
Compiler Application (COMPILER)

version 4.6

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.6 Document System.

Contents

1 Compiler Reference Manual 1

1.1 compile . 2

iiiCompiler Application (COMPILER)

iv Compiler Application (COMPILER)

Compiler Reference Manual

Short Summaries

� Erlang Module compile [page 2] – Erlang Compiler

compile

The following functions are exported:

� file(File)
[page 2] Compile a file

� file(File, Options) -> CompRet
[page 2] Compile a file

� forms(Forms)
[page 6] Compile a list of forms

� forms(Forms, Options) -> CompRet
[page 6] Compile a list of forms

� format error(ErrorDescriptor) -> chars()
[page 6] Format an error descriptor

� output generated(Options) -> true | false
[page 7] Determine whether the compile will generate an output file

� noenv file(File, Options) -> CompRet
[page 7] Compile a file (ignoring ERL COMPILER OPTIONS)

� noenv forms(Forms, Options) -> CompRet
[page 7] Compile a list of forms (ignoring ERL COMPILER OPTIONS)

� noenv output generated(Options) -> true | false
[page 7] Determine whether the compile will generate an output file (ignoring
ERL COMPILER OPTIONS)

1Compiler Application (COMPILER)

compile Compiler Reference Manual

compile
Erlang Module

This module provides an interface to the standard Erlang compiler. It can generate
either a new file which contains the object code, or return a binary which can be loaded
directly.

Exports

file(File)

Is the same as file(File, [verbose,report errors,report warnings]).

file(File, Options) -> CompRet

Types:

� CompRet = ModRet | BinRet | ErrRet
� ModRet = fok,ModuleNameg | fok,ModuleName,Warningsg
� BinRet = fok,ModuleName,Binaryg | fok,ModuleName,Binary,Warningsg
� ErrRet = error | ferror,Errors,Warningsg

Compiles the code in the file File, which is an Erlang source code file without the .erl
extension. Options determine the behavior of the compiler.

Returns fok,ModuleNameg if successful, or error if there are errors. An object code file
is created if the compilation succeeds with no errors. It is considered to be an error if
the module name in the source code is not the same as the basename of the output file.

Here follows first all elements of Options that in some way control the behavior of the
compiler.

basic validation This option is fast way to test whether a module will compile
successfully (mainly useful for code generators that want to verify the code they
emit). No code will generated. If warnings are enabled, warnings generated by the
erl lint module (such as warnings for unused variables and functions) will be
returned too.
Use the strong validation option to generate all warnings that the compiler
would generate.

strong validation Similar to the basic validation option, no code will be
generated, but more compiler passes will be run to ensure also warnings generated
by the optimization passes are generated (such as clauses that will not match or
expressions that are guaranteed to fail with an exception at run-time).

binary Causes the compiler to return the object code in a binary instead of creating an
object file. If successful, the compiler returns fok,ModuleName,Binaryg.

2 Compiler Application (COMPILER)

Compiler Reference Manual compile

bin opt info The compiler will emit informational warnings about binary matching
optimizations (both successful and unsuccesful). See the Efficiency Guide for
further information.

compressed The compiler will compress the generated object code, which can be
useful for embedded systems.

debug info Include debug information in the form of abstract code (see [The Abstract
Format] in ERTS User’s Guide) in the compiled beam module. Tools such as
Debugger, Xref and Cover require the debug information to be included.
Warning: Source code can be reconstructed from the debug information. Use
encrypted debug information (see below) to prevent this.
See [beam lib(3)] for details.

fdebug info key,KeyStringg

fdebug info key,fMode,KeyStringgg Include debug information, but encrypt it, so
that it cannot be accessed without supplying the key. (To give the debug info
option as well is allowed, but is not necessary.) Using this option is a good way to
always have the debug information available during testing, yet protect the source
code.
Mode is the type of crypto algorithm to be used for encrypting the debug
information. The default type – and currently the only type – is des3 cbc.
See [beam lib(3)] for details.

encrypt debug info Like the debug info key option above, except that the key will
be read from an .erlang.crypt file.
See [beam lib(3)] for details.

’P’ Produces a listing of the parsed code after preprocessing and parse transforms, in
the file <File>.P. No object file is produced.

’E’ Produces a listing of the code after all source code transformations have been
performed, in the file <File>.E. No object file is produced.

’S’ Produces a listing of the assembler code in the file <File>.S. No object file is
produced.

report errors/report warnings Causes errors/warnings to be printed as they occur.

report This is a short form for both report errors and report warnings.

return errors If this flag is set, then ferror,ErrorList,WarningListg is returned
when there are errors.

return warnings If this flag is set, then an extra field containing WarningList is added
to the tuples returned on success.

return This is a short form for both return errors and return warnings.

verbose Causes more verbose information from the compiler describing what it is
doing.

foutdir,Dirg Sets a new directory for the object code. The current directory is used
for output, except when a directory has been specified with this option.

export all Causes all functions in the module to be exported.

fi,Dirg Add Dir to the list of directories to be searched when including a file. When
encountering an -include or -include dir directive, the compiler searches for
header files in the following directories:

1. ".", the current working directory of the file server;
2. the base name of the compiled file;

3Compiler Application (COMPILER)

compile Compiler Reference Manual

3. the directories specified using the i option. The directory specified last is
searched first.

fd,Macrog

fd,Macro,Valueg Defines a macro Macro to have the value Value. The default is
true).

fparse transform,Moduleg Causes the parse transformation function
Module:parse transform/2 to be applied to the parsed code before the code is
checked for errors.

asm The input file is expected to be assembler code (default file suffix “.S”). Note that
the format of assembler files is not documented, and may change between releases
- this option is primarily for internal debugging use.

no strict record tests This option is not recommended.
By default, the generated code for the Record#record tag.field operation
verifies that the tuple Record is of the correct size for the record and that the first
element is the tag record tag. Use this option to omit the verification code.

no error module mismatch Normally the compiler verifies that the module name
given in the source code is the same as the base name of the output file and refuses
to generate an output file if there is a mismatch. If you have a good reason (or
other reason) for having a module name unrelated to the name of the output file,
this option disables that verification (there will not even be a warning if there is a
mismatch).

If warnings are turned on (the report warnings option described above), the following
options control what type of warnings that will be generated. With the exception of
fwarn format,Verbosityg all options below have two forms; one warn xxx form to
turn on the warning and one nowarn xxx form to turn off the warning. In the
description that follows, the form that is used to change the default value is listed.

fwarn format, Verbosityg Causes warnings to be emitted for malformed format
strings as arguments to io:format and similar functions. Verbosity selects the
amount of warnings: 0 = no warnings; 1 = warnings for invalid format strings and
incorrect number of arguments; 2 = warnings also when the validity could not be
checked (for example, when the format string argument is a variable). The default
verbosity is 1. Verbosity 0 can also be selected by the option nowarn format.

nowarn bif clash By default, there will be a compilation error if a module contains an
exported function with the same name as an auto-imported BIF (such as size/1)
AND there is a call to it without a qualifying module name. The reason is that the
BIF will be called, not the function in the same module. The recommended way to
eliminate that warning is to use a call with a module name - either erlang to call
the BIF or ?MODULE to call the function in the same module. The warning can also
be turned off using this option, but that is not recommended.
The use of this option is strongly discouraged, as code that uses it will probably break in
a future major release (R14 or R15).

fnowarn bif clash, FAsg Turns off warnings as nowarn bif clash but only for the
mentioned local functions. FAs is a tuple fName,Arityg or a list of such tuples.
The use of this option is strongly discouraged, as code that uses it will probably break in
a future major release (R14 or R15).

warn export all Causes a warning to be emitted if the export all option has also
been given.

4 Compiler Application (COMPILER)

Compiler Reference Manual compile

warn export vars Causes warnings to be emitted for all implicitly exported variables
referred to after the primitives where they were first defined. No warnings for
exported variables unless they are referred to in some pattern, which is the default,
can be selected by the option nowarn export vars.

warn shadow vars Causes warnings to be emitted for “fresh” variables in functional
objects or list comprehensions with the same name as some already defined
variable. The default is to warn for such variables. No warnings for shadowed
variables can be selected by the option nowarn shadow vars.

nowarn unused function Turns off warnings for unused local functions. By default
(warn unused function), warnings are emitted for all local functions that are not
called directly or indirectly by an exported function. The compiler does not
include unused local functions in the generated beam file, but the warning is still
useful to keep the source code cleaner.

fnowarn unused function, FAsg Turns off warnings for unused local functions as
nowarn unused function but only for the mentioned local functions. FAs is a
tuple fName,Arityg or a list of such tuples.

nowarn deprecated function Turns off warnings for calls to deprecated functions. By
default (warn deprecated function), warnings are emitted for every call to a
function known by the compiler to be deprecated. Note that the compiler does
not know about the -deprecated() attribute but uses an assembled list of
deprecated functions in Erlang/OTP. To do a more general check the Xref tool can
be used. See also [xref(3)] and the function [xref:m/1] also accessible through the
[c:xm/1] function.

fnowarn deprecated function, MFAsg Turns off warnings for calls to deprecated
functions as nowarn deprecated function but only for the mentioned functions.
MFAs is a tuple fModule,Name,Arityg or a list of such tuples.

warn obsolete guard Causes warnings to be emitted for calls to old type testing BIFs
such as pid/1 and list/1. See the [Erlang Reference Manual] for a complete list
of type testing BIFs and their old equivalents. No warnings for calls to old type
testing BIFs, which is the default, can be selected by the option
nowarn obsolete guard.

warn unused import Causes warnings to be emitted for unused imported functions.
No warnings for unused imported functions, which is the default, can be selected
by the option nowarn unused import.

nowarn unused vars By default, warnings are emitted for variables which are not used,
with the exception of variables beginning with an underscore (“Prolog style
warnings”). Use this option to turn off this kind of warnings.

nowarn unused record Turns off warnings for unused record types. By default
(warn unused records), warnings are emitted for unused locally defined record
types.

Another class of warnings is generated by the compiler during optimization and code
generation. They warn about patterns that will never match (such as a=b), guards that
will always evaluate to false, and expressions that will always fail (such as atom+42).

Note that the compiler does not warn for expressions that it does not attempt to
optimize. For instance, the compiler tries to evaluate 1/0, notices that it will cause an
exception and emits a warning. On the other hand, the compiler is silent about the
similar expression X/0; because of the variable in it, the compiler does not even try to
evaluate and therefore it emits no warnings.

Currently, those warnings cannot be disabled (except by disabling all warnings).

5Compiler Application (COMPILER)

compile Compiler Reference Manual

Warning:
Obviously, the absence of warnings does not mean that there are no remaining errors
in the code.

Note that all the options except the include path (fi,Dirg) can also be given in the file
with a -compile([Option,...]). attribute. The -compile() attribute is allowed after
function definitions.

Note also that the fnowarn unused function, FAsg, fnowarn bif clash, FAsg, and
fnowarn deprecated function, MFAsg options are only recognized when given in
files. They are not affected by the warn unused function, warn bif clash, or
warn deprecated function options.

For debugging of the compiler, or for pure curiosity, the intermediate code generated by
each compiler pass can be inspected. A complete list of the options to produce list files
can be printed by typing compile:options() at the Erlang shell prompt. The options
will be printed in order that the passes are executed. If more than one listing option is
used, the one representing the earliest pass takes effect.

Unrecognized options are ignored.

Both WarningList and ErrorList have the following format:

[{FileName,[ErrorInfo]}].

ErrorInfo is described below. The file name has been included here as the compiler
uses the Erlang pre-processor epp, which allows the code to be included in other files.
For this reason, it is important to know to which file an error or warning line number
refers.

forms(Forms)

Is the same as forms(File, [verbose,report errors,report warnings]).

forms(Forms, Options) -> CompRet

Types:

� Forms = [Form]
� CompRet = BinRet | ErrRet
� BinRet = fok,ModuleName,BinaryOrCodeg |
fok,ModuleName,BinaryOrCode,Warningsg

� BinaryOrCode = binary() | term()
� ErrRet = error | ferror,Errors,Warningsg

Analogous to file/1, but takes a list of forms (in the Erlang abstract format
representation) as first argument. The option binary is implicit; i.e., no object code file
is produced. Options that would ordinarily produce a listing file, such as ’E’, will
instead cause the internal format for that compiler pass (an Erlang term; usually not a
binary) to be returned instead of a binary.

format error(ErrorDescriptor) -> chars()

Types:

� ErrorDescriptor = errordesc()

6 Compiler Application (COMPILER)

Compiler Reference Manual compile

Uses an ErrorDescriptor and returns a deep list of characters which describes the
error. This function is usually called implicitly when an ErrorInfo structure is
processed. See below.

output generated(Options) -> true | false

Types:

� Options = [term()]

Determines whether the compiler would generate a beam file with the given options.
true means that a beam file would be generated; false means that the compiler would
generate some listing file, return a binary, or merely check the syntax of the source code.

noenv file(File, Options) -> CompRet

Works exactly like file/2 [page 2], except that the environment variable
ERL COMPILER OPTIONS is not consulted.

noenv forms(Forms, Options) -> CompRet

Works exactly like forms/2 [page 6], except that the environment variable
ERL COMPILER OPTIONS is not consulted.

noenv output generated(Options) -> true | false

Types:

� Options = [term()]

Works exactly like output generated/1 [page 7], except that the environment variable
ERL COMPILER OPTIONS is not consulted.

Default compiler options

The (host operating system) environment variable ERL COMPILER OPTIONS can be used
to give default compiler options. Its value must be a valid Erlang term. If the value is a
list, it will be used as is. If it is not a list, it will be put into a list.

The list will be appended to any options given to file/2 [page 2], forms/2 [page 6], and
output generated/2 [page 7]. Use the alternative functions noenv file/2 [page 7],
noenv forms/2 [page 7], or noenv output generated/2 [page 7] if you don’t want the
environment variable to be consulted (for instance, if you are calling the compiler
recursively from inside a parse transform).

7Compiler Application (COMPILER)

compile Compiler Reference Manual

Inlining

The compiler can do function inlining within an Erlang module. Inlining means that a
call to a function is replaced with the function body with the arguments replaced with
the actual values. The semantics are preserved, except if exceptions are generated in the
inlined code. Exceptions will be reported as occurring in the function the body was
inlined into. Also, function clause exceptions will be converted to similar
case clause exceptions.

When a function is inlined, the original function will be kept if it is exported (either by
an explicit export or if the export all option was given) or if not all calls to the
function were inlined.

Inlining does not necessarily improve running time. For instance, inlining may increase
Beam stack usage which will probably be detrimental to performance for recursive
functions.

Inlining is never default; it must be explicitly enabled with a compiler option or a
-compile() attribute in the source module.

To enable inlining, either use the inline option to let the compiler decide which
functions to inline or finline,[fName,Arityg,...]g to have the compiler inline all
calls to the given functions. If the option is given inside a compile directive in an Erlang
module, fName,Arityg may be written as Name/Arity.

Example of explicit inlining:

-compile(finline,[pi/0]g).

pi() -> 3.1416.

Example of implicit inlining:

-compile(inline).

The finline size,Sizeg option controls how large functions that are allowed to be
inlined. Default is 24, which will keep the size of the inlined code roughly the same as
the un-inlined version (only relatively small functions will be inlined).

Example:

%% Aggressive inlining - will increase code size.
-compile(inline).
-compile(finline size,100g).

Parse Transformations

Parse transformations are used when a programmer wants to use Erlang syntax but with
different semantics. The original Erlang code is then transformed into other Erlang code.

8 Compiler Application (COMPILER)

Compiler Reference Manual compile

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string describing the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

[epp(3)], [erl id trans(3)], [erl lint(3)], [beam lib(3)]

9Compiler Application (COMPILER)

compile Compiler Reference Manual

10 Compiler Application (COMPILER)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

compile
file/1, 2
file/2, 2
format_error/1, 6
forms/1, 6
forms/2, 6
noenv_file/2, 7
noenv_forms/2, 7
noenv_output_generated/1, 7
output_generated/1, 7

file/1
compile , 2

file/2
compile , 2

format_error/1
compile , 6

forms/1
compile , 6

forms/2
compile , 6

noenv_file/2
compile , 7

noenv_forms/2
compile , 7

noenv_output_generated/1
compile , 7

output_generated/1
compile , 7

11Compiler Application (COMPILER)

12 Compiler Application (COMPILER)

