fun) -> pid()
[page 139] Create a new process with a fun as entry point on a given node

� spawn(Module, Function, Args) -> pid()
[page 139] Create a new process with a function as entry point

� spawn(Node, Module, Function, ArgumentList) -> pid()
[page 139] Create a new process with a function as entry point on a given node

� spawn link(Fun) -> pid()
[page 139] Create and link to a new process with a fun as entry point

� spawn link(Node, Fun) ->
[page 140] Create and link to a new process with a fun as entry point on a
specified node

� spawn link(Module, Function, Args) -> pid()
[page 140] Create and link to a new process with a function as entry point

� spawn link(Node, Module, Function, Args) -> pid()
[page 140] Create and link to a new process with a function as entry point on a
given node

� spawn monitor(Fun) -> fpid(),reference()g
[page 140] Create and monitor a new process with a fun as entry point

� spawn monitor(Module, Function, Args) -> fpid(),reference()g
[page 140] Create and monitor a new process with a function as entry point

� spawn opt(Fun, [Option]) -> pid() | fpid(),reference()g
[page 141] Create a new process with a fun as entry point

� spawn opt(Node, Fun, [Option]) -> pid()
[page 141] Create a new process with a fun as entry point on a given node

� spawn opt(Module, Function, Args, [Option]) -> pid() |
fpid(),reference()g
[page 141] Create a new process with a function as entry point

� spawn opt(Node, Module, Function, Args, [Option]) -> pid()
[page 142] Create a new process with a function as entry point on a given node

� split binary(Bin, Pos) -> fBin1, Bin2g
[page 143] Split a binary into two

� erlang:start timer(Time, Dest, Msg) -> TimerRef
[page 143] Start a timer

15Kernel Application (KERNEL)

Kernel Reference Manual

� statistics(Type) -> Res
[page 143] Information about the system

� erlang:suspend process(Suspendee, OptList) -> true | false
[page 144] Suspend a process

� erlang:suspend process(Suspendee) -> true
[page 145] Suspend a process

� erlang:system flag(Flag, Value) -> OldValue
[page 146] Set system flags

� erlang:system info(Type) -> Res
[page 147] Information about the system

� erlang:system monitor() -> MonSettings
[page 151] Current system performance monitoring settings

� erlang:system monitor(undefined | fMonitorPid, Optionsg) ->
MonSettings
[page 152] Set or clear system performance monitoring options

� erlang:system monitor(MonitorPid, [Option]) -> MonSettings
[page 152] Set system performance monitoring options

� erlang:system profile() -> ProfilerSettings
[page 153] Current system profiling settings

� erlang:system profile(ProfilerPid, Options) -> ProfilerSettings
[page 153] Current system profiling settings

� term to binary(Term) -> ext binary()
[page 154] Encode a term to an Erlang external term format binary

� term to binary(Term, [Option]) -> ext binary()
[page 154] Encode a term to en Erlang external term format binary

� throw(Any)
[page 155] Throw an exception

� time() -> fHour, Minute, Secondg
[page 155] Current time

� tl(List1) -> List2
[page 155] Tail of a list

� erlang:trace(PidSpec, How, FlagList) -> int()
[page 155] Set trace flags for a process or processes

� erlang:trace delivered(Tracee) -> Ref
[page 158] Notification when trace has been delivered

� erlang:trace info(PidOrFunc, Item) -> Res
[page 159] Trace information about a process or function

� erlang:trace pattern(MFA, MatchSpec) -> int()
[page 160] Set trace patterns for global call tracing

� erlang:trace pattern(MFA, MatchSpec, FlagList) -> int()
[page 160] Set trace patterns for tracing of function calls

� trunc(Number) -> int()
[page 162] Return an integer by the truncating a number

� tuple size(Tuple) -> int()
[page 162] Return the size of a tuple

� tuple to list(Tuple) -> [term()]
[page 162] Convert a tuple to a list

16 Kernel Application (KERNEL)

Kernel Reference Manual

� erlang:universaltime() -> fDate, Timeg
[page 162] Current date and time according to Universal Time Coordinated
(UTC)

� erlang:universaltime to localtime(fDate1, Time1g) -> fDate2, Time2g
[page 163] Convert from Universal Time Coordinated (UTC) to local date and
time

� unlink(Id) -> true
[page 163] Remove a link, if there is one, to another process or port

� unregister(RegName) -> true
[page 164] Remove the registered name for a process (or port)

� whereis(RegName) -> pid() | port() | undefined
[page 164] Get the pid (or port) with a given registered name

� erlang:yield() -> true
[page 164] Let other processes get a chance to execute

error handler

The following functions are exported:

� undefined function(Module, Function, Args) -> term()
[page 165] Called when an undefined function is encountered

� undefined lambda(Module, Fun, Args) -> term()
[page 165] Called when an undefined lambda (fun) is encountered

error logger

The following functions are exported:

� error msg(Format) -> ok
[page 167] Send an standard error event to the error logger

� error msg(Format, Data) -> ok
[page 167] Send an standard error event to the error logger

� format(Format, Data) -> ok
[page 167] Send an standard error event to the error logger

� error report(Report) -> ok
[page 168] Send a standard error report event to the error logger

� error report(Type, Report) -> ok
[page 168] Send a user defined error report event to the error logger

� warning map() -> Tag
[page 168] Return the current mapping for warning events

� warning msg(Format) -> ok
[page 169] Send a standard warning event to the error logger

� warning msg(Format, Data) -> ok
[page 169] Send a standard warning event to the error logger

� warning report(Report) -> ok
[page 169] Send a standard warning report event to the error logger

� warning report(Type, Report) -> ok
[page 170] Send a user defined warning report event to the error logger

17Kernel Application (KERNEL)

Kernel Reference Manual

� info msg(Format) -> ok
[page 170] Send a standard information event to the error logger

� info msg(Format, Data) -> ok
[page 170] Send a standard information event to the error logger

� info report(Report) -> ok
[page 170] Send a standard information report event to the error logger

� info report(Type, Report) -> ok
[page 171] Send a user defined information report event to the error logger

� add report handler(Handler) -> Result
[page 171] Add an event handler to the error logger

� add report handler(Handler, Args) -> Result
[page 171] Add an event handler to the error logger

� delete report handler(Handler) -> Result
[page 171] Delete an event handler from the error logger

� tty(Flag) -> ok
[page 171] Enable or disable printouts to the tty

� logfile(Request) -> ok | Filename | ferror, Whatg
[page 172] Enable or disable error printouts to a file

file

The following functions are exported:

� change group(Filename, Gid) -> ok | ferror, Reasong
[page 174] Change group of a file

� change owner(Filename, Uid) -> ok | ferror, Reasong
[page 174] Change owner of a file

� change owner(Filename, Uid, Gid) -> ok | ferror, Reasong
[page 175] Change owner and group of a file

� change time(Filename, Mtime) -> ok | ferror, Reasong
[page 175] Change the modification time of a file

� change time(Filename, Mtime, Atime) -> ok | ferror, Reasong
[page 175] Change the modification and last access time of a file

� close(IoDevice) -> ok | ferror, Reasong
[page 175] Close a file

� consult(Filename) -> fok, Termsg | ferror, Reasong
[page 175] Read Erlang terms from a file

� copy(Source, Destination) ->
[page 176] Copy file contents

� copy(Source, Destination, ByteCount) -> fok, BytesCopiedg | ferror,
Reasong
[page 176] Copy file contents

� del dir(Dir) -> ok | ferror, Reasong
[page 176] Delete a directory

� delete(Filename) -> ok | ferror, Reasong
[page 177] Delete a file

18 Kernel Application (KERNEL)

Kernel Reference Manual

� eval(Filename) -> ok | ferror, Reasong
[page 177] Evaluate Erlang expressions in a file

� eval(Filename, Bindings) -> ok | ferror, Reasong
[page 178] Evaluate Erlang expressions in a file

� file info(Filename) -> fok, FileInfog | ferror, Reasong
[page 178] Get information about a file (deprecated)

� format error(Reason) -> Chars
[page 178] Return a descriptive string for an error reason

� get cwd() -> fok, Dirg | ferror, Reasong
[page 178] Get the current working directory

� get cwd(Drive) -> fok, Dirg | ferror, Reasong
[page 178] Get the current working directory for the drive specified

� list dir(Dir) -> fok, Filenamesg | ferror, Reasong
[page 179] List files in a directory

� make dir(Dir) -> ok | ferror, Reasong
[page 179] Make a directory

� make link(Existing, New) -> ok | ferror, Reasong
[page 179] Make a hard link to a file

� make symlink(Name1, Name2) -> ok | ferror, Reasong
[page 180] Make a symbolic link to a file or directory

� open(Filename, Modes) -> fok, IoDeviceg | ferror, Reasong
[page 180] Open a file

� path consult(Path, Filename) -> fok, Terms, FullNameg | ferror,
Reasong
[page 182] Read Erlang terms from a file

� path eval(Path, Filename) -> fok, FullNameg | ferror, Reasong
[page 182] Evaluate Erlang expressions in a file

� path open(Path, Filename, Modes) -> fok, IoDevice, FullNameg |
ferror, Reasong
[page 183] Open a file

� path script(Path, Filename) -> fok, Value, FullNameg | ferror,
Reasong
[page 183] Evaluate and return the value of Erlang expressions in a file

� path script(Path, Filename, Bindings) -> fok, Value, FullNameg |
ferror, Reasong
[page 184] Evaluate and return the value of Erlang expressions in a file

� pid2name(Pid) -> string() | undefined
[page 184] Return the name of the file handled by a pid

� position(IoDevice, Location) -> fok, NewPositiong | ferror, Reasong
[page 184] Set position in a file

� pread(IoDevice, LocNums) -> fok, DataLg | eof | ferror, Reasong
[page 185] Read from a file at certain positions

� pread(IoDevice, Location, Number) -> fok, Datag | eof | ferror,
Reasong
[page 185] Read from a file at a certain position

� pwrite(IoDevice, LocBytes) -> ok | ferror, fN, Reasongg
[page 186] Write to a file at certain positions

19Kernel Application (KERNEL)

Kernel Reference Manual

� pwrite(IoDevice, Location, Bytes) -> ok | ferror, Reasong
[page 186] Write to a file at a certain position

� read(IoDevice, Number) -> fok, Datag | eof | ferror, Reasong
[page 186] Read from a file

� read file(Filename) -> fok, Binaryg | ferror, Reasong
[page 186] Read a file

� read file info(Filename) -> fok, FileInfog | ferror, Reasong
[page 187] Get information about a file

� read link(Name) -> fok, Filenameg | ferror, Reasong
[page 188] See what a link is pointing to

� read link info(Name) -> fok, FileInfog | ferror, Reasong
[page 188] Get information about a link or file

� rename(Source, Destination) -> ok | ferror, Reasong
[page 189] Rename a file

� script(Filename) -> fok, Valueg | ferror, Reasong
[page 189] Evaluate and return the value of Erlang expressions in a file

� script(Filename, Bindings) -> fok, Valueg | ferror, Reasong
[page 190] Evaluate and return the value of Erlang expressions in a file

� set cwd(Dir) -> ok | ferror,Reasong
[page 190] Set the current working directory

� sync(IoDevice) -> ok | ferror, Reasong
[page 190] Synchronizes the in-memory state of a file with that on the physical
medium

� truncate(IoDevice) -> ok | ferror, Reasong
[page 190] Truncate a file

� write(IoDevice, Bytes) -> ok | ferror, Reasong
[page 191] Write to a file

� write file(Filename, Bytes) -> ok | ferror, Reasong
[page 191] Write a file

� write file(Filename, Binary, Bytes) -> ok | ferror, Reasong
[page 191] Write a file

� write file info(Filename, FileInfo) -> ok | ferror, Reasong
[page 192] Change information about a file

gen sctp

The following functions are exported:

� abort(sctp socket(), Assoc) -> ok | ferror, posix()g
[page 198] Abnormally terminate the association given by Assoc, without flushing
of unsent data

� close(sctp socket()) -> ok | ferror, posix()g
[page 198] Completely close the socket and all associations on it

� connect(Socket, Addr, Port, Opts) -> fok,Assocg | ferror, posix()g
[page 198] Same as connect(Socket, Addr, Port, Opts, infinity).

20 Kernel Application (KERNEL)

Kernel Reference Manual

� connect(Socket, Addr, Port, [Opt], Timeout) -> fok, Assocg | ferror,
posix()g
[page 198] Establish a new association for the socket Socket, with a peer (SCTP
server socket)

� controlling process(sctp socket(), pid()) -> ok
[page 199] Assign a new controlling process pid to the socket

� eof(Socket, Assoc) -> ok | ferror, Reasong
[page 199] Gracefully terminate the association given by Assoc, with flushing of all
unsent data

� listen(Socket, IsServer) -> ok | ferror, Reasong
[page 199] Set up a socket to listen.

� open() -> fok, Socketg | ferror, posix()g
[page 200] Create an SCTP socket and bind it to local addresses

� open(Port) -> fok, Socketg | ferror, posix()g
[page 200] Create an SCTP socket and bind it to local addresses

� open([Opt]) -> fok, Socketg | ferror, posix()g
[page 200] Create an SCTP socket and bind it to local addresses

� open(Port, [Opt]) -> fok, Socketg | ferror, posix()g
[page 200] Create an SCTP socket and bind it to local addresses

� recv(sctp socket()) -> fok, fFromIP, FromPort, AncData, BinMsggg |
ferror, Reasong
[page 200] Receive a message from a socket

� recv(sctp socket(), timeout()) -> fok, fFromIP, FromPort, AncData,
Datagg | ferror, Reasong
[page 200] Receive a message from a socket

� send(Socket, SndRcvInfo, Data) -> ok | ferror, Reasong
[page 202] Send a message using an #sctp sndrcvinfofgrecord

� send(Socket, Assoc, Stream, Data) -> ok | ferror, Reasong
[page 202] Send a message over an existing association and given stream

� error string(integer()) -> ok | string() | undefined
[page 202] Translate an SCTP error number into a string

gen tcp

The following functions are exported:

� connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong
[page 212] Connect to a TCP port

� connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror,
Reasong
[page 212] Connect to a TCP port

� listen(Port, Options) -> fok, ListenSocketg | ferror, Reasong
[page 213] Set up a socket to listen on a port

� accept(ListenSocket) -> fok, Socketg | ferror, Reasong
[page 213] Accept an incoming connection request on a listen socket

� accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong
[page 213] Accept an incoming connection request on a listen socket

21Kernel Application (KERNEL)

Kernel Reference Manual

� send(Socket, Packet) -> ok | ferror, Reasong
[page 214] Send a packet

� recv(Socket, Length) -> fok, Packetg | ferror, Reasong
[page 214] Receive a packet from a passive socket

� recv(Socket, Length, Timeout) -> fok, Packetg | ferror, Reasong
[page 214] Receive a packet from a passive socket

� controlling process(Socket, Pid) -> ok | ferror, Reasong
[page 215] Change controlling process of a socket

� close(Socket) -> ok | ferror, Reasong
[page 215] Close a TCP socket

� shutdown(Socket, How) -> ok | ferror, Reasong
[page 215] Immediately close a socket

gen udp

The following functions are exported:

� open(Port) -> fok, Socketg | ferror, Reasong
[page 218] Associate a UDP port number with the process calling it

� open(Port, Options) -> fok, Socketg | ferror, Reasong
[page 218] Associate a UDP port number with the process calling it

� send(Socket, Address, Port, Packet) -> ok | ferror, Reasong
[page 219] Send a packet

� recv(Socket, Length) -> fok, fAddress, Port, Packetgg | ferror,
Reasong
[page 219] Receive a packet from a passive socket

� recv(Socket, Length, Timeout) -> fok, fAddress, Port, Packetgg |
ferror, Reasong
[page 219] Receive a packet from a passive socket

� controlling process(Socket, Pid) -> ok
[page 219] Change controlling process of a socket

� close(Socket) -> ok | ferror, Reasong
[page 220] Close a UDP socket

global

The following functions are exported:

� del lock(Id)
[page 222] Delete a lock

� del lock(Id, Nodes) -> void()
[page 222] Delete a lock

� notify all name(Name, Pid1, Pid2) -> none
[page 222] Name resolving function that notifies both pids

� random exit name(Name, Pid1, Pid2) -> Pid1 | Pid2
[page 222] Name resolving function that kills one pid

� random notify name(Name, Pid1, Pid2) -> Pid1 | Pid2
[page 222] Name resolving function that notifies one pid

22 Kernel Application (KERNEL)

Kernel Reference Manual

� register name(Name, Pid)
[page 223] Globally register a name for a pid

� register name(Name, Pid, Resolve) -> yes | no
[page 223] Globally register a name for a pid

� registered names() -> [Name]
[page 223] All globally registered names

� re register name(Name, Pid)
[page 223] Atomically re-register a name

� re register name(Name, Pid, Resolve) -> void()
[page 223] Atomically re-register a name

� send(Name, Msg) -> Pid
[page 224] Send a message to a globally registered pid

� set lock(Id)
[page 224] Set a lock on the specified nodes

� set lock(Id, Nodes)
[page 224] Set a lock on the specified nodes

� set lock(Id, Nodes, Retries) -> boolean()
[page 224] Set a lock on the specified nodes

� sync() -> void()
[page 225] Synchronize the global name server

� trans(Id, Fun)
[page 225] Micro transaction facility

� trans(Id, Fun, Nodes)
[page 225] Micro transaction facility

� trans(Id, Fun, Nodes, Retries) -> Res | aborted
[page 225] Micro transaction facility

� unregister name(Name) -> void()
[page 225] Remove a globally registered name for a pid

� whereis name(Name) -> pid() | undefined
[page 225] Get the pid with a given globally registered name

global group

The following functions are exported:

� global groups() -> fGroupName, GroupNamesg | undefined
[page 227] Return the global group names

� info() -> [fItem, Infog]
[page 227] Information about global groups

� monitor nodes(Flag) -> ok
[page 227] Subscribe to node status changes

� own nodes() -> Nodes
[page 227] Return the group nodes

� registered names(Where) -> Names
[page 228] Return globally registered names

� send(Name, Msg) -> pid() | fbadarg, fName, Msggg
[page 228] Send a message to a globally registered pid

23Kernel Application (KERNEL)

Kernel Reference Manual

� send(Where, Name, Msg) -> pid() | fbadarg, fName, Msggg
[page 228] Send a message to a globally registered pid

� sync() -> ok
[page 228] Synchronize the group nodes

� whereis name(Name) -> pid() | undefined
[page 228] Get the pid with a given globally registered name

� whereis name(Where, Name) -> pid() | undefined
[page 228] Get the pid with a given globally registered name

heart

The following functions are exported:

� set cmd(Cmd) -> ok | ferror, fbad cmd, Cmdgg
[page 231] Set a temporary reboot command

� clear cmd() -> ok
[page 231] Clear the temporary boot command

� get cmd() -> fok, Cmdg
[page 231] Get the temporary reboot command

inet

The following functions are exported:

� close(Socket) -> ok
[page 233] Close a socket of any type

� get rc() -> [fPar, Valg]
[page 233] Return a list of IP configuration parameters

� format error(Posix) -> string()
[page 233] Return a descriptive string for an error reason

� getaddr(Host, Family) -> fok, Addressg | ferror, posix()g
[page 234] Return the IP-adress for a host

� getaddrs(Host, Family) -> fok, Addressesg | ferror, posix()g
[page 234] Return the IP-adresses for a host

� gethostbyaddr(Address) -> fok, Hostentg | ferror, posix()g
[page 234] Return a hostent record for the host with the given address

� gethostbyname(Name) -> fok, Hostentg | ferror, posix()g
[page 234] Return a hostent record for the host with the given name

� gethostbyname(Name, Family) -> fok, Hostentg | ferror, posix()g
[page 234] Return a hostent record for the host with the given name

� gethostname() -> fok, Hostnameg
[page 234] Return the local hostname

� getopts(Socket, Options) -> OptionValues | ferror, posix()g
[page 235] Get one or more options for a socket

� peername(Socket) -> fok, fAddress, Portgg | ferror, posix()g
[page 236] Return the address and port for the other end of a connection

� port(Socket) -> fok, Portg
[page 236] Return the local port number for a socket

24 Kernel Application (KERNEL)

Kernel Reference Manual

� sockname(Socket) -> fok, fAddress, Portgg | ferror, posix()g
[page 236] Return the local address and port number for a socket

� setopts(Socket, Options) -> ok | ferror, posix()g
[page 236] Set one or more options for a socket

init

The following functions are exported:

� boot(BootArgs) -> void()
[page 243] Start the Erlang runtime system

� get args() -> [Arg]
[page 243] Get all non-flag command line arguments

� get argument(Flag) -> fok, Argg | error
[page 243] Get the values associated with a command line user flag

� get arguments() -> Flags
[page 244] Get all command line user flags

� get plain arguments() -> [Arg]
[page 244] Get all non-flag command line arguments

� get status() -> fInternalStatus, ProvidedStatusg
[page 244] Get system status information

� reboot() -> void()
[page 244] Take down and restart an Erlang node smoothly

� restart() -> void()
[page 245] Restart the running Erlang node

� script id() -> Id
[page 245] Get the identity of the used boot script

� stop() -> void()
[page 245] Take down an Erlang node smoothly

� stop(Status) -> void()
[page 245] Take down an Erlang node smoothly

net adm

The following functions are exported:

� dns hostname(Host) -> fok, Nameg | ferror, Hostg
[page 248] Official name of a host

� host file() -> Hosts | ferror, Reasong
[page 248] Read the .hosts.erlangfile

� localhost() -> Name
[page 248] Name of the local host

� names() -> fok, [fName, Portg]g | ferror, Reasong
[page 248] Names of Erlang nodes at a host

� names(Host) -> fok, [fName, Portg]g | ferror, Reasong
[page 248] Names of Erlang nodes at a host

� ping(Node) -> pong | pang
[page 249] Set up a connection to a node

25Kernel Application (KERNEL)

Kernel Reference Manual

� world() -> [node()]
[page 249] Lookup and connect to all nodes at all hosts in.hosts.erlang

� world(Arg) -> [node()]
[page 249] Lookup and connect to all nodes at all hosts in.hosts.erlang

� world list(Hosts) -> [node()]
[page 249] Lookup and connect to all nodes at specified hosts

� world list(Hosts, Arg) -> [node()]
[page 249] Lookup and connect to all nodes at specified hosts

net kernel

The following functions are exported:

� allow(Nodes) -> ok | error
[page 251] Limit access to a specified set of nodes

� connect node(Node) -> true | false | ignored
[page 251] Establish a connection to a node

� monitor nodes(Flag) -> ok | Error
[page 252] Subscribe to node status change messages

� monitor nodes(Flag, Options) -> ok | Error
[page 252] Subscribe to node status change messages

� get net ticktime() -> Res
[page 253] Get net ticktime

� set net ticktime(NetTicktime) -> Res
[page 253] Set net ticktime

� set net ticktime(NetTicktime, TransitionPeriod) -> Res
[page 253] Set net ticktime

� start([Name]) -> fok, pid()g | ferror, Reasong
[page 254] Turn an Erlang runtime system into a distributed node

� start([Name, NameType]) -> fok, pid()g | ferror, Reasong
[page 254] Turn an Erlang runtime system into a distributed node

� start([Name, NameType, Ticktime]) -> fok, pid()g | ferror, Reasong
[page 254] Turn an Erlang runtime system into a distributed node

� stop() -> ok | ferror, not allowed | not foundg
[page 254] Turn a node into a non-distributed Erlang runtime system

os

The following functions are exported:

� cmd(Command) -> string()
[page 255] Execute a command in a shell of the target OS

� find executable(Name) -> Filename | false
[page 255] Absolute filename of a program

� find executable(Name, Path) -> Filename | false
[page 255] Absolute filename of a program

� getenv() -> [string()]
[page 255] List all environment variables

26 Kernel Application (KERNEL)

Kernel Reference Manual

� getenv(VarName) -> Value | false
[page 256] Get the value of an environment variable

� getpid() -> Value
[page 256] Return the process identifier of the emulator process

� putenv(VarName, Value) -> true
[page 256] Set a new value for an environment variable

� type() -> fOsfamily, Osnameg | Osfamily
[page 256] Return the OS family and, in some cases, OS name of the current
operating system

� version() -> fMajor, Minor, Releaseg | VersionString
[page 256] Return the Operating System version

packages

The following functions are exported:

� no functions exported
[page 260] x

pg2

The following functions are exported:

� create(Name) -> void()
[page 261] Create a new, empty process group

� delete(Name) -> void()
[page 261] Delete a process group

� get closest pid(Name) -> Pid | ferror, Reasong
[page 261] Common dispatch function

� get members(Name) -> [Pid] | ferror, Reasong
[page 262] Return all processes in a group

� get local members(Name) -> [Pid] | ferror, Reasong
[page 262] Return all local processes in a group

� join(Name, Pid) -> ok | ferror, Reasong
[page 262] Join a process to a group

� leave(Name, Pid) -> ok | ferror, Reasong
[page 262] Make a process leave a group

� which groups() -> [Name]
[page 262] Return a list of all known groups

� start()
[page 262] Start the pg2 server

� start link() -> fok, Pidg | ferror, Reasong
[page 262] Start the pg2 server

27Kernel Application (KERNEL)

Kernel Reference Manual

rpc

The following functions are exported:

� call(Node, Module, Function, Args) -> Res | fbadrpc, Reasong
[page 264] Evaluate a function call on a node

� call(Node, Module, Function, Args, Timeout) -> Res | fbadrpc,
Reasong
[page 264] Evaluate a function call on a node

� block call(Node, Module, Function, Args) -> Res | fbadrpc, Reasong
[page 264] Evaluate a function call on a node in the RPC server’s context

� block call(Node, Module, Function, Args, Timeout) -> Res | fbadrpc,
Reasong
[page 265] Evaluate a function call on a node in the RPC server’s context

� async call(Node, Module, Function, Args) -> Key
[page 265] Evaluate a function call on a node, asynchrous version

� yield(Key) -> Res | fbadrpc, Reasong
[page 265] Deliver the result of evaluating a function call on a node (blocking)

� nb yield(Key) -> fvalue, Valg | timeout
[page 265] Deliver the result of evaluating a function call on a node (non-blocking)

� nb yield(Key, Timeout) -> fvalue, Valg | timeout
[page 266] Deliver the result of evaluating a function call on a node (non-blocking)

� multicall(Module, Function, Args) -> fResL, BadNodesg
[page 266] Evaluate a function call on a number of nodes

� multicall(Nodes, Module, Function, Args) -> fResL, BadNodesg
[page 266] Evaluate a function call on a number of nodes

� multicall(Module, Function, Args, Timeout) -> fResL, BadNodesg
[page 266] Evaluate a function call on a number of nodes

� multicall(Nodes, Module, Function, Args, Timeout) -> fResL,
BadNodesg
[page 266] Evaluate a function call on a number of nodes

� cast(Node, Module, Function, Args) -> void()
[page 267] Run a function on a node ignoring the result

� eval everywhere(Module, Funtion, Args) -> void()
[page 267] Run a function on all nodes, ignoring the result

� eval everywhere(Nodes, Module, Function, Args) -> void()
[page 267] Run a function on specific nodes, ignoring the result

� abcast(Name, Msg) -> void()
[page 268] Broadcast a message asynchronously to a registered process on all nodes

� abcast(Nodes, Name, Msg) -> void()
[page 268] Broadcast a message asynchronously to a registered process on specific
nodes

� sbcast(Name, Msg) -> fGoodNodes, BadNodesg
[page 268] Broadcast a message synchronously to a registered process on all nodes

� sbcast(Nodes, Name, Msg) -> fGoodNodes, BadNodesg
[page 268] Broadcast a message synchronously to a registered process on specific
nodes

28 Kernel Application (KERNEL)

Kernel Reference Manual

� server call(Node, Name, ReplyWrapper, Msg) -> Reply | ferror,
Reasong
[page 268] Interact with a server on a node

� multi server call(Name, Msg) -> fReplies, BadNodesg
[page 269] Interact with the servers on a number of nodes

� multi server call(Nodes, Name, Msg) -> fReplies, BadNodesg
[page 269] Interact with the servers on a number of nodes

� safe multi server call(Name, Msg) -> fReplies, BadNodesg
[page 269] Interact with the servers on a number of nodes (deprecated)

� safe multi server call(Nodes, Name, Msg) -> fReplies, BadNodesg
[page 269] Interact with the servers on a number of nodes (deprecated)

� parallel eval(FuncCalls) -> ResL
[page 270] Evaluate several function calls on all nodes in parallel

� pmap(fModule, Functiong, ExtraArgs, List2) -> List1
[page 270] Parallell evaluation of mapping a function over a list

� pinfo(Pid) -> [fItem, Infog] | undefined
[page 270] Information about a process

� pinfo(Pid, Item) -> fItem, Infog | undefined | []
[page 270] Information about a process

seq trace

The following functions are exported:

� set token(Token) -> PreviousToken
[page 271] Set the trace token

� set token(Component, Val) -> fComponent, OldValg
[page 271] Set a component of the trace token

� get token() -> TraceToken
[page 272] Return the value of the trace token

� get token(Component) -> fComponent, Valg
[page 272] Return the value of a trace token component

� print(TraceInfo) -> void()
[page 272] Put the Erlang term TraceInfointo the sequential trace output

� print(Label, TraceInfo) -> void()
[page 272] Put the Erlang term TraceInfointo the sequential trace output

� reset trace() -> void()
[page 273] Stop all sequential tracing on the local node

� set system tracer(Tracer) -> OldTracer
[page 273] Set the system tracer

� get system tracer() -> Tracer
[page 273] Return the pid() or port() of the current system tracer.

user

No functions are exported.

29Kernel Application (KERNEL)

Kernel Reference Manual

wrap log reader

The following functions are exported:

� chunk(Continuation)
[page 280] Read a chunk of objects written to a wrap log.

� chunk(Continuation, N) -> fContinuation2, Termsg | fContinuation2,
Terms, Badbytesg | fContinuation2, eofg | ferror, Reasong
[page 280] Read a chunk of objects written to a wrap log.

� close(Continuation) -> ok
[page 281] Close a log

� open(Filename) -> OpenRet
[page 281] Open a log file

� open(Filename, N) -> OpenRet
[page 281] Open a log file

zlib

The following functions are exported:

� open() -> Z
[page 283] Open a stream and return a stream reference

� close(Z) -> ok
[page 283] Close a stream

� deflateInit(Z) -> ok
[page 283] Initialize a session for compression

� deflateInit(Z, Level) -> ok
[page 283] Initialize a session for compression

� deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok
[page 283] Initialize a session for compression

� deflate(Z, Data) -> Compressed
[page 284] Compress data

� deflate(Z, Data, Flush) ->
[page 284] Compress data

� deflateSetDictionary(Z, Dictionary) -> Adler32
[page 285] Initialize the compression dictionary

� deflateReset(Z) -> ok
[page 285] Reset the deflate session

� deflateParams(Z, Level, Strategy) -> ok
[page 285] Dynamicly update deflate parameters

� deflateEnd(Z) -> ok
[page 286] End deflate session

� inflateInit(Z) -> ok
[page 286] Initialize a session for decompression

� inflateInit(Z, WindowBits) -> ok
[page 286] Initialize a session for decompression

� inflate(Z, Data) -> DeCompressed
[page 286] Decompress data

30 Kernel Application (KERNEL)

Kernel Reference Manual

� inflateSetDictionary(Z, Dictionary) -> ok
[page 286] Initialize the decompression dictionary

� inflateReset(Z) -> ok
[page 287] >Reset the inflate session

� inflateEnd(Z) -> ok
[page 287] End inflate session

� setBufSize(Z, Size) -> ok
[page 287] Set buffer size

� getBufSize(Z) -> Size
[page 287] Get buffer size

� crc32(Z) -> CRC
[page 287] Get current CRC

� crc32(Z, Binary) -> CRC
[page 287] Calculate CRC

� crc32(Z, PrevCRC, Binary) -> CRC
[page 288] Calculate CRC

� crc32 combine(Z, CRC1, CRC2, Size2) -> CRC
[page 288] Combine two CRC’s

� adler32(Z, Binary) -> Checksum
[page 288] Calculate the adler checksum

� adler32(Z, PrevAdler, Binary) -> Checksum
[page 288] Calculate the adler checksum

� adler32 combine(Z, Adler1, Adler2, Size2) -> Adler
[page 289] Combine two Adler-32 checksums

� compress(Binary) -> Compressed
[page 289] Compress a binary with standard zlib functionality

� uncompress(Binary) -> Decompressed
[page 289] Uncompress a binary with standard zlib functionality

� zip(Binary) -> Compressed
[page 289] Compress a binary without the zlib headers

� unzip(Binary) -> Decompressed
[page 289] Uncompress a binary without the zlib headers

� gzip(Data) -> Compressed
[page 289] Compress a binary with gz header

� gunzip(Bin) -> Decompressed
[page 289] Uncompress a binary with gz header

app

No functions are exported.

config

No functions are exported.

31Kernel Application (KERNEL)

kernel Kernel Reference Manual

kernel
Application

The Kernel application is the first application started. It is mandatory in the sense that
the minimal system based on Erlang/OTP consists of Kernel and STDLIB. The Kernel
application contains the following services:

� application controller, see application(3)

� code

� disk log

� dist ac, distributed application controller

� erl boot server

� erl ddll

� error logger

� file

� global

� global group

� heart

� inet

� net kernel

� os

� pg2

� rpc

� seq trace

� user

Error Logger Event Handlers

Two standard error logger event handlers are defined in the Kernel application. These
are described in error logger(3) [page 167].

32 Kernel Application (KERNEL)

Kernel Reference Manual kernel

Configuration

The following configuration parameters are defined for the Kernel application. See
app(3) for more information about configuration parameters.

browser cmd = string() | fM,F,Ag When pressing the Help button in a tool such as
Debugger or TV, the help text (an HTML file File) is by default displayed in a
Netscape browser which is required to be up and running. This parameter can be
used to change the command for how to display the help text if another browser
than Netscape is preferred, or another platform than Unix or Windows is used.
If set to a string Command, the command "Command File" will be evaluated using
os:cmd/1.
If set to a module-function-args tuple fM,F,Ag, the call apply(M,F,[File|A])will
be evaluated.

distributed = [Distrib] Specifies which applications are distributed and on which
nodes they may execute. In this parameter:

� Distrib = fApp,Nodesg | fApp,Time,Nodesg

� App = atom()

� Time = integer()>0

� Nodes = [node() | fnode(),...,node()g]

The parameter is described in application(3), function load/2.

dist auto connect = Value Specifies when nodes will be automatically connected. If
this parameter is not specified, a node is always automatically connected, e.g when
a message is to be sent to that node. Value is one of:

never Connections are never automatically connected, they must be explicitly
connected. See net kernel(3).

once Connections will be established automatically, but only once per node. If a
node goes down, it must thereafter be explicitly connected. See
net kernel(3).

permissions = [Perm] Specifies the default permission for applications when they are
started. In this parameter:

� Perm = fApplName,Boolg

� ApplName = atom()

� Bool = boolean()

Permissions are described in application(3), function permit/2.

error logger = Value Value is one of:

tty Installs the standard event handler which prints error reports to stdio. This is
the default option.

ffile, FileNameg Installs the standard event handler which prints error reports
to the file FileName, where FileName is a string.

false No standard event handler is installed, but the initial, primitive event
handler is kept, printing raw event messages to tty.

silent Error logging is turned off.

global groups = [GroupTuple] Defines global groups, see global group(3).

� GroupTuple = fGroupName, [Node]g | fGroupName, PublishType,
[Node]g

� GroupName = atom()

33Kernel Application (KERNEL)

kernel Kernel Reference Manual

� PublishType = normal | hidden

� Node = node()

inet default connect options = [fOpt, Valg] Specifies default options for
connect sockets, see inet(3).

inet default listen options = [fOpt, Valg] Specifies default options for listen
(and accept) sockets, see inet(3).

finet dist use interface, ip address()g If the host of an Erlang node has several
network interfaces, this parameter specifies which one to listen on. See inet(3)
for the type definition of ip address().

finet dist listen min, Firstg See below.
finet dist listen max, Lastg Define the First..Last port range for the listener

socket of a distributed Erlang node.
inet parse error log = silent If this configuration parameter is set, no

error logger messages are generated when erroneous lines are found and skipped
in the various Inet configuration files.

inetrc = Filename The name (string) of an Inet user configuration file. See ERTS
User’s Guide, Inet configuration.

net setuptime = SetupTime SetupTime must be a positive integer or floating point
number, and will be interpreted as the maximally allowed time for each network
operation during connection setup to another Erlang node. The maximum allowed
value is 120; if higher values are given, 120 will be used. The default value if the
variable is not given, or if the value is incorrect (e.g. not a number), is 7 seconds.
Note that this value does not limit the total connection setup time, but rather each
individual network operation during the connection setup and handshake.

net ticktime = TickTime Specifies the net kernel tick time. TickTime is given in
seconds. Once every TickTime/4 second, all connected nodes are ticked (if
anything else has been written to a node) and if nothing has been received from
another node within the last four (4) tick times that node is considered to be
down. This ensures that nodes which are not responding, for reasons such as
hardware errors, are considered to be down.
The time T, in which a node that is not responding is detected, is calculated as:
MinT < T < MaxT where:

MinT = TickTime - TickTime / 4
MaxT = TickTime + TickTime / 4

TickTime is by default 60 (seconds). Thus, 45 < T < 75 seconds.
Note: All communicating nodes should have the same TickTime value specified.
Note: Normally, a terminating node is detected immediately.

sync nodes mandatory = [NodeName] Specifies which other nodes must be alive in
order for this node to start properly. If some node in the list does not start within
the specified time, this node will not start either. If this parameter is undefined, it
defaults to [].

sync nodes optional = [NodeName] Specifies which other nodes can be alive in order
for this node to start properly. If some node in this list does not start within the
specified time, this node starts anyway. If this parameter is undefined, it defaults to
the empty list.

sync nodes timeout = integer() | infinity Specifies the amount of time (in
milliseconds) this node will wait for the mandatory and optional nodes to start. If
this parameter is undefined, no node synchronization is performed. This option
also makes sure that global is synchronized.

34 Kernel Application (KERNEL)

Kernel Reference Manual kernel

start dist ac = true | false Starts the dist ac server if the parameter is true.
This parameter should be set to true for systems that use distributed applications.
The default value is false. If this parameter is undefined, the server is started if
the parameter distributed is set.

start boot server = true | false Starts the boot server if the parameter is true
(see erl boot server(3)). This parameter should be set to true in an embedded
system which uses this service.
The default value is false.

boot server slaves = [SlaveIP] If the start boot server configuration parameter
is true, this parameter can be used to initialize boot server with a list of slave IP
addresses. SlaveIP = string() | atom |
finteger(),integer(),integer(),integer()g

where 0 <= integer() <=255.
Examples of SlaveIP in atom, string and tuple form are:
’150.236.16.70’, "150,236,16,70", f150,236,16,70g.
The default value is [].

start disk log = true | false Starts the disk log server if the parameter is true
(see disk log(3)). This parameter should be set to true in an embedded system
which uses this service.
The default value is false.

start pg2 = true | false Starts the pg2 server (see pg2(3)) if the parameter is
true. This parameter should be set to true in an embedded system which uses
this service.
The default value is false.

start timer = true | false Starts the timer server if the parameter is true (see
timer(3)). This parameter should be set to true in an embedded system which
uses this service.
The default value is false.

shutdown func = fMod, Funcg Where:

� Mod = atom()

� Func = atom()

Sets a function that application controller calls when it starts to terminate.
The function is called as: Mod:Func(Reason), where Reason is the terminate
reason for application controller, and it must return as soon as possible for
application controller to terminate properly.

See Also

app(4) [page 291], application(3) [page 36], code(3) [page 47], disk log(3) [page 56],
erl boot server(3) [page 70], erl ddll(3) [page 72], error logger(3) [page 167], file(3)
[page 174], global(3) [page 221], global group(3) [page 226], heart(3) [page 230],
inet(3) [page 232], net kernel(3) [page 251], os(3) [page 255], pg2(3) [page 261],
rpc(3) [page 264], seq trace(3) [page 271], user(3) [page 279]

35Kernel Application (KERNEL)

application Kernel Reference Manual

application
Erlang Module

In OTP, application denotes a component implementing some specific functionality, that
can be started and stopped as a unit, and which can be re-used in other systems as well.
This module interfaces the application controller, a process started at every Erlang
runtime system, and contains functions for controlling applications (for example
starting and stopping applications), and functions to access information about
applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally
located in an application resource file called Application.app, where Application is
the name of the application. Refer to app(4) [page 291] for more information about
the application specification.

This module can also be viewed as a behaviour for an application implemented
according to the OTP design principles as a supervision tree. The definition of how to
start and stop the tree should be located in an application callback module exporting a
pre-defined set of functions.

Refer to [OTP Design Principles] for more information about applications and
behaviours.

Exports

get all env() -> Env

get all env(Application) -> Env

Types:

� Application = atom()
� Env = [fPar,Valg]
� Par = atom()
� Val = term()

Returns the configuration parameters and their values for Application. If the argument
is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not
belong to any application, the function returns [].

get all key() -> fok, Keysg | []

get all key(Application) -> fok, Keysg | undefined

Types:

� Application = atom()
� Keys = [fKey,Valg]

36 Kernel Application (KERNEL)

Kernel Reference Manual application

� Key = atom()
� Val = term()

Returns the application specification keys and their values for Application. If the
argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, the function returns undefined. If the process
executing the call does not belong to any application, the function returns [].

get application() -> fok, Applicationg | undefined

get application(Pid | Module) -> fok, Applicationg | undefined

Types:

� Pid = pid()
� Module = atom()
� Application = atom()

Returns the name of the application to which the process Pid or the module Module
belongs. Providing no argument is the same as calling get application(self()).

If the specified process does not belong to any application, or if the specified process or
module does not exist, the function returns undefined.

get env(Par) -> fok, Valg | undefined

get env(Application, Par) -> fok, Valg | undefined

Types:

� Application = atom()
� Par = atom()
� Val = term()

Returns the value of the configuration parameter Par for Application. If the
application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist,
or if the process executing the call does not belong to any application, the function
returns undefined.

get key(Key) -> fok, Valg | undefined

get key(Application, Key) -> fok, Valg | undefined

Types:

� Application = atom()
� Key = atom()
� Val = term()

Returns the value of the application specification key Key for Application. If the
application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the
process executing the call does not belong to any application, the function returns
undefined.

load(AppDescr) -> ok | ferror, Reasong

load(AppDescr, Distributed) -> ok | ferror, Reasong

Types:

37Kernel Application (KERNEL)

application Kernel Reference Manual

� AppDescr = Application | AppSpec
� Application = atom()
� AppSpec = fapplication,Application,AppSpecKeysg
� AppSpec = [fKey,Valg]
� Key = atom()
� Val = term()
� Distributed = fApplication,Nodesg | fApplication,Time,Nodesg | default
� Nodes = [node() | fnode(),..,node()g]
� Time = integer() > 0
� Reason = term()

Loads the application specification for an application into the application controller. It
will also load the application specifications for any included applications. Note that the
function does not load the actual Erlang object code.

The application can be given by its name Application. In this case the application
controller will search the code path for the application resource file Application.app
and load the specification it contains.

The application specification can also be given directly as a tuple AppSpec. This tuple
should have the format and contents as described in app(4).

If Distributed == fApplication,[Time,]Nodesg, the application will be distributed.
The argument overrides the value for the application in the Kernel configuration
parameter distributed. Application must be the name of the application (same as in
the first argument). If a node crashes and Time has been specified, then the application
controller will wait for Time milliseconds before attempting to restart the application on
another node. If Time is not specified, it will default to 0 and the application will be
restarted immediately.

Nodes is a list of node names where the application may run, in priority from left to
right. Node names can be grouped using tuples to indicate that they have the same
priority. Example:

Nodes = [cp1@cave, {cp2@cave, cp3@cave}]

This means that the application should preferably be started at cp1@cave. If cp1@cave
is down, the application should be started at either cp2@cave or cp3@cave.

If Distributed == default, the value for the application in the Kernel configuration
parameter distributed will be used.

loaded applications() -> [fApplication, Description, Vsng]

Types:

� Application = atom()
� Description = string()
� Vsn = string()

Returns a list with information about the applications which have been loaded using
load/1,2, also included applications. Application is the application name.
Description and Vsn are the values of its description and vsn application
specification keys, respectively.

permit(Application, Bool) -> ok | ferror, Reasong

Types:

38 Kernel Application (KERNEL)

Kernel Reference Manual application

� Application = atom()
� Bool = bool()
� Reason = term()

Changes the permission for Application to run at the current node. The application
must have been loaded using load/1,2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start will
return ok but the application will not be started until the permission is set to true.

If the permission of a running application is set to false, the application will be
stopped. If the permission later is set to true, it will be restarted.

If the application is distributed, setting the permission to false means that the
application will be started at, or moved to, another node according to how its
distribution is configured (see load/2 above).

The function does not return until the application is started, stopped or successfully
moved to another node. However, in some cases where permission is set to true the
function may return ok even though the application itself has not started. This is true
when an application cannot start because it has dependencies to other applications
which have not yet been started. When they have been started, Application will be
started as well.

By default, all applications are loaded with permission true on all nodes. The
permission is configurable by using the Kernel configuration parameter permissions.

set env(Application, Par, Val) -> ok

set env(Application, Par, Val, Timeout) -> ok

Types:

� Application = atom()
� Par = atom()
� Val = term()
� Timeout = int() | infinity

Sets the value of the configuration parameter Par for Application.

set env/3 uses the standard gen server timeout value (5000 ms). A Timeout
argument can be provided if another timeout value is useful, for example, in situations
where the application controller is heavily loaded.

Warning:
Use this function only if you know what you are doing, that is, on your own
applications. It is very application and configuration parameter dependent when and
how often the value is read by the application, and careless use of this function may
put the application in a weird, inconsistent, and malfunctioning state.

start(Application) -> ok | ferror, Reasong

start(Application, Type) -> ok | ferror, Reasong

Types:

� Application = atom()
� Type = permanent | transient | temporary

39Kernel Application (KERNEL)

application Kernel Reference Manual

� Reason = term()

Starts Application. If it is not loaded, the application controller will first load it using
load/1. It will make sure any included applications are loaded, but will not start them.
That is assumed to be taken care of in the code for Application.

The application controller checks the value of the application specification key
applications, to ensure that all applications that should be started before this
application are running. If not, ferror,fnot started,Appgg is returned, where App is
the name of the missing application.

The application controller then creates an application master for the application. The
application master is the group leader of all the processes in the application. The
application master starts the application by calling the application callback function
Module:start/2 as defined by the application specification key mod.

The Type argument specifies the type of the application. If omitted, it defaults to
temporary.

� If a permanent application terminates, all other applications and the entire Erlang
node are also terminated.

� If a transient application terminates with Reason == normal, this is reported but
no other applications are terminated. If a transient application terminates
abnormally, all other applications and the entire Erlang node are also terminated.

� If a temporary application terminates, this is reported but no other applications are
terminated.

Note that it is always possible to stop an application explicitly by calling stop/1.
Regardless of the type of the application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree
terminates, the reason is set to shutdown, not normal.

start type() -> StartType | local | undefined

Types:

� StartType = normal | ftakeover,Nodeg | ffailover,Nodeg
� Node = node()

This function is intended to be called by a process belonging to an application, when
the application is being started, to determine the start type which is either StartType
or local.

See Module:start/2 for a description of StartType.

local is returned if only parts of the application is being restarted (by a supervisor), or
if the function is called outside a startup.

If the process executing the call does not belong to any application, the function returns
undefined.

stop(Application) -> ok | ferror, Reasong

Types:

� Application = atom()
� Reason = term()

40 Kernel Application (KERNEL)

Kernel Reference Manual application

Stops Application. The application master calls Module:prep stop/1, if such a
function is defined, and then tells the top supervisor of the application to shutdown (see
supervisor(3)). This means that the entire supervision tree, including included
applications, is terminated in reversed start order. After the shutdown, the application
master calls Module:stop/1. Module is the callback module as defined by the
application specification key mod.

Last, the application master itself terminates. Note that all processes with the
application master as group leader, i.e. processes spawned from a process belonging to
the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, stop/1 has to be called on all nodes where it
can execute (that is, on all nodes where it has been started). The call to stop/1 on the
node where the application currently executes will stop its execution. The application
will not be moved between nodes due to stop/1 being called on the node where the
application currently executes before stop/1 is called on the other nodes.

takeover(Application, Type) -> ok | ferror, Reasong

Types:

� Application = atom()
� Type = permanent | transient | temporary
� Reason = term()

Performs a takeover of the distributed application Application, which executes at
another node Node. At the current node, the application is restarted by calling
Module:start(ftakeover,Nodeg,StartArgs). Module and StartArgs are retrieved
from the loaded application specification. The application at the other node is not
stopped until the startup is completed, i.e. when Module:start/2 and any calls to
Module:start phase/3 have returned.

Thus two instances of the application will run simultaneously during the takeover,
which makes it possible to transfer data from the old to the new instance. If this is not
acceptable behavior, parts of the old instance may be shut down when the new instance
is started. Note that the application may not be stopped entirely however, at least the
top supervisor must remain alive.

See start/1,2 for a description of Type.

unload(Application) -> ok | ferror, Reasong

Types:

� Application = atom()
� Reason = term()

Unloads the application specification for Application from the application controller.
It will also unload the application specifications for any included applications. Note that
the function does not purge the actual Erlang object code.

unset env(Application, Par) -> ok

unset env(Application, Par, Timeout) -> ok

Types:

� Application = atom()
� Par = atom()

41Kernel Application (KERNEL)

application Kernel Reference Manual

� Timeout = int() | infinity

Removes the configuration parameter Par and its value for Application.

unset env/2 uses the standard gen server timeout value (5000 ms). A Timeout
argument can be provided if another timeout value is useful, for example, in situations
where the application controller is heavily loaded.

Warning:
Use this function only if you know what you are doing, that is, on your own
applications. It is very application and configuration parameter dependent when and
how often the value is read by the application, and careless use of this function may
put the application in a weird, inconsistent, and malfunctioning state.

which applications() -> [fApplication, Description, Vsng]

which applications(Timeout) -> [fApplication, Description, Vsng]

Types:

� Application = atom()
� Description = string()
� Vsn = string()
� Timeout = int() | infinity

Returns a list with information about the applications which are currently running.
Application is the application name. Description and Vsn are the values of its
description and vsn application specfication keys, respectively.

which applications/0 uses the standard gen server timeout value (5000 ms). A
Timeout argument can be provided if another timeout value is useful, for example, in
situations where the application controller is heavily loaded.

CALLBACK MODULE

The following functions should be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> fok, Pidg | fok, Pid, Stateg | ferror, Reasong

Types:

� StartType = normal | ftakeover,Nodeg | ffailover,Nodeg
� Node = node()
� StartArgs = term()
� Pid = pid()
� State = term()

42 Kernel Application (KERNEL)

Kernel Reference Manual application

This function is called whenever an application is started using
application:start/1,2, and should start the processes of the application. If the
application is structured according to the OTP design principles as a supervision tree,
this means starting the top supervisor of the tree.

StartType defines the type of start:

� normal if its a normal startup.

� normal also if the application is distributed and started at the current node due to
a failover from another node, and the application specification key start phases
== undefined.

� ftakeover,Nodeg if the application is distributed and started at the current node
due to a takeover from Node, either because application:takeover/2 has been
called or because the current node has higher priority than Node.

� ffailover,Nodeg if the application is distributed and started at the current node
due to a failover from Node, and the application specification key start phases
/= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod.

The function should return fok,Pidg or fok,Pid,Stateg where Pid is the pid of the
top supervisor and State is any term. If omitted, State defaults to []. If later the
application is stopped, State is passed to Module:prep stop/1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | ferror, Reasong

Types:

� Phase = atom()
� StartType = normal | ftakeover,Nodeg | ffailover,Nodeg
� Node = node()
� PhaseArgs = term()
� Pid = pid()
� State = state()

This function is used to start an application with included applications, when there is a
need for synchronization between processes in the different applications during startup.

The start phases is defined by the application specification key start phases ==
[fPhase,PhaseArgsg]. For included applications, the set of phases must be a subset of
the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary appliction) for the
primary application and all included applications, for which the start phase is defined.

See Module:start/2 for a description of StartType.

Module:prep stop(State) -> NewState

Types:

� State = NewState = term()

43Kernel Application (KERNEL)

application Kernel Reference Manual

This function is called when an application is about to be stopped, before shutting
down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned.
NewState is any term and will be passed to Module:stop/1.

The function is optional. If it is not defined, the processes will be terminated and then
Module:stop(State) is called.

Module:stop(State)

Types:

� State = term()

This function is called whenever an application has stopped. It is intended to be the
opposite of Module:start/2 and should do any necessary cleaning up. The return value
is ignored.

State is the return value of Module:prep stop/1, if such a function exists. Otherwise
State is taken from the return value of Module:start/2.

Module:config change(Changed, New, Removed) -> ok

Types:

� Changed = [fPar,Valg]
� New = [fPar,Valg]
� Removed = [Par]
� Par = atom()
� Val = term()

This function is called by an application after a code replacement, if there are any
changes to the configuration parameters.

Changed is a list of parameter-value tuples with all configuration parameters with
changed values, New is a list of parameter-value tuples with all configuration parameters
that have been added, and Removed is a list of all parameters that have been removed.

SEE ALSO

[OTP Design Principles], kernel(6) [page 32], app(4) [page 291]

44 Kernel Application (KERNEL)

Kernel Reference Manual auth

auth
Erlang Module

This module is deprecated. For a description of the Magic Cookie system, refer to
[Distributed Erlang] in the Erlang Reference Manual.

Exports

is auth(Node) -> yes | no

Types:

� Node = node()

Returns yes if communication with Node is authorized. Note that a connection to Node
will be established in this case. Returns no if Node does not exist or communication is
not authorized (it has another cookie than auth thinks it has).

Use net adm:ping(Node) [page 249] instead.

cookie() -> Cookie

Types:

� Cookie = atom()

Use erlang:get cookie() [page 103] instead.

cookie(TheCookie) -> true

Types:

� TheCookie = Cookie | [Cookie]
The cookie may also be given as a list with a single atom element

� Cookie = atom()

Use erlang:set cookie(node(), Cookie) [page 138] instead.

node cookie([Node, Cookie]) -> yes | no

Types:

� Node = node()
� Cookie = atom()

Equivalent to node cookie(Node, Cookie) [page 45].

node cookie(Node, Cookie) -> yes | no

Types:

� Node = node()

45Kernel Application (KERNEL)

auth Kernel Reference Manual

� Cookie = atom()

Sets the magic cookie of Node to Cookie, and verifies the status of the authorization.
Equivalent to calling erlang:set cookie(Node, Cookie) [page 138], followed by
auth:is auth(Node) [page 45].

46 Kernel Application (KERNEL)

Kernel Reference Manual code

code
Erlang Module

This module contains the interface to the Erlang code server, which deals with the
loading of compiled code into a running Erlang runtime system.

The runtime system can be started in either embedded or interactive mode. Which one is
decided by the command line flag -mode.

% erl -mode interactive

Default mode is interactive.

� In embedded mode, all code is loaded during system start-up according to the boot
script. (Code can also be loaded later by explicitly ordering the code server to do
so).

� In interactive mode, only some code is loaded during system startup-up, basically
the modules needed by the runtime system itself. Other code is dynamically loaded
when first referenced. When a call to a function in a certain module is made, and
the module is not loaded, the code server searches for and tries to load the module.

To prevent accidently reloading modules affecting the Erlang runtime system itself, the
kernel, stdlib and compiler directories are considered sticky. This means that the
system issues a warning and rejects the request if a user tries to reload a module residing
in any of them. The feature can be disabled by using the command line flag -nostick.

Code Path

In interactive mode, the code server maintains a search path – usually called the code
path – consisting of a list of directories, which it searches sequentially when trying to
load a module.

Initially, the code path consists of the current working directory and all Erlang object
code directories under the library directory $OTPROOT/lib, where $OTPROOT is the
installation directory of Erlang/OTP, code:root dir(). Directories can be named
Name[-Vsn] and the code server, by default, chooses the directory with the highest
version number among those which have the same Name. The -Vsn suffix is optional. If
an ebin directory exists under Name[-Vsn], it is this directory which is added to the
code path.

The environment variable ERL LIB (defined in the operating system) can be used to
define additional library directories that will be handled in the same way as the standard
OTP library directory described above, except that directories that do not have an ebin
directory will be ignored.

All application directories found in the additional directories will appear before the
standard OTP applications, except for the Kernel and STDLIB applications, which will
be placed before any additional applications. In other words, modules found in any of

47Kernel Application (KERNEL)

code Kernel Reference Manual

the additional library directories will override modules with the same name in OTP,
except for modules in Kernel and STDLIB.

The environment variable ERL LIB (if defined) shold contain a colon-separated (for
Unix-like systems) or semicolon-separated (for Windows) list of additional libraries.

Example: On an Unix-like system, ERL LIB could be set to
/usr/local/jungerl:/home/some user/my erlang lib. (On Windows, use
semi-colon as separator.)

Code Path Cache

The code server incorporates a code path cache. The cache functionality is disabled by
default. To activate it, start the emulator with the command line flag -code path cache
or call code:rehash(). When the cache is created (or updated), the code server
searches for modules in the code path directories. This may take some time if the the
code path is long. After the cache creation, the time for loading modules in a large
system (one with a large directory structure) is significantly reduced compared to having
the cache disabled. The code server is able to look up the location of a module from the
cache in constant time instead of having to search through the code path directories.

Application resource files (.app files) are also stored in the code path cache. This
feature is used by the application controller (see application(3) [page 36]) to load
applications efficiently in large systems.

Note that when the code path cache is created (or updated), any relative directory
names in the code path are converted to absolute.

Current and Old Code

The code of a module can exists in two variants in a system: current code and old code.
When a module is loaded into the system for the first time, the code of the module
becomes ’current’ and the global export table is updated with references to all functions
exported from the module.

If then a new instance of the module is loaded (perhaps because of the correction of an
error), then the code of the previous instance becomes ’old’, and all export entries
referring to the previous instance are removed. After that the new instance is loaded as
if it was loaded for the first time, as described above, and becomes ’current’.

Both old and current code for a module are valid, and may even be evaluated
concurrently. The difference is that exported functions in old code are unavailable.
Hence there is no way to make a global call to an exported function in old code, but old
code may still be evaluated because of processes lingering in it.

If a third instance of the module is loaded, the code server will remove (purge) the old
code and any processes lingering in it will be terminated. Then the third instance
becomes ’current’ and the previously current code becomes ’old’.

For more information about old and current code, and how to make a process switch
from old to current code, refer to [Erlang Reference Manual].

48 Kernel Application (KERNEL)

Kernel Reference Manual code

Argument Types and Invalid Arguments

Generally, module and application names are atoms, while file and directory names are
strings. For backward compatibility reasons, some functions accept both strings and
atoms, but a future release will probably only allow the arguments that are documented.

From the R12B release, functions in this module will generally fail with an exception if
they are passed an incorrect type (for instance, an integer or a tuple where an atom was
expected). An error tuple will be returned if type of argument was correct, but there
was some other error (for instance, a non-existing directory given to set path/1.

Exports

set path(Path) -> true | ferror, Whatg

Types:

� Path = [Dir]
� Dir = string()
� What = bad directory | bad path

Sets the code path to the list of directories Path.

Returns true if successful, or ferror, bad directoryg if any Dir is not the name of a
directory, or ferror, bad pathg if the argument is invalid.

get path() -> Path

Types:

� Path = [Dir]
� Dir = string()

Returns the code path

add path(Dir) -> true | ferror, Whatg

add pathz(Dir) -> true | ferror, Whatg

Types:

� Dir = string()
� What = bad directory

Adds Dir to the code path. The directory is added as the last directory in the new path.
If Dir already exists in the path, it is not added.

Returns true if successful, or ferror, bad directoryg if Dir is not the name of a
directory.

add patha(Dir) -> true | ferror, Whatg

Types:

� Dir = string()
� What = bad directory

49Kernel Application (KERNEL)

code Kernel Reference Manual

Adds Dir to the beginning of the code path. If Dir already exists, it is removed from the
old position in the code path.

Returns true if successful, or ferror, bad directoryg if Dir is not the name of a
directory.

add paths(Dirs) -> ok

add pathsz(Dirs) -> ok

Types:

� Dirs = [Dir]
� Dir = string()

Adds the directories in Dirs to the end of the code path. If a Dir already exists, it is not
added. This function always returns ok, regardless of the validity of each individual Dir.

add pathsa(Dirs) -> ok

Types:

� Dirs = [Dir]
� Dir = string()

Adds the directories in Dirs to the beginning of the code path. If a Dir already exists, it
is removed from the old position in the code path. This function always returns ok,
regardless of the validity of each individual Dir.

del path(Name | Dir) -> true | false | ferror, Whatg

Types:

� Name = atom()
� Dir = string()
� What = bad name

Deletes a directory from the code path. The argument can be an atom Name, in which
case the directory with the name .../Name[-Vsn][/ebin] is deleted from the code
path. It is also possible to give the complete directory name Dir as argument.

Returns true if successful, or false if the directory is not found, or ferror,
bad nameg if the argument is invalid.

replace path(Name, Dir) -> true | ferror, Whatg

Types:

� Name = atom()
� Dir = string()
� What = bad name | bad directory | fbadarg, term()g

This function replaces an old occurrence of a directory named
.../Name[-Vsn][/ebin], in the code path, with Dir. If Name does not exist, it adds the
new directory Dir last in the code path. The new directory must also be named
.../Name[-Vsn][/ebin]. This function should be used if a new version of the
directory (library) is added to a running system.

Returns true if successful, or ferror, bad nameg if Name is not found, or ferror,
bad directoryg if Dir does not exist, or ferror, fbadarg, [Name, Dir]gg if Name or
Dir is invalid.

50 Kernel Application (KERNEL)

Kernel Reference Manual code

load file(Module) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� What = nofile | sticky directory | badarg | term()

Tries to load the Erlang module Module, using the code path. It looks for the object
code file with an extension that corresponds to the Erlang machine used, for example
Module.beam. The loading fails if the module name found in the object code differs
from the name Module. load binary/3 [page 51] must be used to load object code with
a module name that is different from the file name.

Returns fmodule, Moduleg if successful, or ferror, nofileg if no object code is
found, or ferror, sticky directoryg if the object code resides in a sticky directory,
or ferror, badargg if the argument is invalid. Also if the loading fails, an error tuple is
returned. See erlang:load module/2 [page 112] for possible values of What.

load abs(Filename) -> fmodule, Moduleg | ferror, Whatg

Types:

� Filename = string()
� Module = atom()
� What = nofile | sticky directory | badarg | term()

Does the same as load file(Module), but Filename is either an absolute file name, or
a relative file name. The code path is not searched. It returns a value in the same way as
load file/1 [page 51]. Note that Filename should not contain the extension (for
example ".beam"); load abs/1 adds the correct extension itself.

ensure loaded(Module) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� What = nofile | sticky directory | embedded | badarg | term()

Tries to to load a module in the same way as load file/1 [page 51]. In embedded mode,
however, it does not load a module which is not already loaded, but returns ferror,
embeddedg instead.

load binary(Module, Filename, Binary) -> fmodule, Moduleg | ferror, Whatg

Types:

� Module = atom()
� Filename = string()
� What = sticky directory | badarg | term()

51Kernel Application (KERNEL)

code Kernel Reference Manual

This function can be used to load object code on remote Erlang nodes. It can also be
used to load object code where the file name and module name differ. This, however, is
a very unusual situation and not recommended. The parameter Binary must contain
object code for Module. Filename is only used by the code server to keep a record of
from which file the object code for Module comes. Accordingly, Filename is not opened
and read by the code server.

Returns fmodule, Moduleg if successful, or ferror, sticky directoryg if the object
code resides in a sticky directory, or ferror, badargg if any argument is invalid. Also if
the loading fails, an error tuple is returned. See erlang:load module/2 [page 112] for
possible values of What.

delete(Module) -> true | false

Types:

� Module = atom()

Removes the current code for Module, that is, the current code for Module is made old.
This means that processes can continue to execute the code in the module, but that no
external function calls can be made to it.

Returns true if successful, or false if there is old code for Module which must be
purged first, or if Module is not a (loaded) module.

purge(Module) -> true | false

Types:

� Module = atom()

Purges the code for Module, that is, removes code marked as old. If some processes still
linger in the old code, these processes are killed before the code is removed.

Returns true if successful and any process needed to be killed, otherwise false.

soft purge(Module) -> true | false

Types:

� Module = atom()

Purges the code for Module, that is, removes code marked as old, but only if no
processes linger in it.

Returns false if the module could not be purged due to processes lingering in old code,
otherwise true.

is loaded(Module) -> ffile, Loadedg | false

Types:

� Module = atom()
� Loaded = Absname | preloaded | cover compiled
� Absname = string()

Checks if Module is loaded. If it is, ffile, Loadedg is returned, otherwise false.

Normally, Loaded is the absolute file name Absname from which the code was obtained.
If the module is preloaded (see [script(4)]), Loaded==preloaded. If the module is
Cover compiled (see [cover(3)]), Loaded==cover compiled.

52 Kernel Application (KERNEL)

Kernel Reference Manual code

all loaded() -> [fModule, Loadedg]

Types:

� Module = atom()
� Loaded = Absname | preloaded | cover compiled
� Absname = string()

Returns a list of tuples fModule, Loadedg for all loaded modules. Loaded is normally
the absolute file name, as described for is loaded/1 [page 52].

which(Module) -> Which

Types:

� Module = atom()
� Which = Filename | non existing | preloaded | cover compiled
� Filename = string()

If the module is not loaded, this function searches the code path for the first file which
contains object code for Module and returns the absolute file name. If the module is
loaded, it returns the name of the file which contained the loaded object code. If the
module is pre-loaded, preloaded is returned. If the module is Cover compiled,
cover compiled is returned. non existing is returned if the module cannot be found.

get object code(Module) -> fModule, Binary, Filenameg | error

Types:

� Module = atom()
� Binary = binary()
� Filename = string()

Searches the code path for the object code of the module Module. It returns fModule,
Binary, Filenameg if successful, and error if not. Binary is a binary data object
which contains the object code for the module. This can be useful if code is to be
loaded on a remote node in a distributed system. For example, loading module Module
on a node Node is done as follows:

...
{_Module, Binary, Filename} = code:get_object_code(Module),
rpc:call(Node, code, load_binary, [Module, Filename, Binary]),
...

root dir() -> string()

Returns the root directory of Erlang/OTP, which is the directory where it is installed.

> code:root dir().
"/usr/local/otp"

lib dir() -> string()

Returns the library directory, $OTPROOT/lib, where $OTPROOT is the root directory of
Erlang/OTP.

> code:lib dir().
"/usr/local/otp/lib"

53Kernel Application (KERNEL)

code Kernel Reference Manual

lib dir(Name) -> string() | ferror, bad nameg

Types:

� Name = atom()

This function is mainly intended for finding out the path for the “library directory”, the
top directory, for an application Name located under $OTPROOT/lib.

If there is a directory called Name in the code path, optionally with a -Vsn suffix and/or
an ebin subdirectory, the name of this directory is returned.

> code:lib dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2"

Returns ferror, bad nameg if Name is not the name of an application under
$OTPROOT/lib. Fails with an exception if Name has the wrong type.

Warning:
For backward compatibiliy, Name is also allowed to be a string. That will probably
change in a future release.

compiler dir() -> string()

Returns the compiler library directory. Equivalent to code:lib dir(compiler).

priv dir(Name) -> string() | ferror, bad nameg

Types:

� Name = atom()

This function is mainly intended for finding out the path for the priv directory for an
application Name located under $OTPROOT/lib.

If there is a directory called Name in the code path, optionally with a -Vsn suffix and/or
an ebin subdirectory, the function returns the name of this directory with priv
appended. It is not checked if this directory really exists.

> code:priv dir(mnesia).
"/usr/local/otp/lib/mnesia-4.2.2/priv"

Returns ferror, bad nameg if Name is not the name of an application under
$OTPROOT/lib. Fails with an exception if Name has the wrong type.

Warning:
For backward compatibiliy, Name is also allowed to be a string. That will probably
change in a future release.

objfile extension() -> ".beam"

Returns the object code file extension that corresponds to the Erlang machine used,
namely ".beam".

54 Kernel Application (KERNEL)

Kernel Reference Manual code

stick dir(Dir) -> ok | ferror, Whatg

Types:

� Dir = string()
� What = term()

This function marks Dir as sticky.

Returns ok if successful, and an error tuple otherwise.

unstick dir(Dir) -> ok | ferror, Whatg

Types:

� Dir = string()
� What = term()

This function unsticks a directory which has been marked as sticky.

Returns ok if successful, and an error tuple otherwise.

rehash() -> ok

This function creates or rehashes the code path cache.

where is file(Filename) -> Absname | non existing

Types:

� Filename = Absname = string()

Searches the code path for Filename, a file of arbitrary type. If found, the full name is
returned. non existing is returned if the file cannot be found. The function can be
useful, for example, to locate application resource files. If the code path cache is used,
the code server will efficiently read the full name from the cache, provided that
Filename is an object code file or an .app file.

clash() -> ok

Searches the entire code space for module names with identical names and writes a
report to stdout.

55Kernel Application (KERNEL)

disk log Kernel Reference Manual

disk log
Erlang Module

disk log is a disk based term logger which makes it possible to efficiently log items on
files. Two types of logs are supported, halt logs and wrap logs. A halt log appends items
to a single file, the size of which may or may not be limited by the disk log module,
whereas a wrap log utilizes a sequence of wrap log files of limited size. As a wrap log file
has been filled up, further items are logged onto to the next file in the sequence, starting
all over with the first file when the last file has been filled up. For the sake of efficiency,
items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format.
The internal format supports automatic repair of log files that have not been properly
closed, and makes it possible to efficiently read logged items in chunks using a set of
functions defined in this module. In fact, this is the only way to read internally
formatted logs. The external format leaves it up to the user to read the logged deep byte
lists. The disk log module cannot repair externally formatted logs. An item logged to an
internally formatted log must not occupy more than 4 GB of disk space (the size must
fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log;
the disk log process is created when open/1 is called, provided there exists no process
handling the disk log. A process that opens a disk log can either be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and the
disk log is closed by the owner should the owner terminate. Owners can subscribe to
notifications, messages of the form fdisk log, Node, Log, Infog that are sent from
the disk log process when certain events occur, see the commands below and in
particular the open/1 option notify [page 66]. There can be several owners of a log, but
a process cannot own a log more than once. One and the same process may, however,
open the log as a user more than once. For a disk log process to properly close its file
and terminate, it must be closed by its owners and once by some non-owner process for
each time the log was used anonymously; the users are counted, and there must not be
any users left when the disk log process terminates.

Items can be logged synchronously by using the functions log/2, blog/2, log terms/2
and blog terms/2. For each of these functions, the caller is put on hold until the items
have been logged (but not necessarily written, use sync/1 to ensure that). By adding an
a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actually
write the items to the file, but return the control to the caller more or less immediately.

When using the internal format for logs, the functions log/2, log terms/2, alog/2,
and alog terms/2 should be used. These functions log one or more Erlang terms. By
prefixing each of the functions with a b (for “binary”) we get the corresponding blog
functions for the external format. These functions log one or more deep lists of bytes or,
alternatively, binaries of deep lists of bytes. For example, to log the string "hello" in
ASCII format, we can use disk log:blog(Log, "hello"), or disk log:blog(Log,
list to binary("hello")). The two alternatives are equally efficient. The blog

56 Kernel Application (KERNEL)

Kernel Reference Manual disk log

functions can be used for internally formatted logs as well, but in this case they must be
called with binaries constructed with calls to term to binary/1. There is no check to
ensure this, it is entirely the responsibility of the caller. If these functions are called with
binaries that do not correspond to Erlang terms, the chunk/2,3 and automatic repair
functions will fail. The corresponding terms (not the binaries) will be returned when
chunk/2,3 is called.

A collection of open disk logs with the same name running on different nodes is said to
be a a distributed disk log if requests made to any one of the logs are automatically made
to the other logs as well. The members of such a collection will be called individual
distributed disk logs, or just distributed disk logs if there is no risk of confusion. There is
no order between the members of such a collection. For instance, logged terms are not
necessarily written onto the node where the request was made before written onto the
other nodes. One could note here that there are a few functions that do not make
requests to all members of distributed disk logs, namely info, chunk, bchunk,
chunk step and lclose. An open disk log that is not a distributed disk log is said to be
a local disk log. A local disk log is accessible only from the node where the disk log
process runs, whereas a distributed disk log is accessible from all nodes in the Erlang
system, with exception for those nodes where a local disk log with the same name as
the distributed disk log exists. All processes on nodes that have access to a local or
distributed disk log can log items or otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items;
there is no attempt made to synchronize the contents of the files. However, as long as at
least one of the involved nodes is alive at each time, all items will be logged. When
logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a
nonode error.

Note:
In some applications it may not be acceptable that replies from individual logs are
ignored. An alternative in such situations is to use several local disk logs instead of
one distributed disk log, and implement the distribution without use of the disk log
module.

Errors are reported differently for asynchronous log attempts and other uses of the disk
log module. When used synchronously the disk log module replies with an error
message, but when called asynchronously, the disk log module does not know where to
send the error message. Instead owners subscribing to notifications will receive an
error status message.

The disk log module itself does not report errors to the error logger module; it is up
to the caller to decide whether the error logger should be employed or not. The
function format error/1 can be used to produce readable messages from error replies.
Information events are however sent to the error logger in two situations, namely when
a log is repaired, or when a file is missing while reading chunks.

The error message no such log means that the given disk log is not currently open.
Nothing is said about whether the disk log files exist or not.

57Kernel Application (KERNEL)

disk log Kernel Reference Manual

Note:
If an attempt to reopen or truncate a log fails (see reopen and truncate) the disk log
process immediately terminates. Before the process terminates links to to owners and
blocking processes (see block) are removed. The effect is that the links work in one
direction only; any process using a disk log has to check for the error message
no such log if some other process might truncate or reopen the log simultaneously.

Exports

accessible logs() -> f[LocalLog], [DistributedLog]g

Types:

� LocalLog = DistributedLog = term()

The accessible logs/0 function returns the names of the disk logs accessible on the
current node. The first list contains local disk logs, and the second list contains
distributed disk logs.

alog(Log, Term)

balog(Log, Bytes) -> ok | ferror, Reasong

Types:

� Log = term()
� Term = term()
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log

The alog/2 and balog/2 functions asynchronously append an item to a disk log. The
function alog/2 is used for internally formatted logs, and the function balog/2 for
externally formatted logs. balog/2 can be used for internally formatted logs as well
provided the binary was constructed with a call to term to binary/1.

The owners that subscribe to notifications will receive the message read only,
blocked log or format external in case the item cannot be written on the log, and
possibly one of the messages wrap, full and error status if an item was written on
the log. The message error status is sent if there is something wrong with the header
function or a file error occurred.

alog terms(Log, TermList)

balog terms(Log, BytesList) -> ok | ferror, Reasong

Types:

� Log = term()
� TermList = [term()]
� BytesList = [Bytes]
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log

58 Kernel Application (KERNEL)

Kernel Reference Manual disk log

The alog terms/2 and balog terms/2 functions asynchronously append a list of items
to a disk log. The function alog terms/2 is used for internally formatted logs, and the
function balog terms/2 for externally formatted logs. balog terms/2 can be used for
internally formatted logs as well provided the binaries were constructed with calls to
term to binary/1.

The owners that subscribe to notifications will receive the message read only,
blocked log or format external in case the items cannot be written on the log, and
possibly one or more of the messages wrap, full and error status if items were
written on the log. The message error status is sent if there is something wrong with
the header function or a file error occurred.

block(Log)

block(Log, QueueLogRecords) -> ok | ferror, Reasong

Types:

� Log = term()
� QueueLogRecords = bool()
� Reason = no such log | nonode | fblocked log, Logg

With a call to block/1,2 a process can block a log. If the blocking process is not an
owner of the log, a temporary link is created between the disk log process and the
blocking process. The link is used to ensure that the disk log is unblocked should the
blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The
blocking process can also use the functions chunk/2,3, bchunk/2,3, chunk step/3, and
unblock/1 without being affected by the block. Any other attempt than those hitherto
mentioned to update or read a blocked log suspends the calling process until the log is
unblocked or returns an error message fblocked log, Logg, depending on whether the
value of QueueLogRecords is true or false. The default value of QueueLogRecords is
true, which is used by block/1.

change header(Log, Header) -> ok | ferror, Reasong

Types:

� Log = term()
� Header = fhead, Headg | fhead func, fM,F,Agg

� Head = none | term() | binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fbadarg, headg

The change header/2 function changes the value of the head or head func option of a
disk log.

change notify(Log, Owner, Notify) -> ok | ferror, Reasong

Types:

� Log = term()
� Owner = pid()
� Notify = bool()
� Reason = no such log | nonode | fblocked log, Logg | fbadarg, notifyg |
fnot owner, Ownerg

59Kernel Application (KERNEL)

disk log Kernel Reference Manual

The change notify/3 function changes the value of the notify option for an owner of
a disk log.

change size(Log, Size) -> ok | ferror, Reasong

Types:

� Log = term()
� Size = integer() > 0 | infinity | fMaxNoBytes, MaxNoFilesg
� MaxNoBytes = integer() > 0
� MaxNoFiles = integer() > 0
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fnew size too small, CurrentSizeg | fbadarg, sizeg | ffile error, FileName, FileErrorg

The change size/2 function changes the size of an open log. For a halt log it is always
possible to increase the size, but it is not possible to decrease the size to something less
than the current size of the file.

For a wrap log it is always possible to increase both the size and number of files, as long
as the number of files does not exceed 65000. If the maximum number of files is
decreased, the change will not be valid until the current file is full and the log wraps to
the next file. The redundant files will be removed next time the log wraps around, i.e.
starts to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new
maximum number of files is 6. If the current file number is not greater than the new
maximum number of files, the files 7 to 10 will be removed when file number 6 is full
and the log starts to write to file number 1 again. Otherwise the files greater than the
current file will be removed when the current file is full (e.g. if the current file is 8, the
files 9 and 10); the files between new maximum number of files and the current file (i.e.
files 7 and 8) will be removed next time file number 6 is full.

If the size of the files is decreased the change will immediately affect the current log. It
will not of course change the size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function inc wrap file/1 can
be used to force the log to wrap.

chunk(Log, Continuation)

chunk(Log, Continuation, N) -> fContinuation2, Termsg | fContinuation2, Terms,
Badbytesg | eof | ferror, Reasong

bchunk(Log, Continuation)

bchunk(Log, Continuation, N) -> fContinuation2, Binariesg | fContinuation2, Binaries,
Badbytesg | eof | ferror, Reasong

Types:

� Log = term()
� Continuation = start | cont()
� N = integer() > 0 | infinity
� Continuation2 = cont()
� Terms = [term()]
� Badbytes = integer()
� Reason = no such log | fformat external, Logg | fblocked log, Logg | fbadarg,

continuationg | fnot internal wrap, Logg | fcorrupt log file, FileNameg | ffile error,
FileName, FileErrorg

60 Kernel Application (KERNEL)

Kernel Reference Manual disk log

� Binaries = [binary()]

The chunk/2,3 and bchunk/2,3 functions make it possible to efficiently read the terms
which have been appended to an internally formatted log. It minimizes disk I/O by
reading 64 kilobyte chunks from the file. The bchunk/2,3 functions return the binaries
read from the file; they do not call binary to term. Otherwise the work just like
chunk/2,3.

The first time chunk (or bchunk) is called, an initial continuation, the atom start, must
be provided. If there is a disk log process running on the current node, terms are read
from that log, otherwise an individual distributed log on some other node is chosen, if
such a log exists.

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 64 kilobyte chunk are read. If less than N terms are returned, this does not
necessarily mean that the end of the file has been reached.

The chunk function returns a tuple fContinuation2, Termsg, where Terms is a list of
terms found in the log. Continuation2 is yet another continuation which must be
passed on to any subsequent calls to chunk. With a series of calls to chunk it is possible
to extract all terms from a log.

The chunk function returns a tuple fContinuation2, Terms, Badbytesg if the log is
opened in read-only mode and the read chunk is corrupt. Badbytes is the number of
bytes in the file which were found not to be Erlang terms in the chunk. Note also that
the log is not repaired. When trying to read chunks from a log opened in read-write
mode, the tuple fcorrupt log file, FileNameg is returned if the read chunk is
corrupt.

chunk returns eof when the end of the log is reached, or ferror, Reasong if an error
occurs. Should a wrap log file be missing, a message is output on the error log.

When chunk/2,3 is used with wrap logs, the returned continuation may or may not be
valid in the next call to chunk. This is because the log may wrap and delete the file into
which the continuation points. To make sure this does not happen, the log can be
blocked during the search.

chunk info(Continuation) -> InfoList | ferror, Reasong

Types:

� Continuation = cont()
� Reason = fno continuation, Continuationg

The chunk info/1 function returns the following pair describing the chunk
continuation returned by chunk/2,3, bchunk/2,3, or chunk step/3:

� fnode, Nodeg. Terms are read from the disk log running on Node.

chunk step(Log, Continuation, Step) -> fok, Continuation2g | ferror, Reasong

Types:

� Log = term()
� Continuation = start | cont()
� Step = integer()
� Continuation2 = cont()

61Kernel Application (KERNEL)

disk log Kernel Reference Manual

� Reason = no such log | end of log | fformat external, Logg | fblocked log, Logg |
fbadarg, continuationg | ffile error, FileName, FileErrorg

The function chunk step can be used in conjunction with chunk/2,3 and bchunk/2,3
to search through an internally formatted wrap log. It takes as argument a continuation
as returned by chunk/2,3, bchunk/2,3, or chunk step/3, and steps forward (or
backward) Step files in the wrap log. The continuation returned points to the first log
item in the new current file.

If the atom start is given as continuation, a disk log to read terms from is chosen. A
local or distributed disk log on the current node is preferred to an individual distributed
log on some other node.

If the wrap log is not full because all files have not been used yet, ferror, end of logg
is returned if trying to step outside the log.

close(Log) -> ok | ferror, Reasong

Types:

� Reason = no such log | nonode | ffile error, FileName, FileErrorg

The function close/1 closes a local or distributed disk log properly. An internally
formatted log must be closed before the Erlang system is stopped, otherwise the log is
regarded as unclosed and the automatic repair procedure will be activated next time the
log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It
should be stressed that each and every owner must close the log, possibly by
terminating, and that any other process - not only the processes that have opened the
log anonymously - can decrement the users counter by closing the log. Attempts to
close a log by a process that is not an owner are simply ignored if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format error(Error) -> Chars

Types:

� Chars = [char() | Chars]

Given the error returned by any function in this module, the function format error
returns a descriptive string of the error in English. For file errors, the function
format error/1 in the file module is called.

inc wrap file(Log) -> ok | ferror, Reasong

Types:

� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fhalt log, Logg | finvalid header, InvalidHeaderg | ffile error, FileName, FileErrorg

The inc wrap file/1 function forces the internally formatted disk log to start logging
to the next log file. It can be used, for instance, in conjunction with change size/2 to
reduce the amount of disk space allocated by the disk log.

The owners that subscribe to notifications will normally receive a wrap message, but in
case of an error with a reason tag of invalid header or file error an error status
message will be sent.

info(Log) -> InfoList | ferror, no such logg

62 Kernel Application (KERNEL)

Kernel Reference Manual disk log

The info/1 function returns a list of fTag, Valueg pairs describing the log. If there is a
disk log process running on the current node, that log is used as source of information,
otherwise an individual distributed log on some other node is chosen, if such a log exists.

The following pairs are returned for all logs:

� fname, Logg, where Log is the name of the log as given by the open/1 option
name.

� ffile, Fileg. For halt logs File is the filename, and for wrap logs File is the
base name.

� ftype, Typeg, where Type is the type of the log as given by the open/1 option
type.

� fformat, Formatg, where Format is the format of the log as given by the open/1
option format.

� fsize, Sizeg, where Size is the size of the log as given by the open/1 option
size, or the size set by change size/2. The value set by change size/2 is
reflected immediately.

� fmode, Modeg, where Mode is the mode of the log as given by the open/1 option
mode.

� fowners, [fpid(), Notifyg]g where Notify is the value set by the open/1
option notify or the function change notify/3 for the owners of the log.

� fusers, Usersg where Users is the number of anonymous users of the log, see
the open/1 option linkto [page 66].

� fstatus, Statusg, where Status is ok or fblocked, QueueLogRecordsg as set
by the functions block/1,2 and unblock/1.

� fnode, Nodeg. The information returned by the current invocation of the info/1
function has been gathered from the disk log process running on Node.

� fdistributed, Distg. If the log is local on the current node, then Dist has the
value local, otherwise all nodes where the log is distributed are returned as a list.

The following pairs are returned for all logs opened in read write mode:

� fhead, Headg. Depending of the value of the open/1 options head and head func
or set by the function change header/2, the value of Head is none (default),
fhead, Hg (head option) or fM,F,Ag (head func option).

� fno written items, NoWrittenItemsg, where NoWrittenItems is the number of
items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read write mode:

� ffull, Fullg, where Full is true or false depending on whether the halt log is
full or not.

The following pairs are returned for wrap logs opened in read write mode:

� fno current bytes, integer() >= 0g is the number of bytes written to the
current wrap log file.

� fno current items, integer() >= 0g is the number of items written to the
current wrap log file, header inclusive.

� fno items, integer() >= 0g is the total number of items in all wrap log files.

63Kernel Application (KERNEL)

disk log Kernel Reference Manual

� fcurrent file, integer()g is the ordinal for the current wrap log file in the
range 1..MaxNoFiles, where MaxNoFiles is given by the open/1 option size or
set by change size/2.

� fno overflows, fSinceLogWasOpened, SinceLastInfogg, where
SinceLogWasOpened (SinceLastInfo) is the number of times a wrap log file has
been filled up and a new one opened or inc wrap file/1 has been called since the
disk log was last opened (info/1 was last called). The first time info/2 is called
after a log was (re)opened or truncated, the two values are equal.

Note that the chunk/2,3, bchunk/2,3, and chunk step/3 functions do not affect any
value returned by info/1.

lclose(Log)

lclose(Log, Node) -> ok | ferror, Reasong

Types:

� Node = node()
� Reason = no such log | ffile error, FileName, FileErrorg

The function lclose/1 closes a local log or an individual distributed log on the current
node. The function lclose/2 closes an individual distributed log on the specified node
if the node is not the current one. lclose(Log) is equivalent to lclose(Log,node()).
See also close/1 [page 62].

If there is no log with the given name on the specified node, no such log is returned.

log(Log, Term)

blog(Log, Bytes) -> ok | ferror, Reasong

Types:

� Log = term()
� Term = term()
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fformat external, Logg |
fblocked log, Logg | ffull, Logg | finvalid header, InvalidHeaderg | ffile error,
FileName, FileErrorg

The log/2 and blog/2 functions synchronously append a term to a disk log. They
return ok or ferror, Reasong when the term has been written to disk. If the log is
distributed, ok is always returned, unless all nodes are down. Terms are written by
means of the ordinary write() function of the operating system. Hence, there is no
guarantee that the term has actually been written to the disk, it might linger in the
operating system kernel for a while. To make sure the item is actually written to disk,
the sync/1 function must be called.

The log/2 function is used for internally formatted logs, and blog/2 for externally
formatted logs. blog/2 can be used for internally formatted logs as well provided the
binary was constructed with a call to term to binary/1.

The owners that subscribe to notifications will be notified of an error with an
error status message if the error reason tag is invalid header or file error.

log terms(Log, TermList)

64 Kernel Application (KERNEL)

Kernel Reference Manual disk log

blog terms(Log, BytesList) -> ok | ferror, Reasong

Types:

� Log = term()
� TermList = [term()]
� BytesList = [Bytes]
� Bytes = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fformat external, Logg |
fblocked log, Logg | ffull, Logg | finvalid header, InvalidHeaderg | ffile error,
FileName, FileErrorg

The log terms/2 and blog terms/2 functions synchronously append a list of items to
the log. The benefit of using these functions rather than the log/2 and blog/2
functions is that of efficiency: the given list is split into as large sublists as possible
(limited by the size of wrap log files), and each sublist is logged as one single item,
which reduces the overhead.

The log terms/2 function is used for internally formatted logs, and blog terms/2 for
externally formatted logs. blog terms/2 can be used for internally formatted logs as
well provided the binaries were constructed with calls to term to binary/1.

The owners that subscribe to notifications will be notified of an error with an
error status message if the error reason tag is invalid header or file error.

open(ArgL) -> OpenRet | DistOpenRet

Types:

� ArgL = [Opt]
� Opt = fname, term()g | ffile, FileNameg, flinkto, LinkTog | frepair, Repairg | ftype,

Typeg | fformat, Formatg | fsize, Sizeg | fdistributed, [Node]g | fnotify, bool()g |
fhead, Headg | fhead func, fM,F,Agg | fmode, Modeg

� FileName = string() | atom()
� LinkTo = pid() | none
� Repair = true | false | truncate
� Type = halt | wrap
� Format = internal | external
� Size = integer() > 0 | infinity | fMaxNoBytes, MaxNoFilesg
� MaxNoBytes = integer() > 0
� MaxNoFiles = 0 < integer() < 65000
� Rec = integer()
� Bad = integer()
� Head = none | term() | binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Mode = read write | read only
� OpenRet = Ret | ferror, Reasong
� DistOpenRet = f[fNode, Retg], [fBadNode, ferror, DistReasongg]g
� Node = BadNode = atom()
� Ret = fok, Logg | frepaired, Log, frecovered, Recg, fbadbytes, Badgg
� DistReason = nodedown | Reason

65Kernel Application (KERNEL)

disk log Kernel Reference Manual

� Reason = no such log | fbadarg, Argg | fsize mismatch, CurrentSize, NewSizeg |
farg mismatch, OptionName, CurrentValue, Valueg | fname already open, Logg |
fopen read write, Logg | fopen read only, Logg | fneed repair, Logg |
fnot a log file, FileNameg | finvalid index file, FileNameg | finvalid header,
InvalidHeaderg | ffile error, FileName, FileErrorg | fnode already open, Logg

The ArgL parameter is a list of options which have the following meanings:

� fname, Logg specifies the name of the log. This is the name which must be passed
on as a parameter in all subsequent logging operations. A name must always be
supplied.

� ffile, FileNameg specifies the name of the file which will be used for logged
terms. If this value is omitted and the name of the log is either an atom or a string,
the file name will default to lists:concat([Log, ".LOG"]) for halt logs. For
wrap logs, this will be the base name of the files. Each file in a wrap log will be
called <base name>.N, where N is an integer. Each wrap log will also have two
files called <base name>.idx and <base name>.siz.

� flinkto, LinkTog. If LinkTo is a pid, that pid becomes an owner of the log. If
LinkTo is none the log records that it is used anonymously by some process by
incrementing the users counter. By default, the process which calls open/1 owns
the log.

� frepair, Repairg. If Repair is true, the current log file will be repaired, if
needed. As the restoration is initiated, a message is output on the error log. If
false is given, no automatic repair will be attempted. Instead, the tuple ferror,
fneed repair, Loggg is returned if an attempt is made to open a corrupt log file.
If truncate is given, the log file will be truncated, creating an empty log. Default
is true, which has no effect on logs opened in read-only mode.

� ftype, Typeg is the type of the log. Default is halt.

� fformat, Formatg specifies the format of the disk log. Default is internal.

� fsize, Sizeg specifies the size of the log. When a halt log has reached its
maximum size, all attempts to log more items are rejected. The default size is
infinity, which for halt implies that there is no maximum size. For wrap logs, the
Size parameter may be either a pair fMaxNoBytes, MaxNoFilesg or infinity. In
the latter case, if the files of an already existing wrap log with the same name can
be found, the size is read from the existing wrap log, otherwise an error is
returned. Wrap logs write at most MaxNoBytes bytes on each file and use
MaxNoFiles files before starting all over with the first wrap log file. Regardless of
MaxNoBytes, at least the header (if there is one) and one item is written on each
wrap log file before wrapping to the next file. When opening an existing wrap log,
it is not necessary to supply a value for the option Size, but any supplied value
must equal the current size of the log, otherwise the tuple ferror,
fsize mismatch, CurrentSize, NewSizegg is returned.

� fdistributed, Nodesg. This option can be used for adding members to a
distributed disk log. The default value is [], which means that the log is local on
the current node.

� fnotify, bool()g. If true, the owners of the log are notified when certain events
occur in the log. Default is false. The owners are sent one of the following
messages when an event occurs:

– fdisk log, Node, Log, fwrap, NoLostItemsgg is sent when a wrap log has
filled up one of its files and a new file is opened. NoLostItems is the number
of previously logged items that have been lost when truncating existing files.

66 Kernel Application (KERNEL)

Kernel Reference Manual disk log

– fdisk log, Node, Log, ftruncated, NoLostItemsgg is sent when a log has
been truncated or reopened. For halt logs NoLostItems is the number of items
written on the log since the disk log process was created. For wrap logs
NoLostItems is the number of items on all wrap log files.

– fdisk log, Node, Log, fread only, Itemsgg is sent when an
asynchronous log attempt is made to a log file opened in read-only mode.
Items is the items from the log attempt.

– fdisk log, Node, Log, fblocked log, Itemsgg is sent when an
asynchronous log attempt is made to a blocked log that does not queue log
attempts. Items is the items from the log attempt.

– fdisk log, Node, Log, fformat external, Itemsgg is sent when alog/2
or alog terms/2 is used for internally formatted logs. Items is the items from
the log attempt.

– fdisk log, Node, Log, fullg is sent when an attempt to log items to a
wrap log would write more bytes than the limit set by the size option.

– fdisk log, Node, Log, ferror status, Statusgg is sent when the error
status changes. The error status is defined by the outcome of the last attempt
to log items to a the log or to truncate the log or the last use of sync/1,
inc wrap file/1 or change size/2. Status is one of ok and ferror,
Errorg, the former being the initial value.

� fhead, Headg specifies a header to be written first on the log file. If the log is a
wrap log, the item Head is written first in each new file. Head should be a term if
the format is internal, and a deep list of bytes (or a binary) otherwise. Default is
none, which means that no header is written first on the file.

� fhead func, fM,F,Agg specifies a function to be called each time a new log file is
opened. The call M:F(A) is assumed to return fok, Headg. The item Head is
written first in each file. Head should be a term if the format is internal, and a
deep list of bytes (or a binary) otherwise.

� fmode, Modeg specifies if the log is to be opened in read-only or read-write mode.
It defaults to read write.

The open/1 function returns fok, Logg if the log file was successfully opened. If the
file was successfully repaired, the tuple frepaired, Log, frecovered, Recg,
fbadbytes, Badgg is returned, where Rec is the number of whole Erlang terms found
in the file and Bad is the number of bytes in the file which were non-Erlang terms. If the
distributed parameter was given, open/1 returns a list of successful replies and a list
of erroneous replies. Each reply is tagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If
there is none a new empty log is created, otherwise the existing file is opened at the
position after the last logged item, and the logging of items will commence from there.
If the format is internal and the existing file is not recognized as an internally
formatted log, a tuple ferror, fnot a log file, FileNamegg is returned.

The open/1 function cannot be used for changing the values of options of an already
open log; when there are prior owners or users of a log, all option values except name,
linkto and notify are just checked against the values that have been supplied before
as option values to open/1, change header/2, change notify/3 or change size/2. As
a consequence, none of the options except name is mandatory. If some given value
differs from the current value, a tuple ferror, farg mismatch, OptionName,
CurrentValue, Valuegg is returned. Caution: an owner’s attempt to open a log as
owner once again is acknowledged with the return value fok, Logg, but the state of the
disk log is not affected in any way.

67Kernel Application (KERNEL)

disk log Kernel Reference Manual

If a log with a given name is local on some node, and one tries to open the log
distributed on the same node, then the tuple ferror, fnode already open, Namegg is
returned. The same tuple is returned if the log is distributed on some node, and one
tries to open the log locally on the same node. Opening individual distributed disk logs
for the first time adds those logs to a (possibly empty) distributed disk log. The option
values supplied are used on all nodes mentioned by the distributed option. Individual
distributed logs know nothing about each other’s option values, so each node can be
given unique option values by creating a distributed log with several calls to open/1.

It is possible to open a log file more than once by giving different values to the option
name or by using the same file when distributing a log on different nodes. It is up to the
user of the disk log module to ensure that no more than one disk log process has write
access to any file, or the the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates
with the EXIT message fffailed,Reasong,[fdisk log,open,1g]g. The function
returns ferror, Reasong for all other errors.

pid2name(Pid) -> fok, Logg | undefined

Types:

� Log = term()
� Pid = pid()

The pid2name/1 function returns the name of the log given the pid of a disk log process
on the current node, or undefined if the given pid is not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File)

reopen(Log, File, Head)

breopen(Log, File, BHead) -> ok | ferror, Reasong

Types:

� Log = term()
� File = string()
� Head = term()
� BHead = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
fsame file name, Logg | finvalid index file, FileNameg | finvalid header,
InvalidHeaderg | ffile error, FileName, FileErrorg

The reopen functions first rename the log file to File and then re-create a new log file.
In case of a wrap log, File is used as the base name of the renamed files. By default the
header given to open/1 is written first in the newly opened log file, but if the Head or
the BHead argument is given, this item is used instead. The header argument is used
once only; next time a wrap log file is opened, the header given to open/1 is used.

The reopen/2,3 functions are used for internally formatted logs, and breopen/3 for
externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message
fffailed,Errorg,[fdisk log,Fun,Arityg]g, and other processes that have requests
queued receive the message fdisk log, Node, ferror, disk log stoppedgg.

68 Kernel Application (KERNEL)

Kernel Reference Manual disk log

sync(Log) -> ok | ferror, Reasong

Types:

� Log = term()
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
ffile error, FileName, FileErrorg

The sync/1 function ensures that the contents of the log are actually written to the
disk. This is usually a rather expensive operation.

truncate(Log)

truncate(Log, Head)

btruncate(Log, BHead) -> ok | ferror, Reasong

Types:

� Log = term()
� Head = term()
� BHead = binary() | [Byte]
� Byte = [Byte] | 0 =< integer() =< 255
� Reason = no such log | nonode | fread only mode, Logg | fblocked log, Logg |
finvalid header, InvalidHeaderg | ffile error, FileName, FileErrorg

The truncate functions remove all items from a disk log. If the Head or the BHead
argument is given, this item is written first in the newly truncated log, otherwise the
header given to open/1 is used. The header argument is only used once; next time a
wrap log file is opened, the header given to open/1 is used.

The truncate/1,2 functions are used for internally formatted logs, and btruncate/2
for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT
message fffailed,Reasong,[fdisk log,Fun,Arityg]g, and other processes that have
requests queued receive the message fdisk log, Node, ferror,
disk log stoppedgg.

unblock(Log) -> ok | ferror, Reasong

Types:

� Log = term()
� Reason = no such log | nonode | fnot blocked, Logg | fnot blocked by pid, Logg

The unblock/1 function unblocks a log. A log can only be unblocked by the blocking
process.

See Also

file(3) [page 174], pg2(3) [page 261], wrap log reader(3) [page 280]

69Kernel Application (KERNEL)

erl boot server Kernel Reference Manual

erl boot server
Erlang Module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from
another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime
system is started with the -loader inet command line flag. All hosts specified with the
-hosts Host command line flag must have one instance of this server running.

This server can be started with the kernel configuration parameter start boot server.

Exports

start(Slaves) -> fok, Pidg | ferror, Whatg

Types:

� Slaves = [Host]
� Host = atom()
� Pid = pid()
� What = term()

Starts the boot server. Slaves is a list of IP addresses for hosts which are allowed to use
this server as a boot server.

start link(Slaves) -> fok, Pidg | ferror, Whatg

Types:

� Slaves = [Host]
� Host = atom()
� Pid = pid()
� What = term()()

Starts the boot server and links to the caller. This function is used to start the server if it
is included in a supervision tree.

add slave(Slave) -> ok | ferror, Whatg

Types:

� Slave = Host
� Host = atom()
� What = term()

Adds a Slave node to the list of allowed slave hosts.

delete slave(Slave) -> ok | ferror, Whatg

70 Kernel Application (KERNEL)

Kernel Reference Manual erl boot server

Types:

� Slave = Host
� Host = atom()
� What = void()

Deletes a Slave node from the list of allowed slave hosts.

which slaves() -> Slaves

Types:

� Slaves = [Host]
� Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO

init(3) [page 243], erl prim loader(3) [page 87]

71Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

erl ddll
Erlang Module

The erl ddll module provides an interface for loading and unloading erlang linked in
drivers in runtime.

Note:
This is a large reference document. For casual use of the module, as well as for most
real world applications, the descriptions of the functions load/2 [page 75] and
unload/1 [page 85] are enough to get going.

The driver should be provided as a dynamically linked library in a object code format
specific for the platform in use, i. e. .so files on most Unix systems and .ddl files on
windows. An erlang linked in driver has to provide specific interfaces to the emulator, so
this module is not designed for loading arbitrary dynamic libraries. For further
information about erlang drivers, refer to the ERTS reference manual section
[erl driver].

When describing a set of functions, (i.e. a module, a part of a module or an application)
executing in a process and wanting to use a ddll-driver, we use the term user. There can
be several users in one process (different modules needing the same driver) and several
processes running the same code, making up several users of a driver. In the basic
scenario, each user loads the driver before starting to use it and unloads the driver when
done. The reference counting keeps track of processes as well as the number of loads by
each process, so that the driver will only be unloaded when no one wants it (it has no
user). The driver also keeps track of ports that are opened towards it, so that one can
delay unloading until all ports are closed or kill all ports using the driver when it is
unloaded.

The interface supports two basic scenarios of loading and unloading. Each scenario can
also have the option of either killing ports when the driver is unloading, or waiting for
the ports to close themselves. The scenarios are:

Load and unload on a “when needed basis” This (most common) scenario simply
supports that each user [page 72] of the driver loads it when it is needed and
unloads it when the user [page 72] no longer have any use for it. The driver is
always reference counted and as long as a process keeping the driver loaded is still
alive, the driver is present in the system.
Each user [page 72] of the driver use literally the same pathname for the driver
when demanding load, but the users [page 72] are not really concerned with if the
driver is already loaded from the filesystem or if the object code has to be loaded
from filesystem.
Two pairs of functions support this scenario:

72 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

load/2 and unload/1 When using the load/unload interfaces, the driver will not
actually get unloaded until the last port using the driver is closed. The function
unload/1 can return immediately, as the users [page 72] are not really
concerned with when the actual unloading occurs. The driver will actually get
unloaded when no one needs it any longer.
If a process having the driver loaded dies, it will have the same effect as if
unloading was done.
When loading, the function load/2 returns ok as soon as there is any instance
of the driver present, so that if a driver is waiting to get unloaded (due to open
ports), it will simply change state to no longer need unloading.

load driver/2 and unload driver/1 These interfaces is intended to be used when
it is considered an error that ports are open towards a driver that no user [page
72] has loaded. The ports still open when the last user [page 72] calls
unload driver/1 or when the last process having the driver loaded dies, will
get killed with reason driver unloaded.
The function names load driver and unload driver are kept for backward
compatibility.

Loading and reloading for code replacement This scenario occurs when the driver
code might need replacement during operation of the Erlang emulator.
Implementing driver code replacement is somewhat more tedious than beam code
replacement, as one driver cannot be loaded as both “old” and “new” code. All
users [page 72] of a driver must have it closed (no open ports) before the old code
can be unloaded and the new code can be loaded.
The actual unloading/loading is done as one atomic operation, blocking all
processes in the system from using the driver concerned while in progress.
The preferred way to do driver code replacement is to let one single process keep
track of the driver. When the process start, the driver is loaded. When
replacement is required, the driver is reloaded. Unload is probably never done, or
done when the process exits. If more than one user [page 72] has a driver loaded
when code replacement is demanded, the replacement cannot occur until the last
“other” user [page 72] has unloaded the driver.
Demanding reload when a reload is already in progress is always an error. Using the
high level functions, it is also an error to demand reloading when more than one
user [page 72] has the driver loaded. To simplify driver replacement, avoid
designing your system so that more than than one user [page 72] has the driver
loaded.
The two functions for reloading drivers should be used together with
corresponding load functions, to support the two different behaviors concerning
open ports:

load/2 and reload/2 This pair of functions is used when reloading should be done
after the last open port towards the driver is closed.
As reload/2 actually waits for the reloading to occur, a misbehaving process
keeping open ports towards the driver (or keeping the driver loaded) might
cause infinite waiting for reload. Timeouts has to be provided outside of the
process demanding the reload or by using the low-level interface try load/3
[page 80] in combination with driver monitors (see below).

load driver/2 and reload driver/2 This pair of functions are used when open
ports towards the driver should be killed with reason driver unloaded to
allow for new driver code to get loaded.
If, however, another process has the driver loaded, calling reload driver
returns the error code pending process. As stated earlier, the recommended

73Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

design is to not allow other users [page 72] than the “driver reloader” to
actually demand loading of the concerned driver.

Exports

demonitor(MonitorRef) -> ok

Types:

� MonitorRef = ref()

Removes a driver monitor in much the same way as erlang:demonitor/1 [page 96] does
with process monitors. See monitor/2 [page 77], try load/3 [page 80] and try unload/2
[page 83] for details about how to create driver monitors.

The function throws a badarg exception if the parameter is not a ref().

info() -> AllInfoList

Types:

� AllInfoList = [DriverInfo]
� DriverInfo = fDriverName, InfoListg
� DriverName = string()
� InfoList = [InfoItem]
� InfoItem = fTag, Valueg
� Tag = atom()
� Value = term()

Returns a list of tuples fDriverName, InfoListg, where InfoList is the result of
calling info/1 [page 74] for that DriverName. Only dynamically linked in drivers are
included in the list.

info(Name) -> InfoList

Types:

� Name = string() | atom()
� InfoList = [InfoItem]
� InfoItem = fTag, Valueg
� Tag = atom()
� Value = term()

Returns a list of tuples fTag, Valueg, where Tag is the information item and Value is
the result of calling info/2 [page 75] with this driver name and this tag. The result being
a tuple list containing all information available about a driver.

The different tags that will appear in the list are:

� processes

� driver options

� port count

� linked in driver

� permanent

74 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

� awaiting load

� awaiting unload

For a detailed description of each value, please read the description of info/2 [page 75]
below.

The function throws a badarg exception if the driver is not present in the system.

info(Name, Tag) -> Value

Types:

� Name = string() | atom()
� Tag = processes | driver options | port count | linked in driver | permanent |

awaiting load | awaiting unload
� Value = term()

This function returns specific information about one aspect of a driver. The Tag
parameter specifies which aspect to get information about. The Value return differs
between different tags:

processes Return all processes containing users [page 72] of the specific drivers as a list
of tuples fpid(),int()g, where the int() denotes the number of users in the
process pid().

driver options Return a list of the driver options provided when loading, as well as any
options set by the driver itself during initialization. The currently only valid option
being kill ports.

port count Return the number of ports (an int()) using the driver.

linked in driver Return a bool(), being true if the driver is a statically linked in one
and false otherwise.

permanent Return a bool(), being true if the driver has made itself permanent (and is
not a statically linked in driver). false otherwise.

awaiting load Return a list of all processes having monitors for loading active, each
process returned as fpid(),int()g, where the int() is the number of monitors
held by the process pid().

awaiting unload Return a list of all processes having monitors for unloading active,
each process returned as fpid(),int()g, where the int() is the number of
monitors held by the process pid().

If the options linked in driver or permanent return true, all other options will return
the value linked in driver or permanent respectively.

The function throws a badarg exception if the driver is not present in the system or the
tag is not supported.

load(Path, Name) -> ok | ferror, ErrorDescg

Types:

� Path = Name = string() | atom()
� ErrorDesc = term()

75Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

Loads and links the dynamic driver Name. Path is a file path to the directory containing
the driver. Name must be a sharable object/dynamic library. Two drivers with different
Path parameters cannot be loaded under the same name. The Name is a string or atom
containing at least one character.

The Name given should correspond to the filename of the actual dynamically loadable
object file residing in the directory given as Path, but without the extension (i.e. .so).
The driver name provided in the driver initialization routine must correspond with the
filename, in much the same way as erlang module names correspond to the names of
the .beam files.

If the driver has been previously unloaded, but is still present due to open ports against
it, a call to load/2 will stop the unloading and keep the driver (as long as the Path is
the same) and ok is returned. If one actually wants the object code to be reloaded, one
uses reload/2 [page 78] or the low-level interface try load/3 [page 80] instead. Please
refer to the description of different scenarios [page 72] for loading/unloading in the
introduction.

If more than one process tries to load an already loaded driver withe the same Path, or
if the same process tries to load it several times, the function will return ok. The
emulator will keep track of the load/2 calls, so that a corresponding number of
unload/2 calls will have to be done from the same process before the driver will
actually get unloaded. It is therefore safe for an application to load a driver that is
shared between processes or applications when needed. It can safely be unloaded
without causing trouble for other parts of the system.

It is not allowed to load several drivers with the same name but with different Path
parameters.

Note:
Note especially that the Path is interpreted literally, so that all loaders of the same
driver needs to give the same literalPath string, even though different paths might
point out the same directory in the filesystem (due to use of relative paths and links).

On success, the function returns ok. On failure, the return value is ferror,ErrorDescg,
where ErrorDesc is an opaque term to be translated into human readable form by the
format error/1 [page 86] function.

For more control over the error handling, again use the try load/3 [page 80] interface
instead.

The function throws a badarg exception if the parameters are not given as described
above.

load driver(Path, Name) -> ok | ferror, ErrorDescg

Types:

� Path = Name = string() | atom()
� ErrorDesc = term()

76 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

Works essentially as load/2, but will load the driver with options other options. All
ports that are using the driver will get killed with the reason driver unloaded when
the driver is to be unloaded.

The number of loads and unloads by different users [page 72] influence the actual
loading and unloading of a driver file. The port killing will therefore only happen when
the lastuser [page 72] unloads the driver, or the last process having loaded the driver
exits.

This interface (or at least the name of the functions) is kept for backward compatibility.
Using try load/3 [page 80] with fdriver options,[kill ports]g in the option list
will give the same effect regarding the port killing.

The function throws a badarg exception if the parameters are not given as described
above.

monitor(Tag, Item) -> MonitorRef

Types:

� Tag = driver
� Item = fName, Wheng
� Name = atom() | string()
� When = loaded | unloaded | unloaded only
� MonitorRef = ref()

This function creates a driver monitor and works in many ways as the function
erlang:monitor/2 [page 117], does for processes. When a driver changes state, the
monitor results in a monitor-message being sent to the calling process. The MonitorRef
returned by this function is included in the message sent.

As with process monitors, each driver monitor set will only generate one single message.
The monitor is “destroyed” after the message is sent and there is then no need to call
demonitor/1 [page 74].

The MonitorRef can also be used in subsequent calls to demonitor/1 [page 74] to
remove a monitor.

The function accepts the following parameters:

Tag The monitor tag is always driver as this function can only be used to create driver
monitors. In the future, driver monitors will be integrated with process monitors,
why this parameter has to be given for consistence.

Item The Item parameter specifies which driver one wants to monitor (the name of the
driver) as well as which state change one wants to monitor. The parameter is a
tuple of arity two who’s first element is the driver name and second element is
either of:

loaded Notify me when the driver is reloaded (or loaded if loading is underway).
It only makes sense to monitor drivers that are in the process of being loaded
or reloaded. One cannot monitor a future-to-be driver name for loading, that
will only result in a ’DOWN’ message being immediately sent. Monitoring for
loading is therefore most useful when triggered by the try load/3 [page 80]
function, where the monitor is created because the driver is in such a pending
state.
Setting a driver monitor for loading will eventually lead to one of the
following messages being sent:

77Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

f’UP’, ref(), driver, Name, loadedg This message is sent, either immediately
if the driver is already loaded and no reloading is pending, or when
reloading is executed if reloading is pending.
The user [page 72] is expected to know if reloading is demanded prior to
creating a monitor for loading.

f’UP’, ref(), driver, Name, permanentg This message will be sent if reloading
was expected, but the (old) driver made itself permanent prior to
reloading. It will also be sent if the driver was permanent or statically
linked in when trying to create the monitor.

f’DOWN’, ref(), driver, Name, load cancelledg This message will arrive if
reloading was underway, but the user [page 72] having requested reload
cancelled it by either dying or calling try unload/2 [page 83] (or
unload/1/unload driver/1) again before it was reloaded.

f’DOWN’, ref(), driver, Name, fload failure, Failuregg This message will
arrive if reloading was underway but the loading for some reason failed.
The Failure term is one of the errors that can be returned from
try load/3 [page 80]. The error term can be passed to format error/1
[page 86] for translation into human readable form. Note that the
translation has to be done in the same running erlang virtual machine as
the error was detected in.

unloaded Monitor when a driver gets unloaded. If one monitors a driver that is
not present in the system, one will immediately get notified that the driver got
unloaded. There is no guarantee that the driver was actually ever loaded.
A driver monitor for unload will eventually result in one of the following
messages being sent:
f’DOWN’, ref(), driver, Name, unloadedg The driver instance monitored is

now unloaded. As the unload might have been due to a reload/2 request,
the driver might once again have been loaded when this message arrives.

f’UP’, ref(), driver, Name, unload cancelledg This message will be sent if
unloading was expected, but while the driver was waiting for all ports to
get closed, a new user [page 72] of the driver appeared and the unloading
was cancelled.
This message appears when an fok, pending driverg) was returned from
try unload/2 [page 83]) for the last user [page 72] of the driver and then a
fok, already loadedg is returned from a call to try load/3 [page 80].
If one wants to really monitor when the driver gets unloaded, this message
will distort the picture, no unloading was really done. The unloaded only
option creates a monitor similar to an unloaded monitor, but does never
result in this message.

f’UP’, ref(), driver, Name, permanentg This message will be sent if unloading
was expected, but the driver made itself permanent prior to unloading. It
will also be sent if trying to monitor a permanent or statically linked in
driver.

unloaded only A monitor created as unloaded only behaves exactly as one
created as unloaded with the exception that the f’UP’, ref(), driver,
Name, unload cancelledg message will never be sent, but the monitor
instead persists until the driver really gets unloaded.

The function throws a badarg exception if the parameters are not given as described
above.

reload(Path, Name) -> ok | ferror, ErrorDescg

78 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

Types:

� Path = Name = string() | atom()
� ErrorDesc = pending process | OpaqueError
� OpaqueError = term()

Reloads the driver named Name from a possibly different Path than was previously used.
This function is used in the code change scenario [page 72] described in the
introduction.

If there are other users [page 72] of this driver, the function will return ferror,
pending processg, but if there are no more users, the function call will hang until all
open ports are closed.

Note:
Avoid mixing several users [page 72] with driver reload requests.

If one wants to avoid hanging on open ports, one should use the try load/3 [page 80]
function instead.

The Name and Path parameters have exactly the same meaning as when calling the plain
load/2 [page 75] function.

Note:
Avoid mixing several users [page 72] with driver reload requests.

On success, the function returns ok. On failure, the function returns an opaque error,
with the exception of the pending process error described above. The opaque errors
are to be translated into human readable form by the format error/1 [page 86] function.

For more control over the error handling, again use the try load/3 [page 80] interface
instead.

The function throws a badarg exception if the parameters are not given as described
above.

reload driver(Path, Name) -> ok | ferror, ErrorDescg

Types:

� Path = Name = string() | atom()
� ErrorDesc = pending process | OpaqueError
� OpaqueError = term()

79Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

Works exactly as reload/2 [page 78], but for drivers loaded with the load driver/2 [page
76] interface.

As this interface implies that ports are being killed when the last user disappears, the
function wont hang waiting for ports to get closed.

For further details, see the scenarios [page 72] in the module description and refer to
the reload/2 [page 78] function description.

The function throws a badarg exception if the parameters are not given as described
above.

try load(Path, Name, OptionList) -> fok,Statusg | fok, PendingStatus, Refg | ferror,
ErrorDescg

Types:

� Path = Name = string() | atom()
� OptionList = [Option]
� Option = fdriver options, DriverOptionListg | fmonitor, MonitorOptiong | freload,

ReloadOptiong
� DriverOptionList = [DriverOption]
� DriverOption = kill ports
� MonitorOption = pending driver | pending
� ReloadOption = pending driver | pending
� Status = loaded | already loaded | PendingStatus
� PendingStatus = pending driver | pending process
� Ref = ref()
� ErrorDesc = ErrorAtom | OpaqueError
� ErrorAtom = linked in driver | inconsistent | permanent |

not loaded by this process | not loaded | pending reload | pending process

This function provides more control than the load/2/reload/2 and
load driver/2/reload driver/2 interfaces. It will never wait for completion of other
operations related to the driver, but immediately return the status of the driver as either:

fok, loadedg The driver was actually loaded and is immediately usable.

fok, already loadedg The driver was already loaded by another process and/or is in use
by a living port. The load by you is registered and a corresponding try unload is
expected sometime in the future.

fok, pending drivergor fok, pending driver, ref()g The load request is registered, but
the loading is delayed due to the fact that an earlier instance of the driver is still
waiting to get unloaded (there are open ports using it). Still, unload is expected
when you are done with the driver. This return value will mostly happen when the
freload,pending driverg or freload,pendingg options are used, but can
happen when another user [page 72] is unloading a driver in parallel and the
kill ports driver option is set. In other words, this return value will always need
to be handled!

fok, pending processgor fok, pending process, ref()g The load request is registered,
but the loading is delayed due to the fact that an earlier instance of the driver is
still waiting to get unloaded by another user [page 72] (not only by a port, in
which case fok,pending driverg would have been returned). Still, unload is
expected when you are done with the driver. This return value will only happen
when the freload,pendingg option is used.

80 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

When the function returns fok, pending driverg or fok, pending processg, one
might want to get information about when the driver is actually loaded. This can be
achieved by using the fmonitor, PendingOptiong option.

When monitoring is requested, and a corresponding fok, pending driverg or fok,
pending processg would be returned, the function will instead return a tuple fok,
PendingStatus, ref()g and the process will, at a later time when the driver actually
gets loaded, get a monitor message. The monitor message one can expect is described in
the monitor/2 [page 77] function description.

Note:
Note that in case of loading, monitoring can not only get triggered by using the
freload, ReloadOptiong option, but also in special cases where the load-error is
transient, why fmonitor, pending driverg should be used under basically all real
world circumstances!

The function accepts the following parameters:

Path The filesystem path to the directory where the driver object file is situated. The
filename of the object file (minus extension) must correspond to the driver name
(used in the name parameter) and the driver must identify itself with the very
same name. The Path might be provided as an io list, meaning it can be a list of
other io lists, characters (eight bit integers) or binaries, all to be flattened into a
sequence of characters.
The (possibly flattened) Path parameter must be consistent throughout the
system, a driver should, by all users [page 72], be loaded using the same
literalPath. The exception is when reloading is requested, in which case the Path
may be specified differently. Note that all users [page 72] trying to load the driver
at a later time will need to use the newPath if the Path is changed using a reload
option. This is yet another reason to have only one loader of a driver one wants to
upgrade in a running system!

Name The name parameter is the name of the driver to be used in subsequent calls to
open port [page 120]. The name can be specified either as an io list() or as an
atom(). The name given when loading is used to find the actual object file (with
the help of the Path and the system implied extension suffix, i.e. .so). The name
by which the driver identifies itself must also be consistent with this Name
parameter, much as a beam-file’s module name much correspond to it’s filename.

OptionList A number of options can be specified to control the loading operation. The
options are given as a list of two-tuples, the tuples having the following values and
meanings:

fdriver options, DriverOptionsListg This option is to provide options that will
change it’s general behavior and will “stick” to the driver throughout it’s
lifespan.
The driver options for a given driver name need always to be consistent, even
when the driver is reloaded, meaning that they are as much a part of the driver
as the actual name.
Currently the only allowed driver option is kill ports, which means that all
ports opened towards the driver are killed with the exit-reason
driver unloaded when no process any longer has the driver loaded. This
situation arises either when the last user [page 72] calls try unload/2 [page
83], or the last process having loaded the driver exits.

81Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

fmonitor, MonitorOptiong A MonitorOption tells try load/3 to trigger a driver
monitor under certain conditions. When the monitor is triggered, the function
will return a three-tuple fok, PendingStatus, ref()g, where the ref() is
the monitor ref for the driver monitor.
Only one MonitorOption can be specified and it is either the atom pending,
which means that a monitor should be created whenever a load operation is
delayed, and the atom pending driver, in which a monitor is created
whenever the operation is delayed due to open ports towards an otherwise
unused driver. The pending driver option is of little use, but is present for
completeness, it is very well defined which reload-options might give rise to
which delays. It might, however, be a good idea to use the same
MonitorOption as the RelaodOption if present.
If reloading is not requested, it might still be useful to specify the monitor
option, as forced unloads (kill ports driver option or the kill ports option
to try unload/2 [page 83]) will trigger a transient state where driver loading
cannot be performed until all closing ports are actually closed. So, as
try unload can, in almost all situations, return fok, pending driverg, one
should always specify at least fmonitor, pending driverg in production
code (see the monitor discussion above).

freload,RealoadOptiong This option is used when one wants to reload a driver
from disk, most often in a code upgrade scenario. Having a reload option also
implies that the Path parameter need not be consistent with earlier loads of
the driver.
To reload a driver, the process needs to have previously loaded the driver, i.e
there has to be an active user [page 72] of the driver in the process.
The reload option can be either the atom pending, in which reloading is
requested for any driver and will be effectuated when all ports opened against
the driver are closed. The replacement of the driver will in this case take place
regardless of if there are still pending users [page 72] having the driver loaded!
The option also triggers port-killing (if the kill ports driver option is used)
even though there are pending users, making it usable for forced driver
replacement, but laying a lot of responsibility on the driver users [page 72].
The pending option is seldom used as one does not want other users [page 72]
to have loaded the driver when code change is underway.
The more useful option is pending driver, which means that reloading will
be queued if the driver is not loaded by any other users [page 72], but the
driver has opened ports, in which case fok, pending driverg will be
returned (a monitor option is of course recommended).
If the driver is unloaded (not present in the system), the error code
not loaded will be returned. The reload option is intended for when the user
has already loaded the driver in advance.

The function might return numerous errors, of which some only can be returned given a
certain combination of options.

A number of errors are opaque and can only be interpreted by passing them to the
format error/1 [page 86] function, but some can be interpreted directly:

ferror,linked in driverg The driver with the specified name is an erlang statically linked
in driver, which cannot be manipulated with this API.

ferror,inconsistentg The driver has already been loaded with either other
DriverOptions or a different literalPath argument.
This can happen even if a reload option is given, if the DriverOptions differ
from the current.

82 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

ferror, permanentg The driver has requested itself to be permanent, making it behave
like an erlang linked in driver and it can no longer be manipulated with this API.

ferror, pending processg The driver is loaded by other users [page 72] when the
freload, pending driverg option was given.

ferror, pending reloadg Driver reload is already requested by another user [page 72]
when the freload, ReloadOptiong option was given.

ferror, not loaded by this processg Appears when the reload option is given. The
driver Name is present in the system, but there is no user [page 72] of it in this
process.

ferror, not loadedg Appears when the reload option is given. The driver Name is not
in the system. Only drivers loaded by this process can be reloaded.

All other error codes are to be translated by the format error/1 [page 86] function.
Note that calls to format error should be performed from the same running instance
of the erlang virtual machine as the error was detected in, due to system dependent
behavior concerning error values.

If the arguments or options are malformed, the function will throw a badarg exception.

try unload(Name, OptionList) -> fok,Statusg | fok, PendingStatus, Refg | ferror,
ErrorAtomg

Types:

� Name = string() | atom()
� OptionList = [Option]
� Option = fmonitor, MonitorOptiong | kill ports
� MonitorOption = pending driver | pending
� Status = unloaded | PendingStatus
� PendingStatus = pending driver | pending process
� Ref = ref()
� ErrorAtom = linked in driver | not loaded | not loaded by this process | permanent

This is the low level function to unload (or decrement reference counts of) a driver. It
can be used to force port killing, in much the same way as the driver option kill ports
implicitly does, and it can trigger a monitor either due to other users [page 72] still
having the driver loaded or that there are open ports using the driver.

Unloading can be described as the process of telling the emulator that this particular
part of the code in this particular process (i.e. this user [page 72]) no longer needs the
driver. That can, if there are no other users, trigger actual unloading of the driver, in
which case the driver name disappears from the system and (if possible) the memory
occupied by the driver executable code is reclaimed. If the driver has the kill ports
option set, or if kill ports was specified as an option to this function, all pending ports
using this driver will get killed when unloading is done by the last user [page 72]. If no
port-killing is involved and there are open ports, the actual unloading is delayed until
there are no more open ports using the driver. If, in this case, another user [page 72] (or
even this user) loads the driver again before the driver is actually unloaded, the
unloading will never take place.

To allow the user [page 72] that requests unloading to wait for actual unloading to take
place, monitor triggers can be specified in much the same way as when loading. As
users [page 72] of this function however seldom are interested in more than
decrementing the reference counts, monitoring is more seldom needed. If the

83Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

kill ports option is used however, monitor trigging is crucial, as the ports are not
guaranteed to have been killed until the driver is unloaded, why a monitor should be
triggered for at least the pending driver case.

The possible monitor messages that can be expected are the same as when using the
unloaded option to the monitor/2 [page 77] function.

The function will return one of the following statuses upon success:

fok, unloadedg The driver was immediately unloaded, meaning that the driver name is
now free to use by other drivers and, if the underlying OS permits it, the memory
occupied by the driver object code is now reclaimed.
The driver can only be unloaded when there are no open ports using it and there
are no more users [page 72] requiring it to be loaded.

fok, pending drivergor fok, pending driver, ref()g This return value indicates that this
call removed the last user [page 72] from the driver, but there are still open ports
using it. When all ports are closed and no new users [page 72] have arrived, the
driver will actually be reloaded and the name and memory reclaimed.
This return value is valid even when the option kill ports was used, as killing
ports may not be a process that completes immediately. The condition is, in that
case, however transient. Monitors are as always useful to detect when the driver is
really unloaded.

fok, pending processgor fok, pending process, ref()g The unload request is registered,
but there are still other users [page 72] holding the driver. Note that the term
pending process might refer to the running process, there might be more than
one user [page 72] in the same process.
This is a normal, healthy return value if the call was just placed to inform the
emulator that you have no further use of the driver. It is actually the most common
return value in the most common scenario [page 72] described in the introduction.

The function accepts the following parameters:

Name The name parameter is the name of the driver to be unloaded. The name can be
specified either as an io list() or as an atom().

OptionList The OptionList argument can be used to specify certain behavior
regarding ports as well as triggering monitors under certain conditions:

kill ports Force killing of all ports opened using this driver, with the exit reason
driver unloaded, if you are the lastuser [page 72] of the driver.
If there are other users [page 72] having the driver loaded, this option will
have no effect.
If one wants the consistent behavior of killing ports when the last user [page
72] unloads, one should use the driver option kill ports when loading the
driver instead.

fmonitor, MonitorOptiong This option creates a driver monitor if the condition
given in MonitorOptions is true. The valid options are:

pending driver Create a driver monitor if the return value is to be fok,
pending driverg.

pending Create a monitor if the return value will be either fok,
pending driverg or fok, pending processg.

84 Kernel Application (KERNEL)

Kernel Reference Manual erl ddll

The pending driverMonitorOption is by far the most useful and it has to be
used to ensure that the driver has really been unloaded and the ports closed
whenever the kill ports option is used or the driver may have been loaded
with the kill ports driver option.
By using the monitor-triggers in the call to try unload one can be sure that
the monitor is actually added before the unloading is executed, meaning that
the monitor will always get properly triggered, which would not be the case if
one called erl ddll:monitor/2 separately.

The function may return several error conditions, of which all are well specified (no
opaque values):

ferror, linked in driverg You were trying to unload an erlang statically linked in driver,
which cannot be manipulated with this interface (and cannot be unloaded at all).

ferror, not loadedg The driver Name is not present in the system.

ferror, not loaded by this processg The driver Name is present in the system, but there
is no user [page 72] of it in this process.
As a special case, drivers can be unloaded from processes that has done no
corresponding call to try load/3 if, and only if, there are no users of the driver at
all, which may happen if the process containing the last user dies.

ferror, permanentg The driver has made itself permanent, in which case it can no
longer be manipulated by this interface (much like a statically linked in driver).

The function throws a badarg exception if the parameters are not given as described
above.

unload(Name) -> ok | ferror, ErrorDescg

Types:

� Name = string() | atom()
� ErrorDesc = term()

Unloads, or at least dereferences the driver named Name. If the caller is the last user
[page 72] of the driver, and there are no more open ports using the driver, the driver
will actually get unloaded. In all other cases, actual unloading will be delayed until all
ports are closed and there are no remaining users [page 72].

If there are other users [page 72] of the driver, the reference counts of the driver is
merely decreased, so that the caller is no longer considered a user of the driver. For
usage scenarios, see the description [page 72] in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the
format error/1 [page 86] function. For more control over the operation, use the
try unload/2 [page 83] interface.

The function throws a badarg exception if the parameters are not given as described
above.

unload driver(Name) -> ok | ferror, ErrorDescg

Types:

� Name = string() | atom()
� ErrorDesc = term()

85Kernel Application (KERNEL)

erl ddll Kernel Reference Manual

Unloads, or at least dereferences the driver named Name. If the caller is the last user
[page 72] of the driver, all remaining open ports using the driver will get killed with the
reason driver unloaded and the driver will eventually get unloaded.

If there are other users [page 72] of the driver, the reference counts of the driver is
merely decreased, so that the caller is no longer considered a user [page 72]. For usage
scenarios, see the description [page 72] in the beginning of this document.

The ErrorDesc returned is an opaque value to be passed further on to the
format error/1 [page 86] function. For more control over the operation, use the
try unload/2 [page 83] interface.

The function throws a badarg exception if the parameters are not given as described
above.

loaded drivers() -> fok, Driversg

Types:

� Drivers = [Driver()]
� Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically
loaded ones.

The driver names are returned as a list of strings rather than a list of atoms for historical
reasons.

More information about drivers can be obtained using one of the info [page 74]
functions.

format error(ErrorDesc) -> string()

Types:

� ErrorDesc – see below

Takes an ErrorDesc returned by load, unload or reload functions and returns a string
which describes the error or warning.

Note:
Due to peculiarities in the dynamic loading interfaces on different platform, the
returned string is only guaranteed to describe the correct error if format error/1 is
called in the same instance of the erlang virtual machine as the error appeared in
(meaning the same operating system process)!

SEE ALSO

erl driver(4), driver entry(4)

86 Kernel Application (KERNEL)

Kernel Reference Manual erl prim loader

erl prim loader
Erlang Module

erl prim loader is used to load all Erlang modules into the system. The start script is
also fetched with this low level loader.

erl prim loader knows about the environment and how to fetch modules. The loader
could, for example, fetch files using the file system (with absolute file names as input),
or a database (where the binary format of a module is stored).

The -loader Loader command line flag can be used to choose the method used by the
erl prim loader. Two Loader methods are supported by the Erlang runtime system:
efile and inet. If another loader is required, then it has to be implemented by the
user. The Loader provided by the user must fulfill the protocol defined below, and it is
started with the erl prim loader by evaluating
open port(fspawn,Loaderg,[binary]).

Exports

start(Id, Loader, Hosts) -> fok, Pidg | ferror, Whatg

Types:

� Id = term()
� Loader = atom() | string()
� Hosts = [Host]
� Host = atom()
� Pid = pid()
� What = term()

Starts the Erlang low level loader. This function is called by the init process (and
module). The init process reads the command line flags -id Id, -loader Loader, and
-hosts Hosts. These are the arguments supplied to the start/3 function.

If -loader is not given, the default loader is efile which tells the system to read from
the file system.

If -loader is inet, the -id Id, -hosts Hosts, and -setcookie Cookie flags must also
be supplied. Hosts identifies hosts which this node can contact in order to load
modules. One Erlang runtime system with a erl boot server process must be started
on each of hosts given in Hosts in order to answer the requests. See
erl boot server(3).

If -loader is something else, the given port program is started. The port program is
supposed to follow the protocol specified below.

get file(File) -> fok, Bin, FullNameg | error

87Kernel Application (KERNEL)

erl prim loader Kernel Reference Manual

Types:

� File = string()
� Bin = binary()
� FullName = string()

This function fetches a file using the low level loader. File is either an absolute file
name or just the name of the file, for example "lists.beam". If an internal path is set
to the loader, this path is used to find the file. If a user supplied loader is used, the path
can be stripped off if it is obsolete, and the loader does not use a path. FullName is the
complete name of the fetched file. Bin is the contents of the file as a binary.

get path() -> fok, Pathg

Types:

� Path = [Dir]
� Dir = string()

This function gets the path set in the loader. The path is set by the init process
according to information found in the start script.

set path(Path) -> ok

Types:

� Path = [Dir]
� Dir = string()

This function sets the path of the loader if init interprets a path command in the start
script.

Protocol

The following protocol must be followed if a user provided loader port program is used.
The Loader port program is started with the command
open port(fspawn,Loaderg,[binary]). The protocol is as follows:

Function Send Receive

get file [102 | FileName] [121 | BinaryFile] (on success)

[122] (failure)

stop eof terminate

88 Kernel Application (KERNEL)

Kernel Reference Manual erl prim loader

Command Line Flags

The erl prim loader module interprets the following command line flags:

-loader Loader Specifies the name of the loader used by erl prim loader. Loader
can be efile (use the local file system), or inet (load using the boot server on
another Erlang node). If Loader is user defined, the defined Loader port program
is started.
If the -loader flag is omitted, it defaults to efile.

-hosts Hosts Specifies which other Erlang nodes the inet loader can use. This flag is
mandatory if the -loader inet flag is present. On each host, there must be on
Erlang node with the erl boot server which handles the load requests. Hosts is a
list of IP addresses (hostnames are not acceptable).

-id Id Specifies the identity of the Erlang runtime system. If the system runs as a
distributed node, Id must be identical to the name supplied with the -sname or
-name distribution flags.

-setcookie Cookie Specifies the cookie of the Erlang runtime system. This flag is
mandatory if the -loader inet flag is present.

SEE ALSO

init(3) [page 243], erl boot server(3) [page 70]

89Kernel Application (KERNEL)

erlang Kernel Reference Manual

erlang
Erlang Module

By convention, most built-in functions (BIFs) are seen as being in the module erlang. A
number of the BIFs are viewed more or less as part of the Erlang programming language
and are auto-imported. Thus, it is not necessary to specify the module name and both
the calls atom to list(Erlang) and erlang:atom to list(Erlang) are identical.

In the text, auto-imported BIFs are listed without module prefix. BIFs listed with
module prefix are not auto-imported.

BIFs may fail for a variety of reasons. All BIFs fail with reason badarg if they are called
with arguments of an incorrect type. The other reasons that may make BIFs fail are
described in connection with the description of each individual BIF.

Some BIFs may be used in guard tests, these are marked with “Allowed in guard tests”.

DATA TYPES

ext_binary()
a binary data object,
structured according to the Erlang external term format

iodata() = iolist() | binary()

iolist() = [char() | binary() | iolist()]
a binary is allowed as the tail of the list

Exports

abs(Number) -> int() | float()

Types:

� Number = number()

Returns an integer or float which is the arithmetical absolute value of Number.

> abs(-3.33).
3.33
> abs(-3).
3

Allowed in guard tests.

adler32(Data) -> int()

90 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Types:

� Data = iodata()

Computes and returns the adler32 checksum for Data.

adler32(OldAdler, Data) -> int()

Types:

� OldAdler = int()
� Data = iodata()

Continue computing the adler32 checksum by combining the previous checksum,
OldAdler, with the checksum of Data.

The following code:

X = adler32(Data1),
Y = adler32(X,Data2).

- would assign the same value to Y as this would:

Y = adler32([Data1,Data2]).

adler32 combine(FirstAdler, SecondAdler, SecondSize) -> int()

Types:

� FirstAdler = SecondAdler = int()
� SecondSize = int()

Combines two previously computed adler32 checksums. This computation requires the
size of the data object for the second checksum to be known.

The following code:

Y = adler32(Data1),
Z = adler32(Y,Data2).

- would assign the same value to Z as this would:

X = adler32(Data1),
Y = adler32(Data2),
Z = adler32_combine(X,Y,iolist_size(Data2)).

erlang:append element(Tuple1, Term) -> Tuple2

Types:

� Tuple1 = Tuple2 = tuple()
� Term = term()

Returns a new tuple which has one element more than Tuple1, and contains the
elements in Tuple1 followed by Term as the last element. Semantically equivalent to
list to tuple(tuple to list(Tuple ++ [Term]), but much faster.

> erlang:append element(fone, twog, three).
fone,two,threeg

apply(Fun, Args) -> term() | empty()

Types:

91Kernel Application (KERNEL)

erlang Kernel Reference Manual

� Fun = fun()
� Args = [term()]

Call a fun, passing the elements in Args as arguments.

Note: If the number of elements in the arguments are known at compile-time, the call
is better written as Fun(Arg1, Arg2, ... ArgN).

Warning:
Earlier, Fun could also be given as fModule, Functiong, equivalent to
apply(Module, Function, Args). This usage is deprecated and will stop working
in a future release of Erlang/OTP.

apply(Module, Function, Args) -> term() | empty()

Types:

� Module = Function = atom()
� Args = [term()]

Returns the result of applying Function in Module to Args. The applied function must
be exported from Module. The arity of the function is the length of Args.

> apply(lists, reverse, [[a, b, c]]).
[c,b,a]

apply can be used to evaluate BIFs by using the module name erlang.

> apply(erlang, atom to list, [’Erlang’]).
"Erlang"

Note: If the number of arguments are known at compile-time, the call is better written
as Module:Function(Arg1, Arg2, ..., ArgN).

Failure: error handler:undefined function/3 is called if the applied function is not
exported. The error handler can be redefined (see process flag/2 [page 127]). If the
error handler is undefined, or if the user has redefined the default error handler so
the replacement module is undefined, an error with the reason undef is generated.

atom to list(Atom) -> string()

Types:

� Atom = atom()

Returns a string which corresponds to the text representation of Atom.

> atom to list(’Erlang’).
"Erlang"

binary to list(Binary) -> [char()]

Types:

� Binary = binary()

Returns a list of integers which correspond to the bytes of Binary.

92 Kernel Application (KERNEL)

Kernel Reference Manual erlang

binary to list(Binary, Start, Stop) -> [char()]

Types:

� Binary = binary()
� Start = Stop = 1..byte size(Binary)

As binary to list/1, but returns a list of integers corresponding to the bytes from
position Start to position Stop in Binary. Positions in the binary are numbered starting
from 1.

bitstring to list(Bitstring) -> [char()|bitstring()]

Types:

� Bitstring = bitstring()

Returns a list of integers which correspond to the bytes of Bitstring. If the number of
bits in the binary is not divisible by 8, the last element of the list will be a bitstring
containing the remaining bits (1 up to 7 bits).

binary to term(Binary) -> term()

Types:

� Binary = ext binary()

Returns an Erlang term which is the result of decoding the binary object Binary, which
must be encoded according to the Erlang external term format. See also
term to binary/1 [page 154].

bit size(Bitstring) -> int()

Types:

� Bitstring = bitstring()

Returns an integer which is the size in bits of Bitstring.

> bit size(<<433:16,3:3>>).
19
> bit size(<<1,2,3>>).
24

Allowed in guard tests.

erlang:bump reductions(Reductions) -> void()

Types:

� Reductions = int()

93Kernel Application (KERNEL)

erlang Kernel Reference Manual

This implementation-dependent function increments the reduction counter for the
calling process. In the Beam emulator, the reduction counter is normally incremented
by one for each function and BIF call, and a context switch is forced when the counter
reaches 1000.

Warning:
This BIF might be removed in a future version of the Beam machine without prior
warning. It is unlikely to be implemented in other Erlang implementations.

byte size(Bitstring) -> int()

Types:

� Bitstring = bitstring()

Returns an integer which is the number of bytes needed to contain Bitstring. (That is,
if the number of bits in Bitstring is not divisible by 8, the resulting number of bytes
will be rounded up.)

> byte size(<<433:16,3:3>>).
3
> byte size(<<1,2,3>>).
3

Allowed in guard tests.

erlang:cancel timer(TimerRef) -> Time | false

Types:

� TimerRef = ref()
� Time = int()

Cancels a timer, where TimerRef was returned by either erlang:send after/3 [page 136]
or erlang:start timer/3 [page 143]. If the timer is there to be removed, the function
returns the time in milliseconds left until the timer would have expired, otherwise
false (which means that TimerRef was never a timer, that it has already been
cancelled, or that it has already delivered its message).

See also erlang:send after/3 [page 136], erlang:start timer/3 [page 143], and
erlang:read timer/1 [page 134].

Note: Cancelling a timer does not guarantee that the message has not already been
delivered to the message queue.

check process code(Pid, Module) -> bool()

Types:

� Pid = pid()
� Module = atom()

Returns true if the process Pid is executing old code for Module. That is, if the current
call of the process executes old code for this module, or if the process has references to
old code for this module, or if the process contains funs that references old code for this
module. Otherwise, it returns false.

94 Kernel Application (KERNEL)

Kernel Reference Manual erlang

> check process code(Pid, lists).
false

See also code(3) [page 47].

concat binary(ListOfBinaries)

Do not use; use list to binary/1 [page 110] instead.

crc32(Data) -> int()

Types:

� Data = iodata()

Computes and returns the crc32 (IEEE 802.3 style) checksum for Data.

crc32(OldCrc, Data) -> int()

Types:

� OldCrc = int()
� Data = iodata()

Continue computing the crc32 checksum by combining the previous checksum,
OldCrc, with the checksum of Data.

The following code:

X = crc32(Data1),
Y = crc32(X,Data2).

- would assign the same value to Y as this would:

Y = crc32([Data1,Data2]).

crc32 combine(FirstCrc, SecondCrc, SecondSize) -> int()

Types:

� FirstCrc = SecondCrc = int()
� SecondSize = int()

Combines two previously computed crc32 checksums. This computation requires the
size of the data object for the second checksum to be known.

The following code:

Y = crc32(Data1),
Z = crc32(Y,Data2).

- would assign the same value to Z as this would:

X = crc32(Data1),
Y = crc32(Data2),
Z = crc32_combine(X,Y,iolist_size(Data2)).

date() -> fYear, Month, Dayg

Types:

� Year = Month = Day = int()

95Kernel Application (KERNEL)

erlang Kernel Reference Manual

Returns the current date as fYear, Month, Dayg.

The time zone and daylight saving time correction depend on the underlying OS.

> date().
f1995,2,19g

delete module(Module) -> true | undefined

Types:

� Module = atom()

Makes the current code for Module become old code, and deletes all references for this
module from the export table. Returns undefined if the module does not exist,
otherwise true.

Warning:
This BIF is intended for the code server (see code(3) [page 47]) and should not be
used elsewhere.

Failure: badarg if there is already an old version of Module.

erlang:demonitor(MonitorRef) -> true

Types:

� MonitorRef = ref()

If MonitorRef is a reference which the calling process obtained by calling
erlang:monitor/2 [page 117], this monitoring is turned off. If the monitoring is already
turned off, nothing happens.

Once erlang:demonitor(MonitorRef) has returned it is guaranteed that no f’DOWN’,
MonitorRef, , , g message due to the monitor will be placed in the callers message
queue in the future. A f’DOWN’, MonitorRef, , , g message might have been
placed in the callers message queue prior to the call, though. Therefore, in most cases, it
is advisable to remove such a ’DOWN’ message from the message queue after monitoring
has been stopped. erlang:demonitor(MonitorRef, [flush]) [page 97] can be used instead
of erlang:demonitor(MonitorRef) if this cleanup is wanted.

Note:
Prior to OTP release R11B (erts version 5.5) erlang:demonitor/1 behaved
completely asynchronous, i.e., the monitor was active until the “demonitor signal”
reached the monitored entity. This had one undesirable effect, though. You could
never know when you were guaranteed not to receive a DOWN message due to the
monitor.

Current behavior can be viewed as two combined operations: asynchronously send a
“demonitor signal” to the monitored entity and ignore any future results of the
monitor.

96 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Failure: It is an error if MonitorRef refers to a monitoring started by another process.
Not all such cases are cheap to check; if checking is cheap, the call fails with badarg
(for example if MonitorRef is a remote reference).

erlang:demonitor(MonitorRef, OptionList) -> true

Types:

� MonitorRef = ref()
� OptionList = [Option]
� Option = flush

erlang:demonitor(MonitorRef, []) is equivalent to erlang:demonitor(MonitorRef)
[page 96].

Currently the following Options are valid:

flush Remove (one) f , MonitorRef, , , g message, if there is one, from the
callers message queue after monitoring has been stopped.
Calling erlang:demonitor(MonitorRef, [flush]) is equivalent to:

erlang:demonitor(MonitorRef),
receive

{_, MonitorRef, _, _, _} ->
true

after 0 ->
true

end

Note:
More options may be added in the future.

Failure: badarg if OptionList is not a list, or if Option is not a valid option, or the same
failure as for erlang:demonitor/1 [page 96]

disconnect node(Node) -> bool() | ignored

Types:

� Node = atom()

Forces the disconnection of a node. This will appear to the node Node as if the local
node has crashed. This BIF is mainly used in the Erlang network authentication
protocols. Returns true if disconnection succeeds, otherwise false. If the local node is
not alive, the function returns ignored.

erlang:display(Term) -> true

Types:

� Term = term()

97Kernel Application (KERNEL)

erlang Kernel Reference Manual

Prints a text representation of Term on the standard output.

Warning:
This BIF is intended for debugging only.

element(N, Tuple) -> term()

Types:

� N = 1..tuple size(Tuple)
� Tuple = tuple()

Returns the Nth element (numbering from 1) of Tuple.

> element(2, fa, b, cg).
b

Allowed in guard tests.

erase() -> [fKey, Valg]

Types:

� Key = Val = term()

Returns the process dictionary and deletes it.

> put(key1, f1, 2, 3g),
put(key2, [a, b, c]),
erase().
[fkey1,f1,2,3gg,fkey2,[a,b,c]g]

erase(Key) -> Val | undefined

Types:

� Key = Val = term()

Returns the value Val associated with Key and deletes it from the process dictionary.
Returns undefined if no value is associated with Key.

> put(key1, fmerry, lambs, are, playingg),
X = erase(key1),
fX, erase(key1)g.
ffmerry,lambs,are,playingg,undefinedg

erlang:error(Reason)

Types:

� Reason = term()

Stops the execution of the calling process with the reason Reason, where Reason is any
term. The actual exit reason will be fReason, Whereg, where Where is a list of the
functions most recently called (the current function first). Since evaluating this function
causes the process to terminate, it has no return value.

98 Kernel Application (KERNEL)

Kernel Reference Manual erlang

> catch erlang:error(foobar).
f’EXIT’,ffoobar,[ferl eval,do apply,5g,

ferl eval,expr,5g,
fshell,exprs,6g,
fshell,eval exprs,6g,
fshell,eval loop,3g]gg

erlang:error(Reason, Args)

Types:

� Reason = term()
� Args = [term()]

Stops the execution of the calling process with the reason Reason, where Reason is any
term. The actual exit reason will be fReason, Whereg, where Where is a list of the
functions most recently called (the current function first). Args is expected to be the
list of arguments for the current function; in Beam it will be used to provide the actual
arguments for the current function in the Where term. Since evaluating this function
causes the process to terminate, it has no return value.

exit(Reason)

Types:

� Reason = term()

Stops the execution of the calling process with the exit reason Reason, where Reason is
any term. Since evaluating this function causes the process to terminate, it has no return
value.

> exit(foobar).
** exception exit: foobar
> catch exit(foobar).
f’EXIT’,foobarg

exit(Pid, Reason) -> true

Types:

� Pid = pid()
� Reason = term()

Sends an exit signal with exit reason Reason to the process Pid.

The following behavior apply if Reason is any term except normal or kill:

If Pid is not trapping exits, Pid itself will exit with exit reason Reason. If Pid is trapping
exits, the exit signal is transformed into a message f’EXIT’, From, Reasong and
delivered to the message queue of Pid. From is the pid of the process which sent the
exit signal. See also process flag/2 [page 127].

If Reason is the atom normal, Pid will not exit. If it is trapping exits, the exit signal is
transformed into a message f’EXIT’, From, normalg and delivered to its message
queue.

If Reason is the atom kill, that is if exit(Pid, kill) is called, an untrappable exit
signal is sent to Pid which will unconditionally exit with exit reason killed.

erlang:fault(Reason)

99Kernel Application (KERNEL)

erlang Kernel Reference Manual

Types:

� Reason = term()

This function is deprecated and will be removed in the next release. Used
erlang:error(Reason) [page 98] instead.

erlang:fault(Reason, Args)

Types:

� Reason = term()
� Args = [term()]

This function is deprecated and will be removed in the next release. Use
erlang:error(Reason, Args) [page 99] instead.

float(Number) -> float()

Types:

� Number = number()

Returns a float by converting Number to a float.

> float(55).
55.0

Allowed in guard tests.

Note:
Note that if used on the top-level in a guard, it will test whether the argument is a
floating point number; for clarity, use is float/1 [page 107] instead.

When float/1 is used in an expression in a guard, such as ’float(A) == 4.0’, it
converts a number as described above.

float to list(Float) -> string()

Types:

� Float = float()

Returns a string which corresponds to the text representation of Float.

> float to list(7.0).
"7.00000000000000000000e+00"

erlang:fun info(Fun) -> [fItem, Infog]

Types:

� Fun = fun()
� Item, Info – see below

100 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns a list containing information about the fun Fun. Each element of the list is a
tuple. The order of the tuples is not defined, and more tuples may be added in a future
release.

Warning:
This BIF is mainly intended for debugging, but it can occasionally be useful in library
functions that might need to verify, for instance, the arity of a fun.

There are two types of funs with slightly different semantics:

A fun created by fun M:F/A is called an external fun. Calling it will always call the
function F with arity A in the latest code for module M. Note that module M does not
even need to be loaded when the fun fun M:F/A is created.

All other funs are called local. When a local fun is called, the same version of the code
that created the fun will be called (even if newer version of the module has been
loaded).

The following elements will always be present in the list for both local and external
funs:

ftype, Typeg Type is either local or external.

fmodule, Moduleg Module (an atom) is the module name.
If Fun is a local fun, Module is the module in which the fun is defined.
If Fun is an external fun, Module is the module that the fun refers to.

fname, Nameg Name (an atom) is a function name.
If Fun is a local fun, Name is the name of the local function that implements the
fun. (This name was generated by the compiler, and is generally only of
informational use. As it is a local function, it is not possible to call it directly.) If no
code is currently loaded for the fun, [] will be returned instead of an atom.
If Fun is an external fun, Name is the name of the exported function that the fun
refers to.

farity, Arityg Arity is the number of arguments that the fun should be called with.

fenv, Envg Env (a list) is the environment or free variables for the fun. (For external
funs, the returned list is always empty.)

The following elements will only be present in the list if Fun is local:

fpid, Pidg Pid is the pid of the process that originally created the fun.

findex, Indexg Index (an integer) is an index into the module’s fun table.

fnew index, Indexg Index (an integer) is an index into the module’s fun table.

fnew uniq, Uniqg Uniq (a binary) is a unique value for this fun.

funiq, Uniqg Uniq (an integer) is a unique value for this fun.

erlang:fun info(Fun, Item) -> fItem, Infog

Types:

� Fun = fun()
� Item, Info – see below

101Kernel Application (KERNEL)

erlang Kernel Reference Manual

Returns information about Fun as specified by Item, in the form fItem,Infog.

For any fun, Item can be any of the atoms module, name, arity, or env.

For a local fun, Item can also be any of the atoms index, new index, new uniq, uniq,
and pid. For an external fun, the value of any of these items is always the atom
undefined.

See erlang:fun info/1 [page 100].

erlang:fun to list(Fun) -> string()

Types:

� Fun = fun()

Returns a string which corresponds to the text representation of Fun.

erlang:function exported(Module, Function, Arity) -> bool()

Types:

� Module = Function = atom()
� Arity = int()

Returns true if the module Module is loaded and contains an exported function
Function/Arity; otherwise false.

Returns false for any BIF (functions implemented in C rather than in Erlang).

garbage collect() -> true

Forces an immediate garbage collection of the currently executing process. The function
should not be used, unless it has been noticed – or there are good reasons to suspect –
that the spontaneous garbage collection will occur too late or not at all. Improper use
may seriously degrade system performance.

Compatibility note: In versions of OTP prior to R7, the garbage collection took place at
the next context switch, not immediately. To force a context switch after a call to
erlang:garbage collect(), it was sufficient to make any function call.

garbage collect(Pid) -> bool()

Types:

� Pid = pid()

Works like erlang:garbage collect() but on any process. The same caveats apply.
Returns false if Pid refers to a dead process; true otherwise.

get() -> [fKey, Valg]

Types:

� Key = Val = term()

Returns the process dictionary as a list of fKey, Valg tuples.

> put(key1, merry),
put(key2, lambs),
put(key3, fare, playingg),
get().
[fkey1,merryg,fkey2,lambsg,fkey3,fare,playinggg]

102 Kernel Application (KERNEL)

Kernel Reference Manual erlang

get(Key) -> Val | undefined

Types:

� Key = Val = term()

Returns the value Valassociated with Key in the process dictionary, or undefined if Key
does not exist.

> put(key1, merry),
put(key2, lambs),
put(fany, [valid, term]g, fare, playingg),
get(fany, [valid, term]g).
fare,playingg

erlang:get cookie() -> Cookie | nocookie

Types:

� Cookie = atom()

Returns the magic cookie of the local node, if the node is alive; otherwise the atom
nocookie.

get keys(Val) -> [Key]

Types:

� Val = Key = term()

Returns a list of keys which are associated with the value Val in the process dictionary.

> put(mary, f1, 2g),
put(had, f1, 2g),
put(a, f1, 2g),
put(little, f1, 2g),
put(dog, f1, 3g),
put(lamb, f1, 2g),
get keys(f1, 2g).
[mary,had,a,little,lamb]

erlang:get stacktrace() -> [fModule, Function, Arity | Argsg]

Types:

� Module = Function = atom()
� Arity = int()
� Args = [term()]

Get the call stack back-trace (stacktrace) of the last exception in the calling process as a
list of fModule,Function,Arityg tuples. The Arity field in the first tuple may be the
argument list of that function call instead of an arity integer, depending on the
exception.

If there has not been any exceptions in a process, the stacktrace is []. After a code
change for the process, the stacktrace may also be reset to [].

The stacktrace is the same data as the catch operator returns, for example:

f’EXIT’,fbadarg,Stacktracegg = catch abs(x)

See also erlang:error/1 [page 98] and erlang:error/2 [page 99].

103Kernel Application (KERNEL)

erlang Kernel Reference Manual

group leader() -> GroupLeader

Types:

� GroupLeader = pid()

Returns the pid of the group leader for the process which evaluates the function.

Every process is a member of some process group and all groups have a group leader. All
IO from the group is channeled to the group leader. When a new process is spawned, it
gets the same group leader as the spawning process. Initially, at system start-up, init is
both its own group leader and the group leader of all processes.

group leader(GroupLeader, Pid) -> true

Types:

� GroupLeader = Pid = pid()

Sets the group leader of Pid to GroupLeader. Typically, this is used when a processes
started from a certain shell should have another group leader than init.

See also group leader/0 [page 104].

halt()

Halts the Erlang runtime system and indicates normal exit to the calling environment.
Has no return value.

> halt().
os prompt%

halt(Status)

Types:

� Status = int()>=0 | string()

Status must be a non-negative integer, or a string. Halts the Erlang runtime system.
Has no return value. If Status is an integer, it is returned as an exit status of Erlang to
the calling environment. If Status is a string, produces an Erlang crash dump with
String as slogan, and then exits with a non-zero status code.

Note that on many platforms, only the status codes 0-255 are supported by the
operating system.

erlang:hash(Term, Range) -> Hash

Returns a hash value for Term within the range 1..Range. The allowed range is
1..2^27-1.

Warning:
This BIF is deprecated as the hash value may differ on different architectures. Also
the hash values for integer terms larger than 2^27 as well as large binaries are very
poor. The BIF is retained for backward compatibility reasons (it may have been used
to hash records into a file), but all new code should use one of the BIFs
erlang:phash/2 or erlang:phash2/1,2 instead.

104 Kernel Application (KERNEL)

Kernel Reference Manual erlang

hd(List) -> term()

Types:

� List = [term()]

Returns the head of List, that is, the first element.

> hd([1,2,3,4,5]).
1

Allowed in guard tests.

Failure: badarg if List is the empty list [].

erlang:hibernate(Module, Function, Args)

Types:

� Module = Function = atom()
� Args = [term()]

Puts the calling process into a wait state where its memory allocation has been reduced
as much as possible, which is useful if the process does not expect to receive any
messages in the near future.

The process will be awaken when a message is sent to it, and control will resume in
Module:Function with the arguments given by Args with the call stack emptied,
meaning that the process will terminate when that function returns. Thus
erlang:hibernate/3will never return to its caller.

If the process has any message in its message queue, the process will be awaken
immediately in the same way as described above.

In more technical terms, what erlang:hibernate/3 does is the following. It discards
the call stack for the process. Then it garbage collects the process. After the garbage
collection, all live data is in one continuous heap. The heap is then shrunken to the
exact same size as the live data which it holds (even if that size is less than the
minimum heap size for the process).

If the size of the live data in the process is less than the minimum heap size, the first
garbage collection occurring after the process has been awaken will ensure that the heap
size is changed to a size not smaller than the minimum heap size.

Note that emptying the call stack means that any surrounding catch is removed and has
to be re-inserted after hibernation. One effect of this is that processes started using
proc lib (also indirectly, such as gen server processes), should use
[proc lib:hibernate/3] instead to ensure that the exception handler continues to work
when the process wakes up.

integer to list(Integer) -> string()

Types:

� Integer = int()

Returns a string which corresponds to the text representation of Integer.

> integer to list(77).
"77"

erlang:integer to list(Integer, Base) -> string()

105Kernel Application (KERNEL)

erlang Kernel Reference Manual

Types:

� Integer = int()
� Base = 2..36

Returns a string which corresponds to the text representation of Integer in base Base.

> erlang:integer to list(1023, 16).
"3FF"

iolist to binary(IoListOrBinary) -> binary()

Types:

� IoListOrBinary = iolist() | binary()

Returns a binary which is made from the integers and binaries in IoListOrBinary.

> Bin1 = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>.
<<4,5>>
> Bin3 = <<6>>.
<<6>>
> iolist to binary([Bin1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

iolist size(Item) -> int()

Types:

� Item = iolist() | binary()

Returns an integer which is the size in bytes of the binary that would be the result of
iolist to binary(Item).

> iolist size([1,2|<<3,4>>]).
4

is alive() -> bool()

Returns true if the local node is alive; that is, if the node can be part of a distributed
system. Otherwise, it returns false.

is atom(Term) -> bool()

Types:

� Term = term()

Returns true if Term is an atom; otherwise returns false.

Allowed in guard tests.

is binary(Term) -> bool()

Types:

� Term = term()

106 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns true if Term is a binary; otherwise returns false.

A binary always contains a complete number of bytes.

Allowed in guard tests.

is bitstring(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a bitstring (including a binary); otherwise returns false.

Allowed in guard tests.

is boolean(Term) -> bool()

Types:

� Term = term()

Returns true if Term is either the atom true or the atom false (i.e. a boolean);
otherwise returns false.

Allowed in guard tests.

erlang:is builtin(Module, Function, Arity) -> bool()

Types:

� Module = Function = atom()
� Arity = int()

Returns true if Module:Function/Arity is a BIF implemented in C; otherwise returns
false. This BIF is useful for builders of cross reference tools.

is float(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a floating point number; otherwise returns false.

Allowed in guard tests.

is function(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a fun; otherwise returns false.

Allowed in guard tests.

is function(Term, Arity) -> bool()

Types:

� Term = term()
� Arity = int()

107Kernel Application (KERNEL)

erlang Kernel Reference Manual

Returns true if Term is a fun that can be applied with Arity number of arguments;
otherwise returns false.

Allowed in guard tests.

Warning:
Currently, is function/2 will also return true if the first argument is a tuple fun (a
tuple containing two atoms). In a future release, tuple funs will no longer be
supported and is function/2 will return false if given a tuple fun.

is integer(Term) -> bool()

Types:

� Term = term()

Returns true if Term is an integer; otherwise returns false.

Allowed in guard tests.

is list(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a list with zero or more elements; otherwise returns false.

Allowed in guard tests.

is number(Term) -> bool()

Types:

� Term = term()

Returns true if Term is either an integer or a floating point number; otherwise returns
false.

Allowed in guard tests.

is pid(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a pid (process identifier); otherwise returns false.

Allowed in guard tests.

is port(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a port identifier; otherwise returns false.

Allowed in guard tests.

is process alive(Pid) -> bool()

108 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Types:

� Pid = pid()

Pid must refer to a process at the local node. Returns true if the process exists and is
alive, that is, is not exiting and has not exited. Otherwise, returns false.

is record(Term, RecordTag) -> bool()

Types:

� Term = term()
� RecordTag = atom()

Returns true if Term is a tuple and its first element is RecordTag. Otherwise, returns
false.

Note:
Normally the compiler treats calls to is record/2 specially. It emits code to verify
that Term is a tuple, that its first element is RecordTag, and that the size is correct.
However, if the RecordTag is not a literal atom, the is record/2 BIF will be called
instead and the size of the tuple will not be verified.

Allowed in guard tests, if RecordTag is a literal atom.

is record(Term, RecordTag, Size) -> bool()

Types:

� Term = term()
� RecordTag = atom()
� Size = int()

RecordTag must be an atom. Returns true if Term is a tuple, its first element is
RecordTag, and its size is Size. Otherwise, returns false.

Allowed in guard tests, provided that RecordTag is a literal atom and Size is a literal
integer.

Note:
This BIF is documented for completeness. In most cases is record/2 should be used.

is reference(Term) -> bool()

Types:

� Term = term()

Returns true if Term is a reference; otherwise returns false.

Allowed in guard tests.

is tuple(Term) -> bool()

Types:

109Kernel Application (KERNEL)

erlang Kernel Reference Manual

� Term = term()

Returns true if Term is a tuple; otherwise returns false.

Allowed in guard tests.

length(List) -> int()

Types:

� List = [term()]

Returns the length of List.

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.

link(Pid) -> true

Types:

� Pid = pid() | port()

Creates a link between the calling process and another process (or port) Pid, if there is
not such a link already. If a process attempts to create a link to itself, nothing is done.
Returns true.

If Pid does not exist, the behavior of the BIF depends on if the calling process is
trapping exits or not (see process flag/2 [page 127]):

� If the calling process is not trapping exits, and checking Pid is cheap – that is, if
Pid is local – link/1 fails with reason noproc.

� Otherwise, if the calling process is trapping exits, and/or Pid is remote, link/1
returns true, but an exit signal with reason noproc is sent to the calling process.

list to atom(String) -> atom()

Types:

� String = string()

Returns the atom whose text representation is String.

> list to atom("Erlang").
’Erlang’

list to binary(IoList) -> binary()

Types:

� IoList = iolist()

Returns a binary which is made from the integers and binaries in IoList.

110 Kernel Application (KERNEL)

Kernel Reference Manual erlang

> Bin1 = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>.
<<4,5>>
> Bin3 = <<6>>.
<<6>>
> list to binary([Bin1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6>>

list to bitstring(BitstringList) -> bitstring()

Types:

� BitstringList = [BitstringList | bitstring() | char()]

Returns a bitstring which is made from the integers and bitstrings in BitstringList.
(The last tail in BitstringList is allowed to be a bitstring.)

> Bin1 = <<1,2,3>>.
<<1,2,3>>
> Bin2 = <<4,5>>.
<<4,5>>
> Bin3 = <<6,7:4,>>.
<<6>>
> list to binary([Bin1,1,[2,3,Bin2],4|Bin3]).
<<1,2,3,1,2,3,4,5,4,6,7:46>>

list to existing atom(String) -> atom()

Types:

� String = string()

Returns the atom whose text representation is String, but only if there already exists
such atom.

Failure: badarg if there does not already exist an atom whose text representation is
String.

list to float(String) -> float()

Types:

� String = string()

Returns the float whose text representation is String.

> list to float("2.2017764e+0").
2.2017764

Failure: badarg if String contains a bad representation of a float.

list to integer(String) -> int()

Types:

� String = string()

Returns an integer whose text representation is String.

> list to integer("123").
123

111Kernel Application (KERNEL)

erlang Kernel Reference Manual

Failure: badarg if String contains a bad representation of an integer.

erlang:list to integer(String, Base) -> int()

Types:

� String = string()
� Base = 2..36

Returns an integer whose text representation in base Base is String.

> erlang:list to integer("3FF", 16).
1023

Failure: badarg if String contains a bad representation of an integer.

list to pid(String) -> pid()

Types:

� String = string()

Returns a pid whose text representation is String.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> list to pid("<0.4.1>").
<0.4.1>

Failure: badarg if String contains a bad representation of a pid.

list to tuple(List) -> tuple()

Types:

� List = [term()]

Returns a tuple which corresponds to List. List can contain any Erlang terms.

> list to tuple([share, [’Ericsson B’, 163]]).
fshare, [’Ericsson B’, 163]g

load module(Module, Binary) -> fmodule, Moduleg | ferror, Reasong

Types:

� Module = atom()
� Binary = binary()
� Reason = badfile | not purged | badfile

If Binary contains the object code for the module Module, this BIF loads that object
code. Also, if the code for the module Module already exists, all export references are
replaced so they point to the newly loaded code. The previously loaded code is kept in
the system as old code, as there may still be processes which are executing that code. It
returns either fmodule, Moduleg, or ferror, Reasong if loading fails. Reason is one of
the following:

112 Kernel Application (KERNEL)

Kernel Reference Manual erlang

badfile The object code in Binary has an incorrect format.

not purged Binary contains a module which cannot be loaded because old code for
this module already exists.

badfile The object code contains code for another module than Module

Warning:
This BIF is intended for the code server (see code(3) [page 47]) and should not be
used elsewhere.

erlang:loaded() -> [Module]

Types:

� Module = atom()

Returns a list of all loaded Erlang modules (current and/or old code), including
preloaded modules.

See also code(3) [page 47].

erlang:localtime() -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

Returns the current local date and time ffYear, Month, Dayg, fHour, Minute,
Secondgg.

The time zone and daylight saving time correction depend on the underlying OS.

> erlang:localtime().
ff1996,11,6g,f14,45,17gg

erlang:localtime to universaltime(fDate1, Time1g) -> fDate2, Time2g

Types:

� Date1 = Date2 = fYear, Month, Dayg
� Time1 = Time2 = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

Converts local date and time to Universal Time Coordinated (UTC), if this is supported
by the underlying OS. Otherwise, no conversion is done and fDate1, Time1g is
returned.

> erlang:localtime to universaltime(ff1996,11,6g,f14,45,17gg).
ff1996,11,6g,f13,45,17gg

Failure: badarg if Date1 or Time1 do not denote a valid date or time.

erlang:localtime to universaltime(fDate1, Time1g, IsDst) -> fDate2, Time2g

Types:

113Kernel Application (KERNEL)

erlang Kernel Reference Manual

� Date1 = Date2 = fYear, Month, Dayg
� Time1 = Time2 = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()
� IsDst = true | false | undefined

Converts local date and time to Universal Time Coordinated (UTC) just like
erlang:localtime to universaltime/1, but the caller decides if daylight saving time
is active or not.

If IsDst == true the fDate1, Time1g is during daylight saving time, if IsDst ==
false it is not, and if IsDst == undefined the underlying OS may guess, which is the
same as calling erlang:localtime to universaltime(fDate1, Time1g).

> erlang:localtime to universaltime(ff1996,11,6g,f14,45,17gg, true).
ff1996,11,6g,f12,45,17gg
> erlang:localtime to universaltime(ff1996,11,6g,f14,45,17gg, false).
ff1996,11,6g,f13,45,17gg
> erlang:localtime to universaltime(ff1996,11,6g,f14,45,17gg, undefined).
ff1996,11,6g,f13,45,17gg

Failure: badarg if Date1 or Time1 do not denote a valid date or time.

make ref() -> ref()

Returns an almost unique reference.

The returned reference will re-occur after approximately 2^82 calls; therefore it is
unique enough for practical purposes.

> make ref().
#Ref<0.0.0.135>

erlang:make tuple(Arity, InitialValue) -> tuple()

Types:

� Arity = int()
� InitialValue = term()

Returns a new tuple of the given Arity, where all elements are InitialValue.

> erlang:make tuple(4, []).
f[],[],[],[]g

erlang:md5(Data) -> Digest

Types:

� Data = iodata()
� Digest = binary()

114 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Computes an MD5 message digest from Data, where the length of the digest is 128 bits
(16 bytes). Data is a binary or a list of small integers and binaries.

See The MD5 Message Digest Algorithm (RFC 1321) for more information about
MD5.

Warning:
The MD5 Message Digest Algorithm is not considered safe for code-signing or
software integrity purposes.

erlang:md5 final(Context) -> Digest

Types:

� Context = Digest = binary()

Finishes the update of an MD5 Context and returns the computed MD5 message digest.

erlang:md5 init() -> Context

Types:

� Context = binary()

Creates an MD5 context, to be used in subsequent calls to md5 update/2.

erlang:md5 update(Context, Data) -> NewContext

Types:

� Data = iodata()
� Context = NewContext = binary()

Updates an MD5 Context with Data, and returns a NewContext.

erlang:memory() -> [fType, Sizeg]

Types:

� Type, Size – see below

Returns a list containing information about memory dynamically allocated by the
Erlang emulator. Each element of the list is a tuple fType, Sizeg. The first element
Typeis an atom describing memory type. The second element Sizeis memory size in
bytes. A description of each memory type follows:

total The total amount of memory currently allocated, which is the same as the sum
of memory size for processes and system.

processes The total amount of memory currently allocated by the Erlang processes.

processes used The total amount of memory currently used by the Erlang processes.
This memory is part of the memory presented as processes memory.

system The total amount of memory currently allocated by the emulator that is not
directly related to any Erlang process.
Memory presented as processes is not included in this memory.

115Kernel Application (KERNEL)

erlang Kernel Reference Manual

atom The total amount of memory currently allocated for atoms.
This memory is part of the memory presented as system memory.

atom used The total amount of memory currently used for atoms.
This memory is part of the memory presented as atom memory.

binary The total amount of memory currently allocated for binaries.
This memory is part of the memory presented as system memory.

code The total amount of memory currently allocated for Erlang code.
This memory is part of the memory presented as system memory.

ets The total amount of memory currently allocated for ets tables.
This memory is part of the memory presented as system memory.

maximum The maximum total amount of memory allocated since the emulator was
started.
This tuple is only present when the emulator is run with instrumentation.
For information on how to run the emulator with instrumentation see
[instrument(3)] and/or [erl(1)].

Note:
The system value is not complete. Some allocated memory that should be part of the
system value are not. For example, memory allocated by drivers is missing.

When the emulator is run with instrumentation, the system value is more accurate,
but memory directly allocated by malloc (and friends) are still not part of the
system value. Direct calls to malloc are only done from OS specific runtime libraries
and perhaps from user implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Since the total value is the sum of processes and system the error in system will
propagate to the total value.

The different values has the following relation to each other. Values beginning with an
uppercase letter is not part of the result.

total = processes + system
processes = processes_used + ProcessesNotUsed
system = atom + binary + code + ets + OtherSystem
atom = atom_used + AtomNotUsed

RealTotal = processes + RealSystem
RealSystem = system + MissedSystem

Note:
The total value is supposed to be the total amount of memory dynamically
allocated by the emulator. Shared libraries, the code of the emulator itself, and the
emulator stack(s) are not supposed to be included. That is, the total value is not
supposed to be equal to the total size of all pages mapped to the emulator.
Furthermore, due to fragmentation and pre-reservation of memory areas, the size of
the memory segments which contain the dynamically allocated memory blocks can
be substantially larger than the total size of the dynamically allocated memory blocks.

116 Kernel Application (KERNEL)

Kernel Reference Manual erlang

More tuples in the returned list may be added in the future.

erlang:memory(Type | [Type]) -> Size | [fType, Sizeg]

Types:

� Type, Size – see below

Returns the memory size in bytes allocated for memory of type Type. The argument
can also be given as a list of Type atoms, in which case a corresponding list of fType,
Sizeg tuples is returned.

See erlang:memory/0 [page 115].

Failure: badarg if the emulator is not run with instrumentation when Type ==
maximum.

module loaded(Module) -> bool()

Types:

� Module = atom()

Returns true if the module Module is loaded, otherwise returns false. It does not
attempt to load the module.

Warning:
This BIF is intended for the code server (see code(3) [page 47]) and should not be
used elsewhere.

erlang:monitor(Type, Item) -> MonitorRef

Types:

� Type = process
� Item = pid() | fRegName, Nodeg | RegName
� RegName = atom()
� Node = node()
� MonitorRef = reference()

The calling process starts monitoring Item which is an object of type Type.

Currently only processes can be monitored, i.e. the only allowed Type is process, but
other types may be allowed in the future.

Item can be:

pid() The pid of the process to monitor.

fRegName, Nodeg A tuple consisting of a registered name of a process and a node
name. The process residing on the node Node with the registered name RegName
will be monitored.

RegName The process locally registered as RegName will be monitored.

117Kernel Application (KERNEL)

erlang Kernel Reference Manual

Note:
When a process is monitored by registered name, the process that has the registered
name at the time when erlang:monitor/2 is called will be monitored. The monitor
will not be effected, if the registered name is unregistered.

A ’DOWN’ message will be sent to the monitoring process if Item dies, if Item does not
exist, or if the connection is lost to the node which Item resides on. A ’DOWN’ message
has the following pattern:

{’DOWN’, MonitorRef, Type, Object, Info}

where MonitorRef and Type are the same as described above, and:

Object A reference to the monitored object:

� the pid of the monitored process, if Item was specified as a pid.
� fRegName, Nodeg, if Item was specified as fRegName, Nodeg.
� fRegName, Nodeg, if Item was specified as RegName. Node will in this case be

the name of the local node (node()).

Info Either the exit reason of the process, noproc (non-existing process), or
noconnection (no connection to Node).

Note:
If/when erlang:monitor/2 is extended (e.g. to handle other item types than
process), other possible values for Object, and Info in the ’DOWN’ message will be
introduced.

The monitoring is turned off either when the ’DOWN’ message is sent, or when
erlang:demonitor/1 [page 96] is called.

If an attempt is made to monitor a process on an older node (where remote process
monitoring is not implemented or one where remote process monitoring by registered
name is not implemented), the call fails with badarg.

Making several calls to erlang:monitor/2 for the same Item is not an error; it results in
as many, completely independent, monitorings.

Note:
The format of the ’DOWN’ message changed in the 5.2 version of the emulator (OTP
release R9B) for monitor by registered name. The Object element of the ’DOWN’
message could in earlier versions sometimes be the pid of the monitored process and
sometimes be the registered name. Now the Object element is always a tuple
consisting of the registered name and the node name. Processes on new nodes
(emulator version 5.2 or greater) will always get ’DOWN’ messages on the new format
even if they are monitoring processes on old nodes. Processes on old nodes will
always get ’DOWN’ messages on the old format.

118 Kernel Application (KERNEL)

Kernel Reference Manual erlang

monitor node(Node, Flag) -> true

Types:

� Node = node()
� Flag = bool()

Monitors the status of the node Node. If Flag is true, monitoring is turned on; if Flag is
false, monitoring is turned off.

Making several calls to monitor node(Node, true) for the same Node is not an error; it
results in as many, completely independent, monitorings.

If Node fails or does not exist, the message fnodedown, Nodeg is delivered to the
process. If a process has made two calls to monitor node(Node, true) and Node
terminates, two nodedown messages are delivered to the process. If there is no
connection to Node, there will be an attempt to create one. If this fails, a nodedown
message is delivered.

Nodes connected through hidden connections can be monitored as any other node.

Failure: badargif the local node is not alive.

erlang:monitor node(Node, Flag, Options) -> true

Types:

� Node = node()
� Flag = bool()
� Options = [Option]
� Option = allow passive connect

Behaves as monitor node/2 except that it allows an extra option to be given, namely
allow passive connect. The option allows the BIF to wait the normal net connection
timeout for the monitored node to connect itself, even if it cannot be actively connected
from this node (i.e. it is blocked). The state where this might be useful can only be
achieved by using the kernel option dist auto connect once. If that kernel option is
not used, the allow passive connect option has no effect.

Note:
The allow passive connect option is used internally and is seldom needed in
applications where the network topology and the kernel options in effect is known in
advance.

Failure: badarg if the local node is not alive or the option list is malformed.

node() -> Node

Types:

� Node = node()

Returns the name of the local node. If the node is not alive, nonode@nohost is returned
instead.

Allowed in guard tests.

node(Arg) -> Node

119Kernel Application (KERNEL)

erlang Kernel Reference Manual

Types:

� Arg = pid() | port() | ref()
� Node = node()

Returns the node where Arg is located. Arg can be a pid, a reference, or a port. If the
local node is not alive, nonode@nohost is returned.

Allowed in guard tests.

nodes() -> Nodes

Types:

� Nodes = [node()]

Returns a list of all visible nodes in the system, excluding the local node. Same as
nodes(visible).

nodes(Arg | [Arg]) -> Nodes

Types:

� Arg = visible | hidden | connected | this | known
� Nodes = [node()]

Returns a list of nodes according to argument given. The result returned when the
argument is a list, is the list of nodes satisfying the disjunction(s) of the list elements.

Arg can be any of the following:

visible Nodes connected to this node through normal connections.

hidden Nodes connected to this node through hidden connections.

connected All nodes connected to this node.

this This node.

known Nodes which are known to this node, i.e., connected, previously connected, etc.

Some equalities: [node()] = nodes(this), nodes(connected) = nodes([visible,
hidden]), and nodes() = nodes(visible).

If the local node is not alive, nodes(this) == nodes(known) == [nonode@nohost],
for any other Arg the empty list [] is returned.

now() -> fMegaSecs, Secs, MicroSecsg

Types:

� MegaSecs = Secs = MicroSecs = int()

Returns the tuple fMegaSecs, Secs, MicroSecsg which is the elapsed time since
00:00 GMT, January 1, 1970 (zero hour) on the assumption that the underlying OS
supports this. Otherwise, some other point in time is chosen. It is also guaranteed that
subsequent calls to this BIF returns continuously increasing values. Hence, the return
value from now() can be used to generate unique time-stamps. It can only be used to
check the local time of day if the time-zone info of the underlying operating system is
properly configured.

open port(PortName, PortSettings) -> port()

Types:

120 Kernel Application (KERNEL)

Kernel Reference Manual erlang

� PortName = fspawn, Commandg | ffd, In, Outg
� Command = string()
� In = Out = int()
� PortSettings = [Opt]
� Opt = fpacket, Ng | stream | fline, Lg | fcd, Dirg | fenv, Envg | exit status |

use stdio | nouse stdio | stderr to stdout | in | out | binary | eof
� N = 1 | 2 | 4
� L = int()
� Dir = string()
� Env = [fName, Valg]
� Name = string()
� Val = string() | false

Returns a port identifier as the result of opening a new Erlang port. A port can be seen
as an external Erlang process. PortName is one of the following:

fspawn, Commandg Starts an external program. Command is the name of the external
program which will be run. Command runs outside the Erlang work space unless an
Erlang driver with the name Command is found. If found, that driver will be started.
A driver runs in the Erlang workspace, which means that it is linked with the
Erlang runtime system.
When starting external programs on Solaris, the system call vfork is used in
preference to fork for performance reasons, although it has a history of being less
robust. If there are problems with using vfork, setting the environment variable
ERL NO VFORK to any value will cause fork to be used instead.

ffd, In, Outg Allows an Erlang process to access any currently opened file descriptors
used by Erlang. The file descriptor In can be used for standard input, and the file
descriptor Out for standard output. It is only used for various servers in the Erlang
operating system (shell and user). Hence, its use is very limited.

PortSettings is a list of settings for the port. Valid settings are:

fpacket, Ng Messages are preceded by their length, sent in N bytes, with the most
significant byte first. Valid values for N are 1, 2, or 4.

stream Output messages are sent without packet lengths. A user-defined protocol must
be used between the Erlang process and the external object.

fline, Lg Messages are delivered on a per line basis. Each line (delimited by the
OS-dependent newline sequence) is delivered in one single message. The message
data format is fFlag, Lineg, where Flag is either eol or noeol and Line is the
actual data delivered (without the newline sequence).
L specifies the maximum line length in bytes. Lines longer than this will be
delivered in more than one message, with the Flag set to noeol for all but the last
message. If end of file is encountered anywhere else than immediately following a
newline sequence, the last line will also be delivered with the Flag set to noeol. In
all other cases, lines are delivered with Flag set to eol.
The fpacket, Ng and fline, Lg settings are mutually exclusive.

fcd, Dirg This is only valid for fspawn, Commandg. The external program starts using
Dir as its working directory. Dir must be a string. Not available on VxWorks.

121Kernel Application (KERNEL)

erlang Kernel Reference Manual

fenv, Envg This is only valid for fspawn, Commandg. The environment of the started
process is extended using the environment specifications in Env.
Env should be a list of tuples fName, Valg, where Name is the name of an
environment variable, and Val is the value it is to have in the spawned port
process. Both Name and Val must be strings. The one exception is Val being the
atom false (in analogy with os:getenv/1), which removes the environment
variable. Not available on VxWorks.

exit status This is only valid for fspawn, Commandg where Command refers to an
external program.
When the external process connected to the port exits, a message of the form
fPort,fexit status,Statusgg is sent to the connected process, where Status is
the exit status of the external process. If the program aborts, on Unix the same
convention is used as the shells do (i.e., 128+signal).
If the eof option has been given as well, the eof message and the exit status
message appear in an unspecified order.
If the port program closes its stdout without exiting, the exit status option will
not work.

use stdio This is only valid for fspawn, Commandg. It allows the standard input and
output (file descriptors 0 and 1) of the spawned (UNIX) process for
communication with Erlang.

nouse stdio The opposite of use stdio. Uses file descriptors 3 and 4 for
communication with Erlang.

stderr to stdout Affects ports to external programs. The executed program gets its
standard error file redirected to its standard output file. stderr to stdout and
nouse stdio are mutually exclusive.

in The port can only be used for input.

out The port can only be used for output.

binary All IO from the port are binary data objects as opposed to lists of bytes.

eof The port will not be closed at the end of the file and produce an exit signal.
Instead, it will remain open and a fPort, eofg message will be sent to the process
holding the port.

hide When running on Windows, suppress creation of a new console window when
spawning the port program. (This option has no effect on other platforms.)

The default is stream for all types of port and use stdio for spawned ports.

Failure: If the port cannot be opened, the exit reason is badarg, system limit, or the
Posix error code which most closely describes the error, or einval if no Posix code is
appropriate:

badarg Bad input arguments to open port.

system limit All available ports in the Erlang emulator are in use.

enomem There was not enough memory to create the port.

eagain There are no more available operating system processes.

enametoolong The external command given was too long.

emfile There are no more available file descriptors (for the operating system process
that the Erlang emulator runs in).

enfile The file table is full (for the entire operating system).

122 Kernel Application (KERNEL)

Kernel Reference Manual erlang

During use of a port opened using fspawn, Nameg, errors arising when sending
messages to it are reported to the owning process using signals of the form f’EXIT’,
Port, PosixCodeg. See file(3) for possible values of PosixCode.

The maximum number of ports that can be open at the same time is 1024 by default,
but can be configured by the environment variable ERL MAX PORTS.

erlang:phash(Term, Range) -> Hash

Types:

� Term = term()
� Range = 1..2^32
� Hash = 1..Range

Portable hash function that will give the same hash for the same Erlang term regardless
of machine architecture and ERTS version (the BIF was introduced in ERTS 4.9.1.1).
Range can be between 1 and 2^32, the function returns a hash value for Term within
the range 1..Range.

This BIF could be used instead of the old deprecated erlang:hash/2 BIF, as it
calculates better hashes for all data-types, but consider using phash2/1,2 instead.

erlang:phash2(Term [, Range]) -> Hash

Types:

� Term = term()
� Range = 1..2^32
� Hash = 0..Range-1

Portable hash function that will give the same hash for the same Erlang term regardless
of machine architecture and ERTS version (the BIF was introduced in ERTS 5.2). Range
can be between 1 and 2^32, the function returns a hash value for Term within the range
0..Range-1. When called without the Range argument, a value in the range 0..2^27-1
is returned.

This BIF should always be used for hashing terms. It distributes small integers better
than phash/2, and it is faster for bignums and binaries.

Note that the range 0..Range-1 is different from the range of phash/2 (1..Range).

pid to list(Pid) -> string()

Types:

� Pid = pid()

Returns a string which corresponds to the text representation of Pid.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

port close(Port) -> true

Types:

123Kernel Application (KERNEL)

erlang Kernel Reference Manual

� Port = port() | atom()

Closes an open port. Roughly the same as Port ! fself(), closeg except for the
error behaviour (see below), and that the port does not reply with fPort, closedg.
Any process may close a port with port close/1, not only the port owner (the
connected process).

For comparison: Port ! fself(), closeg fails with badarg if Port cannot be sent to
(i.e., Port refers neither to a port nor to a process). If Port is a closed port nothing
happens. If Port is an open port and the calling process is the port owner, the port
replies with fPort, closedg when all buffers have been flushed and the port really
closes, but if the calling process is not the port owner the port owner fails with badsig.

Note that any process can close a port using Port ! fPortOwner, closeg just as if it
itself was the port owner, but the reply always goes to the port owner.

In short: port close(Port) has a cleaner and more logical behaviour than Port !
fself(), closeg.

Failure: badarg if Port is not an open port or the registered name of an open port.

port command(Port, Data) -> true

Types:

� Port = port() | atom()
� Data = iodata()

Sends data to a port. Same as Port ! fself(), fcommand, Datagg except for the
error behaviour (see below). Any process may send data to a port with
port command/2, not only the port owner (the connected process).

For comparison: Port ! fself(), fcommand, Datagg fails with badarg if Port
cannot be sent to (i.e., Port refers neither to a port nor to a process). If Port is a closed
port the data message disappears without a sound. If Port is open and the calling
process is not the port owner, the port owner fails with badsig. The port owner fails
with badsig also if Data is not a valid IO list.

Note that any process can send to a port using Port ! fPortOwner, fcommand,
Datagg just as if it itself was the port owner.

In short: port command(Port, Data) has a cleaner and more logical behaviour than
Port ! fself(), fcommand, Datagg.

Failure: badarg if Port is not an open port or the registered name of an open port.

port connect(Port, Pid) -> true

Types:

� Port = port() | atom()
� Pid = pid()

Sets the port owner (the connected port) to Pid. Roughly the same as Port !
fself(), fconnect, Pidgg except for the following:

� The error behavior differs, see below.

� The port does not reply with fPort,connectedg.

� The new port owner gets linked to the port.

124 Kernel Application (KERNEL)

Kernel Reference Manual erlang

The old port owner stays linked to the port and have to call unlink(Port) if this is not
desired. Any process may set the port owner to be any process with port connect/2.

For comparison: Port ! fself(), fconnect, Pidgg fails with badarg if Port cannot
be sent to (i.e., Port refers neither to a port nor to a process). If Port is a closed port
nothing happens. If Port is an open port and the calling process is the port owner, the
port replies with fPort, connectedg to the old port owner. Note that the old port
owner is still linked to the port, and that the new is not. If Port is an open port and the
calling process is not the port owner, the port owner fails with badsig. The port owner
fails with badsig also if Pid is not an existing local pid.

Note that any process can set the port owner using Port ! fPortOwner, fconnect,
Pidgg just as if it itself was the port owner, but the reply always goes to the port owner.

In short: port connect(Port, Pid) has a cleaner and more logical behaviour than
Port ! fself(),fconnect,Pidgg.

Failure: badarg if Port is not an open port or the registered name of an open port, or if
Pid is not an existing local pid.

port control(Port, Operation, Data) -> Res

Types:

� Port = port() | atom()
� Operation = int()
� Data = Res = iodata()

Performs a synchronous control operation on a port. The meaning of Operation and
Data depends on the port, i.e., on the port driver. Not all port drivers support this
control feature.

Returns: a list of integers in the range 0 through 255, or a binary, depending on the port
driver. The meaning of the returned data also depends on the port driver.

Failure: badarg if Port is not an open port or the registered name of an open port, if
Operation cannot fit in a 32-bit integer, if the port driver does not support synchronous
control operations, or if the port driver so decides for any reason (probably something
wrong with Operation or Data).

erlang:port call(Port, Operation, Data) -> term()

Types:

� Port = port() | atom()
� Operation = int()
� Data = term()

Performs a synchronous call to a port. The meaning of Operation and Data depends on
the port, i.e., on the port driver. Not all port drivers support this feature.

Port is a port identifier, referring to a driver.

Operation is an integer, which is passed on to the driver.

Data is any Erlang term. This data is converted to binary term format and sent to the
port.

Returns: a term from the driver. The meaning of the returned data also depends on the
port driver.

Failure: badarg if Port is not an open port or the registered name of an open port, if
Operation cannot fit in a 32-bit integer, if the port driver does not support synchronous

125Kernel Application (KERNEL)

erlang Kernel Reference Manual

control operations, or if the port driver so decides for any reason (probably something
wrong with Operation or Data).

erlang:port info(Port) -> [fItem, Infog] | undefined

Types:

� Port = port() | atom()
� Item, Info – see below

Returns a list containing tuples with information about the Port, or undefined if the
port is not open. The order of the tuples is not defined, nor are all the tuples mandatory.

fregistered name, RegNameg RegName (an atom) is the registered name of the port. If
the port has no registered name, this tuple is not present in the list.

fid, Indexg Index (an integer) is the internal index of the port. This index may be
used to separate ports.

fconnected, Pidg Pid is the process connected to the port.

flinks, Pidsg Pids is a list of pids to which processes the port is linked.

fname, Stringg String is the command name set by open port.

finput, Bytesg Bytes is the total number of bytes read from the port.

foutput, Bytesg Bytes is the total number of bytes written to the port.

Failure: badarg if Port is not a local port.

erlang:port info(Port, Item) -> fItem, Infog | undefined | []

Types:

� Port = port() | atom()
� Item, Info – see below

Returns information about Port as specified by Item, or undefined if the port is not
open. Also, if Item == registered name and the port has no registered name, [] is
returned.

For valid values of Item, and corresponding values of Info, see erlang:port info/1 [page
126].

Failure: badarg if Port is not a local port.

erlang:port to list(Port) -> string()

Types:

� Port = port()

Returns a string which corresponds to the text representation of the port identifier Port.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

erlang:ports() -> [port()]

126 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns a list of all ports on the local node.

pre loaded() -> [Module]

Types:

� Module = atom()

Returns a list of Erlang modules which are pre-loaded in the system. As all loading of
code is done through the file system, the file system must have been loaded previously.
Hence, at least the module init must be pre-loaded.

erlang:process display(Pid, Type) -> void()

Types:

� Pid = pid()
� Type = back-trace

Writes information about the local process Pid on standard error. The currently allowed
value for the atom Type is backtrace, which shows the contents of the call stack,
including information about the call chain, with the most recent data printed last. The
format of the output is not further defined.

process flag(Flag, Value) -> OldValue

Types:

� Flag, Value, OldValue – see below

Sets certain flags for the process which calls this function. Returns the old value of the
flag.

process flag(trap exit, Boolean) When trap exit is set to true, exit signals
arriving to a process are converted to f’EXIT’, From, Reasong messages, which
can be received as ordinary messages. If trap exit is set to false, the process
exits if it receives an exit signal other than normal and the exit signal is propagated
to its linked processes. Application processes should normally not trap exits.
See also exit/2 [page 99].

process flag(error handler, Module) This is used by a process to redefine the error
handler for undefined function calls and undefined registered processes.
Inexperienced users should not use this flag since code auto-loading is dependent
on the correct operation of the error handling module.

process flag(min heap size, MinHeapSize) This changes the minimum heap size
for the calling process.

process flag(priority, Level) This sets the process priority. Level is an atom.
There are currently four priority levels: low, normal, high, and max. The default
priority level is normal. NOTE: The max priority level is reserved for internal use
in the Erlang runtime system, and should not be used by others.
Internally in each priority level processes are scheduled in a round robin fashion.
Execution of processes on priority normal and priority low will be interleaved.
Processes on priority low will be selected for execution less frequently than
processes on priority normal.
When there are runnable processes on priority high no processes on priority low,
or normal will be selected for execution. Note, however, that this does not mean
that no processes on priority low, or normal will be able to run when there are

127Kernel Application (KERNEL)

erlang Kernel Reference Manual

processes on priority high running. On the runtime system with SMP support
there might be more processes running in parallel than processes on priority high,
i.e., a low, and a high priority process might execute at the same time.
When there are runnable processes on priority max no processes on priority low,
normal, or high will be selected for execution. As with the high priority, processes
on lower priorities might execute in parallel with processes on priority max.
Scheduling is preemptive. Regardless of priority, a process is preempted when it
has consumed more than a certain amount of reductions since the last time it was
selected for execution.
NOTE: You should not depend on the scheduling to remain exactly as it is today.
Scheduling, at least on the runtime system with SMP support, is very likely to be
modified in the future in order to better utilize available processor cores.
There is currently no automatic mechanism for avoiding priority inversion, such as
priority inheritance, or priority ceilings. When using priorities you have to take this
into account and handle such scenarios by yourself.
Making calls from a high priority process into code that you don’t have control
over may cause the high priority process to wait for a processes with lower
priority, i.e., effectively decreasing the priority of the high priority process during
the call. Even if this isn’t the case with one version of the code that you don’t have
under your control, it might be the case in a future version of it. This might, for
example, happen if a high priority process triggers code loading, since the code
server runs on priority normal.
Other priorities than normal are normally not needed. When other priorities are
used, they need to be used with care, especially the high priority must be used
with care. A process on high priority should only perform work for short periods
of time. Busy looping for long periods of time in a high priority process will most
likely cause problems, since there are important servers in OTP running on priority
normal.

process flag(save calls, N) When there are runnable processes on priority max no
processes on priority low, normal, or high will be selected for execution. As with
the high priority, processes on lower priorities might execute in parallel with
processes on priority max.
N must be an integer in the interval 0..10000. If N > 0, call saving is made active
for the process, which means that information about the N most recent global
function calls, BIF calls, sends and receives made by the process are saved in a list,
which can be retrieved with process info(Pid, last calls). A global function
call is one in which the module of the function is explicitly mentioned. Only a
fixed amount of information is saved: a tuple fModule, Function, Arityg for
function calls, and the mere atoms send, ’receive’ and timeout for sends and
receives (’receive’ when a message is received and timeout when a receive times
out). If N = 0, call saving is disabled for the process, which is the default.
Whenever the size of the call saving list is set, its contents are reset.

process flag(sensitive, Boolean) Set or clear the sensitive flag for the current
process. When a process has been marked as sensitive by calling
process flag(sensitive, true), features in the run-time system that can be
used for examining the data and/or inner working of the process are silently
disabled.
Features that are disabled include (but are not limited to) the following:
Tracing: Trace flags can still be set for the process, but no trace messages of any
kind will be generated. (If the sensitive flag is turned off, trace messages will
again be generated if there are any trace flags set.)

128 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Sequential tracing: The sequential trace token will be propagated as usual, but no
sequential trace messages will be generated.
process info/1,2 cannot be used to read out the message queue or the process
dictionary (both will be returned as empty lists).
Stack back-traces cannot be displayed for the process.
In crash dumps, the stack, messages, and the process dictionary will be omitted.
If fsave calls,Ng has been set for the process, no function calls will be saved to
the call saving list. (The call saving list will not be cleared; furthermore, send,
receive, and timeout events will still be added to the list.)

process flag(Pid, Flag, Value) -> OldValue

Types:

� Pid = pid()
� Flag, Value, OldValue – see below

Sets certain flags for the process Pid, in the same manner as process flag/2 [page 127].
Returns the old value of the flag. The allowed values for Flag are only a subset of those
allowed in process flag/2, namely: save calls.

Failure: badarg if Pid is not a local process.

process info(Pid) -> InfoResult

Types:

� Pid = pid()
� Item = atom()
� Info = term()
� InfoTuple = fItem, Infog
� InfoTupleList = [InfoTuple]
� InfoResult = InfoTupleList | undefined

Returns a list containing InfoTuples with miscellaneous information about the process
identified by Pid, or undefined if the process is not alive.

The order of the InfoTuples is not defined, nor are all the InfoTuples mandatory. The
InfoTuples part of the result may be changed without prior notice. Currently
InfoTuples with the following Items are part of the result: current function,
initial call, status, message queue len, messages, links, dictionary,
trap exit, error handler, priority, group leader, total heap size, heap size,
stack size, reductions, and garbage collection. If the process identified by Pid
has a registered name also an InfoTuple with Item == registered name will appear.

See process info/2 [page 130] for information about specific InfoTuples.

Warning:
This BIF is intended for debugging only, use process info/2 [page 130] for all other
purposes.

Failure: badarg if Pid is not a local process.

129Kernel Application (KERNEL)

erlang Kernel Reference Manual

process info(Pid, ItemSpec) -> InfoResult

Types:

� Pid = pid()
� Item = atom()
� Info = term()
� ItemList = [Item]
� ItemSpec = Item | ItemList
� InfoTuple = fItem, Infog
� InfoTupleList = [InfoTuple]
� InfoResult = InfoTuple | InfoTupleList | undefined | []

Returns information about the process identified by Pid as specified by the ItemSpec,
or undefined if the process is not alive.

If the process is alive and ItemSpec is a single Item, the returned value is the
corresponding InfoTuple unless ItemSpec == registered name and the process has
no registered name. In this case [] is returned. This strange behavior is due to historical
reasons, and is kept for backward compatibility.

If ItemSpec is an ItemList, the result is an InfoTupleList. The InfoTuples in the
InfoTupleListwill appear with the corresponding Items in the same order as the Items
appeared in the ItemList. Valid Items may appear multiple times in the ItemList.

Note:
If registered name is part of an ItemList and the process has no name registered a
fregistered name, []g InfoTuple will appear in the resulting InfoTupleList.
This behavior is different than when ItemSpec == registered name, and than when
process info/1 is used.

Currently the following InfoTuples with corresponding Items are valid:

fbacktrace, Bing The binary Bin contains the same information as the output from
erlang:process display(Pid, backtrace). Use binary to list/1 to obtain
the string of characters from the binary.

fbinary, BinInfog BinInfo is a list containing miscellaneous information about
binaries currently being referred to by this process. This InfoTuple may be
changed or removed without prior notice.

fcatchlevel, CatchLevelg CatchLevel is the number of currently active catches in
this process. This InfoTuple may be changed or removed without prior notice.

fcurrent function, fModule, Function, Argsgg Module, Function, Args is the
current function call of the process.

fdictionary, Dictionaryg Dictionary is the dictionary of the process.

ferror handler, Moduleg Module is the error handler module used by the process
(for undefined function calls, for example).

fgarbage collection, GCInfog GCInfo is a list which contains miscellaneous
information about garbage collection for this process. The content of GCInfo may
be changed without prior notice.

fgroup leader, GroupLeaderg GroupLeader is group leader for the IO of the process.

130 Kernel Application (KERNEL)

Kernel Reference Manual erlang

fheap size, Sizeg Size is the size in words of youngest heap generation of the
process. This generation currently include the stack of the process. This
information is highly implementation dependent, and may change if the
implementation change.

finitial call, fModule, Function, Aritygg Module, Function, Arity is the
initial function call with which the process was spawned.

flinks, Pidsg Pids is a list of pids, with processes to which the process has a link.

flast calls, false|Callsg The value is false if call saving is not active for the
process (see process flag/3 [page 129]). If call saving is active, a list is returned, in
which the last element is the most recent called.

fmemory, Sizeg Size is the size in bytes of the process. This includes call stack, heap
and internal structures.

fmessage binary, BinInfog BinInfo is a list containing miscellaneous information
about binaries currently being referred to by the message area. This InfoTuple is
only valid on an emulator using the hybrid heap type. This InfoTuple may be
changed or removed without prior notice.

fmessage queue len, MessageQueueLeng MessageQueueLen is the number of
messages currently in the message queue of the process. This is the length of the
list MessageQueue returned as the info item messages (see below).

fmessages, MessageQueueg MessageQueue is a list of the messages to the process,
which have not yet been processed.

fmonitored by, Pidsg A list of pids that are monitoring the process (with
erlang:monitor/2).

fmonitors, Monitorsg A list of monitors (started by erlang:monitor/2) that are
active for the process. For a local process monitor or a remote process monitor by
pid, the list item is fprocess, Pidg, and for a remote process monitor by name,
the list item is fprocess, fRegName, Nodegg.

fpriority, Levelg Level is the current priority level for the process. For more
information on priorities see process flag(priority, Level) [page 127].

freductions, Numberg Number is the number of reductions executed by the process.

fregistered name, Atomg Atom is the registered name of the process. If the process
has no registered name, this tuple is not present in the list.

fsequential trace token, [] | SequentialTraceTokeng SequentialTraceToken
the sequential trace token for the process. This InfoTuple may be changed or
removed without prior notice.

fstack size, Sizeg Size is the stack size of the process in words.

fstatus, Statusg Status is the status of the process. Status is waiting (waiting for
a message), running, runnable (ready to run, but another process is running), or
suspended (suspended on a “busy” port or by the
erlang:suspend process/[1,2] BIF).

fsuspending, SuspendeeListg SuspendeeList is a list of fSuspendee,
ActiveSuspendCount, OutstandingSuspendCountg tuples. Suspendee is the pid
of a process that have been or is to be suspended by the process identified by Pid
via the erlang:suspend process/2 [page 144] BIF, or the erlang:suspend process/1
[page 145] BIF. ActiveSuspendCount is the number of times the Suspendee has
been suspended by Pid. OutstandingSuspendCount is the number of not yet
completed suspend requests sent by Pid. That is, if ActiveSuspendCount /= 0,
Suspendee is currently in the suspended state, and if OutstandingSuspendCount

131Kernel Application (KERNEL)

erlang Kernel Reference Manual

/= 0 the asynchronous option of erlang:suspend process/2 has been used and
the suspendee has not yet been suspended by Pid. Note that the
ActiveSuspendCount and OutstandingSuspendCount are not the total suspend
count on Suspendee, only the parts contributed by Pid.

ftotal heap size, Sizeg Size is the total size in words of all heap fragments of the
process. This currently include the stack of the process.

ftrace, InternalTraceFlagsg InternalTraceFlags is an integer representing
internal trace flag for this process. This InfoTuple may be changed or removed
without prior notice.

ftrap exit, Booleang Boolean is true if the process is trapping exits, otherwise it is
false.

Note however, that not all implementations support every one of the above Items.

Failure: badarg if Pid is not a local process, or if Item is not a valid Item.

processes() -> [pid()]

Returns a list of process identifiers corresponding to all the processes currently existing
on the local node.

Note that a process that is exiting, exists but is not alive, i.e., is process alive/1 will
return false for a process that is exiting, but its process identifier will be part of the
result returned from processes/0.

> processes().
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]

purge module(Module) -> void()

Types:

� Module = atom()

Removes old code for Module. Before this BIF is used, erlang:check process code/2
should be called to check that no processes are executing old code in the module.

Warning:
This BIF is intended for the code server (see code(3) [page 47]) and should not be
used elsewhere.

Failure: badarg if there is no old code for Module.

put(Key, Val) -> OldVal | undefined

Types:

� Key = Val = OldVal = term()

132 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Adds a new Key to the process dictionary, associated with the value Val, and returns
undefined. If Key already exists, the old value is deleted and replaced by Val and the
function returns the old value.

Note:
The values stored when put is evaluated within the scope of a catch will not be
retracted if a throw is evaluated, or if an error occurs.

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),
fX, Y, Zg.
fundefined,walrus,carpenterg

erlang:raise(Class, Reason, Stacktrace)

Types:

� Class = error | exit | throw
� Reason = term()
� Stacktrace = [fModule, Function, Arity | Argsg | fFun, Argsg]
� Module = Function = atom()
� Arity = int()
� Args = [term()]
� Fun = [fun()]

Stops the execution of the calling process with an exception of given class, reason and
call stack backtrace (stacktrace).

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. In
general, it should be avoided in applications, unless you know very well what you are
doing.

Class is one of error, exit or throw, so if it were not for the stacktrace
erlang:raise(Class, Reason, Stacktrace) is equivalent to
erlang:Class(Reason). Reason is any term and Stacktrace is a list as returned from
get stacktrace(), that is a list of 3-tuples fModule, Function, Arity | Argsg
where Module and Function are atoms and the third element is an integer arity or an
argument list. The stacktrace may also contain fFun, Argsg tuples where Fun is a local
fun and Args is an argument list.

The stacktrace is used as the exception stacktrace for the calling process; it will be
truncated to the current maximum stacktrace depth.

Because evaluating this function causes the process to terminate, it has no return value -
unless the arguments are invalid, in which case the function returns the error reason, that
is badarg. If you want to be really sure not to return you can call
erlang:error(erlang:raise(Class, Reason, Stacktrace)) and hope to
distinguish exceptions later.

133Kernel Application (KERNEL)

erlang Kernel Reference Manual

erlang:read timer(TimerRef) -> int() | false

Types:

� TimerRef = ref()

TimerRef is a timer reference returned by erlang:send after/3 [page 136] or
erlang:start timer/3 [page 143]. If the timer is active, the function returns the time in
milliseconds left until the timer will expire, otherwise false (which means that
TimerRef was never a timer, that it has been cancelled, or that it has already delivered
its message).

See also erlang:send after/3 [page 136], erlang:start timer/3 [page 143], and
erlang:cancel timer/1 [page 94].

erlang:ref to list(Ref) -> string()

Types:

� Ref = ref()

Returns a string which corresponds to the text representation of Ref.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

register(RegName, Pid | Port) -> true

Types:

� RegName = atom()
� Pid = pid()
� Port = port()

Associates the name RegName with a pid or a port identifier. RegName, which must be an
atom, can be used instead of the pid / port identifier in the send operator (RegName !
Message).

> register(db, Pid).
true

Failure: badarg if Pid is not an existing, local process or port, if RegName is already in
use, if the process or port is already registered (already has a name), or if RegName is the
atom undefined.

registered() -> [RegName]

Types:

� RegName = atom()

Returns a list of names which have been registered using register/2 [page 134].

> registered().
[code server, file server, init, user, my db]

erlang:resume process(Suspendee) -> true

134 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Types:

� Suspendee = pid()

Decreases the suspend count on the process identified by Suspendee. Suspendee should
previously have been suspended via erlang:suspend process/2 [page 144], or
erlang:suspend process/1 [page 145] by the process calling
erlang:resume process(Suspendee). When the suspend count on Suspendee reach
zero, Suspendee will be resumed, i.e., the state of the Suspendee is changed from
suspended into the state Suspendee was in before it was suspended.

Warning:
This BIF is intended for debugging only.

Failures:

badarg If Suspendee isn’t a process identifier.

badarg If the process calling erlang:resume process/1 had not previously increased
the suspend count on the process identified by Suspendee.

badarg If the process identified by Suspendee is not alive.

round(Number) -> int()

Types:

� Number = number()

Returns an integer by rounding Number.

> round(5.5).
6

Allowed in guard tests.

self() -> pid()

Returns the pid (process identifier) of the calling process.

> self().
<0.26.0>

Allowed in guard tests.

erlang:send(Dest, Msg) -> Msg

Types:

� Dest = pid() | port() | RegName | fRegName, Nodeg
� Msg = term()
� RegName = atom()
� Node = node()

Sends a message and returns Msg. This is the same as Dest ! Msg.

Dest may be a remote or local pid, a (local) port, a locally registered name, or a tuple
fRegName, Nodeg for a registered name at another node.

135Kernel Application (KERNEL)

erlang Kernel Reference Manual

erlang:send(Dest, Msg, [Option]) -> Res

Types:

� Dest = pid() | port() | RegName | fRegName, Nodeg
� RegName = atom()
� Node = node()
� Msg = term()
� Option = nosuspend | noconnect
� Res = ok | nosuspend | noconnect

Sends a message and returns ok, or does not send the message but returns something
else (see below). Otherwise the same as erlang:send/2 [page 135]. See also
erlang:send nosuspend/2,3 [page 136]. for more detailed explanation and warnings.

The possible options are:

nosuspend If the sender would have to be suspended to do the send, nosuspend is
returned instead.

noconnect If the destination node would have to be auto-connected before doing the
send, noconnect is returned instead.

Warning:
As with erlang:send nosuspend/2,3: Use with extreme care!

erlang:send after(Time, Dest, Msg) -> TimerRef

Types:

� Time = int()
� 0 <= Time <= 4294967295
� Dest = pid() | RegName
� LocalPid = pid() (of a process, alive or dead, on the local node)
� Msg = term()
� TimerRef = ref()

Starts a timer which will send the message Msg to Dest after Time milliseconds.

If Dest is an atom, it is supposed to be the name of a registered process. The process
referred to by the name is looked up at the time of delivery. No error is given if the
name does not refer to a process.

If Dest is a pid, the timer will be automatically canceled if the process referred to by the
pid is not alive, or when the process exits. This feature was introduced in erts version
5.4.11. Note that timers will not be automatically canceled when Dest is an atom.

See also erlang:start timer/3 [page 143], erlang:cancel timer/1 [page 94], and
erlang:read timer/1 [page 134].

Failure: badarg if the arguments does not satisfy the requirements specified above.

erlang:send nosuspend(Dest, Msg) -> bool()

Types:

136 Kernel Application (KERNEL)

Kernel Reference Manual erlang

� Dest = pid() | port() | RegName | fRegName, Nodeg
� RegName = atom()
� Node = node()
� Msg = term()

The same as erlang:send(Dest, Msg, [nosuspend]) [page 136], but returns true if the
message was sent and false if the message was not sent because the sender would have
had to be suspended.

This function is intended for send operations towards an unreliable remote node
without ever blocking the sending (Erlang) process. If the connection to the remote
node (usually not a real Erlang node, but a node written in C or Java) is overloaded, this
function will not send the message but return false instead.

The same happens, if Dest refers to a local port that is busy. For all other destinations
(allowed for the ordinary send operator ’!’) this function sends the message and
returns true.

This function is only to be used in very rare circumstances where a process
communicates with Erlang nodes that can disappear without any trace causing the TCP
buffers and the drivers queue to be over-full before the node will actually be shut down
(due to tick timeouts) by net kernel. The normal reaction to take when this happens
is some kind of premature shutdown of the other node.

Note that ignoring the return value from this function would result in unreliable
message passing, which is contradictory to the Erlang programming model. The
message is not sent if this function returns false.

Note also that in many systems, transient states of overloaded queues are normal. The
fact that this function returns false does not in any way mean that the other node is
guaranteed to be non-responsive, it could be a temporary overload. Also a return value
of true does only mean that the message could be sent on the (TCP) channel without
blocking, the message is not guaranteed to have arrived at the remote node. Also in the
case of a disconnected non-responsive node, the return value is true (mimics the
behaviour of the ! operator). The expected behaviour as well as the actions to take
when the function returns false are application and hardware specific.

Warning:
Use with extreme care!

erlang:send nosuspend(Dest, Msg, Options) -> bool()

Types:

� Dest = pid() | port() | RegName | fRegName, Nodeg
� RegName = atom()
� Node = node()
� Msg = term()
� Option = noconnect

137Kernel Application (KERNEL)

erlang Kernel Reference Manual

The same as erlang:send(Dest, Msg, [nosuspend | Options]) [page 136], but with
boolean return value.

This function behaves like erlang:send nosuspend/2) [page 136], but takes a third
parameter, a list of options. The only currently implemented option is noconnect. The
option noconnect makes the function return false if the remote node is not currently
reachable by the local node. The normal behaviour is to try to connect to the node,
which may stall the process for a shorter period. The use of the noconnect option
makes it possible to be absolutely sure not to get even the slightest delay when sending
to a remote process. This is especially useful when communicating with nodes who
expect to always be the connecting part (i.e. nodes written in C or Java).

Whenever the function returns false (either when a suspend would occur or when
noconnect was specified and the node was not already connected), the message is
guaranteed not to have been sent.

Warning:
Use with extreme care!

erlang:set cookie(Node, Cookie) -> true

Types:

� Node = node()
� Cookie = atom()

Sets the magic cookie of Node to the atom Cookie. If Node is the local node, the
function also sets the cookie of all other unknown nodes to Cookie (see [Distributed
Erlang] in the Erlang Reference Manual).

Failure: function clause if the local node is not alive.

setelement(Index, Tuple1, Value) -> Tuple2

Types:

� Index = 1..tuple size(Tuple1)
� Tuple1 = Tuple2 = tuple()
� Value = term()

Returns a tuple which is a copy of the argument Tuple1 with the element given by the
integer argument Index (the first element is the element with index 1) replaced by the
argument Value.

> setelement(2, f10, green, bottlesg, red).
f10,red,bottlesg

size(Item) -> int()

Types:

� Item = tuple() | binary()

Returns an integer which is the size of the argument Item, which must be either a tuple
or a binary.

138 Kernel Application (KERNEL)

Kernel Reference Manual erlang

> size(fmorni, mulle, bwangeg).
3

Allowed in guard tests.

spawn(Fun) -> pid()

Types:

� Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [].
Otherwise works like spawn/3 [page 139].

spawn(Node, Fun) -> pid()

Types:

� Node = node()
� Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list []
on Node. If Node does not exist, a useless pid is returned. Otherwise works like spawn/3
[page 139].

spawn(Module, Function, Args) -> pid()

Types:

� Module = Function = atom()
� Args = [term()]

Returns the pid of a new process started by the application of Module:Function to
Args. The new process created will be placed in the system scheduler queue and be run
some time later.

error handler:undefined function(Module, Function, Args) is evaluated by the
new process if Module:Function/Arity does not exist (where Arity is the length of
Args). The error handler can be redefined (see process flag/2 [page 127]). If
error handler is undefined, or the user has redefined the default error handler its
replacement is undefined, a failure with the reason undef will occur.

> spawn(speed, regulator, [high speed, thin cut]).
<0.13.1>

spawn(Node, Module, Function, ArgumentList) -> pid()

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]

Returns the pid of a new process started by the application of Module:Function to
Args on Node. If Node does not exists, a useless pid is returned. Otherwise works like
spawn/3 [page 139].

spawn link(Fun) -> pid()

Types:

139Kernel Application (KERNEL)

erlang Kernel Reference Manual

� Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [].
A link is created between the calling process and and the new process, atomically.
Otherwise works like spawn/3 [page 139].

spawn link(Node, Fun) ->

Types:

� Node = node()
� Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list [] on
Node. A link is created between the calling process and and the new process, atomically.
If Node does not exist, a useless pid is returned (and due to the link, an exit signal with
exit reason noconnection will be received). Otherwise works like spawn/3 [page 139].

spawn link(Module, Function, Args) -> pid()

Types:

� Module = Function = atom()
� Args = [term()]

Returns the pid of a new process started by the application of Module:Function to
Args. A link is created between the calling process and the new process, atomically.
Otherwise works like spawn/3 [page 139].

spawn link(Node, Module, Function, Args) -> pid()

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]

Returns the pid of a new process started by the application of Module:Function to Args
on Node. A link is created between the calling process and the new process, atomically.
If Node does not exist, a useless pid is returned (and due to the link, an exit signal with
exit reason noconnection will be received). Otherwise works like spawn/3 [page 139].

spawn monitor(Fun) -> fpid(),reference()g

Types:

� Fun = fun()

Returns the pid of a new process started by the application of Fun to the empty list []
and reference for a monitor created to the new process. Otherwise works like spawn/3
[page 139].

spawn monitor(Module, Function, Args) -> fpid(),reference()g

Types:

� Module = Function = atom()
� Args = [term()]

140 Kernel Application (KERNEL)

Kernel Reference Manual erlang

A new process is started by the application of Module:Function to Args, and the
process is monitored at the same time. Returns the pid and a reference for the monitor.
Otherwise works like spawn/3 [page 139].

spawn opt(Fun, [Option]) -> pid() | fpid(),reference()g

Types:

� Fun = fun()
� Option = link | monitor | fpriority, Levelg | ffullsweep after, Numberg |
fmin heap size, Sizeg

� Level = low | normal | high
� Number = int()
� Size = int()

Returns the pid of a new process started by the application of Fun to the empty list [].
Otherwise works like spawn opt/4 [page 141].

If the option monitor is given, the newly created process will be monitored and both
the pid and reference for the monitor will be returned.

spawn opt(Node, Fun, [Option]) -> pid()

Types:

� Node = node()
� Fun = fun()
� Option = link | fpriority, Levelg | ffullsweep after, Numberg | fmin heap size,

Sizeg
� Level = low | normal | high
� Number = int()
� Size = int()

Returns the pid of a new process started by the application of Fun to the empty list []
on Node. If Node does not exist, a useless pid is returned. Otherwise works like
spawn opt/4 [page 141].

spawn opt(Module, Function, Args, [Option]) -> pid() | fpid(),reference()g

Types:

� Module = Function = atom()
� Args = [term()]
� Option = link | monitor | fpriority, Levelg | ffullsweep after, Numberg |
fmin heap size, Sizeg

� Level = low | normal | high
� Number = int()
� Size = int()

Works exactly like spawn/3 [page 139], except that an extra option list is given when
creating the process.

If the option monitor is given, the newly created process will be monitored and both
the pid and reference for the monitor will be returned.

link Sets a link to the parent process (like spawn link/3 does).

monitor Monitor the new process (just like erlang:monitor/2 [page 117] does).

141Kernel Application (KERNEL)

erlang Kernel Reference Manual

fpriority, Levelg Sets the priority of the new process. Equivalent to executing
process flag(priority, Level) [page 127] in the start function of the new process,
except that the priority will be set before the process is selected for execution for
the first time. For more information on priorities see process flag(priority, Level)
[page 127].

ffullsweep after, Numberg This option is only useful for performance tuning. In
general, you should not use this option unless you know that there is problem with
execution times and/or memory consumption, and you should measure to make
sure that the option improved matters.
The Erlang runtime system uses a generational garbage collection scheme, using an
“old heap” for data that has survived at least one garbage collection. When there is
no more room on the old heap, a fullsweep garbage collection will be done.
The fullsweep after option makes it possible to specify the maximum number
of generational collections before forcing a fullsweep even if there is still room on
the old heap. Setting the number to zero effectively disables the general collection
algorithm, meaning that all live data is copied at every garbage collection.
Here are a few cases when it could be useful to change fullsweep after. Firstly,
if binaries that are no longer used should be thrown away as soon as possible. (Set
Number to zero.) Secondly, a process that mostly have short-lived data will be
fullsweeped seldom or never, meaning that the old heap will contain mostly
garbage. To ensure a fullsweep once in a while, set Number to a suitable value such
as 10 or 20. Thirdly, in embedded systems with limited amount of RAM and no
virtual memory, one might want to preserve memory by setting Number to zero.
(The value may be set globally, see erlang:system flag/2 [page 146].)

fmin heap size, Sizeg This option is only useful for performance tuning. In general,
you should not use this option unless you know that there is problem with
execution times and/or memory consumption, and you should measure to make
sure that the option improved matters.
Gives a minimum heap size in words. Setting this value higher than the system
default might speed up some processes because less garbage collection is done.
Setting too high value, however, might waste memory and slow down the system
due to worse data locality. Therefore, it is recommended to use this option only for
fine-tuning an application and to measure the execution time with various Size
values.

spawn opt(Node, Module, Function, Args, [Option]) -> pid()

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]
� Option = link | fpriority, Levelg | ffullsweep after, Numberg | fmin heap size,

Sizeg
� Level = low | normal | high
� Number = int()
� Size = int()

Returns the pid of a new process started by the application of Module:Function to
Args on Node. If Node does not exist, a useless pid is returned. Otherwise works like
spawn opt/4 [page 141].

142 Kernel Application (KERNEL)

Kernel Reference Manual erlang

split binary(Bin, Pos) -> fBin1, Bin2g

Types:

� Bin = Bin1 = Bin2 = binary()
� Pos = 1..byte size(Bin)

Returns a tuple containing the binaries which are the result of splitting Bin into two
parts at position Pos. This is not a destructive operation. After the operation, there will
be three binaries altogether.

> B = list to binary("0123456789").
<<"0123456789">>
> byte size(B).
10
> fB1, B2g = split binary(B,3).
f<<"012">>,<<"3456789">>g
> byte size(B1).
3
> byte size(B2).
7

erlang:start timer(Time, Dest, Msg) -> TimerRef

Types:

� Time = int()
� 0 <= Time <= 4294967295
� Dest = LocalPid | RegName
� LocalPid = pid() (of a process, alive or dead, on the local node)
� RegName = atom()
� Msg = term()
� TimerRef = ref()

Starts a timer which will send the message ftimeout, TimerRef, Msgg to Dest after
Time milliseconds.

If Dest is an atom, it is supposed to be the name of a registered process. The process
referred to by the name is looked up at the time of delivery. No error is given if the
name does not refer to a process.

If Dest is a pid, the timer will be automatically canceled if the process referred to by the
pid is not alive, or when the process exits. This feature was introduced in erts version
5.4.11. Note that timers will not be automatically canceled when Dest is an atom.

See also erlang:send after/3 [page 136], erlang:cancel timer/1 [page 94], and
erlang:read timer/1 [page 134].

Failure: badarg if the arguments does not satisfy the requirements specified above.

statistics(Type) -> Res

Types:

� Type, Res – see below

Returns information about the system as specified by Type:

context switches Returns fContextSwitches, 0g, where ContextSwitches is the
total number of context switches since the system started.

143Kernel Application (KERNEL)

erlang Kernel Reference Manual

exact reductions Returns fTotal Exact Reductions,
Exact Reductions Since Last Callg.
NOTE:statistics(exact reductions) is a more expensive operation than
statistics(reductions) [page 144] especially on an Erlang machine with SMP
support.

garbage collection Returns fNumber of GCs, Words Reclaimed, 0g. This
information may not be valid for all implementations.

io Returns ffinput, Inputg, foutput, Outputgg, where Input is the total number
of bytes received through ports, and Output is the total number of bytes output to
ports.

reductions Returns fTotal Reductions, Reductions Since Last Callg.
NOTE: From erts version 5.5 (OTP release R11B) this value does not include
reductions performed in current time slices of currently scheduled processes. If an
exact value is wanted, use statistics(exact reductions) [page 144].

run queue Returns the length of the run queue, that is, the number of processes that
are ready to run.

runtime Returns fTotal Run Time, Time Since Last Callg.

wall clock Returns fTotal Wallclock Time, Wallclock Time Since Last Callg.
wall clock can be used in the same manner as runtime, except that real time is
measured as opposed to runtime or CPU time.

All times are in milliseconds.

> statistics(runtime).
f1690,1620g
> statistics(reductions).
f2046,11g
> statistics(garbage collection).
f85,23961,0g

erlang:suspend process(Suspendee, OptList) -> true | false

Types:

� Suspendee = pid()
� OptList = [Opt]
� Opt = atom()

Increases the suspend count on the process identified by Suspendee and puts it in the
suspended state if it isn’t already in the suspended state. A suspended process will not
be scheduled for execution until the process has been resumed.

A process can be suspended by multiple processes and can be suspended multiple times
by a single process. A suspended process will not leave the suspended state until its
suspend count reach zero. The suspend count of Suspendee is decreased when
erlang:resume process(Suspendee) [page 134] is called by the same process that called
erlang:suspend process(Suspendee). All increased suspend counts on other
processes acquired by a process will automatically be decreased when the process
terminates.

Currently the following options (Opts) are available:

144 Kernel Application (KERNEL)

Kernel Reference Manual erlang

asynchronous A suspend request is sent to the process identified by Suspendee.
Suspendee will eventually suspend unless it is resumed before it was able to
suspend. The caller of erlang:suspend process/2 will return immediately,
regardless of whether the Suspendee has suspended yet or not. Note that the point
in time when the Suspendee will actually suspend cannot be deduced from other
events in the system. The only guarantee given is that the Suspendee will
eventually suspend (unless it is resumed). If the asynchronous option has not been
passed, the caller of erlang:suspend process/2 will be blocked until the
Suspendee has actually suspended.

unless suspending The process identified by Suspendee will be suspended unless the
calling process already is suspending the Suspendee. If unless suspending is
combined with the asynchronous option, a suspend request will be sent unless the
calling process already is suspending the Suspendee or if a suspend request already
has been sent and is in transit. If the calling process already is suspending the
Suspendee, or if combined with the asynchronous option and a send request
already is in transit, false is returned and the suspend count on Suspendee will
remain unchanged.

If the suspend count on the process identified by Suspendee was increased, true is
returned; otherwise, false is returned.

Warning:
This BIF is intended for debugging only.

Failures:

badarg If Suspendee isn’t a process identifier.

badarg If the process identified by Suspendee is same the process as the process calling
erlang:suspend process/2.

badarg If the process identified by Suspendee is not alive.

badarg If the process identified by Suspendee resides on another node.

badarg If OptList isn’t a proper list of valid Opts.

system limit If the process identified by Suspendee has been suspended more times
by the calling process than can be represented by the currently used internal data
structures. The current system limit is larger than 2 000 000 000 suspends, and it
will never be less than that.

erlang:suspend process(Suspendee) -> true

Types:

� Suspendee = pid()

145Kernel Application (KERNEL)

erlang Kernel Reference Manual

Suspends the process identified by Suspendee. The same as calling
erlang:suspend process(Suspendee, []) [page 144]. For more information see the
documentation of erlang:suspend process/2 [page 144].

Warning:
This BIF is intended for debugging only.

erlang:system flag(Flag, Value) -> OldValue

Types:

� Flag, Value, OldValue – see below

Sets various system properties of the Erlang node. Returns the old value of the flag.

erlang:system flag(backtrace depth, Depth) Sets the maximum depth of call
stack back-traces in the exit reason element of ’EXIT’ tuples.

erlang:system flag(fullsweep after, Number) Number is a non-negative integer
which indicates how many times generational garbages collections can be done
without forcing a fullsweep collection. The value applies to new processes;
processes already running are not affected.
In low-memory systems (especially without virtual memory), setting the value to 0
can help to conserve memory.
An alternative way to set this value is through the (operating system) environment
variable ERL FULLSWEEP AFTER.

erlang:system flag(min heap size, MinHeapSize) Sets the default minimum heap
size for processes. The size is given in words. The new min heap size only effects
processes spawned after the change of min heap size has been made. The
min heap size can be set for individual processes by use of spawn opt/N [page
141] or process flag/2 [page 127].

erlang:system flag(multi scheduling, BlockState) BlockState = block |
unblock

If multi-scheduling is enabled, more than one scheduler thread is used by the
emulator. Multi-scheduling can be blocked. When multi-scheduling has been
blocked, only one scheduler thread will schedule Erlang processes.
If BlockState =:= block, multi-scheduling will be blocked. If BlockState =:=
unblock and no-one else is blocking multi-scheduling and this process has only
blocked one time, multi-scheduling will be unblocked. One process can block
multi-scheduling multiple times. If a process has blocked multiple times, it has to
unblock exactly as many times as it has blocked before it has released its
multi-scheduling block. If a process that has blocked multi-scheduling exits, it will
release its blocking of multi-scheduling.
The return values are disabled, blocked, or enabled. The returned value
describes the state just after the call to erlang:system flag(multi scheduling,
BlockState) has been made. The return values are described in the
documentation of erlang:system info(multi scheduling) [page 150].
NOTE: Blocking of multi-scheduling should normally not be needed. If you feel
that you need to block multi-scheduling, think through the problem at least a
couple of times again. Blocking multi-scheduling should only be used as a last
resort since it will most likely be a very inefficient way to solve the problem.

146 Kernel Application (KERNEL)

Kernel Reference Manual erlang

See also erlang:system info(multi scheduling) [page 150],
erlang:system info(multi scheduling blockers) [page 150], and
erlang:system info(schedulers) [page 151].

erlang:system flag(trace control word, TCW) Sets the value of the node’s trace
control word to TCW. TCW should be an unsigned integer. For more information see
documentation of the [set tcw] function in the match specification documentation
in the ERTS User’s Guide.

Note:
The schedulers option has been removed as of erts version 5.5.3. The number of
scheduler threads is determined at emulator boot time, and cannot be changed after
that.

erlang:system info(Type) -> Res

Types:

� Type, Res – see below

Returns various information about the current system (emulator) as specified by Type:

allocated areas Returns a list of tuples with information about miscellaneous
allocated memory areas.
Each tuple contains an atom describing type of memory as first element and
amount of allocated memory in bytes as second element. In those cases when there
is information present about allocated and used memory, a third element is
present. This third element contains the amount of used memory in bytes.
erlang:system info(allocated areas) is intended for debugging, and the
content is highly implementation dependent. The content of the results will
therefore change when needed without prior notice.
Note: The sum of these values is not the total amount of memory allocated by the
emulator. Some values are part of other values, and some memory areas are not
part of the result. If you are interested in the total amount of memory allocated by
the emulator see erlang:memory/0,1 [page 115].

allocator Returns fAllocator, Version, Features, Settingsg.

Types:

� Allocator = undefined | elib malloc | glibc

� Version = [int()]

� Features = [atom()]

� Settings = [fSubsystem, [fParameter, Valueg]g]

� Subsystem = atom()

� Parameter = atom()

� Value = term()

Explanation:

� Allocator corresponds to the malloc() implementation used. If Allocator
equals undefined, the malloc() implementation used could not be identified.
Currently elib malloc and glibc can be identified.

147Kernel Application (KERNEL)

erlang Kernel Reference Manual

� Version is a list of integers (but not a string) representing the version of the
malloc() implementation used.

� Features is a list of atoms representing allocation features used.
� Settings is a list of subsystems, their configurable parameters, and used

values. Settings may differ between different combinations of platforms,
allocators, and allocation features. Memory sizes are given in bytes.

See also “System Flags Effecting erts alloc” in [erts alloc(3)].
alloc util allocators Returns a list of the names of all allocators using the ERTS

internal alloc util framework as atoms. For more information see the [”the
alloc util framework” section in the erts alloc(3)] documentation.

fallocator, Allocg Returns information about the specified allocator. As of erts
version 5.6.1 the return value is a list of finstance, InstanceNo,
InstanceInfog tuples where InstanceInfo contains information about a specific
instance of the allocator. If Alloc is not a recognized allocator, undefined is
returned. If Alloc is disabled, false is returned.
Note: The information returned is highly implementation dependent and may be
changed, or removed at any time without prior notice. It was initially intended as a
tool when developing new allocators, but since it might be of interest for others it
has been briefly documented.
The recognized allocators are listed in [erts alloc(3)]. After reading the
erts alloc(3) documentation, the returned information should more or less
speak for itself. But it can be worth explaining some things. Call counts are
presented by two values. The first value is giga calls, and the second value is calls.
mbcs, and sbcs are abbreviations for, respectively, multi-block carriers, and
single-block carriers. Sizes are presented in bytes. When it is not a size that is
presented, it is the amount of something. Sizes and amounts are often presented
by three values, the first is current value, the second is maximum value since the
last call to erlang:system info(fallocator, Allocg), and the third is
maximum value since the emulator was started. If only one value is present, it is
the current value. fix alloc memory block types are presented by two values.
The first value is memory pool size and the second value used memory size.

fallocator sizes, Allocg Returns various size information for the specified
allocator. The information returned is a subset of the information returned by
erlang:system info(fallocator, Allocg) [page 148].

c compiler used Returns a two-tuple describing the C compiler used when compiling
the runtime system. The first element is an atom describing the name of the
compiler, or undefined if unknown. The second element is a term describing the
version of the compiler, or undefined if unknown.

check io Returns a list containing miscellaneous information regarding the emulators
internal I/O checking. Note, the content of the returned list may vary between
platforms and over time. The only thing guaranteed is that a list is returned.

compat rel Returns the compatibility mode of the local node as an integer. The integer
returned represents the Erlang/OTP release which the current emulator has been
set to be backward compatible with. The compatibility mode can be configured at
startup by using the command line flag +R, see [erl(1)].

creation Returns the creation of the local node as an integer. The creation is changed
when a node is restarted. The creation of a node is stored in process identifiers,
port identifiers, and references. This makes it (to some extent) possible to
distinguish between identifiers from different incarnations of a node. Currently
valid creations are integers in the range 1..3, but this may (probably will) change in
the future. If the node is not alive, 0 is returned.

148 Kernel Application (KERNEL)

Kernel Reference Manual erlang

debug compiled Returns true if the emulator has been debug compiled; otherwise,
false.

dist Returns a binary containing a string of distribution information formatted as in
Erlang crash dumps. For more information see the [”How to interpret the Erlang
crash dumps”] chapter in the ERTS User’s Guide.

dist ctrl Returns a list of tuples fNode, ControllingEntityg, one entry for each
connected remote node. The Node is the name of the node and the
ControllingEntity is the port or pid responsible for the communication to that
node. More specifically, the ControllingEntity for nodes connected via TCP/IP
(the normal case) is the socket actually used in communication with the specific
node.

driver version Returns a string containing the erlang driver version used by the
runtime system. It will be on the form [”<major ver>.<minor ver>”].

elib malloc If the emulator uses the elib malloc memory allocator, a list of
two-element tuples containing status information is returned; otherwise, false is
returned. The list currently contains the following two-element tuples (all sizes are
presented in bytes):

fheap size, Sizeg Where Size is the current heap size.
fmax alloced size, Sizeg Where Size is the maximum amount of memory

allocated on the heap since the emulator started.
falloced size, Sizeg Where Size is the current amount of memory allocated

on the heap.
ffree size, Sizeg Where Size is the current amount of free memory on the

heap.
fno alloced blocks, Nog Where No is the current number of allocated blocks on

the heap.
fno free blocks, Nog Where No is the current number of free blocks on the

heap.
fsmallest alloced block, Sizeg Where Size is the size of the smallest

allocated block on the heap.
flargest free block, Sizeg Where Size is the size of the largest free block on

the heap.

fullsweep after Returns ffullsweep after, int()g which is the fullsweep after
garbage collection setting used by default. For more information see
garbage collection described below.

garbage collection Returns a list describing the default garbage collection settings. A
process spawned on the local node by a spawn or spawn link will use these
garbage collection settings. The default settings can be changed by use of
system flag/2 [page 146]. spawn opt/4 [page 141] can spawn a process that does
not use the default settings.

global heaps size Returns the current size of the shared (global) heap.

heap sizes Returns a list of integers representing valid heap sizes in words. All Erlang
heaps are sized from sizes in this list.

heap type Returns the heap type used by the current emulator. Currently the
following heap types exist:

private Each process has a heap reserved for its use and no references between
heaps of different processes are allowed. Messages passed between processes
are copied between heaps.

149Kernel Application (KERNEL)

erlang Kernel Reference Manual

shared One heap for use by all processes. Messages passed between processes are
passed by reference.

hybrid A hybrid of the private and shared heap types. A shared heap as well as
private heaps are used.

info Returns a binary containing a string of miscellaneous system information
formatted as in Erlang crash dumps. For more information see the [”How to
interpret the Erlang crash dumps”] chapter in the ERTS User’s Guide.

kernel poll Returns true if the emulator uses some kind of kernel-poll
implementation; otherwise, false.

loaded Returns a binary containing a string of loaded module information formatted as
in Erlang crash dumps. For more information see the [”How to interpret the Erlang
crash dumps”] chapter in the ERTS User’s Guide.

logical processors Returns the number of logical processors detected on the system
as an integer or the atom unknown if the emulator wasn’t able to detect any.

machine Returns a string containing the Erlang machine name.

modified timing level Returns the modified timing level (an integer) if modified
timing has been enabled; otherwise, undefined. See the +T command line flag in
the documentation of the [erl(1)] command for more information on modified
timing.

multi scheduling Returns disabled, blocked, or enabled. A description of the
return values:

disabled The emulator has only one scheduler thread. The emulator does not
have SMP support, or have been started with only one scheduler thread.

blocked The emulator has more than one scheduler thread, but all scheduler
threads but one have been blocked, i.e., only one scheduler thread will
schedule Erlang processes and execute Erlang code.

enabled The emulator has more than one scheduler thread, and no scheduler
threads have been blocked, i.e., all available scheduler threads will schedule
Erlang processes and execute Erlang code.

See also erlang:system flag(multi scheduling, BlockState) [page 146],
erlang:system info(multi scheduling blockers) [page 150], and
erlang:system info(schedulers) [page 151].

multi scheduling blockers Returns a list of PIDs when multi-scheduling is blocked;
otherwise, the empty list. The PIDs in the list is PIDs of the processes currently
blocking multi-scheduling. A PID will only be present once in the list, even if the
corresponding process has blocked multiple times.
See also erlang:system flag(multi scheduling, BlockState) [page 146],
erlang:system info(multi scheduling) [page 150], and
erlang:system info(schedulers) [page 151].

otp release Returns a string containing the OTP release number.

process count Returns the number of processes currently existing at the local node as
an integer. The same value as length(processes()) returns.

process limit Returns the maximum number of concurrently existing processes at
the local node as an integer. This limit can be configured at startup by using the
command line flag +P, see [erl(1)].

procs Returns a binary containing a string of process and port information formatted as
in Erlang crash dumps. For more information see the [”How to interpret the Erlang
crash dumps”] chapter in the ERTS User’s Guide.

150 Kernel Application (KERNEL)

Kernel Reference Manual erlang

scheduler id Returns the scheduler id (SchedulerId) of the scheduler thread that the
calling process is executing on. SchedulerId is a positive integer; where 1 <=
SchedulerId <= erlang:system info(schedulers). See also
erlang:system info(schedulers) [page 151].

schedulers Returns the number of scheduler threads used by the emulator. A
scheduler thread schedules Erlang processes and Erlang ports, and execute Erlang
code and Erlang linked in driver code.
The number of scheduler threads is determined at emulator boot time and cannot
be changed after that.
See also erlang:system info(scheduler id) [page 151],
erlang:system flag(multi scheduling, BlockState) [page 146],
erlang:system info(multi scheduling) [page 150], and and
erlang:system info(multi scheduling blockers) [page 150].

smp support Returns true if the emulator has been compiled with smp support;
otherwise, false.

system version Returns a string containing the emulator type and version as well as
some important properties such as the size of the thread pool, etc.

system architecture Returns a string containing the processor and OS architecture
the emulator is built for.

threads Returns true if the emulator has been compiled with thread support;
otherwise, false is returned.

thread pool size Returns the number of async threads in the async thread pool used
for asynchronous driver calls ([driver async()]) as an integer.

trace control word Returns the value of the node’s trace control word. For more
information see documentation of the function get tcw in “Match Specifications in
Erlang”, [ERTS User’s Guide].

version Returns a string containing the version number of the emulator.

wordsize Returns the word size in bytes as an integer, i.e. on a 32-bit architecture 4 is
returned, and on a 64-bit architecture 8 is returned.

Note:
The scheduler argument has changed name to scheduler id. This in order to avoid
mixup with the schedulers argument. The scheduler argument was introduced in
ERTS version 5.5 and renamed in ERTS version 5.5.1.

erlang:system monitor() -> MonSettings

Types:

� MonSettings -> fMonitorPid, Optionsg | undefined
� MonitorPid = pid()
� Options = [Option]
� Option = flong gc, Timeg | flarge heap, Sizeg | busy port | busy dist port
� Time = Size = int()

151Kernel Application (KERNEL)

erlang Kernel Reference Manual

Returns the current system monitoring settings set by erlang:system monitor/2 [page
152] as fMonitorPid, Optionsg, or undefined if there are no settings. The order of
the options may be different from the one that was set.

erlang:system monitor(undefined | fMonitorPid, Optionsg) -> MonSettings

Types:

� MonitorPid, Options, MonSettings – see below

When called with the argument undefined, all system performance monitoring settings
are cleared.

Calling the function with fMonitorPid, Optionsg as argument, is the same as calling
erlang:system monitor(MonitorPid, Options) [page 152].

Returns the previous system monitor settings just like erlang:system monitor/0 [page
151].

erlang:system monitor(MonitorPid, [Option]) -> MonSettings

Types:

� MonitorPid = pid()
� Option = flong gc, Timeg | flarge heap, Sizeg | busy port | busy dist port
� Time = Size = int()
� MonSettings = fOldMonitorPid, [Option]g
� OldMonitorPid = pid()

Sets system performance monitoring options. MonitorPid is a local pid that will receive
system monitor messages, and the second argument is a list of monitoring options:

flong gc, Timeg If a garbage collection in the system takes at least Time wallclock
milliseconds, a message fmonitor, GcPid, long gc, Infog is sent to
MonitorPid. GcPid is the pid that was garbage collected and Info is a list of
two-element tuples describing the result of the garbage collection. One of the
tuples is ftimeout, GcTimeg where GcTime is the actual time for the garbage
collection in milliseconds. The other tuples are tagged with heap size,
heap block size, stack size, mbuf size, old heap size, and
old heap block size. These tuples are explained in the documentation of the
gc start [page 158] trace message (see erlang:trace/3 [page 155]). New tuples may
be added, and the order of the tuples in the Info list may be changed at any time
without prior notice.

flarge heap, Sizeg If a garbage collection in the system results in the allocated size
of a heap being at least Size words, a message fmonitor, GcPid, large heap,
Infog is sent to MonitorPid. GcPid and Info are the same as for long gc above,
except that the tuple tagged with timeout is not present. Note: As of erts version
5.6 the monitor message is sent if the sum of the sizes of all memory blocks
allocated for all heap generations is equal to or larger than Size. Previously the
monitor message was sent if the memory block allocated for the youngest
generation was equal to or larger than Size.

busy port If a process in the system gets suspended because it sends to a busy port, a
message fmonitor, SusPid, busy port, Portg is sent to MonitorPid. SusPid is
the pid that got suspended when sending to Port.

152 Kernel Application (KERNEL)

Kernel Reference Manual erlang

busy dist port If a process in the system gets suspended because it sends to a process
on a remote node whose inter-node communication was handled by a busy port, a
message fmonitor, SusPid, busy dist port, Portg is sent to MonitorPid.
SusPid is the pid that got suspended when sending through the inter-node
communication port Port.

Returns the previous system monitor settings just like erlang:system monitor/0 [page
151].

Note:
If a monitoring process gets so large that it itself starts to cause system monitor
messages when garbage collecting, the messages will enlarge the process’s message
queue and probably make the problem worse.

Keep the monitoring process neat and do not set the system monitor limits too tight.

Failure: badarg if MonitorPid does not exist.

erlang:system profile() -> ProfilerSettings

Types:

� ProfilerSettings -> fProfilerPid, Optionsg | undefined
� ProfilerPid = pid() | port()
� Options = [Option]
� Option = runnable procs | runnable ports | scheduler | exclusive

Returns the current system profiling settings set by erlang:system profile/2 [page 153]
as fProfilerPid, Optionsg, or undefined if there are no settings. The order of the
options may be different from the one that was set.

erlang:system profile(ProfilerPid, Options) -> ProfilerSettings

Types:

� ProfilerSettings -> fProfilerPid, Optionsg | undefined
� ProfilerPid = pid() | port()
� Options = [Option]
� Option = runnable procs | runnable ports | scheduler | exclusive

Sets system profiler options. ProfilerPid is a local pid or port that will receive
profiling messages. The receiver is excluded from all profiling. The second argument is a
list of profiling options:

runnable procs If a process is put into or removed from the runqueue a message,
fprofile, Pid, State, Mfa, Tsg, is sent to ProfilerPid. Running processes
that is reinsertet into the runqueue after completing its reductions does not trigger
this message.

runnable ports If a port is put into or removed from the runqueue a message,
fprofile, Port, State, 0, Tsg, is sent to ProfilerPid.

scheduler If a scheduler is put to sleep or awoken a message, fprofile, scheduler,
Id, State, NoScheds, Tsg, is sent to ProfilerPid.

153Kernel Application (KERNEL)

erlang Kernel Reference Manual

exclusive If a synchronous call to a port from a process is done, the calling process is
considered not runnable during the call runtime to the port. The calling process is
notified as inactive and subsequently active when the port callback returns.

Note:
erlang:system profile is considered experimental and its behaviour may change in
the future.

term to binary(Term) -> ext binary()

Types:

� Term = term()

Returns a binary data object which is the result of encoding Term according to the
Erlang external term format.

This can be used for a variety of purposes, for example writing a term to a file in an
efficient way, or sending an Erlang term to some type of communications channel not
supported by distributed Erlang.

See also binary to term/1 [page 93].

term to binary(Term, [Option]) -> ext binary()

Types:

� Term = term()
� Option = compressed | fcompressed,Levelg | fminor version,Versiong

Returns a binary data object which is the result of encoding Term according to the
Erlang external term format.

If the option compressed is provided, the external term format will be compressed. The
compressed format is automatically recognized by binary to term/1 in R7B and later.

It is also possible to specify a compression level by giving the option
fcompressed,Levelg, where Level is an integer from 0 through 9. 0 means that no
compression will be done (it is the same as not giving any compressed option); 1 will
take the least time but may not compress as well as the higher levels; 9 will take the
most time and may produce a smaller result. Note the “mays” in the preceding
sentence; depending on the input term, level 9 compression may or may not produce a
smaller result than level 1 compression.

Currently, compressed gives the same result as fcompressed,6g.

The option fminor version,Versiong can be use to control some details of the
encoding. This option was introduced in R11B-4. Currently, the allowed values for
Version are 0 and 1.

fminor version,1g forces any floats in the term to be encoded in a more
space-efficient and exact way (namely in the 64-bit IEEE format, rather than converted
to a textual representation). binary to term/1 in R11B-4 and later is able decode the
new representation.

fminor version,0g is currently the default, meaning that floats will be encoded using a
textual representation; this option is useful if you want to ensure that releases prior to
R11B-4 can decode resulting binary.

154 Kernel Application (KERNEL)

Kernel Reference Manual erlang

See also binary to term/1 [page 93].

throw(Any)

Types:

� Any = term()

A non-local return from a function. If evaluated within a catch, catch will return the
value Any.

> catch throw(fhello, thereg).
fhello,thereg

Failure: nocatch if not evaluated within a catch.

time() -> fHour, Minute, Secondg

Types:

� Hour = Minute = Second = int()

Returns the current time as fHour, Minute, Secondg.

The time zone and daylight saving time correction depend on the underlying OS.

> time().
f9,42,44g

tl(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns the tail of List1, that is, the list minus the first element.

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.

Failure: badarg if List is the empty list [].

erlang:trace(PidSpec, How, FlagList) -> int()

Types:

� PidSpec = pid() | existing | new | all
� How = bool()
� FlagList = [Flag]
� Flag – see below

Turns on (if How == true) or off (if How == false) the trace flags in FlagList for the
process or processes represented by PidSpec.

PidSpec is either a pid for a local process, or one of the following atoms:

existing All processes currently existing.

new All processes that will be created in the future.

all All currently existing processes and all processes that will be created in the future.

155Kernel Application (KERNEL)

erlang Kernel Reference Manual

FlagList can contain any number of the following flags (the “message tags” refers to
the list of messages following below):

all Set all trace flags except ftracer, Tracerg and cpu timestamp that are in their
nature different than the others.

send Trace sending of messages.
Message tags: send, send to non existing process.

’receive’ Trace receiving of messages.
Message tags: ’receive’.

procs Trace process related events.
Message tags: spawn, exit, register, unregister, link, unlink,
getting linked, getting unlinked.

call Trace certain function calls. Specify which function calls to trace by calling
erlang:trace pattern/3 [page 160].
Message tags: call, return from.

silent Used in conjunction with the call trace flag. The call, return from and
return to trace messages are inhibited if this flag is set, but if there are match
specs they are executed as normal.
Silent mode is inhibited by executing erlang:trace(, false, [silent|]), or
by a match spec executing the fsilent, falseg function.
The silent trace flag facilitates setting up a trace on many or even all processes in
the system. Then the interesting trace can be activated and deactivated using the
fsilent,Boolg match spec function, giving a high degree of control of which
functions with which arguments that triggers the trace.
Message tags: call, return from, return to. Or rather, the absence of.

return to Used in conjunction with the call trace flag. Trace the actual return from a
traced function back to its caller. Only works for functions traced with the local
option to erlang:trace pattern/3 [page 160].
The semantics is that a trace message is sent when a call traced function actually
returns, that is, when a chain of tail recursive calls is ended. There will be only one
trace message sent per chain of tail recursive calls, why the properties of tail
recursiveness for function calls are kept while tracing with this flag. Using call
and return to trace together makes it possible to know exactly in which function
a process executes at any time.
To get trace messages containing return values from functions, use the
freturn traceg match spec action instead.
Message tags: return to.

running Trace scheduling of processes.
Message tags: in, out.

garbage collection Trace garbage collections of processes.
Message tags: gc start, gc end.

timestamp Include a time stamp in all trace messages. The time stamp (Ts) is of the
same form as returned by erlang:now().

cpu timestamp A global trace flag for the Erlang node that makes all trace timestamps
be in CPU time, not wallclock. It is only allowed with PidSpec==all. If the host
machine operating system does not support high resolution CPU time
measurements, trace/3 exits with badarg.

156 Kernel Application (KERNEL)

Kernel Reference Manual erlang

arity Used in conjunction with the call trace flag. fM, F, Arityg will be specified
instead of fM, F, Argsg in call trace messages.

set on spawn Makes any process created by a traced process inherit its trace flags,
including the set on spawn flag.

set on first spawn Makes the first process created by a traced process inherit its trace
flags, excluding the set on first spawn flag.

set on link Makes any process linked by a traced process inherit its trace flags,
including the set on link flag.

set on first link Makes the first process linked to by a traced process inherit its trace
flags, excluding the set on first link flag.

ftracer, Tracerg Specify where to send the trace messages. Tracer must be the pid
of a local process or the port identifier of a local port. If this flag is not given, trace
messages will be sent to the process that called erlang:trace/3.

The effect of combining set on first link with set on link is the same as having
set on first link alone. Likewise for set on spawn and set on first spawn.

If the timestamp flag is not given, the tracing process will receive the trace messages
described below. Pid is the pid of the traced process in which the traced event has
occurred. The third element of the tuple is the message tag.

If the timestamp flag is given, the first element of the tuple will be trace ts instead
and the timestamp is added last in the tuple.

ftrace, Pid, ’receive’, Msgg When Pid receives the message Msg.

ftrace, Pid, send, Msg, Tog When Pid sends the message Msg to the process To.

ftrace, Pid, send to non existing process, Msg, Tog When Pid sends the
message Msg to the non-existing process To.

ftrace, Pid, call, fM, F, Argsgg When Pid calls a traced function. The return
values of calls are never supplied, only the call and its arguments.
Note that the trace flag arity can be used to change the contents of this message,
so that Arity is specified instead of Args.

ftrace, Pid, return to, fM, F, Aritygg When Pid returns to the specified
function. This trace message is sent if both the call and the return to flags are
set, and the function is set to be traced on local function calls. The message is only
sent when returning from a chain of tail recursive function calls where at least one
call generated a call trace message (that is, the functions match specification
matched and fmessage, falseg was not an action).

ftrace, Pid, return from, fM, F, Arityg, ReturnValueg When Pid returns from
the specified function. This trace message is sent if the call flag is set, and the
function has a match specification with a return trace or exception trace
action.

ftrace, Pid, exception from, fM, F, Arityg, fClass, Valuegg When Pid exits
from the specified function due to an exception. This trace message is sent if the
call flag is set, and the function has a match specification with an
exception trace action.

ftrace, Pid, spawn, Pid2, fM, F, Argsgg When Pid spawns a new process Pid2
with the specified function call as entry point.
Note that Args is supposed to be the argument list, but may be any term in the
case of an erroneous spawn.

157Kernel Application (KERNEL)

erlang Kernel Reference Manual

ftrace, Pid, exit, Reasong When Pid exits with reason Reason.

ftrace, Pid, link, Pid2g When Pid links to a process Pid2.

ftrace, Pid, unlink, Pid2g When Pid removes the link from a process Pid2.

ftrace, Pid, getting linked, Pid2g When Pid gets linked to a process Pid2.

ftrace, Pid, getting unlinked, Pid2g When Pid gets unlinked from a process
Pid2.

ftrace, Pid, register, RegNameg When Pid gets the name RegName registered.

ftrace, Pid, unregister, RegNameg When Pid gets the name RegName
unregistered. Note that this is done automatically when a registered process exits.

ftrace, Pid, in, fM, F, Arityg | 0g When Pid is scheduled to run. The process
will run in function fM, F, Arityg. On some rare occasions the current function
cannot be determined, then the last element Arity is 0.

ftrace, Pid, out, fM, F, Arityg | 0g When Pid is scheduled out. The process
was running in function fM, F, Arityg. On some rare occasions the current
function cannot be determined, then the last element Arity is 0.

ftrace, Pid, gc start, Infog Sent when garbage collection is about to be started.
Info is a list of two-element tuples, where the first element is a key, and the
second is the value. You should not depend on the tuples have any defined order.
Currently, the following keys are defined:

heap size The size of the used part of the heap.
heap block size The size of the memory block used for storing the heap and the

stack.
old heap size The size of the used part of the old heap.
old heap block size The size of the memory block used for storing the old heap.
stack size The actual size of the stack.
recent size The size of the data that survived the previous garbage collection.
mbuf size The combined size of message buffers associated with the process.

All sizes are in words.

ftrace, Pid, gc end, Infog Sent when garbage collection is finished. Info contains
the same kind of list as in the gc start message, but the sizes reflect the new sizes
after garbage collection.

If the tracing process dies, the flags will be silently removed.

Only one process can trace a particular process. For this reason, attempts to trace an
already traced process will fail.

Returns: A number indicating the number of processes that matched PidSpec. If
PidSpec is a pid, the return value will be 1. If PidSpec is all or existing the return
value will be the number of processes running, excluding tracer processes. If PidSpec is
new, the return value will be 0.

Failure: If specified arguments are not supported. For example cpu timestamp is not
supported on all platforms.

erlang:trace delivered(Tracee) -> Ref

Types:

� Tracee = pid() | all
� Ref = reference()

158 Kernel Application (KERNEL)

Kernel Reference Manual erlang

The delivery of trace messages is dislocated on the time-line compared to other events
in the system. If you know that the Tracee has passed some specific point in its
execution, and you want to know when at least all trace messages corresponding to
events up to this point have reached the tracer you can use
erlang:trace delivered(Tracee). A ftrace delivered, Tracee, Refg message is
sent to the caller of erlang:trace delivered(Tracee)when it is guaranteed that all
trace messages have been delivered to the tracer up to the point that the Tracee had
reached at the time of the call to erlang:trace delivered(Tracee).

Note that the trace delivered message does not imply that trace messages have been
delivered; instead, it implies that all trace messages that should be delivered have been
delivered. It is not an error if Tracee isn’t, and hasn’t been traced by someone, but if
this is the case, no trace messages will have been delivered when the trace delivered
message arrives.

Note that Tracee has to refer to a process currently, or previously existing on the same
node as the caller of erlang:trace delivered(Tracee) resides on. The special Tracee
atom all denotes all processes that currently are traced in the node.

An example: Process A is tracee, port B is tracer, and process C is the port owner of B. C
wants to close B when A exits. C can ensure that the trace isn’t truncated by calling
erlang:trace delivered(A) when A exits and wait for the ftrace delivered, A,
Refg message before closing B.

Failure: badarg if Tracee does not refer to a process (dead or alive) on the same node as
the caller of erlang:trace delivered(Tracee) resides on.

erlang:trace info(PidOrFunc, Item) -> Res

Types:

� PidOrFunc = pid() | new | fModule, Function, Arityg | on load
� Module = Function = atom()
� Arity = int()
� Item, Res – see below

Returns trace information about a process or function.

To get information about a process, PidOrFunc should be a pid or the atom new. The
atom new means that the default trace state for processes to be created will be returned.
Item must have one of the following values:

flags Return a list of atoms indicating what kind of traces is enabled for the process.
The list will be empty if no traces are enabled, and one or more of the followings
atoms if traces are enabled: send, ’receive’, set on spawn, call, return to,
procs, set on first spawn, set on link, running, garbage collection,
timestamp, and arity. The order is arbitrary.

tracer Return the identifier for process or port tracing this process. If this process is
not being traced, the return value will be [].

To get information about a function, PidOrFunc should be a three-element tuple:
fModule, Function, Arityg or the atom on load. No wildcards are allowed. Returns
undefined if the function does not exist or false if the function is not traced at all.
Item must have one of the following values:

traced Return global if this function is traced on global function calls, local if this
function is traced on local function calls (i.e local and global function calls), and
false if neither local nor global function calls are traced.

159Kernel Application (KERNEL)

erlang Kernel Reference Manual

match spec Return the match specification for this function, if it has one. If the
function is locally or globally traced but has no match specification defined, the
returned value is [].

meta Return the meta trace tracer process or port for this function, if it has one. If the
function is not meta traced the returned value is false, and if the function is meta
traced but has once detected that the tracer proc is invalid, the returned value is [].

meta match spec Return the meta trace match specification for this function, if it has
one. If the function is meta traced but has no match specification defined, the
returned value is [].

call count Return the call count value for this function or true for the pseudo
function on load if call count tracing is active. Return false otherwise. See also
erlang:trace pattern/3 [page 160].

all Return a list containing the fItem, Valueg tuples for all other items, or return
false if no tracing is active for this function.

The actual return value will be fItem, Valueg, where Value is the requested
information as described above. If a pid for a dead process was given, or the name of a
non-existing function, Value will be undefined.

If PidOrFunc is the on load, the information returned refers to the default value for
code that will be loaded.

erlang:trace pattern(MFA, MatchSpec) -> int()

The same as erlang:trace pattern(MFA, MatchSpec, []) [page 160], retained for
backward compatibility.

erlang:trace pattern(MFA, MatchSpec, FlagList) -> int()

Types:

� MFA, MatchSpec, FlagList – see below

This BIF is used to enable or disable call tracing for exported functions. It must be
combined with erlang:trace/3 [page 155] to set the call trace flag for one or more
processes.

Conceptually, call tracing works like this: Inside the Erlang virtual machine there is a set
of processes to be traced and a set of functions to be traced. Tracing will be enabled on
the intersection of the set. That is, if a process included in the traced process set calls a
function included in the traced function set, the trace action will be taken. Otherwise,
nothing will happen.

Use erlang:trace/3 [page 155] to add or remove one or more processes to the set of
traced processes. Use erlang:trace pattern/2 to add or remove exported functions to
the set of traced functions.

The erlang:trace pattern/3 BIF can also add match specifications to an exported
function. A match specification comprises a pattern that the arguments to the function
must match, a guard expression which must evaluate to true and an action to be
performed. The default action is to send a trace message. If the pattern does not match
or the guard fails, the action will not be executed.

The MFA argument should be a tuple like fModule, Function, Arityg or the atom
on load (described below). It can be the module, function, and arity for an exported
function (or a BIF in any module). The ’ ’ atom can be used to mean any of that kind.
Wildcards can be used in any of the following ways:

160 Kernel Application (KERNEL)

Kernel Reference Manual erlang

fModule,Function,’ ’g All exported functions of any arity named Function in
module Module.

fModule,’ ’,’ ’g All exported functions in module Module.

f’ ’,’ ’,’ ’g All exported functions in all loaded modules.

Other combinations, such as fModule,’ ’,Arityg, are not allowed. Local functions
will match wildcards only if the local option is in the FlagList.

If the MFA argument is the atom on load, the match specification and flag list will be
used on all modules that are newly loaded.

The MatchSpec argument can take any of the following forms:

false Disable tracing for the matching function(s). Any match specification will be
removed.

true Enable tracing for the matching function(s).

MatchSpecList A list of match specifications. An empty list is equivalent to true. See
the ERTS User’s Guide for a description of match specifications.

restart For the FlagList option call count: restart the existing counters. The
behaviour is undefined for other FlagList options.

pause For the FlagList option call count: pause the existing counters. The
behaviour is undefined for other FlagList options.

The FlagList parameter is a list of options. The following options are allowed:

global Turn on or off call tracing for global function calls (that is, calls specifying the
module explicitly). Only exported functions will match and only global calls will
generate trace messages. This is the default.

local Turn on or off call tracing for all types of function calls. Trace messages will be
sent whenever any of the specified functions are called, regardless of how they are
called. If the return to flag is set for the process, a return to message will also be
sent when this function returns to its caller.

meta | fmeta, Pidg Turn on or off meta tracing for all types of function calls. Trace
messages will be sent to the tracer process or port Pid whenever any of the
specified functions are called, regardless of how they are called. If no Pid is
specified, self() is used as a default tracer process.
Meta tracing traces all processes and does not care about the process trace flags set
by trace/3, the trace flags are instead fixed to [call, timestamp].
The match spec function freturn traceg works with meta trace and send its trace
message to the same tracer process.

call count Starts (MatchSpec == true) or stops (MatchSpec == false) call count
tracing for all types of function calls. For every function a counter is incremented
when the function is called, in any process. No process trace flags need to be
activated.
If call count tracing is started while already running, the count is restarted from
zero. Running counters can be paused with MatchSpec == pause. Paused and
running counters can be restarted from zero with MatchSpec == restart.
The counter value can be read with erlang:trace info/2 [page 159].

161Kernel Application (KERNEL)

erlang Kernel Reference Manual

The global and local options are mutually exclusive and global is the default (if no
options are specified). The call count and meta options perform a kind of local tracing,
and can also not be combined with global. A function can be either globally or locally
traced. If global tracing is specified for a specified set of functions; local, meta and call
count tracing for the matching set of local functions will be disabled, and vice versa.

When disabling trace, the option must match the type of trace that is set on the
function, so that local tracing must be disabled with the local option and global tracing
with the global option (or no option at all), and so forth.

There is no way to directly change part of a match specification list. If a function has a
match specification, you can replace it with a completely new one. If you need to
change an existing match specification, use the erlang:trace info/2 [page 159] BIF to
retrieve the existing match specification.

Returns the number of exported functions that matched the MFA argument. This will be
zero if none matched at all.

trunc(Number) -> int()

Types:

� Number = number()

Returns an integer by the truncating Number.

> trunc(5.5).
5

Allowed in guard tests.

tuple size(Tuple) -> int()

Types:

� Tuple = tuple()

Returns an integer which is the number of elements in Tuple.

> tuple size(fmorni, mulle, bwangeg).
3

Allowed in guard tests.

tuple to list(Tuple) -> [term()]

Types:

� Tuple = tuple()

Returns a list which corresponds to Tuple. Tuple may contain any Erlang terms.

> tuple to list(fshare, f’Ericsson B’, 163gg).
[share,f’Ericsson B’,163g]

erlang:universaltime() -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

162 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns the current date and time according to Universal Time Coordinated (UTC),
also called GMT, in the form ffYear, Month, Dayg, fHour, Minute, Secondgg if
supported by the underlying operating system. If not, erlang:universaltime() is
equivalent to erlang:localtime().

> erlang:universaltime().
ff1996,11,6g,f14,18,43gg

erlang:universaltime to localtime(fDate1, Time1g) -> fDate2, Time2g

Types:

� Date1 = Date2 = fYear, Month, Dayg
� Time1 = Time2 = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

Converts Universal Time Coordinated (UTC) date and time to local date and time, if
this is supported by the underlying OS. Otherwise, no conversion is done, and fDate1,
Time1g is returned.

> erlang:universaltime to localtime(ff1996,11,6g,f14,18,43gg).
ff1996,11,7g,f15,18,43gg

Failure: badarg if Date1 or Time1 do not denote a valid date or time.

unlink(Id) -> true

Types:

� Id = pid() | port()

Removes the link, if there is one, between the calling process and the process or port
referred to by Id.

Returns true and does not fail, even if there is no link to Id, or if Id does not exist.

Once unlink(Id) has returned it is guaranteed that the link between the caller and the
entity referred to by Id has no effect on the caller in the future (unless the link is setup
again). If caller is trapping exits, an f’EXIT’, Id, g message due to the link might
have been placed in the callers message queue prior to the call, though. Note, the
f’EXIT’, Id, g message can be the result of the link, but can also be the result of Id
calling exit/2. Therefore, it may be appropriate to cleanup the message queue when
trapping exits after the call to unlink(Id), as follow:

unlink(Id),
receive

{’EXIT’, Id, _} ->
true

after 0 ->
true

end

163Kernel Application (KERNEL)

erlang Kernel Reference Manual

Note:
Prior to OTP release R11B (erts version 5.5) unlink/1 behaved completely
asynchronous, i.e., the link was active until the “unlink signal” reached the linked
entity. This had one undesirable effect, though. You could never know when you
were guaranteed not to be effected by the link.

Current behavior can be viewed as two combined operations: asynchronously send
an “unlink signal” to the linked entity and ignore any future results of the link.

unregister(RegName) -> true

Types:

� RegName = atom()

Removes the registered name RegName, associated with a pid or a port identifier.

> unregister(db).
true

Users are advised not to unregister system processes.

Failure: badarg if RegName is not a registered name.

whereis(RegName) -> pid() | port() | undefined

Returns the pid or port identifier with the registered name RegName. Returns
undefined if the name is not registered.

> whereis(db).
<0.43.0>

erlang:yield() -> true

Voluntarily let other processes (if any) get a chance to execute. Using erlang:yield()
is similar to receive after 1 -> ok end, except that yield() is faster.

164 Kernel Application (KERNEL)

Kernel Reference Manual error handler

error handler
Erlang Module

The error handler module defines what happens when certain types of errors occur.

Exports

undefined function(Module, Function, Args) -> term()

Types:

� Module = Function = atom()
� Args = [term()]

A (possibly empty) list of arguments Arg1,..,ArgN

This function is evaluated if a call is made to Module:Function(Arg1,.., ArgN) and
Module:Function/N is undefined. Note that undefined function/3 is evaluated inside
the process making the original call.

If Module is interpreted, the interpreter is invoked and the return value of the
interpreted Function(Arg1,.., ArgN) call is returned.

Otherwise, it returns, if possible, the value of apply(Module, Function, Args) after
an attempt has been made to autoload Module. If this is not possible, the call to
Module:Function(Arg1,.., ArgN) fails with exit reason undef.

undefined lambda(Module, Fun, Args) -> term()

Types:

� Module = Function = atom()
� Args = [term()]

A (possibly empty) list of arguments Arg1,..,ArgN

This function is evaluated if a call is made to Fun(Arg1,.., ArgN) when the module
defining the fun is not loaded. The function is evaluated inside the process making the
original call.

If Module is interpreted, the interpreter is invoked and the return value of the
interpreted Fun(Arg1,.., ArgN) call is returned.

Otherwise, it returns, if possible, the value of apply(Fun, Args) after an attempt has
been made to autoload Module. If this is not possible, the call fails with exit reason
undef.

165Kernel Application (KERNEL)

error handler Kernel Reference Manual

Notes

The code in error handler is complex and should not be changed without fully
understanding the interaction between the error handler, the init process of the code
server, and the I/O mechanism of the code.

Changes in the code which may seem small can cause a deadlock as unforeseen
consequences may occur. The use of input is dangerous in this type of code.

166 Kernel Application (KERNEL)

Kernel Reference Manual error logger

error logger
Erlang Module

The Erlang error logger is an event manager (see [OTP Design Principles] and
[gen event(3)]), registered as error logger. Error, warning and info events are sent to
the error logger from the Erlang runtime system and the different Erlang/OTP
applications. The events are, by default, logged to tty. Note that an event from a process
P is logged at the node of the group leader of P. This means that log output is directed
to the node from which a process was created, which not necessarily is the same node as
where it is executing.

Initially, error logger only has a primitive event handler, which buffers and prints the
raw event messages. During system startup, the application Kernel replaces this with a
standard event handler, by default one which writes nicely formatted output to tty.
Kernel can also be configured so that events are logged to file instead, or not logged at
all, see kernel(6) [page 32].

Also the SASL application, if started, adds its own event handler, which by default
writes supervisor-, crash- and progress reports to tty. See [sasl(6)].

It is recommended that user defined applications should report errors through the error
logger, in order to get uniform reports. User defined event handlers can be added to
handle application specific events. (add report handler/1,2). Also, there is a useful
event handler in STDLIB for multi-file logging of events, see log mf h(3).

Warning events was introduced in Erlang/OTP R9C. To retain backwards compatibility,
these are by default tagged as errors, thus showing up as error reports in the logs. By
using the command line flag +W <w | i>, they can instead be tagged as warnings or
info. Tagging them as warnings may require rewriting existing user defined event
handlers.

Exports

error msg(Format) -> ok

error msg(Format, Data) -> ok

format(Format, Data) -> ok

Types:

� Format = string()
� Data = [term()]

Sends a standard error event to the error logger. The Format and Data arguments are
the same as the arguments of io:format/2. The event is handled by the standard event
handler.

167Kernel Application (KERNEL)

error logger Kernel Reference Manual

1> error logger:error msg("An error occurred in ~p~n", [a module]).

=ERROR REPORT==== 11-Aug-2005::14:03:19 ===
An error occurred in a module
ok

Warning:
If called with bad arguments, this function can crash the standard event handler,
meaning no further events are logged. When in doubt, use error report/1 instead.

error report(Report) -> ok

Types:

� Report = [fTag, Datag | term()] | string() | term()
� Tag = Data = term()

Sends a standard error report event to the error logger. The event is handled by the
standard event handler.

2> error logger:error report([ftag1,data1g,a term,ftag2,datag]).

=ERROR REPORT==== 11-Aug-2005::13:45:41 ===
tag1: data1
a term
tag2: data

ok
3> error logger:error report("Serious error in my module").

=ERROR REPORT==== 11-Aug-2005::13:45:49 ===
Serious error in my module
ok

error report(Type, Report) -> ok

Types:

� Type = term()
� Report = [fTag, Datag | term()] | string() | term()
� Tag = Data = term()

Sends a user defined error report event to the error logger. An event handler to handle
the event is supposed to have been added. The event is ignored by the standard event
handler.

It is recommended that Report follows the same structure as for error report/1.

warning map() -> Tag

Types:

� Tag = error | warning | info

168 Kernel Application (KERNEL)

Kernel Reference Manual error logger

Returns the current mapping for warning events. Events sent using warning msg/1,2 or
warning report/1,2 are tagged as errors (default), warnings or info, depending on the
value of the command line flag +W.

os$ erl
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error logger:warning map().
error
2> error logger:warning msg("Warnings tagged as: ~p~n", [error]).

=ERROR REPORT==== 11-Aug-2005::15:31:23 ===
Warnings tagged as: error
ok
3>
User switch command
--> q
os$ erl +W w
Erlang (BEAM) emulator version 5.4.8 [hipe] [threads:0] [kernel-poll]

Eshell V5.4.8 (abort with ^G)
1> error logger:warning map().
warning
2> error logger:warning msg("Warnings tagged as: ~p~n", [warning]).

=WARNING REPORT==== 11-Aug-2005::15:31:55 ===
Warnings tagged as: warning
ok

warning msg(Format) -> ok

warning msg(Format, Data) -> ok

Types:

� Format = string()
� Data = [term()]

Sends a standard warning event to the error logger. The Format and Data arguments are
the same as the arguments of io:format/2. The event is handled by the standard event
handler. It is tagged either as an error, warning or info, see warning map/0 [page 168].

Warning:
If called with bad arguments, this function can crash the standard event handler,
meaning no further events are logged. When in doubt, use warning report/1
instead.

warning report(Report) -> ok

Types:

� Report = [fTag, Datag | term()] | string() | term()

169Kernel Application (KERNEL)

error logger Kernel Reference Manual

� Tag = Data = term()

Sends a standard warning report event to the error logger. The event is handled by the
standard event handler. It is tagged either as an error, warning or info, see
warning map/0 [page 168].

warning report(Type, Report) -> ok

Types:

� Type = term()
� Report = [fTag, Datag | term()] | string() | term()
� Tag = Data = term()

Sends a user defined warning report event to the error logger. An event handler to
handle the event is supposed to have been added. The event is ignored by the standard
event handler. It is tagged either as an error, warning or info, depending on the value of
warning map/0 [page 168].

info msg(Format) -> ok

info msg(Format, Data) -> ok

Types:

� Format = string()
� Data = [term()]

Sends a standard information event to the error logger. The Format and Data arguments
are the same as the arguments of io:format/2. The event is handled by the standard
event handler.

1> error logger:info msg("Something happened in ~p~n", [a module]).

=INFO REPORT==== 11-Aug-2005::14:06:15 ===
Something happened in a module
ok

Warning:
If called with bad arguments, this function can crash the standard event handler,
meaning no further events are logged. When in doubt, use info report/1 instead.

info report(Report) -> ok

Types:

� Report = [fTag, Datag | term()] | string() | term()
� Tag = Data = term()

Sends a standard information report event to the error logger. The event is handled by
the standard event handler.

170 Kernel Application (KERNEL)

Kernel Reference Manual error logger

2> error logger:info report([ftag1,data1g,a term,ftag2,datag]).

=INFO REPORT==== 11-Aug-2005::13:55:09 ===
tag1: data1
a term
tag2: data

ok
3> error logger:info report("Something strange happened").

=INFO REPORT==== 11-Aug-2005::13:55:36 ===
Something strange happened
ok

info report(Type, Report) -> ok

Types:

� Type = term()
� Report = [fTag, Datag | term()] | string() | term()
� Tag = Data = term()

Sends a user defined information report event to the error logger. An event handler to
handle the event is supposed to have been added. The event is ignored by the standard
event handler.

It is recommended that Report follows the same structure as for info report/1.

add report handler(Handler) -> Result

add report handler(Handler, Args) -> Result

Types:

� Handler, Args, Result – see gen event:add handler/3

Adds a new event handler to the error logger. The event handler must be implemented
as a gen event callback module, see [gen event(3)].

Handler is typically the name of the callback module and Args is an optional term
(defaults to []) passed to the initialization callback function Module:init/1. The
function returns ok if successful.

The event handler must be able to handle the events [page 172] described below.

delete report handler(Handler) -> Result

Types:

� Handler, Result – see gen event:delete handler/3

Deletes an event handler from the error logger by calling
gen event:delete handler(error logger, Handler, []), see [gen event(3)].

tty(Flag) -> ok

Types:

� Flag = bool()

171Kernel Application (KERNEL)

error logger Kernel Reference Manual

Enables (Flag == true) or disables (Flag == false) printout of standard events to the
tty.

This is done by adding or deleting the standard event handler for output to tty, thus
calling this function overrides the value of the Kernel error logger configuration
parameter.

logfile(Request) -> ok | Filename | ferror, Whatg

Types:

� Request = fopen, Filenameg | close | filename
� Filename = atom() | string()
� What = allready have logfile | no log file | term()

Enables or disables printout of standard events to a file.

This is done by adding or deleting the standard event handler for output to file, thus
calling this function overrides the value of the Kernel error logger configuration
parameter.

Enabling file logging can be used in combination with calling tty(false), in order to
have a silent system, where all standard events are logged to a file only. There can only
be one active log file at a time.

Request is one of:

fopen, Filenameg Opens the log file Filename. Returns ok if successful, or ferror,
allready have logfileg if logging to file is already enabled, or an error tuple if
another error occurred. For example, if Filename could not be opened.

close Closes the current log file. Returns ok, or ferror, Whatg.

filename Returns the name of the log file Filename, or ferror, no log fileg if
logging to file is not enabled.

Events

All event handlers added to the error logger must handle the following events. Gleader
is the group leader pid of the process which sent the event, and Pid is the process which
sent the event.

ferror, Gleader, fPid, Format, Datagg Generated when error msg/1,2 or
format is called.

ferror report, Gleader, fPid, std error, Reportgg Generated when
error report/1 is called.

ferror report, Gleader, fPid, Type, Reportgg Generated when error report/2
is called.

fwarning msg, Gleader, fPid, Format, Datagg Generated when warning msg/1,2
is called, provided that warnings are set to be tagged as warnings.

fwarning report, Gleader, fPid, std warning, Reportgg Generated when
warning report/1 is called, provided that warnings are set to be tagged as
warnings.

fwarning report, Gleader, fPid, Type, Reportgg Generated when
warning report/2 is called, provided that warnings are set to be tagged as
warnings.

172 Kernel Application (KERNEL)

Kernel Reference Manual error logger

finfo msg, Gleader, fPid, Format, Datagg Generated when info msg/1,2 is
called.

finfo report, Gleader, fPid, std info, Reportgg Generated when
info report/1 is called.

finfo report, Gleader, fPid, Type, Reportgg Generated when info report/2 is
called.

Note that also a number of system internal events may be received, a catch-all clause
last in the definition of the event handler callback function Module:handle event/2 is
necessary. This also holds true for Module:handle info/2, as there are a number of
system internal messages the event handler must take care of as well.

SEE ALSO

gen event(3), log mf h(3), kernel(6), sasl(6)

173Kernel Application (KERNEL)

file Kernel Reference Manual

file
Erlang Module

The module file provides an interface to the file system.

On operating systems with thread support, it is possible to let file operations be
performed in threads of their own, allowing other Erlang processes to continue
executing in parallel with the file operations. See the command line flag +A in [erl(1)].

DATA TYPES

iodata() = iolist() | binary()
iolist() = [char() | binary() | iolist()]

io_device()
as returned by file:open/2, a process handling IO protocols

name() = string() | atom() | DeepList
DeepList = [char() | atom() | DeepList]

posix()
an atom which is named from the Posix error codes used in
Unix, and in the runtime libraries of most C compilers

ext_posix() = posix() | badarg

time() = {{Year, Month, Day}, {Hour, Minute, Second}}
Year = Month = Day = Hour = Minute = Second = int()
Must denote a valid date and time

Exports

change group(Filename, Gid) -> ok | ferror, Reasong

Types:

� Filename = name()
� Gid = int()
� Reason = ext posix()

Changes group of a file. See write file info/2 [page 192].

change owner(Filename, Uid) -> ok | ferror, Reasong

Types:

174 Kernel Application (KERNEL)

Kernel Reference Manual file

� Filename = name()
� Uid = int()
� Reason = ext posix()

Changes owner of a file. See write file info/2 [page 192].

change owner(Filename, Uid, Gid) -> ok | ferror, Reasong

Types:

� Filename = name()
� Uid = int()
� Gid = int()
� Reason = ext posix()

Changes owner and group of a file. See write file info/2 [page 192].

change time(Filename, Mtime) -> ok | ferror, Reasong

Types:

� Filename = name()
� Mtime = time()
� Reason = ext posix()

Changes the modification and access times of a file. See write file info/2 [page 192].

change time(Filename, Mtime, Atime) -> ok | ferror, Reasong

Types:

� Filename = name()
� Mtime = Atime = time()
� Reason = ext posix()

Changes the modification and last access times of a file. See write file info/2 [page 192].

close(IoDevice) -> ok | ferror, Reasong

Types:

� IoDevice = io device()
� Reason = ext posix() | terminated

Closes the file referenced by IoDevice. It mostly returns ok, expect for some severe
errors such as out of memory.

Note that if the option delayed write was used when opening the file, close/1 might
return an old write error and not even try to close the file. See open/2 [page 180].

consult(Filename) -> fok, Termsg | ferror, Reasong

Types:

� Filename = name()
� Terms = [term()]
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

Reads Erlang terms, separated by ’.’, from Filename. Returns one of the following:

175Kernel Application (KERNEL)

file Kernel Reference Manual

fok, Termsg The file was successfully read.

ferror, atom()g An error occurred when opening the file or reading it. See open/2
[page 180] for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang terms
in the file. Use format error/1 to convert the three-element tuple to an English
description of the error.

Example:

f.txt: {person, "kalle", 25}.
{person, "pelle", 30}.

1> file:consult("f.txt").
fok,[fperson,"kalle",25g,fperson,"pelle",30g]g

copy(Source, Destination) ->

copy(Source, Destination, ByteCount) -> fok, BytesCopiedg | ferror, Reasong

Types:

� Source = Destination = io device() | Filename | fFilename, Modesg
� Filename = name()
� Modes = [Mode] – see open/2
� ByteCount = int() >= 0 | infinity
� BytesCopied = int()

Copies ByteCount bytes from Source to Destination. Source and Destination refer
to either filenames or IO devices from e.g. open/2. ByteCount defaults infinity,
denoting an infinite number of bytes.

The argument Modes is a list of possible modes, see open/2 [page 180], and defaults to
[].

If both Source and Destination refer to filenames, the files are opened with [read,
binary] and [write, binary] prepended to their mode lists, respectively, to optimize
the copy.

If Source refers to a filename, it is opened with read mode prepended to the mode list
before the copy, and closed when done.

If Destination refers to a filename, it is opened with write mode prepended to the
mode list before the copy, and closed when done.

Returns fok, BytesCopiedg where BytesCopied is the number of bytes that actually
was copied, which may be less than ByteCount if end of file was encountered on the
source. If the operation fails, ferror, Reasong is returned.

Typical error reasons: As for open/2 if a file had to be opened, and as for read/2 and
write/2.

del dir(Dir) -> ok | ferror, Reasong

Types:

� Dir = name()
� Reason = ext posix()

176 Kernel Application (KERNEL)

Kernel Reference Manual file

Tries to delete the directory Dir. The directory must be empty before it can be deleted.
Returns ok if successful.

Typical error reasons are:

eacces Missing search or write permissions for the parent directories of Dir.

eexist The directory is not empty.

enoent The directory does not exist.

enotdir A component of Dir is not a directory. On some platforms, enoent is returned
instead.

einval Attempt to delete the current directory. On some platforms, eacces is
returned instead.

delete(Filename) -> ok | ferror, Reasong

Types:

� Filename = name()
� Reason = ext posix()

Tries to delete the file Filename. Returns ok if successful.

Typical error reasons are:

enoent The file does not exist.

eacces Missing permission for the file or one of its parents.

eperm The file is a directory and the user is not super-user.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

einval Filename had an improper type, such as tuple.

Warning:
In a future release, a bad type for the Filename argument will probably generate an
exception.

eval(Filename) -> ok | ferror, Reasong

Types:

� Filename = name()
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

Reads and evaluates Erlang expressions, separated by ’.’ (or ’,’, a sequence of expressions
is also an expression), from Filename. The actual result of the evaluation is not
returned; any expression sequence in the file must be there for its side effect. Returns
one of the following:

ok The file was read and evaluated.

ferror, atom()g An error occurred when opening the file or reading it. See open/2
for a list of typical error codes.

177Kernel Application (KERNEL)

file Kernel Reference Manual

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang
expressions in the file. Use format error/1 to convert the three-element tuple to
an English description of the error.

eval(Filename, Bindings) -> ok | ferror, Reasong

Types:

� Filename = name()
� Bindings – see erl eval(3)
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see eval/1

The same as eval/1 but the variable bindings Bindings are used in the evaluation. See
[erl eval(3)] about variable bindings.

file info(Filename) -> fok, FileInfog | ferror, Reasong

This function is obsolete. Use read file info/1 instead.

format error(Reason) -> Chars

Types:

� Reason = atom() | fLine, Mod, Termg

� Line, Mod, Term – see eval/1
� Chars = [char() | Chars]

Given the error reason returned by any function in this module, returns a descriptive
string of the error in English.

get cwd() -> fok, Dirg | ferror, Reasong

Types:

� Dir = string()
� Reason = posix()

Returns fok, Dirg, where Dir is the current working directory of the file server.

Note:
In rare circumstances, this function can fail on Unix. It may happen if read
permission does not exist for the parent directories of the current directory.

Typical error reasons are:

eacces Missing read permission for one of the parents of the current directory.

get cwd(Drive) -> fok, Dirg | ferror, Reasong

Types:

� Drive = string() – see below
� Dir = string()

178 Kernel Application (KERNEL)

Kernel Reference Manual file

� Reason = ext posix()

Drive should be of the form “Letter:”, for example “c:”. Returns fok, Dirg or
ferror, Reasong, where Dir is the current working directory of the drive specified.

This function returns ferror, enotsupg on platforms which have no concept of
current drive (Unix, for example).

Typical error reasons are:

enotsup The operating system have no concept of drives.

eacces The drive does not exist.

einval The format of Drive is invalid.

list dir(Dir) -> fok, Filenamesg | ferror, Reasong

Types:

� Dir = name()
� Filenames = [Filename]
� Filename = string()
� Reason = ext posix()

Lists all the files in a directory. Returns fok, Filenamesg if successful. Otherwise, it
returns ferror, Reasong. Filenames is a list of the names of all the files in the
directory. The names are not sorted.

Typical error reasons are:

eacces Missing search or write permissions for Dir or one of its parent directories.

enoent The directory does not exist.

make dir(Dir) -> ok | ferror, Reasong

Types:

� Dir = name()
� Reason = ext posix()

Tries to create the directory Dir. Missing parent directories are not created. Returns ok
if successful.

Typical error reasons are:

eacces Missing search or write permissions for the parent directories of Dir.

eexist There is already a file or directory named Dir.

enoent A component of Dir does not exist.

enospc There is a no space left on the device.

enotdir A component of Dir is not a directory. On some platforms, enoent is returned
instead.

make link(Existing, New) -> ok | ferror, Reasong

Types:

� Existing = New = name()
� Reason = ext posix()

179Kernel Application (KERNEL)

file Kernel Reference Manual

Makes a hard link from Existing to New, on platforms that support links (Unix). This
function returns ok if the link was successfully created, or ferror, Reasong. On
platforms that do not support links, ferror,enotsupg is returned.

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Existing or New.

eexist New already exists.

enotsup Hard links are not supported on this platform.

make symlink(Name1, Name2) -> ok | ferror, Reasong

Types:

� Name1 = Name2 = name()
� Reason = ext posix()

This function creates a symbolic link Name2 to the file or directory Name1, on platforms
that support symbolic links (most Unix systems). Name1 need not exist. This function
returns ok if the link was successfully created, or ferror, Reasong. On platforms that
do not support symbolic links, ferror, enotsupg is returned.

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Name1 or Name2.

eexist Name2 already exists.

enotsup Symbolic links are not supported on this platform.

open(Filename, Modes) -> fok, IoDeviceg | ferror, Reasong

Types:

� Filename = name()
� Modes = [Mode]
� Mode = read | write | append | raw | binary | fdelayed write, Size, Delayg |

delayed write | fread ahead, Sizeg | read ahead | compressed
� Size = Delay = int()
� IoDevice = io device()
� Reason = ext posix() | system limit

Opens the file Filename in the mode determined by Modes, which may contain one or
more of the following items:

read The file, which must exist, is opened for reading.

write The file is opened for writing. It is created if it does not exist. If the file exists,
and if write is not combined with read, the file will be truncated.

append The file will be opened for writing, and it will be created if it does not exist.
Every write operation to a file opened with append will take place at the end of the
file.

raw The raw option allows faster access to a file, because no Erlang process is needed to
handle the file. However, a file opened in this way has the following limitations:

� The functions in the io module cannot be used, because they can only talk to
an Erlang process. Instead, use the read/2 and write/2 functions.

180 Kernel Application (KERNEL)

Kernel Reference Manual file

� Only the Erlang process which opened the file can use it.
� A remote Erlang file server cannot be used; the computer on which the Erlang

node is running must have access to the file system (directly or through NFS).

binary This option can only be used if the raw option is specified as well. When
specified, read operations on the file using the read/2 function will return binaries
rather than lists.

fdelayed write, Size, Delayg If this option is used, the data in subsequent write/2
calls is buffered until there are at least Size bytes buffered, or until the oldest
buffered data is Delay milliseconds old. Then all buffered data is written in one
operating system call. The buffered data is also flushed before some other file
operation than write/2 is executed.
The purpose of this option is to increase performance by reducing the number of
operating system calls, so the write/2 calls should be for sizes significantly less
than Size, and not interspersed by to many other file operations, for this to
happen.
When this option is used, the result of write/2 calls may prematurely be reported
as successful, and if a write error should actually occur the error is reported as the
result of the next file operation, which is not executed.
For example, when delayed write is used, after a number of write/2 calls,
close/1 might return ferror, enospcg because there was not enough space on
the disc for previously written data, and close/1 should probably be called again
since the file is still open.

delayed write The same as fdelayed write, Size, Delayg with reasonable default
values for Size and Delay. (Roughly some 64 KBytes, 2 seconds)

fread ahead, Sizeg This option activates read data buffering. If read/2 calls are for
significantly less than Size bytes, read operations towards the operating system are
still performed for blocks of Size bytes. The extra data is buffered and returned in
subsequent read/2 calls, giving a performance gain since the number of operating
system calls is reduced.
If read/2 calls are for sizes not significantly less than, or even greater than Size
bytes, no performance gain can be expected.

read ahead The same as fread ahead, Sizeg with a reasonable default value for
Size. (Roughly some 64 KBytes)

compressed Makes it possible to read and write gzip compressed files. Note that the
file size obtained with read file info/1 will most probably not match the
number of bytes that can be read from a compressed file.

Returns:

fok, IoDeviceg The file has been opened in the requested mode. IoDevice is a
reference to the file.

ferror, Reasong The file could not be opened.

IoDevice is really the pid of the process which handles the file. This process is linked to
the process which originally opened the file. If any process to which the IoDevice is
linked terminates, the file will be closed and the process itself will be terminated. An
IoDevice returned from this call can be used as an argument to the IO functions (see
[io(3)]).

181Kernel Application (KERNEL)

file Kernel Reference Manual

Note:
In previous versions of file, modes were given as one of the atoms read, write, or
read write instead of a list. This is still allowed for reasons of backwards
compatibility, but should not be used for new code. Also note that read write is not
allowed in a mode list.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file or searching one of the parent
directories.

eisdir The named file is not a regular file. It may be a directory, a fifo, or a device.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

enospc There is a no space left on the device (if write access was specified).

path consult(Path, Filename) -> fok, Terms, FullNameg | ferror, Reasong

Types:

� Path = [Dir]
� Dir = name()
� Filename = name()
� Terms = [term()]
� FullName = string()
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute filename, Path is ignored. Then reads Erlang terms, separated
by ’.’, from the file. Returns one of the following:

fok, Terms, FullNameg The file was successfully read. FullName is the full name of
the file.

ferror, enoentg The file could not be found in any of the directories in Path.

ferror, atom()g An error occurred when opening the file or reading it. See open/2
[page 180] for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang terms
in the file. Use format error/1 to convert the three-element tuple to an English
description of the error.

path eval(Path, Filename) -> fok, FullNameg | ferror, Reasong

Types:

� Path = [Dir]
� Dir = name()
� Filename = name()
� FullName = string()

182 Kernel Application (KERNEL)

Kernel Reference Manual file

� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. Then reads and evaluates Erlang
expressions, separated by ’.’ (or ’,’, a sequence of expressions is also an expression), from
the file. The actual result of evaluation is not returned; any expression sequence in the
file must be there for its side effect. Returns one of the following:

fok, FullNameg The file was read and evaluated. FullName is the full name of the file.

ferror, enoentg The file could not be found in any of the directories in Path.

ferror, atom()g An error occurred when opening the file or reading it. See open/2
[page 180] for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang
expressions in the file. Use format error/1 to convert the three-element tuple to
an English description of the error.

path open(Path, Filename, Modes) -> fok, IoDevice, FullNameg | ferror, Reasong

Types:

� Path = [Dir]
� Dir = name()
� Filename = name()
� Modes = [Mode] – see open/2
� IoDevice = io device()
� FullName = string()
� Reason = ext posix() | system limit

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. Then opens the file in the mode
determined by Modes. Returns one of the following:

fok, IoDevice, FullNameg The file has been opened in the requested mode.
IoDevice is a reference to the file and FullName is the full name of the file.

ferror, enoentg The file could not be found in any of the directories in Path.

ferror, atom()g The file could not be opened.

path script(Path, Filename) -> fok, Value, FullNameg | ferror, Reasong

Types:

� Path = [Dir]
� Dir = name()
� Filename = name()
� Value = term()
� FullName = string()
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

183Kernel Application (KERNEL)

file Kernel Reference Manual

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. Then reads and evaluates Erlang
expressions, separated by ’.’ (or ’,’, a sequence of expressions is also an expression), from
the file. Returns one of the following:

fok, Value, FullNameg The file was read and evaluated. FullName is the full name of
the file and Value the value of the last expression.

ferror, enoentg The file could not be found in any of the directories in Path.

ferror, atom()g An error occurred when opening the file or reading it. See open/2
[page 180] for a list of typical error codes.

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang
expressions in the file. Use format error/1 to convert the three-element tuple to
an English description of the error.

path script(Path, Filename, Bindings) -> fok, Value, FullNameg | ferror, Reasong

Types:

� Path = [Dir]
� Dir = name()
� Filename = name()
� Bindings – see erl eval(3)
� Value = term()
� FullName = string()
� Reason = posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see path script/2

The same as path script/2 but the variable bindings Bindings are used in the
evaluation. See [erl eval(3)] about variable bindings.

pid2name(Pid) -> string() | undefined

Types:

� Pid = pid()

If Pid is an IO device, that is, a pid returned from open/2, this function returns the
filename, or rather:

fok, Filenameg If this node’s file server is not a slave, the file was opened by this
node’s file server, (this implies that Pid must be a local pid) and the file is not
closed. Filename is the filename in flat string format.

undefined In all other cases.

Warning:
This function is intended for debugging only.

position(IoDevice, Location) -> fok, NewPositiong | ferror, Reasong

Types:

184 Kernel Application (KERNEL)

Kernel Reference Manual file

� IoDevice = io device()
� Location = Offset | fbof, Offsetg | fcur, Offsetg | feof, Offsetg | bof | cur | eof
� Offset = int()
� NewPosition = int()
� Reason = ext posix() | terminated

Sets the position of the file referenced by IoDevice to Location. Returns fok,
NewPositiong (as absolute offset) if successful, otherwise ferror, Reasong. Location
is one of the following:

Offset The same as fbof, Offsetg.

fbof, Offsetg Absolute offset.

fcur, Offsetg Offset from the current position.

feof, Offsetg Offset from the end of file.

bof | cur | eof The same as above with Offset 0.

Typical error reasons are:

einval Either Location was illegal, or it evaluated to a negative offset in the file. Note
that if the resulting position is a negative value, the result is an error, and after the
call the file position is undefined.

pread(IoDevice, LocNums) -> fok, DataLg | eof | ferror, Reasong

Types:

� IoDevice = io device()
� LocNums = [fLocation, Numberg]
� Location – see position/2
� Number = int()
� DataL = [Data]
� Data = [char()] | binary()
� Reason = ext posix() | terminated

Performs a sequence of pread/3 in one operation, which is more efficient than calling
them one at a time. Returns fok, [Data, ...]g or ferror, Reasong, where each
Data, the result of the corresponding pread, is either a list or a binary depending on the
mode of the file, or eof if the requested position was beyond end of file.

pread(IoDevice, Location, Number) -> fok, Datag | eof | ferror, Reasong

Types:

� IoDevice = io device()
� Location – see position/2
� Number = int()
� Data = [char()] | binary()
� Reason = ext posix() | terminated

Combines position/2 and read/2 in one operation, which is more efficient than
calling them one at a time. If IoDevice has been opened in raw mode, some restrictions
apply: Location is only allowed to be an integer; and the current position of the file is
undefined after the operation.

185Kernel Application (KERNEL)

file Kernel Reference Manual

pwrite(IoDevice, LocBytes) -> ok | ferror, fN, Reasongg

Types:

� IoDevice = io device()
� LocBytes = [fLocation, Bytesg]
� Location – see position/2
� Bytes = iodata()
� N = int()
� Reason = ext posix() | terminated

Performs a sequence of pwrite/3 in one operation, which is more efficient than calling
them one at a time. Returns ok or ferror, fN, Reasongg, where N is the number of
successful writes that was done before the failure.

pwrite(IoDevice, Location, Bytes) -> ok | ferror, Reasong

Types:

� IoDevice = io device()
� Location – see position/2
� Bytes = iodata()
� Reason = ext posix() | terminated

Combines position/2 and write/2 in one operation, which is more efficient than
calling them one at a time. If IoDevice has been opened in raw mode, some restrictions
apply: Location is only allowed to be an integer; and the current position of the file is
undefined after the operation.

read(IoDevice, Number) -> fok, Datag | eof | ferror, Reasong

Types:

� IoDevice = io device()
� Number = int()
� Data = [char()] | binary()
� Reason = ext posix() | terminated

Reads Number bytes from the file referenced by IoDevice. This function is the only way
to read from a file opened in raw mode (although it works for normally opened files,
too). Returns:

fok, Datag If the file was opened in binary mode, the read bytes are returned in a
binary, otherwise in a list. The list or binary will be shorter than the number of
bytes requested if end of file was reached.

eof Returned if Number>0 and end of file was reached before anything at all could be
read.

ferror, Reasong An error occurred.

Typical error reasons:

ebadf The file is not opened for reading.

read file(Filename) -> fok, Binaryg | ferror, Reasong

Types:

186 Kernel Application (KERNEL)

Kernel Reference Manual file

� Filename = name()
� Binary = binary()
� Reason = ext posix() | terminated | system limit

Returns fok, Binaryg, where Binary is a binary data object that contains the contents
of Filename, or ferror, Reasong if an error occurs.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file, or for searching one of the parent
directories.

eisdir The named file is a directory.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

enomem There is not enough memory for the contents of the file.

read file info(Filename) -> fok, FileInfog | ferror, Reasong

Types:

� Filename = name()
� FileInfo = #file infofg
� Reason = ext posix()

Retrieves information about a file. Returns fok, FileInfog if successful, otherwise
ferror, Reasong. FileInfo is a record file info, defined in the Kernel include file
file.hrl. Include the following directive in the module from which the function is
called:

-include_lib("kernel/include/file.hrl").

The record file info contains the following fields.

size = int() Size of file in bytes.

type = device | directory | regular | other The type of the file.

access = read | write | read write | none The current system access to the file.

atime = time() The last (local) time the file was read.

mtime = time() The last (local) time the file was written.

ctime = time() The interpretation of this time field depends on the operating system.
On Unix, it is the last time the file or the inode was changed. In Windows, it is the
create time.

mode = int() The file permissions as the sum of the following bit values:

8#00400 read permission: owner
8#00200 write permission: owner
8#00100 execute permission: owner
8#00040 read permission: group
8#00020 write permission: group
8#00010 execute permission: group
8#00004 read permission: other
8#00002 write permission: other

187Kernel Application (KERNEL)

file Kernel Reference Manual

8#00001 execute permission: other
16#800 set user id on execution
16#400 set group id on execution

On Unix platforms, other bits than those listed above may be set.

links = int() Number of links to the file (this will always be 1 for file systems which
have no concept of links).

major device = int() Identifies the file system where the file is located. In Windows,
the number indicates a drive as follows: 0 means A:, 1 means B:, and so on.

minor device = int() Only valid for character devices on Unix. In all other cases,
this field is zero.

inode = int() Gives the inode number. On non-Unix file systems, this field will be
zero.

uid = int() Indicates the owner of the file. Will be zero for non-Unix file systems.

gid = int() Gives the group that the owner of the file belongs to. Will be zero for
non-Unix file systems.

Typical error reasons:

eacces Missing search permission for one of the parent directories of the file.

enoent The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

read link(Name) -> fok, Filenameg | ferror, Reasong

Types:

� Name = name()
� Filename = string()
� Reason = ext posix()

This function returns fok, Filenameg if Name refers to a symbolic link or ferror,
Reasong otherwise. On platforms that do not support symbolic links, the return value
will be ferror,enotsupg.

Typical error reasons:

einval Linkname does not refer to a symbolic link.

enoent The file does not exist.

enotsup Symbolic links are not supported on this platform.

read link info(Name) -> fok, FileInfog | ferror, Reasong

Types:

� Name = name()
� FileInfo = #file infofg, see read file info/1
� Reason = ext posix()

188 Kernel Application (KERNEL)

Kernel Reference Manual file

This function works like read file info/1, except that if Name is a symbolic link,
information about the link will be returned in the file info record and the type field
of the record will be set to symlink.

If Name is not a symbolic link, this function returns exactly the same result as
read file info/1. On platforms that do not support symbolic links, this function is
always equivalent to read file info/1.

rename(Source, Destination) -> ok | ferror, Reasong

Types:

� Source = Destination = name()
� Reason = ext posix()

Tries to rename the file Source to Destination. It can be used to move files (and
directories) between directories, but it is not sufficient to specify the destination only.
The destination file name must also be specified. For example, if bar is a normal file and
foo and baz are directories, rename("foo/bar", "baz") returns an error, but
rename("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

Note:
Renaming of open files is not allowed on most platforms (see eacces below).

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Source or
Destination. On some platforms, this error is given if either Source or
Destination is open.

eexist Destination is not an empty directory. On some platforms, also given when
Source and Destination are not of the same type.

einval Source is a root directory, or Destination is a sub-directory of Source.

eisdir Destination is a directory, but Source is not.

enoent Source does not exist.

enotdir Source is a directory, but Destination is not.

exdev Source and Destination are on different file systems.

script(Filename) -> fok, Valueg | ferror, Reasong

Types:

� Filename = name()
� Value = term()
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

Reads and evaluates Erlang expressions, separated by ’.’ (or ’,’, a sequence of expressions
is also an expression), from the file. Returns one of the following:

fok, Valueg The file was read and evaluated. Value is the value of the last expression.

ferror, atom()g An error occurred when opening the file or reading it. See open/2
[page 180] for a list of typical error codes.

189Kernel Application (KERNEL)

file Kernel Reference Manual

ferror, fLine, Mod, Termgg An error occurred when interpreting the Erlang
expressions in the file. Use format error/1 to convert the three-element tuple to
an English description of the error.

script(Filename, Bindings) -> fok, Valueg | ferror, Reasong

Types:

� Filename = name()
� Bindings – see erl eval(3)
� Value = term()
� Reason = ext posix() | terminated | system limit | fLine, Mod, Termg

� Line, Mod, Term – see below

The same as script/1 but the variable bindings Bindings are used in the evaluation.
See [erl eval(3)] about variable bindings.

set cwd(Dir) -> ok | ferror,Reasong

Types:

� Dir = name()
� Reason = ext posix()

Sets the current working directory of the file server to Dir. Returns ok if successful.

Typical error reasons are:

enoent The directory does not exist.

enotdir A component of Dir is not a directory. On some platforms, enoent is
returned.

eacces Missing permission for the directory or one of its parents.

badarg Filename had an improper type, such as tuple.

Warning:
In a future release, a bad type for the Filename argument will probably generate an
exception.

sync(IoDevice) -> ok | ferror, Reasong

Types:

� IoDevice = io device()
� Reason = ext posix() | terminated

Makes sure that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. On some platforms, this function might have no effect.

Typical error reasons are:

enospc Not enough space left to write the file.

truncate(IoDevice) -> ok | ferror, Reasong

190 Kernel Application (KERNEL)

Kernel Reference Manual file

Types:

� IoDevice = io device()
� Reason = ext posix() | terminated

Truncates the file referenced by IoDevice at the current position. Returns ok if
successful, otherwise ferror, Reasong.

write(IoDevice, Bytes) -> ok | ferror, Reasong

Types:

� IoDevice = io device()
� Bytes = iodata()
� Reason = ext posix() | terminated

Writes Bytes to the file referenced by IoDevice. This function is the only way to write
to a file opened in raw mode (although it works for normally opened files, too). Returns
ok if successful, and ferror, Reasong otherwise.

Typical error reasons are:

ebadf The file is not opened for writing.

enospc There is a no space left on the device.

write file(Filename, Bytes) -> ok | ferror, Reasong

Types:

� Filename = name()
� Bytes = iodata()
� Reason = ext posix() | terminated | system limit

Writes the contents of the iodata term Bytes to the file Filename. The file is created if
it does not exist. If it exists, the previous contents are overwritten. Returns ok, or
ferror, Reasong.

Typical error reasons are:

enoent A component of the file name does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

enospc There is a no space left on the device.

eacces Missing permission for writing the file or searching one of the parent directories.

eisdir The named file is a directory.

write file(Filename, Binary, Bytes) -> ok | ferror, Reasong

Types:

� Filename = name()
� Bytes = iodata()
� Modes = [Mode] – see open/2
� Reason = ext posix() | terminated | system limit

191Kernel Application (KERNEL)

file Kernel Reference Manual

Same as write file/2, but takes a third argument Modes, a list of possible modes, see
open/2 [page 180]. The mode flags binary and write are implicit, so they should not
be used.

write file info(Filename, FileInfo) -> ok | ferror, Reasong

Types:

� Filename = name()
� FileInfo = #file infofg – see also read file info/1
� Reason = ext posix()

Change file information. Returns ok if successful, otherwise ferror, Reasong.
FileInfo is a record file info, defined in the Kernel include file file.hrl. Include
the following directive in the module from which the function is called:

-include_lib("kernel/include/file.hrl").

The following fields are used from the record, if they are given.

atime = time() The last (local) time the file was read.

mtime = time() The last (local) time the file was written.

ctime = time() On Unix, any value give for this field will be ignored (the “ctime” for
the file will be set to the current time). On Windows, this field is the new creation
time to set for the file.

mode = int() The file permissions as the sum of the following bit values:

8#00400 read permission: owner
8#00200 write permission: owner
8#00100 execute permission: owner
8#00040 read permission: group
8#00020 write permission: group
8#00010 execute permission: group
8#00004 read permission: other
8#00002 write permission: other
8#00001 execute permission: other
16#800 set user id on execution
16#400 set group id on execution

On Unix platforms, other bits than those listed above may be set.

uid = int() Indicates the owner of the file. Ignored for non-Unix file systems.

gid = int() Gives the group that the owner of the file belongs to. Ignored non-Unix
file systems.

Typical error reasons:

eacces Missing search permission for one of the parent directories of the file.

enoent The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

192 Kernel Application (KERNEL)

Kernel Reference Manual file

POSIX Error Codes

� eacces - permission denied

� eagain - resource temporarily unavailable

� ebadf - bad file number

� ebusy - file busy

� edquot - disk quota exceeded

� eexist - file already exists

� efault - bad address in system call argument

� efbig - file too large

� eintr - interrupted system call

� einval - invalid argument

� eio - IO error

� eisdir - illegal operation on a directory

� eloop - too many levels of symbolic links

� emfile - too many open files

� emlink - too many links

� enametoolong - file name too long

� enfile - file table overflow

� enodev - no such device

� enoent - no such file or directory

� enomem - not enough memory

� enospc - no space left on device

� enotblk - block device required

� enotdir - not a directory

� enotsup - operation not supported

� enxio - no such device or address

� eperm - not owner

� epipe - broken pipe

� erofs - read-only file system

� espipe - invalid seek

� esrch - no such process

� estale - stale remote file handle

� exdev - cross-domain link

Performance

Some operating system file operations, for example a sync/1 or close/1 on a huge file,
may block their calling thread for seconds. If this befalls the emulator main thread, the
response time is no longer in the order of milliseconds, depending on the definition of
“soft” in soft real-time system.

193Kernel Application (KERNEL)

file Kernel Reference Manual

If the device driver thread pool is active, file operations are done through those threads
instead, so the emulator can go on executing Erlang processes. Unfortunately, the time
for serving a file operation increases due to the extra scheduling required from the
operating system.

If the device driver thread pool is disabled or of size 0, large file reads and writes are
segmented into several smaller, which enables the emulator so server other processes
during the file operation. This gives the same effect as when using the thread pool, but
with larger overhead. Other file operations, for example sync/1 or close/1 on a huge
file, still are a problem.

For increased performance, raw files are recommended. Raw files uses the file system of
the node’s host machine. For normal files (non-raw), the file server is used to find the
files, and if the node is running its file server as slave to another node’s, and the other
node runs on some other host machine, they may have different file systems. This is
seldom a problem, but you have now been warned.

A normal file is really a process so it can be used as an IO device (see io). Therefore
when data is written to a normal file, the sending of the data to the file process, copies
all data that are not binaries. Opening the file in binary mode and writing binaries is
therefore recommended. If the file is opened on another node, or if the file server runs
as slave to another node’s, also binaries are copied.

Caching data to reduce the number of file operations, or rather the number of calls to
the file driver, will generally increase performance. The following function writes 4
MBytes in 23 seconds when tested:

create_file_slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
ok = create_file_slow(FD, 0, N),
ok = ?FILE_MODULE:close(FD),
ok.

create_file_slow(FD, M, M) ->
ok;

create_file_slow(FD, M, N) ->
ok = file:write(FD, <<M:32/unsigned>>),
create_file_slow(FD, M+1, N).

The following, functionally equivalent, function collects 1024 entries into a list of 128
32-byte binaries before each call to file:write/2 and so does the same work in 0.52
seconds, which is 44 times faster.

create_file(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
ok = create_file(FD, 0, N),
ok = ?FILE_MODULE:close(FD),
ok.

create_file(FD, M, M) ->
ok;

create_file(FD, M, N) when M + 1024 =< N ->
create_file(FD, M, M + 1024, []),
create_file(FD, M + 1024, N);

create_file(FD, M, N) ->
create_file(FD, M, N, []).

194 Kernel Application (KERNEL)

Kernel Reference Manual file

create_file(FD, M, M, R) ->
ok = file:write(FD, R);

create_file(FD, M, N0, R) when M + 8 =< N0 ->
N1 = N0-1, N2 = N0-2, N3 = N0-3, N4 = N0-4,
N5 = N0-5, N6 = N0-6, N7 = N0-7, N8 = N0-8,
create_file(FD, M, N8,

[<<N8:32/unsigned, N7:32/unsigned,
N6:32/unsigned, N5:32/unsigned,
N4:32/unsigned, N3:32/unsigned,
N2:32/unsigned, N1:32/unsigned>> | R]);

create_file(FD, M, N0, R) ->
N1 = N0-1,
create_file(FD, M, N1, [<<N1:32/unsigned>> | R]).

Note:
Trust only your own benchmarks. If the list length in create file/2 above is
increased, it will run slightly faster, but consume more memory and cause more
memory fragmentation. How much this affects your application is something that
this simple benchmark can not predict.

If the size of each binary is increased to 64 bytes, it will also run slightly faster, but
the code will be twice as clumsy. In the current implementation are binaries larger
than 64 bytes stored in memory common to all processes and not copied when sent
between processes, while these smaller binaries are stored on the process heap and
copied when sent like any other term.

So, with a binary size of 68 bytes create file/2 runs 30 percent slower then with
64 bytes, and will cause much more memory fragmentation. Note that if the binaries
were to be sent between processes (for example a non-raw file) the results would
probably be completely different.

A raw file is really a port. When writing data to a port, it is efficient to write a list of
binaries. There is no need to flatten a deep list before writing. On Unix hosts, scatter
output, which writes a set of buffers in one operation, is used when possible. In this way
file:write(FD, [Bin1, Bin2 | Bin3]) will write the contents of the binaries
without copying the data at all except for perhaps deep down in the operating system
kernel.

For raw files, pwrite/2 and pread/2 are efficiently implemented. The file driver is
called only once for the whole operation, and the list iteration is done in the file driver.

The options delayed write and read ahead to file:open/2 makes the file driver
cache data to reduce the number of operating system calls. The function
create file/2 in the example above takes 60 seconds seconds without the
delayed write option, which is 2.6 times slower.

And, as a really bad example, create file slow/2 above without the raw, binary and
delayed write options, that is it calls file:open(Name, [write]), needs 1 min 20
seconds for the job, which is 3.5 times slower than the first example, and 150 times
slower than the optimized create file/2.

195Kernel Application (KERNEL)

file Kernel Reference Manual

Warnings

If an error occurs when accessing an open file with the io module, the process which
handles the file will exit. The dead file process might hang if a process tries to access it
later. This will be fixed in a future release.

SEE ALSO

[filename(3)]

196 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

gen sctp
Erlang Module

The gen sctp module provides functions for communicating with sockets using the
SCTP protocol. The implementation assumes that the OS kernel supports SCTP
(RFC2960)1 through the user-level Sockets API Extensions.2 During development this
implementation was tested on Linux Fedora Core 5.0 (kernel 2.6.15-2054 or later is
needed), and on Solaris 10, 11. During OTP adaptation it was tested on SUSE Linux
Enterprise Server 10 (x86 64) kernel 2.6.16.27-0.6-smp, with lksctp-tools-1.0.6, briefly
on Solaris 10, and later on SUSE Linux Enterprise Server 10 Service Pack 1 (x86 64)
kernel 2.6.16.54-0.2.3-smp with lksctp-tools-1.0.7.

Record definitions for the gen sctp module can be found using:

-include lib("kernel/include/inet sctp.hrl").

These record definitions use the “new” spelling ’adaptation’, not the deprecated
’adaption’, regardless of which spelling the underlying C API uses.

CONTENTS

� DATA TYPES [page 197]

� EXPORTS [page 198]

� SCTP SOCKET OPTIONS [page 202]

� SCTP EXAMPLES [page 208]

� SEE ALSO [page 210]

� AUTHORS [page 210]

DATA TYPES

assoc id() An opaque term returned in for example #sctp paddr changefg that
identifies an association for an SCTP socket. The term is opaque except for the
special value 0 that has a meaning such as “the whole endpoint” or “all future
associations”.

charlist() = [char()]

iolist() = [char() | binary()]

ip address() Represents an address of an SCTP socket. It is a tuple as explained in
inet(3) [page 232].

port number() = 0 .. 65535

1URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
2URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

197Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

posix() See inet(3); POSIX Error Codes. [page 239]

sctp option() One of the SCTP Socket Options. [page 202]

sctp socket() Socket identifier returned from open/*.

timeout() = int() | infinity Timeout used in SCTP connect and receive calls.

Exports

abort(sctp socket(), Assoc) -> ok | ferror, posix()g

Types:

� Assoc = #sctp assoc changefg

Abnormally terminates the association given by Assoc, without flushing of unsent data.
The socket itself remains open. Other associations opened on this socket are still valid,
and it can be used in new associations.

close(sctp socket()) -> ok | ferror, posix()g

Completely closes the socket and all associations on it. The unsent data is flushed as in
eof/2. The close/1 call is blocking or otherwise depending of the value of the linger
[page 203] socket option [page 202]. If close does not linger or linger timeout expires,
the call returns and the data is flushed in the background.

connect(Socket, Addr, Port, Opts) -> fok,Assocg | ferror, posix()g

Same as connect(Socket, Addr, Port, Opts, infinity).

connect(Socket, Addr, Port, [Opt], Timeout) -> fok, Assocg | ferror, posix()g

Types:

� Socket = sctp socket()
� Addr = ip address() | Host
� Port = port number()
� Opt = sctp option()
� Timeout = timeout()
� Host = atom() | string()
� Assoc = #sctp assoc changefg

Establishes a new association for the socket Socket, with the peer (SCTP server socket)
given by Addr and Port. The Timeout, is expressed in milliseconds.

A socket can be associated with multiple peers. The result of connect/* is an
#sctp assoc changefg event which contains, in particular, the new Association ID:
[page 197]

#sctp assoc changef
state = atom(),
error = atom(),
outbound streams = int(),
inbound streams = int(),
assoc id = assoc id()

g

198 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

The number of outbound and inbound streams can be set by giving an sctp initmsg
option to connect as in:

connect(Socket, Ip, Port,
[fsctp initmsg,#sctp initmsgfnum ostreams=OutStreams,

max instreams=MaxInStreamsgg])

All options Opt are set on the socket before the association is attempted. If an option
record has got undefined field values, the options record is first read from the socket for
those values. In effect, Opt option records only define field values to change before
connecting.

The returned outbound streams and inbound streams are the actual stream numbers
on the socket, which may be different from the requested values (OutStreams and
MaxInStreams respectively) if the peer requires lower values.

The following values of state are possible:

� comm up: association successfully established. This indicates a successful
completion of connect.

� cant assoc: association cannot be established (connect/* failure).

All other states do not normally occur in the output from connect/*. Rather, they may
occur in #sctp assoc changefg events received instead of data in recv/* [page 200]
calls. All of them indicate losing the association due to various error conditions, and are
listed here for the sake of completeness. The error field may provide more detailed
diagnostics.

� comm lost;

� restart;

� shutdown comp.

controlling process(sctp socket(), pid()) -> ok

Assigns a new controlling process Pid to Socket. Same implementation as
gen udp:controlling process/2.

eof(Socket, Assoc) -> ok | ferror, Reasong

Types:

� Socket = sctp socket()
� Assoc = #sctp assoc changefg

Gracefully terminates the association given by Assoc, with flushing of all unsent data.
The socket itself remains open. Other associations opened on this socket are still valid,
and it can be used in new associations.

listen(Socket, IsServer) -> ok | ferror, Reasong

Types:

� Socket = sctp socket()
� IsServer = bool()

199Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

Sets up a socket to listen on the IP address and port number it is bound to. IsServer
must be ’true’ or ’false’. In the contrast to TCP, in SCTP there is no listening queue
length. If IsServer is ’true’ the socket accepts new associations, i.e. it will become an
SCTP server socket.

open() -> fok, Socketg | ferror, posix()g

open(Port) -> fok, Socketg | ferror, posix()g

open([Opt]) -> fok, Socketg | ferror, posix()g

open(Port, [Opt]) -> fok, Socketg | ferror, posix()g

Types:

� Opt = fip,IPg | fifaddr,IPg | fport,Portg | sctp option()
� IP = ip address() | any | loopback
� Port = port number()

Creates an SCTP socket and binds it to the local addresses specified by all fip,IPg (or
synonymously fifaddr,IPg) options (this feature is called SCTP multi-homing). The
default IP and Port are any and 0, meaning bind to all local addresses on any one free
port.

A default set of socket options [page 202] is used. In particular, the socket is opened in
binary [page 202] and passive [page 202] mode, and with reasonably large kernel [page
203] and driver buffers. [page 203]

recv(sctp socket()) -> fok, fFromIP, FromPort, AncData, BinMsggg | ferror, Reasong

recv(sctp socket(), timeout()) -> fok, fFromIP, FromPort, AncData, Datagg | ferror,
Reasong

Types:

� FromIP = ip address()
� FromPort = port number()
� AncData = [#sctp sndrcvinfofg]
� Data = binary() | charlist() | #sctp sndrcvinfofg | #sctp assoc changefg |

#sctp paddr changefg | #sctp adaptation eventfg
� Reason = posix() | #sctp send failedfg | #scpt paddr changefg |

#sctp pdapi eventfg | #sctp remote errorfg | #sctp shutdown eventfg

Receives the Data message from any association of the socket. If the receive times out
ferror,timeout is returned. The default timeout is infinity. FromIP and FromPort
indicate the sender’s address.

AncData is a list of Ancillary Data items which may be received along with the main
Data. This list can be empty, or contain a single #sctp sndrcvinfofg [page 206] record,
if receiving of such ancillary data is enabled (see option sctp events [page 206]). It is
enabled by default, since such ancillary data provide an easy way of determining the
association and stream over which the message has been received. (An alternative way
would be to get the Association ID from the FromIP and FromPort using the
sctp get peer addr info [page 208] socket option, but this would still not produce the
Stream number).

The actual Data received may be a binary(), or list() of bytes (integers in the range
0 through 255) depending on the socket mode, or an SCTP Event. The following SCTP
Events are possible:

� #sctp sndrcvinfofg [page 206]

200 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

� #sctp assoc changefg [page 198];

�

#sctp paddr changef
addr = ip address(),
state = atom(),
error = int(),
assoc id = assoc id()

g

Indicates change of the status of the peer’s IP address given by addr within the
association assoc id. Possible values of state (mostly self-explanatory) include:

– addr unreachable;
– addr available;
– addr removed;
– addr added;
– addr made prim.

In case of an error (e.g. addr unreachable), the error field provides additional
diagnostics. In such cases, the #sctp paddr changefg Event is automatically
converted into an error term returned by gen sctp:recv. The error field value
can be converted into a string using error string/1.

�

#sctp send failedf
flags = true | false,
error = int(),
info = #sctp sndrcvinfofg,
assoc id = assoc id()
data = binary()

g

The sender may receive this event if a send operation fails. The flags is a Boolean
specifying whether the data have actually been transmitted over the wire; error
provides extended diagnostics, use error string/1; info is the original
#sctp sndrcvinfofg [page 206] record used in the failed send/*, [page 202] and
data is the whole original data chunk attempted to be sent.
In the current implementation of the Erlang/SCTP binding, this Event is internally
converted into an error term returned by recv/*.

�

#sctp adaptation eventf
adaptation ind = int(),
assoc id = assoc id()

g

Delivered when a peer sends an Adaptation Layer Indication parameter
(configured through the option sctp adaptation layer [page 205]). Note that with
the current implementation of the Erlang/SCTP binding, this event is disabled by
default.

�

201Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

#sctp pdapi eventf
indication = sctp partial delivery aborted,
assoc id = assoc id()

g

A partial delivery failure. In the current implementation of the Erlang/SCTP
binding, this Event is internally converted into an error term returned by recv/*.

send(Socket, SndRcvInfo, Data) -> ok | ferror, Reasong

Types:

� Socket = sctp socket()
� SndRcvInfo = #sctp sndrcvinfofg
� Data = binary() | iolist()

Sends the Data message with all sending parameters from a #sctp sndrcvinfofg [page
206] record. This way, the user can specify the PPID (passed to the remote end) and
Context (passed to the local SCTP layer) which can be used for example for error
identification. However, such a fine level of user control is rarely required. The send/4
function is sufficient for most applications.

send(Socket, Assoc, Stream, Data) -> ok | ferror, Reasong

Types:

� Socket = sctp socket()
� Assoc = #sctp assoc changefg | assoc id()
� Stream = integer()
� Data = binary() | iolist()

Sends Data message over an existing association and given stream.

error string(integer()) -> ok | string() | undefined

Translates an SCTP error number from for example #sctp remote errorfg or
#sctp send failedfg into an explanatory string, or one of the atoms ok for no error
and undefined for an unrecognized error.

SCTP SOCKET OPTIONS

The set of admissible SCTP socket options is by construction orthogonal to the sets of
TCP, UDP and generic INET options: only those options which are explicitly listed
below are allowed for SCTP sockets. Options can be set on the socket using
gen sctp:open/1,2 or inet:setopts/2, retrieved using inet:getopts/2, and when
calling gen sctp:connect/4,5 options can be changed.

fmode, list|binarygor just list or binary. Determines the type of data returned
from gen sctp:recv/1,2.

factive, true|false|onceg � If false (passive mode, the default), the caller
needs to do an explicit gen sctp:recv call in order to retrieve the available
data from the socket.

202 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

� If true (full active mode), the pending data or events are sent to the owning
process.
NB: This can cause the message queue to overflow, as there is no way to
throttle the sender in this case (no flow control!).

� If once, only one message is automatically placed in the message queue, after
that the mode is automatically re-set to passive. This provides flow control as
well as the possibility for the receiver to listen for its incoming SCTP data
interleaved with other inter-process messages.

fbuffer, int()g Determines the size of the user-level software buffer used by the
SCTP driver. Not to be confused with sndbuf and recbuf options which
correspond to the kernel socket buffers. It is recommended to have val(buffer)
>= max(val(sndbuf),val(recbuf)). In fact, the val(buffer) is automatically
set to the above maximum when sndbuf or recbuf values are set.

ftos, int()g Sets the Type-Of-Service field on the IP datagrams being sent, to the
given value, which effectively determines a prioritization policy for the outbound
packets. The acceptable values are system-dependent. TODO: we do not provide
symbolic names for these values yet.

fpriority, int()g A protocol-independent equivalent of tos above. Setting priority
implies setting tos as well.

fdontroute, true|falseg By default false. If true, the kernel does not send packets
via any gateway, only sends them to directly connected hosts.

freuseaddr, true|falseg By default false. If true, the local binding address
fIP,Portg of the socket can be re-used immediately: no waiting in the
CLOSE WAIT state is performed (may be required for high-throughput servers).

flinger, ftrue|false, int()g Determines the timeout in seconds for flushing
unsent data in the gen sctp:close/1 socket call. If the 1st component of the
value tuple is false, the 2nd one is ignored, which means that gen sctp:close/1
returns immediately not waiting for data to be flushed. Otherwise, the 2nd
component is the flushing time-out in seconds.

fsndbuf, int()g The size, in bytes, of the *kernel* send buffer for this socket.
Sending errors would occur for datagrams larger than val(sndbuf). Setting this
option also adjusts the size of the driver buffer (see buffer above).

frecbuf, int()g The size, in bytes, of the *kernel* recv buffer for this socket. Sending
errors would occur for datagrams larger than val(sndbuf). Setting this option also
adjusts the size of the driver buffer (see buffer above).

fsctp rtoinfo, #sctp rtoinfofgg

#sctp rtoinfof
assoc id = assoc id(),
initial = int(),
max = int(),
min = int()

g

Determines re-transmission time-out parameters, in milliseconds, for the
association(s) given by assoc id. If assoc id = 0 (default) indicates the whole
endpoint. See RFC29603 and Sockets API Extensions for SCTP4 for the exact
semantics of the fields values.

3URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
4URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

203Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

fsctp associnfo, #sctp assocparamsfgg

#sctp assocparamsf
assoc id = assoc id(),
asocmaxrxt = int(),
number peer destinations = int(),
peer rwnd = int(),
local rwnd = int(),
cookie life = int()

g

Determines association parameters for the association(s) given by assoc id.
assoc id = 0 (default) indicates the whole endpoint. See Sockets API Extensions
for SCTP5 for the discussion of their semantics. Rarely used.

fsctp initmsg, #sctp initmsgfgg

#sctp initmsgf
num ostreams = int(),
max instreams = int(),
max attempts = int(),
max init timeo = int()

g

Determines the default parameters which this socket attempts to negotiate with its
peer while establishing an association with it. Should be set after open/* but
before the first connect/*. #sctp initmsgfg can also be used as ancillary data
with the first call of send/* to a new peer (when a new association is created).

� num ostreams: number of outbound streams;
� max instreams: max number of in-bound streams;
� max attempts: max re-transmissions while establishing an association;
� max init timeo: time-out in milliseconds for establishing an association.

fsctp autoclose, int()|infinityg Determines the time (in seconds) after which an
idle association is automatically closed.

fsctp nodelay, true|falseg Turns on|off the Nagle algorithm for merging small
packets into larger ones (which improves throughput at the expense of latency).

fsctp disable fragments, true|falseg If true, induces an error on an attempt to
send a message which is larger than the current PMTU size (which would require
fragmentation/re-assembling). Note that message fragmentation does not affect
the logical atomicity of its delivery; this option is provided for performance reasons
only.

fsctp i want mapped v4 addr, true|falseg Turns on|off automatic mapping of
IPv4 addresses into IPv6 ones (if the socket address family is AF INET6).

fsctp maxseg, int()g Determines the maximum chunk size if message fragmentation
is used. If 0, the chunk size is limited by the Path MTU only.

fsctp primary addr, #sctp primfgg

#sctp primf
assoc id = assoc id(),
addr = fIP, Portg

g
IP = ip address()
Port = port number()

5URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

204 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

For the association given by assoc id, fIP,Portg must be one of the peer’s
addresses. This option determines that the given address is treated by the local
SCTP stack as the peer’s primary address.

fsctp set peer primary addr, #sctp setpeerprimfgg

#sctp setpeerprimf
assoc id = assoc id(),
addr = fIP, Portg

g
IP = ip address()
Port = port number()

When set, informs the peer that it should use fIP, Portg as the primary address
of the local endpoint for the association given by assoc id.

fsctp adaptation layer, #sctp setadaptationfgg

#sctp setadaptationf
adaptation ind = int()

g

When set, requests that the local endpoint uses the value given by adaptation ind
as the Adaptation Indication parameter for establishing new associations. See
RFC29606 and Sockets API Extenstions for SCTP7 for more details.

fsctp peer addr params, #sctp paddrparamsfgg

#sctp paddrparamsf
assoc id = assoc id(),
address = fIP, Portg,
hbinterval = int(),
pathmaxrxt = int(),
pathmtu = int(),
sackdelay = int(),
flags = list()

g
IP = ip address()
Port = port number()

This option determines various per-address parameters for the association given by
assoc id and the peer address address (the SCTP protocol supports
multi-homing, so more than 1 address can correspond to a given association).

� hbinterval: heartbeat interval, in milliseconds;
� pathmaxrxt: max number of retransmissions before this address is considered

unreachable (and an alternative address is selected);
� pathmtu: fixed Path MTU, if automatic discovery is disabled (see flags

below);
� sackdelay: delay in milliseconds for SAC messages (if the delay is enabled,

see flags below);
� flags: the following flags are available:

– hb enable: enable heartbeat;
– hb disable: disable heartbeat;

6URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
7URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

205Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

– hb demand: initiate heartbeat immediately;
– pmtud enable: enable automatic Path MTU discovery;
– pmtud disable: disable automatic Path MTU discovery;
– sackdelay enable: enable SAC delay;
– sackdelay disable: disable SAC delay.

fsctp default send param, #sctp sndrcvinfofgg

#sctp sndrcvinfof
stream = int(),
ssn = int(),
flags = list(),
ppid = int(),
context = int(),
timetolive = int(),
tsn = int(),
cumtsn = int(),
assoc id = assoc id()

g

#sctp sndrcvinfofg is used both in this socket option, and as ancillary data while
sending or receiving SCTP messages. When set as an option, it provides a default
values for subsequent gen sctp:sendcalls on the association given by assoc id.
assoc id = 0 (default) indicates the whole endpoint. The following fields
typically need to be specified by the sender:

� sinfo stream: stream number (0-base) within the association to send the
messages through;

� sinfo flags: the following flags are recognised:

– unordered: the message is to be sent unordered;
– addr over: the address specified in gen sctp:send overwrites the primary

peer address;
– abort: abort the current association without flushing any unsent data;
– eof: gracefully shut down the current association, with flushing of unsent

data.

Other fields are rarely used. See RFC29608 and Sockets API Extensions for
SCTP9 for full information.

fsctp events, #sctp event subscribefgg

#sctp event subscribef
data io event = true | false,
association event = true | false,
address event = true | false,
send failure event = true | false,
peer error event = true | false,
shutdown event = true | false,
partial delivery event = true | false,
adaptation layer event = true | false

g

8URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
9URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

206 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

This option determines which SCTP Events [page 200] are to be received (via
recv/* [page 200]) along with the data. The only exception is data io event
which enables or disables receiving of #sctp sndrcvinfofg [page 206] ancillary
data, not events. By default, all flags except adaptation layer event are enabled,
although sctp data io event and association event are used by the driver
itself and not exported to the user level.

fsctp delayed ack time, #sctp assoc valuefgg

#sctp assoc valuef
assoc id = assoc id(),
assoc value = int()

g

Rarely used. Determines the ACK time (given by assoc value in milliseconds) for
the given association or the whole endpoint if assoc value = 0 (default).

fsctp status, #sctp statusfgg

#sctp statusf
assoc id = assoc id(),
state = atom(),
rwnd = int(),
unackdata = int(),
penddata = int(),
instrms = int(),
outstrms = int(),
fragmentation point = int(),
primary = #sctp paddrinfofg

g

This option is read-only. It determines the status of the SCTP association given by
assoc id. Possible values of state follows. The state designations are mostly
self-explanatory. state empty is the default which means that no other state is
active:

� sctp state empty

� sctp state closed

� sctp state cookie wait

� sctp state cookie echoed

� sctp state established

� sctp state shutdown pending

� sctp state shutdown sent

� sctp state shutdown received

� sctp state shutdown ack sent

The semantics of other fields is the following:

� sstat rwnd: the association peer’s current receiver window size;
� sstat unackdata: number of unacked data chunks;
� sstat penddata: number of data chunks pending receipt;
� sstat instrms: number of inbound streams;
� sstat outstrms: number of outbound streams;
� sstat fragmentation point: message size at which SCTP fragmentation will

occur;

207Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

� sstat primary: information on the current primary peer address (see below
for the format of #sctp paddrinfofg).

fsctp get peer addr info, #sctp paddrinfofgg

#sctp paddrinfof
assoc id = assoc id(),
address = fIP, Portg,
state = inactive | active,
cwnd = int(),
srtt = int(),
rto = int(),
mtu = int()

g
IP = ip address()
Port = port number()

This option is read-only. It determines the parameters specific to the peer’s address
given by address within the association given by assoc id. The address field
must be set by the caller; all other fields are filled in on return. If assoc id = 0
(default), the address is automatically translated into the corresponding
association ID. This option is rarely used; see RFC296010 and Sockets API
Extensions for SCTP11 for the semantics of all fields.

SCTP EXAMPLES

� Example of an Erlang SCTP Server which receives SCTP messages and prints them
on the standard output:

-module(sctp server).

-export([server/0,server/1,server/2]).
-include lib("kernel/include/inet.hrl").
-include lib("kernel/include/inet sctp.hrl").

server() ->
server([any,2006]).

server([Host,Port]) when is list(Host), is list(Port) ->
fok, #hostentfh addr list = [IP|]gg = inet:gethostbyname(Host),
io:format("~w -> ~w~n", [Host, IP]),
server([IP, list to integer(Port)]);

server(IP, Port) when is tuple(IP) orlese IP == any orelse IP == loopback,
is integer(Port) ->

fok,Sg = gen sctp:open([fip,IPg,fport,Portg],[fsctp recbuf,65536g]),
io:format("Listening on ~w:~w. ~w~n", [IP,Port,S]),
ok = gen sctp:listen(S, true),
server loop(S).

10URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
11URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

208 Kernel Application (KERNEL)

Kernel Reference Manual gen sctp

server loop(S) ->
case gen sctp:recv(S) of
ferror, Errorg ->

io:format("SCTP RECV ERROR: ~p~n", [Error]);
Data ->

io:format("Error: ~p~n", [Data])
end,
server loop(S).

� Example of an Erlang SCTP Client which interacts with the above Server. Note
that in this example, the Client creates an association with the Server with 5
outbound streams. For this reason, sending of “Test 0” over Stream 0 succeeds, but
sending of “Test 5” over Stream 5 fails. The client then aborts the association,
which results in the corresponding Event being received on the Server side.

-module(sctp client).

-export([client/0, client/1, client/2]).
-include("inet.hrl").

client() ->
client([localhost]).

client([Host]) ->
client([Host,2006]);

client([Host, Port]) when is list(Host), is list(Port) ->
client(Host,list to integer(Port)),
init:stop();

client(Host, Port) when is integer(Port) ->
fok,Sg = gen sctp:open(),
fok Assocg = gen sctp:connect

(S, Host, Port, [fsctp initmsg,#sctp initmsgfnum ostreams=5gg]),
io:format("Connection Successful, Assoc=~p~n", [Assoc]),

io:write(gen sctp:send(S, Assoc, 0, <<"Test 0">>)),
io:nl(),
timer:sleep(10000),
io:write(gen sctp:send(S, Assoc, 5, <<"Test 5">>)),
io:nl(),
timer:sleep(10000),
io:write(gen sctp:abort(S, Assoc)),
io:nl(),

timer:sleep(1000),
gen sctp:close(S).

209Kernel Application (KERNEL)

gen sctp Kernel Reference Manual

SEE ALSO

inet(3) [page 232], gen tcp(3) [page 211], gen upd(3) [page 218], RFC296012 (Stream
Control Transmission Protocol), Sockets API Extensions for SCTP.13

12URL: http://www.rfc-archive.org/getrfc.php?rfc=2960
13URL: http://tools.ietf.org/html/draft-ietf-tsvwg-sctpsocket-13

210 Kernel Application (KERNEL)

Kernel Reference Manual gen tcp

gen tcp
Erlang Module

The gen tcp module provides functions for communicating with sockets using the
TCP/IP protocol.

The following code fragment provides a simple example of a client connecting to a
server at port 5678, transferring a binary and closing the connection:

client() ->
SomeHostInNet = "localhost" % to make it runnable on one machine
{ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,

[binary, {packet, 0}]),
ok = gen_tcp:send(Sock, "Some Data"),
ok = gen_tcp:close(Sock).

At the other end a server is listening on port 5678, accepts the connection and receives
the binary:

server() ->
{ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},

{active, false}]),
{ok, Sock} = gen_tcp:accept(LSock),
{ok, Bin} = do_recv(Sock, []),
ok = gen_tcp:close(Sock),
Bin.

do_recv(Sock, Bs) ->
case gen_tcp:recv(Sock, 0) of

{ok, B} ->
do_recv(Sock, [Bs, B]);

{error, closed} ->
{ok, list_to_binary(Bs)}

end.

For more examples, see the examples [page 215] section.

DATA TYPES

ip_address()
see inet(3)

posix()
see inet(3)

socket()
as returned by accept/1,2 and connect/3,4

211Kernel Application (KERNEL)

gen tcp Kernel Reference Manual

Exports

connect(Address, Port, Options) -> fok, Socketg | ferror, Reasong

connect(Address, Port, Options, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� Address = string() | atom() | ip address()
� Port = 0..65535
� Options = [Opt]
� Opt – see below
� Timeout = int() | infinity
� Socket = socket()
� Reason = posix()

Connects to a server on TCP port Port on the host with IP address Address. The
Address argument can be either a hostname, or an IP address.

The available options are:

list Received Packet is delivered as a list.

binary Received Packet is delivered as a binary.

fip, ip address()g If the host has several network interfaces, this option specifies
which one to use.

fport, Portg Specify which local port number to use.

ffd, int()g If a socket has somehow been connected without using gen tcp, use this
option to pass the file descriptor for it.

inet6 Set up the socket for IPv6.

inet Set up the socket for IPv4.

Opt See inet:setopts/2 [page 236].

Packets can be sent to the returned socket Socket using send/2. Packets sent from the
peer are delivered as messages:

{tcp, Socket, Data}

If the socket is closed, the following message is delivered:

{tcp_closed, Socket}

If an error occurs on the socket, the following message is delivered:

{tcp_error, Socket, Reason}

unless factive, falseg is specified in the option list for the socket, in which case
packets are retrieved by calling recv/2.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

Note:
The default values for options given to connect can be affected by the Kernel
configuration parameter inet default connect options. See inet(3) [page 232] for
details.

212 Kernel Application (KERNEL)

Kernel Reference Manual gen tcp

listen(Port, Options) -> fok, ListenSocketg | ferror, Reasong

Types:

� Port = 0..65535
� Options = [Opt]
� Opt – see below
� ListenSocket – see below
� Reason = posix()

Sets up a socket to listen on the port Port on the local host.

If Port == 0, the underlying OS assigns an available port number, use inet:port/1 to
retrieve it.

The available options are:

list Received Packet is delivered as a list.

binary Received Packet is delivered as a binary.

fbacklog, Bg B is an integer >= 0. The backlog value defaults to 5. The backlog value
defines the maximum length that the queue of pending connections may grow to.

fip, ip address()g If the host has several network interfaces, this option specifies
which one to listen on.

ffd, Fdg If a socket has somehow been connected without using gen tcp, use this
option to pass the file descriptor for it.

inet6 Set up the socket for IPv6.

inet Set up the socket for IPv4.

Opt See inet:setopts/2 [page 236].

The returned socket ListenSocket can only be used in calls to accept/1,2.

Note:
The default values for options given to listen can be affected by the Kernel
configuration parameter inet default listen options. See inet(3) [page 232] for
details.

accept(ListenSocket) -> fok, Socketg | ferror, Reasong

accept(ListenSocket, Timeout) -> fok, Socketg | ferror, Reasong

Types:

� ListenSocket – see listen/2
� Timeout = int() | infinity
� Socket = socket()
� Reason = closed | timeout | posix()

213Kernel Application (KERNEL)

gen tcp Kernel Reference Manual

Accepts an incoming connection request on a listen socket. Socket must be a socket
returned from listen/2. Timeout specifies a timeout value in ms, defaults to infinity.

Returns fok, Socketg if a connection is established, or ferror, closedg if
ListenSocket is closed, or ferror, timeoutg if no connection is established within
the specified time. May also return a POSIX error value if something else goes wrong,
see inet(3) for possible error values.

Packets can be sent to the returned socket Socket using send/2. Packets sent from the
peer are delivered as messages:

{tcp, Socket, Data}

unless factive, falseg was specified in the option list for the listen socket, in which
case packets are retrieved by calling recv/2.

Note:
It is worth noting that the accept call does not have to be issued from the socket
owner process. Using version 5.5.3 and higher of the emulator, multiple
simultaneous accept calls can be issued from different processes, which allows for a
pool of acceptor processes handling incoming connections.

send(Socket, Packet) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Packet = [char()] | binary()
� Reason = posix()

Sends a packet on a socket.

There is no send call with timeout option, you use the send timeout socket option if
timeouts are desired. See the examples [page 215] section.

recv(Socket, Length) -> fok, Packetg | ferror, Reasong

recv(Socket, Length, Timeout) -> fok, Packetg | ferror, Reasong

Types:

� Socket = socket()
� Length = int()
� Packet = [char()] | binary()
� Timeout = int() | infinity
� Reason = closed | posix()

This function receives a packet from a socket in passive mode. A closed socket is
indicated by a return value ferror, closedg.

The Length argument is only meaningful when the socket is in raw mode and denotes
the number of bytes to read. If Length = 0, all available bytes are returned. If Length >
0, exactly Length bytes are returned, or an error; possibly discarding less than Length
bytes of data when the socket gets closed from the other side.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

214 Kernel Application (KERNEL)

Kernel Reference Manual gen tcp

controlling process(Socket, Pid) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Pid = pid()
� Reason = closed | not owner | posix()

Assigns a new controlling process Pid to Socket. The controlling process is the process
which receives messages from the socket. If called by any other process than the current
controlling process, ferror, epermg is returned.

close(Socket) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Reason = posix()

Closes a TCP socket.

shutdown(Socket, How) -> ok | ferror, Reasong

Types:

� Socket = socket()
� How = read | write | read write
� Reason = posix()

Immediately close a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, the
fexit on close, falseg option is useful.

Examples

The following example illustrates usage of the factive,onceg option and multiple
accepts by implementing a server as a number of worker processes doing accept on one
single listen socket. The start/2 function takes the number of worker processes as well
as a port number to listen for incoming connections on. If LPort is specified as 0, an
ephemeral portnumber is used, why the start function returns the actual portnumber
allocated:

start(Num,LPort) ->
case gen_tcp:listen(LPort,[{active, false},{packet,2}]) of

{ok, ListenSock} ->
start_servers(Num,ListenSock),
{ok, Port} = inet:port(ListenSock),
Port;

{error,Reason} ->
{error,Reason}

end.

start_servers(0,_) ->
ok;

start_servers(Num,LS) ->

215Kernel Application (KERNEL)

gen tcp Kernel Reference Manual

spawn(?MODULE,server,[LS]),
start_servers(Num-1,LS).

server(LS) ->
case gen_tcp:accept(LS) of

{ok,S} ->
loop(S),
server(LS);

Other ->
io:format("accept returned ~w - goodbye!~n",[Other]),
ok

end.

loop(S) ->
inet:setopts(S,[{active,once}]),
receive

{tcp,S,Data} ->
Answer = process(Data), % Not implemented in this example
gen_tcp:send(S,Answer),
loop(S);

{tcp_closed,S} ->
io:format("Socket ~w closed [~w]~n",[S,self()]),
ok

end.

A simple client could look like this:

client(PortNo,Message) ->
{ok,Sock} = gen_tcp:connect("localhost",PortNo,[{active,false},

{packet,2}]),
gen_tcp:send(Sock,Message),
A = gen_tcp:recv(Sock,0),
gen_tcp:close(Sock),
A.

The fact that the send call does not accept a timeout option, is because timeouts on
send is handled through the socket option send timeout. The behavior of a send
operation with no receiver is in a very high degree defined by the underlying TCP stack,
as well as the network infrastructure. If one wants to write code that handles a hanging
receiver that might eventually cause the sender to hang on a send call, one writes code
like the following.

Consider a process that receives data from a client process that is to be forwarded to a
server on the network. The process has connected to the server via TCP/IP and does not
get any acknowledge for each message it sends, but has to rely on the send timeout
option to detect that the other end is unresponsive. We could use the send timeout
option when connecting:

...
{ok,Sock} = gen_tcp:connect(HostAddress, Port,

[{active,false},
{send_timeout, 5000},
{packet,2}]),

loop(Sock), % See below
...

216 Kernel Application (KERNEL)

Kernel Reference Manual gen tcp

In the loop where requests are handled, we can now detect send timeouts:

loop(Sock) ->
receive

{Client, send_data, Binary} ->
case gen_tcp:send(Sock,[Binary]) of

{error, timeout} ->
io:format("Send timeout, closing!~n",

[]),
handle_send_timeout(), % Not implemented here
Client ! {self(),{error_sending, timeout}},
%% Usually, it’s a good idea to give up in case of a
%% send timeout, as you never know how much actually
%% reached the server, maybe only a packet header?!
gen_tcp:close(Sock);

{error, OtherSendError} ->
io:format("Some other error on socket (~p), closing",

[OtherSendError]),
Client ! {self(),{error_sending, OtherSendError}},
gen_tcp:close(Sock);

ok ->
Client ! {self(), data_sent},
loop(Sock)

end
end.

Usually it would suffice to detect timeouts on receive, as most protocols include some
sort of acknowledgment from the server, but if the protocol is strictly one way, the
send timeout option comes in handy!

217Kernel Application (KERNEL)

gen udp Kernel Reference Manual

gen udp
Erlang Module

The gen udp module provides functions for communicating with sockets using the UDP
protocol.

DATA TYPES

ip_address()
see inet(3)

posix()
see inet(3)

socket()
as returned by open/1,2

Exports

open(Port) -> fok, Socketg | ferror, Reasong

open(Port, Options) -> fok, Socketg | ferror, Reasong

Types:

� Port = 0..65535
� Options = [Opt]
� Opt – see below
� Socket = socket()
� Reason = posix()

Associates a UDP port number (Port) with the calling process.

The available options are:

list Received Packet is delivered as a list.

binary Received Packet is delivered as a binary.

fip, ip address()g If the host has several network interfaces, this option specifies
which one to use.

ffd, int()g If a socket has somehow been opened without using gen udp, use this
option to pass the file descriptor for it.

inet6 Set up the socket for IPv6.

inet Set up the socket for IPv4.

218 Kernel Application (KERNEL)

Kernel Reference Manual gen udp

Opt See inet:setopts/2 [page 236].

The returned socket Socket is used to send packets from this port with send/4. When
UDP packets arrive at the opened port, they are delivered as messages:

{udp, Socket, IP, InPortNo, Packet}

Note that arriving UDP packets that are longer than the receive buffer option specifies,
might be truncated without warning.

IP and InPortNo define the address from which Packet came. Packet is a list of bytes if
the option list was specified. Packet is a binary if the option binary was specified.

Default value for the receive buffer option is frecbuf, 8192g.

If Port == 0, the underlying OS assigns a free UDP port, use inet:port/1 to retrieve
it.

send(Socket, Address, Port, Packet) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Address = string() | atom() | ip address()
� Port = 0..65535
� Packet = [char()] | binary()
� Reason = not owner | posix()

Sends a packet to the specified address and port. The Address argument can be either a
hostname, or an IP address.

recv(Socket, Length) -> fok, fAddress, Port, Packetgg | ferror, Reasong

recv(Socket, Length, Timeout) -> fok, fAddress, Port, Packetgg | ferror, Reasong

Types:

� Socket = socket()
� Length = int()
� Address = ip address()
� Port = 0..65535
� Packet = [char()] | binary()
� Timeout = int() | infinity
� Reason = not owner | posix()

This function receives a packet from a socket in passive mode.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

controlling process(Socket, Pid) -> ok

Types:

� Socket = socket()
� Pid = pid()

Assigns a new controlling process Pid to Socket. The controlling process is the process
which receives messages from the socket.

219Kernel Application (KERNEL)

gen udp Kernel Reference Manual

close(Socket) -> ok | ferror, Reasong

Types:

� Socket = socket()
� Reason = not owner | posix()

Closes a UDP socket.

220 Kernel Application (KERNEL)

Kernel Reference Manual global

global
Erlang Module

This documentation describes the Global module which consists of the following
functionalities:

� registration of global names;

� global locks;

� maintenance of the fully connected network.

These services are controlled via the process global name server which exists on every
node. The global name server is started automatically when a node is started. With the
term global is meant over a system consisting of several Erlang nodes.

The ability to globally register names is a central concept in the programming of
distributed Erlang systems. In this module, the equivalent of the register/2 and
whereis/1 BIFs (for local name registration) are implemented, but for a network of
Erlang nodes. A registered name is an alias for a process identifier (pid). The global
name server monitors globally registered pids. If a process terminates, the name will also
be globally unregistered.

The registered names are stored in replica global name tables on every node. There is no
central storage point. Thus, the translation of a name to a pid is fast, as it is always done
locally. When any action in taken which results in a change to the global name table, all
tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For instance, the
specified resource could be a pid. When a global lock is set, access to the locked
resource is denied for all other resources other than the lock requester.

Both the registration and lock functionalities are atomic. All nodes involved in these
actions will have the same view of the information.

The global name server also performs the critical task of continuously monitoring
changes in node configuration: if a node which runs a globally registered process goes
down, the name will be globally unregistered. To this end the global name server
subscribes to nodeup and nodedown messages sent from the net kernel module.
Relevant Kernel application variables in this context are net setuptime, net ticktime,
and dist auto connect. See also kernel(6) [page 34].

The server will also maintain a fully connected network. For example, if node N1
connects to node N2 (which is already connected to N3), the global name servers on the
nodes N1 and N3 will make sure that also N1 and N3 are connected. If this is not desired,
the command line flag -connect all false can be used (see also [erl(1)]). In this case
the name registration facility cannot be used, but the lock mechanism will still work.

If the global name server fails to connect nodes (N1 and N3 in the example above) a
warning event is sent to the error logger. The presence of such an event does not
exclude the possibility that the nodes will later connect–one can for example try the

221Kernel Application (KERNEL)

global Kernel Reference Manual

command rpc:call(N1, net adm, ping, [N2]) in the Erlang shell–but it
indicates some kind of problem with the network.

Note:
If the fully connected network is not set up properly, the first thing to try is to
increase the value of net setuptime.

Exports

del lock(Id)

del lock(Id, Nodes) -> void()

Types:

� Id = fResourceId, LockRequesterIdg
� ResourceId = term()
� LockRequesterId = term()
� Nodes = [node()]

Deletes the lock Id synchronously.

notify all name(Name, Pid1, Pid2) -> none

Types:

� Name = term()
� Pid1 = Pid2 = pid()

This function can be used as a name resolving function for register name/3 and
re register name/3. It unregisters both pids, and sends the message
fglobal name conflict, Name, OtherPidg to both processes.

random exit name(Name, Pid1, Pid2) -> Pid1 | Pid2

Types:

� Name = term()
� Pid1 = Pid2 = pid()

This function can be used as a name resolving function for register name/3 and
re register name/3. It randomly chooses one of the pids for registration and kills the
other one.

random notify name(Name, Pid1, Pid2) -> Pid1 | Pid2

Types:

� Name = term()
� Pid1 = Pid2 = pid()

This function can be used as a name resolving function for register name/3 and
re register name/3. It randomly chooses one of the pids for registration, and sends
the message fglobal name conflict, Nameg to the other pid.

222 Kernel Application (KERNEL)

Kernel Reference Manual global

register name(Name, Pid)

register name(Name, Pid, Resolve) -> yes | no

Types:

� Name = term()
� Pid = pid()
� Resolve = fun() or fModule, Functiong where
� Resolve(Name, Pid, Pid2) -> Pid | Pid2 | none

Globally associates the name Name with a pid, that is, Globally notifies all nodes of a
new global name in a network of Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered
names that already exist. The network is also informed of any global names in newly
connected nodes. If any name clashes are discovered, the Resolve function is called. Its
purpose is to decide which pid is correct. If the function crashes, or returns anything
other than one of the pids, the name is unregistered. This function is called once for
each name clash.

There are three pre-defined resolve functions: random exit name/3,
random notify name/3, and notify all name/3. If no Resolve function is defined,
random exit name is used. This means that one of the two registered processes will be
selected as correct while the other is killed.

This function is completely synchronous. This means that when this function returns,
the name is either registered on all nodes or none.

The function returns yes if successful, no if it fails. For example, no is returned if an
attempt is made to register an already registered process or to register a process with a
name that is already in use.

Note:
Releases up to and including OTP R10 did not check if the process was already
registered. As a consequence the global name table could become inconsistent. The
old (buggy) behavior can be chosen by giving the Kernel application variable
global multi name action the value allow.

If a process with a registered name dies, or the node goes down, the name is
unregistered on all nodes.

registered names() -> [Name]

Types:

� Name = term()

Returns a lists of all globally registered names.

re register name(Name, Pid)

re register name(Name, Pid, Resolve) -> void()

Types:

� Name = term()
� Pid = pid()

223Kernel Application (KERNEL)

global Kernel Reference Manual

� Resolve = fun() or fModule, Functiong where
� Resolve(Name, Pid, Pid2) -> Pid | Pid2 | none

Atomically changes the registered name Name on all nodes to refer to Pid.

The Resolve function has the same behavior as in register name/2,3.

send(Name, Msg) -> Pid

Types:

� Name = term()
� Msg = term()
� Pid = pid()

Sends the message Msg to the pid globally registered as Name.

Failure: If Name is not a globally registered name, the calling function will exit with
reason fbadarg, fName, Msggg.

set lock(Id)

set lock(Id, Nodes)

set lock(Id, Nodes, Retries) -> boolean()

Types:

� Id = fResourceId, LockRequesterIdg
� ResourceId = term()
� LockRequesterId = term()
� Nodes = [node()]
� Retries = int() >= 0 | infinity

Sets a lock on the specified nodes (or on all nodes if none are specified) on ResourceId
for LockRequesterId. If a lock already exists on ResourceId for another requester than
LockRequesterId, and Retries is not equal to 0, the process sleeps for a while and will
try to execute the action later. When Retries attempts have been made, false is
returned, otherwise true. If Retries is infinity, true is eventually returned (unless
the lock is never released).

If no value for Retries is given, infinity is used.

This function is completely synchronous.

If a process which holds a lock dies, or the node goes down, the locks held by the
process are deleted.

The global name server keeps track of all processes sharing the same lock, that is, if two
processes set the same lock, both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur
as long as processes only lock one resource at a time. But if some processes try to lock
two or more resources, a deadlock may occur. It is up to the application to detect and
rectify a deadlock.

Note:
Some values of ResourceId should be avoided or Erlang/OTP will not work properly.
A list of resources to avoid: global, dist ac, mnesia table lock,
mnesia adjust log writes, pg2.

224 Kernel Application (KERNEL)

Kernel Reference Manual global

sync() -> void()

Synchronizes the global name server with all nodes known to this node. These are the
nodes which are returned from erlang:nodes(). When this function returns, the
global name server will receive global information from all nodes. This function can be
called when new nodes are added to the network.

trans(Id, Fun)

trans(Id, Fun, Nodes)

trans(Id, Fun, Nodes, Retries) -> Res | aborted

Types:

� Id = fResourceId, LockRequesterIdg
� ResourceId = term()
� LockRequesterId = term()
� Fun = fun() | fM, Fg
� Nodes = [node()]
� Retries = int() >= 0 | infinity
� Res = term()

Sets a lock on Id (using set lock/3). If this succeeds, Fun() is evaluated and the result
Res is returned. Returns aborted if the lock attempt failed. If Retries is set to
infinity, the transaction will not abort.

infinity is the default setting and will be used if no value is given for Retries.

unregister name(Name) -> void()

Types:

� Name = term()

Removes the globally registered name Name from the network of Erlang nodes.

whereis name(Name) -> pid() | undefined

Types:

� Name = term()

Returns the pid with the globally registered name Name. Returns undefined if the name
is not globally registered.

See Also

global group(3) [page 226], net kernel(3) [page 251],

225Kernel Application (KERNEL)

global group Kernel Reference Manual

global group
Erlang Module

The global group function makes it possible to group the nodes in a system into
partitions, each partition having its own global name space, refer to global(3). These
partitions are called global groups.

The main advantage of dividing systems to global groups is that the background load
decreases while the number of nodes to be updated is reduced when manipulating
globally registered names.

The Kernel configuration parameter global groups defines the global groups (see also
kernel(6) [page 32], config(4) [page 294]:

{global_groups, [GroupTuple]}

Types:

� GroupTuple = fGroupName, [Node]g | fGroupName, PublishType, [Node]g

� GroupName = atom() (naming a global group)

� PublishType = normal | hidden

� Node = atom() (naming a node)

A GroupTuple without PublishType is the same as a GroupTuple with PublishType
== normal.

A node started with the command line flag -hidden, see [erl(1)], is said to be a hidden
node. A hidden node will establish hidden connections to nodes not part of the same
global group, but normal (visible) connections to nodes part of the same global group.

A global group defined with PublishType == hidden, is said to be a hidden global
group. All nodes in a hidden global group are hidden nodes, regardless if they are started
with the -hidden command line flag or not.

For the processes and nodes to run smoothly using the global group functiontionality,
the following criteria must be met:

� An instance of the global group server, global group, must be running on each
node. The processes are automatically started and synchronized when a node is
started.

� All involved nodes must agree on the global group definition, or the behavior of
the system is undefined.

� All nodes in the system should belong to exactly one global group.

In the following description, a group node is a node belonging to the same global group
as the local node.

226 Kernel Application (KERNEL)

Kernel Reference Manual global group

Exports

global groups() -> fGroupName, GroupNamesg | undefined

Types:

� GroupName = atom()
� GroupNames = [GroupName]

Returns a tuple containing the name of the global group the local node belongs to, and
the list of all other known group names. Returns undefined if no global groups are
defined.

info() -> [fItem, Infog]

Types:

� Item, Info – see below

Returns a list containing information about the global groups. Each element of the list is
a tuple. The order of the tuples is not defined.

fstate, Stateg If the local node is part of a global group, State == synced. If no
global groups are defined, State == no conf.

fown group name, GroupNameg The name (atom) of the group that the local node
belongs to.

fown group nodes, Nodesg A list of node names (atoms), the group nodes.

fsynced nodes, Nodesg A list of node names, the group nodes currently synchronized
with the local node.

fsync error, Nodesg A list of node names, the group nodes with which the local
node has failed to synchronize.

fno contact, Nodesg A list of node names, the group nodes to which there are
currently no connections.

fother groups, Groupsg Groups is a list of tuples fGroupName, Nodesg, specifying
the name and nodes of the other global groups.

fmonitoring, Pidsg A list of pids, specifying the processes which have subscribed to
nodeup and nodedown messages.

monitor nodes(Flag) -> ok

Types:

� Flag = bool()

Depending on Flag, the calling process starts subscribing (Flag == true) or stops
subscribing (Flag == false) to node status change messages.

A process which has subscribed will receive the messages fnodeup, Nodeg and
fnodedown, Nodeg when a group node connects or disconnects, respectively.

own nodes() -> Nodes

Types:

� Nodes = [Node]
� Node = node()

227Kernel Application (KERNEL)

global group Kernel Reference Manual

Returns the names of all group nodes, regardless of their current status.

registered names(Where) -> Names

Types:

� Where = fnode, Nodeg | fgroup, GroupNameg
� Node = node()
� GroupName = atom()
� Names = [Name]
� Name = atom()

Returns a list of all names which are globally registered on the specified node or in the
specified global group.

send(Name, Msg) -> pid() | fbadarg, fName, Msggg

send(Where, Name, Msg) -> pid() | fbadarg, fName, Msggg

Types:

� Where = fnode, Nodeg | fgroup, GroupNameg
� Node = node()
� GroupName = atom()
� Name = atom()
� Msg = term()

Searches for Name, globally registered on the specified node or in the specified global
group, or – if the Where argument is not provided – in any global group. The global
groups are searched in the order in which they appear in the value of the
global groups configuration parameter.

If Name is found, the message Msg is sent to the corresponding pid. The pid is also the
return value of the function. If the name is not found, the function returns fbadarg,
fName, Msggg.

sync() -> ok

Synchronizes the group nodes, that is, the global name servers on the group nodes. Also
check the names globally registered in the current global group and unregisters them on
any known node not part of the group.

If synchronization is not possible, an error report is sent to the error logger (see also
error logger(3)).

Failure: ferror, f’invalid global groups definition’, Badgg if the
global groups configuration parameter has an invalid value Bad.

whereis name(Name) -> pid() | undefined

whereis name(Where, Name) -> pid() | undefined

Types:

� Where = fnode, Nodeg | fgroup, GroupNameg
� Node = node()
� GroupName = atom()
� Name = atom()

228 Kernel Application (KERNEL)

Kernel Reference Manual global group

Searches for Name, globally registered on the specified node or in the specified global
group, or – if the Where argument is not provided – in any global group. The global
groups are searched in the order in which they appear in the value of the
global groups configuration parameter.

If Name is found, the corresponding pid is returned. If the name is not found, the
function returns undefined.

NOTE

In the situation where a node has lost its connections to other nodes in its global group,
but has connections to nodes in other global groups, a request from another global
group may produce an incorrect or misleading result. For example, the isolated node
may not have accurate information about registered names in its global group.

Note also that the send/2,3 function is not secure.

Distribution of applications is highly dependent of the global group definitions. It is not
recommended that an application is distributed over several global groups of the
obvious reason that the registered names may be moved to another global group at
failover/takeover. There is nothing preventing doing this, but the application code must
in such case handle the situation.

SEE ALSO

[erl(1)], global(3) [page 221]

229Kernel Application (KERNEL)

heart Kernel Reference Manual

heart
Erlang Module

This modules contains the interface to the heart process. heart sends periodic
heartbeats to an external port program, which is also named heart. The purpose of the
heart port program is to check that the Erlang runtime system it is supervising is still
running. If the port program has not received any heartbeats within
HEART BEAT TIMEOUT seconds (default is 60 seconds), the system can be rebooted. Also,
if the system is equipped with a hardware watchdog timer and is running Solaris, the
watchdog can be used to supervise the entire system.

An Erlang runtime system to be monitored by a heart program, should be started with
the command line flag -heart (see also [erl(1)]. The heart process is then started
automatically:

% erl -heart ...

If the system should be rebooted because of missing heart-beats, or a terminated Erlang
runtime system, the environment variable HEART COMMAND has to be set before the
system is started. If this variable is not set, a warning text will be printed but the system
will not reboot. However, if the hardware watchdog is used, it will trigger a reboot
HEART BEAT BOOT DELAY seconds later nevertheless (default is 60).

To reboot on the WINDOWS platform HEART COMMAND can be set to heart -shutdown
(included in the Erlang delivery) or of course to any other suitable program which can
activate a reboot.

The hardware watchdog will not be started under Solaris if the environment variable
HW WD DISABLE is set.

The HEART BEAT TIMEOUT and HEART BEAT BOOT DELAY environment variables can be
used to configure the heart timeouts, they can be set in the operating system shell
before Erlang is started or be specified at the command line:

% erl -heart -env HEART BEAT TIMEOUT 30 ...

The value (in seconds) must be in the range 10 < X <= 65535.

It should be noted that if the system clock is adjusted with more than
HEART BEAT TIMEOUT seconds, heart will timeout and try to reboot the system. This
can happen, for example, if the system clock is adjusted automatically by use of NTP
(Network Time Protocol).

In the following descriptions, all function fails with reason badarg if heart is not
started.

230 Kernel Application (KERNEL)

Kernel Reference Manual heart

Exports

set cmd(Cmd) -> ok | ferror, fbad cmd, Cmdgg

Types:

� Cmd = string()

Sets a temporary reboot command. This command is used if a HEART COMMAND other
than the one specified with the environment variable should be used in order to reboot
the system. The new Erlang runtime system will (if it misbehaves) use the environment
variable HEART COMMAND to reboot.

Limitations: The length of the Cmd command string must be less than 2047 characters.

clear cmd() -> ok

Clears the temporary boot command. If the system terminates, the normal
HEART COMMAND is used to reboot.

get cmd() -> fok, Cmdg

Types:

� Cmd = string()

Get the temporary reboot command. If the command is cleared, the empty string will
be returned.

231Kernel Application (KERNEL)

inet Kernel Reference Manual

inet
Erlang Module

Provides access to TCP/IP protocols.

See also ERTS User’s Guide, Inet configuration for more information on how to configure
an Erlang runtime system for IP communication.

Two Kernel configuration parameters affect the behaviour of all sockets opened on an
Erlang node: inet default connect options can contain a list of default options used
for all sockets returned when doing connect, and inet default listen options can
contain a list of default options used when issuing a listen call. When accept is
issued, the values of the listensocket options are inherited, why no such application
variable is needed for accept.

Using the Kernel configuration parameters mentioned above, one can set default options
for all TCP sockets on a node. This should be used with care, but options like
fdelay send,trueg might be specified in this way. An example of starting an Erlang
node with all sockets using delayed send could look like this:

$ erl -sname test -kernel \
inet default connect options ’[fdelay send,trueg]’ \
inet default listen options ’[fdelay send,trueg]’

Note that the default option factive, trueg currently cannot be changed, for internal
reasons.

DATA TYPES

#hostent{h_addr_list = [ip_address()] % list of addresses for this host
h_addrtype = inet | inet6
h_aliases = [hostname()] % list of aliases
h_length = int() % length of address in bytes
h_name = hostname() % official name for host

The record is defined in the Kernel include file "inet.hrl"
Add the following directive to the module:

-include_lib("kernel/include/inet.hrl").

hostname() = atom() | string()

ip_address() = {N1,N2,N3,N4} % IPv4
| {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6

Ni = 0..255
Ki = 0..65535

posix()
an atom which is named from the Posix error codes used in

232 Kernel Application (KERNEL)

Kernel Reference Manual inet

Unix, and in the runtime libraries of most C compilers

socket()
see gen_tcp(3), gen_udp(3)

Addresses as inputs to functions can be either a string or a tuple. For instance, the IP
address 150.236.20.73 can be passed to gethostbyaddr/1 either as the string
“150.236.20.73” or as the tuple f150, 236, 20, 73g.

IPv4 address examples:

Address ip_address()
------- ------------
127.0.0.1 {127,0,0,1}
192.168.42.2 {192,168,42,2}

IPv6 address examples:

Address ip_address()
------- ------------
::1 {0,0,0,0,0,0,0,1}
::192.168.42.2 {0,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
FFFF::192.168.42.2

{16#FFFF,0,0,0,0,0,(192 bsl 8) bor 168,(42 bsl 8) bor 2}
3ffe:b80:1f8d:2:204:acff:fe17:bf38

{16#3ffe,16#b80,16#1f8d,16#2,16#204,16#acff,16#fe17,16#bf38}
fe80::204:acff:fe17:bf38

{16#fe80,0,0,0,0,16#204,16#acff,16#fe17,16#bf38}

A function that may be useful is inet parse:address/1:

1> inet parse:address("192.168.42.2").
fok,f192,168,42,2gg
2> inet parse:address("FFFF::192.168.42.2").
fok,f65535,0,0,0,0,0,49320,10754gg

Exports

close(Socket) -> ok

Types:

� Socket = socket()

Closes a socket of any type.

get rc() -> [fPar, Valg]

Types:

� Par, Val – see below

Returns the state of the Inet configuration database in form of a list of recorded
configuration parameters. (See the ERTS User’s Guide, Inet configuration, for more
information). Only parameters with other than default values are returned.

format error(Posix) -> string()

233Kernel Application (KERNEL)

inet Kernel Reference Manual

Types:

� Posix = posix()

Returns a diagnostic error string. See the section below for possible Posix values and
the corresponding strings.

getaddr(Host, Family) -> fok, Addressg | ferror, posix()g

Types:

� Host = ip address() | string() | atom()
� Family = inet | inet6
� Address = ip address()
� posix() = term()

Returns the IP-address for Host as a tuple of integers. Host can be an IP-address, a single
hostname or a fully qualified hostname.

getaddrs(Host, Family) -> fok, Addressesg | ferror, posix()g

Types:

� Host = ip address() | string() | atom()
� Addresses = [ip address()]
� Family = inet | inet6

Returns a list of all IP-addresses for Host. Host can be an IP-adress, a single hostname or
a fully qualified hostname.

gethostbyaddr(Address) -> fok, Hostentg | ferror, posix()g

Types:

� Address = string() | ip address()
� Hostent = #hostentfg

Returns a hostent record given an address.

gethostbyname(Name) -> fok, Hostentg | ferror, posix()g

Types:

� Hostname = hostname()
� Hostent = #hostentfg

Returns a hostent record given a hostname.

gethostbyname(Name, Family) -> fok, Hostentg | ferror, posix()g

Types:

� Hostname = hostname()
� Family = inet | inet6
� Hostent = #hostentfg

Returns a hostent record given a hostname, restricted to the given address family.

gethostname() -> fok, Hostnameg

Types:

234 Kernel Application (KERNEL)

Kernel Reference Manual inet

� Hostname = string()

Returns the local hostname. Will never fail.

getopts(Socket, Options) -> OptionValues | ferror, posix()g

Types:

� Socket = term()
� Options = [Opt | RawOptReq]
� Opt = atom()
� RawOptReq = fraw, Protocol, OptionNum, ValueSpecg
� Protocol = int()
� OptionNum = int()
� ValueSpec = ValueSize | ValueBin
� ValueSize = int()
� ValueBin = binary()
� OptionValues = [fOpt, Valg | fraw, Protocol, OptionNum, ValueBing]

Gets one or more options for a socket. See setopts/2 [page 236] for a list of available
options.

The number of elements in the returned OptionValues list does not necessarily
correspond to the number of options asked for. If the operating system fails to support
an option, it is simply left out in the returned list. An error tuple is only returned when
getting options for the socket is impossible (i.e. the socket is closed or the buffer size in
a raw request is too large). This behavior is kept for backward compatibility reasons.

A RawOptReq can be used to get information about socket options not (explicitly)
supported by the emulator. The use of raw socket options makes the code non portable,
but allows the Erlang programmer to take advantage of unusual features present on the
current platform.

The RawOptReq consists of the tag raw followed by the protocol level, the option
number and either a binary or the size, in bytes, of the buffer in which the option value
is to be stored. A binary should be used when the underlying getsockopt requires input
in the argument field, in which case the size of the binary should correspond to the
required buffer size of the return value. The supplied values in a RawOptReq correspond
to the second, third and fourth/fifth parameters to the getsockopt call in the C socket
API. The value stored in the buffer is returned as a binary ValueBin where all values are
coded in the native endianess.

Asking for and inspecting raw socket options require low level information about the
current operating system and TCP stack.

As an example, consider a Linux machine where the TCP INFO option could be used to
collect TCP statistics for a socket. Lets say we’re interested in the tcpi sacked field of
the struct tcp info filled in when asking for TCP INFO. To be able to access this
information, we need to know both the numeric value of the protocol level
IPPROTO TCP, the numeric value of the option TCP INFO, the size of the struct
tcp info and the size and offset of the specific field. By inspecting the headers or
writing a small C program, we found IPPROTO TCP to be 6, TCP INFO to be 11, the
structure size to be 92 (bytes), the offset of tcpi sacked to be 28 bytes and the actual
value to be a 32 bit integer. We could use the following code to retrieve the value:

235Kernel Application (KERNEL)

inet Kernel Reference Manual

get_tcpi_sacked(Sock) ->
{ok,[{raw,_,_,Info}]} = inet:getopts(Sock,[{raw,6,11,92}]),
<<_:28/binary,TcpiSacked:32/native,_/binary>> = Info,
TcpiSacked.

Preferably, you would check the machine type, the OS and the kernel version prior to
executing anything similar to the code above.

peername(Socket) -> fok, fAddress, Portgg | ferror, posix()g

Types:

� Socket = socket()
� Address = ip address()
� Port = int()

Returns the address and port for the other end of a connection.

port(Socket) -> fok, Portg

Types:

� Socket = socket()
� Port = int()

Returns the local port number for a socket.

sockname(Socket) -> fok, fAddress, Portgg | ferror, posix()g

Types:

� Socket = socket()
� Address = ip address()
� Port = int()

Returns the local address and port number for a socket.

setopts(Socket, Options) -> ok | ferror, posix()g

Types:

� Socket = term()
� Options = [fOpt, Valg | fraw, Protocol, Option, ValueBing]
� Protocol = int()
� OptionNum = int()
� ValueBin = binary()
� Opt, Val – see below

Sets one or more options for a socket. The following options are available:

236 Kernel Application (KERNEL)

Kernel Reference Manual inet

factive, true | false | onceg If the value is true, which is the default, everything
received from the socket will be sent as messages to the receiving process. If the
value is false (passive mode), the process must explicitly receive incoming data
by calling gen tcp:recv/2,3 or gen udp:recv/2,3 (depending on the type of
socket).
If the value is once (factive, onceg), one data message from the socket will be
sent to the process. To receive one more message, setopts/2 must be called again
with the factive, onceg option.
When using factive, onceg, the socket changes behaviour automatically when
data is received. This can sometimes be confusing in combination with connection
oriented sockets (i.e. gen tcp) as a socket with factive, falseg behaviour
reports closing differently than a socket with factive, trueg behaviour. To make
programming easier, a socket where the peer closed and this was detected while in
factive, falseg mode, will still generate the message ftcp closed,Socketg
when set to factive, onceg or factive, trueg mode. It is therefore safe to
assume that the message ftcp closed,Socketg, possibly followed by socket port
termination (depending on the exit on close option) will eventually appear
when a socket changes back and forth between factive, trueg and factive,
falseg mode. However, when peer closing is detected is all up to the underlying
TCP/IP stack and protocol.
Note that factive,trueg mode provides no flow control; a fast sender could
easily overflow the receiver with incoming messages. Use active mode only if your
high-level protocol provides its own flow control (for instance, acknowledging
received messages) or the amount of data exchanged is small. factive,falseg
mode or use of the factive, onceg mode provides flow control; the other side
will not be able send faster than the receiver can read.

fbroadcast, Booleang(UDP sockets) Enable/disable permission to send broadcasts.

fdelay send, Booleang Normally, when an Erlang process sends to a socket, the
driver will try to immediately send the data. If that fails, the driver will use any
means available to queue up the message to be sent whenever the operating system
says it can handle it. Setting fdelay send, trueg will make all messages queue
up. This makes the messages actually sent onto the network be larger but fewer.
The option actually affects the scheduling of send requests versus Erlang processes
instead of changing any real property of the socket. Needless to say it is an
implementation specific option. Default is false.

fdontroute, Booleang Enable/disable routing bypass for outgoing messages.

fexit on close, Booleang By default this option is set to true.
The only reason to set it to false is if you want to continue sending data to the
socket after a close has been detected, for instance if the peer has used
gen tcp:shutdown/2 [page 215] to shutdown the write side.

fheader, Sizeg This option is only meaningful if the binary option was specified
when the socket was created. If the header option is specified, the first Size
number bytes of data received from the socket will be elements of a list, and the
rest of the data will be a binary given as the tail of the same list. If for example
Size == 2, the data received will match [Byte1,Byte2|Binary].

fkeepalive, Booleang(TCP/IP sockets) Enables/disables periodic transmission on a
connected socket, when no other data is being exchanged. If the other end does
not respond, the connection is considered broken and an error message will be sent
to the controlling process. Default disabled.

237Kernel Application (KERNEL)

inet Kernel Reference Manual

fnodelay, Booleang(TCP/IP sockets) If Boolean == true, the TCP NODELAY option
is turned on for the socket, which means that even small amounts of data will be
sent immediately.

fpacket, PacketTypeg(TCP/IP sockets) Defines the type of packets to use for a
socket. The following values are valid:
raw | 0 No packaging is done.
1 | 2 | 4 Packets consist of a header specifying the number of bytes in the

packet, followed by that number of bytes. The length of header can be one,
two, or four bytes; the order of the bytes is big-endian. Each send operation
will generate the header, and the header will be stripped off on each receive
operation.

asn1 | cdr | sunrm | fcgi | tpkt | line These packet types only have
effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, there will be
one message sent to the controlling process for each complete packet received,
and, similarly, each call to gen tcp:recv/2,3 returns one complete packet.
The header is not stripped off.
The meanings of the packet types are as follows:
asn1 - ASN.1 BER,
sunrm - Sun’s RPC encoding,
cdr - CORBA (GIOP 1.1),
fcgi - Fast CGI,
tpkt - TPKT format [RFC1006],
line - Line mode, a packet is a line terminated with newline, lines longer than
the receive buffer are truncated.

fpacket size, Integerg(TCP/IP sockets) Sets the max allowed length of the packet
body. If the packet header indicates that the length of the packet is longer than the
max allowed length, the packet is considered invalid. The same happens if the
packet header is too big for the socket receive buffer.

fread packets, Integerg(UDP sockets) Sets the max number of UDP packets to
read without intervention from the socket when data is available. When this many
packets have been read and delivered to the destination process, new packets are
not read until a new notification of available data has arrived. The default is 5, and
if this parameter is set too high the system can become unresponsive due to UDP
packet flooding.

frecbuf, Integerg Gives the size of the receive buffer to use for the socket.
freuseaddr, Booleang Allows or disallows local reuse of port numbers. By default,

reuse is disallowed.
fsend timeout, Integerg Only allowed for connection oriented sockets.

Specifies a longest time to wait for a send operation to be accepted by the
underlying TCP stack. When the limit is exceeded, the send operation will return
ferror,timeoutg. How much of a packet that actually got sent is unknown, why
the socket should be closed whenever a timeout has occured. Default is infinity.

fsndbuf, Integerg Gives the size of the send buffer to use for the socket.
fpriority, Integerg Sets the SO PRIORITY socket level option on platforms where

this is implemented. The behaviour and allowed range varies on different systems.
The option is ignored on platforms where the option is not implemented. Use
with caution.

ftos, Integerg Sets IP TOS IP level options on platforms where this is implemented.
The behaviour and allowed range varies on different systems. The option is ignored
on platforms where the option is not implemented. Use with caution.

238 Kernel Application (KERNEL)

Kernel Reference Manual inet

In addition to the options mentioned above, raw option specifications can be used. The
raw options are specified as a tuple of arity four, beginning with the tag raw, followed by
the protocol level, the option number and the actual option value specified as a binary.
This corresponds to the second, third and fourth argument to the setsockopt call in
the C socket API. The option value needs to be coded in the native endianess of the
platform and, if a structure is required, needs to follow the struct alignment
conventions on the specific platform.

Using raw socket options require detailed knowledge about the current operating
system and TCP stack.

As an example of the usage of raw options, consider a Linux system where you want to
set the TCP LINGER2 option on the IPPROTO TCP protocol level in the stack. You know
that on this particular system it defaults to 60 (seconds), but you would like to lower it
to 30 for a particular socket. The TCP LINGER2 option is not explicitly supported by
inet, but you know that the protocol level translates to the number 6, the option
number to the number 8 and the value is to be given as a 32 bit integer. You can use
this line of code to set the option for the socket named Sock:

inet:setopts(Sock,[{raw,6,8,<<30:32/native>>}]),

As many options are silently discarded by the stack if they are given out of range, it
could be a good idea to check that a raw option really got accepted. This code places
the value in the variable TcpLinger2:

{ok,[{raw,6,8,<<TcpLinger2:32/native>>}]}=inet:getopts(Sock,[{raw,6,8,4}]),

Code such as the examples above is inherently non portable, even different versions of
the same OS on the same platform may respond differently to this kind of option
manipulation. Use with care.

Note that the default options for TCP/IP sockets can be changed with the Kernel
configuration parameters mentioned in the beginning of this document.

POSIX Error Codes

� e2big - argument list too long

� eacces - permission denied

� eaddrinuse - address already in use

� eaddrnotavail - cannot assign requested address

� eadv - advertise error

� eafnosupport - address family not supported by protocol family

� eagain - resource temporarily unavailable

� ealign - EALIGN

� ealready - operation already in progress

� ebade - bad exchange descriptor

� ebadf - bad file number

� ebadfd - file descriptor in bad state

� ebadmsg - not a data message

� ebadr - bad request descriptor

� ebadrpc - RPC structure is bad

239Kernel Application (KERNEL)

inet Kernel Reference Manual

� ebadrqc - bad request code

� ebadslt - invalid slot

� ebfont - bad font file format

� ebusy - file busy

� echild - no children

� echrng - channel number out of range

� ecomm - communication error on send

� econnaborted - software caused connection abort

� econnrefused - connection refused

� econnreset - connection reset by peer

� edeadlk - resource deadlock avoided

� edeadlock - resource deadlock avoided

� edestaddrreq - destination address required

� edirty - mounting a dirty fs w/o force

� edom - math argument out of range

� edotdot - cross mount point

� edquot - disk quota exceeded

� eduppkg - duplicate package name

� eexist - file already exists

� efault - bad address in system call argument

� efbig - file too large

� ehostdown - host is down

� ehostunreach - host is unreachable

� eidrm - identifier removed

� einit - initialization error

� einprogress - operation now in progress

� eintr - interrupted system call

� einval - invalid argument

� eio - I/O error

� eisconn - socket is already connected

� eisdir - illegal operation on a directory

� eisnam - is a named file

� el2hlt - level 2 halted

� el2nsync - level 2 not synchronized

� el3hlt - level 3 halted

� el3rst - level 3 reset

� elbin - ELBIN

� elibacc - cannot access a needed shared library

� elibbad - accessing a corrupted shared library

� elibexec - cannot exec a shared library directly

� elibmax - attempting to link in more shared libraries than system limit

240 Kernel Application (KERNEL)

Kernel Reference Manual inet

� elibscn - .lib section in a.out corrupted

� elnrng - link number out of range

� eloop - too many levels of symbolic links

� emfile - too many open files

� emlink - too many links

� emsgsize - message too long

� emultihop - multihop attempted

� enametoolong - file name too long

� enavail - not available

� enet - ENET

� enetdown - network is down

� enetreset - network dropped connection on reset

� enetunreach - network is unreachable

� enfile - file table overflow

� enoano - anode table overflow

� enobufs - no buffer space available

� enocsi - no CSI structure available

� enodata - no data available

� enodev - no such device

� enoent - no such file or directory

� enoexec - exec format error

� enolck - no locks available

� enolink - link has be severed

� enomem - not enough memory

� enomsg - no message of desired type

� enonet - machine is not on the network

� enopkg - package not installed

� enoprotoopt - bad proocol option

� enospc - no space left on device

� enosr - out of stream resources or not a stream device

� enosym - unresolved symbol name

� enosys - function not implemented

� enotblk - block device required

� enotconn - socket is not connected

� enotdir - not a directory

� enotempty - directory not empty

� enotnam - not a named file

� enotsock - socket operation on non-socket

� enotsup - operation not supported

� enotty - inappropriate device for ioctl

� enotuniq - name not unique on network

241Kernel Application (KERNEL)

inet Kernel Reference Manual

� enxio - no such device or address

� eopnotsupp - operation not supported on socket

� eperm - not owner

� epfnosupport - protocol family not supported

� epipe - broken pipe

� eproclim - too many processes

� eprocunavail - bad procedure for program

� eprogmismatch - program version wrong

� eprogunavail - RPC program not available

� eproto - protocol error

� eprotonosupport - protocol not supported

� eprototype - protocol wrong type for socket

� erange - math result unrepresentable

� erefused - EREFUSED

� eremchg - remote address changed

� eremdev - remote device

� eremote - pathname hit remote file system

� eremoteio - remote i/o error

� eremoterelease - EREMOTERELEASE

� erofs - read-only file system

� erpcmismatch - RPC version is wrong

� erremote - object is remote

� eshutdown - cannot send after socket shutdown

� esocktnosupport - socket type not supported

� espipe - invalid seek

� esrch - no such process

� esrmnt - srmount error

� estale - stale remote file handle

� esuccess - Error 0

� etime - timer expired

� etimedout - connection timed out

� etoomanyrefs - too many references

� etxtbsy - text file or pseudo-device busy

� euclean - structure needs cleaning

� eunatch - protocol driver not attached

� eusers - too many users

� eversion - version mismatch

� ewouldblock - operation would block

� exdev - cross-domain link

� exfull - message tables full

� nxdomain - the hostname or domain name could not be found

242 Kernel Application (KERNEL)

Kernel Reference Manual init

init
Erlang Module

The init module is pre-loaded and contains the code for the init system process
which coordinates the start-up of the system. The first function evaluated at start-up is
boot(BootArgs), where BootArgs is a list of command line arguments supplied to the
Erlang runtime system from the local operating system. See [erl(1)].

init reads the boot script which contains instructions on how to initiate the system.
See [script(4)] for more information about boot scripts.

init also contains functions to restart, reboot, and stop the system.

Exports

boot(BootArgs) -> void()

Types:

� BootArgs = [binary()]

Starts the Erlang runtime system. This function is called when the emulator is started
and coordinates system start-up.

BootArgs are all command line arguments except the emulator flags, that is, flags and
plain arguments. See [erl(1)].

init itself interprets some of the flags, see Command Line Flags [page 246] below. The
remaining flags (“user flags”) and plain arguments are passed to the init loop and can
be retrieved by calling get arguments/0 and get plain arguments/0, respectively.

get args() -> [Arg]

Types:

� Arg = atom()

Returns any plain command line arguments as a list of atoms (possibly empty). It is
recommended that get plain arguments/1 is used instead, because of the limited
length of atoms.

get argument(Flag) -> fok, Argg | error

Types:

� Flag = atom()
� Arg = [Values]
� Values = [string()]

Returns all values associated with the command line user flag Flag. If Flag is provided
several times, each Values is returned in preserved order.

243Kernel Application (KERNEL)

init Kernel Reference Manual

% erl -a b c -a d
...
1> init:get argument(a).
fok,[["b","c"],["d"]]g

There are also a number of flags, which are defined automatically and can be retrieved
using this function:

root The installation directory of Erlang/OTP, $ROOT.

2> init:get argument(root).
fok,[["/usr/local/otp/releases/otp beam solaris8 r10b patched"]]g

progname The name of the program which started Erlang.

3> init:get argument(progname).
fok,[["erl"]]g

home The home directory.

4> init:get argument(home).
fok,[["/home/harry"]]g

Returns error if there is no value associated with Flag.

get arguments() -> Flags

Types:

� Flags = [fFlag, Valuesg]
� Flag = atom()
� Values = [string()]

Returns all command line flags, as well as the system defined flags, see get argument/1.

get plain arguments() -> [Arg]

Types:

� Arg = string()

Returns any plain command line arguments as a list of strings (possibly empty).

get status() -> fInternalStatus, ProvidedStatusg

Types:

� InternalStatus = starting | started | stopping
� ProvidedStatus = term()

The current status of the init process can be inspected. During system startup
(initialization), InternalStatus is starting, and ProvidedStatus indicates how far
the boot script has been interpreted. Each fprogress, Infog term interpreted in the
boot script affects ProvidedStatus, that is, ProvidedStatus gets the value of Info.

reboot() -> void()

244 Kernel Application (KERNEL)

Kernel Reference Manual init

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the system terminates. If the -heart command line flag was given, the heart
program will try to reboot the system. Refer to heart(3) for more information.

To limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

restart() -> void()

The system is restarted inside the running Erlang node, which means that the emulator
is not restarted. All applications are taken down smoothly, all code is unloaded, and all
ports are closed before the system is booted again in the same way as initially started.
The same BootArgs are used again.

To limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

script id() -> Id

Types:

� Id = term()

Get the identity of the boot script used to boot the system. Id can be any Erlang term.
In the delivered boot scripts, Id is fName, Vsng. Name and Vsn are strings.

stop() -> void()

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the system terminates. If the -heart command line flag was given, the heart
program is terminated before the Erlang node terminates. Refer to heart(3) for more
information.

To limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

stop(Status) -> void()

Types:

� Status = int()>=0 | string()

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the system terminates by calling halt(Status). If the -heart command line flag
was given, the heart program is terminated before the Erlang node terminates. Refer to
heart(3) for more information.

To limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown time command line flag should be used.

245Kernel Application (KERNEL)

init Kernel Reference Manual

Command Line Flags

The init module interprets the following command line flags:

-- Everything following -- up to the next flag is considered plain arguments and can be
retrieved using get plain arguments/0.

-eval Expr Scans, parses and evaluates an arbitrary expression Expr during system
initialization. If any of these steps fail (syntax error, parse error or exception during
evaluation), Erlang stops with an error message. Here is an example that seeds the
random number generator:

% erl -eval ’fX,Y,Zg’ = now(), random:seed(X,Y,Z).’

This example uses Erlang as a hexadecimal calculator:

% erl -noshell -eval ’R = 16#1F+16#A0, io:format("~.16B~n", [R])’ \
-s erlang halt
BF

If multiple -eval expressions are specified, they are evaluated sequentially in the
order specified. -eval expressions are evaluated sequentially with -s and -run
function calls (this also in the order specified). As with -s and -run, an evaluation
that does not terminate, blocks the system initialization process.

-extra Everything following -extra is considered plain arguments and can be
retrieved using get plain arguments/0.

-run Mod [Func [Arg1, Arg2, ...]] Evaluates the specified function call during
system initialization. Func defaults to start. If no arguments are provided, the
function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1,
taking the list [Arg1,Arg2,...] as argument. All arguments are passed as strings.
If an exception is raised, Erlang stops with an error message.
Example:

% erl -run foo -run foo bar -run foo bar baz 1 2

This starts the Erlang runtime system and evaluates the following functions:

foo:start()
foo:bar()
foo:bar(["baz", "1", "2"]).

The functions are executed sequentially in an initialization process, which then
terminates normally and passes control to the user. This means that a -run call
which does not return will block further processing; to avoid this, use some variant
of spawn in such cases.

-s Mod [Func [Arg1, Arg2, ...]] Evaluates the specified function call during
system initialization. Func defaults to start. If no arguments are provided, the
function is assumed to be of arity 0. Otherwise it is assumed to be of arity 1,
taking the list [Arg1,Arg2,...] as argument. All arguments are passed as atoms.
If an exception is raised, Erlang stops with an error message.
Example:

246 Kernel Application (KERNEL)

Kernel Reference Manual init

% erl -s foo -s foo bar -s foo bar baz 1 2

This starts the Erlang runtime system and evaluates the following functions:

foo:start()
foo:bar()
foo:bar([baz, ’1’, ’2’]).

The functions are executed sequentially in an initialization process, which then
terminates normally and passes control to the user. This means that a -s call which
does not return will block further processing; to avoid this, use some variant of
spawn in such cases.
Due to the limited length of atoms, it is recommended that -run be used instead.

Example

% erl -- a b -children thomas claire -ages 7 3 -- x y
...

1> init:get plain arguments().
["a","b","x","y"]
2> init:get argument(children).
fok,[["thomas","claire"]]g
3> init:get argument(ages).
fok, [["7","3"]]g
4> init:get argument(silly).
error

SEE ALSO

erl prim loader(3) [page 87], heart(3) [page 230]

247Kernel Application (KERNEL)

net adm Kernel Reference Manual

net adm
Erlang Module

This module contains various network utility functions.

Exports

dns hostname(Host) -> fok, Nameg | ferror, Hostg

Types:

� Host = atom() | string()
� Name = string()

Returns the official name of Host, or ferror, Hostg if no such name is found. See also
inet(3).

host file() -> Hosts | ferror, Reasong

Types:

� Hosts = [Host]
� Host = atom()
� Reason = term()

Reads the .hosts.erlang file, see the section Files below. Returns the hosts in this file
as a list, or returns ferror, Reasong if the file could not be read. See file(3) for
possible values of Reason.

localhost() -> Name

Types:

� Name = string()

Returns the name of the local host. If Erlang was started with the -name command line
flag, Name is the fully qualified name.

names() -> fok, [fName, Portg]g | ferror, Reasong

names(Host) -> fok, [fName, Portg]g | ferror, Reasong

Types:

� Name = string()
� Port = int()
� Reason = address | term()

248 Kernel Application (KERNEL)

Kernel Reference Manual net adm

Similar to epmd -names, see epmd(1). Host defaults to the local host. Returns the
names and associated port numbers of the Erlang nodes that epmd at the specified host
has registered.

Returns ferror, addressg if epmd is not running. See inet(3) for other possible
values of Reason.

(arne@dunn)1> net adm:names().
fok,[f"arne",40262g]g

ping(Node) -> pong | pang

Types:

� Node = node()

Tries to set up a connection to Node. Returns pang if it fails, or pong if it is successful.

world() -> [node()]

world(Arg) -> [node()]

Types:

� Arg = silent | verbose

This function calls names(Host) for all hosts which are specified in the Erlang host file
.hosts.erlang, collects the replies and then evaluates ping(Node) on all those nodes.
Returns the list of all found nodes, regardless of the return value of ping(Node).

Arg defaults to silent. If Arg == verbose, the function writes information about
which nodes it is pinging to stdout.

This function can be useful when a node is started, and the names of the other nodes in
the network are not initially known.

Failure: ferror, Reasong if host file() returns ferror, Reasong.

world list(Hosts) -> [node()]

world list(Hosts, Arg) -> [node()]

Types:

� Hosts = [Host]
� Host = atom()
� Arg = silent | verbose

As world/0,1, but the hosts are given as argument instead of being read from
.hosts.erlang.

249Kernel Application (KERNEL)

net adm Kernel Reference Manual

Files

The .hosts.erlang file consists of a number of host names written as Erlang terms. It
is looked for in the current work directory, the user’s home directory, and $OTP ROOT
(the root directory of Erlang/OTP), in that order.

The format of the .hosts.erlang file must be one host name per line. The host names
must be within quotes as shown in the following example:

’super.eua.ericsson.se’.
’renat.eua.ericsson.se’.
’grouse.eua.ericsson.se’.
’gauffin1.eua.ericsson.se’.
^ (new line)

250 Kernel Application (KERNEL)

Kernel Reference Manual net kernel

net kernel
Erlang Module

The net kernel is a system process, registered as net kernel, which must be running for
distributed Erlang to work. The purpose of this process is to implement parts of the
BIFs spawn/4 and spawn link/4, and to provide monitoring of the network.

An Erlang node is started using the command line flag -name or -sname:

$ erl -sname foobar

It is also possible to call net kernel:start([foobar]) directly from the normal Erlang
shell prompt:

1> net kernel:start([foobar, shortnames]).
fok,<0.64.0>g
(foobar@gringotts)2>

If the node is started with the command line flag -sname, the node name will be
foobar@Host, where Host is the short name of the host (not the fully qualified domain
name). If started with the -name flag, Host is the fully qualified domain name. See
erl(1).

Normally, connections are established automatically when another node is referenced.
This functionality can be disabled by setting the Kernel configuration parameter
dist auto connect to false, see kernel(6) [page 32]. In this case, connections must be
established explicitly by calling net kernel:connect node/1.

Which nodes are allowed to communicate with each other is handled by the magic
cookie system, see [Distributed Erlang] in the Erlang Reference Manual.

Exports

allow(Nodes) -> ok | error

Types:

� Nodes = [node()]

Limits access to the specified set of nodes. Any access attempts made from (or to) nodes
not in Nodes will be rejected.

Returns error if any element in Nodes is not an atom.

connect node(Node) -> true | false | ignored

Types:

� Node = node()

251Kernel Application (KERNEL)

net kernel Kernel Reference Manual

Establishes a connection to Node. Returns true if successful, false if not, and ignored
if the local node is not alive.

monitor nodes(Flag) -> ok | Error

monitor nodes(Flag, Options) -> ok | Error

Types:

� Flag = true | false
� Options = [Option]
� Option – see below
� Error = error | ferror, term()g

The calling process subscribes or unsubcscribes to node status change messages. A
nodeup message is delivered to all subscribing process when a new node is connected,
and a nodedown message is delivered when a node is disconnected.

If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions
– started with the same Options – are stopped. Two option lists are considered the
same if they contain the same set of options.

As of kernel version 2.11.4, and erts version 5.5.4, the following is guaranteed:

� nodeup messages will be delivered before delivery of any message from the remote
node passed through the newly established connection.

� nodedown messages will not be delivered until all messages from the remote node
that have been passed through the connection have been delivered.

Note, that this is not guaranteed for kernel versions before 2.11.4.

As of kernel version 2.11.4 subscribtions can also be made before the net kernel
server has been started, i.e., net kernel:monitor nodes/[1,2] does not return
ignored.

The format of the node status change messages depends on Options. If Options is [],
which is the default, the format is:

{nodeup, Node} | {nodedown, Node}
Node = node()

If Options /= [], the format is:

{nodeup, Node, InfoList} | {nodedown, Node, InfoList}
Node = node()
InfoList = [{Tag, Val}]

InfoList is a list of tuples. Its contents depends on Options, see below.

Also, when OptionList == [] only visible nodes, that is, nodes that appear in the
result of nodes/0 [page 120], are monitored.

Option can be any of the following:

fnode type, NodeTypeg Currently valid values for NodeType are:

visible Subscribe to node status change messages for visible nodes only. The
tuple fnode type, visibleg is included in InfoList.

hidden Subscribe to node status change messages for hidden nodes only. The
tuple fnode type, hiddeng is included in InfoList.

252 Kernel Application (KERNEL)

Kernel Reference Manual net kernel

all Subscribe to node status change messages for both visible and hidden nodes.
The tuple fnode type, visible | hiddeng is included in InfoList.

nodedown reason The tuple fnodedown reason, Reasong is included in InfoList in
nodedown messages. Reason can be:

connection setup failed The connection setup failed (after nodeup messages
had been sent).

no network No network available.
net kernel terminated The net kernel process terminated.
shutdown Unspecified connection shutdown.
connection closed The connection was closed.
disconnect The connection was disconnected (forced from the current node).
net tick timeout Net tick timeout.
send net tick failed Failed to send net tick over the connection.
get status failed Status information retrieval from the Port holding the

connection failed.

get net ticktime() -> Res

Types:

� Res = NetTicktime | fongoing change to, NetTicktimeg
� NetTicktime = int()

Gets net ticktime (see kernel(6) [page 32]).

Currently defined return values (Res):

NetTicktime net ticktime is NetTicktime seconds.

fongoing change to, NetTicktimeg net kernel is currently changing net ticktime
to NetTicktime seconds.

set net ticktime(NetTicktime) -> Res

set net ticktime(NetTicktime, TransitionPeriod) -> Res

Types:

� NetTicktime = int() > 0
� TransitionPeriod = int() >= 0
� Res = unchanged | change initiated | fongoing change to, NewNetTicktimeg
� NewNetTicktime = int() > 0

Sets net ticktime (see kernel(6) [page 32]) to NetTicktime seconds.
TransitionPeriod defaults to 60.

Some definitions:

The minimum transition traffic interval (MTTI) minimum(NetTicktime,
PreviousNetTicktime)*1000 div 4 milliseconds.

The transition period The time of the least number of consecutive MTTIs to cover
TransitionPeriod seconds following the call to set net ticktime/2 (i.e.
((TransitionPeriod*1000 - 1) div MTTI + 1)*MTTI milliseconds).

253Kernel Application (KERNEL)

net kernel Kernel Reference Manual

If NetTicktime < PreviousNetTicktime, the actual net ticktime change will be
done at the end of the transition period; otherwise, at the beginning. During the
transition period, net kernel will ensure that there will be outgoing traffic on all
connections at least every MTTI millisecond.

Note:
The net ticktime changes have to be initiated on all nodes in the network (with the
same NetTicktime) before the end of any transition period on any node; otherwise,
connections may erroneously be disconnected.

Returns one of the following:

unchanged net ticktime already had the value of NetTicktime and was left
unchanged.

change initiated net kernel has initiated the change of net ticktime to
NetTicktime seconds.

fongoing change to, NewNetTicktimeg The request was ignored; because,
net kernel was busy changing net ticktime to NewTicktime seconds.

start([Name]) -> fok, pid()g | ferror, Reasong

start([Name, NameType]) -> fok, pid()g | ferror, Reasong

start([Name, NameType, Ticktime]) -> fok, pid()g | ferror, Reasong

Types:

� Name = atom()
� NameType = shortnames | longnames
� Reason = falready started, pid()g | term()

Note that the argument is a list with exactly one, two or three arguments. NameType
defaults to longnames and Ticktime to 15000.

Turns a non-distributed node into a distributed node by starting net kernel and other
necessary processes.

stop() -> ok | ferror, not allowed | not foundg

Turns a distributed node into a non-distributed node. For other nodes in the network,
this is the same as the node going down. Only possible when the net kernel was started
using start/1, otherwise returns ferror, not allowedg. Returns ferror,
not foundg if the local node is not alive.

254 Kernel Application (KERNEL)

Kernel Reference Manual os

os
Erlang Module

The functions in this module are operating system specific. Careless use of these
functions will result in programs that will only run on a specific platform. On the other
hand, with careful use these functions can be of help in enabling a program to run on
most platforms.

Exports

cmd(Command) -> string()

Types:

� Command = string() | atom()

Executes Command in a command shell of the target OS, captures the standard output of
the command and returns this result as a string. This function is a replacement of the
previous unix:cmd/1; on a Unix platform they are equivalent.

Examples:

LsOut = os:cmd("ls"), % on unix platform
DirOut = os:cmd("dir"), % on Win32 platform

Note that in some cases, standard output of a command when called from another
program (for example, os:cmd/1) may differ, compared to the standard output of the
command when called directly from an OS command shell.

find executable(Name) -> Filename | false

find executable(Name, Path) -> Filename | false

Types:

� Name = string()
� Path = string()
� Filename = string()

These two functions look up an executable program given its name and a search path, in
the same way as the underlying operating system. find executable/1 uses the current
execution path (that is, the environment variable PATH on Unix and Windows).

Path, if given, should conform to the syntax of execution paths on the operating
system. The absolute filename of the executable program Name is returned, or false if
the program was not found.

getenv() -> [string()]

255Kernel Application (KERNEL)

os Kernel Reference Manual

Returns a list of all environement variables. Each environment variable is given as a
single string on the format "VarName=Value", where VarName is the name of the
variable and Value its value.

getenv(VarName) -> Value | false

Types:

� VarName = string()
� Value = string()

Returns the Value of the environment variable VarName, or false if the environment
variable is undefined.

getpid() -> Value

Types:

� Value = string()

Returns the process identifier of the current Erlang emulator in the format most
commonly used by the operating system environment. Value is returned as a string
containing the (usually) numerical identifier for a process. On Unix, this is typically the
return value of the getpid() system call. On VxWorks, Value contains the task id
(decimal notation) of the Erlang task. On Windows, the process id as returned by the
GetCurrentProcessId() system call is used.

putenv(VarName, Value) -> true

Types:

� VarName = string()
� Value = string()

Sets a new Value for the environment variable VarName.

type() -> fOsfamily, Osnameg | Osfamily

Types:

� Osfamily = win32 | unix | vxworks
� Osname = atom()

Returns the Osfamily and, in some cases, Osname of the current operating system.

On Unix, Osname will have same value as uname -s returns, but in lower case. For
example, on Solaris 1 and 2, it will be sunos.

In Windows, Osname will be either nt (on Windows NT), or windows (on Windows 95).

On VxWorks the OS family alone is returned, that is vxworks.

Note:
Think twice before using this function. Use the filename module if you want to
inspect or build file names in a portable way. Avoid matching on the Osname atom.

version() -> fMajor, Minor, Releaseg | VersionString

256 Kernel Application (KERNEL)

Kernel Reference Manual os

Types:

� Major = Minor = Release = integer()
� VersionString = string()

Returns the operating system version. On most systems, this function returns a tuple,
but a string will be returned instead if the system has versions which cannot be
expressed as three numbers.

Note:
Think twice before using this function. If you still need to use it, always call
os:type() first.

257Kernel Application (KERNEL)

packages Kernel Reference Manual

packages
Erlang Module

Introduction

Packages are simply namespaces for modules. All old Erlang modules automatically
belong to the top level (“empty-string”) namespace, and do not need any changes.

The full name of a packaged module is written as e.g. “fee.fie.foe.foo”, i.e., as atoms
separated by periods, where the package name is the part up to but not including the
last period; in this case “fee.fie.foe”. A more concrete example is the module
erl.lang.term, which is in the package erl.lang. Package names can have any
number of segments, as in erl.lang.list.sort. The atoms in the name can be
quoted, as in foo.’Bar’.baz, or even the whole name, as in ’foo.bar.baz’ but the
concatenation of atoms and periods must not contain two consecutive period characters
or end with a period, as in ’foo..bar’, foo.’.bar’, or foo.’bar.’. The periods must
not be followed by whitespace.

The code loader maps module names onto the file system directory structure. E.g., the
module erl.lang.term corresponds to a file .../erl/lang/term.beam in the search
path. Note that the name of the actual object file corresponds to the last part only of
the full module name. (Thus, old existing modules such as lists simply map to
.../lists.beam, exactly as before.)

A packaged module in a file “foo/bar/fred.erl” is declared as:

-module(foo.bar.fred).

This can be compiled and loaded from the Erlang shell using c(fred), if your current
directory is the same as that of the file. The object file will be named fred.beam.

The Erlang search path works exactly as before, except that the package segments will
be appended to each directory in the path in order to find the file. E.g., assume the path
is ["/usr/lib/erl", "/usr/local/lib/otp/legacy/ebin", "/home/barney/erl"].
Then, the code for a module named foo.bar.fred will be searched for first as
"/usr/lib/erl/foo/bar/fred.beam", then
"/usr/local/lib/otp/legacy/ebin/foo/bar/fred.beam" and lastly
"/home/barney/erl/foo/bar/fred.beam". A module like lists, which is in the
top-level package, will be looked for as "/usr/lib/erl/lists.beam",
"/usr/local/lib/otp/legacy/ebin/lists.beam" and
"/home/barney/erl/lists.beam".

Programming

Normally, if a call is made from one module to another, it is assumed that the called
module belongs to the same package as the source module. The compiler automatically
expands such calls. E.g., in:

-module(foo.bar.m1).
-export([f/1]).

f(X) -> m2:g(X).

258 Kernel Application (KERNEL)

Kernel Reference Manual packages

m2:g(X) becomes a call to foo.bar.m2 If this is not what was intended, the call can be
written explicitly, as in

-module(foo.bar.m1).
-export([f/1]).

f(X) -> fee.fie.foe.m2:g(X).

Because the called module is given with an explicit package name, no expansion is done
in this case.

If a module from another package is used repeatedly in a module, an import declaration
can make life easier:

-module(foo.bar.m1).
-export([f/1, g/1]).
-import(fee.fie.foe.m2).

f(X) -> m2:g(X).
g(X) -> m2:h(X).

will make the calls to m2 refer to fee.fie.foe.m2. More generally, a declaration
-import(Package.Module). will cause calls to Module to be expanded to
Package.Module.

Old-style function imports work as normal (but full module names must be used); e.g.:

-import(fee.fie.foe.m2, [g/1, h/1]).

however, it is probably better to avoid this form of import altogether in new code, since
it makes it hard to see what calls are really “remote”.

If it is necessary to call a module in the top-level package from within a named package,
the module name can be written either with an initial period as in e.g. “.lists”, or with
an empty initial atom, as in “’’.lists”. However, the best way is to use an import
declaration - this is most obvious to the eye, and makes sure we don’t forget adding a
period somewhere:

-module(foo.bar.fred).
-export([f/1]).
-import(lists).

f(X) -> lists:reverse(X).

The dot-syntax for module names can be used in any expression. All segments must be
constant atoms, and the result must be a well-formed package/module name. E.g.:

spawn(foo.bar.fred, f, [X])

is equivalent to spawn(’foo.bar.fred’, f, [X]).

The Erlang Shell

The shell also automatically expands remote calls, however currently no expansions are
made by default. The user can change the behaviour by using the import/1 shell
function (or its abbreviation use/1). E.g.:

1> import(foo.bar.m).
ok
2> m:f().

259Kernel Application (KERNEL)

packages Kernel Reference Manual

will evaluate foo.bar.m:f(). If a new import is made of the same name, this overrides
any previous import. (It is likely that in the future, some system packages will be
pre-imported.)

In addition, the function import all/1 (and its alias use all/1) imports all modules
currently found in the path for a given package name. E.g., assuming the files
“.../foo/bar/fred.beam”, “.../foo/bar/barney.beam” and
“.../foo/bar/bambam.beam” can be found from our current path,

1> import all(foo.bar).

will make fred, barney and bambam expand to foo.bar.fred, foo.bar.barney and
foo.bar.bambam, respectively.

Note: The compiler does not have an “import all” directive, for the reason that Erlang
has no compile time type checking. E.g. if the wrong search path is used at compile
time, a call m:f(...) could be expanded to foo.bar.m:f(...) without any warning,
instead of the intended frob.ozz.m:f(...), if package foo.bar happens to be found
first in the path. Explicitly declaring each use of a module makes for safe code.

Exports

no functions exported

260 Kernel Application (KERNEL)

Kernel Reference Manual pg2

pg2
Erlang Module

This module implements process groups. The groups in this module differ from the
groups in the module pg in several ways. In pg, each message is sent to all members in
the group. In this module, each message may be sent to one, some, or all members.

A group of processes can be accessed by a common name. For example, if there is a
group named foobar, there can be a set of processes (which can be located on different
nodes) which are all members of the group foobar. There is no special functions for
sending a message to the group. Instead, client functions should be written with the
functions get members/1 and get local members/1 to find out which processes are
members of the group. Then the message can be sent to one or more members of the
group.

If a member terminates, it is automatically removed from the group.

Warning:
This module is used by the disk log module for managing distributed disk logs. The
disk log names are used as group names, which means that some action may need to
be taken to avoid name clashes.

Exports

create(Name) -> void()

Types:

� Name = term()

Creates a new, empty process group. The group is globally visible on all nodes. If the
group exists, nothing happens.

delete(Name) -> void()

Types:

� Name = term()

Deletes a process group.

get closest pid(Name) -> Pid | ferror, Reasong

Types:

� Name = term()
� Pid = pid()

261Kernel Application (KERNEL)

pg2 Kernel Reference Manual

� Reason = fno process, Nameg | fno such group, Nameg

This is a useful dispatch function which can be used from client functions. It returns a
process on the local node, if such a process exist. Otherwise, it chooses one randomly.

get members(Name) -> [Pid] | ferror, Reasong

Types:

� Name = term()
� Pid = pid()
� Reason = fno such group, Nameg

Returns all processes in the group Name. This function should be used from within a
client function that accesses the group. It is therefore optimized for speed.

get local members(Name) -> [Pid] | ferror, Reasong

Types:

� Name = term()
� Pid = pid()
� Reason = fno such group, Nameg

Returns all processes running on the local node in the group Name. This function should
to be used from within a client function that accesses the group. It is therefore
optimized for speed.

join(Name, Pid) -> ok | ferror, Reasong

Types:

� Name = term()
� Pid = pid()
� Reason = fno such group, Nameg

Joins the process Pid to the group Name. A process can join a group several times; it
must then leave the group the same number of times.

leave(Name, Pid) -> ok | ferror, Reasong

Types:

� Name = term()
� Pid = pid()
� Reason = fno such group, Nameg

Makes the process Pid leave the group Name. If the process is not a member of the
group, ok is returned.

which groups() -> [Name]

Types:

� Name = term()

Returns a list of all known groups.

start()

start link() -> fok, Pidg | ferror, Reasong

262 Kernel Application (KERNEL)

Kernel Reference Manual pg2

Types:

� Pid = pid()
� Reason = term()

Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is
started dynamically if it is needed. This is useful during development, but in a target
system the server should be started explicitly. Use configuration parameters for kernel
for this.

See Also

kernel(6) [page 32], [pg(3)]

263Kernel Application (KERNEL)

rpc Kernel Reference Manual

rpc
Erlang Module

This module contains services which are similar to remote procedure calls. It also
contains broadcast facilities and parallel evaluators. A remote procedure call is a method
to call a function on a remote node and collect the answer. It is used for collecting
information on a remote node, or for running a function with some specific side effects
on the remote node.

Exports

call(Node, Module, Function, Args) -> Res | fbadrpc, Reasong

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]
� Res = term()
� Reason = term()

Evaluates apply(Module, Function, Args) on the node Node and returns the
corresponding value Res, or fbadrpc, Reasong if the call fails.

call(Node, Module, Function, Args, Timeout) -> Res | fbadrpc, Reasong

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]
� Res = term()
� Reason = timeout | term()
� Timeout = int() | infinity

Evaluates apply(Module, Function, Args) on the node Node and returns the
corresponding value Res, or fbadrpc, Reasong if the call fails. Timeout is a timeout
value in milliseconds. If the call times out, Reason is timeout.

If the reply arrives after the call times out, no message will contaminate the caller’s
message queue, since this function spawns off a middleman process to act as (a void)
destination for such an orphan reply. This feature also makes this function more
expensive than call/4 at the caller’s end.

block call(Node, Module, Function, Args) -> Res | fbadrpc, Reasong

Types:

264 Kernel Application (KERNEL)

Kernel Reference Manual rpc

� Node = node()
� Module = Function = atom()
� Args = [term()]
� Res = term()
� Reason = term()

Like call/4, but the RPC server at Node does not create a separate process to handle
the call. Thus, this function can be used if the intention of the call is to block the RPC
server from any other incoming requests until the request has been handled. The
function can also be used for efficiency reasons when very small fast functions are
evaluated, for example BIFs that are guaranteed not to suspend.

block call(Node, Module, Function, Args, Timeout) -> Res | fbadrpc, Reasong

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]
� Timeout = int() | infinity
� Res = term()
� Reason = term()

Like block call/4, but with a timeout value in the same manner as call/5.

async call(Node, Module, Function, Args) -> Key

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]
� Key – see below

Implements call streams with promises, a type of RPC which does not suspend the caller
until the result is finished. Instead, a key is returned which can be used at a later stage
to collect the value. The key can be viewed as a promise to deliver the answer.

In this case, the key Key is returned, which can be used in a subsequent call to yield/1
or nb yield/1,2 to retrieve the value of evaluating apply(Module, Function, Args)
on the node Node.

yield(Key) -> Res | fbadrpc, Reasong

Types:

� Key – see async call/4
� Res = term()
� Reason = term()

Returns the promised answer from a previous async call/4. If the answer is available,
it is returned immediately. Otherwise, the calling process is suspended until the answer
arrives from Node.

nb yield(Key) -> fvalue, Valg | timeout

Types:

265Kernel Application (KERNEL)

rpc Kernel Reference Manual

� Key – see async call/4
� Val = Res | fbadrpc, Reasong
� Res = term()
� Reason = term()

Equivalent to nb yield(Key, 0).

nb yield(Key, Timeout) -> fvalue, Valg | timeout

Types:

� Key – see async call/4
� Timeout = int() | infinity
� Val = Res | fbadrpc, Reasong
� Res = term()
� Reason = term()

This is a non-blocking version of yield/1. It returns the tuple fvalue, Valg when the
computation has finished, or timeout when Timeout milliseconds has elapsed.

multicall(Module, Function, Args) -> fResL, BadNodesg

Types:

� Module = Function = atom()
� Args = [term()]
� ResL = [term()]
� BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args,
infinity).

multicall(Nodes, Module, Function, Args) -> fResL, BadNodesg

Types:

� Nodes = [node()]
� Module = Function = atom()
� Args = [term()]
� ResL = [term()]
� BadNodes = [node()]

Equivalent to multicall(Nodes, Module, Function, Args, infinity).

multicall(Module, Function, Args, Timeout) -> fResL, BadNodesg

Types:

� Module = Function = atom()
� Args = [term()]
� Timeout = int() | infinity
� ResL = [term()]
� BadNodes = [node()]

Equivalent to multicall([node()|nodes()], Module, Function, Args, Timeout).

multicall(Nodes, Module, Function, Args, Timeout) -> fResL, BadNodesg

266 Kernel Application (KERNEL)

Kernel Reference Manual rpc

Types:

� Nodes = [node()]
� Module = Function = atom()
� Args = [term()]
� Timeout = int() | infinity
� ResL = [term()]
� BadNodes = [node()]

In contrast to an RPC, a multicall is an RPC which is sent concurrently from one client
to multiple servers. This is useful for collecting some information from a set of nodes, or
for calling a function on a set of nodes to achieve some side effects. It is semantically the
same as iteratively making a series of RPCs on all the nodes, but the multicall is faster as
all the requests are sent at the same time and are collected one by one as they come
back.

The function evaluates apply(Module, Function, Args) on the specified nodes and
collects the answers. It returns fResL, Badnodesg, where Badnodes is a list of the
nodes that terminated or timed out during computation, and ResL is a list of the return
values. Timeout is a time (integer) in milliseconds, or infinity.

The following example is useful when new object code is to be loaded on all nodes in
the network, and also indicates some side effects RPCs may produce:

%% Find object code for module Mod
{Mod, Bin, File} = code:get_object_code(Mod),

%% and load it on all nodes including this one
{ResL, _} = rpc:multicall(code, load_binary, [Mod, Bin, File,]),

%% and then maybe check the ResL list.

cast(Node, Module, Function, Args) -> void()

Types:

� Node = node()
� Module = Function = atom()
� Args = [term()]

Evaluates apply(Module, Function, Args) on the node Node. No response is
delivered and the calling process is not suspended until the evaluation is complete, as is
the case with call/4,5.

eval everywhere(Module, Funtion, Args) -> void()

Types:

� Module = Function = atom()
� Args = [term()]

Equivalent to eval everywhere([node()|nodes()], Module, Function, Args).

eval everywhere(Nodes, Module, Function, Args) -> void()

Types:

� Nodes = [node()]
� Module = Function = atom()

267Kernel Application (KERNEL)

rpc Kernel Reference Manual

� Args = [term()]

Evaluates apply(Module, Function, Args) on the specified nodes. No answers are
collected.

abcast(Name, Msg) -> void()

Types:

� Name = atom()
� Msg = term()

Equivalent to abcast([node()|nodes()], Name, Msg).

abcast(Nodes, Name, Msg) -> void()

Types:

� Nodes = [node()]
� Name = atom()
� Msg = term()

Broadcasts the message Msg asynchronously to the registered process Name on the
specified nodes.

sbcast(Name, Msg) -> fGoodNodes, BadNodesg

Types:

� Name = atom()
� Msg = term()
� GoodNodes = BadNodes = [node()]

Equivalent to sbcast([node()|nodes()], Name, Msg).

sbcast(Nodes, Name, Msg) -> fGoodNodes, BadNodesg

Types:

� Name = atom()
� Msg = term()
� Nodes = GoodNodes = BadNodes = [node()]

Broadcasts the message Msg synchronously to the registered process Name on the
specified nodes.

Returns fGoodNodes, BadNodesg, where GoodNodes is the list of nodes which have
Name as a registered process.

The function is synchronous in the sense that it is known that all servers have received
the message when the call returns. It is not possible to know that the servers have
actually processed the message.

Any further messages sent to the servers, after this function has returned, will be
received by all servers after this message.

server call(Node, Name, ReplyWrapper, Msg) -> Reply | ferror, Reasong

Types:

� Node = node()
� Name = atom()

268 Kernel Application (KERNEL)

Kernel Reference Manual rpc

� ReplyWrapper = Msg = Reply = term()
� Reason = term()

This function can be used when interacting with a server called Name at node Node. It is
assumed that the server receives messages in the format fFrom, Msgg and replies using
From ! fReplyWrapper, Node, Replyg. This function makes such a server call and
ensures that the entire call is packed into an atomic transaction which either succeeds or
fails. It never hangs, unless the server itself hangs.

The function returns the answer Reply as produced by the server Name, or ferror,
Reasong.

multi server call(Name, Msg) -> fReplies, BadNodesg

Types:

� Name = atom()
� Msg = term()
� Replies = [Reply]
� Reply = term()
� BadNodes = [node()]

Equivalent to multi server call([node()|nodes()], Name, Msg).

multi server call(Nodes, Name, Msg) -> fReplies, BadNodesg

Types:

� Nodes = [node()]
� Name = atom()
� Msg = term()
� Replies = [Reply]
� Reply = term()
� BadNodes = [node()]

This function can be used when interacting with servers called Name on the specified
nodes. It is assumed that the servers receive messages in the format fFrom, Msgg and
reply using From ! fName, Node, Replyg, where Node is the name of the node where
the server is located. The function returns fReplies, Badnodesg, where Replies is a
list of all Reply values and BadNodes is a list of the nodes which did not exist, or where
the server did not exist, or where the server terminated before sending any reply.

safe multi server call(Name, Msg) -> fReplies, BadNodesg

safe multi server call(Nodes, Name, Msg) -> fReplies, BadNodesg

Warning:
This function is deprecated. Use multi server call/2,3 instead.

In Erlang/OTP R6B and earlier releases, multi server call/2,3 could not handle the
case where the remote node exists, but there is no server called Name. Instead this
function had to be used. In Erlang/OTP R7B and later releases, however, the functions
are equivalent, except for this function being slightly slower.

269Kernel Application (KERNEL)

rpc Kernel Reference Manual

parallel eval(FuncCalls) -> ResL

Types:

� FuncCalls = [fModule, Function, Argsg]
� Module = Function = atom()
� Args = [term()]
� ResL = [term()]

For every tuple in FuncCalls, evaluates apply(Module, Function, Args) on some
node in the network. Returns the list of return values, in the same order as in
FuncCalls.

pmap(fModule, Functiong, ExtraArgs, List2) -> List1

Types:

� Module = Function = atom()
� ExtraArgs = [term()]
� List1 = [Elem]
� Elem = term()
� List2 = [term()]

Evaluates apply(Module, Function, [Elem|ExtraArgs]), for every element Elem in
List1, in parallell. Returns the list of return values, in the same order as in List1.

pinfo(Pid) -> [fItem, Infog] | undefined

Types:

� Pid = pid()
� Item, Info – see erlang:process info/1

Location transparent version of the BIF process info/1.

pinfo(Pid, Item) -> fItem, Infog | undefined | []

Types:

� Pid = pid()
� Item, Info – see erlang:process info/1

Location transparent version of the BIF process info/2.

270 Kernel Application (KERNEL)

Kernel Reference Manual seq trace

seq trace
Erlang Module

Sequential tracing makes it possible to trace all messages resulting from one initial
message. Sequential tracing is completely independent of the ordinary tracing in Erlang,
which is controlled by the erlang:trace/3 BIF. See the chapter What is Sequential
Tracing [page 274] below for more information about what sequential tracing is and
how it can be used.

seq trace provides functions which control all aspects of sequential tracing. There are
functions for activation, deactivation, inspection and for collection of the trace output.

Note:
The implementation of sequential tracing is in beta status. This means that the
programming interface still might undergo minor adjustments (possibly
incompatible) based on feedback from users.

Exports

set token(Token) -> PreviousToken

Types:

� Token = PreviousToken = term() | []

Sets the trace token for the calling process to Token. If Token == [] then tracing is
disabled, otherwise Token should be an Erlang term returned from get token/0 or
set token/1. set token/1 can be used to temporarily exclude message passing from
the trace by setting the trace token to empty like this:

OldToken = seq_trace:set_token([]), % set to empty and save
% old value

% do something that should not be part of the trace
io:format("Exclude the signalling caused by this~n"),
seq_trace:set_token(OldToken), % activate the trace token again
...

Returns the previous value of the trace token.

set token(Component, Val) -> fComponent, OldValg

Types:

� Component = label | serial | Flag
� Flag = send | ’receive’ | print | timestamp

271Kernel Application (KERNEL)

seq trace Kernel Reference Manual

� Val = OldVal – see below

Sets the individual Component of the trace token to Val. Returns the previous value of
the component.

set token(label, Int) The label component is an integer which identifies all events
belonging to the same sequential trace. If several sequential traces can be active
simultaneously, label is used to identify the separate traces. Default is 0.

set token(serial, SerialValue) SerialValue = fPrevious, Currentg. The
serial component contains counters which enables the traced messages to be
sorted, should never be set explicitly by the user as these counters are updated
automatically. Default is f0, 0g.

set token(send, Bool) A trace token flag (true | false) which enables/disables
tracing on message sending. Default is false.

set token(’receive’, Bool) A trace token flag (true | false) which
enables/disables tracing on message reception. Default is false.

set token(print, Bool) A trace token flag (true | false) which enables/disables
tracing on explicit calls to seq trace:print/1. Default is false.

set token(timestamp, Bool) A trace token flag (true | false) which
enables/disables a timestamp to be generated for each traced event. Default is
false.

get token() -> TraceToken

Types:

� TraceToken = term() | []

Returns the value of the trace token for the calling process. If [] is returned, it means
that tracing is not active. Any other value returned is the value of an active trace token.
The value returned can be used as input to the set token/1 function.

get token(Component) -> fComponent, Valg

Types:

� Component = label | serial | Flag
� Flag = send | ’receive’ | print | timestamp
� Val – see set token/2

Returns the value of the trace token component Component. See set token/2 [page 271]
for possible values of Component and Val.

print(TraceInfo) -> void()

Types:

� TraceInfo = term()

Puts the Erlang term TraceInfo into the sequential trace output if the calling process
currently is executing within a sequential trace and the print flag of the trace token is
set.

print(Label, TraceInfo) -> void()

Types:

272 Kernel Application (KERNEL)

Kernel Reference Manual seq trace

� Label = int()
� TraceInfo = term()

Same as print/1 with the additional condition that TraceInfo is output only if Label
is equal to the label component of the trace token.

reset trace() -> void()

Sets the trace token to empty for all processes on the local node. The process internal
counters used to create the serial of the trace token is set to 0. The trace token is set to
empty for all messages in message queues. Together this will effectively stop all ongoing
sequential tracing in the local node.

set system tracer(Tracer) -> OldTracer

Types:

� Tracer = OldTracer = pid() | port() | false

Sets the system tracer. The system tracer can be either a process or port denoted by
Tracer. Returns the previous value (which can be false if no system tracer is active).

Failure: fbadarg, Infogg if Pid is not an existing local pid.

get system tracer() -> Tracer

Types:

� Tracer = pid() | port() | false

Returns the pid or port identifier of the current system tracer or false if no system
tracer is activated.

Trace Messages Sent To the System Tracer

The format of the messages are:

{seq_trace, Label, SeqTraceInfo, TimeStamp}

or

{seq_trace, Label, SeqTraceInfo}

depending on whether the timestamp flag of the trace token is set to true or false.
Where:

Label = int()
TimeStamp = {Seconds, Milliseconds, Microseconds}
Seconds = Milliseconds = Microseconds = int()

The SeqTraceInfo can have the following formats:

fsend, Serial, From, To, Messageg Used when a process From with its trace token
flag print set to true has sent a message.

f’receive’, Serial, From, To, Messageg Used when a process To receives a
message with a trace token that has the ’receive’ flag set to true.

fprint, Serial, From, , Infog Used when a process From has called
seq trace:print(Label, TraceInfo) and has a trace token with the print flag
set to true and label set to Label.

273Kernel Application (KERNEL)

seq trace Kernel Reference Manual

Serial is a tuple fPreviousSerial, ThisSerialg, where the first integer
PreviousSerial denotes the serial counter passed in the last received message which
carried a trace token. If the process is the first one in a new sequential trace,
PreviousSerial is set to the value of the process internal “trace clock”. The second
integer ThisSerial is the serial counter that a process sets on outgoing messages and it
is based on the process internal “trace clock” which is incremented by one before it is
attached to the trace token in the message.

What is Sequential Tracing

Sequential tracing is a way to trace a sequence of messages sent between different local
or remote processes, where the sequence is initiated by one single message. In short it
works like this:

Each process has a trace token, which can be empty or not empty. When not empty the
trace token can be seen as the tuple fLabel, Flags, Serial, Fromg. The trace token
is passed invisibly with each message.

In order to start a sequential trace the user must explicitly set the trace token in the
process that will send the first message in a sequence.

The trace token of a process is set each time the process matches a message in a receive
statement, according to the trace token carried by the received message, empty or not.

On each Erlang node a process can be set as the system tracer. This process will receive
trace messages each time a message with a trace token is sent or received (if the trace
token flag send or ’receive’ is set). The system tracer can then print each trace event,
write it to a file or whatever suitable.

Note:
The system tracer will only receive those trace events that occur locally within the
Erlang node. To get the whole picture of a sequential trace that involves processes on
several Erlang nodes, the output from the system tracer on each involved node must
be merged (off line).

In the following sections Sequential Tracing and its most fundamental concepts are
described.

Trace Token

Each process has a current trace token. Initially the token is empty. When the process
sends a message to another process, a copy of the current token will be sent “invisibly”
along with the message.

The current token of a process is set in two ways, either

1. explicitly by the process itself, through a call to seq trace:set token, or

2. when a message is received.

274 Kernel Application (KERNEL)

Kernel Reference Manual seq trace

In both cases the current token will be set. In particular, if the token of a message
received is empty, the current token of the process is set to empty.

A trace token contains a label, and a set of flags. Both the label and the flags are set in 1
and 2 above.

Serial

The trace token contains a component which is called serial. It consists of two
integers Previous and Current. The purpose is to uniquely identify each traced event
within a trace sequence and to order the messages chronologically and in the different
branches if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters prev cnt and curr cnt which both are set to 0
when a process is created. The counters are updated at the following occasions:

� When the process is about to send a message and the trace token is not empty.
Let the serial of the trace token be tprev and tcurr.
curr cnt := curr cnt + 1
tprev := prev cnt
tcurr := curr cnt

The trace token with tprev and tcurr is then passed along with the message.

� When the process callsseq trace:print(Label, Info), Label matches the label
part of the trace token and the trace token print flag is true.
The same algorithm as for send above.

� When a message is received and contains a nonempty trace token.
The process trace token is set to the trace token from the message.
Let the serial of the trace token be tprev and tcurr.
if (curr cnt < tcurr)
curr cnt := tcurr

prev cnt := tcurr

The curr cnt of a process is incremented each time the process is involved in a
sequential trace. The counter can reach its limit (27 bits) if a process is very long-lived
and is involved in much sequential tracing. If the counter overflows it will not be
possible to use the serial for ordering of the trace events. To prevent the counter from
overflowing in the middle of a sequential trace the function seq trace:reset trace/0
can be called to reset the prev cnt and curr cnt of all processes in the Erlang node.
This function will also set all trace tokens in processes and their message queues to
empty and will thus stop all ongoing sequential tracing.

Performance considerations

The performance degradation for a system which is enabled for Sequential Tracing is
negligible as long as no tracing is activated. When tracing is activated there will of course
be an extra cost for each traced message but all other messages will be unaffected.

275Kernel Application (KERNEL)

seq trace Kernel Reference Manual

Ports

Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port this has to be done
manually in the code of the port controlling process. The port controlling processes
have to check the appropriate sequential trace settings (as obtained from
seq trace:get token/1 and include trace information in the message data sent to their
respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace
specific information, and set appropriate sequential trace flags through calls to
seq trace:set token/2.

Distribution

Sequential tracing between nodes is performed transparently. This applies to C-nodes
built with Erl Interface too. A C-node built with Erl Interface only maintains one trace
token, which means that the C-node will appear as one process from the sequential
tracing point of view.

In order to be able to perform sequential tracing between distributed Erlang nodes, the
distribution protocol has been extended (in a backward compatible way). An Erlang
node which supports sequential tracing can communicate with an older (OTP R3B)
node but messages passed within that node can of course not be traced.

Example of Usage

The example shown here will give rough idea of how the new primitives can be used
and what kind of output it will produce.

Assume that we have an initiating process with Pid == <0.30.0> like this:

-module(seqex).
-compile(export_all).

loop(Port) ->
receive

{Port,Message} ->
seq_trace:set_token(label,17),
seq_trace:set_token(’receive’,true),
seq_trace:set_token(print,true),
seq_trace:print(17,"**** Trace Started ****"),
call_server ! {self(),the_message};

{ack,Ack} ->
ok

end,
loop(Port).

And a registered process call server with Pid == <0.31.0> like this:

276 Kernel Application (KERNEL)

Kernel Reference Manual seq trace

loop() ->
receive

{PortController,Message} ->
Ack = {received, Message},
seq_trace:print(17,"We are here now"),
PortController ! {ack,Ack}

end,
loop().

A possible output from the system’s sequential tracer (inspired by AXE-10 and
MD-110) could look like:

17:<0.30.0> Info f0,1g WITH
"**** Trace Started ****"
17:<0.31.0> Received f0,2g FROM <0.30.0> WITH
f<0.30.0>,the messageg
17:<0.31.0> Info f2,3g WITH
"We are here now"
17:<0.30.0> Received f2,4g FROM <0.31.0> WITH
fack,freceived,the messagegg

The implementation of a system tracer process that produces the printout above could
look like this:

tracer() ->
receive

{seq_trace,Label,TraceInfo} ->
print_trace(Label,TraceInfo,false);

{seq_trace,Label,TraceInfo,Ts} ->
print_trace(Label,TraceInfo,Ts);

Other -> ignore
end,
tracer().

print_trace(Label,TraceInfo,false) ->
io:format("~p:",[Label]),
print_trace(TraceInfo);

print_trace(Label,TraceInfo,Ts) ->
io:format("~p ~p:",[Label,Ts]),
print_trace(TraceInfo).

print_trace({print,Serial,From,_,Info}) ->
io:format("~p Info ~p WITH~n~p~n", [From,Serial,Info]);

print_trace({’receive’,Serial,From,To,Message}) ->
io:format("~p Received ~p FROM ~p WITH~n~p~n",

[To,Serial,From,Message]);
print_trace({send,Serial,From,To,Message}) ->

io:format("~p Sent ~p TO ~p WITH~n~p~n",
[From,Serial,To,Message]).

The code that creates a process that runs the tracer function above and sets that process
as the system tracer could look like this:

start() ->
Pid = spawn(?MODULE,tracer,[]),
seq_trace:set_system_tracer(Pid), % set Pid as the system tracer

277Kernel Application (KERNEL)

seq trace Kernel Reference Manual

ok.

With a function like test/0 below the whole example can be started.

test() ->
P = spawn(?MODULE, loop, [port]),
register(call_server, spawn(?MODULE, loop, [])),
start(),
P ! {port,message}.

278 Kernel Application (KERNEL)

Kernel Reference Manual user

user
Erlang Module

user is a server which responds to all the messages defined in the I/O interface. The
code in user.erl can be used as a model for building alternative I/O servers.

279Kernel Application (KERNEL)

wrap log reader Kernel Reference Manual

wrap log reader
Erlang Module

wrap log reader is a function to read internally formatted wrap disk logs, refer to
disk log(3). wrap log reader does not interfere with disk log activities; there is
however a known bug in this version of the wrap log reader, see chapter bugs below.

A wrap disk log file consists of several files, called index files. A log file can be opened
and closed. It is also possible to open just one index file separately. If an non-existent or
a non-internally formatted file is opened, an error message is returned. If the file is
corrupt, no attempt to repair it will be done but an error message is returned.

If a log is configured to be distributed, there is a possibility that all items are not loggen
on all nodes. wrap log reader does only read the log on the called node, it is entirely
up to the user to be sure that all items are read.

Exports

chunk(Continuation)

chunk(Continuation, N) -> fContinuation2, Termsg | fContinuation2, Terms, Badbytesg |
fContinuation2, eofg | ferror, Reasong

Types:

� Continuation = continuation()
� N = int() > 0 | infinity
� Continuation2 = continuation()
� Terms= [term()]
� Badbytes = integer()

This function makes it possible to efficiently read the terms which have been appended
to a log. It minimises disk I/O by reading large 8K chunks from the file.

The first time chunk is called an initial continuation returned from the open/1, open/2
must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 8K chunk are read. If less than N terms are returned, this does not necessarily mean
that end of file is reached.

The chunk function returns a tuple fContinuation2, Termsg, where Terms is a list of
terms found in the log. Continuation2 is yet another continuation which must be
passed on into any subsequent calls to chunk. With a series of calls to chunk it is then
possible to extract all terms from a log.

The chunk function returns a tuple fContinuation2, Terms, Badbytesg if the log is
opened in read only mode and the read chunk is corrupt. Badbytes indicates the
number of non-Erlang terms found in the chunk. Note also that the log is not repaired.

280 Kernel Application (KERNEL)

Kernel Reference Manual wrap log reader

chunk returns fContinuation2, eofg when the end of the log is reached, and ferror,
Reasong if an error occurs.

The returned continuation may or may not be valid in the next call to chunk. This is
because the log may wrap and delete the file into which the continuation points. To
make sure this does not happen, the log can be blocked during the search.

close(Continuation) -> ok

Types:

� Continuation = continuation()

This function closes a log file properly.

open(Filename) -> OpenRet

open(Filename, N) -> OpenRet

Types:

� File = string() | atom()
� N = integer()
� OpenRet = fok, Continuationg | ferror, Reasong
� Continuation = continuation()

Filename specifies the name of the file which is to be read.

N specifies the index of the file which is to be read. If N is omitted the whole wrap log
file will be read; if it is specified only the specified index file will be read.

The open function returns fok, Continuationg if the log/index file was successfully
opened. The Continuation is to be used when chunking or closing the file.

The function returns ferror, Reasong for all errors.

Bugs

This version of the wrap log reader does not detect if the disk log wraps to a new
index file between a wrap log reader:open and the first wrap log reader:chunk. In
this case the chuck will actually read the last logged items in the log file, because the
opened index file was truncated by the disk log.

See Also

disk log(3) [page 56]

281Kernel Application (KERNEL)

zlib Kernel Reference Manual

zlib
Erlang Module

The zlib module provides an API for the zlib library (http://www.zlib.org). It is used to
compress and decompress data. The data format is described by RFCs 1950 to 1952.

A typical (compress) usage looks like:

Z = zlib:open(),
ok = zlib:deflateInit(Z,default),

Compress = fun(end of data, Cont) -> [];
(Data, Cont) ->

[zlib:deflate(Z, Data)|Cont(Read(),Cont)]
end,

Compressed = Compress(Read(),Compress),
Last = zlib:deflate(Z, [], finish),
ok = zlib:deflateEnd(Z),
zlib:close(Z),
list to binary([Compressed|Last])

In all functions errors, f’EXIT’,fReason,Backtracegg, might be thrown, where
Reason describes the error. Typical reasons are:

badarg Bad argument

data error The data contains errors

stream error Inconsistent stream state

einval Bad value or wrong function called

fneed dictionary,Adler32g See inflate/2

DATA TYPES

iodata = iolist() | binary()

iolist = [char() | binary() | iolist()]
a binary is allowed as the tail of the list

zstream = a zlib stream, see open/0

282 Kernel Application (KERNEL)

Kernel Reference Manual zlib

Exports

open() -> Z

Types:

� Z = zstream()

Open a zlib stream.

close(Z) -> ok

Types:

� Z = zstream()

Closes the stream referenced by Z.

deflateInit(Z) -> ok

Types:

� Z = zstream()

Same as zlib:deflateInit(Z, default).

deflateInit(Z, Level) -> ok

Types:

� Z = zstream()
� Level = none | default | best speed | best compression | 0..9

Initialize a zlib stream for compression.

Level decides the compression level to be used, 0 (none), gives no compression at all, 1
(best speed) gives best speed and 9 (best compression) gives best compression.

deflateInit(Z, Level, Method, WindowBits, MemLevel, Strategy) -> ok

Types:

� Z = zstream()
� Level = none | default | best speed | best compression | 0..9
� Method = deflated
� WindowBits = 9..15|-9..-15
� MemLevel = 1..9
� Strategy = default|filtered|huffman only

283Kernel Application (KERNEL)

zlib Kernel Reference Manual

Initiates a zlib stream for compression.

The Level parameter decides the compression level to be used, 0 (none), gives no
compression at all, 1 (best speed) gives best speed and 9 (best compression) gives
best compression.

The Method parameter decides which compression method to use, currently the only
supported method is deflated.

The WindowBits parameter is the base two logarithm of the window size (the size of
the history buffer). It should be in the range 9 through 15. Larger values of this
parameter result in better compression at the expense of memory usage. The default
value is 15 if deflateInit/2. A negative WindowBits value suppresses the zlib header
(and checksum) from the stream. Note that the zlib source mentions this only as a
undocumented feature.

The MemLevel parameter specifies how much memory should be allocated for the
internal compression state. MemLevel=1 uses minimum memory but is slow and reduces
compression ratio; MemLevel=9 uses maximum memory for optimal speed. The default
value is 8.

The Strategy parameter is used to tune the compression algorithm. Use the value
default for normal data, filtered for data produced by a filter (or predictor), or
huffman only to force Huffman encoding only (no string match). Filtered data consists
mostly of small values with a somewhat random distribution. In this case, the
compression algorithm is tuned to compress them better. The effect of filteredis to
force more Huffman coding and less string matching; it is somewhat intermediate
between default and huffman only. The Strategy parameter only affects the
compression ratio but not the correctness of the compressed output even if it is not set
appropriately.

deflate(Z, Data) -> Compressed

Types:

� Z = zstream()
� Data = iodata()
� Compressed = iolist()

Same as deflate(Z, Data, none).

deflate(Z, Data, Flush) ->

Types:

� Z = zstream()
� Data = iodata()
� Flush = none | sync | full | finish
� Compressed = iolist()

deflate/3 compresses as much data as possible, and stops when the input buffer
becomes empty. It may introduce some output latency (reading input without
producing any output) except when forced to flush.

If the parameter Flush is set to sync, all pending output is flushed to the output buffer
and the output is aligned on a byte boundary, so that the decompressor can get all input
data available so far. Flushing may degrade compression for some compression
algorithms and so it should be used only when necessary.

284 Kernel Application (KERNEL)

Kernel Reference Manual zlib

If Flush is set to full, all output is flushed as with sync, and the compression state is
reset so that decompression can restart from this point if previous compressed data has
been damaged or if random access is desired. Using full too often can seriously degrade
the compression.

If the parameter Flush is set to finish, pending input is processed, pending output is
flushed and deflate/3 returns. Afterwards the only possible operations on the stream
are deflateReset/1 or deflateEnd/1.

Flush can be set to finish immediately after deflateInit if all compression is to be
done in one step.

zlib:deflateInit(Z),
B1 = zlib:deflate(Z,Data),
B2 = zlib:deflate(Z,<< >>,finish),
zlib:deflateEnd(Z),
list to binary([B1,B2])

deflateSetDictionary(Z, Dictionary) -> Adler32

Types:

� Z = zstream()
� Dictionary = binary()
� Adler32 = integer()

Initializes the compression dictionary from the given byte sequence without producing
any compressed output. This function must be called immediately after
deflateInit/[1|2|6] or deflateReset/1, before any call of deflate/3. The
compressor and decompressor must use exactly the same dictionary (see
inflateSetDictionary/2). The adler checksum of the dictionary is returned.

deflateReset(Z) -> ok

Types:

� Z = zstream()

This function is equivalent to deflateEnd/1 followed by deflateInit/[1|2|6], but
does not free and reallocate all the internal compression state. The stream will keep the
same compression level and any other attributes.

deflateParams(Z, Level, Strategy) -> ok

Types:

� Z = zstream()
� Level = none | default | best speed | best compression | 0..9
� Strategy = default|filtered|huffman only

Dynamically update the compression level and compression strategy. The interpretation
of Level and Strategy is as in deflateInit/6. This can be used to switch between
compression and straight copy of the input data, or to switch to a different kind of input
data requiring a different strategy. If the compression level is changed, the input
available so far is compressed with the old level (and may be flushed); the new level will
take effect only at the next call of deflate/3.

Before the call of deflateParams, the stream state must be set as for a call of deflate/3,
since the currently available input may have to be compressed and flushed.

285Kernel Application (KERNEL)

zlib Kernel Reference Manual

deflateEnd(Z) -> ok

Types:

� Z = zstream()

End the deflate session and cleans all data used. Note that this function will throw an
data error exception if the last call to deflate/3 was not called with Flush set to
finish.

inflateInit(Z) -> ok

Types:

� Z = zstream()

Initialize a zlib stream for decompression.

inflateInit(Z, WindowBits) -> ok

Types:

� Z = zstream()
� WindowBits = 9..15|-9..-15

Initialize decompression session on zlib stream.

The WindowBits parameter is the base two logarithm of the maximum window size
(the size of the history buffer). It should be in the range 9 through 15. The default
value is 15 if inflateInit/1 is used. If a compressed stream with a larger window size
is given as input, inflate() will throw the data error exception. A negative WindowBits
value makes zlib ignore the zlib header (and checksum) from the stream. Note that the
zlib source mentions this only as a undocumented feature.

inflate(Z, Data) -> DeCompressed

Types:

� Z = zstream()
� Data = iodata()
� DeCompressed = iolist()

inflate/2 decompresses as much data as possible. It may some introduce some output
latency (reading input without producing any output).

If a preset dictionary is needed at this point (see inflateSetDictionary below),
inflate/2 throws a fneed dictionary,Adlerg exception where Adler is the adler32
checksum of the dictionary chosen by the compressor.

inflateSetDictionary(Z, Dictionary) -> ok

Types:

� Z = zstream()
� Dictionary = binary()

Initializes the decompression dictionary from the given uncompressed byte sequence.
This function must be called immediately after a call of inflate/2 if this call threw a
fneed dictionary,Adlerg exception. The dictionary chosen by the compressor can be
determined from the Adler value thrown by the call to inflate/2. The compressor and
decompressor must use exactly the same dictionary (see deflateSetDictionary/2).

Example:

286 Kernel Application (KERNEL)

Kernel Reference Manual zlib

unpack(Z, Compressed, Dict) ->
case catch zlib:inflate(Z, Compressed) of

f’EXIT’,ffneed dictionary,DictIDg, gg ->
zlib:inflateSetDictionary(Z, Dict),
Uncompressed = zlib:inflate(Z, []);

Uncompressed ->
Uncompressed

end.

inflateReset(Z) -> ok

Types:

� Z = zstream()

This function is equivalent to inflateEnd/1 followed by inflateInit/1, but does not
free and reallocate all the internal decompression state. The stream will keep attributes
that may have been set by inflateInit/[1|2].

inflateEnd(Z) -> ok

Types:

� Z = zstream()

End the inflate session and cleans all data used. Note that this function will throw a
data error exception if no end of stream was found (meaning that not all data has
been uncompressed).

setBufSize(Z, Size) -> ok

Types:

� Z = zstream()
� Size = integer()

Sets the intermediate buffer size.

getBufSize(Z) -> Size

Types:

� Z = zstream()
� Size = integer()

Get the size of intermediate buffer.

crc32(Z) -> CRC

Types:

� Z = zstream()
� CRC = integer()

Get the current calculated CRC checksum.

crc32(Z, Binary) -> CRC

Types:

� Z = zstream()

287Kernel Application (KERNEL)

zlib Kernel Reference Manual

� Binary = binary()
� CRC = integer()

Calculate the CRC checksum for Binary.

crc32(Z, PrevCRC, Binary) -> CRC

Types:

� Z = zstream()
� PrevCRC = integer()
� Binary = binary()
� CRC = integer()

Update a running CRC checksum for Binary. If Binary is the empty binary, this
function returns the required initial value for the crc.

Crc = lists:foldl(fun(Bin,Crc0) ->
zlib:crc32(Z, Crc0, Bin),

end, zlib:crc32(Z,<< >>), Bins)

crc32 combine(Z, CRC1, CRC2, Size2) -> CRC

Types:

� Z = zstream()
� CRC = integer()
� CRC1 = integer()
� CRC2 = integer()
� Size2 = integer()

Combine two CRC checksums into one. For two binaries, Bin1 and Bin2 with sizes of
Size1 and Size2, with CRC checksums CRC1 and CRC2. crc32 combine/4 returns the
CRC checksum of <<Bin1/binary,Bin2/binary>>, requiring only CRC1, CRC2, and
Size2.

adler32(Z, Binary) -> Checksum

Types:

� Z = zstream()
� Binary = binary()
� Checksum = integer()

Calculate the Adler-32 checksum for Binary.

adler32(Z, PrevAdler, Binary) -> Checksum

Types:

� Z = zstream()
� PrevAdler = integer()
� Binary = binary()
� Checksum = integer()

Update a running Adler-32 checksum for Binary. If Binary is the empty binary, this
function returns the required initial value for the checksum.

288 Kernel Application (KERNEL)

Kernel Reference Manual zlib

Crc = lists:foldl(fun(Bin,Crc0) ->
zlib:adler32(Z, Crc0, Bin),

end, zlib:adler32(Z,<< >>), Bins)

adler32 combine(Z, Adler1, Adler2, Size2) -> Adler

Types:

� Z = zstream()
� Adler = integer()
� Adler1 = integer()
� Adler2 = integer()
� Size2 = integer()

Combine two Adler-32 checksums into one. For two binaries, Bin1 and Bin2 with sizes
of Size1 and Size2, with Adler-32 checksums Adler1 and Adler2.
adler32 combine/4 returns the Adler checksum of
<<Bin1/binary,Bin2/binary>>, requiring only Adler1, Adler2, and Size2.

compress(Binary) -> Compressed

Types:

� Binary = Compressed = binary()

Compress a binary (with zlib headers and checksum).

uncompress(Binary) -> Decompressed

Types:

� Binary = Decompressed = binary()

Uncompress a binary (with zlib headers and checksum).

zip(Binary) -> Compressed

Types:

� Binary = Compressed = binary()

Compress a binary (without zlib headers and checksum).

unzip(Binary) -> Decompressed

Types:

� Binary = Decompressed = binary()

Uncompress a binary (without zlib headers and checksum).

gzip(Data) -> Compressed

Types:

� Binary = Compressed = binary()

Compress a binary (with gz headers and checksum).

gunzip(Bin) -> Decompressed

Types:

289Kernel Application (KERNEL)

zlib Kernel Reference Manual

� Binary = Decompressed = binary()

Uncompress a binary (with gz headers and checksum).

290 Kernel Application (KERNEL)

Kernel Reference Manual app

app
File

The application resource file specifies the resources an application uses, and how the
application is started. There must always be one application resource file called
Application.app for each application Application in the system.

The file is read by the application controller when an application is loaded/started. It is
also used by the functions in systools, for example when generating start scripts.

FILE SYNTAX

The application resource file should be called Application.app where Application is
the name of the application. The file should be located in the ebin directory for the
application.

It must contain one single Erlang term, which is called an application specification:

{application, Application,
[{description, Description},
{id, Id},
{vsn, Vsn},
{modules, Modules},
{maxP, MaxP},
{maxT, MaxT},
{registered, Names},
{included_applications, Apps},
{applications, Apps},
{env, Env},
{mod, Start},
{start_phases, Phases}]}.

Value Default
----- -------

Application atom() -
Description string() ""
Id string() ""
Vsn string() ""
Modules [Module] []
MaxP int() infinity
MaxT int() infinity
Names [Name] []
Apps [App] []
Env [{Par,Val}] []
Start {Module,StartArgs} undefined
Phases [{Phase,PhaseArgs}] undefined

291Kernel Application (KERNEL)

app Kernel Reference Manual

Module = Name = App = Par = Phase = atom()
Val = StartArgs = PhaseArgs = term()

Application is the name of the application.

For the application controller, all keys are optional. The respective default values are
used for any omitted keys.

The functions in systools require more information. If they are used, the following
keys are mandatory: description, vsn, modules, registered and applications. The
other keys are ignored by systools.

description A one-line description of the application.

id Product identification, or similar.

vsn The version of the application.

modules All modules introduced by this application. systools uses this list when
generating start scripts and tar files. A module can only be defined in one
application.

maxP Deprecated - will be ignored
The maximum number of processes allowed in the application.

maxT The maximum time in milliseconds that the application is allowed to run. After
the specified time the application will automatically terminate.

registered All names of registered processes started in this application. systools uses
this list to detect name clashes between different applications.

included applications All applications which are included by this application. When
this application is started, all included application will automatically be loaded, but
not started, by the application controller. It is assumed that the topmost supervisor
of the included application is started by a supervisor of this application.

applications All applications which must be started before this application is allowed
to be started. systools uses this list to generate correct start scripts. Defaults to
the empty list, but note that all applications have dependencies to (at least)
kernel and stdlib.

env Configuration parameters used by the application. The value of a configuration
parameter is retrieved by calling application:get env/1,2. The values in the
application resource file can be overridden by values in a configuration file (see
config(4)) or by command line flags (see erl(1)).

mod Specifies the application callback module and a start argument, see
application(3).
The mod key is necessary for an application implemented as a supervision tree, or
the application controller will not know how to start it. The mod key can be
omitted for applications without processes, typically code libraries such as the
application STDLIB.

start phases A list of start phases and corresponding start arguments for the
application. If this key is present, the application master will - in addition to the
usual call to Module:start/2 - also call
Module:start phase(Phase,Type,PhaseArgs) for each start phase defined by
the start phases key, and only after this extended start procedure will
application:start(Application) return.
Start phases may be used to synchronize startup of an application and its included
applications. In this case, the mod key must be specified as:

{mod, {application_starter,[Module,StartArgs]}}

292 Kernel Application (KERNEL)

Kernel Reference Manual app

The application master will then call Module:start/2 for the primary application,
followed by calls to Module:start phase/3 for each start phase (as defined for the
primary application) both for the primary application and for each of its included
application, for which the start phase is defined.
This implies that for an included application, the set of start phases must be a
subset of the set of phases defined for the primary application. Refer to OTP
Design Principles for more information.

SEE ALSO

application(3) [page 36], systools(3)

293Kernel Application (KERNEL)

config Kernel Reference Manual

config
File

A configuration file contains values for configuration parameters for the applications in
the system. The erl command line argument -config Name tells the system to use data
in the system configuration file Name.config.

Configuration parameter values in the configuration file will override the values in the
application resource files (see app(4)). The values in the configuration file can be
overridden by command line flags (see erl(1)).

The value of a configuration parameter is retrieved by calling
application:get env/1,2.

FILE SYNTAX

The configuration file should be called Name.config where Name is an arbitrary name.

The .config file contains one single Erlang term. The file has the following syntax:

[{Application1, [{Par11, Val11}, ..]},
..
{ApplicationN, [{ParN1, ValN1}, ..]}].

� Application = atom() is the name of the application.

� Par = atom() is the name of a configuration parameter.

� Val = term() is the value of a configuration parameter.

sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system
configuration file is used, named sys.config. This file should be located in
$ROOT/releases/Vsn, where $ROOT is the Erlang/OTP root installation directory and
Vsn is the release version.

Release handling relies on this assumption. When installing a new release version, the
new sys.config is read and used to update the application configurations.

This means that specifying another, or additional, .config files would lead to
inconsistent update of application configurations. Therefore, in Erlang 5.4/OTP R10B,
the syntax of sys.config was extended to allow pointing out other .config files:

[{Application, [{Par, Val}]} | File].

� File = string() is the name of another .config file. The extension .config
may be omitted. It is recommended to use absolute paths. A relative path is
relative the current working directory of the emulator.

294 Kernel Application (KERNEL)

Kernel Reference Manual config

When traversing the contents of sys.config and a filename is encountered, its contents
are read and merged with the result so far. When an application configuration tuple
fApplication, Envg is found, it is merged with the result so far. Merging means that
new parameters are added and existing parameter values overwritten. Example:

sys.config:

[{myapp,[{par1,val1},{par2,val2}]},
"/home/user/myconfig"].

myconfig.config:

[{myapp,[{par2,val3},{par3,val4}]}].

This will yield the following environment for myapp:

[{par1,val1},{par2,val3},{par3,val4}]

The behaviour if a file specified in sys.config does not exist or is erroneous in some
other way, is backwards compatible. Starting the runtime system will fail. Installing a
new release version will not fail, but an error message is given and the erroneous file is
ignored.

SEE ALSO

app(4), erl(1), OTP Design Principles

295Kernel Application (KERNEL)

config Kernel Reference Manual

296 Kernel Application (KERNEL)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

abcast/2
rpc , 268

abcast/3
rpc , 268

abort/1
gen sctp , 198

abs/1
erlang , 90

accept/1
gen tcp , 213

accept/2
gen tcp , 213

accessible_logs/0
disk log , 58

add_path/1
code , 49

add_patha/1
code , 49

add_paths/1
code , 50

add_pathsa/1
code , 50

add_pathsz/1
code , 50

add_pathz/1
code , 49

add_report_handler/1
error logger , 171

add_report_handler/2
error logger , 171

add_slave/1
erl boot server , 70

adler32/1

erlang , 90

adler32/2
erlang , 91
zlib , 288

adler32/3
zlib , 288

adler32_combine/3
erlang , 91

adler32_combine/4
zlib , 289

all_loaded/0
code , 53

allow/1
net kernel , 251

alog/2
disk log , 58

alog_terms/2
disk log , 58

application
get_all_env/0, 36
get_all_env/1, 36
get_all_key/0, 36
get_all_key/1, 36
get_application/0, 37
get_application/1, 37
get_env/1, 37
get_env/2, 37
get_key/1, 37
get_key/2, 37
load/1, 37
load/2, 37
loaded_applications/0, 38
Module:config_change/3, 44
Module:prep_stop/1, 43
Module:start/2, 42
Module:start_phase/3, 43

297Kernel Application (KERNEL)

Module:stop/1, 44
permit/2, 38
set_env/3, 39
set_env/4, 39
start/1, 39
start/2, 39
start_type/0, 40
stop/1, 40
takeover/2, 41
unload/1, 41
unset_env/2, 41
unset_env/3, 41
which_applications/0, 42
which_applications/1, 42

apply/2
erlang , 91

apply/3
erlang , 92

async_call/4
rpc , 265

atom_to_list/1
erlang , 92

auth
cookie/0, 45
cookie/1, 45
is_auth/1, 45
node_cookie/2, 45

balog/2
disk log , 58

balog_terms/2
disk log , 58

bchunk/2
disk log , 60

bchunk/3
disk log , 60

binary_to_list/1
erlang , 92

binary_to_list/3
erlang , 93

binary_to_term/1
erlang , 93

bit_size/1
erlang , 93

bitstring_to_list/1
erlang , 93

block/1
disk log , 59

block/2
disk log , 59

block_call/4
rpc , 264

block_call/5
rpc , 265

blog/2
disk log , 64

blog_terms/2
disk log , 65

boot/1
init , 243

breopen/3
disk log , 68

btruncate/2
disk log , 69

byte_size/1
erlang , 94

call/4
rpc , 264

call/5
rpc , 264

cast/4
rpc , 267

change_group/2
file , 174

change_header/2
disk log , 59

change_notify/3
disk log , 59

change_owner/2
file , 174

change_owner/3
file , 175

change_size/2
disk log , 60

change_time/2
file , 175

change_time/3
file , 175

298 Kernel Application (KERNEL)

check_process_code/2
erlang , 94

chunk/1
wrap log reader , 280

chunk/2
disk log , 60
wrap log reader , 280

chunk/3
disk log , 60

chunk_info/1
disk log , 61

chunk_step/3
disk log , 61

clash/0
code , 55

clear_cmd/0
heart , 231

close/1
disk log , 62
file , 175
gen sctp , 198
gen tcp , 215
gen udp , 220
inet , 233
wrap log reader , 281
zlib , 283

cmd/1
os , 255

code
add_path/1, 49
add_patha/1, 49
add_paths/1, 50
add_pathsa/1, 50
add_pathsz/1, 50
add_pathz/1, 49
all_loaded/0, 53
clash/0, 55
compiler_dir/0, 54
del_path/1, 50
delete/1, 52
ensure_loaded/1, 51
get_object_code/1, 53
get_path/0, 49
is_loaded/1, 52
lib_dir/0, 53
lib_dir/1, 54
load_abs/1, 51
load_binary/3, 51

load_file/1, 51
objfile_extension/0, 54
priv_dir/1, 54
purge/1, 52
rehash/0, 55
replace_path/2, 50
root_dir/0, 53
set_path/1, 49
soft_purge/1, 52
stick_dir/1, 55
unstick_dir/1, 55
where_is_file/1, 55
which/1, 53

compiler_dir/0
code , 54

compress/1
zlib , 289

concat_binary/1
erlang , 95

connect/3
gen tcp , 212

connect/4
gen sctp , 198
gen tcp , 212

connect/5
gen sctp , 198

connect_node/1
net kernel , 251

consult/1
file , 175

controlling_process/1
gen sctp , 199

controlling_process/2
gen tcp , 215
gen udp , 219

cookie/0
auth , 45

cookie/1
auth , 45

copy/2
file , 176

copy/3
file , 176

crc32/1
erlang , 95
zlib , 287

299Kernel Application (KERNEL)

crc32/2
erlang , 95
zlib , 287

crc32/3
zlib , 288

crc32_combine/3
erlang , 95

crc32_combine/4
zlib , 288

create/1
pg2 , 261

date/0
erlang , 95

deflate/2
zlib , 284

deflate/3
zlib , 284

deflateEnd/1
zlib , 286

deflateInit/1
zlib , 283

deflateInit/2
zlib , 283

deflateInit/6
zlib , 283

deflateParams/3
zlib , 285

deflateReset/1
zlib , 285

deflateSetDictionary/2
zlib , 285

del_dir/1
file , 176

del_lock/1
global , 222

del_lock/2
global , 222

del_path/1
code , 50

delete/1
code , 52
file , 177
pg2 , 261

delete_module/1
erlang , 96

delete_report_handler/1
error logger , 171

delete_slave/1
erl boot server , 70

demonitor/1
erl ddll , 74

disconnect_node/1
erlang , 97

disk log
accessible_logs/0, 58
alog/2, 58
alog_terms/2, 58
balog/2, 58
balog_terms/2, 58
bchunk/2, 60
bchunk/3, 60
block/1, 59
block/2, 59
blog/2, 64
blog_terms/2, 65
breopen/3, 68
btruncate/2, 69
change_header/2, 59
change_notify/3, 59
change_size/2, 60
chunk/2, 60
chunk/3, 60
chunk_info/1, 61
chunk_step/3, 61
close/1, 62
format_error/1, 62
inc_wrap_file/1, 62
info/1, 62
lclose/1, 64
lclose/2, 64
log/2, 64
log_terms/2, 64
open/1, 65
pid2name/1, 68
reopen/2, 68
reopen/3, 68
sync/1, 69
truncate/1, 69
truncate/2, 69
unblock/1, 69

dns_hostname/1
net adm , 248

300 Kernel Application (KERNEL)

element/2
erlang , 98

ensure_loaded/1
code , 51

eof/2
gen sctp , 199

erase/0
erlang , 98

erase/1
erlang , 98

erl boot server
add_slave/1, 70
delete_slave/1, 70
start/1, 70
start_link/1, 70
which_slaves/0, 71

erl ddll
demonitor/1, 74
format_error/1, 86
info/0, 74
info/1, 74
info/2, 75
load/2, 75
load_driver/2, 76
loaded_drivers/0, 86
monitor/2, 77
reload/2, 78
reload_driver/2, 79
try_load/3, 80
try_unload/2, 83
unload/1, 85
unload_driver/1, 85

erl prim loader
get_file/1, 87
get_path/0, 88
set_path/1, 88
start/3, 87

erlang
abs/1, 90
adler32/1, 90
adler32/2, 91
adler32_combine/3, 91
apply/2, 91
apply/3, 92
atom_to_list/1, 92
binary_to_list/1, 92
binary_to_list/3, 93
binary_to_term/1, 93
bit_size/1, 93

bitstring_to_list/1, 93
byte_size/1, 94
check_process_code/2, 94
concat_binary/1, 95
crc32/1, 95
crc32/2, 95
crc32_combine/3, 95
date/0, 95
delete_module/1, 96
disconnect_node/1, 97
element/2, 98
erase/0, 98
erase/1, 98
erlang:append_element/2, 91
erlang:bump_reductions/1, 93
erlang:cancel_timer/1, 94
erlang:demonitor/1, 96
erlang:demonitor/2, 97
erlang:display/1, 97
erlang:error/1, 98
erlang:error/2, 99
erlang:fault/1, 99
erlang:fault/2, 100
erlang:fun_info/1, 100
erlang:fun_info/2, 101
erlang:fun_to_list/1, 102
erlang:function_exported/3, 102
erlang:get_cookie/0, 103
erlang:get_stacktrace/0, 103
erlang:hash/2, 104
erlang:hibernate/3, 105
erlang:integer_to_list/2, 105
erlang:is_builtin/3, 107
erlang:list_to_integer/2, 112
erlang:loaded/0, 113
erlang:localtime/0, 113
erlang:localtime_to_universaltime/2,

113
erlang:localtime_to_universaltime/3,

113
erlang:make_tuple/2, 114
erlang:md5/1, 114
erlang:md5_final/1, 115
erlang:md5_init/0, 115
erlang:md5_update/2, 115
erlang:memory/0, 115
erlang:memory/1, 117
erlang:monitor/2, 117
erlang:monitor_node/3, 119
erlang:phash/2, 123
erlang:phash2/2, 123
erlang:port_call/3, 125
erlang:port_info/1, 126

301Kernel Application (KERNEL)

erlang:port_info/2, 126
erlang:port_to_list/1, 126
erlang:ports/0, 126
erlang:process_display/2, 127
erlang:raise/3, 133
erlang:read_timer/1, 134
erlang:ref_to_list/1, 134
erlang:resume_process/1, 134
erlang:send/2, 135
erlang:send/3, 136
erlang:send_after/3, 136
erlang:send_nosuspend/2, 136
erlang:send_nosuspend/3, 137
erlang:set_cookie/2, 138
erlang:start_timer/3, 143
erlang:suspend_process/1, 145
erlang:suspend_process/2, 144
erlang:system_flag/2, 146
erlang:system_info/1, 147
erlang:system_monitor/0, 151
erlang:system_monitor/2, 152
erlang:system_profile/0, 153
erlang:system_profile/2, 153
erlang:trace/3, 155
erlang:trace_delivered/1, 158
erlang:trace_info/2, 159
erlang:trace_pattern/2, 160
erlang:trace_pattern/3, 160
erlang:universaltime/0, 162
erlang:universaltime_to_localtime/2,

163
erlang:yield/0, 164
exit/1, 99
exit/2, 99
float/1, 100
float_to_list/1, 100
garbage_collect/0, 102
garbage_collect/1, 102
get/0, 102
get/1, 103
get_keys/1, 103
group_leader/0, 104
group_leader/2, 104
halt/0, 104
halt/1, 104
hd/1, 105
integer_to_list/1, 105
iolist_size/1, 106
iolist_to_binary/1, 106
is_alive/0, 106
is_atom/1, 106
is_binary/1, 106
is_bitstring/1, 107

is_boolean/1, 107
is_float/1, 107
is_function/1, 107
is_function/2, 107
is_integer/1, 108
is_list/1, 108
is_number/1, 108
is_pid/1, 108
is_port/1, 108
is_process_alive/1, 108
is_record/2, 109
is_record/3, 109
is_reference/1, 109
is_tuple/1, 109
length/1, 110
link/1, 110
list_to_atom/1, 110
list_to_binary/1, 110
list_to_bitstring/1, 111
list_to_existing_atom/1, 111
list_to_float/1, 111
list_to_integer/1, 111
list_to_pid/1, 112
list_to_tuple/1, 112
load_module/2, 112
make_ref/0, 114
module_loaded/1, 117
monitor_node/2, 119
node/0, 119
node/1, 119
nodes/0, 120
nodes/1, 120
now/0, 120
open_port/2, 120
pid_to_list/1, 123
port_close/1, 123
port_command/2, 124
port_connect/2, 124
port_control/3, 125
pre_loaded/0, 127
process_flag/2, 127
process_flag/3, 129
process_info/1, 129
process_info/2, 130
processes/0, 132
purge_module/1, 132
put/2, 132
register/2, 134
registered/0, 134
round/1, 135
self/0, 135
setelement/3, 138
size/1, 138

302 Kernel Application (KERNEL)

spawn/1, 139
spawn/2, 139
spawn/3, 139
spawn/4, 139
spawn_link/1, 139
spawn_link/2, 140
spawn_link/3, 140
spawn_link/4, 140
spawn_monitor/1, 140
spawn_monitor/3, 140
spawn_opt/2, 141
spawn_opt/3, 141
spawn_opt/4, 141
spawn_opt/5, 142
split_binary/2, 143
statistics/1, 143
term_to_binary/1, 154
term_to_binary/2, 154
throw/1, 155
time/0, 155
tl/1, 155
trunc/1, 162
tuple_size/1, 162
tuple_to_list/1, 162
unlink/1, 163
unregister/1, 164
whereis/1, 164

erlang:append_element/2
erlang , 91

erlang:bump_reductions/1
erlang , 93

erlang:cancel_timer/1
erlang , 94

erlang:demonitor/1
erlang , 96

erlang:demonitor/2
erlang , 97

erlang:display/1
erlang , 97

erlang:error/1
erlang , 98

erlang:error/2
erlang , 99

erlang:fault/1
erlang , 99

erlang:fault/2
erlang , 100

erlang:fun_info/1

erlang , 100

erlang:fun_info/2
erlang , 101

erlang:fun_to_list/1
erlang , 102

erlang:function_exported/3
erlang , 102

erlang:get_cookie/0
erlang , 103

erlang:get_stacktrace/0
erlang , 103

erlang:hash/2
erlang , 104

erlang:hibernate/3
erlang , 105

erlang:integer_to_list/2
erlang , 105

erlang:is_builtin/3
erlang , 107

erlang:list_to_integer/2
erlang , 112

erlang:loaded/0
erlang , 113

erlang:localtime/0
erlang , 113

erlang:localtime_to_universaltime/2
erlang , 113

erlang:localtime_to_universaltime/3
erlang , 113

erlang:make_tuple/2
erlang , 114

erlang:md5/1
erlang , 114

erlang:md5_final/1
erlang , 115

erlang:md5_init/0
erlang , 115

erlang:md5_update/2
erlang , 115

erlang:memory/0
erlang , 115

erlang:memory/1
erlang , 117

303Kernel Application (KERNEL)

erlang:monitor/2
erlang , 117

erlang:monitor_node/3
erlang , 119

erlang:phash/2
erlang , 123

erlang:phash2/2
erlang , 123

erlang:port_call/3
erlang , 125

erlang:port_info/1
erlang , 126

erlang:port_info/2
erlang , 126

erlang:port_to_list/1
erlang , 126

erlang:ports/0
erlang , 126

erlang:process_display/2
erlang , 127

erlang:raise/3
erlang , 133

erlang:read_timer/1
erlang , 134

erlang:ref_to_list/1
erlang , 134

erlang:resume_process/1
erlang , 134

erlang:send/2
erlang , 135

erlang:send/3
erlang , 136

erlang:send_after/3
erlang , 136

erlang:send_nosuspend/2
erlang , 136

erlang:send_nosuspend/3
erlang , 137

erlang:set_cookie/2
erlang , 138

erlang:start_timer/3
erlang , 143

erlang:suspend_process/1

erlang , 145

erlang:suspend_process/2
erlang , 144

erlang:system_flag/2
erlang , 146

erlang:system_info/1
erlang , 147

erlang:system_monitor/0
erlang , 151

erlang:system_monitor/2
erlang , 152

erlang:system_profile/0
erlang , 153

erlang:system_profile/2
erlang , 153

erlang:trace/3
erlang , 155

erlang:trace_delivered/1
erlang , 158

erlang:trace_info/2
erlang , 159

erlang:trace_pattern/2
erlang , 160

erlang:trace_pattern/3
erlang , 160

erlang:universaltime/0
erlang , 162

erlang:universaltime_to_localtime/2
erlang , 163

erlang:yield/0
erlang , 164

error handler
undefined_function/3, 165
undefined_lambda/3, 165

error logger
add_report_handler/1, 171
add_report_handler/2, 171
delete_report_handler/1, 171
error_msg/1, 167
error_msg/2, 167
error_report/1, 168
error_report/2, 168
format/2, 167
info_msg/1, 170
info_msg/2, 170

304 Kernel Application (KERNEL)

info_report/1, 170
info_report/2, 171
logfile/1, 172
tty/1, 171
warning_map/0, 168
warning_msg/1, 169
warning_msg/2, 169
warning_report/1, 169
warning_report/2, 170

error_msg/1
error logger , 167

error_msg/2
error logger , 167

error_report/1
error logger , 168

error_report/2
error logger , 168

error_string/1
gen sctp , 202

eval/1
file , 177

eval/2
file , 178

eval_everywhere/3
rpc , 267

eval_everywhere/4
rpc , 267

exit/1
erlang , 99

exit/2
erlang , 99

file
change_group/2, 174
change_owner/2, 174
change_owner/3, 175
change_time/2, 175
change_time/3, 175
close/1, 175
consult/1, 175
copy/2, 176
copy/3, 176
del_dir/1, 176
delete/1, 177
eval/1, 177
eval/2, 178
file_info/1, 178

format_error/1, 178
get_cwd/0, 178
get_cwd/1, 178
list_dir/1, 179
make_dir/1, 179
make_link/2, 179
make_symlink/2, 180
open/2, 180
path_consult/2, 182
path_eval/2, 182
path_open/3, 183
path_script/2, 183
path_script/3, 184
pid2name/1, 184
position/2, 184
pread/2, 185
pread/3, 185
pwrite/2, 186
pwrite/3, 186
read/2, 186
read_file/1, 186
read_file_info/1, 187
read_link/1, 188
read_link_info/1, 188
rename/2, 189
script/1, 189
script/2, 190
set_cwd/1, 190
sync/1, 190
truncate/1, 190
write/2, 191
write_file/2, 191
write_file/3, 191
write_file_info/2, 192

file_info/1
file , 178

find_executable/1
os , 255

find_executable/2
os , 255

float/1
erlang , 100

float_to_list/1
erlang , 100

format/2
error logger , 167

format_error/1
disk log , 62
erl ddll , 86

305Kernel Application (KERNEL)

file , 178
inet , 233

garbage_collect/0
erlang , 102

garbage_collect/1
erlang , 102

gen sctp
abort/1, 198
close/1, 198
connect/4, 198
connect/5, 198
controlling_process/1, 199
eof/2, 199
error_string/1, 202
listen/2, 199
open/0, 200
open/1, 200
open/2, 200
recv/1, 200
send/3, 202
send/4, 202

gen tcp
accept/1, 213
accept/2, 213
close/1, 215
connect/3, 212
connect/4, 212
controlling_process/2, 215
listen/2, 213
recv/2, 214
recv/3, 214
send/2, 214
shutdown/2, 215

gen udp
close/1, 220
controlling_process/2, 219
open/1, 218
open/2, 218
recv/2, 219
recv/3, 219
send/4, 219

get/0
erlang , 102

get/1
erlang , 103

get_all_env/0
application , 36

get_all_env/1

application , 36

get_all_key/0
application , 36

get_all_key/1
application , 36

get_application/0
application , 37

get_application/1
application , 37

get_args/0
init , 243

get_argument/1
init , 243

get_arguments/0
init , 244

get_closest_pid/1
pg2 , 261

get_cmd/0
heart , 231

get_cwd/0
file , 178

get_cwd/1
file , 178

get_env/1
application , 37

get_env/2
application , 37

get_file/1
erl prim loader , 87

get_key/1
application , 37

get_key/2
application , 37

get_keys/1
erlang , 103

get_local_members/1
pg2 , 262

get_members/1
pg2 , 262

get_net_ticktime/0
net kernel , 253

get_object_code/1
code , 53

306 Kernel Application (KERNEL)

get_path/0
code , 49
erl prim loader , 88

get_plain_arguments/0
init , 244

get_rc/0
inet , 233

get_status/0
init , 244

get_system_tracer/0
seq trace , 273

get_token/0
seq trace , 272

get_token/1
seq trace , 272

getaddr/2
inet , 234

getaddrs/2
inet , 234

getBufSize/1
zlib , 287

getenv/0
os , 255

getenv/1
os , 256

gethostbyaddr/1
inet , 234

gethostbyname/1
inet , 234

gethostbyname/2
inet , 234

gethostname/0
inet , 234

getopts/2
inet , 235

getpid/0
os , 256

global
del_lock/1, 222
del_lock/2, 222
notify_all_name/3, 222
random_exit_name/3, 222
random_notify_name/3, 222
re_register_name/2, 223

re_register_name/3, 223
register_name/2, 223
register_name/3, 223
registered_names/0, 223
send/2, 224
set_lock/1, 224
set_lock/2, 224
set_lock/3, 224
sync/0, 225
trans/2, 225
trans/3, 225
trans/4, 225
unregister_name/1, 225
whereis_name/1, 225

global group
global_groups/0, 227
info/0, 227
monitor_nodes/1, 227
own_nodes/0, 227
registered_names/1, 228
send/2, 228
send/3, 228
sync/0, 228
whereis_name/1, 228
whereis_name/2, 228

global_groups/0
global group , 227

group_leader/0
erlang , 104

group_leader/2
erlang , 104

gunzip/1
zlib , 289

gzip/1
zlib , 289

halt/0
erlang , 104

halt/1
erlang , 104

hd/1
erlang , 105

heart
clear_cmd/0, 231
get_cmd/0, 231
set_cmd/1, 231

host_file/0
net adm , 248

307Kernel Application (KERNEL)

inc_wrap_file/1
disk log , 62

inet
close/1, 233
format_error/1, 233
get_rc/0, 233
getaddr/2, 234
getaddrs/2, 234
gethostbyaddr/1, 234
gethostbyname/1, 234
gethostbyname/2, 234
gethostname/0, 234
getopts/2, 235
peername/1, 236
port/1, 236
setopts/2, 236
sockname/1, 236

inflate/2
zlib , 286

inflateEnd/1
zlib , 287

inflateInit/1
zlib , 286

inflateInit/2
zlib , 286

inflateReset/1
zlib , 287

inflateSetDictionary/2
zlib , 286

info/0
erl ddll , 74
global group , 227

info/1
disk log , 62
erl ddll , 74

info/2
erl ddll , 75

info_msg/1
error logger , 170

info_msg/2
error logger , 170

info_report/1
error logger , 170

info_report/2
error logger , 171

init

boot/1, 243
get_args/0, 243
get_argument/1, 243
get_arguments/0, 244
get_plain_arguments/0, 244
get_status/0, 244
reboot/0, 244
restart/0, 245
script_id/0, 245
stop/0, 245
stop/1, 245

integer_to_list/1
erlang , 105

iolist_size/1
erlang , 106

iolist_to_binary/1
erlang , 106

is_alive/0
erlang , 106

is_atom/1
erlang , 106

is_auth/1
auth , 45

is_binary/1
erlang , 106

is_bitstring/1
erlang , 107

is_boolean/1
erlang , 107

is_float/1
erlang , 107

is_function/1
erlang , 107

is_function/2
erlang , 107

is_integer/1
erlang , 108

is_list/1
erlang , 108

is_loaded/1
code , 52

is_number/1
erlang , 108

is_pid/1
erlang , 108

308 Kernel Application (KERNEL)

is_port/1
erlang , 108

is_process_alive/1
erlang , 108

is_record/2
erlang , 109

is_record/3
erlang , 109

is_reference/1
erlang , 109

is_tuple/1
erlang , 109

join/2
pg2 , 262

lclose/1
disk log , 64

lclose/2
disk log , 64

leave/2
pg2 , 262

length/1
erlang , 110

lib_dir/0
code , 53

lib_dir/1
code , 54

link/1
erlang , 110

list_dir/1
file , 179

list_to_atom/1
erlang , 110

list_to_binary/1
erlang , 110

list_to_bitstring/1
erlang , 111

list_to_existing_atom/1
erlang , 111

list_to_float/1
erlang , 111

list_to_integer/1
erlang , 111

list_to_pid/1
erlang , 112

list_to_tuple/1
erlang , 112

listen/2
gen sctp , 199
gen tcp , 213

load/1
application , 37

load/2
application , 37
erl ddll , 75

load_abs/1
code , 51

load_binary/3
code , 51

load_driver/2
erl ddll , 76

load_file/1
code , 51

load_module/2
erlang , 112

loaded_applications/0
application , 38

loaded_drivers/0
erl ddll , 86

localhost/0
net adm , 248

log/2
disk log , 64

log_terms/2
disk log , 64

logfile/1
error logger , 172

make_dir/1
file , 179

make_link/2
file , 179

make_ref/0
erlang , 114

make_symlink/2
file , 180

Module:config_change/3

309Kernel Application (KERNEL)

application , 44

Module:prep_stop/1
application , 43

Module:start/2
application , 42

Module:start_phase/3
application , 43

Module:stop/1
application , 44

module_loaded/1
erlang , 117

monitor/2
erl ddll , 77

monitor_node/2
erlang , 119

monitor_nodes/1
global group , 227
net kernel , 252

monitor_nodes/2
net kernel , 252

multi_server_call/2
rpc , 269

multi_server_call/3
rpc , 269

multicall/3
rpc , 266

multicall/4
rpc , 266

multicall/5
rpc , 266

names/0
net adm , 248

names/1
net adm , 248

nb_yield/1
rpc , 265

nb_yield/2
rpc , 266

net adm
dns_hostname/1, 248
host_file/0, 248
localhost/0, 248
names/0, 248

names/1, 248
ping/1, 249
world/0, 249
world/1, 249
world_list/1, 249
world_list/2, 249

net kernel
allow/1, 251
connect_node/1, 251
get_net_ticktime/0, 253
monitor_nodes/1, 252
monitor_nodes/2, 252
set_net_ticktime/1, 253
set_net_ticktime/2, 253
start/1, 254
start/2, 254
start/3, 254
stop/0, 254

no functions exported
packages , 260

node/0
erlang , 119

node/1
erlang , 119

node_cookie/2
auth , 45

nodes/0
erlang , 120

nodes/1
erlang , 120

notify_all_name/3
global , 222

now/0
erlang , 120

objfile_extension/0
code , 54

open/0
gen sctp , 200
zlib , 283

open/1
disk log , 65
gen sctp , 200
gen udp , 218
wrap log reader , 281

open/2
file , 180

310 Kernel Application (KERNEL)

gen sctp , 200
gen udp , 218
wrap log reader , 281

open_port/2
erlang , 120

os
cmd/1, 255
find_executable/1, 255
find_executable/2, 255
getenv/0, 255
getenv/1, 256
getpid/0, 256
putenv/2, 256
type/0, 256
version/0, 256

own_nodes/0
global group , 227

packages
no functions exported, 260

parallel_eval/1
rpc , 270

path_consult/2
file , 182

path_eval/2
file , 182

path_open/3
file , 183

path_script/2
file , 183

path_script/3
file , 184

peername/1
inet , 236

permit/2
application , 38

pg2
create/1, 261
delete/1, 261
get_closest_pid/1, 261
get_local_members/1, 262
get_members/1, 262
join/2, 262
leave/2, 262
start/0, 262
start_link/0, 262
which_groups/0, 262

pid2name/1
disk log , 68
file , 184

pid_to_list/1
erlang , 123

pinfo/1
rpc , 270

pinfo/2
rpc , 270

ping/1
net adm , 249

pmap/4
rpc , 270

port/1
inet , 236

port_close/1
erlang , 123

port_command/2
erlang , 124

port_connect/2
erlang , 124

port_control/3
erlang , 125

position/2
file , 184

pre_loaded/0
erlang , 127

pread/2
file , 185

pread/3
file , 185

print/1
seq trace , 272

print/2
seq trace , 272

priv_dir/1
code , 54

process_flag/2
erlang , 127

process_flag/3
erlang , 129

process_info/1
erlang , 129

311Kernel Application (KERNEL)

process_info/2
erlang , 130

processes/0
erlang , 132

purge/1
code , 52

purge_module/1
erlang , 132

put/2
erlang , 132

putenv/2
os , 256

pwrite/2
file , 186

pwrite/3
file , 186

random_exit_name/3
global , 222

random_notify_name/3
global , 222

re_register_name/2
global , 223

re_register_name/3
global , 223

read/2
file , 186

read_file/1
file , 186

read_file_info/1
file , 187

read_link/1
file , 188

read_link_info/1
file , 188

reboot/0
init , 244

recv/1
gen sctp , 200

recv/2
gen tcp , 214
gen udp , 219

recv/3
gen tcp , 214

gen udp , 219

register/2
erlang , 134

register_name/2
global , 223

register_name/3
global , 223

registered/0
erlang , 134

registered_names/0
global , 223

registered_names/1
global group , 228

rehash/0
code , 55

reload/2
erl ddll , 78

reload_driver/2
erl ddll , 79

rename/2
file , 189

reopen/2
disk log , 68

reopen/3
disk log , 68

replace_path/2
code , 50

reset_trace/0
seq trace , 273

restart/0
init , 245

root_dir/0
code , 53

round/1
erlang , 135

rpc
abcast/2, 268
abcast/3, 268
async_call/4, 265
block_call/4, 264
block_call/5, 265
call/4, 264
call/5, 264
cast/4, 267

312 Kernel Application (KERNEL)

eval_everywhere/3, 267
eval_everywhere/4, 267
multi_server_call/2, 269
multi_server_call/3, 269
multicall/3, 266
multicall/4, 266
multicall/5, 266
nb_yield/1, 265
nb_yield/2, 266
parallel_eval/1, 270
pinfo/1, 270
pinfo/2, 270
pmap/4, 270
safe_multi_server_call/2, 269
safe_multi_server_call/3, 269
sbcast/2, 268
sbcast/3, 268
server_call/4, 268
yield/1, 265

safe_multi_server_call/2
rpc , 269

safe_multi_server_call/3
rpc , 269

sbcast/2
rpc , 268

sbcast/3
rpc , 268

script/1
file , 189

script/2
file , 190

script_id/0
init , 245

self/0
erlang , 135

send/2
gen tcp , 214
global , 224
global group , 228

send/3
gen sctp , 202
global group , 228

send/4
gen sctp , 202
gen udp , 219

seq trace

get_system_tracer/0, 273
get_token/0, 272
get_token/1, 272
print/1, 272
print/2, 272
reset_trace/0, 273
set_system_tracer/1, 273
set_token/1, 271
set_token/2, 271

server_call/4
rpc , 268

set_cmd/1
heart , 231

set_cwd/1
file , 190

set_env/3
application , 39

set_env/4
application , 39

set_lock/1
global , 224

set_lock/2
global , 224

set_lock/3
global , 224

set_net_ticktime/1
net kernel , 253

set_net_ticktime/2
net kernel , 253

set_path/1
code , 49
erl prim loader , 88

set_system_tracer/1
seq trace , 273

set_token/1
seq trace , 271

set_token/2
seq trace , 271

setBufSize/2
zlib , 287

setelement/3
erlang , 138

setopts/2
inet , 236

313Kernel Application (KERNEL)

shutdown/2
gen tcp , 215

size/1
erlang , 138

sockname/1
inet , 236

soft_purge/1
code , 52

spawn/1
erlang , 139

spawn/2
erlang , 139

spawn/3
erlang , 139

spawn/4
erlang , 139

spawn_link/1
erlang , 139

spawn_link/2
erlang , 140

spawn_link/3
erlang , 140

spawn_link/4
erlang , 140

spawn_monitor/1
erlang , 140

spawn_monitor/3
erlang , 140

spawn_opt/2
erlang , 141

spawn_opt/3
erlang , 141

spawn_opt/4
erlang , 141

spawn_opt/5
erlang , 142

split_binary/2
erlang , 143

start/0
pg2 , 262

start/1
application , 39
erl boot server , 70

net kernel , 254

start/2
application , 39
net kernel , 254

start/3
erl prim loader , 87
net kernel , 254

start_link/0
pg2 , 262

start_link/1
erl boot server , 70

start_type/0
application , 40

statistics/1
erlang , 143

stick_dir/1
code , 55

stop/0
init , 245
net kernel , 254

stop/1
application , 40
init , 245

sync/0
global , 225
global group , 228

sync/1
disk log , 69
file , 190

takeover/2
application , 41

term_to_binary/1
erlang , 154

term_to_binary/2
erlang , 154

throw/1
erlang , 155

time/0
erlang , 155

tl/1
erlang , 155

trans/2
global , 225

314 Kernel Application (KERNEL)

trans/3
global , 225

trans/4
global , 225

trunc/1
erlang , 162

truncate/1
disk log , 69
file , 190

truncate/2
disk log , 69

try_load/3
erl ddll , 80

try_unload/2
erl ddll , 83

tty/1
error logger , 171

tuple_size/1
erlang , 162

tuple_to_list/1
erlang , 162

type/0
os , 256

unblock/1
disk log , 69

uncompress/1
zlib , 289

undefined_function/3
error handler , 165

undefined_lambda/3
error handler , 165

unlink/1
erlang , 163

unload/1
application , 41
erl ddll , 85

unload_driver/1
erl ddll , 85

unregister/1
erlang , 164

unregister_name/1
global , 225

unset_env/2

application , 41

unset_env/3
application , 41

unstick_dir/1
code , 55

unzip/1
zlib , 289

version/0
os , 256

warning_map/0
error logger , 168

warning_msg/1
error logger , 169

warning_msg/2
error logger , 169

warning_report/1
error logger , 169

warning_report/2
error logger , 170

where_is_file/1
code , 55

whereis/1
erlang , 164

whereis_name/1
global , 225
global group , 228

whereis_name/2
global group , 228

which/1
code , 53

which_applications/0
application , 42

which_applications/1
application , 42

which_groups/0
pg2 , 262

which_slaves/0
erl boot server , 71

world/0
net adm , 249

world/1
net adm , 249

315Kernel Application (KERNEL)

world_list/1
net adm , 249

world_list/2
net adm , 249

wrap log reader
chunk/1, 280
chunk/2, 280
close/1, 281
open/1, 281
open/2, 281

write/2
file , 191

write_file/2
file , 191

write_file/3
file , 191

write_file_info/2
file , 192

yield/1
rpc , 265

zip/1
zlib , 289

zlib
adler32/2, 288
adler32/3, 288
adler32_combine/4, 289
close/1, 283
compress/1, 289
crc32/1, 287
crc32/2, 287
crc32/3, 288
crc32_combine/4, 288
deflate/2, 284
deflate/3, 284
deflateEnd/1, 286
deflateInit/1, 283
deflateInit/2, 283
deflateInit/6, 283
deflateParams/3, 285
deflateReset/1, 285
deflateSetDictionary/2, 285
getBufSize/1, 287
gunzip/1, 289
gzip/1, 289
inflate/2, 286
inflateEnd/1, 287
inflateInit/1, 286

inflateInit/2, 286
inflateReset/1, 287
inflateSetDictionary/2, 286
open/0, 283
setBufSize/2, 287
uncompress/1, 289
unzip/1, 289
zip/1, 289

316 Kernel Application (KERNEL)

