
SSH

version 1.0

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.4 Document System.

Contents

1 SSH Reference Manual 1

1.1 SSH . 5

1.2 SSH . 9

1.3 ssh sftp . 13

1.4 ssh sftpd . 19

iiiSSH

iv SSH

SSH Reference Manual

Short Summaries

� Erlang Module ssh [page 5] – Main API of the SSH application

� Erlang Module ssh connection [page 9] – This module provides an API to the ssh
connection protocol.

� Erlang Module ssh sftp [page 13] – SFTP client.

� Erlang Module ssh sftpd [page 19] – Specifies a channel process to handle a sftp
subsystem.

ssh

The following functions are exported:

� close(ConnectionRef) ->
[page 5] Closes a ssh connection

� connect(Host) ->
[page 5] Connect to an ssh server.

� connect(Host, Options) ->
[page 5] Connect to an ssh server.

� connect(Host, Port, Options) -> fok, ssh connection ref()g | ferror,
Reasong
[page 5] Connect to an ssh server.

� daemon(Port) ->
[page 6] Starts a server listening for SSH connections on the given port.

� daemon(Port, Options) ->
[page 6] Starts a server listening for SSH connections on the given port.

� daemon(HostAddress, Port, Options) -> ssh system ref()
[page 6] Starts a server listening for SSH connections on the given port.

� shell(Host) ->
[page 7]

� shell(Host, Option) ->
[page 7]

� shell(Host, Port, Option) ->
[page 7]

� start() ->
[page 7] Starts the Ssh application.

1SSH

SSH Reference Manual

� start(Type) -> ok | ferror, Reasong
[page 7] Starts the Ssh application.

� stop() -> ok
[page 7] Stops the Ssh application.

� stop daemon(SysRef) ->
[page 7] Stops the listener and all connections started by the listener.

� stop daemon(Address, Port) -> ok
[page 7] Stops the listener and all connections started by the listener.

� stop listener(SysRef) ->
[page 7] Stops the listener, but leaves existing connections started by the listener
up and running.

� stop listener(Address, Port) -> ok
[page 7] Stops the listener, but leaves existing connections started by the listener
up and running.

ssh connection

The following functions are exported:

� adjust window(ConnectionRef, Channel, Bytes) -> ok
[page 10] Adjusts the ssh flowcontrol window.

� close(ConnectionRef, ChannelId) -> ok
[page 10] Sends a close message on the channel ChannelId.

� exec(ConnectionRef, ChannelId, Command, TimeOut) -> success |
failiure
[page 10] Will request that the server start the execution of the given command.

� reply request(ConnectionRef, WantReply, Status, CannelId) -> ok
[page 10] Send status replies to requests that want such replies.

� send(ConnectionRef, ChannelId, Data) ->
[page 10] Sends channel data

� send(ConnectionRef, ChannelId, Data, Timeout) ->
[page 10] Sends channel data

� send(ConnectionRef, ChannelId, Type, Data) ->
[page 10] Sends channel data

� send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | ferror,
timeoutg
[page 10] Sends channel data

� send eof(ConnectionRef, ChannelId) -> ok
[page 11] Sends eof on the channel ChannelId.

� session channel(ConnectionRef, Timeout) ->
[page 11] Opens a channel for a ssh session. A session is a remote execution of a
program. The program may be a shell, an application, a system command, or some
built-in subsystem.

� session channel(ConnectionRef, InitialWindowSize, MaxPacketSize,
Timeout) -> fok, ChannleIdg | ferror, Reasong
[page 11] Opens a channel for a ssh session. A session is a remote execution of a
program. The program may be a shell, an application, a system command, or some
built-in subsystem.

2 SSH

SSH Reference Manual

� setenv(ConnectionRef, ChannelId, Var, Value, TimeOut) -> success |
failure
[page 11] Environment variables may be passed to the shell/command to be
started later.

� shell(ConnectionRef, ChannelId) -> success | failure
[page 11] Will request that the user’s default shell (typically defined in
/etc/passwd in UNIX systems) be started at the other end.

� subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) -> success
| failure
[page 11]

ssh sftp

The following functions are exported:

� connect(CM) ->
[page 13] Connect to an SFTP server

� connect(Host, Options) ->
[page 13] Connect to an SFTP server

� connect(Host, Port, Options) -> fok, Pidg | ferror, Reasong
[page 13] Connect to an SFTP server

� read file(Server, File) -> fok, Datag | ferror, Reasong
[page 13] Read a file

� write file(Server, File, Iolist) -> ok | ferror, Reasong
[page 13] Write a file

� list dir(Server, Path) -> fok, Filenamesg | ferror, Reasong
[page 14] List directory

� open(Server, File, Mode) -> fok, Handleg | ferror, Reasong
[page 14] Open a file and return a handle

� opendir(Server, Path) -> fok, Handleg | ferror, Reasong
[page 14] Open a directory and return a handle

� close(Server, Handle) -> ok | ferror, Reasong
[page 14] Close an open handle

� read(Server, Handle, Len) -> fok, Datag | eof | ferror, Errorg
[page 14] Read from an open file

� pread(Server, Handle, Position, Length) -> fok, Datag | eof |
ferror, Errorg
[page 14] Read from an open file

� aread(Server, Handle, Len) -> fasync, Ng | ferror, Errorg
[page 15] Read asynchronously from an open file

� apread(Server, Handle, Position, Length) -> fasync, Ng | ferror,
Errorg
[page 15] Read asynchronously from an open file

� write(Server, Handle, Data) -> ok | ferror, Errorg
[page 15] Write to an open file

� pwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg
[page 15] Write to an open file

3SSH

SSH Reference Manual

� awrite(Server, Handle, Data) -> ok | ferror, Errorg
[page 15] Write asynchronously to an open file

� apwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg
[page 15] Write asynchronously to an open file

� position(Server, Handle, Location) -> fok, NewPosition | ferror,
Errorg
[page 16] Seek position in open file

� read file info(Server, Name) -> fok, FileInfog | ferror, Reasong
[page 16] Get information about a file

� get file info(Server, Handle) -> fok, FileInfog | ferror, Reasong
[page 16] Get information about a file

� read link info(Server, Name) -> fok, FileInfog | ferror, Reasong
[page 16] Get information about a symbolic link

� write file info(Server, Name, Info) -> ok | ferror, Reasong
[page 17] Write information for a file

� read link(Server, Name) -> fok, Targetg | ferror, Reasong
[page 17] Read symbolic link

� make symlink(Server, Name, Target) -> ok | ferror, Reasong
[page 17] Create symbolic link

� rename(Server, OldName, NewName) -> ok | ferror, Reasong
[page 17] Rename a file

� delete(Server, Name) -> ok | ferror, Reasong
[page 17] Delete a file

� make dir(Server, Name) -> ok | ferror, Reasong
[page 18] Create a directory

� del dir(Server, Name) -> ok | ferror, Reasong
[page 18] Delete an empty directory

� stop(Server) -> ok
[page 18] Stop sftp session

ssh sftpd

The following functions are exported:

� subsystem spec(Options) -> f"sftp", child spec()g
[page 19] Returns a child specification that allows an ssh daemon to handle an sftp
subssystem

4 SSH

SSH Reference Manual SSH

SSH
Erlang Module

Interface module for the SSH application

COMMON DATA TYPES

Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

ssh system ref() - opaque to the user returned by connect/[1,2,3]

ssh connection ref() - opaque to the user returned by listner/[]

ip address() - fN1,N2,N3,N4g % IPv4 | fK1,K2,K3,K4,K5,K6,K7,K8g % IPv6

child spec() - A child process specification see [supervisor(3)]

Exports

close(ConnectionRef) ->

Types:

� ConnectionRef = ssh connection ref()

Closed a ssh connection.

connect(Host) ->

connect(Host, Options) ->

connect(Host, Port, Options) -> fok, ssh connection ref()g | ferror, Reasong

Types:

� Host = string()
� Port = integer()

The default is 22, the registered port for SSH.
� Options = [fOption, Valueg]

Connects to an SSH server. No channel is started this is done by calling
ssh connect:session cahnnel/2.

Options are:

fuser dir, Stringg Sets the user directory, normally ~/.ssh (containing the files
known hosts, id rsa<c>, <c>id dsa, authorized keys).

5SSH

SSH SSH Reference Manual

fsilently accept hosts, Booleang When true, (default is false), hosts are added to
the file known hosts without asking the user.

fuser interaction, Booleang If true, which is the default, password questions and
adding hosts to known hosts will be asked interactively to the user, if they are not
suppressed by other options. (This is done during connection to an SSH server.) If
false, both these events will throw and exception and the server will not start.

fpublic key alg, ssh rsa | ssh dsag Sets the preferred public key algorithm to use
for user authentication. If the the preferred algorithm fails of some reason, the
other algorithm is tried. The default is to try ssh rsa first.

fconnect timeout, Milliseconds | infinityg Sets the default timeout when
trying to connect to.

fuser, Stringg Provide a username. If this option is not given, ssh reads from the
environment (LOGNAME or USER on unix, USERNAME on Windows).

fpassword, Stringg Provide a password for password authentication. If this option is
not given, the user will be asked for a password if the password authentication
method is attempted.

fuser auth, Fun/3g Provide a fun for password authentication. The fun will be called
as fun(User, Password, Opts) and should return true or false.

fkey cb, KeyCallbackModuleg Provide a special call-back module for key handling.
The call-back module should be modeled after the ssh file module. The function
that must be exported are: private host rsa key/2, private host dsa key/2,
lookup host key/3 and add host key/3.

ffd, FDg Allow an existing file-descriptor to be used, given in FD. (Simply passed on
to gen tcp:connect.)

daemon(Port) ->

daemon(Port, Options) ->

daemon(HostAddress, Port, Options) -> ssh system ref()

Types:

� Port = integer()
� HostAddress = ip address() | any
� Options = [fOption, Valueg]
� Option = atom()
� Value = term()

Starts a server listening for SSH connections on the given port.

Options are:

fsubsystems, [fSubSysName, child spec()g]g Provides child specificatoions for
handled subsystems. By default sftp is a handled subsystems.

fshell, fModule, Function, Argsg | fun()g Defines what command line interface
to use. Exampe use the erlang shell: fshell, start, []g) which is the
dafault behavior.

fsystem dir, Stringg Sets the system directory, containing the host files that
identifies the host for ssh. The default is /etc/ssh, but note that SSH normally
requires the host files there to be readable only by root.

6 SSH

SSH Reference Manual SSH

fuser passwords, [fUser, Passwordg]g Provide passwords for password
authentication.They will be used when someone tries to connect to the server and
public key user autentication fails. The option provides a list of valid user names
and the corresponding password. User and Password are strings.

fpassword, Stringg Provide a global password that will authenticate any user (use
with caution!).

fpwdfun, fun/2g Provide a function for password validation. This is called with user
and password as strings, and should return true if the password is valid and false
otherwise.

ffd, FDg Allow an existing file-descriptor to be used, given in FD. (Simply passed on
to gen tcp:listen.)

shell(Host) ->

shell(Host, Option) ->

shell(Host, Port, Option) ->

Types:

� Host = string()
� Port = integer()
� Options - see ssh:connect/[1,2,3]

Starts an interactive shell to an SSH server on the given Host. The function waits for
user input, and will not return until the remote shell is ended.(e.g. on exit from the
shell)

start() ->

start(Type) -> ok | ferror, Reasong

Types:

� Type = permanent | transient | temporary
� Reason = term()

Starts the Ssh application. Default type is temporary. See also [application(3)] Requiers
that the crypto application has been started.

stop() -> ok

Stops the Ssh application. See also [application(3)]

stop daemon(SysRef) ->

stop daemon(Address, Port) -> ok

Types:

� SysRef = ssh system ref()
� Address = ip address()
� Port = integer()

Stops the listener and all connections started by the listener.

stop listener(SysRef) ->

stop listener(Address, Port) -> ok

7SSH

SSH SSH Reference Manual

Types:

� SysRef = ssh system ref()
� Address = ip address()
� Port = integer()

Stops the listener, but leaves existing connections started by the listener up and running.

8 SSH

SSH Reference Manual SSH

SSH
Erlang Module

This module provides an API to the ssh connection protocol. Not all features of the
connection protocol are officially supported yet. Only the ones supported are
documented here.

COMMON DATA TYPES

Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

ssh connection ref() - opaque to the user returned by ssh:connect/[1,2,3]
or sent to a ssh channel processes

ssh system ref() - opaque to the user returned by ssh:daemon/[1,2,3]

MESSAGES SENT TO CHANNEL PROCESSES

As a result of the connection protocol the following messages may be sent to a channel
process.

fssh cm, ConnectionRef, fopen, ChannelId, RemoteChannelId, fsessionggg

fssh cm, ConnectionRef, fsubsystem, ChannelId, WantReply, Namegg

fssh cm, ConnectionRef, fclosed, ChannelIdgg

fssh cm, ConnectionRef, fdata, ChannelId, Type, Datagg

fssh cm, ConnectionRef, feof, ChannelIdgg

fssh cm, ConnectionRef, fexit signal,ChannelId, Signal, Err, Langgg

fssh cm, ConnectionRef, fexit status,ChannelId, Statusgg

fssh cm, ConnectionRef, fshell, WantReplygg

fssh cm, ConnectionRef, fpty, ChannelId, WantReply, Ptygg

fssh cm, ConnectionRef, fwindow change, ChannelId, Width, Height, PixWidth, PixHeight

9SSH

SSH SSH Reference Manual

Exports

adjust window(ConnectionRef, Channel, Bytes) -> ok

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()
� Bytes = integer()

Adjusts the ssh flowcontrol window. Should be called after handling a fssh cm,
ConnectionRef, fdata, ChannelId, Type, Datagg message in the following way:
ssh connection:adjust window(ConnectionRef, ChannelId, size(Data)),

close(ConnectionRef, ChannelId) -> ok

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()

Sends a close message on the channel ChannelId

exec(ConnectionRef, ChannelId, Command, TimeOut) -> success | failiure

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()
� Command = string()
� Timeout = infinity | integer()

Will request that the server start the execution of the given command. Result will be
received as N x fssh cm, ConnectionRef, fdata, ChannelId, Type, Datagg messages
followed by fssh cm, ConnectionRef, feof, ChannelIdgg fssh cm, ConnectionRef,
fexit status, ChannelId, Statusgg, fssh cm, ConnectionRef, fclosed, ChannelIdgg

reply request(ConnectionRef, WantReply, Status, CannelId) -> ok

Types:

� ConnectionRef = ssh connection ref()
� WantReply = boolean()
� Status = success | failure
� ChannelId = integer()

Send status replies to requests that want such replies. Should be called after handling an
ssh cm-message containing a WantReply.

send(ConnectionRef, ChannelId, Data) ->

send(ConnectionRef, ChannelId, Data, Timeout) ->

send(ConnectionRef, ChannelId, Type, Data) ->

send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | ferror, timeoutg

Types:

� ConnectionRef = ssh connection ref()

10 SSH

SSH Reference Manual SSH

� ChannelId = integer()
� Data = binary()
� Type = 0 | 1 see RFC 4254
� Timeout = infinity | integer()

Sends channel data.

send eof(ConnectionRef, ChannelId) -> ok

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()

Sends eof on the channel ChannelId.

session channel(ConnectionRef, Timeout) ->

session channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) -> fok,
ChannleIdg | ferror, Reasong

Types:

� ConnectionRef = ssh connection ref()
� InitialWindowSize = integer()
� MaxPacketSize = integer()
� Timeout = infinity | integer()

Opens a channel for a ssh session. A session is a remote execution of a program. The
program may be a shell, an application, a system command, or some built-in subsystem.

setenv(ConnectionRef, ChannelId, Var, Value, TimeOut) -> success | failure

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()
� Var = string()
� Value = string()
� Timeout = infinity | integer()

Environment variables may be passed to the shell/command to be started later.

shell(ConnectionRef, ChannelId) -> success | failure

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()

Will request that the user’s default shell (typically defined in /etc/passwd in UNIX
systems) be started at the other end. Messages for the caller to handle:

subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) -> success | failure

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = integer()
� Subsystem = string()

11SSH

SSH SSH Reference Manual

� Timeout = infinity | integer()

Sends a request to execute a predefined subsystem

12 SSH

SSH Reference Manual ssh sftp

ssh sftp
Erlang Module

This module implements an SFTP (SSH FTP) client. SFTP is a secure, encrypted file
transfer service available for SSH.

The errors returned are from the SFTP server, and are often not posix error codes.

Exports

connect(CM) ->

connect(Host, Options) ->

connect(Host, Port, Options) -> fok, Pidg | ferror, Reasong

Types:

� Host = string()
� CM = pid()
� Port = integer()
� Options = [fOption, Valueg]
� Option = atom()
� Value = term()
� Reason = term()

Connects to an SFTP server. A gen server is started and returned if connection is
successful. This server is used to perform SFTP commands on the server.

For options, see ssh:connect.

read file(Server, File) -> fok, Datag | ferror, Reasong

Types:

� Server = pid()
� File = string()
� Data = binary()
� Reason = term()

Reads a file from the server, and returns the data in a binary, like file:read file/1.

write file(Server, File, Iolist) -> ok | ferror, Reasong

Types:

� Server = pid()
� File = string()
� Data = binary()

13SSH

ssh sftp SSH Reference Manual

� Reason = term()

Writes a file to the server, like file:write file/2. The file is created if it’s not there.

list dir(Server, Path) -> fok, Filenamesg | ferror, Reasong

Types:

� Server = pid()
� Path = string()
� Filenames = [Filename]
� Filename = string()
� Reason = term()

Lists the given directory on the server, returning the filenames as a list of strings.

open(Server, File, Mode) -> fok, Handleg | ferror, Reasong

Types:

� Server = pid()
� File = string()
� Mode = [Modeflag]
� Modeflag = read | write | creat | trunc | append | binary
� Handle = term()
� Reason = term()

Opens a file on the server, and returns a handle that is used for reading or writing.

opendir(Server, Path) -> fok, Handleg | ferror, Reasong

Types:

� Server = pid()
� Path = string()
� Reason = term()

Opens a handle to a directory on the server, the handle is used for reading directory
contents.

close(Server, Handle) -> ok | ferror, Reasong

Types:

� Server = pid()
� Handle = term()
� Reason = term()

Closes a handle to an open file or directory on the server.

read(Server, Handle, Len) -> fok, Datag | eof | ferror, Errorg

pread(Server, Handle, Position, Length) -> fok, Datag | eof | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Position = integer()

14 SSH

SSH Reference Manual ssh sftp

� Len = integer()
� Data = string() | binary()
� Reason = term()

Reads Len bytes from the file referenced by Handle. Returns fok, Datag, or eof, or
ferror, Reasong. If the file is opened with binary, Data is a binary, otherwise it is a
string.

If the file is read past eof, only the remaining bytes will be read and returned. If no bytes
are read, eof is returned.

The pread function reads from a specified position, combining the position and read
functions.

aread(Server, Handle, Len) -> fasync, Ng | ferror, Errorg

apread(Server, Handle, Position, Length) -> fasync, Ng | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� N = term()
� Reason = term()

Reads from an open file, without waiting for the result. If the handle is valid, the
function returns fasync, Ng, where N is a term guaranteed to be unique between calls
of aread. The actual data is sent as a message to the calling process. This message has
the form fasync reply, N, Resultg, where Result is the result from the read, either
fok, Datag, or eof, or ferror, Errorg.

The apread function reads from a specified position, combining the position and
aread functions.

write(Server, Handle, Data) -> ok | ferror, Errorg

pwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Position = integer()
� Data = iolist()
� Reason = term()

Write data to the file referenced by Handle. The file should be opened with write or
append flag. Returns ok if successful and ferror, Reasong otherwise.

Typical error reasons are:

ebadf The file is not opened for writing.

enospc There is a no space left on the device.

awrite(Server, Handle, Data) -> ok | ferror, Errorg

apwrite(Server, Handle, Position, Data) -> ok | ferror, Errorg

15SSH

ssh sftp SSH Reference Manual

Types:

� Server = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� Data = binary()
� Reason = term()

Writes to an open file, without waiting for the result. If the handle is valid, the function
returns fasync, Ng, where N is a term guaranteed to be unique between calls of
awrite. The result of the write operation is sent as a message to the calling process.
This message has the form fasync reply, N, Resultg, where Result is the result
from the write, either ok, or ferror, Errorg.

The apwrite writes on a specified position, combining the position and awrite
operations.

position(Server, Handle, Location) -> fok, NewPosition | ferror, Errorg

Types:

� Server = pid()
� Handle = term()
� Location = Offset | fbof, Offsetg | fcur, Offsetg | feof, Offsetg | bof | cur | eof
� Offset = int()
� NewPosition = integer()
� Reason = term()

Sets the file position of the file referenced by Handle. Returns fok, NewPosition (as
an absolute offset) if successful, otherwise ferror, Reasong. Location is one of the
following:

Offset The same as fbof, Offsetg.

fbof, Offsetg Absolute offset.

fcur, Offsetg Offset from the current position.

feof, Offsetg Offset from the end of file.

bof | cur | eof The same as above with Offset 0.

read file info(Server, Name) -> fok, FileInfog | ferror, Reasong

get file info(Server, Handle) -> fok, FileInfog | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Handle = term()
� FileInfo = record()
� Reason = term()

Returns a file info record from the file specified by Name or Handle, like
file:read file info/2.

read link info(Server, Name) -> fok, FileInfog | ferror, Reasong

16 SSH

SSH Reference Manual ssh sftp

Types:

� Server = pid()
� Name = string()
� Handle = term()
� FileInfo = record()
� Reason = term()

Returns a file info record from the symbolic link specified by Name or Handle, like
file:read link info/2.

write file info(Server, Name, Info) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Info = record()
� Reason = term()

Writes file information from a file info record to the file specified by Name, like
file:write file info.

read link(Server, Name) -> fok, Targetg | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Target = string()
� Reason = term()

Read the link target from the symbolic link specified by name, like file:read link/1.

make symlink(Server, Name, Target) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Target = string()
� Reason = term()

Creates a symbolic link pointing to Target with the name Name, like
file:make symlink/2.

rename(Server, OldName, NewName) -> ok | ferror, Reasong

Types:

� Server = pid()
� OldName = string()
� NewName = string()
� Reason = term()

Renames a file named OldName, and gives it the name NewName, like file:rename/2

delete(Server, Name) -> ok | ferror, Reasong

17SSH

ssh sftp SSH Reference Manual

Types:

� Server = pid()
� Name = string()
� Reason = term()

Deletes the file specified by Name, like file:delete/1

make dir(Server, Name) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Reason = term()

Creates a directory specified by Name. Name should be a full path to a new directory.
The directory can only be created in an existing directory.

del dir(Server, Name) -> ok | ferror, Reasong

Types:

� Server = pid()
� Name = string()
� Reason = term()

Deletes a directory specified by Name. The directory should be empty, and

stop(Server) -> ok

Types:

� Server = pid()

Stops the sftp session, closing the connection. Any open files on the server will be
closed.

18 SSH

SSH Reference Manual ssh sftpd

ssh sftpd
Erlang Module

Specifies a channel process to handle a sftp subsystem.

COMMON DATA TYPES

child spec() - A child process specification see [supervisor(3)]

Exports

subsystem spec(Options) -> f"sftp", child spec()g

Types:

� Options = [fOption, Valueg]

Should be used together with ssh:daemon/[1,2,3]

Options are:

fcwd, Stringg Sets the initial current working directory for the server.

ffile handler, CallbackModuleg Determines which module to call for
communicating with the file server. Default value is ssh sftpd file that uses the file
and filelib API:s to access the standard OTP file server. This option may be used to
plug in the use of other file servers.

froot, Stringg Sets the sftp root directory. The user will then not be able to see any
files above this root. If for instance the root is set to /tmp the user will see this
directory as / and if the user does cd /etc the user will end up in /tmp/etc.

19SSH

ssh sftpd SSH Reference Manual

20 SSH

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

adjust_window/3
SSH , 10

apread/4
ssh sftp , 15

apwrite/4
ssh sftp , 15

aread/3
ssh sftp , 15

awrite/3
ssh sftp , 15

close/1
SSH , 5

close/2
SSH , 10
ssh sftp , 14

connect/1
SSH , 5
ssh sftp , 13

connect/2
SSH , 5
ssh sftp , 13

connect/3
SSH , 5
ssh sftp , 13

daemon/1
SSH , 6

daemon/2
SSH , 6

daemon/3
SSH , 6

del_dir/2
ssh sftp , 18

delete/2

ssh sftp , 17

exec/4
SSH , 10

get_file_info/2
ssh sftp , 16

list_dir/2
ssh sftp , 14

make_dir/2
ssh sftp , 18

make_symlink/3
ssh sftp , 17

open/3
ssh sftp , 14

opendir/2
ssh sftp , 14

position/3
ssh sftp , 16

pread/4
ssh sftp , 14

pwrite/4
ssh sftp , 15

read/3
ssh sftp , 14

read_file/2
ssh sftp , 13

read_file_info/2
ssh sftp , 16

read_link/2
ssh sftp , 17

21SSH

read_link_info/2
ssh sftp , 16

rename/3
ssh sftp , 17

reply_request/4
SSH , 10

send/3
SSH , 10

send/4
SSH , 10

send/5
SSH , 10

send_eof/2
SSH , 11

session_channel/2
SSH , 11

session_channel/4
SSH , 11

setenv/5
SSH , 11

shell/1
SSH , 7

shell/2
SSH , 7, 11

shell/3
SSH , 7

SSH
adjust_window/3, 10
close/1, 5
close/2, 10
connect/1, 5
connect/2, 5
connect/3, 5
daemon/1, 6
daemon/2, 6
daemon/3, 6
exec/4, 10
reply_request/4, 10
send/3, 10
send/4, 10
send/5, 10
send_eof/2, 11
session_channel/2, 11
session_channel/4, 11
setenv/5, 11
shell/1, 7

shell/2, 7, 11
shell/3, 7
start/0, 7
start/1, 7
stop/0, 7
stop_daemon/1, 7
stop_daemon/2, 7
stop_listener/1, 7
stop_listener/2, 7
subsystem/4, 11

ssh sftp
apread/4, 15
apwrite/4, 15
aread/3, 15
awrite/3, 15
close/2, 14
connect/1, 13
connect/2, 13
connect/3, 13
del_dir/2, 18
delete/2, 17
get_file_info/2, 16
list_dir/2, 14
make_dir/2, 18
make_symlink/3, 17
open/3, 14
opendir/2, 14
position/3, 16
pread/4, 14
pwrite/4, 15
read/3, 14
read_file/2, 13
read_file_info/2, 16
read_link/2, 17
read_link_info/2, 16
rename/3, 17
stop/1, 18
write/3, 15
write_file/3, 13
write_file_info/3, 17

ssh sftpd
subsystem_spec/1, 19

start/0
SSH , 7

start/1
SSH , 7

stop/0
SSH , 7

stop/1
ssh sftp , 18

22 SSH

stop_daemon/1
SSH , 7

stop_daemon/2
SSH , 7

stop_listener/1
SSH , 7

stop_listener/2
SSH , 7

subsystem/4
SSH , 11

subsystem_spec/1
ssh sftpd , 19

write/3
ssh sftp , 15

write_file/3
ssh sftp , 13

write_file_info/3
ssh sftp , 17

23SSH

24 SSH

