
Erlang Run-Time System Application
(ERTS)

version 5.6

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 ERTS User’s Guide 1

1.1 Match specifications in Erlang . 1

1.1.1 Grammar . 1

1.1.2 Function descriptions . 2

1.1.3 Variables and literals . 4

1.1.4 Execution of the match . 5

1.1.5 Differences between match specifications in ETS and tracing 5

1.1.6 Examples . 6

1.2 How to interpret the Erlang crash dumps . 7

1.2.1 General information . 8

1.2.2 Memory information . 9

1.2.3 Internal table information . 9

1.2.4 Allocated areas . 9

1.2.5 Allocator . 9

1.2.6 Process information . 9

1.2.7 Port information . 10

1.2.8 ETS tables . 11

1.2.9 Timers . 11

1.2.10 Distribution information . 11

1.2.11 Loaded module information . 12

1.2.12 Fun information . 12

1.2.13 Process Data . 12

1.2.14 Atoms . 13

1.2.15 Disclaimer . 13

1.3 How to implement an alternative carrier for the Erlang distribution 13

1.3.1 Introduction . 13

1.3.2 The driver . 14

1.3.3 Putting it all together . 28

1.4 The Abstract Format . 29

1.4.1 Module declarations and forms . 29

iiiErlang Run-Time System Application (ERTS)

1.4.2 Atomic literals . 30

1.4.3 Patterns . 30

1.4.4 Expressions . 31

1.4.5 Clauses . 33

1.4.6 Guards . 34

1.4.7 The abstract format after preprocessing . 34

1.5 tty - A command line interface . 35

1.5.1 Normal Mode . 35

1.5.2 Shell Break Mode . 36

1.6 How to implement a driver . 36

1.6.1 Introduction . 36

1.6.2 Sample driver . 36

1.6.3 Compiling and linking the sample driver . 41

1.6.4 Calling a driver as a port in Erlang . 41

1.6.5 Sample asynchronous driver . 42

1.6.6 An asynchronous driver using driver async . 45

1.7 Inet configuration . 48

1.7.1 Introduction . 48

1.7.2 Configuration Data . 49

1.7.3 User Configuration Example . 50

1.8 External Term Format . 51

1.8.1 Introduction . 51

1.8.2 SMALL INTEGER EXT . 52

1.8.3 INTEGER EXT . 52

1.8.4 FLOAT EXT . 52

1.8.5 ATOM EXT . 53

1.8.6 REFERENCE EXT . 53

1.8.7 PORT EXT . 53

1.8.8 PID EXT . 54

1.8.9 SMALL TUPLE EXT . 54

1.8.10 LARGE TUPLE EXT . 54

1.8.11 NIL EXT . 54

1.8.12 STRING EXT . 55

1.8.13 LIST EXT . 55

1.8.14 BINARY EXT . 55

1.8.15 SMALL BIG EXT . 55

1.8.16 LARGE BIG EXT . 56

1.8.17 NEW CACHE . 56

1.8.18 CACHED ATOM . 56

1.8.19 NEW REFERENCE EXT . 57

iv Erlang Run-Time System Application (ERTS)

1.8.20 FUN EXT . 57

1.8.21 NEW FUN EXT . 57

1.8.22 EXPORT EXT . 58

1.8.23 BIT BINARY EXT . 58

1.8.24 NEW FLOAT EXT . 59

1.9 Distribution Protocol . 59

1.9.1 EPMD Protocol . 59

1.9.2 Handshake . 65

1.9.3 Protocol between connected nodes . 65

1.9.4 New Ctrlmessages for distrvsn = 1 (OTP R4) . 66

1.9.5 New Ctrlmessages for distrvsn = 2 . 66

1.9.6 New Ctrlmessages for distrvsn = 3 (OTP R5C) 66

1.9.7 New Ctrlmessages for distrvsn = 4 (OTP R6) . 66

2 ERTS Reference Manual 69

2.1 epmd . 78

2.2 erl . 79

2.3 erlc . 86

2.4 erlsrv . 89

2.5 escript . 94

2.6 run erl . 96

2.7 start . 98

2.8 start erl . 99

2.9 werl . 101

2.10 erl set memory block . 102

2.11 erts alloc . 104

2.12 driver entry . 110

2.13 erl driver . 116

List of Figures 147

List of Tables 149

vErlang Run-Time System Application (ERTS)

vi Erlang Run-Time System Application (ERTS)

Chapter 1

ERTS User’s Guide

The Erlang Runtime System Application ERTS.

1.1 Match specifications in Erlang

A “match specification” (match spec) is an Erlang term describing a small “program” that will try to
match something (either the parameters to a function as used in the erlang:trace pattern/2 BIF, or
the objects in an ETS table.). The match spec in many ways works like a small function in Erlang, but is
interpreted/compiled by the Erlang runtime system to something much more efficient than calling an
Erlang function. The match spec is also very limited compared to the expressiveness of real Erlang
functions.

Match specifications are given to the BIF erlang:trace pattern/2 to execute matching of function
arguments as well as to define some actions to be taken when the match succeeds (the MatchBody part).
Match specifications can also be used in ETS, to specify objects to be returned from an ets:select/2
call (or other select calls). The semantics and restrictions differ slightly when using match specifications
for tracing and in ETS, the differences are defined in a separate paragraph below.

The most notable difference between a match spec and an Erlang fun is of course the syntax. Match
specifications are Erlang terms, not Erlang code. A match spec also has a somewhat strange concept of
exceptions. An exception (e.g., badarg) in the MatchCondition part, which resembles an Erlang guard,
will generate immediate failure, while an exception in the MatchBody part, which resembles the body of
an Erlang function, is implicitly caught and results in the single atom ’EXIT’.

1.1.1 Grammar

A match spec can be described in this informal grammar:

� MatchExpression ::= [MatchFunction, ...]

� MatchFunction ::= f MatchHead, MatchConditions, MatchBody g

� MatchHead ::= MatchVariable | ’ ’ | [MatchHeadPart, ...]

� MatchHeadPart ::= term() | MatchVariable | ’ ’

� MatchVariable ::= ’$<number>’

� MatchConditions ::= [MatchCondition, ...] | []

� MatchCondition ::= f GuardFunction g | f GuardFunction, ConditionExpression, ... g

1Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

� BoolFunction ::= is atom | is constant | is float | is integer | is list | is number |
is pid | is port | is reference | is tuple | is binary | is function | is record |
is seq trace | ’and’ | ’or’ | ’not’ | ’xor’ | andalso | orelse

� ConditionExpression ::= ExprMatchVariable | f GuardFunction g | f GuardFunction,
ConditionExpression, ... g | TermConstruct

� ExprMatchVariable ::= MatchVariable (bound in the MatchHead) | ’$ ’ | ’$$’

� TermConstruct = ffgg | ff ConditionExpression, ... gg | [] | [ConditionExpression, ...] |
NonCompositeTerm | Constant

� NonCompositeTerm ::= term() (not list or tuple)

� Constant ::= fconst, term()g

� GuardFunction ::= BoolFunction | abs | element | hd | length | node | round | size | tl |
trunc | ’+’ | ’-’ | ’*’ | ’div’ | ’rem’ | ’band’ | ’bor’ | ’bxor’ | ’bnot’ | ’bsl’ | ’bsr’ |
’>’ | ’>=’ | ’<’ | ’=<’ | ’=:=’ | ’==’ | ’=/=’ | ’/=’ | self | get tcw

� MatchBody ::= [ActionTerm]

� ActionTerm ::= ConditionExpression | ActionCall

� ActionCall ::= fActionFunctiong | fActionFunction, ActionTerm, ...g

� ActionFunction ::= set seq token | get seq token | message | return trace | process dump
| enable trace | disable trace | trace | display | caller | set tcw | silent

1.1.2 Function descriptions

Functions allowed in all types of match specifications

The different functions allowed in match spec work like this:

is atom, is constant, is float, is integer, is list, is number, is pid, is port, is reference, is tuple, is binary,
is function: Like the corresponding guard tests in Erlang, return true or false.

is record: Takes an additional parameter, which SHALL be the result of record info(size,
<record type>), like in fis record, ’$1’, rectype, record info(size, rectype)g.

’not’: Negates its single argument (anything other than false gives false).

’and’: Returns true if all its arguments (variable length argument list) evaluate to true, else false.
Evaluation order is undefined.

’or’: Returns true if any of its arguments evaluates to true. Variable length argument list. Evaluation
order is undefined.

andalso: Like ’and’, but quits evaluating its arguments as soon as one argument evaluates to something
else than true. Arguments are evaluated left to right.

orelse: Like ’or’, but quits evaluating as soon as one of its arguments evaluates to true. Arguments are
evaluated left to right.

’xor’: Only two arguments, of which one has to be true and the other false to return true; otherwise
’xor’ returns false.

abs, element, hd, length, node, round, size, tl, trunc, ’+’, ’-’, ’*’, ’div’, ’rem’, ’band’, ’bor’, ’bxor’, ’bnot’, ’bsl’,
’bsr’, ’>’, ’>=’, ’<’, ’=<’, ’=:=’, ’==’, ’=/=’, ’/=’, self: Work as the corresponding Erlang bif’s (or
operators). In case of bad arguments, the result depends on the context. In the MatchConditions part
of the expression, the test fails immediately (like in an Erlang guard), but in the MatchBody, exceptions
are implicitly caught and the call results in the atom ’EXIT’.

2 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

Functions allowed only for tracing

is seq trace: Returns true if a sequential trace token is set for the current process, otherwise false.

set seq token: Works like seq trace:set token/2, but returns true on success and ’EXIT’ on error or
bad argument. Only allowed in the MatchBody part and only allowed when tracing.

get seq token: Works just like seq trace:get token/0, and is only allowed in the MatchBody part when
tracing.

message: Sets an additional message appended to the trace message sent. One can only set one
additional message in the body; subsequent calls will replace the appended message. As a special case,
fmessage, falseg disables sending of trace messages (’call’ and ’return to’) for this function call, just
like if the match spec had not matched, which can be useful if only the side effects of the MatchBody
are desired. Another special case is fmessage, trueg which sets the default behavior, as if the function
had no match spec, trace message is sent with no extra information (if no other calls to message are
placed before fmessage, trueg, it is in fact a “noop”).

Takes one argument, the message. Returns true and can only be used in the MatchBody part and when
tracing.

return trace: Causes a return from trace message to be sent upon return from the current function.
Takes no arguments, returns true and can only be used in the MatchBody part when tracing. If the
process trace flag silent is active the return from trace message is inhibited.

NOTE! If the traced function is tail recursive, this match spec function destroys that property. Hence, if
a match spec executing this function is used on a perpetual server process, it may only be active for a
limited time, or the emulator will eventually use all memory in the host machine and crash. If this
match spec function is inhibited using the silent process trace flag tail recursiveness still remains.

exception trace: Same as return trace, plus; if the traced function exits due to an exception, an
exception from trace message is generated, whether the exception is caught or not.

process dump: Returns some textual information about the current process as a binary. Takes no
arguments and is only allowed in the MatchBody part when tracing.

enable trace: With one parameter this function turns on tracing like the Erlang call
erlang:trace(self(), true, [P2]), where P2 is the parameter to enable trace. With two
parameters, the first parameter should be either a process identifier or the registered name of a process.
In this case tracing is turned on for the designated process in the same way as in the Erlang call
erlang:trace(P1, true, [P2]), where P1 is the first and P2 is the second argument. The process P1
gets its trace messages sent to the same tracer as the process executing the statement uses. P1 can not be
one of the atoms all, new or existing (unless, of course, they are registered names). P2 can not be
cpu timestamp nor ftracer, g. Returns true and may only be used in the MatchBody part when
tracing.

disable trace: With one parameter this function disables tracing like the Erlang call
erlang:trace(self(), false, [P2]), where P2 is the parameter to disable trace. With two
parameters it works like the Erlang call erlang:trace(P1, false, [P2]), where P1 can be either a
process identifier or a registered name and is given as the first argument to the match spec function. P2
can not be cpu timestamp nor ftracer, g. Returns true and may only be used in the MatchBody part
when tracing.

trace: With two parameters this function takes a list of trace flags to disable as first parameter and a list
of trace flags to enable as second parameter. Logically, the disable list is applied first, but effectively all
changes are applied atomically. The trace flags are the same as for erlang:trace/3 not including
cpu timestamp but including ftracer, g. If a tracer is specified in both lists, the tracer in the enable
list takes precedence. If no tracer is specified the same tracer as the process executing the match spec is
used. With three parameters to this function the first is either a process identifier or the registered name
of a process to set trace flags on, the second is the disable list, and the third is the enable list. Returns

3Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

true if any trace propery was changed for the trace target process or false if not. It may only be used
in the MatchBody part when tracing.

caller: Returns the calling function as a tuple fModule, Function, Arityg or the atom undefined if the
calling function cannot be determined. May only be used in the MatchBody part when tracing.

Note that if a “technically built in function” (i.e. a function not written in Erlang) is traced, the caller
function will sometimes return the atom undefined. The calling Erlang function is not available during
such calls.

display: For debugging purposes only; displays the single argument as an Erlang term on stdout, which
is seldom what is wanted. Returns true and may only be used in the MatchBody part when tracing.

get tcw: Takes no argument and returns the value of the node’s trace control word. The same is done by
erlang:system info(trace control word).

The trace control word is a 32-bit unsigned integer intended for generic trace control. The trace control
word can be tested and set both from within trace match specifications and with BIFs. This call is only
allowed when tracing.

set tcw: Takes one unsigned integer argument, sets the value of the node’s trace control word to the
value of the argument and returns the previous value. The same is done by
erlang:system flag(trace control word, Value). It is only allowed to use set tcw in the
MatchBody part when tracing.

silent: Takes one argument. If the argument is true, the call trace message mode for the current process
is set to silent for this call and all subsequent, i.e call trace messages are inhibited even if fmessage,
trueg is called in the MatchBody part for a traced function.

This mode can also be activated with the silent flag to erlang:trace/3.

If the argument is false, the call trace message mode for the current process is set to normal
(non-silent) for this call and all subsequent.

If the argument is neither true nor false, the call trace message mode is unaffected.

Note that all “function calls” have to be tuples, even if they take no arguments. The value of self is the
atom() self, but the value of fselfg is the pid() of the current process.

1.1.3 Variables and literals

Variables take the form ’$<number>’ where <number> is an integer between 0 (zero) and 100000000
(1e+8), the behavior if the number is outside these limits is undefined. In the MatchHead part, the
special variable ’ ’ matches anything, and never gets bound (like in Erlang). In the
MatchCondition/MatchBody parts, no unbound variables are allowed, why ’ ’ is interpreted as itself
(an atom). Variables can only be bound in the MatchHead part. In the MatchBody and MatchCondition
parts, only variables bound previously may be used. As a special case, in the
MatchCondition/MatchBody parts, the variable ’$ ’ expands to the whole expression which matched
the MatchHead (i.e., the whole parameter list to the possibly traced function or the whole matching
object in the ets table) and the variable ’$$’ expands to a list of the values of all bound variables in
order (i.e. [’$1’,’$2’, ...]).

In the MatchHead part, all literals (except the variables noted above) are interpreted as is. In the
MatchCondition/MatchBody parts, however, the interpretation is in some ways different. Literals in the
MatchCondition/MatchBody can either be written as is, which works for all literals except tuples, or by
using the special form fconst, Tg, where T is any Erlang term. For tuple literals in the match spec, one
can also use double tuple parentheses, i.e., construct them as a tuple of arity one containing a single
tuple, which is the one to be constructed. The “double tuple parenthesis” syntax is useful to construct
tuples from already bound variables, like in ff’$1’, [a,b,’$2’]gg. Some examples may be needed:

4 Erlang Run-Time System Application (ERTS)

1.1: Match specifications in Erlang

Expression Variable bindings Result

ff’$1’,’$2’gg ’$1’ = a, ’$2’ = b fa,bg

fconst, f’$1’, ’$2’gg doesn’t matter f’$1’, ’$2’g

a doesn’t matter a

’$1’ ’$1’ = [] []

[’$1’] ’$1’ = [] [[]]

[ffagg] doesn’t matter [fag]

42 doesn’t matter 42

”hello” doesn’t matter ”hello”

$1 doesn’t matter 49 (the ASCII value for the character ’1’)

Table 1.1: Literals in the MatchCondition/MatchBody parts of a match spec

1.1.4 Execution of the match

The execution of the match expression, when the runtime system decides whether a trace message
should be sent, goes as follows:

For each tuple in the MatchExpression list and while no match has succeeded:

� Match the MatchHead part against the arguments to the function, binding the ’$<number>’
variables (much like in ets:match/2). If the MatchHead cannot match the arguments, the match
fails.

� Evaluate each MatchCondition (where only ’$<number>’ variables previously bound in the
MatchHead can occur) and expect it to return the atom true. As soon as a condition does not
evaluate to true, the match fails. If any BIF call generates an exception, also fail.

� – If the match spec is executing when tracing:
Evaluate each ActionTerm in the same way as the MatchConditions, but completely ignore
the return values. Regardless of what happens in this part, the match has succeeded.

– If the match spec is executed when selectiing objects from an ETS table:
Evaluate the expressions in order and return the value of the last expression (typically there
is only one expression in this context)

1.1.5 Differences between match specifications in ETS and tracing

ETS match specifications are there to produce a return value. Usually the expression contains one single
ActionTerm which defines the return value without having any side effects. Calls with side effects are
not allowed in the ETS context.

When tracing there is no return value to produce, the match specification either matches or doesn’t.
The effect when the expression matches is a trace messsage rather then a returned term. The
ActionTerm’s are executed as in an imperative language, i.e. for their side effects. Functions with side
effects are also allowed when tracing.

In ETS the match head is a tuple() (or a single match variable) while it is a list (or a single match
variable) when tracing.

5Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.1.6 Examples

Match an argument list of three where the first and third arguments are equal:

[{[’$1’, ’_’, ’$1’],
[],
[]}]

Match an argument list of three where the second argument is a number greater than three:

[{[’_’, ’$1’, ’_’],
[{ ’>’, ’$1’, 3}],
[]}]

Match an argument list of three, where the third argument is a tuple containing argument one and two
or a list beginning with argument one and two (i. e. [a,b,[a,b,c]] or [a,b,fa,bg]):

[{[’$1’, ’$2’, ’$3’],
[{orelse,

{’=:=’, ’$3’, {{’$1’,’$2’}}},
{’and’,
{’=:=’, ’$1’, {hd, ’$3’}},
{’=:=’, ’$2’, {hd, {tl, ’$3’}}}}}],

[]}]

The above problem may also be solved like this:

[{[’$1’, ’$2’, {’$1’, ’$2}], [], []},
{[’$1’, ’$2’, [’$1’, ’$2’ | ’_’]], [], []}]

Match two arguments where the first is a tuple beginning with a list which in turn begins with the
second argument times two (i. e. [f[4,x],yg,2] or [f[8], y, zg,4])

[{[’$1’, ’$2’], [{’=:=’, {’*’, 2, ’$2’}, {hd, {element, 1, ’$1’}}}],
[]}]

Match three arguments. When all three are equal and are numbers, append the process dump to the
trace message, else let the trace message be as is, but set the sequential trace token label to 4711.

[{[’$1’, ’$1’, ’$1’],
[{is_number, ’$1’}],
[{message, {process_dump}}]},
{’_’, [], [{set_seq_token, label, 4711}]}]

As can be noted above, the parameter list can be matched against a single MatchVariable or an ’ ’. To
replace the whole parameter list with a single variable is a special case. In all other cases the MatchHead
has to be a proper list.

Match all objects in an ets table where the first element is the atom ’strider’ and the tuple arity is 3 and
return the whole object.

6 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

[{{strider,’_’.’_’},
[],
[’$_’]}]

Match all objects in an ets table with arity > 1 and the first element is ’gandalf’, return element 2.

[{’$1’,
[{’==’, gandalf, {element, 1, ’$1’}},{’>=’,{size, ’$1’},2}],
[{element,2,’$1’}]}]

In the above example, if the first element had been the key, it’s much more efficient to match that key
in the MatchHead part than in the MatchConditions part. The search space of the tables is restricted
with regards to the MatchHead so that only objects with the matching key are searched.

Match tuples of 3 elements where the second element is either ’merry’ or ’pippin’, return the whole
objects.

[{{’_’,merry,’_’},
[],
[’$_’]},

{{’_’,pippin,’_’},
[],
[’$_’]}]

The function ets:test ms/2 can be useful for testing complicated ets matches.

1.2 How to interpret the Erlang crash dumps

This document describes the erl crash.dump file generated upon abnormal exit of the Erlang runtime
system.

Important: For OTP release R9C the Erlang crash dump has had a major facelift. This means that the
information in this document will not be directly applicable for older dumps. However, if you use the
Crashdump Viewer tool on older dumps, the crash dumps are translated into a format similar to this.

The system will write the crash dump in the current directory of the emulator or in the file pointed out
by the environment variable (whatever that means on the current operating system)
ERL CRASH DUMP. For a crash dump to be written, there has to be a writable file system mounted.

Crash dumps are written mainly for one of two reasons: either the builtin function erlang:halt/1 is
called explicitly with a string argument from running Erlang code, or else the runtime system has
detected an error that cannot be handled. The most usual reason that the system can’t handle the error
is that the cause is external limitations, such as running out of memory. A crash dump due to an internal
error may be caused by the system reaching limits in the emulator itself (like the number of atoms in
the system, or too many simultaneous ets tables). Usually the emulator or the operating system can be
reconfigured to avoid the crash, which is why interpreting the crash dump correctly is important.

The erlang crash dump is a readable text file, but it might not be very easy to read. Using the
Crashdump Viewer tool in the observer application will simplify the task. This is an HTML based tool
for browsing Erlang crash dumps.

7Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.2.1 General information

The first part of the dump shows the creation time for the dump, a slogan indicating the reason for the
dump, the system version, of the node from which the dump originates, the compile time of the
emulator running the originating node and the number of atoms in the atom table.

Reasons for crash dumps (slogan)

The reason for the dump is noted in the beginning of the file as Slogan: <reason> (the word “slogan” has
historical roots). If the system is halted by the BIF erlang:halt/1, the slogan is the string parameter
passed to the BIF, otherwise it is a description generated by the emulator or the (Erlang) kernel.
Normally the message should be enough to understand the problem, but nevertheless some messages
are described here. Note however that the suggested reasons for the crash are only suggestions. The exact
reasons for the errors may vary depending on the local applications and the underlying operating system.

� “<A>: Cannot allocate <N> bytes of memory (of type ”<T>“).” - The system has run out of
memory. <A> is the allocator that failed to allocate memory, <N> is the number of bytes that
<A> tried to allocate, and <T> is the memory block type that the memory was needed for. The
most common case is that a process stores hugh amounts of data. In this case <T> is most often
heap, old heap, heap frag, or binary. For more information on allocators see erts alloc(3) [page
104].

� “<A>: Cannot reallocate <N> bytes of memory (of type ”<T>“).” - Same as above with the
exception that memory was being reallocated instead of being allocated when the system ran out
of memory.

� “Unexpected op code N” - Error in compiled code, beam file damaged or error in the compiler.

� “Module Name undefined” | “Function Name undefined” | “No function Name:Name/1” | “No
function Name:start/2” - The kernel/stdlib applications are damaged or the start script is damaged.

� “Driver select called with too large file descriptor N” - The number of file descriptors for sockets
exceed 1024 (Unix only). The limit on file-descriptors in some Unix flavors can be set to over
1024, but only 1024 sockets/pipes can be used simultaneously by Erlang (due to limitations in the
Unix select call). The number of open regular files is not affected by this.

� “Received SIGUSR1” - The SIGUSR1 signal was sent to the Erlang machine (Unix only).

� “Kernel pid terminated (Who) (Exit-reason)” - The kernel supervisor has detected a failure, usually
that the application controller has shut down (Who = application controller, Why =
shutdown). The application controller may have shut down for a number of reasons, the most
usual being that the node name of the distributed Erlang node is already in use. A complete
supervisor tree “crash” (i.e., the top supervisors have exited) will give about the same result. This
message comes from the Erlang code and not from the virtual machine itself. It is always due to
some kind of failure in an application, either within OTP or a “user-written” one. Looking at the
error log for your application is probably the first step to take.

� “Init terminating in do boot ()” - The primitive Erlang boot sequence was terminated, most
probably because the boot script has errors or cannot be read. This is usually a configuration error
- the system may have been started with a faulty -boot parameter or with a boot script from the
wrong version of OTP.

� “Could not start kernel pid (Who) ()” - One of the kernel processes could not start. This is
probably due to faulty arguments (like errors in a -config argument) or faulty configuration files.
Check that all files are in their correct location and that the configuration files (if any) are not
damaged. Usually there are also messages written to the controlling terminal and/or the error log
explaining what’s wrong.

8 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

Other errors than the ones mentioned above may occur, as the erlang:halt/1 BIF may generate any
message. If the message is not generated by the BIF and does not occur in the list above, it may be due
to an error in the emulator. There may however be unusual messages that I haven’t mentioned, that still
are connected to an application failure. There is a lot more information available, so more thorough
reading of the crash dump may reveal the crash reason. The size of processes, the number of ets tables
and the Erlang data on each process stack can be useful for tracking down the problem.

Number of atoms

The number of atoms in the system at the time of the crash is shown as Atoms: <number>. Some ten
thousands atoms is perfectly normal, but more could indicate that the BIF erlang:list to atom/1 is
used to dynamically generate a lot of different atoms, which is never a good idea.

1.2.2 Memory information

Under the tag =memory you will find information similar to what you can obtain on a living node with
[erlang:memory()].

1.2.3 Internal table information

The tags =hash table:<table name> and =index table:<table name> presents internal tables. These are
mostly of interest for runtime system developers.

1.2.4 Allocated areas

Under the tag =allocated areas you will find information similar to what you can obtain on a living node
with [erlang:system info(allocated areas)].

1.2.5 Allocator

Under the tag =allocator:<A> you will find various information about allocator <A>. The information
is similar to what you can obtain on a living node with [erlang:system info(fallocator, <A>g)]. For
more information see the documentation of [erlang:system info(fallocator, <A>g)], and the
erts alloc(3) [page 104] documentation.

1.2.6 Process information

The Erlang crashdump contains a listing of each living Erlang process in the system. The process
information for one process may look like this (line numbers have been added):

The following fields can exist for a process:

=proc:<pid> Heading, states the process identifier

State The state of the process. This can be one of the following:

� Scheduled - The process was scheduled to run but not currently running (“in the run queue”).

� Waiting - The process was waiting for something (in receive).

� Running - The process was currently running. If the BIF erlang:halt/1 was called, this was
the process calling it.

� Exiting - The process was on its way to exit.

9Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

� Garbing - This is bad luck, the process was garbage collecting when the crash dump was
written, the rest of the information for this process is limited.

� Suspended - The process is suspended, either by the BIF erlang:suspend process/1 or
because it is trying to write to a busy port.

Registered name The registered name of the process, if any.

Spawned as The entry point of the process, i.e., what function was referenced in the spawn or
spawn link call that started the process.

Last scheduled in for | Current call The current function of the process. These fields will not always
exist.

Spawned by The parent of the process, i.e. the process which executed spawn or spawn link.

Started The date and time when the process was started.

Message queue length The number of messages in the process’ message queue.

Number of heap fragments The number of allocated heap fragments.

Heap fragment data Size of fragmented heap data. This is data either created by messages being sent
to the process or by the Erlang BIFs. This amount depends on so many things that this field is
utterly uninteresting.

Link list Process id’s of processes linked to this one. May also contain ports. If process monitoring is
used, this field also tells in which direction the monitoring is in effect, i.e., a link being “to” a
process tells you that the “current” process was monitoring the other and a link “from” a process
tells you that the other process was monitoring the current one.

Reductions The number of reductions consumed by the process.

Stack+heap The size of the stack and heap (they share memory segment)

OldHeap The size of the “old heap”. The Erlang virtual machine uses generational garbage collection
with two generations. There is one heap for new data items and one for the data that have
survived two garbage collections. The assumption (which is almost always correct) is that data
that survive two garbage collections can be “tenured” to a heap more seldom garbage collected, as
they will live for a long period. This is a quite usual technique in virtual machines. The sum of
the heaps and stack together constitute most of the process’s allocated memory.

Heap unused, OldHeap unused The amount of unused memory on each heap. This information is
usually useless.

Stack If the system uses shared heap, the fields Stack+heap, OldHeap, Heap unused and OldHeap
unused do not exist. Instead this field presents the size of the process’ stack.

Program counter The current instruction pointer. This is only interesting for runtime system
developers. The function into which the program counter points is the current function of the
process.

CP The continuation pointer, i.e. the return address for the current call. Usually useless for other than
runtime system developers. This may be followed by the function into which the CP points,
which is the function calling the current function.

Arity The number of live argument registers. The argument registers, if any are live, will follow. These
may contain the arguments of the function if they are not yet moved to the stack.

See also the section about process data [page 12].

1.2.7 Port information

This section lists the open ports, their owners, any linked processed, and the name of their driver or
external process.

10 Erlang Run-Time System Application (ERTS)

1.2: How to interpret the Erlang crash dumps

1.2.8 ETS tables

This section contains information about all the ETS tables in the system. The following fields are
interesting for each table:

=ets:<owner> Heading, states the owner of the table (a process identifier)

Table The identifier for the table. If the table is a named table, this is the name.

Name The name of the table, regardless of whether it is a named table or not.

Buckets This occurs if the table is a hash table, i.e. if it is not an ordered set.

Ordered set (AVL tree), Elements This occurs only if the table is an ordered set. (The number of
elements is the same as the number of objects in the table.)

Objects The number of objects in the table

Words The number of words (usually 4 bytes/word) allocated to data in the table.

1.2.9 Timers

This section contains information about all the timers started with the BIFs erlang:start timer/3 and
erlang:send after/3. The following fields exists for each timer:

=timer:<owner> Heading, states the owner of the timer (a process identifier) i.e. the process to
receive the message when the timer expires.

Message The message to be sent.

Time left Number of milliseconds left until the message would have been sent.

1.2.10 Distribution information

If the Erlang node was alive, i.e., set up for communicating with other nodes, this section lists the
connections that were active. The following fields can exist:

=node:<node name> The name of the node

no distribution This will only occur if the node was not distributed.

=visible node:<channel> Heading for a visible nodes, i.e. an alive node with a connection to the node
that crashed. States the channel number for the node.

=hidden node:<channel> Heading for a hidden node. A hidden node is the same as a visible node,
except that it is started with the “-hidden” flag. States the channel number for the node.

=not connected:<channel> Heading for a node which is has been connected to the crashed node
earlier. References (i.e. process or port identitifiers) to the not connected node existed at the time
of the crash. exist. States the channel number for the node.

Name The name of the remote node.

Controller The port which controls the communication with the remote node.

Creation An integer (1-3) which together with the node name identifies a specific instance of the node.

Remote monitoring: <local proc> <remote proc> The local process was monitoring the remote
process at the time of the crash.

Remotely monitored by: <local proc> <remote proc> The remote process was monitoring the local
process at the time of the crash.

Remote link: <local proc> <remote proc> A link existed between the local process and the remote
process at the time of the crash.

11Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.2.11 Loaded module information

This section contains information about all loaded modules. First, the memory usage by loaded code is
summarized. There is one field for “Current code” which is code that is the current latest version of the
modules. There is also a field for “Old code” which is code where there exists a newer version in the
system, but the old version is not yet purged. The memory usage is in bytes.

All loaded modules are then listed. The following fields exist:

=mod:<module name> Heading, and the name of the module.

Current size Memory usage for the loaded code in bytes

Old size Memory usage for the old code, if any.

Current attributes Module attributes for the current code. This field is decoded when looked at by the
Crashdump Viewer tool.

Old attributes Module attributes for the old code, if any. This field is decoded when looked at by the
Crashdump Viewer tool.

Current compilation info Compilation information (options) for the current code. This field is decoded
when looked at by the Crashdump Viewer tool.

Old compilation info Compilation information (options) for the old code, if any. This field is decoded
when looked at by the Crashdump Viewer tool.

1.2.12 Fun information

In this section, all funs are listed. The following fields exist for each fun:

=fun Heading

Module The name of the module where the fun was defined.

Uniq, Index Identifiers

Address The address of the fun’s code.

Native address The address of the fun’s code when HiPE is enabled.

Refc The number of references to the fun.

1.2.13 Process Data

For each process there will be at least one =proc stack and one =proc heap tag followed by the raw
memory information for the stack and heap of the process.

For each process there will also be a =proc messages tag if the process’ message queue is non-empty and
a =proc dictionary tag if the process’ dictionary (the put/2 and get/1 thing) is non-empty.

The raw memory information can be decoded by the Crashdump Viewer tool. You will then be able to
see the stack dump, the message queue (if any) and the dictionary (if any).

The stack dump is a dump of the Erlang process stack. Most of the live data (i.e., variables currently in
use) are placed on the stack; thus this can be quite interesting. One has to “guess” what’s what, but as
the information is symbolic, thorough reading of this information can be very useful. As an example we
can find the state variable of the Erlang primitive loader on line (5) in the example below:

12 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

(1) 3cac44 Return addr 0x13BF58 (<terminate process normally>)
(2) y(0) ["/view/siri_r10_dev/clearcase/otp/erts/lib/kernel/ebin","/view/siri_r10_dev/
(3) clearcase/otp/erts/lib/stdlib/ebin"]
(4) y(1) <0.1.0>
(5) y(2) {state,[],none,#Fun<erl_prim_loader.6.7085890>,undefined,#Fun<erl_prim_loader.7.90003
(6) y(3) infinity

When interpreting the data for a process, it is helpful to know that anonymous function objects (funs)
are given a name constructed from the name of the function in which they are created, and a number
(starting with 0) indicating the number of that fun within that function.

1.2.14 Atoms

Now all the atoms in the system are written. This is only interesting if one suspects that dynamic
generation of atoms could be a problem, otherwise this section can be ignored.

Note that the last created atom is printed first.

1.2.15 Disclaimer

The format of the crash dump evolves between releases of OTP. Some information here may not apply
to your version. A description as this will never be complete; it is meant as an explanation of the crash
dump in general and as a help when trying to find application errors, not as a complete specification.

1.3 How to implement an alternative carrier for the Erlang
distribution

This document describes how one can implement ones own carrier protocol for the Erlang distribution.
The distribution is normally carried by the TCP/IP protocol. What’s explained here is the method for
replacing TCP/IP with another protocol.

The document is a step by step explanation of the uds dist example application (seated in the kernel
applications examples directory). The uds dist application implements distribution over Unix domain
sockets and is written for the Sun Solaris 2 operating environment. The mechanisms are however
general and applies to any operating system Erlang runs on. The reason the C code is not made
portable, is simply readability.

1.3.1 Introduction

To implement a new carrier for the Erlang distribution, one must first make the protocol available to
the Erlang machine, which involves writing an Erlang driver. There is no way one can use a port
program, there has to be an Erlang driver. Erlang drivers can either be statically linked to the emulator,
which can be an alternative when using the open source distribution of Erlang, or dynamically loaded
into the Erlang machines address space, which is the only alternative if a precompiled version of Erlang
is to be used.

Writing an Erlang driver is by no means easy. The driver is written as a couple of call-back functions
called by the Erlang emulator when data is sent to the driver or the driver has any data available on a
file descriptor. As the driver call-back routines execute in the main thread of the Erlang machine, the
call-back functions can perform no blocking activity whatsoever. The call-backs should only set up file
descriptors for waiting and/or read/write available data. All I/O has to be non blocking. Driver

13Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

call-backs are however executed in sequence, why a global state can safely be updated within the
routines.

When the driver is implemented, one would preferably write an Erlang interface for the driver to be
able to test the functionality of the driver separately. This interface can then be used by the distribution
module which will cover the details of the protocol from the net kernel. The easiest path is to mimic
the inet and gen tcp interfaces, but a lot of functionality in those modules need not be implemented.
In the example application, only a few of the usual interfaces are implemented, and they are much
simplified.

When the protocol is available to Erlang through a driver and an Erlang interface module, a distribution
module can be written. The distribution module is a module with well defined call-backs, much like a
gen server (there is no compiler support for checking the call-backs though). The details of finding
other nodes (i.e. talking to epmd or something similar), creating a listen port (or similar), connecting to
other nodes and performing the handshakes/cookie verification are all implemented by this module.
There is however a utility module, dist util, that will do most of the hard work of handling
handshakes, cookies, timers and ticking. Using dist util makes implementing a distribution module
much easier and that’s what we are doing in the example application.

The last step is to create boot scripts to make the protocol implementation available at boot time. The
implementation can be debugged by starting the distribution when all of the system is running, but in a
real system the distribution should start very early, why a boot-script and some command line
parameters are necessary. This last step also implies that the Erlang code in the interface and
distribution modules is written in such a way that it can be run in the startup phase. Most notably there
can be no calls to the application module or to any modules not loaded at boot-time (i.e. only
kernel, stdlib and the application itself can be used).

1.3.2 The driver

Although Erlang drivers in general may be beyond the scope of this document, a brief introduction
seems to be in place.

Drivers in general

An Erlang driver is a native code module written in C (or assembler) which serves as an interface for
some special operating system service. This is a general mechanism that is used throughout the Erlang
emulator for all kinds of I/O. An Erlang driver can be dynamically linked (or loaded) to the Erlang
emulator at runtime by using the erl ddll Erlang module. Some of the drivers in OTP are however
statically linked to the runtime system, but that’s more an optimization than a necessity.

The driver data-types and the functions available to the driver writer are defined in the header file
erl driver.h (there is also an deprecated version called driver.h, don’t use that one.) seated in
Erlang’s include directory (and in $ERL TOP/erts/emulator/beam in the source code distribution).
Refer to that file for function prototypes etc.

When writing a driver to make a communications protocol available to Erlang, one should know just
about everything worth knowing about that particular protocol. All operation has to be non blocking
and all possible situations should be accounted for in the driver. A non stable driver will affect and/or
crash the whole Erlang runtime system, which is seldom what’s wanted.

The emulator calls the driver in the following situations:

� When the driver is loaded. This call-back has to have a special name and will inform the emulator
of what call-backs should be used by returning a pointer to a ErlDrvEntry struct, which should
be properly filled in (see below).

14 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

� When a port to the driver is opened (by a open port call from Erlang). This routine should set up
internal data structures and return an opaque data entity of the type ErlDrvData, which is a
data-type large enough to hold a pointer. The pointer returned by this function will be the first
argument to all other call-backs concerning this particular port. It is usually called the port
handle. The emulator only stores the handle and does never try to interpret it, why it can be
virtually anything (well anything not larger than a pointer that is) and can point to anything if it is
a pointer. Usually this pointer will refer to a structure holding information about the particular
port, as i t does in our example.

� When an Erlang process sends data to the port. The data will arrive as a buffer of bytes, the
interpretation is not defined, but is up to the implementor. This call-back returns nothing to the
caller, answers are sent to the caller as messages (using a routine called driver output available to
all drivers). There is also a way to talk in a synchronous way to drivers, described below. There
can be an additional call-back function for handling data that is fragmented (sent in a deep io-list).
That interface will get the data in a form suitable for Unix writev rather than in a single buffer.
There is no need for a distribution driver to implement such a call-back, so we wont.

� When a file descriptor is signaled for input. This call-back is called when the emulator detects
input on a file descriptor which the driver has marked for monitoring by using the interface
driver select. The mechanism of driver select makes it possible to read non blocking from file
descriptors by calling driver select when reading is needed and then do the actual reading in
this call-back (when reading is actually possible). The typical scenario is that driver select is
called when an Erlang process orders a read operation, and that this routine sends the answer
when data is available on the file descriptor.

� When a file descriptor is signaled for output. This call-back is called in a similar way as the
previous, but when writing to a file descriptor is possible. The usual scenario is that Erlang orders
writing on a file descriptor and that the driver calls driver select. When the descriptor is ready
for output, this call-back is called an the driver can try to send the output. There may of course
be queuing involved in such operations, and there are some convenient queue routines available
to the driver writer to use in such situations.

� When a port is closed, either by an Erlang process or by the driver calling one of the
driver failure XXX routines. This routine should clean up everything connected to one
particular port. Note that when other call-backs call a driver failure XXX routine, this routine
will be immediately called and the call-back routine issuing the error can make no more use of the
data structures for the port, as this routine surely has freed all associated data and closed all file
descriptors. If the queue utility available to driver writes is used, this routine will however not be
called until the queue is empty.

� When an Erlang process calls erlang:driver control/2, which is a synchronous interface to
drivers. The control interface is used to set driver options, change states of ports etc. We’ll use this
interface quite a lot in our example.

� When a timer expires. The driver can set timers with the function driver set timer. When such
timers expire, a specific call-back function is called. We will not use timers in our example.

� When the whole driver is unloaded. Every resource allocated by the driver should be freed.

The distribution driver’s data structures

The driver used for Erlang distribution should implement a reliable, order maintaining, variable length
packet oriented protocol. All error correction, re-sending and such need to be implemented in the
driver or by the underlying communications protocol. If the protocol is stream oriented (as is the case
with both TCP/IP and our streamed Unix domain sockets), some mechanism for packaging is needed.
We will use the simple method of having a header of four bytes containing the length of the package in
a big endian 32 bit integer (as Unix domain sockets only can be used between processes on the same

15Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

machine, we actually don’t need to code the integer in some special endianess, but I’ll do it anyway
because in most situation you do need to do it. Unix domain sockets are reliable and order maintaining,
so we don’t need to implement resends and such in our driver.

Lets start writing our example Unix domain sockets driver by declaring prototypes and filling in a static
ErlDrvEntry structure.

(1) #include <stdio.h>
(2) #include <stdlib.h>
(3) #include <string.h>
(4) #include <unistd.h>
(5) #include <errno.h>
(6) #include <sys/types.h>
(7) #include <sys/stat.h>
(8) #include <sys/socket.h>
(9) #include <sys/un.h>
(10) #include <fcntl.h>

(11) #define HAVE_UIO_H
(12) #include "erl_driver.h"

(13) /*
(14) ** Interface routines
(15) */
(16) static ErlDrvData uds_start(ErlDrvPort port, char *buff);
(17) static void uds_stop(ErlDrvData handle);
(18) static void uds_command(ErlDrvData handle, char *buff, int bufflen);
(19) static void uds_input(ErlDrvData handle, ErlDrvEvent event);
(20) static void uds_output(ErlDrvData handle, ErlDrvEvent event);
(21) static void uds_finish(void);
(22) static int uds_control(ErlDrvData handle, unsigned int command,
(23) char* buf, int count, char** res, int res_size);

(24) /* The driver entry */
(25) static ErlDrvEntry uds_driver_entry = {
(26) NULL, /* init, N/A */
(27) uds_start, /* start, called when port is opened */
(28) uds_stop, /* stop, called when port is closed */
(29) uds_command, /* output, called when erlang has sent */
(30) uds_input, /* ready_input, called when input descriptor
(31) ready */
(32) uds_output, /* ready_output, called when output
(33) descriptor ready */
(34) "uds_drv", /* char *driver_name, the argument
(35) to open_port */
(36) uds_finish, /* finish, called when unloaded */
(37) NULL, /* void * that is not used (BC) */
(38) uds_control, /* control, port_control callback */
(39) NULL, /* timeout, called on timeouts */
(40) NULL /* outputv, vector output interface */
(41) };

On line 1 to 10 we have included the OS headers needed for our driver. As this driver is written for
Solaris, we know that the header uio.h exists, why we can define the preprocessor variable HAVE UIO H

16 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

before we include erl driver.h at line 12. The definition of HAVE UIO H will make the I/O vectors
used in Erlang’s driver queues to correspond to the operating systems ditto, which is very convenient.

The different call-back functions are declared (“forward declarations”) on line 16 to 23.

The driver structure is similar for statically linked in drivers an dynamically loaded. However some of
the fields should be left empty (i.e. initialized to NULL) in the different types of drivers. The first field
(the init function pointer) is always left blank in a dynamically loaded driver, which can be seen on
line 26. The NULL on line 37 should always be there, the field is no longer used and is retained for
backward compatibility. We use no timers in this driver, why no call-back for timers is needed. The last
field (line 40) can be used to implement an interface similar to Unix writev for output. There is no
need for such interface in a distribution driver, so we leave it with a NULL value (We will however use
scatter/gather I/O internally in the driver).

Our defined call-backs thus are:

� uds start, which shall initiate data for a port. We wont create any actual sockets here, just
initialize data structures.

� uds stop, the function called when a port is closed.

� uds command, which will handle messages from Erlang. The messages can either be plain data to
be sent or more subtle instructions to the driver. We will use this function mostly for data
pumping.

� uds input, this is the call-back which is called when we have something to read from a socket.

� uds output, this is the function called when we can write to a socket.

� uds finish, which is called when the driver is unloaded. A distribution driver will actually (or
hopefully) never be unloaded, but we include this for completeness. Being able to clean up after
oneself is always a good thing.

� uds control, the erlang:port control/2 call-back, which will be used a lot in this
implementation.

The ports implemented by this driver will operate in two major modes, which i will call the command
and data modes. In command mode, only passive reading and writing (like gen tcp:recv/gen tcp:send)
can be done, and this is the mode the port will be in during the distribution handshake. When the
connection is up, the port will be switched to data mode and all data will be immediately read and
passed further to the Erlang emulator. In data mode, no data arriving to the uds command will be
interpreted, but just packaged and sent out on the socket. The uds control call-back will do the
switching between those two modes.

While the net kernel informs different subsystems that the connection is coming up, the port should
accept data to send, but not receive any data, to avoid that data arrives from another node before every
kernel subsystem is prepared to handle it. We have a third mode for this intermediate stage, lets call it
the intermediate mode.

Lets define an enum for the different types of ports we have:

(1) typedef enum {
(2) portTypeUnknown, /* An uninitialized port */
(3) portTypeListener, /* A listening port/socket */
(4) portTypeAcceptor, /* An intermidiate stage when accepting
(5) on a listen port */
(6) portTypeConnector, /* An intermediate stage when connecting */
(7) portTypeCommand, /* A connected open port in command mode */
(8) portTypeIntermediate, /* A connected open port in special
(9) half active mode */
(10) portTypeData /* A connectec open port in data mode */

17Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

(11) } PortType;

Lets look at the different types:

� portTypeUnknown - The type a port has when it’s opened, but not actually bound to any file
descriptor.

� portTypeListener - A port that is connected to a listen socket. This port will not do especially
much, there will be no data pumping done on this socket, but there will be read data available
when one is trying to do an accept on the port.

� portTypeAcceptor - This is a port that is to represent the result of an accept operation. It is
created when one wants to accept from a listen socket, and it will be converted to a
portTypeCommand when the accept succeeds.

� portTypeConnector - Very similar to portTypeAcceptor, an intermediate stage between the
request for a connect operation and that the socket is really connected to an accepting ditto in the
other end. As soon as the sockets are connected, the port will switch type to portTypeCommand.

� portTypeCommand - A connected socket (or accepted socket if you want) that is in the command
mode mentioned earlier.

� portTypeIntermediate - The intermediate stage for a connected socket. There should be no
processing of input for this socket.

� portTypeData - The mode where data is pumped through the port and the uds command routine
will regard every call as a call where sending is wanted. In this mode all input available will be
read and sent to Erlang as soon as it arrives on the socket, much like in the active mode of a
gen tcp socket.

Now lets look at the state we’ll need for our ports. One can note that not all fields are used for all types
of ports and that one could save some space by using unions, but that would clutter the code with
multiple indirections, so i simply use one struct for all types of ports, for readability.

(1) typedef unsigned char Byte;
(2) typedef unsigned int Word;

(3) typedef struct uds_data {
(4) int fd; /* File descriptor */
(5) ErlDrvPort port; /* The port identifier */
(6) int lockfd; /* The file descriptor for a lock file in
(7) case of listen sockets */
(8) Byte creation; /* The creation serial derived from the
(9) lockfile */
(10) PortType type; /* Type of port */
(11) char *name; /* Short name of socket for unlink */
(12) Word sent; /* Bytes sent */
(13) Word received; /* Bytes received */
(14) struct uds_data *partner; /* The partner in an accept/listen pair */
(15) struct uds_data *next; /* Next structure in list */
(16) /* The input buffer and it’s data */
(17) int buffer_size; /* The allocated size of the input buffer */
(18) int buffer_pos; /* Current position in input buffer */
(19) int header_pos; /* Where the current header is in the
(20) input buffer */
(21) Byte *buffer; /* The actual input buffer */
(22) } UdsData;

18 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

This structure is used for all types of ports although some fields are useless for some types. The least
memory consuming solution would be to arrange this structure as a union of structures, but the
multiple indirections in the code to access a field in such a structure will clutter the code to much for an
example.

Let’s look at the fields in our structure:

� fd - The file descriptor of the socket associated with the port.

� port - The port identifier for the port which this structure corresponds to. It is needed for most
driver XXX calls from the driver back to the emulator.

� lockfd - If the socket is a listen socket, we use a separate (regular) file for two purposes:

– We want a locking mechanism that gives no race conditions, so that we can be sure of if
another Erlang node uses the listen socket name we require or if the file is only left there
from a previous (crashed) session.

– We store the creation serial number in the file. The creation is a number that should change
between different instances of different Erlang emulators with the same name, so that
process identifiers from one emulator won’t be valid when sent to a new emulator with the
same distribution name. The creation can be between 0 and 3 (two bits) and is stored in
every process identifier sent to another node.
In a system with TCP based distribution, this data is kept in the Erlang port mapper daemon
(epmd), which is contacted when a distributed node starts. The lock-file and a convention for
the UDS listen socket’s name will remove the need for epmd when using this distribution
module. UDS is always restricted to one host, why avoiding a port mapper is easy.

� creation - The creation number for a listen socket, which is calculated as (the value found in the
lock-file + 1) rem 4. This creation value is also written back into the lock-file, so that the next
invocation of the emulator will found our value in the file.

� type - The current type/state of the port, which can be one of the values declared above.

� name - The name of the socket file (the path prefix removed), which allows for deletion (unlink)
when the socket is closed.

� sent - How many bytes that have been sent over the socket. This may wrap, but that’s no problem
for the distribution, as the only thing that interests the Erlang distribution is if this value has
changed (the Erlang net kernel ticker uses this value by calling the driver to fetch it, which is done
through the driver control routine).

� received - How many bytes that are read (received) from the socket, used in similar ways as sent.

� partner - A pointer to another port structure, which is either the listen port from which this port
is accepting a connection or the other way around. The “partner relation” is always bidirectional.

� next - Pointer to next structure in a linked list of all port structures. This list is used when
accepting connections and when the driver is unloaded.

� buffer size, buffer pos, header pos, buffer - data for input buffering. Refer to the source code (in
the kernel/examples directory) for details about the input buffering. That certainly goes beyond
the scope of this document.

Selected parts of the distribution driver implementation

The distribution drivers implementation is not completely covered in this text, details about buffering
and other things unrelated to driver writing are not explained. Likewise are some peculiarities of the
UDS protocol not explained in detail. The chosen protocol is not important.

Prototypes for the driver call-back routines can be found in the erl driver.h header file.

19Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The driver initialization routine is (usually) declared with a macro to make the driver easier to port
between different operating systems (and flavours of systems). This is the only routine that has to have
a well defined name. All other call-backs are reached through the driver structure. The macro to use is
named DRIVER INIT and takes the driver name as parameter.

(1) /* Beginning of linked list of ports */
(2) static UdsData *first_data;

(3) DRIVER_INIT(uds_drv)
(4) {
(5) first_data = NULL;
(6) return &uds_driver_entry;
(7) }

The routine initializes the single global data structure and returns a pointer to the driver entry. The
routine will be called when erl ddll:load driver is called from Erlang.

The uds start routine is called when a port is opened from Erlang. In our case, we only allocate a
structure and initialize it. Creating the actual socket is left to the uds command routine.

(1) static ErlDrvData uds_start(ErlDrvPort port, char *buff)
(2) {
(3) UdsData *ud;
(4)
(5) ud = ALLOC(sizeof(UdsData));
(6) ud->fd = -1;
(7) ud->lockfd = -1;
(8) ud->creation = 0;
(9) ud->port = port;
(10) ud->type = portTypeUnknown;
(11) ud->name = NULL;
(12) ud->buffer_size = 0;
(13) ud->buffer_pos = 0;
(14) ud->header_pos = 0;
(15) ud->buffer = NULL;
(16) ud->sent = 0;
(17) ud->received = 0;
(18) ud->partner = NULL;
(19) ud->next = first_data;
(20) first_data = ud;
(21)
(22) return((ErlDrvData) ud);
(23) }

Every data item is initialized, so that no problems will arise when a newly created port is closed
(without there being any corresponding socket). This routine is called when open port(fspawn,
"uds drv"g,[]) is called from Erlang.

The uds command routine is the routine called when an Erlang process sends data to the port. All
asynchronous commands when the port is in command mode as well as the sending of all data when the
port is in data mode is handled in this9s routine. Let’s have a look at it:

20 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

(1) static void uds_command(ErlDrvData handle, char *buff, int bufflen)
(2) {
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeData || ud->type == portTypeIntermediate) {
(5) DEBUGF(("Passive do_send %d",bufflen));
(6) do_send(ud, buff + 1, bufflen - 1); /* XXX */
(7) return;
(8) }
(9) if (bufflen == 0) {
(10) return;
(11) }
(12) switch (*buff) {
(13) case ’L’:
(14) if (ud->type != portTypeUnknown) {
(15) driver_failure_posix(ud->port, ENOTSUP);
(16) return;
(17) }
(18) uds_command_listen(ud,buff,bufflen);
(19) return;
(20) case ’A’:
(21) if (ud->type != portTypeUnknown) {
(22) driver_failure_posix(ud->port, ENOTSUP);
(23) return;
(24) }
(25) uds_command_accept(ud,buff,bufflen);
(26) return;
(27) case ’C’:
(28) if (ud->type != portTypeUnknown) {
(29) driver_failure_posix(ud->port, ENOTSUP);
(30) return;
(31) }
(32) uds_command_connect(ud,buff,bufflen);
(33) return;
(34) case ’S’:
(35) if (ud->type != portTypeCommand) {
(36) driver_failure_posix(ud->port, ENOTSUP);
(37) return;
(38) }
(39) do_send(ud, buff + 1, bufflen - 1);
(40) return;
(41) case ’R’:
(42) if (ud->type != portTypeCommand) {
(43) driver_failure_posix(ud->port, ENOTSUP);
(44) return;
(45) }
(46) do_recv(ud);
(47) return;
(48) default:
(49) return;
(50) }
(51) }

21Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The command routine takes three parameters; the handle returned for the port by uds start, which is
a pointer to the internal port structure, the data buffer and the length of the data buffer. The buffer is
the data sent from Erlang (a list of bytes) converted to an C array (of bytes).

If Erlang sends i.e. the list [$a,$b,$c] to the port, the bufflen variable will be 3 ant the buff variable
will contain f’a’,’b’,’c’g (no null termination). Usually the first byte is used as an opcode, which is
the case in our driver to (at least when the port is in command mode). The opcodes are defined as:

� ’L’<socketname>: Create and listen on socket with the given name.

� ’A’<listennumber as 32 bit bigendian>: Accept from the listen socket identified by the given
identification number. The identification number is retrieved with the uds control routine.

� ’C’<socketname>: Connect to the socket named <socketname>.

� ’S’<data>: Send the data <data> on the connected/accepted socket (in command mode). The
sending is acked when the data has left this process.

� ’R’: Receive one packet of data.

One may wonder what is meant by “one packet of data” in the ’R’ command. This driver always sends
data packeted with a 4 byte header containing a big endian 32 bit integer that represents the length of
the data in the packet. There is no need for different packet sizes or some kind of streamed mode, as
this driver is for the distribution only. One may wonder why the header word is coded explicitly in big
endian when an UDS socket is local to the host. The answer simply is that I see it as a good practice
when writing a distribution driver, as distribution in practice usually cross the host boundaries.

On line 4-8 we handle the case where the port is in data or intermediate mode, the rest of the routine
handles the different commands. We see (first on line 15) that the routine uses the
driver failure posix() routine to report errors. One important thing to remember is that the failure
routines make a call to our uds stop routine, which will remove the internal port data. The handle
(and the casted handle ud) is therefore invalid pointers after a driver failure call and we should
immediately return. The runtime system will send exit signals to all linked processes.

The uds input routine gets called when data is available on a file descriptor previously passed to the
driver select routine. Typically this happens when a read command is issued and no data is available.
Lets look at the do recv routine:

(1) static void do_recv(UdsData *ud)
(2) {
(3) int res;
(4) char *ibuf;
(5) for(;;) {
(6) if ((res = buffered_read_package(ud,&ibuf)) < 0) {
(7) if (res == NORMAL_READ_FAILURE) {
(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 1);
(9) } else {
(10) driver_failure_eof(ud->port);
(11) }
(12) return;
(13) }
(14) /* Got a package */
(15) if (ud->type == portTypeCommand) {
(16) ibuf[-1] = ’R’; /* There is always room for a single byte
(17) opcode before the actual buffer
(18) (where the packet header was) */
(19) driver_output(ud->port,ibuf - 1, res + 1);
(20) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ,0);

22 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

(21) return;
(22) } else {
(23) ibuf[-1] = DIST_MAGIC_RECV_TAG; /* XXX */
(24) driver_output(ud->port,ibuf - 1, res + 1);
(25) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ,1);
(26) }
(27) }
(28) }

The routine tries to read data until a packet is read or the buffered read package routine returns a
NORMAL READ FAILURE (an internally defined constant for the module that means that the read
operation resulted in an EWOULDBLOCK). If the port is in command mode, the reading stops when one
package is read, but if it is in data mode, the reading continues until the socket buffer is empty (read
failure). If no more data can be read and more is wanted (always the case when socket is in data mode)
driver select is called to make the uds input call-back be called when more data is available for reading.

When the port is in data mode, all data is sent to Erlang in a format that suits the distribution, in fact
the raw data will never reach any Erlang process, but will be translated/interpreted by the emulator
itself and then delivered in the correct format to the correct processes. In the current emulator version,
received data should be tagged with a single byte of 100. Thats what the macro DIST MAGIC RECV TAG
is defined to. The tagging of data in the distribution will possibly change in the future.

The uds input routine will handle other input events (like nonblocking accept), but most importantly
handle data arriving at the socket by calling do recv:

(1) static void uds_input(ErlDrvData handle, ErlDrvEvent event)
(2) {
(3) UdsData *ud = (UdsData *) handle;

(4) if (ud->type == portTypeListener) {
(5) UdsData *ad = ud->partner;
(6) struct sockaddr_un peer;
(7) int pl = sizeof(struct sockaddr_un);
(8) int fd;

(9) if ((fd = accept(ud->fd, (struct sockaddr *) &peer, &pl)) < 0) {
(10) if (errno != EWOULDBLOCK) {
(11) driver_failure_posix(ud->port, errno);
(12) return;
(13) }
(14) return;
(15) }
(16) SET_NONBLOCKING(fd);
(17) ad->fd = fd;
(18) ad->partner = NULL;
(19) ad->type = portTypeCommand;
(20) ud->partner = NULL;
(21) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(22) driver_output(ad->port, "Aok",3);
(23) return;
(24) }
(25) do_recv(ud);
(26) }

23Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The important line here is the last line in the function, the do read routine is called to handle new
input. The rest of the function handles input on a listen socket, which means that there should be
possible to do an accept on the socket, which is also recognized as a read event.

The output mechanisms are similar to the input. Lets first look at the do send routine:

(1) static void do_send(UdsData *ud, char *buff, int bufflen)
(2) {
(3) char header[4];
(4) int written;
(5) SysIOVec iov[2];
(6) ErlIOVec eio;
(7) ErlDrvBinary *binv[] = {NULL,NULL};

(8) put_packet_length(header, bufflen);
(9) iov[0].iov_base = (char *) header;
(10) iov[0].iov_len = 4;
(11) iov[1].iov_base = buff;
(12) iov[1].iov_len = bufflen;
(13) eio.iov = iov;
(14) eio.binv = binv;
(15) eio.vsize = 2;
(16) eio.size = bufflen + 4;
(17) written = 0;
(18) if (driver_sizeq(ud->port) == 0) {
(19) if ((written = writev(ud->fd, iov, 2)) == eio.size) {
(20) ud->sent += written;
(21) if (ud->type == portTypeCommand) {
(22) driver_output(ud->port, "Sok", 3);
(23) }
(24) return;
(25) } else if (written < 0) {
(26) if (errno != EWOULDBLOCK) {
(27) driver_failure_eof(ud->port);
(28) return;
(29) } else {
(30) written = 0;
(31) }
(32) } else {
(33) ud->sent += written;
(34) }
(35) /* Enqueue remaining */
(36) }
(37) driver_enqv(ud->port, &eio, written);
(38) send_out_queue(ud);
(39) }

This driver uses the writev system call to send data onto the socket. A combination of writev and the
driver output queues is very convenient. An ErlIOVec structure contains a SysIOVec (which is
equivalent to the struct iovec structure defined in uio.h. The ErlIOVec also contains an array of
ErlDrvBinary pointers, of the same length as the number of buffers in the I/O vector itself. One can use
this to allocate the binaries for the queue “manually” in the driver, but we’ll just fill the binary array
with NULL values (line 7) , which will make the runtime system allocate it’s own buffers when we call
driver enqv (line 37).

24 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

The routine builds an I/O vector containing the header bytes and the buffer (the opcode has been
removed and the buffer length decreased by the output routine). If the queue is empty, we’ll write the
data directly to the socket (or at least try to). If any data is left, it is stored in the queue and then we try
to send the queue (line 38). An ack is sent when the message is delivered completely (line 22). The
send out queue will send acks if the sending is completed there. If the port is in command mode, the
Erlang code serializes the send operations so that only one packet can be waiting for delivery at a time.
Therefore the ack can be sent simply whenever the queue is empty.

A short look at the send out queue routine:

(1) static int send_out_queue(UdsData *ud)
(2) {
(3) for(;;) {
(4) int vlen;
(5) SysIOVec *tmp = driver_peekq(ud->port, &vlen);
(6) int wrote;
(7) if (tmp == NULL) {
(8) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(9) if (ud->type == portTypeCommand) {
(10) driver_output(ud->port, "Sok", 3);
(11) }
(12) return 0;
(13) }
(14) if (vlen > IO_VECTOR_MAX) {
(15) vlen = IO_VECTOR_MAX;
(16) }
(17) if ((wrote = writev(ud->fd, tmp, vlen)) < 0) {
(18) if (errno == EWOULDBLOCK) {
(19) driver_select(ud->port, (ErlDrvEvent) ud->fd,
(20) DO_WRITE, 1);
(21) return 0;
(22) } else {
(23) driver_failure_eof(ud->port);
(24) return -1;
(25) }
(26) }
(27) driver_deq(ud->port, wrote);
(28) ud->sent += wrote;
(29) }
(30) }

What we do is simply to pick out an I/O vector from the queue (which is the whole queue as an
SysIOVec). If the I/O vector is to long (IO VECTOR MAX is defined to 16), the vector length is
decreased (line 15), otherwise the writev (line 17) call will fail. Writing is tried and anything written is
dequeued (line 27). If the write fails with EWOULDBLOCK (note that all sockets are in nonblocking mode),
driver select is called to make the uds output routine be called when there is space to write again.

We will continue trying to write until the queue is empty or the writing would block.

The routine above are called from the uds output routine, which looks like this:

(1) static void uds_output(ErlDrvData handle, ErlDrvEvent event)
(2) {
(3) UdsData *ud = (UdsData *) handle;

25Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

(4) if (ud->type == portTypeConnector) {
(5) ud->type = portTypeCommand;
(6) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_WRITE, 0);
(7) driver_output(ud->port, "Cok",3);
(8) return;
(9) }
(10) send_out_queue(ud);
(11) }

The routine is simple, it first handles the fact that the output select will concern a socket in the business
of connecting (and the connecting blocked). If the socket is in a connected state it simply sends the
output queue, this routine is called when there is possible to write to a socket where we have an output
queue, so there is no question what to do.

The driver implements a control interface, which is a synchronous interface called when Erlang calls
erlang:driver control/3. This is the only interface that can control the driver when it is in data
mode and it may be called with the following opcodes:

� ’C’: Set port in command mode.

� ’I’: Set port in intermediate mode.

� ’D’: Set port in data mode.

� ’N’: Get identification number for listen port, this identification number is used in an accept
command to the driver, it is returned as a big endian 32 bit integer, which happens to be the file
identifier for the listen socket.

� ’S’: Get statistics, which is the number of bytes received, the number of bytes sent and the
number of bytes pending in the output queue. This data is used when the distribution checks that
a connection is alive (ticking). The statistics is returned as 3 32 bit big endian integers.

� ’T’: Send a tick message, which is a packet of length 0. Ticking is done when the port is in data
mode, so the command for sending data cannot be used (besides it ignores zero length packages in
command mode). This is used by the ticker to send dummy data when no other traffic is present.

� ’R’: Get creation number of listen socket, which is used to dig out the number stored in the lock
file to differentiate between invocations of Erlang nodes with the same name.

The control interface gets a buffer to return its value in, but is free to allocate it’s own buffer is the
provided one is to small. Here is the code for uds control:

(1) static int uds_control(ErlDrvData handle, unsigned int command,
(2) char* buf, int count, char** res, int res_size)
(3) {
(4) /* Local macro to ensure large enough buffer. */
(5) #define ENSURE(N) \n(6) do {

(11) UdsData *ud = (UdsData *) handle;

(12) switch (command) {
(13) case ’S’:
(14) {
(15) ENSURE(13);
(16) **res = 0;
(17) put_packet_length((*res) + 1, ud->received);
(18) put_packet_length((*res) + 5, ud->sent);
(19) put_packet_length((*res) + 9, driver_sizeq(ud->port));

26 Erlang Run-Time System Application (ERTS)

1.3: How to implement an alternative carrier for the Erlang distribution

(20) return 13;
(21) }
(22) case ’C’:
(23) if (ud->type < portTypeCommand) {
(24) return report_control_error(res, res_size, "einval");
(25) }
(26) ud->type = portTypeCommand;
(27) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(28) ENSURE(1);
(29) **res = 0;
(30) return 1;
(31) case ’I’:
(32) if (ud->type < portTypeCommand) {
(33) return report_control_error(res, res_size, "einval");
(34) }
(35) ud->type = portTypeIntermediate;
(36) driver_select(ud->port, (ErlDrvEvent) ud->fd, DO_READ, 0);
(37) ENSURE(1);
(38) **res = 0;
(39) return 1;
(40) case ’D’:
(41) if (ud->type < portTypeCommand) {
(42) return report_control_error(res, res_size, "einval");
(43) }
(44) ud->type = portTypeData;
(45) do_recv(ud);
(46) ENSURE(1);
(47) **res = 0;
(48) return 1;
(49) case ’N’:
(50) if (ud->type != portTypeListener) {
(51) return report_control_error(res, res_size, "einval");
(52) }
(53) ENSURE(5);
(54) (*res)[0] = 0;
(55) put_packet_length((*res) + 1, ud->fd);
(56) return 5;
(57) case ’T’: /* tick */
(58) if (ud->type != portTypeData) {
(59) return report_control_error(res, res_size, "einval");
(60) }
(61) do_send(ud,"",0);
(62) ENSURE(1);
(63) **res = 0;
(64) return 1;
(65) case ’R’:
(66) if (ud->type != portTypeListener) {
(67) return report_control_error(res, res_size, "einval");
(68) }
(69) ENSURE(2);
(70) (*res)[0] = 0;
(71) (*res)[1] = ud->creation;
(72) return 2;

27Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

(73) default:
(74) return report_control_error(res, res_size, "einval");
(75) }
(76) #undef ENSURE
(77) }

The macro ENSURE (line 5 to 10) is used to ensure that the buffer is large enough for our answer. We
switch on the command and take actions, there is not much to say about this routine. Worth noting is
that we always has read select active on a port in data mode (achieved by calling do recv on line 45),
but turn off read selection in intermediate and command modes (line 27 and 36).

The rest of the driver is more or less UDS specific and not of general interest.

1.3.3 Putting it all together

To test the distribution, one can use the net kernel:start/1 function, which is useful as it starts the
distribution on a running system, where tracing/debugging can be performed. The
net kernel:start/1 routine takes a list as it’s single argument. The lists first element should be the
node name (without the “@hostname”) as an atom, and the second (and last) element should be one of
the atoms shortnames or longnames. In the example case shortnames is preferred.

For net kernel to find out which distribution module to use, the command line argument -proto dist
is used. The argument is followed by one or more distribution module names, with the “ dist” suffix
removed, i.e. uds dist as a distribution module is specified as -proto dist uds.

If no epmd (TCP port mapper daemon) is used, one should also specify the command line option
-no epmd, which will make Erlang skip the epmd startup, both as a OS process and as an Erlang ditto.

The path to the directory where the distribution modules reside must be known at boot, which can
either be achieved by specifying -pa <path> on the command line or by building a boot script
containing the applications used for your distribution protocol (in the uds dist protocol, it’s only the
uds dist application that needs to be added to the script).

The distribution will be started at boot if all the above is specified and an -sname <name> flag is
present at the command line, here follows two examples:

$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds -no epmd
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
1> net kernel:start([bing,shortnames]).
fok,<0.30.0>g
(bing@hador)2>

...

$ erl -pa $ERL TOP/lib/kernel/examples/uds dist/ebin -proto dist uds \
-no epmd -sname bong

Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
(bong@hador)1>

One can utilize the ERL FLAGS environment variable to store the complicated parameters in:

28 Erlang Run-Time System Application (ERTS)

1.4: The Abstract Format

$ ERL FLAGS=-pa $ERL TOP/lib/kernel/examples/uds dist/ebin \
-proto dist uds -no epmd

$ export ERL FLAGS
$ erl -sname bang
Erlang (BEAM) emulator version 5.0

Eshell V5.0 (abort with ^G)
(bang@hador)1>

The ERL FLAGS should preferably not include the name of the node.

1.4 The Abstract Format

This document describes the standard representation of parse trees for Erlang programs as Erlang terms.
This representation is known as the abstract format. Functions dealing with such parse trees are
compile:forms/[1,2] and functions in the modules epp, erl eval, erl lint, erl pp, erl parse, and
io. They are also used as input and output for parse transforms (see the module compile).

We use the function Rep to denote the mapping from an Erlang source construct C to its abstract format
representation R, and write R = Rep(C).

The word LINE below represents an integer, and denotes the number of the line in the source file where
the construction occurred. Several instances of LINE in the same construction may denote different
lines.

Since operators are not terms in their own right, when operators are mentioned below, the
representation of an operator should be taken to be the atom with a printname consisting of the same
characters as the operator.

1.4.1 Module declarations and forms

A module declaration consists of a sequence of forms that are either function declarations or attributes.

� If D is a module declaration consisting of the forms F 1, ..., F k, then Rep(D) = [Rep(F 1), ...,
Rep(F k)].

� If F is an attribute -module(Mod), then Rep(F) = fattribute,LINE,module,Modg.

� If F is an attribute -export([Fun 1/A 1, ..., Fun k/A k]), then Rep(F) =
fattribute,LINE,export,[fFun 1,A 1g, ..., fFun k,A kg]g.

� If F is an attribute -import(Mod,[Fun 1/A 1, ..., Fun k/A k]), then Rep(F) =
fattribute,LINE,import,fMod,[fFun 1,A 1g, ..., fFun k,A kg]gg.

� If F is an attribute -compile(Options), then Rep(F) = fattribute,LINE,compile,Optionsg.

� If F is an attribute -file(File,Line), then Rep(F) = fattribute,LINE,file,fFile,Linegg.

� If F is a record declaration -record(Name,fV 1, ..., V kg), then Rep(F) =
fattribute,LINE,record,fName,[Rep(V 1), ..., Rep(V k)]gg. For Rep(V), see below.

� If F is a wild attribute -A(T), then Rep(F) = fattribute,LINE,A,Tg.

� If F is a function declaration Name Fc 1 ; ... ; Name Fc k, where each Fc i is a function
clause with a pattern sequence of the same length Arity, then Rep(F) =
ffunction,LINE,Name,Arity,[Rep(Fc 1), ...,Rep(Fc k)]g.

29Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Record fields

Each field in a record declaration may have an optional explicit default initializer expression

� If V is A, then Rep(V) = frecord field,LINE,Rep(A)g.

� If V is A = E, then Rep(V) = frecord field,LINE,Rep(A),Rep(E)g.

Representation of parse errors and end of file

In addition to the representations of forms, the list that represents a module declaration (as returned by
functions in erl parse and epp) may contain tuples ferror,Eg and fwarning,Wg, denoting
syntactically incorrect forms and warnings, and feof,LINEg, denoting an end of stream encountered
before a complete form had been parsed.

1.4.2 Atomic literals

There are five kinds of atomic literals, which are represented in the same way in patterns, expressions
and guards:

� If L is an integer or character literal, then Rep(L) = finteger,LINE,Lg.

� If L is a float literal, then Rep(L) = ffloat,LINE,Lg.

� If L is a string literal consisting of the characters C 1, ..., C k, then Rep(L) = fstring,LINE,[C 1,
..., C k]g.

� If L is an atom literal, then Rep(L) = fatom,LINE,Lg.

Note that negative integer and float literals do not occur as such; they are parsed as an application of
the unary negation operator.

1.4.3 Patterns

If Ps is a sequence of patterns P 1, ..., P k, then Rep(Ps) = [Rep(P 1), ..., Rep(P k)]. Such
sequences occur as the list of arguments to a function or fun.

Individual patterns are represented as follows:

� If P is an atomic literal L, then Rep(P) = Rep(L).

� If P is a compound pattern P 1 = P 2, then Rep(P) = fmatch,LINE,Rep(P 1),Rep(P 2)g.

� If P is a variable pattern V, then Rep(P) = fvar,LINE,Ag, where A is an atom with a printname
consisting of the same characters as V.

� If P is a universal pattern , then Rep(P) = fvar,LINE,’ ’g.

� If P is a tuple pattern fP 1, ..., P kg, then Rep(P) = ftuple,LINE,[Rep(P 1), ...,
Rep(P k)]g.

� If P is a nil pattern [], then Rep(P) = fnil,LINEg.

� If P is a cons pattern [P h | P t], then Rep(P) = fcons,LINE,Rep(P h),Rep(P t)g.

� If E is a binary pattern <<P 1:Size 1/TSL 1, ..., P k:Size k/TSL k>>, then Rep(E) =
fbin,LINE,[fbin element,LINE,Rep(P 1),Rep(Size 1),Rep(TSL 1)g, ...,
fbin element,LINE,Rep(P k),Rep(Size k),Rep(TSL k)g]g. For Rep(TSL), see below. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by
default.

30 Erlang Run-Time System Application (ERTS)

1.4: The Abstract Format

� If P is P 1 Op P 2, where Op is a binary operator (this is either an occurrence of ++ applied to a
literal string or character list, or an occurrence of an expression that can be evaluated to a number
at compile time), then Rep(P) = fop,LINE,Op,Rep(P 1),Rep(P 2)g.

� If P is Op P 0, where Op is a unary operator (this is an occurrence of an expression that can be
evaluated to a number at compile time), then Rep(P) = fop,LINE,Op,Rep(P 0)g.

� If P is a record pattern #NamefField 1=P 1, ..., Field k=P kg, then Rep(P) =
frecord,LINE,Name, [frecord field,LINE,Rep(Field 1),Rep(P 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(P k)g]g.

� If P is #Name.Field, then Rep(P) = frecord index,LINE,Name,Rep(Field)g.

� If P is (P 0), then Rep(P) = Rep(P 0), i.e., patterns cannot be distinguished from their bodies.

Note that every pattern has the same source form as some expression, and is represented the same way
as the corresponding expression.

1.4.4 Expressions

A body B is a sequence of expressions E 1, ..., E k, and Rep(B) = [Rep(E 1), ..., Rep(E k)].

An expression E is one of the following alternatives:

� If P is an atomic literal L, then Rep(P) = Rep(L).

� If E is P = E 0, then Rep(E) = fmatch,LINE,Rep(P),Rep(E 0)g.

� If E is a variable V, then Rep(E) = fvar,LINE,Ag, where A is an atom with a printname consisting
of the same characters as V.

� If E is a tuple skeleton fE 1, ..., E kg, then Rep(E) = ftuple,LINE,[Rep(E 1), ...,
Rep(E k)]g.

� If E is [], then Rep(E) = fnil,LINEg.

� If E is a cons skeleton [E h | E t], then Rep(E) = fcons,LINE,Rep(E h),Rep(E t)g.

� If E is a binary constructor <<V 1:Size 1/TSL 1, ..., V k:Size k/TSL k>>, then Rep(E) =
fbin,LINE,[fbin element,LINE,Rep(V 1),Rep(Size 1),Rep(TSL 1)g, ...,
fbin element,LINE,Rep(V k),Rep(Size k),Rep(TSL k)g]g. For Rep(TSL), see below. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by
default.

� If E is E 1 Op E 2, where Op is a binary operator, then Rep(E) =
fop,LINE,Op,Rep(E 1),Rep(E 2)g.

� If E is Op E 0, where Op is a unary operator, then Rep(E) = fop,LINE,Op,Rep(E 0)g.

� If E is #NamefField 1=E 1, ..., Field k=E kg, then Rep(E) = frecord,LINE,Name,
[frecord field,LINE,Rep(Field 1),Rep(E 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(E k)g]g.

� If E is E 0#NamefField 1=E 1, ..., Field k=E kg, then Rep(E) =
frecord,LINE,Rep(E 0),Name, [frecord field,LINE,Rep(Field 1),Rep(E 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(E k)g]g.

� If E is #Name.Field, then Rep(E) = frecord index,LINE,Name,Rep(Field)g.

� If E is E 0#Name.Field, then Rep(E) = frecord field,LINE,Rep(E 0),Name,Rep(Field)g.

� If E is catch E 0, then Rep(E) = f’catch’,LINE,Rep(E 0)g.

� If E is E 0(E 1, ..., E k), then Rep(E) = fcall,LINE,Rep(E 0),[Rep(E 1), ...,
Rep(E k)]g.

31Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

� If E is E m:E 0(E 1, ..., E k), then Rep(E) =
fcall,LINE,fremote,LINE,Rep(E m),Rep(E 0)g,[Rep(E 1), ..., Rep(E k)]g.

� If E is a list comprehension [E 0 || W 1, ..., W k], where each W i is a generator or a filter,
then Rep(E) = flc,LINE,Rep(E 0),[Rep(W 1), ..., Rep(W k)]g. For Rep(W), see below.

� If E is a binary comprehension <<E 0 || W 1, ..., W k>>, where each W i is a generator or a
filter, then Rep(E) = fbc,LINE,Rep(E 0),[Rep(W 1), ..., Rep(W k)]g. For Rep(W), see below.

� If E is begin B end, where B is a body, then Rep(E) = fblock,LINE,Rep(B)g.

� If E is if Ic 1 ; ... ; Ic k end, where each Ic i is an if clause then Rep(E) =
f’if’,LINE,[Rep(Ic 1), ..., Rep(Ic k)]g.

� If E is case E 0 of Cc 1 ; ... ; Cc k end, where E 0 is an expression and each Cc i is a case
clause then Rep(E) = f’case’,LINE,Rep(E 0),[Rep(Cc 1), ..., Rep(Cc k)]g.

� If E is try B catch Tc 1 ; ... ; Tc k end, where B is a body and each Tc i is a catch clause
then Rep(E) = f’try’,LINE,Rep(B),[],[Rep(Tc 1), ..., Rep(Tc k)],[]g.

� If E is try B of Cc 1 ; ... ; Cc k catch Tc 1 ; ... ; Tc n end, where B is a body, each
Cc i is a case clause and each Tc j is a catch clause then Rep(E) =
f’try’,LINE,Rep(B),[Rep(Cc 1), ..., Rep(Cc k)],[Rep(Tc 1), ..., Rep(Tc n)],[]g.

� If E is try B after A end, where B and A are bodies then Rep(E) =
f’try’,LINE,Rep(B),[],[],Rep(A)g.

� If E is try B of Cc 1 ; ... ; Cc k after A end, where B and A are a bodies and each Cc i is
a case clause then Rep(E) = f’try’,LINE,Rep(B),[Rep(Cc 1), ..., Rep(Cc k)],[],Rep(A)g.

� If E is try B catch Tc 1 ; ... ; Tc k after A end, where B and A are bodies and each Tc i
is a catch clause then Rep(E) = f’try’,LINE,Rep(B),[],[Rep(Tc 1), ...,
Rep(Tc k)],Rep(A)g.

� If E is try B of Cc 1 ; ... ; Cc k catch Tc 1 ; ... ; Tc n after A end, where B and A
are a bodies, each Cc i is a case clause and each Tc j is a catch clause then Rep(E) =
f’try’,LINE,Rep(B),[Rep(Cc 1), ..., Rep(Cc k)],[Rep(Tc 1), ...,
Rep(Tc n)],Rep(A)g.

� If E is receive Cc 1 ; ... ; Cc k end, where each Cc i is a case clause then Rep(E) =
f’receive’,LINE,[Rep(Cc 1), ..., Rep(Cc k)]g.

� If E is receive Cc 1 ; ... ; Cc k after E 0 -> B t end, where each Cc i is a case clause,
E 0 is an expression and B t is a body, then Rep(E) = f’receive’,LINE,[Rep(Cc 1), ...,
Rep(Cc k)],Rep(E 0),Rep(B t)g.

� If E is fun Name / Arity, then Rep(E) = f’fun’,LINE,ffunction,Name,Aritygg.

� If E is fun Module:Name/Arity, then Rep(E) = f’fun’,LINE,ffunction,Module,Name,Aritygg.

� If E is fun Fc 1 ; ... ; Fc k end where each Fc i is a function clause then Rep(E) =
f’fun’,LINE,fclauses,[Rep(Fc 1), ..., Rep(Fc k)]gg.

� If E is query [E 0 || W 1, ..., W k] end, where each W i is a generator or a filter, then Rep(E)
= f’query’,LINE,flc,LINE,Rep(E 0),[Rep(W 1), ..., Rep(W k)]gg. For Rep(W), see below.

� If E is E 0.Field, a Mnesia record access inside a query, then Rep(E) =
frecord field,LINE,Rep(E 0),Rep(Field)g.

� If E is (E 0), then Rep(E) = Rep(E 0), i.e., parenthesized expressions cannot be distinguished
from their bodies.

Generators and filters

When W is a generator or a filter (in the body of a list or binary comprehension), then:

32 Erlang Run-Time System Application (ERTS)

1.4: The Abstract Format

� If W is a generator P <- E, where P is a pattern and E is an expression, then Rep(W) =
fgenerate,LINE,Rep(P),Rep(E)g.

� If W is a generator P <= E, where P is a pattern and E is an expression, then Rep(W) =
fb generate,LINE,Rep(P),Rep(E)g.

� If W is a filter E, which is an expression, then Rep(W) = Rep(E).

Binary element type specifiers

A type specifier list TSL for a binary element is a sequence of type specifiers TS 1 - ... - TS k.
Rep(TSL) = [Rep(TS 1), ..., Rep(TS k)].

When TS is a type specifier for a binary element, then:

� If TS is an atom A, Rep(TS) = A.

� If TS is a couple A:Value where A is an atom and Value is an integer, Rep(TS) = fA, Valueg.

1.4.5 Clauses

There are function clauses, if clauses, case clauses and catch clauses.

A clause C is one of the following alternatives:

� If C is a function clause (Ps) -> B where Ps is a pattern sequence and B is a body, then
Rep(C) = fclause,LINE,Rep(Ps),[],Rep(B)g.

� If C is a function clause (Ps) when Gs -> B where Ps is a pattern sequence, Gs is a guard
sequence and B is a body, then Rep(C) = fclause,LINE,Rep(Ps),Rep(Gs),Rep(B)g.

� If C is an if clause Gs -> B where Gs is a guard sequence and B is a body, then Rep(C) =
fclause,LINE,[],Rep(Gs),Rep(B)g.

� If C is a case clause P -> B where P is a pattern and B is a body, then Rep(C) =
fclause,LINE,[Rep(P)],[],Rep(B)g.

� If C is a case clause P when Gs -> B where P is a pattern, Gs is a guard sequence and B is a body,
then Rep(C) = fclause,LINE,[Rep(P)],Rep(Gs),Rep(B)g.

� If C is a catch clause P -> B where P is a pattern and B is a body, then Rep(C) =
fclause,LINE,[Rep(fthrow,P, g)],[],Rep(B)g.

� If C is a catch clause X : P -> B where X is an atomic literal or a variable pattern, P is a pattern
and B is a body, then Rep(C) = fclause,LINE,[Rep(fX,P, g)],[],Rep(B)g.

� If C is a catch clause P when Gs -> B where P is a pattern, Gs is a guard sequence and B is a
body, then Rep(C) = fclause,LINE,[Rep(fthrow,P, g)],Rep(Gs),Rep(B)g.

� If C is a catch clause X : P when Gs -> B where X is an atomic literal or a variable pattern, P is a
pattern, Gs is a guard sequence and B is a body, then Rep(C) =
fclause,LINE,[Rep(fX,P, g)],Rep(Gs),Rep(B)g.

33Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.4.6 Guards

A guard sequence Gs is a sequence of guards G 1; ...; G k, and Rep(Gs) = [Rep(G 1), ...,
Rep(G k)]. If the guard sequence is empty, Rep(Gs) = [].

A guard G is a nonempty sequence of guard tests Gt 1, ..., Gt k, and Rep(G) = [Rep(Gt 1), ...,
Rep(Gt k)].

A guard test Gt is one of the following alternatives:

� If Gt is an atomic literal L, then Rep(Gt) = Rep(L).

� If Gt is a variable pattern V, then Rep(Gt) = fvar,LINE,Ag, where A is an atom with a printname
consisting of the same characters as V.

� If Gt is a tuple skeleton fGt 1, ..., Gt kg, then Rep(Gt) = ftuple,LINE,[Rep(Gt 1), ...,
Rep(Gt k)]g.

� If Gt is [], then Rep(Gt) = fnil,LINEg.

� If Gt is a cons skeleton [Gt h | Gt t], then Rep(Gt) = fcons,LINE,Rep(Gt h),Rep(Gt t)g.

� If Gt is a binary constructor <<Gt 1:Size 1/TSL 1, ..., Gt k:Size k/TSL k>>, then
Rep(Gt) = fbin,LINE,[fbin element,LINE,Rep(Gt 1),Rep(Size 1),Rep(TSL 1)g, ...,
fbin element,LINE,Rep(Gt k),Rep(Size k),Rep(TSL k)g]g. For Rep(TSL), see above. An
omitted Size is represented by default. An omitted TSL (type specifier list) is represented by
default.

� If Gt is Gt 1 Op Gt 2, where Op is a binary operator, then Rep(Gt) =
fop,LINE,Op,Rep(Gt 1),Rep(Gt 2)g.

� If Gt is Op Gt 0, where Op is a unary operator, then Rep(Gt) = fop,LINE,Op,Rep(Gt 0)g.

� If Gt is #NamefField 1=Gt 1, ..., Field k=Gt kg, then Rep(E) = frecord,LINE,Name,
[frecord field,LINE,Rep(Field 1),Rep(Gt 1)g, ...,
frecord field,LINE,Rep(Field k),Rep(Gt k)g]g.

� If Gt is #Name.Field, then Rep(Gt) = frecord index,LINE,Name,Rep(Field)g.

� If Gt is Gt 0#Name.Field, then Rep(Gt) = frecord field,LINE,Rep(Gt 0),Name,Rep(Field)g.

� If Gt is A(Gt 1, ..., Gt k), where A is an atom, then Rep(Gt) =
fcall,LINE,Rep(A),[Rep(Gt 1), ..., Rep(Gt k)]g.

� If Gt is A m:A(Gt 1, ..., Gt k), where A m is the atom erlang and A is an atom or an operator,
then Rep(Gt) = fcall,LINE,fremote,LINE,Rep(A m),Rep(A)g,[Rep(Gt 1), ...,
Rep(Gt k)]g.

� If Gt is fA m,Ag(Gt 1, ..., Gt k), where A m is the atom erlang and A is an atom or an
operator, then Rep(Gt) = fcall,LINE,Rep(fA m,Ag),[Rep(Gt 1), ..., Rep(Gt k)]g.

� If Gt is (Gt 0), then Rep(Gt) = Rep(Gt 0), i.e., parenthesized guard tests cannot be
distinguished from their bodies.

Note that every guard test has the same source form as some expression, and is represented the same
way as the corresponding expression.

1.4.7 The abstract format after preprocessing

The compilation option debug info can be given to the compiler to have the abstract code stored in the
abstract code chunk in the BEAM file (for debugging purposes).

In OTP R9C and later, the abstract code chunk will contain

fraw abstract v1,AbstractCodeg

34 Erlang Run-Time System Application (ERTS)

1.5: tty - A command line interface

where AbstractCode is the abstract code as described in this document.

In releases of OTP prior to R9C, the abstract code after some more processing was stored in the BEAM
file. The first element of the tuple would be either abstract v1 (R7B) or abstract v2 (R8B).

1.5 tty - A command line interface

tty is a simple command line interface program where keystrokes are collected and interpreted.
Completed lines are sent to the shell for interpretation. There is a simple history mechanism, which
saves previous lines. These can be edited before sending them to the shell. tty is started when Erlang is
started with the command:
erl

tty operates in one of two modes:

� normal mode, in which lines of text can be edited and sent to the shell.

� shell break mode, which allows the user to kill the current shell, start multiple shells etc. Shell
break mode is started by typing Control G.

1.5.1 Normal Mode

In normal mode keystrokes from the user are collected and interpreted by tty. Most of the emacs line
editing commands are supported. The following is a complete list of the supported line editing
commands.
Note: The notation C-a means pressing the control key and the letter a simultaneously. M-f means
pressing the ESC key followed by the letter f.

Key Sequence Function

C-a Beginning of line

C-b Backward character

M-b Backward word

C-d Delete character

M-d Delete word

C-e End of line

C-f Forward character

M-f Forward word

C-g Enter shell break mode

C-k Kill line

C-l Redraw line

C-n Fetch next line from the history buffer

C-p Fetch previous line from the history buffer

C-t Transpose characters

C-y Insert previously killed text

Table 1.2: tty text editing

35Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.5.2 Shell Break Mode

tty enters shell break mode when you type Control G. In this mode you can:

� Kill or suspend the current shell

� Connect to a suspended shell

� Start a new shell

1.6 How to implement a driver

1.6.1 Introduction

This chapter tells you how to build your own driver for erlang.

A driver in Erlang is a library written in C, that is linked to the Erlang emulator and called from erlang.
Drivers can be used when C is more suitable than Erlang, to speed things up, or to provide access to OS
resources not directly accessible from Erlang.

A driver can be dynamically loaded, as a shared library (known as a DLL on windows), or statically
loaded, linked with the emulator when it is compiled and linked. Only dynamically loaded drivers are
described here, statically linked drivers are beyond the scope of this chapter.

When a driver is loaded it is executed in the context of the emulator, shares the same memory and the
same thread. This means that all operations in the driver must be non-blocking, and that any crash in
the driver will bring the whole emulator down. In short: you have to be extremely careful!

1.6.2 Sample driver

This is a simple driver for accessing a postgres database using the libpq C client library. Postgres is used
because it’s free and open source. For information on postgres, refer to the website www.postgres.org.

The driver is synchronous, it uses the synchronous calls of the client library. This is only for simplicity,
and is generally not good, since it will halt the emulator while waiting for the database. This will be
improved on below with an asynchronous sample driver.

The code is quite straight-forward: all communication between Erlang and the driver is done with
port control/3, and the driver returns data back using the rbuf.

An Erlang driver only exports one function: the driver entry function. This is defined with a macro,
DRIVER INIT, and returns a pointer to a C struct containing the entry points that are called from the
emulator. The struct defines the entries that the emulator calls to call the driver, with a NULL pointer
for entries that are not defined and used by the driver.

The start entry is called when the driver is opened as a port with open port/2. Here we allocate
memory for a user data structure. This user data will be passed every time the emulator calls us. First
we store the driver handle, because it is needed in subsequent calls. We allocate memory for the
connection handle that is used by LibPQ. We also set the port to return allocated driver binaries, by
setting the flag PORT CONTROL FLAG BINARY, calling set port control flags. (This is because we
don’t know whether our data will fit in the result buffer of control, which has a default size set up by
the emulator, currently 64 bytes.)

There is an entry init which is called when the driver is loaded, but we don’t use this, since it is
executed only once, and we want to have the possibility of several instances of the driver.

The stop entry is called when the port is closed.

36 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

The control entry is called from the emulator when the Erlang code calls port control/3, to do the
actual work. We have defined a simple set of commands: connect to login to the database, disconnect
to log out and select to send a SQL-query and get the result. All results are returned through rbuf.
The library ei in erl interface is used to encode data in binary term format. The result is returned to
the emulator as binary terms, so binary to term is called in Erlang to convert the result to term form.

The code is available in pg sync.c in the sample directory of erts.

The driver entry contains the functions that will be called by the emulator. In our simple example, we
only provide start, stop and control.

/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen);

static ErlDrvEntry pq_driver_entry = {
NULL, /* init */
start,
stop,
NULL, /* output */
NULL, /* ready_input */
NULL, /* ready_output */
"pg_sync", /* the name of the driver */
NULL, /* finish */
NULL, /* handle */
control,
NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, /* flush */
NULL, /* call */
NULL /* event */

};

We have a structure to store state needed by the driver, in this case we only need to keep the database
connection.

typedef struct our_data_s {
PGconn* conn;

} our_data_t;

These are control codes we have defined.

/* Keep the following definitions in alignment with the
* defines in erl_pq_sync.erl
*/

#define DRV_CONNECT ’C’
#define DRV_DISCONNECT ’D’
#define DRV_SELECT ’S’

37Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

This just returns the driver structure. The macro DRIVER INIT defines the only exported function. All
the other functions are static, and will not be exported from the library.

/* INITIALIZATION AFTER LOADING */

/*
* This is the init function called after this driver has been loaded.
* It must *not* be declared static. Must return the address to
* the driver entry.
*/

DRIVER_INIT(pq_drv)
{

return &pq_driver_entry;
}

Here we do some initialization, start is called from open port. The data will be passed to control
and stop.

/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)
{

our_data_t* data;

data = (our_data_t*)driver_alloc(sizeof(our_data_t));
data->conn = NULL;
set_port_control_flags(port, PORT_CONTROL_FLAG_BINARY);
return (ErlDrvData)data;

}

We call disconnect to log out from the database. (This should have been done from Erlang, but just in
case.)

static int do_disconnect(our_data_t* data, ei_x_buff* x);

static void stop(ErlDrvData drv_data)
{

do_disconnect((our_data_t*)drv_data, NULL);
}

We use the binary format only to return data to the emulator; input data is a string paramater for
connect and select. The returned data consists of Erlang terms.

The functions get s and ei x to new binary are utitilies that is used to make the code shorter. get s
duplicates the string and zero-terminates it, since the postgres client library wants that.
ei x to new binary takes an ei x buff buffer and allocates a binary and copies the data there. This
binary is returned in *rbuf. (Note that this binary is freed by the emulator, not by us.)

static char* get_s(const char* buf, int len);
static int do_connect(const char *s, our_data_t* data, ei_x_buff* x);
static int do_select(const char* s, our_data_t* data, ei_x_buff* x);

/* Since we are operating in binary mode, the return value from control

38 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

* is irrelevant, as long as it is not negative.
*/
static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen)
{

int r;
ei_x_buff x;
our_data_t* data = (our_data_t*)drv_data;
char* s = get_s(buf, len);
ei_x_new_with_version(&x);
switch (command) {

case DRV_CONNECT: r = do_connect(s, data, &x); break;
case DRV_DISCONNECT: r = do_disconnect(data, &x); break;
case DRV_SELECT: r = do_select(s, data, &x); break;
default: r = -1; break;

}
rbuf = (char)ei_x_to_new_binary(&x);
ei_x_free(&x);
driver_free(s);
return r;

}

In do connect is where we log in to the database. If the connection was successful we store the
connection handle in our driver data, and return ok. Otherwise, we return the error message from
postgres, and store NULL in the driver data.

static int do_connect(const char *s, our_data_t* data, ei_x_buff* x)
{

PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION_OK) {

encode_error(x, conn);
PQfinish(conn);
conn = NULL;

} else {
encode_ok(x);

}
data->conn = conn;
return 0;

}

If we are connected (if the connection handle is not NULL), we log out from the database. We need to
check if a we should encode an ok, since we might get here from the stop function, which doesn’t
return data to the emulator.

static int do_disconnect(our_data_t* data, ei_x_buff* x)
{

if (data->conn == NULL)
return 0;

PQfinish(data->conn);
data->conn = NULL;
if (x != NULL)

encode_ok(x);

39Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

return 0;
}

We execute a query and encodes the result. Encoding is done in another C module, pg encode.c which
is also provided as sample code.

static int do_select(const char* s, our_data_t* data, ei_x_buff* x)
{

PGresult* res = PQexec(data->conn, s);
encode_result(x, res, data->conn);
PQclear(res);
return 0;

}

Here we simply checks the result from postgres, and if it’s data we encode it as lists of lists with column
data. Everything from postgres is C strings, so we just use ei x encode string to send the result as
strings to Erlang. (The head of the list contains the column names.)

void encode_result(ei_x_buff* x, PGresult* res, PGconn* conn)
{

int row, n_rows, col, n_cols;
switch (PQresultStatus(res)) {
case PGRES_TUPLES_OK:

n_rows = PQntuples(res);
n_cols = PQnfields(res);
ei_x_encode_tuple_header(x, 2);
encode_ok(x);
ei_x_encode_list_header(x, n_rows+1);
ei_x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {

ei_x_encode_string(x, PQfname(res, col));
}
ei_x_encode_empty_list(x);
for (row = 0; row < n_rows; ++row) {

ei_x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {

ei_x_encode_string(x, PQgetvalue(res, row, col));
}
ei_x_encode_empty_list(x);

}
ei_x_encode_empty_list(x);
break;

case PGRES_COMMAND_OK:
ei_x_encode_tuple_header(x, 2);
encode_ok(x);
ei_x_encode_string(x, PQcmdTuples(res));
break;

default:
encode_error(x, conn);
break;

}
}

40 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

1.6.3 Compiling and linking the sample driver

The driver should be compiled and linked to a shared library (DLL on windows). With gcc this is done
with the link flags -shared and -fpic. Since we use the ei library we should include it too. There are
several versions of ei, compiled for debug or non-debug and multi-threaded or single-threaded. In the
makefile for the samples the obj directory is used for the ei library, meaning that we use the
non-debug, single-threaded version.

1.6.4 Calling a driver as a port in Erlang

Before a driver can be called from Erlang, it must be loaded and opened. Loading is done using the
erl ddll module (the erl ddll driver that loads dynamic driver, is actually a driver itself). If loading is
ok the port can be opened with open port/2. The port name must match the name of the shared
library and the name in the driver entry structure.

When the port has been opened, the driver can be called. In the pg sync example, we don’t have any
data from the port, only the return value from the port control.

The following code is the Erlang part of the synchronous postgres driver, pg sync.erl.

-module(pg_sync).

-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->
case erl_ddll:load_driver(".", "pg_sync") of

ok -> ok;
{error, already_loaded} -> ok;
E -> exit({error, E})

end,
Port = open_port({spawn, ?MODULE}, []),
case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of

ok -> {ok, Port};
Error -> Error

end.

disconnect(Port) ->
R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
port_close(Port),
R.

select(Port, Query) ->
binary_to_term(port_control(Port, ?DRV_SELECT, Query)).

The api is simple: connect/1 loads the driver, opens it and logs on to the database, returning the Erlang
port if successful, select/2 sends a query to the driver, and returns the result, disconnect/1 closes the
database connection and the driver. (It does not unload it, however.) The connection string should be a
connection string for postgres.

41Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

The driver is loaded with erl ddll:load driver/2, and if this is successful, or if it’s already loaded, it
is opened. This will call the start function in the driver.

We use the port control/3 function for all calls into the driver, the result from the driver is returned
immediately, and converted to terms by calling binary to term/1. (We trust that the terms returned
from the driver are well-formed, otherwise the binary to term calls could be contained in a catch.)

1.6.5 Sample asynchronous driver

Sometimes database queries can take long time to complete, in our pg sync driver, the emulator halts
while the driver is doing it’s job. This is often not acceptable, since no other Erlang processes gets a
chance to do anything. To improve on our postgres driver, we reimplement it using the asynchronous
calls in LibPQ.

The asynchronous version of the driver is in the sample files pg async.c and pg asyng.erl.

/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen);
static void ready_io(ErlDrvData drv_data, ErlDrvEvent event);

static ErlDrvEntry pq_driver_entry = {
NULL, /* init */
start,
stop,
NULL, /* output */
ready_io, /* ready_input */
ready_io, /* ready_output */
"pg_async", /* the name of the driver */
NULL, /* finish */
NULL, /* handle */
control,
NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, /* flush */
NULL, /* call */
NULL /* event */

};

typedef struct our_data_t {
PGconn* conn;
ErlDrvPort port;
int socket;
int connecting;

} our_data_t;

Here some things have changed from pg sync.c: we use the entry ready io for ready input and
ready output which will be called from the emulator only when there is input to be read from the
socket. (Actually, the socket is used in a select function inside the emulator, and when the socket is
signalled, indicating there is data to read, the ready input entry is called. More on this below.)

42 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

Our driver data is also extended, we keep track of the socket used for communication with postgres,
and also the port, which is needed when we send data to the port with driver output. We have a flag
connecting to tell whether the driver is waiting for a connection or waiting for the result of a query.
(This is needed since the entry ready io will be called both when connecting and when there is query
result.)

static int do_connect(const char *s, our_data_t* data)
{

PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION_BAD) {

ei_x_buff x;
ei_x_new_with_version(&x);
encode_error(&x, conn);
PQfinish(conn);
conn = NULL;
driver_output(data->port, x.buff, x.index);
ei_x_free(&x);

}
PQconnectPoll(conn);
int socket = PQsocket(conn);
data->socket = socket;
driver_select(data->port, (ErlDrvEvent)socket, DO_READ, 1);
driver_select(data->port, (ErlDrvEvent)socket, DO_WRITE, 1);
data->conn = conn;
data->connecting = 1;
return 0;

}

The connect function looks a bit different too. We connect using the asynchronous PQconnectStart
function. After the connection is started, we retreive the socket for the connection with PQsocket. This
socket is used with the driver select function to wait for connection. When the socket is ready for
input or for output, the ready io function will be called.

Note that we only return data (with driver output) if there is an error here, otherwise we wait for the
connection to be completed, in which case our ready io function will be called.

static int do_select(const char* s, our_data_t* data)
{

data->connecting = 0;
PGconn* conn = data->conn;
/* if there’s an error return it now */
if (PQsendQuery(conn, s) == 0) {

ei_x_buff x;
ei_x_new_with_version(&x);
encode_error(&x, conn);
driver_output(data->port, x.buff, x.index);
ei_x_free(&x);

}
/* else wait for ready_output to get results */
return 0;

}

The do select function initiates a select, and returns if there is no immediate error. The actual result
will be returned when ready io is called.

43Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

static void ready_io(ErlDrvData drv_data, ErlDrvEvent event)
{

PGresult* res = NULL;
our_data_t* data = (our_data_t*)drv_data;
PGconn* conn = data->conn;
ei_x_buff x;
ei_x_new_with_version(&x);
if (data->connecting) {

ConnStatusType status;
PQconnectPoll(conn);
status = PQstatus(conn);
if (status == CONNECTION_OK)

encode_ok(&x);
else if (status == CONNECTION_BAD)

encode_error(&x, conn);
} else {

PQconsumeInput(conn);
if (PQisBusy(conn))

return;
res = PQgetResult(conn);
encode_result(&x, res, conn);
PQclear(res);
for (;;) {

res = PQgetResult(conn);
if (res == NULL)

break;
PQclear(res);

}
}
if (x.index > 1) {

driver_output(data->port, x.buff, x.index);
if (data->connecting)

driver_select(data->port, (ErlDrvEvent)data->socket, DO_WRITE, 0);
}
ei_x_free(&x);

}

The ready io function will be called when the socket we got from postgres is ready for input or output.
Here we first check if we are connecting to the database. In that case we check connection status and
return ok if the connection is successful, or error if it’s not. If the connection is not yet established, we
simply return; ready io will be called again.

If we have result from a connect, indicated that we have data in the x buffer, we no longer need to
select on output (ready output), so we remove this by calling driver select.

If we’re not connecting, we’re waiting for results from a PQsendQuery, so we get the result and return
it. The encoding is done with the same functions as in the earlier example.

We should add error handling here, for instance checking that the socket is still open, but this is just a
simple example.

The Erlang part of the asynchronous driver consists of the sample file pg async.erl.

-module(pg_async).

44 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).

-export([connect/1, disconnect/1, select/2]).

connect(ConnectStr) ->
case erl_ddll:load_driver(".", "pg_async") of

ok -> ok;
{error, already_loaded} -> ok;
_ -> exit({error, could_not_load_driver})

end,
Port = open_port({spawn, ?MODULE}, [binary]),
port_control(Port, ?DRV_CONNECT, ConnectStr),
case return_port_data(Port) of

ok ->
{ok, Port};

Error ->
Error

end.

disconnect(Port) ->
port_control(Port, ?DRV_DISCONNECT, ""),
R = return_port_data(Port),
port_close(Port),
R.

select(Port, Query) ->
port_control(Port, ?DRV_SELECT, Query),
return_port_data(Port).

return_port_data(Port) ->
receive

{Port, {data, Data}} ->
binary_to_term(Data)

end.

The Erlang code is slightly different, this is because we don’t return the result synchronously from
port control, instead we get it from driver output as data in the message queue. The function
return port data above receives data from the port. Since the data is in binary format, we use
binary to term/1 to convert it to Erlang term. Note that the driver is opened in binary mode,
open port/2 is called with the option [binary]. This means that data sent from the driver to the
emulator is sent as binaries. Without the binary option, they would have been lists of integers.

1.6.6 An asynchronous driver using driver async

As a final example we demonstrate the use of driver async. We also use the driver term interface. The
driver is written in C++. This enables us to use an algorithm from STL. We will use the
next permutation algorithm to get the next permutation of a list of integers. For large lists (more than
100000 elements), this will take some time, so we will perform this as an asynchronous task.

The asynchronous api for drivers are quite complicated. First of all, the work must be prepared. In our
example we do this in output. We could have used control just as well, but we want some variation in

45Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

our examples. In our driver, we allocate a structure that contains all needed for the asynchronous task
to do the work. This is done in the main emulator thread. Then the asynchronous function is called
from a driver thread, separate from the main emulator thread. Note that the driver- functions are not
reentrant, so they shouldn’t be used. Finally, after the function is completed, the driver callback
ready async is called from the main emulator thread, this is where we return the result to Erlang. (We
can’t return the result from within the asynchronous function, since we can’t call the driver-functions.)

The code below is from the sample file next perm.cc.

The driver entry looks like before, but also contains the call-back ready async.

static ErlDrvEntry next_perm_driver_entry = {
NULL, /* init */
start,
NULL, /* stop */
output,
NULL, /* ready_input */
NULL, /* ready_output */
"next_perm", /* the name of the driver */
NULL, /* finish */
NULL, /* handle */
NULL, /* control */
NULL, /* timeout */
NULL, /* outputv */
ready_async,
NULL, /* flush */
NULL, /* call */
NULL /* event */

};

The output function allocates the work-area of the asynchronous function. Since we use C++, we use a
struct, and stuff the data in it. We have to copy the original data, it is not valid after we have returned
from the output function, and the do perm function will be called later, and from another thread. We
return no data here, instead it will be sent later from the ready async call-back.

The async data will be passed to the do perm function. We do not use a async free function (the last
argument to driver async, it’s only used if the task is cancelled programmatically.

struct our_async_data {
bool prev;
vector<int> data;
our_async_data(ErlDrvPort p, int command, const char* buf, int len);

};

our_async_data::our_async_data(ErlDrvPort p, int command,
const char* buf, int len)

: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))

{
}

static void do_perm(void* async_data);

static void output(ErlDrvData drv_data, char *buf, int len)

46 Erlang Run-Time System Application (ERTS)

1.6: How to implement a driver

{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
void* async_data = new our_async_data(port, *buf, buf+1, len);
driver_async(port, NULL, do_perm, async_data, do_free);

}

In the do perm we simply do the work, operating on the structure that was allocated in output.

static void do_perm(void* async_data)
{

our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
if (d->prev)

prev_permutation(d->data.begin(), d->data.end());
else

next_permutation(d->data.begin(), d->data.end());
}

In the ready async function, the output is sent back to the emulator. We use the driver term format
instead of ei. This is the only way to send Erlang terms directly to a driver, without having the Erlang
code to call binary to term/1. In our simple example this works well, and we don’t need to use ei to
handle the binary term format.

When the data is returned we deallocate our data.

static void ready_async(ErlDrvData drv_data, ErlDrvThreadData async_data)
{

ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
int n = d->data.size(), result_n = n*2 + 3;
ErlDrvTermData* result = new ErlDrvTermData[result_n], * rp = result;
for (vector<int>::iterator i = d->data.begin();

i != d->data.end(); ++i) {
*rp++ = ERL_DRV_INT;
*rp++ = *i;

}
*rp++ = ERL_DRV_NIL;
*rp++ = ERL_DRV_LIST;
*rp++ = n+1;
driver_output_term(port, result, result_n);
delete[] result;
delete d;

}

This driver is called like the others from Erlang, however, since we use driver output term, there is no
need to call binary to term. The Erlang code is in the sample file next perm.erl.

The input is changed into a list of integers and sent to the driver.

-module(next_perm).

-export([next_perm/1, prev_perm/1, load/0, all_perm/1]).

load() ->

47Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

case whereis(next_perm) of
undefined ->

case erl_ddll:load_driver(".", "next_perm") of
ok -> ok;
{error, already_loaded} -> ok;
E -> exit(E)

end,
Port = open_port({spawn, "next_perm"}, []),
register(next_perm, Port);

_ ->
ok

end.

list_to_integer_binaries(L) ->
[<<I:32/integer-native>> || I <- L].

next_perm(L) ->
next_perm(L, 1).

prev_perm(L) ->
next_perm(L, 2).

next_perm(L, Nxt) ->
load(),
B = list_to_integer_binaries(L),
port_control(next_perm, Nxt, B),
receive

Result ->
Result

end.

all_perm(L) ->
New = prev_perm(L),
all_perm(New, L, [New]).

all_perm(L, L, Acc) ->
Acc;

all_perm(L, Orig, Acc) ->
New = prev_perm(L),
all_perm(New, Orig, [New | Acc]).

1.7 Inet configuration

1.7.1 Introduction

This chapter tells you how the Erlang runtime system is configured for IP communication. It also
explains how you may configure it for your own particular needs by means of a configuration file. The
information here is mainly intended for users with special configuration needs or problems. There
should normally be no need for specific settings for Erlang to function properly on a correctly IP
configured platform.

48 Erlang Run-Time System Application (ERTS)

1.7: Inet configuration

When Erlang starts up it will read the kernel variable inetrc which, if defined, should specify the
location and name of a user configuration file. Example:

% erl -kernel inetrc ’"./cfg files/erl inetrc"’

Note that the usage of a .inetrc file, which was supported in earlier Erlang versions, is now obsolete.

A second way to specify the configuration file is to set the environment variable ERL INETRC to the full
name of the file. Example (bash):

% export ERL INETRC=./cfg files/erl inetrc

Note that the kernel variable inetrc overrides this environment variable.

If no user configuration file is specified and Erlang is started in non-distributed or short name distributed
mode, Erlang will use default configuration settings and a native lookup method that should work
correctly under most circumstances. Erlang will not read any information from system inet
configuration files (like /etc/hosts, /etc/resolv.conf, etc) in these modes.

If Erlang is started in long name distributed mode, it needs to get the domain name from somewhere
and will read system inet configuration files for this information. Any hosts and resolver information
found then is also recorded, but not used as long as Erlang is configured for native lookups. (The
information becomes useful if the lookup method is changed to ’file’ or ’dns’, see below).

Native lookup (system calls) is always the default resolver method. This is true for all platforms except
VxWorks and OSE Delta where ’file’ or ’dns’ is used (in that order of priority).

On Windows platforms, Erlang will search the system registry rather than look for configuration files
when started in long name distributed mode.

1.7.2 Configuration Data

Erlang records the following data in a local database if found in system inet configuration files (or
system registry):

� Host names and addresses

� Domain name

� Nameservers

� Search domains

� Lookup method

This data may also be specified explicitly in the user configuration file. The configuration file should
contain lines of configuration parameters (each terminated with a full stop). Some parameters add data
to the configuration (e.g. host and nameserver), others overwrite any previous settings (e.g. domain and
lookup). The user configuration file is always examined last in the configuration process, making it
possible for the user to override any default values or previously made settings. Call inet:get rc() to
view the state of the inet configuration database.

These are the valid configuration parameters:

ffile, Format, Fileg. Format = atom()

File = string()

Specify a system file that Erlang should read configuration data from. Format tells the parser how
the file should be interpreted: resolv (Unix resolv.conf), host conf freebsd (FreeBSD
host.conf), host conf bsdos (BSDOS host.conf), host conf linux (Linux host.conf),
nsswitch conf (Unix nsswitch.conf) or hosts (Unix hosts). File should specify the name of the
file with full path.

49Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

fregistry, Typeg. Type = atom()

Specify a system registry that Erlang should read configuration data from. Currently, win32 is the
only valid option.

fhost, IP, Aliasesg. IP = tuple()
Aliases = [string()]

Add host entry to the hosts table.

fdomain, Domaing. Domain = string()

Set domain name.

fnameserver, IP [,Port]g. IP = tuple()

Port = integer()

Add address (and port, if other than default) of primary nameserver.

falt nameserver, IP [,Port]g. IP = tuple()

Port = integer()

Add address (and port, if other than default) of secondary nameserver.

fsearch, Domainsg. Domains = [string()]

Add search domains.

flookup, Methodsg. Methods = [atom()]

Specify lookup methods and in which order to try them. The valid methods are: native (use
system calls), file (use data retrieved from system configuration files and/or the user
configuration file) or dns (use the Erlang DNS client for nameserver queries).

fcache size, Sizeg. Size = integer()

Set size of resolver cache. Default is 100 DNS records.

fcache refresh, Timeg. Time = integer()

Set how often (in millisec) the resolver cache is refreshed (i.e. expired DNS records are deleted).
Default is 1 h.

ftimeout, Timeg. Time = integer()

Set the time to wait until retry (in millesec) for DNS queries. Default is 2 sec.

fretry, Ng. N = integer()
Set the number of DNS queries to try before giving up. Default is 3.

finet6, Boolg. Bool = true | false

Tells the system to use IPv6. Default is false.

fudp, Moduleg. Module = atom()

Tell Erlang to use other primitive UDP module than inet udp.

ftcp, Moduleg. Module = atom()

Tell Erlang to use other primitive TCP module than inet tcp.

clear hosts. Clear the hosts table.

clear ns. Clear the list of recorded nameservers (primary and secondary).

clear search. Clear the list of search domains.

1.7.3 User Configuration Example

Here follows a user configuration example.

Assume a user does not want Erlang to use the native lookup method, but wants Erlang to read all
information necessary from start and use that for resolving names and addresses. In case lookup fails,
Erlang should request the data from a nameserver (using the Erlang DNS client). Furthermore, DNS

50 Erlang Run-Time System Application (ERTS)

1.8: External Term Format

records should never be cached. The user configuration file (in this example named erl inetrc, stored
in directory ./cfg files) could then look like this (Unix):

%% -- ERLANG INET CONFIGURATION FILE --
%% read the hosts file
ffile, hosts, "/etc/hosts"g.
%% add a particular host
fhost, f134,138,177,105g, ["finwe"]g.
%% read nameserver info from here
ffile, resolv, "/etc/resolv.conf"g.
%% disable caching
fcache size, 0g.
%% specify lookup method
flookup, [file, dns]g.

And Erlang could, for example, be started like this:

% erl -sname my node -kernel inetrc ’"./cfg files/erl inetrc"’

1.8 External Term Format

1.8.1 Introduction

The external term format is mainly used in the distribution mechanism of Erlang.

Since Erlang has a fixed number of types, there is no need for a programmer to define a specification for
the external format used within some application. All Erlang terms has an external representation and
the interpretation of the different terms are application specific.

In Erlang the BIF [term to binary/1,2] is used to convert a term into the external format. To convert
binary data encoding a term the BIF [binary to term/1] is used.

The distribution does this implicitly when sending messages across node boundaries.

The overall format of the term format is:

1 1 N

131 Tag Data

Table 1.3:

A compressed term looks like this:

1 1 4 N

131 80 UncompressedSize Zlib-compressedData

Table 1.4:

Uncompressed Size (unsigned 32 bit integer in big-endian byte order) is the size of the data before it
was compressed. The compressed data has the following format when it has been expanded:

51Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1 Uncompressed Size

Tag Data

Table 1.5:

1.8.2 SMALL INTEGER EXT

1 1

97 Int

Table 1.6:

Unsigned 8 bit integer.

1.8.3 INTEGER EXT

1 4

98 Int

Table 1.7:

Signed 32 bit integer in big-endian format (i.e. MSB first)

1.8.4 FLOAT EXT

1 31

99 Float String

Table 1.8:

A float is stored in string format. the format used in sprintf to format the float is “%.20e” (there are
more bytes allocated than necessary). To unpack the float use sscanf with format “%lf”.

This term is used in minor version 0 of the external format; it has been superseded by
NEW FLOAT EXT [page 59].

52 Erlang Run-Time System Application (ERTS)

1.8: External Term Format

1.8.5 ATOM EXT

1 2 Len

100 Len AtomName

Table 1.9:

An atom is stored with a 2 byte unsigned length in big-endian order, followed by Len numbers of 8 bit
characters that forms the AtomName. Note: The maximum allowed value for Len is 255.

1.8.6 REFERENCE EXT

1 N 4 1

101 Node ID Creation

Table 1.10:

Encode a reference object (an object generated with make ref/0). The Node term is an encoded atom,
i.e. ATOM EXT [page 53], NEW CACHE [page 56] or CACHED ATOM [page 56]. The ID field
contains a big-endian unsigned integer, but should be regarded as uninterpreted data since this field is
node specific. Creation is a byte containing a node serial number that makes it possible to separate old
(crashed) nodes from a new one.

In ID, only 18 bits are significant; the rest should be 0. In Creation, only 2 bits are significant; the rest
should be 0. See NEW REFERENCE EXT [page 57].

1.8.7 PORT EXT

1 N 4 1

102 Node ID Creation

Table 1.11:

Encode a port object (obtained form open port/2). The ID is a node specific identifier for a local port.
Port operations are not allowed across node boundaries. The Creation works just like in
REFERENCE EXT [page 53].

53Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.8.8 PID EXT

1 N 4 4 1

103 Node ID Serial Creation

Table 1.12:

Encode a process identifier object (obtained from spawn/3 or friends). The ID and Creation fields
works just like in REFERENCE EXT [page 53], while the Serial field is used to improve safety. In ID,
only 15 bits are significant; the rest should be 0.

1.8.9 SMALL TUPLE EXT

1 1 N

104 Arity Elements

Table 1.13:

SMALL TUPLE EXT encodes a tuple. The Arity field is an unsigned byte that determines how many
element that follows in the Elements section.

1.8.10 LARGE TUPLE EXT

1 4 N

105 Arity Elements

Table 1.14:

Same as SMALL TUPLE EXT [page 54] with the exception that Arity is an unsigned 4 byte integer in
big endian format.

1.8.11 NIL EXT

1

106

Table 1.15:

The representation for an empty list, i.e. the Erlang syntax [].

54 Erlang Run-Time System Application (ERTS)

1.8: External Term Format

1.8.12 STRING EXT

1 2 Len

107 Length Characters

Table 1.16:

String does NOT have a corresponding Erlang representation, but is an optimization for sending lists of
bytes (integer in the range 0-255) more efficiently over the distribution. Since the Length field is an
unsigned 2 byte integer (big endian), implementations must make sure that lists longer than 65535
elements are encoded as LIST EXT [page 55].

1.8.13 LIST EXT

1 4

108 Length Elements Tail

Table 1.17:

Length is the number of elements that follows in the Elements section. Tail is the final tail of the list;
it is NIL EXT [page 54] for a proper list, but may be anything type if the list is improper (for instance
[a|b]).

1.8.14 BINARY EXT

1 4 Len

109 Len Data

Table 1.18:

Binaries are generated with bit syntax expression or with [list to binary/1], [term to binary/1], or as
input from binary ports. The Len length field is an unsigned 4 byte integer (big endian).

1.8.15 SMALL BIG EXT

1 1 1 n

110 n Sign d(0) ... d(n-1)

Table 1.19:

55Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Bignums are stored in unary form with a Sign byte that is 0 if the binum is positive and 1 if is negative.
The digits are stored with the LSB byte stored first. To calculate the integer the following formula can
be used:
B = 256
(d0*B^0 + d1*B^1 + d2*B^2 + ... d(N-1)*B^(n-1))

1.8.16 LARGE BIG EXT

1 4 1 n

111 n Sign d(0) ... d(n-1)

Table 1.20:

Same as SMALL BIG EXT [page 55] with the difference that the length field is an unsigned 4 byte
integer.

1.8.17 NEW CACHE

1 1 2 Len

78 index Len Atom name

Table 1.21:

NEW CACHE works just like ATOM EXT [page 53], but it must also cache the atom in the atom
cache in the location given by index. The atom cache is currently only used between real Erlang nodes
(not between Erlang nodes and C or Java nodes).

1.8.18 CACHED ATOM

1 1

67 index

Table 1.22:

When the atom cache is in use, index is the slot number in which the atom MUST be located.

56 Erlang Run-Time System Application (ERTS)

1.8: External Term Format

1.8.19 NEW REFERENCE EXT

1 2 N 1 N’

114 Len Node Creation ID ...

Table 1.23:

Node and Creation are as in REFERENCE EXT [page 53].

ID contains a sequence of big-endian unsigned integers (4 bytes each, so N’ is a multiple of 4), but
should be regarded as uninterpreted data.

N’ = 4 * Len.

In the first word (four bytes) of ID, only 18 bits are significant, the rest should be 0. In Creation, only 2
bits are significant, the rest should be 0.

NEW REFERENCE EXT was introduced with distribution version 4. In version 4, N’ should be at
most 12.

See REFERENCE EXT [page 53]).

1.8.20 FUN EXT

1 4 N1 N2 N3 N4 N5

117 NumFree Pid Module Index Uniq Free vars ...

Table 1.24:

Pid is a process identifier as in PID EXT [page 54]. It represents the process in which the fun was
created.

Module is an encoded as an atom, using ATOM EXT [page 53], NEW CACHE [page 56] or
CACHED ATOM [page 56]. This is the module that the fun is implemented in.

Index is an integer encoded using SMALL INTEGER EXT [page 52] or INTEGER EXT [page 52]. It
is typically a small index into the module’s fun table.

Uniq is an integer encoded using SMALL INTEGER EXT [page 52] or INTEGER EXT [page 52].
Uniq is the hash value of the parse for the fun.

Free vars is NumFree number of terms, each one encoded according to its type.

1.8.21 NEW FUN EXT

1 4 1 16 4 4 N1 N2 N3 N4 N5

112 Size Arity Uniq Index NumFree Module OldIndex OldUniq Pid Free Vars

Table 1.25:

This is the new encoding of internal funs: fun F/A and fun(Arg1,..) -> ... end.

57Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Size is the total number of bytes, including the Size field.

Arity is the arity of the function implementing the fun.

Uniq is the 16 bytes MD5 of the significant parts of the Beam file.

Index is an index number. Each fun within a module has an unique index. Index is stored in
big-endian byte order.

NumFree is the number of free variables.

Module is an encoded as an atom, using ATOM EXT [page 53], NEW CACHE [page 56] or
CACHED ATOM [page 56]. This is the module that the fun is implemented in.

OldIndex is an integer encoded using SMALL INTEGER EXT [page 52] or INTEGER EXT [page
52]. It is typically a small index into the module’s fun table.

OldUniq is an integer encoded using SMALL INTEGER EXT [page 52] or INTEGER EXT [page 52].
Uniq is the hash value of the parse tree for the fun.

Pid is a process identifier as in PID EXT [page 54]. It represents the process in which the fun was
created.

Free vars is NumFree number of terms, each one encoded according to its type.

1.8.22 EXPORT EXT

1 N1 N2 N3

113 Module Function Arity

Table 1.26:

This term is the encoding for external funs: fun M:F/A.

Module and Function are atoms (encoded using ATOM EXT [page 53], NEW CACHE [page 56] or
CACHED ATOM [page 56]).

Arity is an integer encoded using SMALL INTEGER EXT [page 52].

1.8.23 BIT BINARY EXT

1 4 1 Len

77 Len Bits Data

Table 1.27:

This term represents a bitstring whose length in bits is not a multiple of 8 (created using the bit syntax
in R12B and later). The Len field is an unsigned 4 byte integer (big endian). The Bits field is the
number of bits that are used in the last byte in the data field, counting from the most significant bit
towards the least significant.

58 Erlang Run-Time System Application (ERTS)

1.9: Distribution Protocol

1.8.24 NEW FLOAT EXT

1 8

70 IEEE float

Table 1.28:

A float is stored as 8 bytes in big-endian IEEE format.

This term is used in minor version 1 of the external format.

1.9 Distribution Protocol

The description here is far from complete and will therefore be further refined in upcoming releases.
The protocols both from Erlang nodes towards EPMD (Erlang Port Mapper Daemon) and between
Erlang nodes are however stable and mature since many years.

The distribution protocol can be divided into four (4) parts:

� 1. Low level socket connection.

� 2. Handshake, interchange node name and authenticate.

� 3. Authentication (done by net kernel).

� 4. Connected.

A node fetches the Port number of another node through the EPMD (at the other host) in order to
initiate a connection request.

For each host where a distributed Erlang node is running there should also be an EPMD running. The
EPMD can be started explicitly or automatically as a result of the Erlang node startup.

By default EPMD listens on port 4369.

3 and 4 are performed at the same level but the net kernel disconnects the other node if it
communicates using an invalid cookie (after one (1) second).

1.9.1 EPMD Protocol

The requests served by the EPMD (Erlang Port Mapper Daemon) are summarized in the figure below.

59Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Client (or Node) EPMD

ALIVE2_REQ

ALIVE2_RESP

ALIVE_CLOSE_REQ

PORT_PLEASE2_REQ

PORT2_RESP

NAMES_REQ

NAMES_RESP

DUMP_REQ

DUMP_RESP

KILL_REQ

KILL_RESP

STOP_REQ

STOP_OK_RESP

STOP_NOTOK_RESP

Figure 1.1: Summary of EPMD requests.

Each request * REQ is preceeded by a two-byte length field. Thus, the overall request format is:

60 Erlang Run-Time System Application (ERTS)

1.9: Distribution Protocol

2 n

Length Request

Table 1.29:

Register a node in the EPMD

When a distributed node is started it registers itself in EPMD. The message ALIVE2 REQ described
below is sent from the node towards EPMD. The response from EPMD is ALIVE2 RESP.

1 2 1 1 2 2 Nlen 2 Elen

120 PortNo NodeType Protocol DistrvsnRange Nlen NodeName Elen Extra

Table 1.30: ALIVE2 REQ (120)

PortNo The port number on which the node accept connection requests.

NodeType 77 = normal Erlang node, 72 = hidden node (C-node),...

Protocol 0 = tcp/ip-v4, ...

DistrvsnRange Two bytes where MSB = Highestvsn and LSB = Lowestvsn. For erts-4.6.x
(OTP-R3)the vsn = 0 For erts-4.7.x (OTP-R4) = ?????.

Nlen The length of the NodeName.

NodeName The NodeName as a string of length Nlen.

Elen The length of the Extra field.

Extra Extra field of Elen bytes.

The connection created to the EPMD must be kept as long as the node is a distributed node. When the
connection is closed the node is automatically unregistered from the EPMD.

The response message ALIVE2 RESP is described below.

1 1 2

121 Result Creation

Table 1.31: ALIVE2 RESP (121)

Result = 0 -> ok, Result > 0 -> error

Unregister a node from the EPMD

A node unregister itself from the EPMD by simply closing the TCP connection towards EPMD
established when the node was registered.

61Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Get the distribution port of another node

When one node wants to connect to another node it starts with a PORT PLEASE2 REQ request
towards EPMD on the host where the node resides in order to get the distribution port that the node
listens to.

The response PORT2 RESP contains other valuable information such as protocol version in addition to
the distribution port.

1 N

122 NodeName

Table 1.32: PORT PLEASE2 REQ (122)

where N = Length - 1

1 1

119 Result

Table 1.33: PORT2 RESP (119) response indicating error, Result > 0.

Or

1 1 2 1 1 2 2 Nlen 2 Elen

119 Result PortNo NodeType Protocol DistrvsnRange Nlen NodeName Elen Extra

Table 1.34: PORT2 RESP when Result = 0.

If Result > 0, the packet only consists of [119, Result].

Get all registered names from EPMD

This request is used via the Erlang function net adm:names/1,2. A TCP connection is opened towards
EPMD and this request is sent.

1

110

Table 1.35: NAMES REQ (110)

The response for a NAMES REQ looks like this:

62 Erlang Run-Time System Application (ERTS)

1.9: Distribution Protocol

4

EPMDPortNo NodeInfo*

Table 1.36: NAMES RESP

NodeInfo is a string written for each active node. When all NodeInfo has been written the connection is
closed by EPMD.

NodeInfo is, as expressed in Erlang:

io:format("name ~s at port ~p~n", [NodeName, Port]).

Dump all data from EPMD

This request is not really used, it should be regarded as a debug feature.

1

100

Table 1.37: DUMP REQ

The response for a DUMP REQ looks like this:

4

EPMDPortNo NodeInfo*

Table 1.38: DUMP RESP

NodeInfo is a string written for each node kept in EPMD. When all NodeInfo has been written the
connection is closed by EPMD.

NodeInfo is, as expressed in Erlang:

io:format("active name ~s at port ~p, fd = ~p ~n",
[NodeName, Port, Fd]).

or

io:format("old/unused name ~s at port ~p, fd = ~p~n",
[NodeName, Port, Fd]).

63Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

Kill the EPMD

This request will kill the running EPMD. It is almost never used.

1

107

Table 1.39: KILL REQ

The response fo a KILL REQ looks like this:

2

OKString

Table 1.40: KILL RESP

where OKString is “OK”.

STOP REQ (Not Used)

1 n

115 NodeName

Table 1.41: STOP REQ

where n = Length - 1

The current implementation of Erlang does not care if the connection to the EPMD is broken.

The response for a STOP REQ looks like this.

7

OKString

Table 1.42: STOP RESP

where OKString is “STOPPED”.

A negative response can look like this.

64 Erlang Run-Time System Application (ERTS)

1.9: Distribution Protocol

7

NOKString

Table 1.43: STOP NOTOK RESP

where NOKString is “NOEXIST”.

1.9.2 Handshake

The handshake is discussed in detail in the internal documentation for the kernel (Erlang) application.

1.9.3 Protocol between connected nodes

4 1 n m

Length Type ControlMsg Message

Table 1.44:

where:

Length is equal to 1 + n + m Type is: 112 - pass through ControlMsg is a tuple passed using the external
format of Erlang. Message is the message sent to another node using the ’!’ (in external format). But,
Message is only passed in combination with a ControlMsg encoding a send (’!’).

The control message is a tuple, where the first element indicates which distributed operation it encodes.

LINK f1, FromPid, ToPidg

SEND f2, Cookie, ToPidg

Note:
Message is sent as well.

EXIT f3, FromPid, ToPid, Reasong

UNLINK f4, FromPid, ToPidg

NODE LINK f5g

REG SEND f6, FromPid, Cookie, ToNameg

Note:
Message is sent as well.

GROUP LEADER f7, FromPid, ToPidg

EXIT2 f8, FromPid, ToPid, Reasong

65Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

1.9.4 New Ctrlmessages for distrvsn = 1 (OTP R4)

SEND TT

f12, Cookie, ToPid, TraceTokeng

Note:
Message is sent as well.

EXIT TT

f13, FromPid, ToPid, TraceToken, Reasong

REG SEND TT

f16, FromPid, Cookie, ToName, TraceTokeng

Note:
Message is sent as well.

EXIT2 TT

f18, FromPid, ToPid, TraceToken, Reasong

1.9.5 New Ctrlmessages for distrvsn = 2

distrvsn 2 was never used.

1.9.6 New Ctrlmessages for distrvsn = 3 (OTP R5C)

None, but the version number was increased anyway.

1.9.7 New Ctrlmessages for distrvsn = 4 (OTP R6)

These are only recognized by Erlang nodes, not by hidden nodes.

MONITOR P

f19, FromPid, ToProc, Refg FromPid = monitoring process ToProc = monitored process pid or name
(atom)

66 Erlang Run-Time System Application (ERTS)

1.9: Distribution Protocol

DEMONITOR P

f20, FromPid, ToProc, Refg We include the FromPid just in case we want to trace this. FromPid =
monitoring process ToProc = monitored process pid or name (atom)

MONITOR P EXIT

f21, FromProc, ToPid, Ref, Reasong FromProc = monitored process pid or name (atom) ToPid =
monitoring process Reason = exit reason for the monitored process

67Erlang Run-Time System Application (ERTS)

Chapter 1: ERTS User’s Guide

68 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

Short Summaries

� Command epmd [page 78] – Erlang Port Mapper Daemon

� Command erl [page 79] – The Erlang Emulator

� Command erlc [page 86] – Compiler

� Command erlsrv [page 89] – Run the Erlang emulator as a service on Windows NT

� Command escript [page 94] – Erlang scripting support

� Command run erl [page 96] – Redirect Erlang input and output streams on Solaris

� Command start [page 98] – OTP start script example for Unix

� Command start erl [page 99] – Start Erlang for embedded systems on Windows
NT

� Command werl [page 101] – The Erlang Emulator

� C Library erl set memory block [page 102] – Custom memory allocation for
Erlang on VxWorks

� C Library erts alloc [page 104] – An Erlang Run-Time System internal memory
allocator library.

� Erlang Module driver entry [page 110] – The driver-entry structure used by erlang
drivers.

� Erlang Module erl driver [page 116] – API functions for an Erlang driver

epmd

The following functions are exported:

� epmd [-daemon] Start a name server as a daemon

� epmd -names Request the names of the registrered Erlang nodes on this host

� epmd -kill Kill the epmdprocess

� epmd -help List options

erl

The following functions are exported:

� erl <arguments> Start an Erlang runtime system

69Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

erlc

The following functions are exported:

� erlc flags file1.ext file2.ext... Compile files

erlsrv

The following functions are exported:

� erlsrv fset | addg <service-name> [<service options>] Add or modify
an Erlang service

� erlsrv fstart | stop | disable | enableg <service-name>Manipulate
the current service status.

� erlsrv remove <service-name>Remove the service.

� erlsrv list [<service-name>] List all Erlang services or all options for one
service.

� erlsrv help Display a brief help text

escript

The following functions are exported:

� script-name script-arg1 script-arg2... Run a script written in Erlang

� escript escript-flags script-name script-arg1 script-arg2... Run a
script written in Erlang

run erl

The following functions are exported:

� run erl [-daemon] pipe dir/ log dir "exec command
[command arguments]" Start the Erlang emulator without attached terminal

start

The following functions are exported:

� start [data file] This is an example script on how to startup the Erlang
system in embedded mode on Unix.

start erl

The following functions are exported:

� start erl [<erl options>] ++ [<start erl options>] Start the Erlang
emulator with the correct release data

70 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

werl

No functions are exported.

erl set memory block

The following functions are exported:

� int erl set memory block(size t size, void *ptr, int
warn mixed malloc, int realloc always moves, int use reclaim, ...)
Specify parameters for Erlang internal memory allocation.

� int erl memory show(...) A utility similar to VxWorks memShow, but for the
Erlang memory area.

� int erl mem info get(MEM PART STATS *stats) A utility similar to VxWorks
memPartInfoGet, but for the Erlang memory area.

erts alloc

No functions are exported.

driver entry

The following functions are exported:

� int init(void)
[page 112] Called after loading of driver

� int start(ErlDrvPort port, char* command)
[page 112] Called when port is opened

� void stop(ErlDrvData drv data)
[page 112] Called when port is closed

� void output(ErlDrvData drv data, char *buf, int len)
[page 112] Called when port is written to

� void ready input(ErlDrvData drv data, ErlDrvEvent event)
[page 112] Called when the driver event for input or output is signaled

� void ready output(ErlDrvData drv data, ErlDrvEvent event)
[page 112] Called when the driver event for input or output is signaled

� char *driver name
[page 113] The name of the driver

� void finish(void)
[page 113] Called just before the dynamic driver is unloaded

� void *handle
[page 113] Reserved, initialize to NULL

� int control(ErlDrvData drv data, unsigned int command, char *buf,
int len, char **rbuf, int rlen)
[page 113] Invoked with port control

� void timeout(ErlDrvData drv data)
[page 114] Called when timer reaches 0

71Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� void outputv(ErlDrvData drv data, ErlIOVec *ev)
[page 114] Called when the port is written to

� void ready async(ErlDrvData drv data, ErlDrvThreadData thread data)
[page 114] Called when an asynchronous call has returned

� int call(ErlDrvData drv data, unsigned int command, char *buf, int
len, char **rbuf, int rlen, unsigned int *flags)
[page 114] Synchronous call with term conversion

� void event(ErlDrvData drv data, ErlDrvEvent event, ErlDrvEventData
event data)
[page 114]

� int extended marker
[page 114] Extended driver marker

� int major version
[page 115] Major version number

� int minor version
[page 115] Minor version number

� int driver flags
[page 115] Driver flags

� void *handle2
[page 115] Reserved, initialize to NULL

� void process exit(ErlDrvData drv data, ErlDrvMonitor *monitor)
[page 115] Callback for process monitors.

erl driver

The following functions are exported:

� ErlDrvSysInfo
[page 119] Information about the Erlang runtime system

� ErlDrvBinary
[page 120] A driver binary.

� ErlDrvData
[page 121] Driver specific data

� SysIOVec
[page 121] System I/O vector

� ErlIOVec
[page 121] Erlang I/O vector

� ErlDrvMonitor
[page 121] A monitor reference

� ErlDrvNowData
[page 121] A structure for holding timestamps

� ErlDrvPDL
[page 122] Port Data Lock

� ErlDrvTid
[page 122] Thread identifier

� ErlDrvThreadOpts
[page 122] Thread options

72 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� ErlDrvMutex
[page 122] Mutex

� ErlDrvCond
[page 123] Condition variable

� ErlDrvRWLock
[page 123] Rwlock

� ErlDrvTSDKey
[page 123] Thread specific data key

� void driver system info(ErlDrvSysInfo *sys info ptr, size t size)
[page 123] Get information about the Erlang runtime system

� int driver output(ErlDrvPort port, char *buf, int len)
[page 123] Send data from driver to port owner

� int driver output2(ErlDrvPort port, char *hbuf, int hlen, char *buf,
int len)
[page 123] Send data and binary data to port owner

� int driver output binary(ErlDrvPort port, char *hbuf, int hlen,
ErlDrvBinary* bin, int offset, int len)
[page 124] Send data from a driver binary to port owner

� int driver outputv(ErlDrvPort port, char* hbuf, int hlen, ErlIOVec
*ev, int skip)
[page 124] Send vectorized data to port owner

� int driver vec to buf(ErlIOVec *ev, char *buf, int len)
[page 124] Collect data segments into a buffer

� int driver set timer(ErlDrvPort port, unsigned long time)
[page 124] Set a timer to call the driver

� int driver cancel timer(ErlDrvPort port)
[page 125] Cancel a previously set timer

� int driver read timer(ErlDrvPort port, unsigned long *time left)
[page 125] Read the time left before timeout

� int driver get now(ErlDrvNowData *now)
[page 125] Read a system timestamp

� int driver select(ErlDrvPort port, ErlDrvEvent event, int mode, int
on)
[page 125] Provide an event for having the emulator call the driver

� void *driver alloc(size t size)
[page 125] Allocate memory

� void *driver realloc(void *ptr, size t size)
[page 126] Resize an allocated memory block

� void driver free(void *ptr)
[page 126] Free an allocated memory block

� ErlDrvBinary* driver alloc binary(int size)
[page 126] Allocate a driver binary

� ErlDrvBinary* driver realloc binary(ErlDrvBinary *bin, int size)
[page 126] Resize a driver binary

� void driver free binary(ErlDrvBinary *bin)
[page 126] Free a driver binary

73Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� long driver binary get refc(ErlDrvBinary *bin)
[page 126] Get the reference count of a driver binary

� long driver binary inc refc(ErlDrvBinary *bin)
[page 127] Increment the reference count of a driver binary

� long driver binary dec refc(ErlDrvBinary *bin)
[page 127] Decrement the reference count of a driver binary

� int driver enq(ErlDrvPort port, char* buf, int len)
[page 127] Enqueue data in the driver queue

� int driver pushq(ErlDrvPort port, char* buf, int len)
[page 127] Push data at the head of the driver queue

� int driver deq(ErlDrvPort port, int size)
[page 127] Dequeue data from the head of the driver queue

� int driver sizeq(ErlDrvPort port)
[page 128] Return the size of the driver queue

� int driver enq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset,
int len)
[page 128] Enqueue binary in the driver queue

� int driver pushq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset,
int len)
[page 128] Push binary at the head of the driver queue

� SysIOVec* driver peekq(ErlDrvPort port, int *vlen)
[page 128] Get the driver queue as a vector

� int driver enqv(ErlDrvPort port, ErlIOVec *ev, int skip)
[page 128] Enqueue vector in the driver queue

� int driver pushqv(ErlDrvPort port, ErlIOVec *ev, int skip)
[page 129] Push vector at the head of the driver queue

� ErlDrvPDL driver pdl create(ErlDrvPort port)
[page 129] Create a port data lock

� void driver pdl lock(ErlDrvPDL pdl)
[page 129] Lock port data lock

� void driver pdl unlock(ErlDrvPDL pdl)
[page 129] Unlock port data lock

� long driver pdl get refc(ErlDrvPDL pdl)
[page 129]

� long driver pdl inc refc(ErlDrvPDL pdl)
[page 129]

� long driver pdl dec refc(ErlDrvPDL pdl)
[page 129]

� int driver monitor process(ErlDrvPort port, ErlDrvTermData process,
ErlDrvMonitor *monitor)
[page 129] Monitor a process from a driver

� int driver demonitor process(ErlDrvPort port, const ErlDrvMonitor
*monitor)
[page 130] Stop monitoring a process from a driver

� ErlDrvTermData driver get monitored process(ErlDrvPort port, const
ErlDrvMonitor *monitor)
[page 130] Retrieve the process id from a monitor

74 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� int driver compare monitors(const ErlDrvMonitor *monitor1, const
ErlDrvMonitor *monitor2)
[page 130] Compare two monitors

� void add driver entry(ErlDrvEntry *de)
[page 130] Add a driver entry

� int remove driver entry(ErlDrvEntry *de)
[page 130] Remove a driver entry

� char* erl errno id(int error)
[page 131] Get erlang error atom name from error number

� void set busy port(ErlDrvPort port, int on)
[page 131] Signal or unsignal port as busy

� void set port control flags(ErlDrvPort port, int flags)
[page 131] Set flags on how to handle control entry function

� int driver failure eof(ErlDrvPort port)
[page 131] Fail with EOF

� int driver failure atom(ErlDrvPort port, char *string)
[page 131] Fail with error

� int driver failure posix(ErlDrvPort port, int error)
[page 131] Fail with error

� int driver failure(ErlDrvPort port, int error)
[page 131] Fail with error

� ErlDrvTermData driver connected(ErlDrvPort port)
[page 131] Return the port owner process

� ErlDrvTermData driver caller(ErlDrvPort port)
[page 131] Return the process making the driver call

� int driver output term(ErlDrvPort port, ErlDrvTermData* term, int n)
[page 132] Send term data from driver to port owner

� ErlDrvTermData driver mk atom(char* string)
[page 134] Make an atom from a name

� ErlDrvTermData driver mk port(ErlDrvPort port)
[page 134] Make a erlang term port from a port

� int driver send term(ErlDrvPort port, ErlDrvTermData receiver,
ErlDrvTermData* term, int n)
[page 134] Send term data to other process than port owner process

� long driver async (ErlDrvPort port, unsigned int* key, void
(*async invoke)(void*), void* async data, void (*async free)(void*))
[page 134] Perform an asynchronous call within a driver

� int driver async cancel(long id)
[page 135] Cancel an asynchronous call

� int driver lock driver(ErlDrvPort port)
[page 135] Make sure the driver is never unloaded

� ErlDrvPort driver create port(ErlDrvPort port, ErlDrvTermData
owner pid, char* name, ErlDrvData drv data)
[page 135] Create a new port (driver instance)

� int erl drv thread create(char *name, ErlDrvTid *tid, void *
(*func)(void *), void *arg, ErlDrvThreadOpts *opts)
[page 136] Create a thread

75Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� ErlDrvThreadOpts *erl drv thread opts create(char *name)
[page 137] Create thread options

� void erl drv thread opts destroy(ErlDrvThreadOpts *opts)
[page 137] Destroy thread options

� void erl drv thread exit(void *exit value)
[page 137] Terminate calling thread

� int erl drv thread join(ErlDrvTid tid, void **exit value)
[page 137] Join with another thread

� ErlDrvTid erl drv thread self(void)
[page 138] Get the thread identifier of the current thread

� int erl drv equal tids(ErlDrvTid tid1, ErlDrvTid tid2)
[page 138] Compare thread identifiers for equality

� ErlDrvMutex *erl drv mutex create(char *name)
[page 138] Create a mutex

� void erl drv mutex destroy(ErlDrvMutex *mtx)
[page 138] Destroy a mutex

� void erl drv mutex lock(ErlDrvMutex *mtx)
[page 139] Lock a mutex

� int erl drv mutex trylock(ErlDrvMutex *mtx)
[page 139] Try lock a mutex

� void erl drv mutex unlock(ErlDrvMutex *mtx)
[page 139] Unlock a mutex

� ErlDrvCond *erl drv cond create(char *name)
[page 139] Create a condition variable

� void erl drv cond destroy(ErlDrvCond *cnd)
[page 140] Destroy a condition variable

� void erl drv cond signal(ErlDrvCond *cnd)
[page 140] Signal on a condition variable

� void erl drv cond broadcast(ErlDrvCond *cnd)
[page 140] Broadcast on a condition variable

� void erl drv cond wait(ErlDrvCond *cnd, ErlDrvMutex *mtx)
[page 140] Wait on a condition variable

� ErlDrvRWLock *erl drv rwlock create(char *name)
[page 141] Create an rwlock

� void erl drv rwlock destroy(ErlDrvRWLock *rwlck)
[page 141] Destroy an rwlock

� void erl drv rwlock rlock(ErlDrvRWLock *rwlck)
[page 141] Read lock an rwlock

� int erl drv rwlock tryrlock(ErlDrvRWLock *rwlck)
[page 142] Try to read lock an rwlock

� void erl drv rwlock runlock(ErlDrvRWLock *rwlck)
[page 142] Read unlock an rwlock

� void erl drv rwlock rwlock(ErlDrvRWLock *rwlck)
[page 142] Read/Write lock an rwlock

� int erl drv rwlock tryrwlock(ErlDrvRWLock *rwlck)
[page 143] Try to read/write lock an rwlock

76 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual

� void erl drv rwlock rwunlock(ErlDrvRWLock *rwlck)
[page 143] Read/Write unlock an rwlock

� int erl drv tsd key create(char *name, ErlDrvTSDKey *key)
[page 143] Create a thread specific data key

� void erl drv tsd key destroy(ErlDrvTSDKey key)
[page 144] Destroy a thread specific data key

� void erl drv tsd set(ErlDrvTSDKey key, void *data)
[page 144] Set thread specific data

� void *erl drv tsd get(ErlDrvTSDKey key)
[page 144] Get thread specific data

� int erl drv putenv(char *key, char *value)
[page 144] Set the value of an environment variable

� int erl drv getenv(char *key, char *value, size t *value size)
[page 145] Get the value of an environment variable

77Erlang Run-Time System Application (ERTS)

epmd ERTS Reference Manual

epmd
Command

This daemon acts as a name server on all hosts involved in distributed Erlang
computations. When an Erlang node starts, the node has a name and it obtains an
address from the host OS kernel. The name and the address are sent to the epmd
daemon running on the local host. In a TCP/IP environment, the address consists of the
IP address and a port number. The name of the node is an atom on the form of
Name@Node. The job of the epmd daemon is to keep track of which node name listens on
which address. Hence, epmd map symbolic node names to machine addresses.

The daemon is started automatically by the Erlang start-up script.

The program epmd can also be used for a variety of other purposes, for example
checking the DNS (Domain Name System) configuration of a host.

Exports

epmd [-daemon]

Starts a name server as a daemon. If it has no argument, the epmd runs as a normal
program with the controlling terminal of the shell in which it is started. Normally, it
should run as a daemon.

epmd -names

Requests the names of the local Erlang nodes epmd has registered.

epmd -kill

Kills the epmd process.

epmd -help

Write short info about the usage including some debugging options not listed here.

Logging

On some operating systems syslog will be used for error reporting when epmd runs as an
daemon. To enable the error logging you have to edit /etc/syslog.conf file and add an
entry

!epmd
.<TABs>/var/log/epmd.log

where <TABs> are at least one real tab character. Spaces will silently be ignored.

78 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl

erl
Command

The erl program starts an Erlang runtime system. The exact details (for example,
whether erl is a script or a program and which other programs it calls) are
system-dependent.

Windows users probably wants to use the werl program instead, which runs in its own
window with scrollbars and supports command-line editing. The erl program on
Windows provides no line editing in its shell, and on Windows 95 there is no way to
scroll back to text which has scrolled off the screen. The erl program must be used,
however, in pipelines or if you want to redirect standard input or output.

Exports

erl <arguments>

Starts an Erlang runtime system.

The arguments can be divided into emulator flags, flags and plain arguments:

� Any argument starting with the character + is interpreted as an emulator flag [page
83].
As indicated by the name, emulator flags controls the behavior of the emulator.

� Any argument starting with the character - (hyphen) is interpreted as a flag [page
80] which should be passed to the Erlang part of the runtime system, more
specifically to the init system process, see [init(3)].
The init process itself interprets some of these flags, the init flags. It also stores
any remaining flags, the user flags. The latter can be retrieved by calling
init:get argument/1.
It can be noted that there are a small number of “-” flags which now actually are
emulator flags, see the description below.

� Plain arguments are not interpreted in any way. They are also stored by the init
process and can be retrieved by calling init:get plain arguments/0. Plain
arguments can occur before the first flag, or after a -- flag. Additionally, the flag
-extra causes everything that follows to become plain arguments.

Example:

% erl +W w -sname arnie +R 9 -s my init -extra +bertie
(arnie@host)1> init:get argument(sname).
fok,[["arnie"]]g
(arnie@host)2> init:get plain arguments().
["+bertie"]

79Erlang Run-Time System Application (ERTS)

erl ERTS Reference Manual

Here +W w and +R 9 are emulator flags. -s my init is an init flag, interpreted by init.
-sname arnie is a user flag, stored by init. It is read by Kernel and will cause the
Erlang runtime system to become distributed. Finally, everything after -extra (that is,
+bertie) is considered as plain arguments.

% erl -myflag 1
1> init:get argument(myflag).
fok,[["1"]]g
2> init:get plain arguments().
[]

Here the user flag -myflag 1 is passed to and stored by the init process. It is a user
defined flag, presumably used by some user defined application.

Flags

In the following list, init flags are marked (init flag). Unless otherwise specified, all other
flags are user flags, for which the values can be retrieved by calling
init:get argument/1. Note that the list of user flags is not exhaustive, there may be
additional, application specific flags which instead are documented in the corresponding
application documentation.

--(init flag) Everything following -- up to the next flag (-flag or +flag) is considered
plain arguments and can be retrieved using init:get plain arguments/0.

-Application Par Val Sets the application configuration parameter Par to the value
Val for the application Application, see [app(4)] and [application(3)].

-args file FileName Command line arguments are read from the file FileName. The
arguments read from the file replace the ’-args file FileName’ flag on the
resulting command line.
The file FileName should be a plain text file and may contain comments and
command line arguments. A comment begins with a # character and continues
until next end of line character. Backslash (\) is used as quoting character. All
command line arguments accepted by erl are allowed, also the -args file
FileName flag. Be careful not to cause circular dependencies between files
containing the -args file flag, though.
The -extra flag is treated specially. Its scope ends at the end of the file.
Arguments following an -extra flag are moved on the command line into the
-extra section, i.e. the end of the command line following after an -extra flag.

-async shell start The initial Erlang shell does not read user input until the system
boot procedure has been completed (Erlang 5.4 and later). This flag disables the
start synchronization feature and lets the shell start in parallel with the rest of the
system.

-boot File Specifies the name of the boot file, File.boot, which is used to start the
system. See [init(3)]. Unless File contains an absolute path, the system searches
for File.boot in the current and $ROOT/bin directories.
Defaults to $ROOT/bin/start.boot.

-boot var Var Dir If the boot script contains a path variable Var other than $ROOT,
this variable is expanded to Dir. Used when applications are installed in another
directory than $ROOT/lib, see [systools:make script/1,2].

-code path cache Enables the code path cache of the code server, see [code(3)].

80 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl

-compile Mod1 Mod2 ... Compiles the specified modules and then terminates (with
non-zero exit code if the compilation of some file did not succeed). Implies
-noinput. Not recommended - use erlc [page 86] instead.

-config Config Specifies the name of a configuration file, Config.config, which is
used to configure applications. See [app(4)] and [application(3)].

-connect all false If this flag is present, global will not maintain a fully connected
network of distributed Erlang nodes, and then global name registration cannot be
used. See [global(3)].

-cookie Cookie Obsolete flag without any effect and common misspelling for
-setcookie. Use -setcookie instead.

-detached Starts the Erlang runtime system detached from the system console. Useful
for running daemons and backgrounds processes.

-emu args Useful for debugging. Prints out the actual arguments sent to the emulator.

-env Variable Value Sets the host OS environment variable Variable to the value
Value for the Erlang runtime system. Example:

% erl -env DISPLAY gin:0

In this example, an Erlang runtime system is started with the DISPLAY
environment variable set to gin:0.

-eval Expr(init flag) Makes init evaluate the expression Expr, see [init(3)].

-extra(init flag) Everything following -extra is considered plain arguments and can
be retrieved using init:get plain arguments/0.

-heart Starts heart beat monitoring of the Erlang runtime system. See [heart(3)].

-hidden Starts the Erlang runtime system as a hidden node, if it is run as a distributed
node. Hidden nodes always establish hidden connections to all other nodes except
for nodes in the same global group. Hidden connections are not published on
neither of the connected nodes, i.e. neither of the connected nodes are part of the
result from nodes/0 on the other node. See also hidden global groups,
[global group(3)].

-hosts Hosts Specifies the IP addresses for the hosts on which Erlang boot servers are
running, see [erl boot server(3)]. This flag is mandatory if the -loader inet flag
is present.
The IP addresses must be given in the standard form (four decimal numbers
separated by periods, for example "150.236.20.74". Hosts names are not
acceptable, but a broadcast address (preferably limited to the local network) is.

-id Id Specifies the identity of the Erlang runtime system. If it is run as a distributed
node, Id must be identical to the name supplied together with the -sname or
-name flag.

-init debug Makes init write some debug information while interpreting the boot
script.

-instr(emulator flag) Selects an instrumented Erlang runtime system (virtual
machine) to run, instead of the ordinary one. When running an instrumented
runtime system, some resource usage data can be obtained and analysed using the
module instrument. Functionally, it behaves exactly like an ordinary Erlang
runtime system.

81Erlang Run-Time System Application (ERTS)

erl ERTS Reference Manual

-loader Loader Specifies the method used by erl prim loader to load Erlang
modules into the system. See [erl prim loader(3)]. Two Loader methods are
supported, efile and inet. efile means use the local file system, this is the
default. inet means use a boot server on another machine, and the -id, -hosts
and -setcookie flags must be specified as well. If Loader is something else, the
user supplied Loader port program is started.

-make Makes the Erlang runtime system invoke make:all() in the current working
directory and then terminate. See [make(3)]. Implies -noinput.

-man Module Displays the manual page for the Erlang module Module. Only supported
on Unix.

-mode interactive | embedded Indicates if the system should load code dynamically
(interactive), or if all code should be loaded during system initialization
(embedded), see [code(3)]. Defaults to interactive.

-name Name Makes the Erlang runtime system into a distributed node. This flag invokes
all network servers necessary for a node to become distributed. See
[net kernel(3)]. It is also ensured that epmd runs on the current host before Erlang
is started. See epmd(1) [page 78].
The name of the node will be Name@Host, where Host is the fully qualified host
name of the current host. For short names, use the -sname flag instead.

-noinput Ensures that the Erlang runtime system never tries to read any input. Implies
-noshell.

-noshell Starts an Erlang runtime system with no shell. This flag makes it possible to
have the Erlang runtime system as a component in a series of UNIX pipes.

-nostick Disables the sticky directory facility of the Erlang code server, see [code(3)].

-oldshell Invokes the old Erlang shell from Erlang 3.3. The old shell can still be used.

-pa Dir1 Dir2 ... Adds the specified directories to the beginning of the code path,
similar to code:add pathsa/1. See [code(3)]. As an alternative to -pa, if several
directories are to be prepended to the code and the directories have a common
parent directory, that parent directory could be specified in the ERL LIBS
environment variable. See [code(3)].

-pz Dir1 Dir2 ... Adds the specified directories to the end of the code path, similar
to code:add pathsz/1. See [code(3)].

-remsh Node Starts Erlang with a remote shell connected to Node.

-rsh Program Specifies an alternative to rsh for starting a slave node on a remote host.
See [slave(3)].

-run Mod [Func [Arg1, Arg2, ...]](init flag) Makes init call the specified
function. Func defaults to start. If no arguments are provided, the function is
assumed to be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Arg1,Arg2,...] as argument. All arguments are passed as strings. See [init(3)].

-s Mod [Func [Arg1, Arg2, ...]](init flag) Makes init call the specified function.
Func defaults to start. If no arguments are provided, the function is assumed to
be of arity 0. Otherwise it is assumed to be of arity 1, taking the list
[Arg1,Arg2,...] as argument. All arguments are passed as atoms. See [init(3)].

-setcookie Cookie Sets the magic cookie of the node to Cookie, see
[erlang:set cookie/2].

-shutdown time Time Specifies how long time (in milliseconds) the init process is
allowed to spend shutting down the system. If Time ms have elapsed, all processes
still existing are killed. Defaults to infinity.

82 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl

-sname Name Makes the Erlang runtime system into a distributed node, similar to
-name, but the host name portion of the node name Name@Host will be the short
name, not fully qualified.
This is sometimes the only way to run distributed Erlang if the DNS (Domain
Name System) is not running. There can be no communication between nodes
running with the -sname flag and those running with the -name flag, as node
names must be unique in distributed Erlang systems.

-smp [enable|auto|disable] -smp enable and -smp starts the Erlang runtime
system with SMP support enabled. This may fail if no runtime system with SMP
support is available. -smp auto starts the Erlang runtime system with SMP support
enabled if it is available and more than one logical processor are detected. -smp
disable starts a runtime system without SMP support. By default -smp auto will
be used unless a conflicting parameter has been passed, then -smp disable will be
used. Currently only the -hybrid parameter conflicts with -smp auto.
NOTE: The runtime system with SMP support will not be available on all
supported platforms. See also the +S [page 84] flag.

-version(emulator flag) Makes the emulator print out its version number. The same
as erl +V.

Emulator Flags

erl invokes the code for the Erlang emulator (virtual machine), which supports the
following flags:

+a size Suggested stack size, in kilowords, for threads in the async-thread pool. Valid
range is 16-8192 kilowords. The default suggested stack size is 16 kilowords, i.e,
64 kilobyte on 32-bit architectures. This small default size has been chosen since
the amount of async-threads might be quite large. The default size is enough for
drivers delivered with Erlang/OTP, but might not be sufficiently large for other
dynamically linked in drivers that use the driver async() [page 134] functionality.
Note that the value passed is only a suggestion, and it might even be ignored on
some platforms.

+A size Sets the number of threads in async thread pool, valid range is 0-1024.
Default is 0.

+B [c | d | i] The c option makes Ctrl-C interrupt the current shell instead of
invoking the emulator break handler. The d option (same as specifying +B without
an extra option) disables the break handler. The i option makes the emulator
ignore any break signal.
If the c option is used with oldshell on Unix, Ctrl-C will restart the shell process
rather than interrupt it.
Note that on Windows, this flag is only applicable for werl, not erl (oldshell).
Note also that Ctrl-Break is used instead of Ctrl-C on Windows.

+c Disable compensation for sudden changes of system time.
Normally, erlang:now/0 will not immediately reflect sudden changes in the
system time, in order to keep timers (including receive-after) working. Instead,
the time maintained by erlang:now/0 is slowly adjusted towards the new system
time. (Slowly means in one percent adjustments; if the time is off by one minute,
the time will be adjusted in 100 minutes.)
When the +c option is given, this slow adjustment will not take place. Instead
erlang:now/0 will always reflect the current system time. Note that timers are

83Erlang Run-Time System Application (ERTS)

erl ERTS Reference Manual

based on erlang:now/0. If the system time jumps, timers then time out at the
wrong time.

+h Size Sets the default heap size of processes to the size Size.
+K true | false Enables or disables the kernel poll functionality if the emulator

supports it. Default is false (disabled). If the emulator does not support kernel
poll, and the +K flag is passed to the emulator, a warning is issued at startup.

+l Enables auto load tracing, displaying info while loading code.
+MFlag Value Memory allocator specific flags, see erts alloc(3) [page 104] for further

information.
+P Number Sets the maximum number of concurrent processes for this system. Number

must be in the range 16..134217727. Default is 32768.
+R ReleaseNumber Sets the compatibility mode.

The distribution mechanism is not backwards compatible by default. This flags sets
the emulator in compatibility mode with an earlier Erlang/OTP release
ReleaseNumber. The release number must be in the range 7..<current
release>. This limits the emulator, making it possible for it to communicate with
Erlang nodes (as well as C- and Java nodes) running that earlier release.
For example, an R10 node is not automatically compatible with an R9 node, but
R10 nodes started with the +R 9 flag can co-exist with R9 nodes in the same
distributed Erlang system, they are R9-compatible.
Note: Make sure all nodes (Erlang-, C-, and Java nodes) of a distributed Erlang
system is of the same Erlang/OTP release, or from two different Erlang/OTP
releases X and Y, where all Y nodes have compatibility mode X.
For example: A distributed Erlang system can consist of R10 nodes, or of R9 nodes
and R9-compatible R10 nodes, but not of R9 nodes, R9-compatible R10 nodes and
“regular” R10 nodes, as R9 and “regular” R10 nodes are not compatible.

+r Force ets memory block to be moved on realloc.
+S Number Sets the number of scheduler threads to use when SMP support has been

enabled. Valid range is 1-1024. If the Erlang runtime system is able to determine
the number of processor cores available, the default value will equal the this value;
otherwise, the default value will be one.
This flag will be ignored if the emulator doesn’t have SMP support enabled (see
the -smp [page 83] flag).

+T Level Enables modified timing and sets the modified timing level. Currently valid
range is 0-9. The timing of the runtime system will change. A high level usually
means a greater change than a low level. Changing the timing can be very useful
for finding timing related bugs.
Currently, modified timing affects the following:

Process spawning A process calling spawn, spawn link, spawn monitor, or
spawn opt will be scheduled out immediately after completing the call. When
higher modified timing levels are used, the caller will also sleep for a while
after being scheduled out.

Context reductions The amount of reductions a process is a allowed to use before
being scheduled out is increased or reduced.

Input reductions The amount of reductions performed before checking I/O is
increased or reduced.

NOTE: Performance will suffer when modified timing is enabled. This flag is only
intended for testing and debugging. Also note that return to and return from
trace messages will be lost when tracing on the spawn BIFs. This flag may be
removed or changed at any time without prior notice.

84 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl

+V Makes the emulator print out its version number.

+v Verbose.

+W w | i Sets the mapping of warning messages for error logger. Messages sent to
the error logger using one of the warning routines can be mapped either to errors
(default), warnings (+W w), or info reports (+W i). The current mapping can be
retrieved using error logger:warning map/0. See [error logger(3)] for further
information.

Environment variables

ERL CRASH DUMP If the emulator needs to write a crash dump, the value of this variable
will be the file name of the crash dump file. If the variable is not set, the name of
the crash dump file will be erl crash.dump in the current directory.

ERL CRASH DUMP NICE Unix systems: If the emulator needs to write a crash dump, it will
use the value of this variable to set the nice value for the process, thus lowering its
priority. The allowable range is 1 through 39 (higher values will be replaced with
39). The highest value, 39, will give the process the lowest priority.

ERL CRASH DUMP SECONDS Unix systems: This variable gives the number of seconds that
the emulator will be allowed to spend writing a crash dump. When the given
number of seconds have elapsed, the emulator will be terminated by a SIGALRM
signal.

ERL AFLAGS The content of this environment variable will be added to the beginning of
the command line for erl.
The -extra flag is treated specially. Its scope ends at the end of the environment
variable content. Arguments following an -extra flag are moved on the command
line into the -extra section, i.e. the end of the command line following after an
-extra flag.

ERL ZFLAGSand ERL FLAGS The content of these environment variables will be added to
the end of the command line for erl.
The -extra flag is treated specially. Its scope ends at the end of the environment
variable content. Arguments following an -extra flag are moved on the command
line into the -extra section, i.e. the end of the command line following after an
-extra flag.

ERL LIBS This environment variable contains a list of additional library directories that
the code server will search for applications and add to the code path. See
[code(3)].

SEE ALSO

[init(3)], [erl prim loader(3)], [erl boot server(3)], [code(3)], [application(3)],
[heart(3)], [net kernel(3)], [auth(3)], [make(3)], epmd(1) [page 78], erts alloc(3)
[page 104]

85Erlang Run-Time System Application (ERTS)

erlc ERTS Reference Manual

erlc
Command

The erlc program provides a common way to run all compilers in the Erlang system.
Depending on the extension of each input file, erlc will invoke the appropriate
compiler. Regardless of which compiler is used, the same flags are used to provide
parameters such as include paths and output directory.

Exports

erlc flags file1.ext file2.ext...

Erlc compiles one or more files. The files must include the extension, for example .erl
for Erlang source code, or .yrl for Yecc source code. Erlc uses the extension to invoke
the correct compiler.

Generally Useful Flags

The following flags are supported:

-I directory Instructs the compiler to search for include files in the specified directory.
When encountering an -include or -include dir directive, the compiler searches
for header files in the following directories:

1. ".", the current working directory of the file server;
2. the base name of the compiled file;
3. the directories specified using the -I option. The directory specified last is

searched first.

-o directory The directory where the compiler should place the output files. If not
specified, output files will be placed in the current working directory.

-Dname Defines a macro.

-Dname=value Defines a macro with the given value. The value can be any Erlang
term. Depending on the platform, the value may need to be quoted if the shell
itself interprets certain characters. On Unix, terms which contain tuples and list
must be quoted. Terms which contain spaces must be quoted on all platforms.

-Wnumber Sets warning level to number. Default is 1. Use -W0 to turn off warnings.

-W Same as -W1. Default.

-v Enables verbose output.

-b output-type Specifies the type of output file. Generally, output-type is the same as the
file extension of the output file but without the period. This option will be ignored
by compilers that have a a single output format.

86 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlc

-hybrid Compile using the hybrid-heap emulator. This is mainly useful for compiling
native code, which needs to be compiled with the same run-time system that it
should be run on.

-smp Compile using the SMP emulator. This is mainly useful for compiling native code,
which needs to be compiled with the same run-time system that it should be run
on.

– Signals that no more options will follow. The rest of the arguments will be treated as
file names, even if they start with hyphens.

+term A flag starting with a plus (’+’) rather than a hyphen will be converted to an
Erlang term and passed unchanged to the compiler. For instance, the export all
option for the Erlang compiler can be specified as follows:

erlc +export all file.erl

Depending on the platform, the value may need to be quoted if the shell itself
interprets certain characters. On Unix, terms which contain tuples and list must be
quoted. Terms which contain spaces must be quoted on all platforms.

Special Flags

The flags in this section are useful in special situations such as re-building the OTP
system.

-pa directory Appends directory to the front of the code path in the invoked Erlang
emulator. This can be used to invoke another compiler than the default one.

-pz directory Appends directory to the code path in the invoked Erlang emulator.

Supported Compilers

.erl Erlang source code. It generates a .beam file.
The options -P, -E, and -S are equivalent to +’P’, +’E’, and +’S’, except that it is
not necessary to include the single quotes to protect them from the shell.
Supported options: -I, -o, -D, -v, -W, -b.

.yrl Yecc source code. It generates an .erl file.
Use the -I option with the name of a file to use that file as a customized prologue
file (the includefile option).
Supported options: -o, -v, -I, -W (see above).

.mib MIB for SNMP. It generates a .bin file.
Supported options: -I, -o, -W.

.bin A compiled MIB for SNMP. It generates a .hrl file.
Supported options: -o, -v.

.rel Script file. It generates a boot file.
Use the -I to name directories to be searched for application files (equivalent to the
path in the option list for systools:make script/2).
Supported options: -o.

87Erlang Run-Time System Application (ERTS)

erlc ERTS Reference Manual

.asn1 ASN1 file.
Creates an .erl, .hrl, and .asn1db file from an .asn1 file. Also compiles the
.erl using the Erlang compiler unless the +noobj options is given.
Supported options: -I, -o, -b, -W.

.idl IC file.
Runs the IDL compiler.
Supported options: -I, -o.

Environment Variables

ERLC EMULATOR The command for starting the emulator. Default is erl in the same
directory as the erlc program itself, or if it doesn’t exist, erl in any of the directories
given in the PATH environment variable.

SEE ALSO

erl(1) [page 79], [compile(3)], [yecc(3)], [snmp(3)]

88 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv

erlsrv
Command

This utility is specific to Windows NT/2000/XP It allows Erlang emulators to run as
services on the Windows system, allowing embedded systems to start without any user
needing to log in. The emulator started in this way can be manipulated through the
Windows services applet in a manner similar to other services.

As well as being the actual service, erlsrv also provides a command line interface for
registering, changing, starting and stopping services.

To manipulate services, the logged in user should have Administrator privileges on the
machine. The Erlang machine itself is (default) run as the local administrator. This can
be changed with the Services applet in Windows .

The processes created by the service can, as opposed to normal services, be “killed” with
the task manager. Killing a emulator that is started by a service will trigger the “OnFail”
action specified for that service, which may be a reboot.

The following parameters may be specified for each Erlang service:

� StopAction: This tells erlsrv how to stop the Erlang emulator. Default is to kill
it (Win32 TerminateProcess), but this action can specify any Erlang shell
command that will be executed in the emulator to make it stop. The emulator is
expected to stop within 30 seconds after the command is issued in the shell. If the
emulator is not stopped, it will report a running state to the service manager.

� OnFail: This can be either of reboot, restart, restart always or ignore (the
default). In case of reboot, the NT system is rebooted whenever the emulator
stops (a more simple form of watchdog), this could be useful for less critical
systems, otherwise use the heart functionality to accomplish this. The restart value
makes the Erlang emulator be restarted (with whatever parameters are registered
for the service at the occasion) when it stops. If the emulator stops again within 10
seconds, it is not restarted to avoid an infinite loop which could completely hang
the NT system. restart always is similar to restart, but does not try to detect
cyclic restarts, it is expected that some other mechanism is present to avoid the
problem. The default (ignore) just reports the service as stopped to the service
manager whenever it fails, it has to be manually restarted.
On a system where release handling is used, this should always be set to ignore.
Use heart to restart the service on failure instead.

� Machine: The location of the Erlang emulator. The default is the erl.exe located
in the same directory as erlsrv.exe. Do not specify werl.exe as this emulator, it
will not work.
If the system uses release handling, this should be set to a program similar to
start erl.exe.

89Erlang Run-Time System Application (ERTS)

erlsrv ERTS Reference Manual

� Env: Specifies an additional environment for the emulator. The environment
variables specified here are added to the system wide environment block that is
normally present when a service starts up. Variables present in both the system
wide environment and in the service environment specification will be set to the
value specified in the service.

� WorkDir: The working directory for the Erlang emulator, has to be on a local drive
(there are no network drives mounted when a service starts). Default working
directory for services is %SystemDrive%%SystemPath%. Debug log files will be
placed in this directory.

� Priority: The process priority of the emulator, this can be one of realtime,
high, low or default (the default). Real-time priority is not recommended, the
machine will possibly be inaccessible to interactive users. High priority could be
used if two Erlang nodes should reside on one dedicated system and one should
have precedence over the other. Low process priority may be used if interactive
performance should not be affected by the emulator process.

� SName or Name: Specifies the short or long node-name of the Erlang emulator.
The Erlang services are always distributed, default is to use the service name as
(short) node-name.

� DebugType: Can be one of none (default), new, reuse or console. Specifies that
output from the Erlang shell should be sent to a “debug log”. The log file is named
<servicename>.debug or <servicename>.debug.<N>, where <N> is an integer
between 1 and 99. The log-file is placed in the working directory of the service (as
specified in WorkDir). The reuse option always reuses the same log file
(<servicename>.debug) and the new option uses a separate log file for every
invocation of the service (<servicename>.debug.<N>). The console option
opens an interactive Windows console window for the Erlang shell of the service.
The console option automatically disables the StopAction and a service started
with an interactive console window will not survive logouts, OnFail actions do not
work with debug-consoles either. If no DebugType is specified (none), the output
of the Erlang shell is discarded.
The consoleDebugType is not in any way intended for production. It is only a
convenient way to debug Erlang services during development. The new and reuse
options might seem convenient to have in a production system, but one has to take
into account that the logs will grow indefinitely during the systems lifetime and
there is no way, short of restarting the service, to truncate those logs. In short, the
DebugType is intended for debugging only. Logs during production are better
produced with the standard Erlang logging facilities.

� Args: Additional arguments passed to the emulator startup program erl.exe (or
start erl.exe). Arguments that cannot be specified here are -noinput
(StopActions would not work), -name and -sname (they are specified in any way.
The most common use is for specifying cookies and flags to be passed to init:boot()
(-s).

The naming of the service in a system that uses release handling has to follow the
convention NodeName Release, where NodeName is the first part of the Erlang
nodename (up to, but not including the “@”) and Release is the current release of the
application.

90 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv

Exports

erlsrv fset | addg <service-name> [<service options>]

The set and add commands adds or modifies a Erlang service respectively. The simplest
form of an add command would be completely without options in which case all
default values (described above) apply. The service name is mandatory.

Every option can be given without parameters, in which case the default value is
applied. Values to the options are supplied only when the default should not be used
(i.e. erlsrv set myservice -prio -arg sets the default priority and removes all
arguments).

The following service options are currently available:

-st[opaction [<erlang shell command>]] Defines the StopAction, the command given
to the Erlang shell when the service is stopped. Default is none.

-on[fail [freboot | restart | restart alwaysg]] Specifies the action to take when the
Erlang emulator stops unexpectedly. Default is to ignore.

-m[achine [<erl-command>]] The complete path to the Erlang emulator, never use
the werl program for this. Default is the erl.exe in the same directory as
erlsrv.exe. When release handling is used, this should be set to a program similar
to start erl.exe.

-e[nv [<variable>[=<value>]] ...] Edits the environment block for the service. Every
environment variable specified will add to the system environment block. If a
variable specified here has the same name as a system wide environment variable,
the specified value overrides the system wide. Environment variables are added to
this list by specifying <variable>=<value> and deleted from the list by specifying
<variable> alone. The environment block is automatically sorted. Any number of
-env options can be specified in one command. Default is to use the system
environment block unmodified (except for two additions, see below [page 92]).

-w[orkdir [<directory>]] The initial working directory of the Erlang emulator. Default
is the system directory.

-p[riority [flow|high|realtimeg]] The priority of the Erlang emulator. The default is
the Windows default priority.

f-sn[ame | -n[ame]g [<node-name>]] The node-name of the Erlang machine,
distribution is mandatory. Default is -sname <service name>.

-d[ebugtype [fnew|reuse|consoleg]] Specifies where shell output should be sent,
default is that shell output is discarded. To be used only for debugging.

-ar[gs [<limited erl arguments>]] Additional arguments to the Erlang emulator, avoid
-noinput, -noshell and -sname/-name. Default is no additional arguments.
Remember that the services cookie file is not necessarily the same as the
interactive users. The service runs as the local administrator. All arguments should
be given together in one string, use double quotes (“) to give an argument string
containing spaces and use quoted quotes (\”) to give an quote within the argument
string if necessary.

erlsrv fstart | stop | disable | enableg <service-name>

91Erlang Run-Time System Application (ERTS)

erlsrv ERTS Reference Manual

These commands are only added for convenience, the normal way to manipulate the
state of a service is through the control panels services applet. The start and stop
commands communicates with the service manager for stopping and starting a service.
The commands wait until the service is actually stopped or started. When disabling a
service, it is not stopped, the disabled state will not take effect until the service actually
is stopped. Enabling a service sets it in automatic mode, that is started at boot. This
command cannot set the service to manual.

erlsrv remove <service-name>

This command removes the service completely with all its registered options. It will be
stopped before it is removed.

erlsrv list [<service-name>]

If no service name is supplied, a brief listing of all Erlang services is presented. If a
service-name is supplied, all options for that service are presented.

erlsrv help

ENVIRONMENT

The environment of an Erlang machine started as a service will contain two special
variables, ERLSRV SERVICE NAME, which is the name of the service that started the
machine and ERLSRV EXECUTABLE which is the full path to the erlsrv.exe that can be
used to manipulate the service. This will come in handy when defining a heart
command for your service. A command file for restarting a service will simply look like
this:

@echo off
%ERLSRV_EXECUTABLE% stop %ERLSRV_SERVICE_NAME%
%ERLSRV_EXECUTABLE% start %ERLSRV_SERVICE_NAME%

This command file is then set as heart command.

The environment variables can also be used to detect that we are running as a service
and make port programs react correctly to the control events generated on logout (see
below).

PORT PROGRAMS

When a program runs in the service context, it has to handle the control events that is
sent to every program in the system when the interactive user logs off. This is done in
different ways for programs running in the console subsystem and programs running as
window applications. An application which runs in the console subsystem (normal for
port programs) uses the win32 function SetConsoleCtrlHandler to a control handler
that returns TRUE in answer to the CTRL LOGOFF EVENT. Other applications just
forward WM ENDSESSION and WM QUERYENDSESSION to the default window procedure.
Here is a brief example in C of how to set the console control handler:

92 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erlsrv

#include <windows.h>
/*
** A Console control handler that ignores the log off events,
** and lets the default handler take care of other events.
*/
BOOL WINAPI service_aware_handler(DWORD ctrl){

if(ctrl == CTRL_LOGOFF_EVENT)
return TRUE;

return FALSE;
}

void initialize_handler(void){
char buffer[2];
/*
* We assume we are running as a service if this
* environment variable is defined
*/

if(GetEnvironmentVariable("ERLSRV_SERVICE_NAME",buffer,
(DWORD) 2)){

/*
** Actually set the control handler
*/
SetConsoleCtrlHandler(&service_aware_handler, TRUE);

}
}

NOTES

Even though the options are described in a Unix-like format, the case of the options or
commands is not relevant, and the “/” character for options can be used as well as the “-”
character.

Note that the program resides in the emulators bin-directory, not in the bin-directory
directly under the Erlang root. The reasons for this are the subtle problem of upgrading
the emulator on a running system, where a new version of the runtime system should
not need to overwrite existing (and probably used) executables.

To easily manipulate the Erlang services, put the
<erlang root>\erts-<version>\bin directory in the path instead of
<erlang root>\bin. The erlsrv program can be found from inside Erlang by using the
os:find executable/1 Erlang function.

For release handling to work, use start erl as the Erlang machine. It is also worth
mentioning again that the name of the service is significant (see above [page 90]).

SEE ALSO

start erl(1), release handler(3)

93Erlang Run-Time System Application (ERTS)

escript ERTS Reference Manual

escript
Command

escript provides support for running short Erlang programs without having to compile
them first and an easy way to retrieve the command line arguments.

Exports

script-name script-arg1 script-arg2...

escript escript-flags script-name script-arg1 script-arg2...

escript runs a script written in Erlang.

Here follows an example.

$ cat factorial
#!/usr/bin/env escript
%% -*- erlang -*-
main([String]) ->

try
N = list to integer(String),
F = fac(N),
io:format("factorial ~w = ~w\n", [N,F])

catch
: ->

usage()
end;

main() ->
usage().

usage() ->
io:format("usage: factorial integer\n"),
halt(1).

fac(0) -> 1;
fac(N) -> N * fac(N-1).
$ factorial 5
factorial 5 = 120
$ factorial
usage: factorial integer
$ factorial five
usage: factorial integer

Note that there should not be any module declaration in an Erlang script file. Instead,
the first line is usually the interpreter line which invokes escript. If you invoke
escript like this

94 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual escript

$ escript factorial 5

the contents of the first line does not matter, but it cannot contain Erlang code as it will
be ignored.

If you know the location of the escript executable, the first line can directly give the
path to escript. For instance:

#!/usr/local/bin/escript

As any other kind of scripts, Erlang scripts will not work on Unix platforms if they
execution bit for the script file is not set. (Use chmod +x script-name to turn on the
execution bit.)

An Erlang script file must always contain the function main/1. When the script is run,
the main/1 will be called with a list of strings representing the arguments given to the
script (not changed or interpreted in any way).

Call escript:script name/0 from your to script to retrieve the pathname of the script
(the pathname is usually, but not always, absolute).

It is not necessary to export the main/1 function.

By default, the script will be interpreted. You can force it to be compiled by including
the following line somewhere in the script file:

-mode(compile).

Pre-processor directives in the script files are ignored, with the exception for the
-include lib directive. For instance, use

-include lib("kernel/include/file.hrl").

to include the record definitions for the records used by the file:read file info/1
function.

Pre-defined macros (such as ?MODULE) will not work. A script does not have module
name, so BIFs such as [spawn/3] that require a module name cannot be used. Instead,
use a BIF that take a fun, such as [spawn/1].

The script will be checked for syntactic and semantic correctness before being run. If
there are warnings (such as unused variables), they will be printed and the script will
still be run. If there are errors, they will be printed and the script will not be run and its
exit status will be 127.

If the main/1 function in the script returns successfully, the exit status for the script will
be 0. If an exception is generated during execution, a short message will be printed and
the script terminated with exit status 127.

To return your own non-zero exit code, call halt(ExitCode); for instance:

halt(1).

Options accepted by escript

-s Only perform a syntactic and semantic check of the script file. Warnings and errors
(if any) are written to the standard output, but the script will not be run. The exit
status will be 0 if there were no errors, and 127 otherwise.

95Erlang Run-Time System Application (ERTS)

run erl ERTS Reference Manual

run erl
Command

This describes the run erl program specific to Solaris/Linux. This program redirect the
standard input and standard output streams so that all output can be logged. It also let
the program to erl connect to the Erlang console making it possible to monitor and
debug an embedded system remotely.

You can read more about the use in the Embedded System User’s Guide.

Exports

run erl [-daemon] pipe dir/ log dir "exec command [command arguments]"

The run erl program arguments are:

-daemon This option is highly recommended. It makes run erl run in the background
completely detached from any controlling terminal and the command returns to
the caller immediately. Without this option, run erl must be started using several
tricks in the shell to detach it completely from the terminal in use when starting it.
The option must be the first argument to run erl on the command line.

pipe dir This is where to put the named pipe, usually /tmp/. It shall be suffixed by a /
(slash), i.e. not /tmp/epipies, but /tmp/epipes/.

log dir This is where the log files are written. There will be one log file, run erl.log
that log progress and warnings from the run erl program itself and there will be
up to five log files at maximum 100KB each (both number of logs and sizes can be
changed by environment variables, see below) with the content of the standard
streams from and to the command. When the logs are full run erl will delete and
reuse the oldest log file.

“exec command [command arguments ”] In the third argument command is the to
execute where everything written to stdin and stdout is logged to log dir.

Notes concerning the log files

While running, run erl (as stated earlier) sends all output, uninterpreted, to a log file.
The file is called erlang.log.N, where N is a number. When the log is “full”, default
after 100KB, run erl starts to log in file erlang.log.(N+1), until N reaches a certain
number (default 5), where after N starts at 1 again and the oldest files start getting
overwritten. If no output comes from the erlang shell, but the erlang machine still
seems to be alive, an “ALIVE” message is written to the log, it is a timestamp and is
written, by default, after 15 minutes of inactivity. Also, if output from erlang is logged
but it’s been more than 5 minutes (default) since last time we got anything from erlang,
a timestamp is written in the log. The “ALIVE” messages look like this:

96 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual run erl

===== ALIVE <date-time-string>

while the other timestamps look like this:

===== <date-time-string>

The date-time-string is the date and time the message is written, default in local
time (can be changed to GMT if one wants to) and is formatted with the ANSI-C
function strftime using the format string %a %b %e %T %Z %Y, which produces
messages on the line of ===== ALIVE Thu May 15 10:13:36 MEST 2003, this can be
changed, see below.

Environment variables

The following environment variables are recognized by run erl and change the logging
behavior. Also see the notes above to get more info on how the log behaves.

RUN ERL LOG ALIVE MINUTES How long to wait for output (in minutes) before
writing an “ALIVE” message to the log. Default is 15, can never be less than 1.

RUN ERL LOG ACTIVITY MINUTES How long erlang need to be inactive before
output will be preceded with a timestamp. Default is
RUN ERL LOG ALIVE MINUTES div 3, but never less than 1.

RUN ERL LOG ALIVE FORMAT Specifies another format string to be used in the
strftime C library call. i.e specifying this to "%e-%b-%Y, %T %Z" will give log
messages with timestamps looking like 15-May-2003, 10:23:04 MET etc. See the
documentation for the C library function strftime for more information. Default is
"%a %b %e %T %Z %Y".

RUN ERL LOG ALIVE IN UTC If set to anything else than “0”, it will make all times
displayed by run erl to be in UTC (GMT,CET,MET, without DST), rather than in
local time. This does not affect data coming from erlang, only the logs output
directly by run erl. The application sasl can be modified accordingly by setting
the erlang application variable utc log to true.

RUN ERL LOG GENERATIONS Controls the number of log files written before
older files are being reused. Default is 5, minimum is 2, maximum is 1000.

RUN ERL LOG MAXSIZE The size (in bytes) of a log file before switching to a new
log file. Default is 100000, minimum is 1000 and maximum is approximately
2^30.

SEE ALSO

start(1), start erl(1)

97Erlang Run-Time System Application (ERTS)

start ERTS Reference Manual

start
Command

This describes the start script that is an example script on how to startup the Erlang
system in embedded mode on Unix.

You can read more about the use in the Embedded System User’s Guide.

Exports

start [data file]

In the example there is one argument

data file Optional, specifies what start erl.data file to use.

There is also an environment variable RELDIR that can be set prior to calling this
example that set the directory where to find the release files.

SEE ALSO

run erl(1), start erl(1)

98 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual start erl

start erl
Command

This describes the start erl program specific to Windows NT. Although there exists
programs with the same name on other platforms, their functionality is not the same.

The start erl program is distributed both in compiled form (under <Erlang
root>\erts-<version>\bin) and in source form (under <Erlang
root>\erts-<version>\src). The purpose of the source code is to make it possible to
easily customize the program for local needs, such as cyclic restart detection etc. There
is also a “make”-file, written for the nmake program distributed with Microsoft Visual
C++. The program can however be compiled with any Win32 C compiler (possibly
with slight modifications).

The purpose of the program is to aid release handling on Windows NT. The program
should be called by the erlsrv program, read up the release data file start erl.data and
start Erlang. Certain options to start erl are added and removed by the release handler
during upgrade with emulator restart (more specifically the -data option).

Exports

start erl [<erl options>] ++ [<start erl options>]

The start erl program in its original form recognizes the following options:

++ Mandatory, delimits start erl options from normal Erlang options. Everything on the
command line before the ++ is interpreted as options to be sent to the erl program.
Everything after++ is interpreted as options to start erl itself.

-reldir <release root> Mandatory if the environment variable RELDIR is not specified.
Tells start erl where the root of the release tree is placed in the file-system (like
<Erlang root>\releases). The start erl.data file is expected to be placed in this
directory (if not otherwise specified).

-data <data file name> Optional, specifies another data file than start erl.data in the
<release root>. It is specified relative to the <release root> or absolute
(includeing drive letter etc.). This option is used by the release handler during
upgrade and should not be used during normal operation. The release data file
should not normally be named differently.

-bootflags <boot flags file name> Optional, specifies a file name relative to actual
release directory (that is the subdirectory of <release root> where the .boot file
etc. are placed). The contents of this file is appended to the command line when
Erlang is started. This makes it easy to start the emulator with different options for
different releases.

99Erlang Run-Time System Application (ERTS)

start erl ERTS Reference Manual

NOTES

As the source code is distributed, it can easily be modified to accept other options. The
program must still accept the -data option with the semantics described above for the
release handler to work correctly.

The Erlang emulator is found by examining the registry keys for the emulator version
specified in the release data file. The new emulator needs to be properly installed before
the upgrade for this to work.

Although the program is located together with files specific to emulator version, it is not
expected to be specific to the emulator version. The release handler does not change the
-machine option to erlsrv during emulator restart. Place the (possibly customized)
start erl program so that it is not overwritten during upgrade.

The erlsrv program’s default options are not sufficient for release handling. The
machine erlsrv starts should be specified as the start erl program and the arguments
should contain the ++ followed by desired options.

SEE ALSO

erlsrv(1), release handler(3)

100 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual werl

werl
Command

On Windows, the preferred way to start the Erlang system for interactive use is:

werl <arguments>

This will start Erlang in its own window, with fully functioning command-line editing
and scrollbars. All flags except -oldshell work as they do for the erl [page 79]
command.

Ctrl-C is reserved for copying text to the clipboard (Ctrl-V to paste). To interrupt the
runtime system or the shell process (depending on what has been specified with the +B
system flag), you should use Ctrl-Break.

In cases where you want to redirect standard input and/or standard output or use Erlang
in a pipeline, the werl is not suitable, and the erl program should be used instead.

The werl window is in many ways modelled after the xterm window present on other
platforms, as the xterm model fits well with line oriented command based interaction.
This means that selcting text is line oriented rather than rectangle oriented.

To select text in the werl window , simply press and hold the left mouse button and
drag the mouse over the text you want to select. If the selection crosses line boundaries,
the selected text will consist of complete lines where applicable (just like in a word
processor). To select more text than fits in the window, start by selecting a small portion
in the beginning of the text you want, then use the scrollbar to view the end of the
desired selection, point to it and press the right mouse-button. The whole area between
your first selection and the point where you right-clicked will be included in the
selection.

The selected text is copied to the clipboard by either pressing Ctrl-C, using the menu
or pressing the copy button in the toolbar.

Pasted text is always inserted at the current prompt position and will be interpreted by
Erlang as usual keyboard input.

Previous command lines can be retrieved by pressing the Up arrow or by pressing
Ctrl-P. There is also a drop down box in the toolbar containing the command history.
Selecting a command in the drop down box will insert it at the prompt, just as if you
used the keyboard to retrieve the command.

Closing the werl window will stop the Erlang emulator.

101Erlang Run-Time System Application (ERTS)

erl set memory block ERTS Reference Manual

erl set memory block
C Module

This documentation is specific to VxWorks.

The erl set memory block function/command initiates custom memory allocation for
the Erlang emulator. It has to be called before the Erlang emulator is started and makes
Erlang use one single large memory block for all memory allocation.

The memory within the block can be utilized by other tasks than Erlang. This is
accomplished by calling the functions sys alloc, sys realloc and sys free instead of
malloc, realloc and free respectively.

The purpose of this is to avoid problems inherent in the VxWorks systems malloc
library. The memory allocation within the large memory block avoids fragmentation by
using an “address order first fit” algorithm. Another advantage of using a separate
memory block is that resource reclamation can be made more easily when Erlang is
stopped.

The erl set memory block function is callable from any C program as an ordinary 10
argument function as well as from the commandline.

Exports

int erl set memory block(size t size, void *ptr, int warn mixed malloc, int
realloc always moves, int use reclaim, ...)

The function is called before Erlang is started to specify a large memory block where
Erlang can maintain memory internally.

Parameters:

size t size The size in bytes of Erlang’s internal memory block. Has to be specified.
Note that the VxWorks system uses dynamic memory allocation heavily, so leave
some memory to the system.

void *ptr A pointer to the actual memory block of size size. If this is specified as 0
(NULL), Erlang will allocate the memory when starting and will reclaim the
memory block (as a whole) when stopped.
If a memory block is allocated and provided here, the sys alloc etc routines can
still be used after the Erlang emulator is stopped. The Erlang emulator can also be
restarted while other tasks using the memory block are running without destroying
the memory. If Erlang is to be restarted, also set the use reclaim flag.
If 0 is specified here, the Erlang system should not be stopped while some other
task uses the memory block (has called sys alloc).

int warn mixed malloc If this flag is set to true (anything else than 0), the system will
write a warning message on the console if a program is mixing normal malloc with
sys realloc or sys free.

102 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl set memory block

int realloc always moves If this flag is set to true (anything else than 0), all calls to
sys realloc result in a moved memory block. This can in certain conditions give
less fragmentation. This flag may be removed in future releases.

int use reclaim If this flag is set to true (anything else than 0), all memory allocated
with sys alloc is automatically reclaimed as soon as a task exits. This is very
useful to make writing port programs (and other programs as well) easier.
Combine this with using the routines save open etc. specified in the reclaim.h file
delivered in the Erlang distribution.

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0.

int erl memory show(...)

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0.

int erl mem info get(MEM PART STATS *stats)

Parameter:

MEM PART STATS *stats A pointer to a MEM PART STATS structure as defined in
<memLib.h>. A successful call will fill in all fields of the structure, on error all
fields are left untouched.

Return Value:

Returns 0 (OK) on success, otherwise a value <> 0

NOTES

The memory block used by Erlang actually does not need to be inside the area known to
ordinary malloc. It is possible to set the USER RESERVED MEM preprocessor symbol when
compiling the wind kernel and then use user reserved memory for Erlang. Erlang can
therefor utilize memory above the 32 Mb limit of VxWorks on the PowerPC
architecture.

Example:

In config.h for the wind kernel:

#undef LOCAL_MEM_AUTOSIZE
#undef LOCAL_MEM_SIZE
#undef USER_RESERVED_MEM

#define LOCAL_MEM_SIZE 0x05000000
#define USER_RESERVED_MEM 0x03000000

In the start-up script/code for the VxWorks node:

erl_set_memory_block(sysPhysMemTop()-sysMemTop(),sysMemTop(),0,0,1);

Setting the use reclaim flag decreases performance of the system, but makes
programming much easier. Other similar facilities are present in the Erlang system even
without using a separate memory block. The routines called save malloc,
save realloc and save free provide the same facilities by using VxWorks own
malloc. Similar routines exist for files, see the file reclaim.h in the distribution.

103Erlang Run-Time System Application (ERTS)

erts alloc ERTS Reference Manual

erts alloc
C Module

erts alloc is an Erlang Run-Time System internal memory allocator library.
erts alloc provides the Erlang Run-Time System with a number of memory allocators.

Allocators

Currently the following allocators are present:

temp alloc Allocator used for temporary allocations.

eheap alloc Allocator used for Erlang heap data, such as Erlang process heaps.

binary alloc Allocator used for Erlang binary data.

ets alloc Allocator used for ETS data.

driver alloc Allocator used for driver data.

sl alloc Allocator used for memory blocks that are expected to be short-lived.

ll alloc Allocator used for memory blocks that are expected to be long-lived, for
example Erlang code.

fix alloc A very fast allocator used for some fix-sized data. fix alloc manages a set
of memory pools from which memory blocks are handed out. fix alloc allocates
memory pools from ll alloc. Memory pools that have been allocated are never
deallocated.

std alloc Allocator used for most memory blocks not allocated via any of the other
allocators described above.

sys alloc This is normally the default malloc implementation used on the specific OS.

mseg alloc A memory segment allocator. mseg alloc is used by other allocators for
allocating memory segments and is currently only available on systems that have
the mmap system call. Memory segments that are deallocated are kept for a while in
a segment cache before they are destroyed. When segments are allocated, cached
segments are used if possible instead of creating new segments. This in order to
reduce the number of system calls made.

sys alloc and fix alloc are always enabled and cannot be disabled. mseg alloc is
always enabled if it is available and an allocator that uses it is enabled. All other
allocators can be enabled or disabled [page 107]. By default all allocators are enabled.
When an allocator is disabled, sys alloc is used instead of the disabled allocator.

The main idea with the erts alloc library is to separate memory blocks that are used
differently into different memory areas, and by this achieving less memory
fragmentation. By putting less effort in finding a good fit for memory blocks that are
frequently allocated than for those less frequently allocated, a performance gain can be
achieved.

104 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erts alloc

The alloc util framework

Internally a framework called alloc util is used for implementing allocators.
sys alloc, fix alloc, and mseg alloc do not use this framework; hence, the following
does not apply to them.

An allocator manages multiple areas, called carriers, in which memory blocks are
placed. A carrier is either placed in a separate memory segment (allocated via
mseg alloc) or in the heap segment (allocated via sys alloc). Multiblock carriers are
used for storage of several blocks. Singleblock carriers are used for storage of one block.
Blocks that are larger than the value of the singleblock carrier threshold (sbct [page
108]) parameter are placed in singleblock carriers. Blocks smaller than the value of the
sbct parameter are placed in multiblock carriers. Normally an allocator creates a “main
multiblock carrier”. Main multiblock carriers are never deallocated. The size of the
main multiblock carrier is determined by the value of the mmbcs [page 108] parameter.

Sizes of multiblock carriers allocated via mseg alloc are decided based on the values of
the largest multiblock carrier size (lmbcs [page 107]), the smallest multiblock carrier
size (smbcs [page 108]), and the multiblock carrier growth stages (mbcgs [page 108])
parameters. If nc is the current number of multiblock carriers (the main multiblock
carrier excluded) managed by an allocator, the size of the next mseg alloc multiblock
carrier allocated by this allocator will roughly be smbcs+nc*(lmbcs-smbcs)/mbcgs
when nc <= mbcgs, and lmbcs when nc > mbcgs. If the value of the sbct parameter
should be larger than the value of the lmbcs parameter, the allocator may have to create
multiblock carriers that are larger than the value of the lmbcs parameter, though.
Singleblock carriers allocated via mseg alloc are sized to whole pages.

Sizes of carriers allocated via sys alloc are decided based on the value of the
sys alloc carrier size (ycs [page 108]) parameter. The size of a carrier is the least
number of multiples of the value of the ycs parameter that satisfies the request.

Coalescing of free blocks are always performed immediately. Boundary tags (headers
and footers) in free blocks are used which makes the time complexity for coalescing
constant.

The memory allocation strategy used for multiblock carriers by an allocator is
configurable via the as [page 107] parameter. Currently the following strategies are
available:

Best fit Strategy: Find the smallest block that satisfies the requested block size.
Implementation: A balanced binary search tree is used. The time complexity is
proportional to log N, where N is the number of sizes of free blocks.

Address order best fit Strategy: Find the smallest block that satisfies the requested
block size. If multiple blocks are found, choose the one with the lowest address.
Implementation: A balanced binary search tree is used. The time complexity is
proportional to log N, where N is the number of free blocks.

Good fit Strategy: Try to find the best fit, but settle for the best fit found during a
limited search.
Implementation: The implementation uses segregated free lists with a maximum
block search depth (in each list) in order to find a good fit fast. When the
maximum block search depth is small (by default 3) this implementation has a
time complexity that is constant. The maximum block search depth is configurable
via the mbsd [page 107] parameter.

105Erlang Run-Time System Application (ERTS)

erts alloc ERTS Reference Manual

A fit Strategy: Do not search for a fit, inspect only one free block to see if it satisfies the
request. This strategy is only intended to be used for temporary allocations.
Implementation: Inspect the first block in a free-list. If it satisfies the request, it is
used; otherwise, a new carrier is created. The implementation has a time
complexity that is constant.
As of erts version 5.6.1 the emulator will refuse to use this strategy on other
allocators than temp alloc. This since it will only cause problems for other
allocators.

System Flags Effecting erts alloc

Warning:
Only use these flags if you are absolutely sure what you are doing. Unsuitable settings
may cause serious performance degradation and even a system crash at any time
during operation.

Memory allocator system flags have the following syntax: +M<S><P> <V> where <S>
is a letter identifying a subsystem, <P> is a parameter, and <V> is the value to use. The
flags can be passed to the Erlang emulator (erl [page 79]) as command line arguments.

System flags effecting specific allocators have an upper-case letter as <S>. The
following letters are used for the currently present allocators:

� B: binary alloc

� D: std alloc

� E: ets alloc

� F: fix alloc

� H: eheap alloc

� L: ll alloc

� M: mseg alloc

� R: driver alloc

� S: sl alloc

� T: temp alloc

� Y: sys alloc

The following flags are available for configuration of mseg alloc:

+MMamcbf <size> Absolute max cache bad fit (in kilobytes). A segment in the
memory segment cache is not reused if its size exceeds the requested size with
more than the value of this parameter. Default value is 4096.

+MMrmcbf <ratio> Relative max cache bad fit (in percent). A segment in the memory
segment cache is not reused if its size exceeds the requested size with more than
relative max cache bad fit percent of the requested size. Default value is 20.

+MMmcs <amount> Max cached segments. The maximum number of memory
segments stored in the memory segment cache. Valid range is 0-30. Default value
is 5.

106 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erts alloc

+MMcci <time> Cache check interval (in milliseconds). The memory segment cache is
checked for segments to destroy at an interval determined by this parameter.
Default value is 1000.

The following flags are available for configuration of fix alloc:

+MFe true Enable fix alloc. Note: fix alloc cannot be disabled.

The following flags are available for configuration of sys alloc:

+MYe true Enable sys alloc. Note: sys alloc cannot be disabled.

+MYm libc malloc library to use. Currently only libc is available. libc enables the
standard libc malloc implementation. By default libc is used.

+MYtt <size> Trim threshold size (in kilobytes). This is the maximum amount of
free memory at the top of the heap (allocated by sbrk) that will be kept by
malloc (not released to the operating system). When the amount of free memory
at the top of the heap exceeds the trim threshold, malloc will release it (by calling
sbrk). Trim threshold is given in kilobytes. Default trim threshold is 128. Note:
This flag will only have any effect when the emulator has been linked with the
GNU C library, and uses its malloc implementation.

+MYtp <size> Top pad size (in kilobytes). This is the amount of extra memory that
will be allocated by malloc when sbrk is called to get more memory from the
operating system. Default top pad size is 0. Note: This flag will only have any
effect when the emulator has been linked with the GNU C library, and uses its
malloc implementation.

The following flags are available for configuration of allocators based on alloc util. If
u is used as subsystem identifier (i.e., <S> = u) all allocators based on alloc util will
be effected. If B, D, E, H, L, R, S, or T is used as subsystem identifier, only the specific
allocator identified will be effected:

+M<S>as bf|aobf|gf|af Allocation strategy. Valid strategies are bf (best fit), aobf
(address order best fit), gf (good fit), and af (a fit). See the description of
allocation strategies [page 105] in “the alloc util framework” section.

+M<S>asbcst <size> Absolute singleblock carrier shrink threshold (in kilobytes).
When a block located in an mseg alloc singleblock carrier is shrunk, the carrier
will be left unchanged if the amount of unused memory is less than this threshold;
otherwise, the carrier will be shrunk. See also rsbcst [page 108].

+M<S>e true|false Enable allocator <S>.

+M<S>lmbcs <size> Largest (mseg alloc) multiblock carrier size (in kilobytes). See
the description on how sizes for mseg alloc multiblock carriers are decided [page
105] in “the alloc util framework” section.

+M<S>mbcgs <ratio> (mseg alloc) multiblock carrier growth stages. See the
description on how sizes for mseg alloc multiblock carriers are decided [page 105]
in “the alloc util framework” section.

+M<S>mbsd <depth> Max block search depth. This flag has effect only if the good fit
strategy has been selected for allocator <S>. When the good fit strategy is used,
free blocks are placed in segregated free-lists. Each free list contains blocks of sizes
in a specific range. The max block search depth sets a limit on the maximum
number of blocks to inspect in a free list during a search for suitable block
satisfying the request.

107Erlang Run-Time System Application (ERTS)

erts alloc ERTS Reference Manual

+M<S>mmbcs <size> Main multiblock carrier size. Sets the size of the main
multiblock carrier for allocator <S>. The main multiblock carrier is allocated via
sys alloc and is never deallocated.

+M<S>mmmbc <amount> Max mseg alloc multiblock carriers. Maximum number of
multiblock carriers allocated via mseg alloc by allocator <S>. When this limit
has been reached, new multiblock carriers will be allocated via sys alloc.

+M<S>mmsbc <amount> Max mseg alloc singleblock carriers. Maximum number of
singleblock carriers allocated via mseg alloc by allocator <S>. When this limit
has been reached, new singleblock carriers will be allocated via sys alloc.

+M<S>ramv <bool> Realloc always moves. When enabled, reallocate operations will
more or less be translated into an allocate, copy, free sequence. This often reduce
memory fragmentation, but costs performance.

+M<S>rsbcmt <ratio> Relative singleblock carrier move threshold (in percent).
When a block located in a singleblock carrier is shrunk to a size smaller than the
value of the sbct [page 108] parameter, the block will be left unchanged in the
singleblock carrier if the ratio of unused memory is less than this threshold;
otherwise, it will be moved into a multiblock carrier.

+M<S>rsbcst <ratio> Relative singleblock carrier shrink threshold (in percent).
When a block located in an mseg alloc singleblock carrier is shrunk, the carrier
will be left unchanged if the ratio of unused memory is less than this threshold;
otherwise, the carrier will be shrunk. See also asbcst [page 107].

+M<S>sbct <size> Singleblock carrier threshold. Blocks larger than this threshold
will be placed in singleblock carriers. Blocks smaller than this threshold will be
placed in multiblock carriers.

+M<S>smbcs <size> Smallest (mseg alloc) multiblock carrier size (in kilobytes).
See the description on how sizes for mseg alloc multiblock carriers are decided
[page 105] in “the alloc util framework” section.

+M<S>t true|false|<amount> Multiple, thread specific instances of the allocator.
This option will only have any effect on the runtime system with SMP support.
Default behaviour on the runtime system with SMP support (N equals the number
of scheduler threads):

temp alloc N + 1 instances.
ll alloc 1 instance.
Other allocators N instances when N is less than or equal to 16. 16 instances when

N is greater than 16.

temp alloc will always use N + 1 instances when this option has been enabled
regardless of the amount passed. Other allocators will use the same amount of
instances as the amount passed as long as it isn’t greater than N.

Currently the following flags are available for configuration of alloc util, i.e. all
allocators based on alloc util will be effected:

+Muycs <size> sys alloc carrier size. Carriers allocated via sys alloc will be
allocated in sizes which are multiples of the sys alloc carrier size. This is not true
for main multiblock carriers and carriers allocated during a memory shortage,
though.

+Mummc <amount> Max mseg alloc carriers. Maximum number of carriers placed in
separate memory segments. When this limit has been reached, new carriers will be
placed in memory retrieved from sys alloc.

108 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erts alloc

Instrumentation flags:

+Mim true|false A map over current allocations is kept by the emulator. The
allocation map can be retrieved via the instrument module. +Mim true implies
+Mis true. +Mim true is the same as -instr [page 81].

+Mis true|false Status over allocated memory is kept by the emulator. The
allocation status can be retrieved via the instrument module.

+Mit X Reserved for future use. Do not use this flag.

Note:
When instrumentation of the emulator is enabled, the emulator uses more memory
and runs slower.

Other flags:

+Mea min|max|r9c|r10b|r11b|config min Disables all allocators that can be
disabled.

max Enables all allocators (currently default).
r9c|r10b|r11b Configures all allocators as they were configured in respective

OTP release. These will eventually be removed.
config Disables features that cannot be enabled while creating an allocator

configuration with [erts alloc config(3)]. Note, this option should only be used
while running erts alloc config, not when using the created configuration.

Only some default values have been presented here. [erlang:system info(allocator)],
and [erlang:system info(fallocator, Allocg)] can be used in order to obtain currently
used settings and current status of the allocators.

Note:
Most of these flags are highly implementation dependent, and they may be changed
or removed without prior notice.

erts alloc is not obliged to strictly use the settings that have been passed to it (it
may even ignore them).

[erts alloc config(3)] is a tool that can be used to aid creation of an erts alloc
configuration that is suitable for a limited number of runtime scenarios.

SEE ALSO

[erts alloc config(3)], erl(1) [page 79], [instrument(3)], [erlang(3)]

109Erlang Run-Time System Application (ERTS)

driver entry ERTS Reference Manual

driver entry
Erlang Module

As of erts version 5.5.3 the driver interface has been extended (see extended marker
[page 114]). The extended interface introduce version management [page 119], the
possibility to pass capability flags (see driver flags [page 115]) to the runtime system at
driver initialization, and some new driver API functions.

Note:
Old drivers (compiled with an erl driver.h from an earlier erts version than 5.5.3)
have to be recompiled (but does not have to use the extended interface).

The driver entry structure is a C struct that all erlang drivers defines. It contains entry
points for the erlang driver that are called by the erlang emulator when erlang code
accesses the driver.

The erl driver [page 110] driver API functions needs a port handle that identifies the
driver instance (and the port in the emulator). This is only passed to the start
function, but not to the other functions. The start function returns a driver-defined
handle that is passed to the other functions. A common practice is to have the start
function allocating some application-defined structure and stash the port handle in it,
to use it later with the driver API functions.

The driver call-back functions are called synchronously from the erlang emulator. If
they take too long before completing, they can cause timeouts in the emulator. Use the
queue or asynchronous calls if nessecary, since the emulator must be responsive.

The driver structure contains the name of the driver and some 15 function pointers.
These pointers are called at different times by the emulator.

The only exported function from the driver is driver init. This function returns the
driver entry structure that points to the other functions in the driver. The
driver init function is declared with a macro DRIVER INIT(drivername). (This is
because different OS’s have different names for it.)

When writing a driver in C++, the driver entry should be of "C" linkage. One way to do
this is to put this line somewhere before the driver entry: extern "C"
DRIVER INIT(drivername);.

When the driver has passed the driver entry over to the emulator, the driver is not
allowed to modify the driver entry.

110 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual driver entry

Note:
Do not declare the driver entryconst. This since the emulator needs to modify the
handle, and the handle2 fields. A statically allocated, and const declared
driver entry may be located in read only memory which will cause the emulator to
crash.

Here is the declaration of driver entry:

typedef struct erl_drv_entry {
int (*init)(void); /* called at system start up for statically

linked drivers, and after loading for
dynamically loaded drivers */

#ifndef ERL_SYS_DRV
ErlDrvData (*start)(ErlDrvPort port, char *command);

/* called when open_port/2 is invoked.
return value -1 means failure. */

#else
ErlDrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);

/* special options, only for system driver */
#endif

void (*stop)(ErlDrvData drv_data);
/* called when port is closed, and when the

emulator is halted. */
void (*output)(ErlDrvData drv_data, char *buf, int len);

/* called when we have output from erlang to
the port */

void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event);
/* called when we have input from one of

the driver’s handles) */
void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event);

/* called when output is possible to one of
the driver’s handles */

char *driver_name; /* name supplied as command
in open_port XXX ? */

void (*finish)(void); /* called before unloading the driver -
DYNAMIC DRIVERS ONLY */

void *handle; /* Reserved -- Used by emulator internally */
int (*control)(ErlDrvData drv_data, unsigned int command, char *buf,

int len, char **rbuf, int rlen);
/* "ioctl" for drivers - invoked by

port_control/3) */
void (*timeout)(ErlDrvData drv_data); /* Handling of timeout in driver */
void (*outputv)(ErlDrvData drv_data, ErlIOVec *ev);

/* called when we have output from erlang
to the port */

void (*ready_async)(ErlDrvData drv_data, ErlDrvThreadData thread_data);
void (*flush)(ErlDrvData drv_data);

/* called when the port is about to be
closed, and there is data in the
driver queue that needs to be flushed
before ’stop’ can be called */

111Erlang Run-Time System Application (ERTS)

driver entry ERTS Reference Manual

int (*call)(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen, unsigned int *flags);

/* Works mostly like ’control’, a syncronous
call into the driver. */

void (*event)(ErlDrvData drv_data, ErlDrvEvent event,
ErlDrvEventData event_data);

/* Called when an event selected by
driver_event() has occurred */

int extended_marker; /* ERL_DRV_EXTENDED_MARKER */
int major_version; /* ERL_DRV_EXTENDED_MAJOR_VERSION */
int minor_version; /* ERL_DRV_EXTENDED_MINOR_VERSION */
int driver_flags; /* ERL_DRV_FLAGs */
void *handle2; /* Reserved -- Used by emulator internally */
void (*process_exit)(ErlDrvData drv_data, ErlDrvMonitor *monitor);

/* Called when a process monitor fires */
} ErlDrvEntry;

Exports

int init(void)

This is called directly after the driver has been loaded by erl ddll:load driver/2.
(Actually when the driver is added to the driver list.) The driver should return 0, or if
the driver can’t initialize, -1.

int start(ErlDrvPort port, char* command)

This is called when the driver is instantiated, when open port/2 is called. The driver
should return a number >= 0 or a pointer, or if the driver can’t be started, one of three
error codes should be returned:

ERL DRV ERROR GENERAL - general error, no error code

ERL DRV ERROR ERRNO - error with error code in erl errno

ERL DRV ERROR BADARG - error, badarg

If an error code is returned, the port isn’t started.

void stop(ErlDrvData drv data)

This is called when the port is closed, with port close/1 or Port ! fself(),
closeg. Note that terminating the port owner process also closes the p port.

void output(ErlDrvData drv data, char *buf, int len)

This is called when an erlang process has sent data to the port. The data is pointed to by
buf, and is len bytes. Data is sent to the port with Port ! fself(), fcommand,
Datagg, or with port command/2. Depending on how the port was opened, it should be
either a list of integers 0...255 or a binary. See open port/3 and port command/2.

void ready input(ErlDrvData drv data, ErlDrvEvent event)

void ready output(ErlDrvData drv data, ErlDrvEvent event)

112 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual driver entry

This is called when a driver event (given in the event parameter) is signaled. This is
used to help asynchronous drivers “wake up” when something happens.

On unix the event is a pipe or socket handle (or something that the select system call
understands).

On Windows the event is an Event or Semaphore (or something that the
WaitForMultipleObjects API function understands). (Some trickery in the emulator
allows more than the built-in limit of 64 Events to be used.)

To use this with threads and asynchronous routines, create a pipe on unix and an Event
on Windows. When the routine completes, write to the pipe (use SetEvent on
Windows), this will make the emulator call ready input or ready output.

char *driver name

This is the name of the driver, it must correspond to the atom used in open port, and
the name of the driver library file (without the extension).

void finish(void)

This function is called by the erl ddll driver when the driver is unloaded. (It is only
called in dynamic drivers.)

The driver is only unloaded as a result of calling unload driver/1, or when the
emulator halts.

void *handle

This field is reserved for the emulators internal use. The emulator will modify this field;
therefore, it is important that the driver entry isn’t declared const.

int control(ErlDrvData drv data, unsigned int command, char *buf, int len, char
**rbuf, int rlen)

This is a special routine invoked with the erlang function port control/3. It works a
little like an “ioctl” for erlang drivers. The data given to port control/3 arrives in buf
and len. The driver may send data back, using *rbuf and rlen.

This is the fastest way of calling a driver and get a response. It won’t make any context
switch in the erlang emulator, and requires no message passing. It is suitable for calling
C function to get faster execution, when erlang is too slow.

If the driver wants to return data, it should return it in rbuf. Data is returned different
depending on the port control flags (those that are set with set port control flags [page
131]).

If the flag is set to PORT CONTROL FLAG BINARY, then *rbuf must point to a binary
allocated with driver alloc binary [page 126] or be NULL. This binary will be freed
automatically after control has returned. The driver can retain the returned binary for
read only access with driver binary inc refc [page 127] to be freed later with
driver free binary [page 126]. It is never allowed to alter the binary after control has
returned. If *rbuf is set to NULL, an empty list will be returned.

If the flag is set to 0, rbuf points to a char* containing data, that is returned as a list of
integers. When control is called, *rbuf points to a buffer of rlen bytes, which can be
used to return data. A larger buffer can be allocated with driver alloc [page 126]. The
buffer will be freed automatically after control has returned.

Using binaries is faster if more than a few bytes are returned.

113Erlang Run-Time System Application (ERTS)

driver entry ERTS Reference Manual

The return value is the number of bytes returned in *rbuf.

void timeout(ErlDrvData drv data)

This function is called any time after the driver’s timer reaches 0. The timer is
activeated with driver set timer. There are no priorities or ordering among drivers,
so if several drivers time out at the same time, any one of them is called first.

void outputv(ErlDrvData drv data, ErlIOVec *ev)

This function is called whenever the port is written to. If it is NULL, the output function
is called instead. This function is faster than output, because it takes an ErlIOVec
directly, which requires no copying of the data. The port should be in binary mode, see
open port/2.

The ErlIOVec contains both a SysIOVec, suitable for writev, and one or more binaries.
If these binaries should be retained, when the driver returns from outputv, they can be
queued (using driver enq bin [page 128] for instance), or if they are kept in a static or
global variable, the reference counter can be incremented.

void ready async(ErlDrvData drv data, ErlDrvThreadData thread data)

This function is called after an asynchronous call has completed. The asynchronous call
is started with driver async [page 134]. This function is called from the erlang emulator
thread, as opposed to the asynchronous function, which is called in some thread (if
multithreading is enabled).

int call(ErlDrvData drv data, unsigned int command, char *buf, int len, char **rbuf,
int rlen, unsigned int *flags)

This function is called from erlang:port call/3. It works a lot like the control
call-back, but uses the external term format for input and output.

command is an integer, obtained from the call from erlang (the second argument to
erlang:port call/3).

buf and len provide the arguments to the call (the third argument to
erlang:port call/3). They can be decoded using ei functions.

rbuf points to a return buffer, rlen bytes long. The return data should be a valid erlang
term in the external (binary) format. This is converted to an erlang term and returned
by erlang:port call/3 to the caller. If more space than rlen bytes is needed to return
data, *rbuf can be set to memory allocated with driver alloc. This memory will be
freed automatically after call has returned.

The return value is the number of bytes returned in *rbuf. If ERL DRV ERROR GENERAL
is returned (or in fact, anything < 0), erlang:port call/3 will throw a BAD ARG.

void event(ErlDrvData drv data, ErlDrvEvent event, ErlDrvEventData event data)

Intentionally left undocumented.

int extended marker

This field should either be equal to ERL DRV EXTENDED MARKER or 0. An old driver (not
aware of the extended driver interface) should set this field to 0. If this field is equal to
0, all the fields following this field also have to be 0, or NULL in case it is a pointer field.

114 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual driver entry

int major version

This field should equal ERL DRV EXTENDED MAJOR VERSION if the extended marker field
equals ERL DRV EXTENDED MARKER.

int minor version

This field should equal ERL DRV EXTENDED MINOR VERSION if the extended marker field
equals ERL DRV EXTENDED MARKER.

int driver flags

This field is used to pass driver capability information to the runtime system. If the
extended marker field equals ERL DRV EXTENDED MARKER, it should contain 0 or driver
flags (ERL DRV FLAG *) ored bitwise. Currently the following driver flags exist:

ERL DRV FLAG USE PORT LOCKING The runtime system will use port level locking on all
ports executing this driver instead of driver level locking when the driver is run in
a runtime system with SMP support. For more information see the erl driver [page
116] documentation.

void *handle2

This field is reserved for the emulators internal use. The emulator will modify this field;
therefore, it is important that the driver entry isn’t declared const.

void process exit(ErlDrvData drv data, ErlDrvMonitor *monitor)

This callback is called when a monitored process exits. The drv data is the data
associated with the port for which the process is monitored (using
driver monitor process [page 130]) and the monitor corresponds to the
ErlDrvMonitor structure filled in when creating the monitor. The driver interface
function driver get monitored process [page 130] can be used to retrieve the process id
of the exiting process as an ErlDrvTermData

SEE ALSO

erl driver(3) [page 116], [erl ddll(3)], [erlang(3)], kernel(3)

115Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

erl driver
Erlang Module

As of erts version 5.5.3 the driver interface has been extended (see extended marker
[page 114]). The extended interface introduce version management [page 119], the
possibility to pass capability flags (see driver flags [page 115]) to the runtime system at
driver initialization, and some new driver API functions.

Note:
Old drivers (compiled with an erl driver.h from an earlier erts version than 5.5.3)
have to be recompiled (but does not have to use the extended interface).

The driver calls back to the emulator, using the API functions declared in
erl driver.h. They are used for outputting data from the driver, using timers, etc.

A driver is a library with a set of function that the emulator calls, in response to Erlang
functions and message sending. There may be multiple instances of a driver, each
instance is connected to an Erlang port. Every port has a port owner process.
Communication with the port is normally done through the port owner process.

Most of the functions takes the port handle as an argument. This identifies the driver
instance. Note that this port handle must be stored by the driver, it is not given when
the driver is called from the emulator (see driver entry [page 110]).

Some of the functions takes a parameter of type ErlDrvBinary, a driver binary. It
should be both allocated and freed by the caller. Using a binary directly avoid one extra
copying of data.

Many of the output functions has a “header buffer”, with hbuf and hlen parameters.
This buffer is sent as a list before the binary (or list, depending on port mode) that is
sent. This is convenient when matching on messages received from the port. (Although
in the latest versions of Erlang, there is the binary syntax, that enables you to match on
the beginning of a binary.)

In the runtime system with SMP support, drivers are locked either on driver level or
port level (driver instance level). By default driver level locking will be used, i.e., only
one emulator thread will execute code in the driver at a time. If port level locking is
used, multiple emulator threads may execute code in the driver at the same time. There
will only be one thread at a time calling driver call-backs corresponding to the same
port, though. In order to enable port level locking set the
ERL DRV FLAG USE PORT LOCKING driver flag [page 115] in the driver entry [page 110]
used by the driver. When port level locking is used it is the responsibility of the driver
writer to synchronize all accesses to data shared by the ports (driver instances).

Most drivers written before the runtime system with SMP support existed will be able
to run in the runtime system with SMP support without being rewritten if driver level
locking is used.

116 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

Note:
It is assumed that drivers does not access other drivers. If drivers should access each
other they have to provide their own mechanism for thread safe synchronization.
Such “inter driver communication” is strongly discouraged.

Previously, in the runtime system without SMP support, specific driver call-backs were
always called from the same thread. This is not the case in the runtime system with SMP
support. Regardless of locking scheme used, calls to driver call-backs may be made from
different threads, e.g., two consecutive calls to exactly the same call-back for exactly the
same port may be made from two different threads. This will for most drivers not be a
problem, but it might. Drivers that depend on all call-backs being called in the same
thread, have to be rewritten before being used in the runtime system with SMP support.

Note:
Regardless of locking scheme used, calls to driver call-backs may be made from
different threads.

Most functions in this API are not thread-safe, i.e., they may not be called from an
arbitrary thread. Function that are not documented as thread-safe may only be called
from driver call-backs or function calls descending from a driver call-back call. Note that
driver call-backs may be called from different threads. This, however, is not a problem
for any functions in this API, since the emulator have control over these threads.

Note:
Functions not explicitly documented as thread-safe are not thread-safe. Also note
that some functions are only thread safe when used in a runtime system with SMP
support.

Functionality

All functions that a driver needs to do with Erlang are performed through driver API
functions. There are functions for the following functionality:

Timer functions Timer functions are used to control the timer that a driver may use.
The timer will have the emulator call the timeout [page 114] entry function after
a specified time. Only one timer is available for each driver instance.

Queue handling Every driver instance has an associated queue. This queue is a
SysIOVec that works as a buffer. It’s mostly used for the driver to buffer data that
should be written to a device, it is a byte stream. If the port owner process closes
the driver, and the queue is not empty, the driver will not be closed. This enables
the driver to flush its buffers before closing.
The queue can be manipulated from arbitrary threads if a port data lock is used.
See documentation of the ErlDrvPDL [page 122] type for more information.

117Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

Output functions With the output functions, the driver sends data back the emulator.
They will be received as messages by the port owner process, see open port/2.
The vector function and the function taking a driver binary is faster, because that
avoid copying the data buffer. There is also a fast way of sending terms from the
driver, without going through the binary term format.

Failure The driver can exit and signal errors up to Erlang. This is only for severe errors,
when the driver can’t possibly keep open.

Asynchronous calls The latest Erlang versions (R7B and later) has provision for
asynchronous function calls, using a thread pool provided by Erlang. There is also a
select call, that can be used for asynchronous drivers.

Multi-threading A POSIX thread like API for multi-threading is provided. The Erlang
driver thread API only provide a subset of the functionality provided by the
POSIX thread API. The subset provided is more or less the basic functionality
needed for multi-threaded programming:

� Threads [page 122]
� Mutexes [page 122]
� Condition variables [page 123]
� Read/Write locks [page 123]
� Thread specific data [page 123]

The Erlang driver thread API can be used in conjunction with the POSIX thread
API on UN-ices and with the Windows native thread API on Windows. The Erlang
driver thread API has the advantage of being portable, but there might exist
situations where you want to use functionality from the POSIX thread API or the
Windows native thread API.
The Erlang driver thread API only return error codes when it is reasonable to
recover from an error condition. If it isn’t reasonable to recover from an error
condition, the whole runtime system is terminated. For example, if a create mutex
operation fails, an error code is returned, but if a lock operation on a mutex fails,
the whole runtime system is terminated.
Note that there exist no “condition variable wait with timeout” in the Erlang driver
thread API. This is due to issues with pthread cond timedwait(). When the
system clock suddenly is changed, it isn’t always guaranteed that you will wake up
from the call as expected. An Erlang runtime system has to be able to cope with
sudden changes of the system clock. Therefore, we have omitted it from the Erlang
driver thread API. In the Erlang driver case, timeouts can and should be handled
with the timer functionality of the Erlang driver API.
In order for the Erlang driver thread API to function, thread support has to be
enabled in the runtime system. An Erlang driver can check if thread support is
enabled by use of driver system info() [page 123]. Note that some functions in the
Erlang driver API are thread-safe only when the runtime system has SMP support,
also this information can be retrieved via driver system info() [page 123]. Also
note that a lot of functions in the Erlang driver API are not thread-safe regardless
of whether SMP support is enabled or not. If a function isn’t documented as
thread-safe it is not thread-safe.
NOTE: When executing in an emulator thread, it is very important that you unlock
all locks you have locked before letting the thread out of your control; otherwise,
you are very likely to deadlock the whole emulator. If you need to use thread
specific data in an emulator thread, only have the thread specific data set while the
thread is under your control, and clear the thread specific data before you let the
thread out of your control.

118 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

In the future there will probably be debug functionality integrated with the Erlang
driver thread API. All functions that create entities take a name argument.
Currently the name argument is unused, but it will be used when the debug
functionality has been implemented. If you name all entities created well, the
debug functionality will be able to give you better error reports.

Adding / remove drivers A driver can add and later remove drivers.

Monitoring processes A driver can monitor a process that does not own a port.

Version management Version management is enabled for drivers that have set the
extended marker [page 114] field of their driver entry [page 110] to
ERL DRV EXTENDED MARKER. erl driver.h defines ERL DRV EXTENDED MARKER,
ERL DRV EXTENDED MAJOR VERSION, and ERL DRV EXTENDED MINOR VERSION.
ERL DRV EXTENDED MAJOR VERSION will be incremented when driver incompatible
changes are made to the Erlang runtime system. Normally it will suffice to
recompile drivers when the ERL DRV EXTENDED MAJOR VERSION has changed, but it
could, under rare circumstances, mean that drivers have to be slightly modified. If
so, this will of course be documented. ERL DRV EXTENDED MINOR VERSION will be
incremented when new features are added. The runtime system use the minor
version of the driver to determine what features to use. The runtime system will
refuse to load a driver if the major versions differ, or if the major versions are equal
and the minor version used by the driver is greater than the one used by the
runtime system.
The emulator tries to check that a driver that doesn’t use the extended driver
interface isn’t incompatible when loading it. It can, however, not make sure that it
isn’t incompatible. Therefore, when loading a driver that doesn’t use the extended
driver interface, there is a risk that it will be loaded also when the driver is
incompatible. When the driver use the extended driver interface, the emulator can
verify that it isn’t of an incompatible driver version. You are therefore advised to
use the extended driver interface.

Exports

ErlDrvSysInfo

Types:

� int driver major version
� int driver minor version
� char *erts version
� char *otp release
� int thread support
� int smp support
� int async threads
� int scheduler threads

The ErlDrvSysInfo structure is used for storage of information about the Erlang
runtime system. driver system info() [page 123] will write the system information
when passed a reference to a ErlDrvSysInfo structure. A description of the fields in
the structure follow:

119Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

driver major version The value of ERL DRV EXTENDED MAJOR VERSION [page
119] when the runtime system was compiled. This value is the same as the value
of ERL DRV EXTENDED MAJOR VERSION [page 119] used when compiling
the driver; otherwise, the runtime system would have refused to load the driver.

driver minor version The value of ERL DRV EXTENDED MINOR VERSION [page
119] when the runtime system was compiled. This value might differ from the
value of ERL DRV EXTENDED MINOR VERSION [page 119] used when
compiling the driver.

erts version A string containing the version number of the runtime system (the same as
returned by [erlang:system info(version)]).

otp release A string containing the OTP release number (the same as returned by
[erlang:system info(otp release)]).

thread support A value != 0 if the runtime system has thread support; otherwise, 0.

smp support A value != 0 if the runtime system has SMP support; otherwise, 0.

thread support A value != 0 if the runtime system has thread support; otherwise, 0.

smp support A value != 0 if the runtime system has SMP support; otherwise, 0.

async threads The number of async threads in the async thread pool used by
driver async() [page 134] (the same as returned by
[erlang:system info(thread pool size)]).

scheduler threads The number of scheduler threads used by the runtime system (the
same as returned by [erlang:system info(schedulers)]).

ErlDrvBinary

Types:

� int orig size
� char orig bytes[]

The ErlDrvBinary structure is a binary, as sent between the emulator and the driver.
All binaries are reference counted; when driver binary free is called, the reference
count is decremented, when it reaches zero, the binary is deallocated. The orig size is
the size of the binary, and orig bytes is the buffer. The ErlDrvBinary does not have a
fixed size, its size is orig size + 2 * sizeof(int).

Note:
The refc field has been removed. The reference count of an ErlDrvBinary is now
stored elsewhere. The reference count of an ErlDrvBinary can be accessed via
driver binary get refc() [page 127], driver binary inc refc() [page 127], and
driver binary dec refc() [page 127].

Some driver calls, such as driver enq binary, increments the driver reference count,
and others, such as driver deq decrements it.

Using a driver binary instead of a normal buffer, is often faster, since the emulator
doesn’t need to copy the data, only the pointer is used.

A driver binary allocated in the driver, with driver alloc binary, should be freed in
the driver (unless otherwise stated), with driver free binary. (Note that this doesn’t

120 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

necessarily deallocate it, if the driver is still referred in the emulator, the ref-count will
not go to zero.)

Driver binaries are used in the driver output2 and driver outputv calls, and in the
queue. Also the driver call-back outputv [page 114] uses driver binaries.

If the driver of some reason or another, wants to keep a driver binary around, in a static
variable for instance, the reference count should be incremented, and the binary can
later be freed in the stop [page 112] call-back, with driver free binary.

Note that since a driver binary is shared by the driver and the emulator, a binary
received from the emulator or sent to the emulator, must not be changed by the driver.

From erts version 5.5 (OTP release R11B), orig bytes is guaranteed to be properly
aligned for storage of an array of doubles (usually 8-byte aligned).

ErlDrvData

The ErlDrvData is a handle to driver-specific data, passed to the driver call-backs. It is a
pointer, and is most often casted to a specific pointer in the driver.

SysIOVec

This is a system I/O vector, as used by writev on unix and WSASend on Win32. It is
used in ErlIOVec.

ErlIOVec

Types:

� int vsize
� int size
� SysIOVec* iov
� ErlDrvBinary** binv

The I/O vector used by the emulator and drivers, is a list of binaries, with a SysIOVec
pointing to the buffers of the binaries. It is used in driver outputv and the outputv
[page 114] driver call-back. Also, the driver queue is an ErlIOVec.

ErlDrvMonitor

When a driver creates a monitor for a process, a ErlDrvMonitor is filled in. This is an
opaque data-type which can be assigned to but not compared without using the
supplied compare function (i.e. it behaves like a struct).

The driver writer should provide the memory for storing the monitor when calling
driver monitor process [page 130]. The address of the data is not stored outside of the
driver, so the ErlDrvMonitor can be used as any other datum, it can be copied, moved
in memory, forgotten etc.

ErlDrvNowData

The ErlDrvNowData structure holds a timestamp consisting of three values measured
from some arbitrary point in the past. The three structure members are:

megasecs The number of whole megaseconds elapsed since the arbitrary point in time

secs The number of whole seconds elapsed since the arbitrary point in time

microsecs The number of whole microseconds elapsed since the arbitrary point in time

121Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

ErlDrvPDL

If certain port specific data have to be accessed from other threads than those calling the
driver call-backs, a port data lock can be used in order to synchronize the operations on
the data. Currently, the only port specific data that the the emulator associates with the
port data lock is the driver queue.

Normally a driver instance does not have a port data lock. If the driver instance want to
use a port data lock, it has to create the port data lock by calling driver pdl create()
[page 129]. NOTE: Once the port data lock has been created, every access to data
associated with the port data lock have to be done while having the port data lock
locked. The port data lock is locked, and unlocked, respectively, by use of
driver pdl lock() [page 129], and driver pdl unlock() [page 129].

A port data lock is reference counted, and when the reference count reach zero, it will
be destroyed. The emulator will at least increment the reference count once when the
lock is created and decrement it once when the port associated with the lock terminates.
The emulator will also increment the reference count when an async job is enqueued
and decrement it after an async job has been invoked, or canceled. Besides this, it is the
responsibility of the driver to ensure that the reference count does not reach zero before
the last use of the lock by the driver has been made. The reference count can be read,
incremented, and decremented, respectively, by use of driver pdl get refc() [page 129],
driver pdl inc refc() [page 129], and driver pdl dec refc() [page 129].

ErlDrvTid

Thread identifier.

See also: erl drv thread create() [page 136], erl drv thread exit() [page 137],
erl drv thread join() [page 137], erl drv thread self() [page 138], and
erl drv equal tids() [page 138].

ErlDrvThreadOpts

Types:

� int suggested stack size

Thread options structure passed to erl drv thread create() [page 136]. Currently the
following fields exist:

suggested stack size A suggestion, in kilo-words, on how large stack to use. A value
less than zero means default size.

See also: erl drv thread opts create() [page 137], erl drv thread opts destroy() [page
137], and erl drv thread create() [page 136].

ErlDrvMutex

Mutual exclusion lock. Used for synchronizing access to shared data. Only one thread
at a time can lock a mutex.

See also: erl drv mutex create() [page 138], erl drv mutex destroy() [page 138],
erl drv mutex lock() [page 139], erl drv mutex trylock() [page 139], and
erl drv mutex unlock() [page 139].

ErlDrvCond

122 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

Condition variable. Used when threads need to wait for a specific condition to appear
before continuing execution. Condition variables need to be used with associated
mutexes.

See also: erl drv cond create() [page 139], erl drv cond destroy() [page 140],
erl drv cond signal() [page 140], erl drv cond broadcast() [page 140], and
erl drv cond wait() [page 140].

ErlDrvRWLock

Read/write lock. Used to allow multiple threads to read shared data while only allowing
one thread to write the same data. Multiple threads can read lock an rwlock at the same
time, while only one thread can read/write lock an rwlock at a time.

See also: erl drv rwlock create() [page 141], erl drv rwlock destroy() [page 141],
erl drv rwlock rlock() [page 141], erl drv rwlock tryrlock() [page 142],
erl drv rwlock runlock() [page 142], erl drv rwlock rwlock() [page 142],
erl drv rwlock tryrwlock() [page 143], and erl drv rwlock rwunlock() [page 143].

ErlDrvTSDKey

Key which thread specific data can be associated with.

See also: erl drv tsd key create() [page 143], erl drv tsd key destroy() [page 144],
erl drv tsd set() [page 144], and erl drv tsd get() [page 144].

void driver system info(ErlDrvSysInfo *sys info ptr, size t size)

This function will write information about the Erlang runtime system into the
ErlDrvSysInfo [page 119] structure referred to by the first argument. The second
argument should be the size of the ErlDrvSysInfo [page 119] structure, i.e.,
sizeof(ErlDrvSysInfo).

See the documentation of the ErlDrvSysInfo [page 119] structure for information about
specific fields.

int driver output(ErlDrvPort port, char *buf, int len)

The driver output function is used to send data from the driver up to the emulator.
The data will be received as terms or binary data, depending on how the driver port was
opened.

The data is queued in the port owner process’ message queue. Note that this does not
yield to the emulator. (Since the driver and the emulator runs in the same thread.)

The parameter buf points to the data to send, and len is the number of bytes.

The return value for all output functions is 0. (Unless the driver is used for distribution,
in which case it can fail and return -1. For normal use, the output function always
returns 0.)

int driver output2(ErlDrvPort port, char *hbuf, int hlen, char *buf, int len)

The driver output2 function first sends hbuf (length in hlen) data as a list, regardless
of port settings. Then buf is sent as a binary or list. E.g. if hlen is 3 then the port owner
process will receive [H1, H2, H3 | T].

The point of sending data as a list header, is to facilitate matching on the data received.

The return value is 0 for normal use.

123Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

int driver output binary(ErlDrvPort port, char *hbuf, int hlen, ErlDrvBinary* bin, int
offset, int len)

This function sends data to port owner process from a driver binary, it has a header
buffer (hbuf and hlen) just like driver output2. The hbuf parameter can be NULL.

The parameter offset is an offset into the binary and len is the number of bytes to
send.

Driver binaries are created with driver alloc binary.

The data in the header is sent as a list and the binary as an Erlang binary in the tail of
the list.

E.g. if hlen is 2, then the port owner process will receive [H1, H2 | <<T>>].

The return value is 0 for normal use.

Note that, using the binary syntax in Erlang, the driver application can match the
header directly from the binary, so the header can be put in the binary, and hlen can be
set to 0.

int driver outputv(ErlDrvPort port, char* hbuf, int hlen, ErlIOVec *ev, int skip)

This function sends data from an IO vector, ev, to the port owner process. It has a
header buffer (hbuf and hlen), just like driver output2.

The skip parameter is a number of bytes to skip of the ev vector from the head.

You get vectors of ErlIOVec type from the driver queue (see below), and the outputv
[page 114] driver entry function. You can also make them yourself, if you want to send
several ErlDrvBinary buffers at once. Often it is faster to use driver output or
driver output binary.

E.g. if hlen is 2 and ev points to an array of three binaries, the port owner process will
receive [H1, H2, <<B1>>, <<B2>> | <<B3>>].

The return value is 0 for normal use.

The comment for driver output binary applies for driver outputv too.

int driver vec to buf(ErlIOVec *ev, char *buf, int len)

This function collects several segments of data, referenced by ev, by copying them in
order to the buffer buf, of the size len.

If the data is to be sent from the driver to the port owner process, it is faster to use
driver outputv.

The return value is the space left in the buffer, i.e. if the ev contains less than len bytes
it’s the difference, and if ev contains len bytes or more, it’s 0. This is faster if there is
more than one header byte, since the binary syntax can construct integers directly from
the binary.

int driver set timer(ErlDrvPort port, unsigned long time)

124 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function sets a timer on the driver, which will count down and call the driver when
it is timed out. The time parameter is the time in milliseconds before the timer expires.

When the timer reaches 0 and expires, the driver entry function timeout [page 110] is
called.

Note that there is only one timer on each driver instance; setting a new timer will
replace an older one.

Return value i 0 (-1 only when the timeout driver function is NULL).

int driver cancel timer(ErlDrvPort port)

This function cancels a timer set with driver set timer.

The return value is 0.

int driver read timer(ErlDrvPort port, unsigned long *time left)

This function reads the current time of a timer, and places the result in time left. This
is the time in milliseconds, before the timeout will occur.

The return value is 0.

int driver get now(ErlDrvNowData *now)

This function reads a timestamp into the memory pointed to by the parameter now. See
the description of ErlDrvNowData [page 121] for specification of it’s fields.

The return value is 0 unless the now pointer is not valid, in which case it is < 0.

int driver select(ErlDrvPort port, ErlDrvEvent event, int mode, int on)

The driver select is used by the driver to provide the emulator with an event to
check for. This enables the emulator to call the driver when something has happened
asynchronously.

The event parameter is used in the emulator cycle in a select call. If the event is set
then the driver is called. The mode parameter can be either ON READ or ON WRITE, and
specifies whether ready output [page 113] or ready input [page 113] will be called
when the event is fired. Note that this is just a convention, they don’t have to read or
write anything.

The on parameter should be 1 for adding the event and 0 for removing it.

On Unix systems, the function select is used. The event must be a socket or pipe (or
other object that select can use).

On windows, the Win32 API function WaitForMultipleObjects is used. This places
other restriction on the event. Refer to the Win32 SDK documentation.

The return value is 0 (Failure, -1, only if the ready input/ready output is NULL.

void *driver alloc(size t size)

125Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

This function allocates a memory block of the size specified in size, and returns it. This
only fails on out of memory, in that case NULL is returned. (This is most often a wrapper
for malloc).

Memory allocated must be explicitly freed with a corresponding call to driver free
(unless otherwise stated).

This function is thread-safe.

void *driver realloc(void *ptr, size t size)

This function resizes a memory block, either in place, or by allocating a new block,
copying the data and freeing the old block. A pointer is returned to the reallocated
memory. On failure (out of memory), NULL is returned. (This is most often a wrapper
for realloc.)

This function is thread-safe.

void driver free(void *ptr)

This function frees the memory pointed to by ptr. The memory should have been
allocated with driver alloc. All allocated memory should be deallocated, just once.
There is no garbage collection in drivers.

This function is thread-safe.

ErlDrvBinary* driver alloc binary(int size)

This function allocates a driver binary with a memory block of at least size bytes, and
returns a pointer to it, or NULL on failure (out of memory). When a driver binary has
been sent to the emulator, it must not be altered. Every allocated binary should be freed
by a corresponding call to driver free binary (unless othwerwise stated).

Note that a driver binary has an internal reference counter, this means that calling
driver free binary it may not actually dispose of it. If it’s sent to the emulator, it may
be referenced there.

The driver binary has a field, orig bytes, which marks the start of the data in the
binary.

This function is thread-safe.

ErlDrvBinary* driver realloc binary(ErlDrvBinary *bin, int size)

This function resizes a driver binary, while keeping the data. The resized driver binary is
returned. On failure (out of memory), NULL is returned.

This function is only thread-safe when the emulator with SMP support is used.

void driver free binary(ErlDrvBinary *bin)

This function frees a driver binary bin, allocated previously with driver alloc binary.
Since binaries in Erlang are reference counted, the binary may still be around.

This function is only thread-safe when the emulator with SMP support is used.

long driver binary get refc(ErlDrvBinary *bin)

126 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

Returns current reference count on bin.

This function is only thread-safe when the emulator with SMP support is used.

long driver binary inc refc(ErlDrvBinary *bin)

Increments the reference count on bin and returns the reference count reached after
the increment.

This function is only thread-safe when the emulator with SMP support is used.

long driver binary dec refc(ErlDrvBinary *bin)

Decrements the reference count on bin and returns the reference count reached after
the decrement.

This function is only thread-safe when the emulator with SMP support is used.

Note:
You should normally decrement the reference count of a driver binary by calling
driver free binary() [page 126]. driver binary dec refc() does not free the binary
if the reference count reaches zero. Only use driver binary dec refc() when you
are sure not to reach a reference count of zero.

int driver enq(ErlDrvPort port, char* buf, int len)

This function enqueues data in the driver queue. The data in buf is copied (len bytes)
and placed at the end of the driver queue. The driver queue is normally used in a FIFO
way.

The driver queue is available to queue output from the emulator to the driver (data
from the driver to the emulator is queued by the emulator in normal erlang message
queues). This can be useful if the driver has to wait for slow devices etc, and wants to
yield back to the emulator. The driver queue is implemented as an ErlIOVec.

When the queue contains data, the driver won’t close, until the queue is empty.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

int driver pushq(ErlDrvPort port, char* buf, int len)

This function puts data at the head of the driver queue. The data in buf is copied (len
bytes) and placed at the beginning of the queue.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

int driver deq(ErlDrvPort port, int size)

127Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

This function dequeues data by moving the head pointer forward in the driver queue by
size bytes. The data in the queue will be dealloced.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

int driver sizeq(ErlDrvPort port)

This function returns the number of bytes currently in the driver queue.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

int driver enq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int len)

This function enqueues a driver binary in the driver queue. The data in bin at offset
with length len is placed at the end of the queue. This function is most often faster
than driver enq, because the data doesn’t have to be copied.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

The return value is 0.

int driver pushq bin(ErlDrvPort port, ErlDrvBinary *bin, int offset, int len)

This function puts data in the binary bin, at offset with length len at the head of the
driver queue. It is most often faster than driver pushq, because the data doesn’t have
to be copied.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

The return value is 0.

SysIOVec* driver peekq(ErlDrvPort port, int *vlen)

This function retrieves the driver queue as a pointer to an array of SysIOVecs. It also
returns the number of elements in vlen. This is the only way to get data out of the
queue.

Nothing is remove from the queue by this function, that must be done with
driver deq.

The returned array is suitable to use with the Unix system call writev.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

int driver enqv(ErlDrvPort port, ErlIOVec *ev, int skip)

This function enqueues the data in ev, skipping the first skip bytes of it, at the end of
the driver queue. It is faster than driver enq, because the data doesn’t have to be
copied.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

128 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

int driver pushqv(ErlDrvPort port, ErlIOVec *ev, int skip)

This function puts the data in ev, skipping the first skip bytes of it, at the head of the
driver queue. It is faster than driver pushq, because the data doesn’t have to be copied.

The return value is 0.

This function can be called from an arbitrary thread if a port data lock [page 122]
associated with the port is locked by the calling thread during the call.

ErlDrvPDL driver pdl create(ErlDrvPort port)

This function creates a port data lock associated with the port. NOTE: Once a port
data lock has been created, it has to be locked during all operations on the driver queue
of the port.

On success a newly created port data lock is returned. On failure NULL is returned.
driver pdl create() will fail if port is invalid or if a port data lock already has been
associated with the port.

void driver pdl lock(ErlDrvPDL pdl)

This function locks the port data lock passed as argument (pdl).

This function is thread-safe.

void driver pdl unlock(ErlDrvPDL pdl)

This function unlocks the port data lock passed as argument (pdl).

This function is thread-safe.

long driver pdl get refc(ErlDrvPDL pdl)

This function returns the current reference count of the port data lock passed as
argument (pdl).

This function is thread-safe.

long driver pdl inc refc(ErlDrvPDL pdl)

This function increments the reference count of the port data lock passed as argument
(pdl).

The current reference count after the increment has been performed is returned.

This function is thread-safe.

long driver pdl dec refc(ErlDrvPDL pdl)

This function decrements the reference count of the port data lock passed as argument
(pdl).

The current reference count after the decrement has been performed is returned.

This function is thread-safe.

int driver monitor process(ErlDrvPort port, ErlDrvTermData process, ErlDrvMonitor
*monitor)

129Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

Start monitoring a process from a driver. When a process is monitored, a process exit
will result in a call to the provided process exit [page 115] call-back in the ErlDrvEntry
[page 110] structure. The ErlDrvMonitor structure is filled in, for later removal or
compare.

The process parameter should be the return value of an earlier call to driver caller
[page 131] or driver connected [page 131] call.

The function returns 0 on success, < 0 if no call-back is provided and > 0 if the process
is no longer alive.

int driver demonitor process(ErlDrvPort port, const ErlDrvMonitor *monitor)

This function cancels an monitor created earlier.

The function returns 0 if a monitor was removed and > 0 if the monitor did no longer
exist.

ErlDrvTermData driver get monitored process(ErlDrvPort port, const ErlDrvMonitor
*monitor)

The function returns the process id associated with a living monitor. It can be used in
the process exit call-back to get the process identification for the exiting process.

The function returns driver term nil if the monitor no longer exists.

int driver compare monitors(const ErlDrvMonitor *monitor1, const ErlDrvMonitor
*monitor2)

This function is used to compare two ErlDrvMonitors. It can also be used to imply
some artificial order on monitors, for whatever reason.

The function returns 0 if monitor1 and monitor2 are equal, < 0 if monitor1 is less than
monitor2 and > 0 if monitor1 is greater than monitor2.

void add driver entry(ErlDrvEntry *de)

This function adds a driver entry to the list of drivers known by Erlang. The init [page
112] function of the de parameter is called.

Note:
To use this function for adding drivers residing in dynamically loaded code is
dangerous. If the driver code for the added driver resides in the same dynamically
loaded module (i.e. .so file) as a normal dynamically loaded driver (loaded with the
erl ddll interface), the caller should call driver lock driver [page 135] before
adding driver entries.

Use of this function is generally deprecated.

int remove driver entry(ErlDrvEntry *de)

This function removes a driver entry de previously added with add driver entry.

Driver entries added by the erl ddll erlang interface can not be removed by using this
interface.

130 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

char* erl errno id(int error)

This function returns the atom name of the erlang error, given the error number in
error. Error atoms are: einval, enoent, etc. It can be used to make error terms from
the driver.

void set busy port(ErlDrvPort port, int on)

This function set and resets the busy status of the port. If on is 1, the port is set to busy,
if it’s 0 the port is set to not busy.

When the port is busy, sending to it with Port ! Data or port command/2, will block
the port owner process, until the port is signaled as not busy.

void set port control flags(ErlDrvPort port, int flags)

This function sets flags for how the control [page 113] driver entry function will return
data to the port owner process. (The control function is called from port control/3
in erlang.)

Currently there are only two meaningful values for flags: 0 means that data is returned
in a list, and PORT CONTROL FLAG BINARY means data is returned as a binary from
control.

int driver failure eof(ErlDrvPort port)

This function signals to erlang that the driver has encountered an EOF and should be
closed, unless the port was opened with the eof option, in that case eof is sent to the
port. Otherwise, the port is close and an ’EXIT’ message is sent to the port owner
process.

The return value is 0.

int driver failure atom(ErlDrvPort port, char *string)

int driver failure posix(ErlDrvPort port, int error)

int driver failure(ErlDrvPort port, int error)

These functions signal to Erlang that the driver has encountered an error and should be
closed. The port is closed and the tuple f’EXIT’, error, Errg, is sent to the port
owner process, where error is an error atom (driver failure atom and
driver failure posix), or an integer (driver failure).

The driver should fail only when in severe error situations, when the driver cannot
possibly keep open, for instance buffer allocation gets out of memory. Normal errors is
more appropriate to handle with sending error codes with driver output.

The return value is 0.

ErlDrvTermData driver connected(ErlDrvPort port)

This function returns the port owner process.

ErlDrvTermData driver caller(ErlDrvPort port)

This function returns the process id of the process that made the current call to the
driver. The process id can be used with driver send term to send back data to the
caller. driver caller() only return valid data when currently executing in one of the
following driver callbacks:

131Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

start [page 112] Called from open port/2.

output [page 112] Called from erlang:send/2, and erlang:port command/2

outputv [page 114] Called from erlang:send/2, and erlang:port command/2

control [page 113] Called from erlang:port control/3

call [page 114] Called from erlang:port call/3

int driver output term(ErlDrvPort port, ErlDrvTermData* term, int n)

This functions sends data in the special driver term format. This is a fast way to deliver
term data from a driver. It also needs no binary conversion, so the port owner process
receives data as normal Erlang terms.

The term parameter points to an array of ErlDrvTermData, with n elements. This array
contains terms described in the driver term format. Every term consists of one to four
elements in the array. The term first has a term type, and then arguments.

Tuple and lists (with the exception of strings, see below), are built in reverse polish
notation, so that to build a tuple, the elements are given first, and then the tuple term,
with a count. Likewise for lists.

A tuple must be specified with the number of elements. (The elements precedes the
ERL DRV TUPLE term.)

A list must be specified with the number of elements, including the tail, which is the
last term preceding ERL DRV LIST.

The special term ERL DRV STRING CONS is used to “splice” in a string in a list, a string
given this way is not a list per se, but the elements are elements of the surrounding list.

Term type Argument(s)
===
ERL DRV NIL
ERL DRV ATOM ErlDrvTermData atom (from driver mk atom(char *string))
ERL DRV INT ErlDrvSInt integer
ERL DRV UINT ErlDrvUInt integer
ERL DRV PORT ErlDrvTermData port (from driver mk port(ErlDrvPort port))
ERL DRV BINARY ErlDrvBinary *bin, ErlDrvUInt len, ErlDrvUInt offset
ERL DRV BUF2BINARY char *buf, ErlDrvUInt len
ERL DRV STRING char *str, int len
ERL DRV TUPLE int sz
ERL DRV LIST int sz
ERL DRV PID ErlDrvTermData pid (from driver connected(ErlDrvPort port) or driver ca
ERL DRV STRING CONS char *str, int len
ERL DRV FLOAT double *dbl
ERL DRV EXT2TERM char *buf, ErlDrvUInt len

The unsigned integer data type ErlDrvUInt and the signed integer data type
ErlDrvSInt are 64 bits wide on a 64 bit runtime system and 32 bits wide on a 32 bit
runtime system. They were introduced in erts version 5.6, and replaced some of the int
arguments in the list above.

To build the tuple ftcp, Port, [100 | Binary]g, the following call could be made.

132 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

ErlDrvBinary* bin = ...
ErlDrvPort port = ...
ErlDrvTermData spec[] = {

ERL_DRV_ATOM, driver_mk_atom("tcp"),
ERL_DRV_PORT, driver_mk_port(port),

ERL_DRV_INT, 100,
ERL_DRV_BINARY, bin, 50, 0,
ERL_DRV_LIST, 2,

ERL_DRV_TUPLE, 3,
};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

Where bin is a driver binary of length at least 50 and port is a port handle. Note that
the ERL DRV LIST comes after the elements of the list, likewise the ERL DRV TUPLE.

The term ERL DRV STRING CONS is a way to construct strings. It works differently from
how ERL DRV STRING works. ERL DRV STRING CONS builds a string list in reverse order,
(as opposed to how ERL DRV LIST works), concatenating the strings added to a list. The
tail must be given before ERL DRV STRING CONS.

The ERL DRV STRING constructs a string, and ends it. (So it’s the same as ERL DRV NIL
followed by ERL DRV STRING CONS.)

/* to send [x, "abc", y] to the port: */
ErlDrvTermData spec[] = {

ERL_DRV_ATOM, driver_mk_atom("x"),
ERL_DRV_STRING, (ErlDrvTermData)"abc", 3,
ERL_DRV_ATOM, driver_mk_atom("y"),
ERL_DRV_NIL,
ERL_DRV_LIST, 4

};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

/* to send "abc123" to the port: */
ErlDrvTermData spec[] = {

ERL_DRV_NIL, /* with STRING_CONS, the tail comes first */
ERL_DRV_STRING_CONS, (ErlDrvTermData)"123", 3,
ERL_DRV_STRING_CONS, (ErlDrvTermData)"abc", 3,

};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

The ERL DRV EXT2TERM term type is used for passing a term encoded with the external
format [page 51], i.e., a term that has been encoded by [erlang:term to binary],
[erl interface], etc. For example, if binp is a pointer to an ErlDrvBinary that contains
the term f17, 4711g encoded with the external format [page 51] and you want to
wrap it in a two tuple with the tag my tag, i.e., fmy tag, f17, 4711gg, you can do as
follows:

ErlDrvTermData spec[] = {
ERL_DRV_ATOM, driver_mk_atom("my_tag"),
ERL_DRV_EXT2TERM, (ErlDrvTermData) binp->orig_bytes, binp->orig_size

ERL_DRV_TUPLE, 2,
};
driver_output_term(port, spec, sizeof(spec) / sizeof(spec[0]));

133Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

If you want to pass a binary and doesn’t already have the content of the binary in an
ErlDrvBinary, you can benefit from using ERL DRV BUF2BINARY instead of creating an
ErlDrvBinary via driver alloc binary() and then pass the binary via
ERL DRV BINARY. The runtime system will often allocate binaries smarter if
ERL DRV BUF2BINARY is used. However, if the content of the binary to pass already
resides in an ErlDrvBinary, it is normally better to pass the binary using
ERL DRV BINARY and the ErlDrvBinary in question.

The ERL DRV UINT, ERL DRV BUF2BINARY, and ERL DRV EXT2TERM term types were
introduced in the 5.6 version of erts.

Note that this function is not thread-safe, not even when the emulator with SMP
support is used.

ErlDrvTermData driver mk atom(char* string)

This function returns an atom given a name string. The atom is created and won’t
change, so the return value may be saved and reused, which is faster than looking up the
atom several times.

ErlDrvTermData driver mk port(ErlDrvPort port)

This function converts a port handle to the erlang term format, usable in the
driver output send function.

int driver send term(ErlDrvPort port, ErlDrvTermData receiver, ErlDrvTermData* term,
int n)

This function is the only way for a driver to send data to other processes than the port
owner process. The receiver parameter specifies the process to receive the data.

The parameters term and n does the same thing as in driver output term [page 132].

This function is only thread-safe when the emulator with SMP support is used.

long driver async (ErlDrvPort port, unsigned int* key, void (*async invoke)(void*),
void* async data, void (*async free)(void*))

This function performs an asynchronous call. The function async invoke is invoked in
a thread separate from the emulator thread. This enables the driver to perform
time-consuming, blocking operations without blocking the emulator.

Erlang is by default started without an async thread pool. The number of async threads
that the runtime system should use is specified by the +A [page 83] command line
argument of erl(1) [page 79]. If no async thread pool is available, the call is made
synchronously in the thread calling driver async(). The current number of async
threads in the async thread pool can be retrieved via driver system info() [page 123].

If there is a thread pool available, a thread will be used. If the key argument is null, the
threads from the pool are used in a round-robin way, each call to driver async uses the
next thread in the pool. With the key argument set, this behaviour is changed. The two
same values of *key always get the same thread.

To make sure that a driver instance always uses the same thread, the following call can
be used:

unsigned int myKey = (unsigned int) myPort;

r = driver_async(myPort, &myKey, myData, myFunc);

134 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

It is enough to initialize myKey once for each driver instance.

If a thread is already working, the calls will be queued up and executed in order. Using
the same thread for each driver instance ensures that the calls will be made in sequence.

The async data is the argument to the functions async invoke and async free. It’s
typically a pointer to a structure that contains a pipe or event that can be used to signal
that the async operation completed. The data should be freed in async free, because
it’s called if driver async cancel is called.

When the async operation is done, ready async [page 114] driver entry function is
called. If async ready is null in the driver entry, the async free function is called
instead.

The return value is a handle to the asynchronous task, which can be used as argument
to driver async cancel.

Note:
As of erts version 5.5.4.3 the default stack size for threads in the async-thread pool is
16 kilowords, i.e., 64 kilobyte on 32-bit architectures. This small default size has
been chosen since the amount of async-threads might be quite large. The default
stack size is enough for drivers delivered with Erlang/OTP, but might not be
sufficiently large for other dynamically linked in drivers that use the driver async()
functionality. A suggested stack size for threads in the async-thread pool can be
configured via the +a [page 83] command line argument of erl(1) [page 79].

int driver async cancel(long id)

This function cancels an asynchronous operation, by removing it from the queue. Only
functions in the queue can be cancelled; if a function is executing, it’s too late to cancel
it. The async free function is also called.

The return value is 1 if the operation was removed from the queue, otherwise 0.

int driver lock driver(ErlDrvPort port)

This function locks the driver used by the port port in memory for the rest of the
emulator process lifetime. After this call, the driver behaves as one of Erlang’s statically
linked in drivers.

ErlDrvPort driver create port(ErlDrvPort port, ErlDrvTermData owner pid, char* name,
ErlDrvData drv data)

This function creates a new port executing the same driver code as the port creating the
new port. A short description of the arguments:

port The port handle of the port (driver instance) creating the new port.

owner pid The process id of the Erlang process which will be owner of the new port.
This process will be linked to the new port. You usually want to use
driver caller(port) as owner pid.

name The port name of the new port. You usually want to use the same port name as
the driver name (driver name [page 113] field of the driver entry [page 110]).

135Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

drv data The driver defined handle that will be passed in subsequent calls to driver
call-backs. Note, that the driver start call-back [page 112] will not be called for
this new driver instance. The driver defined handle is normally created in the
driver start call-back [page 112] when a port is created via [erlang:open port/2].

The caller of driver create port() is allowed to manipulate the newly created port
when driver create port() has returned. When port level locking [page 116] is used,
the creating port is, however, only allowed to manipulate the newly created port until
the current driver call-back that was called by the emulator returns.

Note:
When port level locking [page 116] is used, the creating port is only allowed to
manipulate the newly created port until the current driver call-back returns.

int erl drv thread create(char *name, ErlDrvTid *tid, void * (*func)(void *), void
*arg, ErlDrvThreadOpts *opts)

Arguments:

name A string identifying the created thread. It will be used to identify the thread in
planned future debug functionality.

tid A pointer to a thread identifier variable.

func A pointer to a function to execute in the created thread.

arg A pointer to argument to the func function.

opts A pointer to thread options to use or NULL.

This function creates a new thread. On success 0 is returned; otherwise, an errno value
is returned to indicate the error. The newly created thread will begin executing in the
function pointed to by func, and func will be passed arg as argument. When
erl drv thread create() returns the thread identifier of the newly created thread will
be available in *tid. opts can be either a NULL pointer, or a pointer to an
ErlDrvThreadOpts [page 122] structure. If opts is a NULL pointer, default options will
be used; otherwise, the passed options will be used.

Warning:
You are not allowed to allocate the ErlDrvThreadOpts [page 122] structure by
yourself. It has to be allocated and initialized by erl drv thread opts create() [page
137].

The created thread will terminate either when func returns or if erl drv thread exit()
[page 137] is called by the thread. The exit value of the thread is either returned from
func or passed as argument to erl drv thread exit() [page 137]. The driver creating the
thread has the responsibility of joining the thread, via erl drv thread join() [page 137],
before the driver is unloaded. It is not possible to create “detached” threads, i.e., threads
that don’t need to be joined.

136 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

Warning:
All created threads need to be joined by the driver before it is unloaded. If the driver
fails to join all threads created before it is unloaded, the runtime system will most
likely crash when the code of the driver is unloaded.

This function is thread-safe.

ErlDrvThreadOpts *erl drv thread opts create(char *name)

Arguments:

name A string identifying the created thread options. It will be used to identify the
thread options in planned future debug functionality.

This function allocates and initialize a thread option structure. On failure NULL is
returned. A thread option structure is used for passing options to
erl drv thread create() [page 136]. If the structure isn’t modified before it is passed to
erl drv thread create() [page 136], the default values will be used.

Warning:
You are not allowed to allocate the ErlDrvThreadOpts [page 122] structure by
yourself. It has to be allocated and initialized by erl drv thread opts create().

This function is thread-safe.

void erl drv thread opts destroy(ErlDrvThreadOpts *opts)

Arguments:

opts A pointer to thread options to destroy.

This function destroys thread options previously created by erl drv thread opts create()
[page 137].

This function is thread-safe.

void erl drv thread exit(void *exit value)

Arguments:

exit value A pointer to an exit value or NULL.

This function terminates the calling thread with the exit value passed as argument. You
are only allowed to terminate threads created with erl drv thread create() [page 136].
The exit value can later be retrieved by another thread via erl drv thread join() [page
137].

This function is thread-safe.

int erl drv thread join(ErlDrvTid tid, void **exit value)

Arguments:

137Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

tid The thread identifier of the thread to join.

exit value A pointer to a pointer to an exit value, or NULL.

This function joins the calling thread with another thread, i.e., the calling thread is
blocked until the thread identified by tid has terminated. On success 0 is returned;
otherwise, an errno value is returned to indicate the error. A thread can only be joined
once. The behavior of joining more than once is undefined, an emulator crash is likely.
If exit value == NULL, the exit value of the terminated thread will be ignored;
otherwise, the exit value of the terminated thread will be stored at *exit value.

This function is thread-safe.

ErlDrvTid erl drv thread self(void)

This function returns the thread identifier of the calling thread.

This function is thread-safe.

int erl drv equal tids(ErlDrvTid tid1, ErlDrvTid tid2)

Arguments:

tid1 A thread identifier.

tid2 A thread identifier.

This function compares two thread identifiers for equality, and returns 0 it they aren’t
equal, and a value not equal to 0 if they are equal.

Note:
A Thread identifier may be reused very quickly after a thread has terminated.
Therefore, if a thread corresponding to one of the involved thread identifiers has
terminated since the thread identifier was saved, the result of erl drv equal tids()
might not give expected result.

This function is thread-safe.

ErlDrvMutex *erl drv mutex create(char *name)

Arguments:

name A string identifying the created mutex. It will be used to identify the mutex in
planned future debug functionality.

This function creates a mutex and returns a pointer to it. On failure NULL is returned.
The driver creating the mutex has the responsibility of destroying it before the driver is
unloaded.

This function is thread-safe.

void erl drv mutex destroy(ErlDrvMutex *mtx)

Arguments:

mtx A pointer to a mutex to destroy.

138 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function destroys a mutex previously created by erl drv mutex create() [page
138]. The mutex has to be in an unlocked state before being destroyed.

This function is thread-safe.

void erl drv mutex lock(ErlDrvMutex *mtx)

Arguments:

mtx A pointer to a mutex to lock.

This function locks a mutex. The calling thread will be blocked until the mutex has
been locked. A thread which currently has locked the mutex may not lock the same
mutex again.

Warning:
If you leave a mutex locked in an emulator thread when you let the thread out of
your control, you will very likely deadlock the whole emulator.

This function is thread-safe.

int erl drv mutex trylock(ErlDrvMutex *mtx)

Arguments:

mtx A pointer to a mutex to try to lock.

This function tries to lock a mutex. If successful 0, is returned; otherwise, EBUSY is
returned. A thread which currently has locked the mutex may not try to lock the same
mutex again.

Warning:
If you leave a mutex locked in an emulator thread when you let the thread out of
your control, you will very likely deadlock the whole emulator.

This function is thread-safe.

void erl drv mutex unlock(ErlDrvMutex *mtx)

Arguments:

mtx A pointer to a mutex to unlock.

This function unlocks a mutex. The mutex currently has to be locked by the calling
thread.

This function is thread-safe.

ErlDrvCond *erl drv cond create(char *name)

Arguments:

139Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

name A string identifying the created condition variable. It will be used to identify the
condition variable in planned future debug functionality.

This function creates a condition variable and returns a pointer to it. On failure NULL is
returned. The driver creating the condition variable has the responsibility of destroying
it before the driver is unloaded.

This function is thread-safe.

void erl drv cond destroy(ErlDrvCond *cnd)

Arguments:

cnd A pointer to a condition variable to destroy.

This function destroys a condition variable previously created by erl drv cond create()
[page 139].

This function is thread-safe.

void erl drv cond signal(ErlDrvCond *cnd)

Arguments:

cnd A pointer to a condition variable to signal on.

This function signals on a condition variable. That is, if other threads are waiting on the
condition variable being signaled, one of them will be woken.

This function is thread-safe.

void erl drv cond broadcast(ErlDrvCond *cnd)

Arguments:

cnd A pointer to a condition variable to broadcast on.

This function broadcasts on a condition variable. That is, if other threads are waiting on
the condition variable being broadcasted on, all of them will be woken.

This function is thread-safe.

void erl drv cond wait(ErlDrvCond *cnd, ErlDrvMutex *mtx)

Arguments:

cnd A pointer to a condition variable to wait on.

mtx A pointer to a mutex to unlock while waiting.

140 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function waits on a condition variable. The calling thread is blocked until another
thread wakes it by signaling or broadcasting on the condition variable. Before the calling
thread is blocked it unlocks the mutex passed as argument, and when the calling thread
is woken it locks the same mutex before returning. That is, the mutex currently has to
be locked by the calling thread when calling this function.

Note:
erl drv cond wait() might return even though no-one has signaled or broadcasted
on the condition variable. Code calling erl drv cond wait() should always be
prepared for erl drv cond wait() returning even though the condition that the
thread was waiting for hasn’t occurred. That is, when returning from
erl drv cond wait() always check if the condition has occurred, and if not call
erl drv cond wait() again.

This function is thread-safe.

ErlDrvRWLock *erl drv rwlock create(char *name)

Arguments:

name A string identifying the created rwlock. It will be used to identify the rwlock in
planned future debug functionality.

This function creates an rwlock and returns a pointer to it. On failure NULL is returned.
The driver creating the rwlock has the responsibility of destroying it before the driver is
unloaded.

This function is thread-safe.

void erl drv rwlock destroy(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to destroy.

This function destroys an rwlock previously created by erl drv rwlock create() [page
141]. The rwlock has to be in an unlocked state before being destroyed.

This function is thread-safe.

void erl drv rwlock rlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to read lock.

141Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

This function read locks an rwlock. The calling thread will be blocked until the rwlock
has been read locked. A thread which currently has read or read/write locked the
rwlock may not lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of
your control, you will very likely deadlock the whole emulator.

This function is thread-safe.

int erl drv rwlock tryrlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to try to read lock.

This function tries to read lock an rwlock. If successful 0, is returned; otherwise, EBUSY
is returned. A thread which currently has read or read/write locked the rwlock may not
try to lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of
your control, you will very likely deadlock the whole emulator.

This function is thread-safe.

void erl drv rwlock runlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to read unlock.

This function read unlocks an rwlock. The rwlock currently has to be read locked by
the calling thread.

This function is thread-safe.

void erl drv rwlock rwlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to read/write lock.

142 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

This function read/write locks an rwlock. The calling thread will be blocked until the
rwlock has been read/write locked. A thread which currently has read or read/write
locked the rwlock may not lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of
your control, you will very likely deadlock the whole emulator.

This function is thread-safe.

int erl drv rwlock tryrwlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to try to read/write lock.

This function tries to read/write lock an rwlock. If successful 0, is returned; otherwise,
EBUSY is returned. A thread which currently has read or read/write locked the rwlock
may not try to lock the same rwlock again.

Warning:
If you leave an rwlock locked in an emulator thread when you let the thread out of
your control, you will very likely deadlock the whole emulator.

This function is thread-safe.

void erl drv rwlock rwunlock(ErlDrvRWLock *rwlck)

Arguments:

rwlck A pointer to an rwlock to read/write unlock.

This function read/write unlocks an rwlock. The rwlock currently has to be read/write
locked by the calling thread.

This function is thread-safe.

int erl drv tsd key create(char *name, ErlDrvTSDKey *key)

Arguments:

name A string identifying the created key. It will be used to identify the key in planned
future debug functionality.

key A pointer to a thread specific data key variable.

This function creates a thread specific data key. On success 0 is returned; otherwise, an
errno value is returned to indicate the error. The driver creating the key has the
responsibility of destroying it before the driver is unloaded.

This function is thread-safe.

143Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

void erl drv tsd key destroy(ErlDrvTSDKey key)

Arguments:

key A thread specific data key to destroy.

This function destroys a thread specific data key previously created by
erl drv tsd key create() [page 143]. All thread specific data using this key in all threads
have to be cleared (see erl drv tsd set() [page 144]) prior to the call to
erl drv tsd key destroy().

Warning:
A destroyed key is very likely to be reused soon. Therefore, if you fail to clear the
thread specific data using this key in a thread prior to destroying the key, you will
very likely get unexpected errors in other parts of the system.

This function is thread-safe.

void erl drv tsd set(ErlDrvTSDKey key, void *data)

Arguments:

key A thread specific data key.

data A pointer to data to associate with key in calling thread.

This function sets thread specific data associated with key for the calling thread. You
are only allowed to set thread specific data for threads while they are fully under your
control. For example, if you set thread specific data in a thread calling a driver call-back
function, it has to be cleared, i.e. set to NULL, before returning from the driver call-back
function.

Warning:
If you fail to clear thread specific data in an emulator thread before letting it out of
your control, you might not ever be able to clear this data with later unexpected
errors in other parts of the system as a result.

This function is thread-safe.

void *erl drv tsd get(ErlDrvTSDKey key)

Arguments:

key A thread specific data key.

This function returns the thread specific data associated with key for the calling thread.
If no data has been associated with key for the calling thread, NULL is returned.

This function is thread-safe.

int erl drv putenv(char *key, char *value)

144 Erlang Run-Time System Application (ERTS)

ERTS Reference Manual erl driver

Arguments:

key A null terminated string containing the name of the environment variable.
value A null terminated string containing the new value of the environment variable.

This function sets the value of an environment variable. It returns 0 on success, and a
value != 0 on failure.

Note:
The result of passing the empty string (“”) as a value is platform dependent. On some
platforms the value of the variable is set to the empty string, on others, the
environment variable is removed.

Warning:
Do not use libc’s putenv or similar C library interfaces from a driver.

This function is thread-safe.

int erl drv getenv(char *key, char *value, size t *value size)

Arguments:

key A null terminated string containing the name of the environment variable.
value A pointer to an output buffer.
value size A pointer to an integer. The integer is both used for passing input and

output sizes (see below).

This function retrieves the value of an environment variable. When called, *value size
should contain the size of the value buffer. On success 0 is returned, the value of the
environment variable has been written to the value buffer, and *value size contains
the string length (excluding the terminating null character) of the value written to the
value buffer. On failure, i.e., no such environment variable was found, a value less than
0 is returned. When the size of the value buffer is too small, a value greater than 0 is
returned and *value size has been set to the buffer size needed.

Warning:
Do not use libc’s getenv or similar C library interfaces from a driver.

This function is thread-safe.

SEE ALSO

driver entry(3) [page 110], [erl ddll(3)], [erlang(3)]

An Alternative Distribution Driver (ERTS User’s Guide Ch. 3)

145Erlang Run-Time System Application (ERTS)

erl driver ERTS Reference Manual

146 Erlang Run-Time System Application (ERTS)

List of Figures

1.1 Summary of EPMD requests. 60

147Erlang Run-Time System Application (ERTS)

List of Figures

148 Erlang Run-Time System Application (ERTS)

List of Tables

1.1 Literals in the MatchCondition/MatchBody parts of a match spec 5

1.2 tty text editing . 35

1.3 . 51

1.4 . 51

1.5 . 52

1.6 . 52

1.7 . 52

1.8 . 52

1.9 . 53

1.10 . 53

1.11 . 53

1.12 . 54

1.13 . 54

1.14 . 54

1.15 . 54

1.16 . 55

1.17 . 55

1.18 . 55

1.19 . 55

1.20 . 56

1.21 . 56

1.22 . 56

1.23 . 57

1.24 . 57

1.25 . 57

1.26 . 58

1.27 . 58

1.28 . 59

1.29 . 61

1.30 ALIVE2 REQ (120) . 61

149Erlang Run-Time System Application (ERTS)

List of Tables

1.31 ALIVE2 RESP (121) . 61

1.32 PORT PLEASE2 REQ (122) . 62

1.33 PORT2 RESP (119) response indicating error, Result > 0. 62

1.34 PORT2 RESP when Result = 0. 62

1.35 NAMES REQ (110) . 62

1.36 NAMES RESP . 63

1.37 DUMP REQ . 63

1.38 DUMP RESP . 63

1.39 KILL REQ . 64

1.40 KILL RESP . 64

1.41 STOP REQ . 64

1.42 STOP RESP . 64

1.43 STOP NOTOK RESP . 65

1.44 . 65

150 Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

char *driver_name
driver entry , 113

char* erl_errno_id/1
erl driver , 131

driver entry
char *driver_name, 113
int call/7, 114
int control/6, 113
int driver_flags, 115
int extended_marker, 114
int init/1, 112
int major_version, 115
int minor_version, 115
int start/2, 112
void *handle, 113
void *handle2, 115
void event/3, 114
void finish/1, 113
void output/3, 112
void outputv/2, 114
void process_exit/2, 115
void ready_async/2, 114
void ready_input/2, 112
void ready_output/2, 112
void stop/1, 112
void timeout/1, 114

epmd (Command)
epmd , 78

epmd
epmd (Command), 78

erl (Command)
erl , 79

erl
erl (Command), 79

erl driver
char* erl_errno_id/1, 131

ErlDrvBinary, 120
ErlDrvBinary* driver_alloc_binary/1,

126
ErlDrvBinary* driver_realloc_binary/2,

126
ErlDrvCond, 122
ErlDrvCond *erl_drv_cond_create/1,

139
ErlDrvData, 121
ErlDrvMonitor, 121
ErlDrvMutex, 122
ErlDrvMutex *erl_drv_mutex_create/1,

138
ErlDrvNowData, 121
ErlDrvPDL, 122
ErlDrvPDL driver_pdl_create/1, 129
ErlDrvPort driver_create_port/4, 135
ErlDrvRWLock, 123
ErlDrvRWLock *erl_drv_rwlock_create/1,

141
ErlDrvSysInfo, 119
ErlDrvTermData driver_caller/1, 131
ErlDrvTermData driver_connected/1,

131
ErlDrvTermData driver_get_monitored_process/2,

130
ErlDrvTermData driver_mk_atom/1, 134
ErlDrvTermData driver_mk_port/1, 134
ErlDrvThreadOpts, 122
ErlDrvThreadOpts *erl_drv_thread_opts_create/1,

137
ErlDrvTid, 122
ErlDrvTid erl_drv_thread_self/1, 138
ErlDrvTSDKey, 123
ErlIOVec, 121
int driver_async_cancel/1, 135
int driver_cancel_timer/1, 125
int driver_compare_monitors/2, 130
int driver_demonitor_process/2, 130
int driver_deq/2, 127
int driver_enq/3, 127

151Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

int driver_enq_bin/4, 128
int driver_enqv/3, 128
int driver_failure/2, 131
int driver_failure_atom/2, 131
int driver_failure_eof/1, 131
int driver_failure_posix/2, 131
int driver_get_now/1, 125
int driver_lock_driver/1, 135
int driver_monitor_process/3, 129
int driver_output/3, 123
int driver_output2/5, 123
int driver_output_binary/6, 124
int driver_output_term/3, 132
int driver_outputv/5, 124
int driver_pushq/3, 127
int driver_pushq_bin/4, 128
int driver_pushqv/3, 129
int driver_read_timer/2, 125
int driver_select/4, 125
int driver_send_term/4, 134
int driver_set_timer/2, 124
int driver_sizeq/1, 128
int driver_vec_to_buf/3, 124
int erl_drv_equal_tids/2, 138
int erl_drv_getenv/3, 145
int erl_drv_mutex_trylock/1, 139
int erl_drv_putenv/2, 144
int erl_drv_rwlock_tryrlock/1, 142
int erl_drv_rwlock_tryrwlock/1, 143
int erl_drv_thread_create/3, 136
int erl_drv_thread_join/2, 137
int erl_drv_tsd_key_create/2, 143
int remove_driver_entry/1, 130
long driver_async/3, 134
long driver_binary_dec_refc/1, 127
long driver_binary_get_refc/1, 126
long driver_binary_inc_refc/1, 127
long driver_pdl_dec_refc/1, 129
long driver_pdl_get_refc/1, 129
long driver_pdl_inc_refc/1, 129
SysIOVec, 121
SysIOVec* driver_peekq/2, 128
void *driver_alloc/1, 125
void *driver_realloc/2, 126
void *erl_drv_tsd_get/1, 144
void add_driver_entry/1, 130
void driver_free/1, 126
void driver_free_binary/1, 126
void driver_pdl_lock/1, 129
void driver_pdl_unlock/1, 129
void driver_system_info/2, 123
void erl_drv_cond_broadcast/1, 140
void erl_drv_cond_destroy/1, 140

void erl_drv_cond_signal/1, 140
void erl_drv_cond_wait/2, 140
void erl_drv_mutex_destroy/1, 138
void erl_drv_mutex_lock/1, 139
void erl_drv_mutex_unlock/1, 139
void erl_drv_rwlock_destroy/1, 141
void erl_drv_rwlock_rlock/1, 141
void erl_drv_rwlock_runlock/1, 142
void erl_drv_rwlock_rwlock/1, 142
void erl_drv_rwlock_rwunlock/1, 143
void erl_drv_thread_exit/1, 137
void erl_drv_thread_opts_destroy/1,

137
void erl_drv_tsd_key_destroy/1, 144
void erl_drv_tsd_set/2, 144
void set_busy_port/2, 131
void set_port_control_flags/2, 131

erl_mem_info_get/1 (C function)
erl set memory block , 103

erl_memory_show/1 (C function)
erl set memory block , 103

erl set memory block
erl_mem_info_get/1 (C function), 103
erl_memory_show/1 (C function), 103
erl_set_memory_block/6 (C function),

102

erl_set_memory_block/6 (C function)
erl set memory block , 102

erlc (Command)
erlc , 86

erlc
erlc (Command), 86

ErlDrvBinary
erl driver , 120

ErlDrvBinary* driver_alloc_binary/1
erl driver , 126

ErlDrvBinary* driver_realloc_binary/2
erl driver , 126

ErlDrvCond
erl driver , 122

ErlDrvCond *erl_drv_cond_create/1
erl driver , 139

ErlDrvData
erl driver , 121

ErlDrvMonitor
erl driver , 121

152 Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

ErlDrvMutex
erl driver , 122

ErlDrvMutex *erl_drv_mutex_create/1
erl driver , 138

ErlDrvNowData
erl driver , 121

ErlDrvPDL
erl driver , 122

ErlDrvPDL driver_pdl_create/1
erl driver , 129

ErlDrvPort driver_create_port/4
erl driver , 135

ErlDrvRWLock
erl driver , 123

ErlDrvRWLock *erl_drv_rwlock_create/1
erl driver , 141

ErlDrvSysInfo
erl driver , 119

ErlDrvTermData driver_caller/1
erl driver , 131

ErlDrvTermData driver_connected/1
erl driver , 131

ErlDrvTermData driver_get_monitored_process/2
erl driver , 130

ErlDrvTermData driver_mk_atom/1
erl driver , 134

ErlDrvTermData driver_mk_port/1
erl driver , 134

ErlDrvThreadOpts
erl driver , 122

ErlDrvThreadOpts *erl_drv_thread_opts_create/1
erl driver , 137

ErlDrvTid
erl driver , 122

ErlDrvTid erl_drv_thread_self/1
erl driver , 138

ErlDrvTSDKey
erl driver , 123

ErlIOVec
erl driver , 121

erlsrv (Command)
erlsrv , 91, 92

erlsrv

erlsrv (Command), 91, 92

escript (Command)
escript , 94

escript
escript (Command), 94
script-name (Command), 94

int call/7
driver entry , 114

int control/6
driver entry , 113

int driver_async_cancel/1
erl driver , 135

int driver_cancel_timer/1
erl driver , 125

int driver_compare_monitors/2
erl driver , 130

int driver_demonitor_process/2
erl driver , 130

int driver_deq/2
erl driver , 127

int driver_enq/3
erl driver , 127

int driver_enq_bin/4
erl driver , 128

int driver_enqv/3
erl driver , 128

int driver_failure/2
erl driver , 131

int driver_failure_atom/2
erl driver , 131

int driver_failure_eof/1
erl driver , 131

int driver_failure_posix/2
erl driver , 131

int driver_flags
driver entry , 115

int driver_get_now/1
erl driver , 125

int driver_lock_driver/1
erl driver , 135

int driver_monitor_process/3
erl driver , 129

153Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

int driver_output/3
erl driver , 123

int driver_output2/5
erl driver , 123

int driver_output_binary/6
erl driver , 124

int driver_output_term/3
erl driver , 132

int driver_outputv/5
erl driver , 124

int driver_pushq/3
erl driver , 127

int driver_pushq_bin/4
erl driver , 128

int driver_pushqv/3
erl driver , 129

int driver_read_timer/2
erl driver , 125

int driver_select/4
erl driver , 125

int driver_send_term/4
erl driver , 134

int driver_set_timer/2
erl driver , 124

int driver_sizeq/1
erl driver , 128

int driver_vec_to_buf/3
erl driver , 124

int erl_drv_equal_tids/2
erl driver , 138

int erl_drv_getenv/3
erl driver , 145

int erl_drv_mutex_trylock/1
erl driver , 139

int erl_drv_putenv/2
erl driver , 144

int erl_drv_rwlock_tryrlock/1
erl driver , 142

int erl_drv_rwlock_tryrwlock/1
erl driver , 143

int erl_drv_thread_create/3
erl driver , 136

int erl_drv_thread_join/2

erl driver , 137

int erl_drv_tsd_key_create/2
erl driver , 143

int extended_marker
driver entry , 114

int init/1
driver entry , 112

int major_version
driver entry , 115

int minor_version
driver entry , 115

int remove_driver_entry/1
erl driver , 130

int start/2
driver entry , 112

long driver_async/3
erl driver , 134

long driver_binary_dec_refc/1
erl driver , 127

long driver_binary_get_refc/1
erl driver , 126

long driver_binary_inc_refc/1
erl driver , 127

long driver_pdl_dec_refc/1
erl driver , 129

long driver_pdl_get_refc/1
erl driver , 129

long driver_pdl_inc_refc/1
erl driver , 129

run_erl (Command)
run erl , 96

run erl
run_erl (Command), 96

script-name (Command)
escript , 94

start (Command)
start , 98

start
start (Command), 98

start_erl (Command)
start erl , 99

154 Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

start erl
start_erl (Command), 99

SysIOVec
erl driver , 121

SysIOVec* driver_peekq/2
erl driver , 128

void *driver_alloc/1
erl driver , 125

void *driver_realloc/2
erl driver , 126

void *erl_drv_tsd_get/1
erl driver , 144

void *handle
driver entry , 113

void *handle2
driver entry , 115

void add_driver_entry/1
erl driver , 130

void driver_free/1
erl driver , 126

void driver_free_binary/1
erl driver , 126

void driver_pdl_lock/1
erl driver , 129

void driver_pdl_unlock/1
erl driver , 129

void driver_system_info/2
erl driver , 123

void erl_drv_cond_broadcast/1
erl driver , 140

void erl_drv_cond_destroy/1
erl driver , 140

void erl_drv_cond_signal/1
erl driver , 140

void erl_drv_cond_wait/2
erl driver , 140

void erl_drv_mutex_destroy/1
erl driver , 138

void erl_drv_mutex_lock/1
erl driver , 139

void erl_drv_mutex_unlock/1
erl driver , 139

void erl_drv_rwlock_destroy/1
erl driver , 141

void erl_drv_rwlock_rlock/1
erl driver , 141

void erl_drv_rwlock_runlock/1
erl driver , 142

void erl_drv_rwlock_rwlock/1
erl driver , 142

void erl_drv_rwlock_rwunlock/1
erl driver , 143

void erl_drv_thread_exit/1
erl driver , 137

void erl_drv_thread_opts_destroy/1
erl driver , 137

void erl_drv_tsd_key_destroy/1
erl driver , 144

void erl_drv_tsd_set/2
erl driver , 144

void event/3
driver entry , 114

void finish/1
driver entry , 113

void output/3
driver entry , 112

void outputv/2
driver entry , 114

void process_exit/2
driver entry , 115

void ready_async/2
driver entry , 114

void ready_input/2
driver entry , 112

void ready_output/2
driver entry , 112

void set_busy_port/2
erl driver , 131

void set_port_control_flags/2
erl driver , 131

void stop/1
driver entry , 112

void timeout/1
driver entry , 114

155Erlang Run-Time System Application (ERTS)

Index of Modules and Functions

156 Erlang Run-Time System Application (ERTS)

