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Chapter 1

Erlang Reference Manual

1.1 Introduction

1.1.1 Purpose

This reference manual describes the Erlang programming language. The focus is on the language itself,
not the implementation. The language constructs are described in text and with examples rather than
formally specified, with the intention to make the manual more readable. The manual is not intended
as a tutorial.

Information about this implementation of Erlang can be found, for example, in System Principles
(starting and stopping, boot scripts, code loading, error logging, creating target systems), Efficiency
Guide (memory consumption, system limits) and ERTS User’s Guide (crash dumps, drivers).

1.1.2 Prerequisites

It is assumed that the reader has done some programming and is familiar with concepts such as data
types and programming language syntax.

1.1.3 Document Conventions

In the document, the following terminology is used:

� A sequence is one or more items. For example, a clause body consists of a sequence of expressions.
This means that there must be at least one expression.

� A list is any number of items. For example, an argument list can consist of zero, one or more
arguments.

If a feature has been added recently, in Erlang 5.0/OTP R7 or later, this is mentioned in the text.

1.1.4 Complete List of BIFs

For a complete list of BIFs, their arguments and return values, refer to erlang(3).
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1.1.5 Reserved Words

The following are reserved words in Erlang:

after and andalso band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse
query receive rem try when xor

1.1.6 Character Set

In Erlang 4.8/OTP R5A the syntax of Erlang tokens was extended to allow the use of the full
ISO-8859-1 (Latin-1) character set. This is noticeable in the following ways:

� All the Latin-1 printable characters can be used and are shown without the escape backslash
convention.

� Atoms and variables can use all Latin-1 letters.

Octal Decimal Class

200 - 237 128 - 159 Control characters

240 - 277 160 - 191 - Punctuation characters

300 - 326 192 - 214 - Uppercase letters

327 215 Punctuation character

330 - 336 216 - 222 - Uppercase letters

337 - 366 223 - 246 - Lowercase letters

367 247 Punctuation character

370 - 377 248 - 255 - Lowercase letters

Table 1.1: Character Classes.

1.2 Data Types

1.2.1 Terms

Erlang provides a number of data types which are listed in this chapter. A piece of data of any data type
is called a term.

1.2.2 Number

There are two types of numeric literals, integers and floats. Besides the conventional notation, there are
two Erlang-specific notations:

� $char
ASCII value of the character char.

� base#value
Integer with the base base, which must be an integer in the range 2..36.
In Erlang 5.2/OTP R9B and earlier versions, the allowed range is 2..16.

Examples:
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1> 42.
42
2> $A.
65
3> $\ .
10
4> 2#101.
5
5> 16#1f.
31
6> 2.3.
2.3
7> 2.3e3.
2.3e3
8> 2.3e-3.
0.0023

1.2.3 Atom

An atom is a literal, a constant with name. An atom should be enclosed in single quotes (’) if it does not
begin with a lower-case letter or if it contains other characters than alphanumeric characters,
underscore ( ), or @.

Examples:

hello
phone number
’Monday’
’phone number’

1.2.4 Bit Strings and Binaries

A bit string is used to store an area of untyped memory.

Bit Strings are expressed using the bit syntax [page 25].

Bit Strings which consists of a number of bits which is evenly divisible by eight are called Binaries

Examples:

1> <<10,20>>.
<<10,20>>
2> <<"ABC">>.
<<"ABC">>
1> <<1:1,0:1>>.
<<2:2>>

More examples can be found in Programming Examples.

1.2.5 Reference

A reference is a term which is unique in an Erlang runtime system, created by calling make ref/0.
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1.2.6 Fun

A fun is a functional object. Funs make it possible to create an anonymous function and pass the
function itself – not its name – as argument to other functions.

Example:

1> Fun1 = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>
2> Fun1(2).
3

Read more about funs in Fun Expressions [page 27]. More examples can be found in Programming
Examples.

1.2.7 Port Identifier

A port identifier identifies an Erlang port. open port/2, which is used to create ports, will return a
value of this type.

Read more about ports in Ports and Port Drivers [page 50].

1.2.8 Pid

A process identifier, pid, identifies a process. spawn/1,2,3,4, spawn link/1,2,3,4 and spawn opt/4,
which are used to create processes, return values of this type. Example:

1> spawn(m, f, []).
<0.51.0>

The BIF self() returns the pid of the calling process. Example:

-module(m).
-export([loop/0]).

loop() ->
receive

who are you ->
io:format("I am ~p~n", [self()]),
loop()

end.

1> P = spawn(m, loop, []).
<0.58.0>
2> P ! who are you.
I am <0.58.0>
who are you

Read more about processes in Processes [page 43].
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1.2.9 Tuple

Compound data type with a fixed number of terms:

fTerm1,...,TermNg

Each term Term in the tuple is called an element. The number of elements is said to be the size of the
tuple.

There exists a number of BIFs to manipulate tuples.

Examples:

1> P = fadam,24,fjuly,29gg.
fadam,24,fjuly,29gg
2> element(1,P).
adam
3> element(3,P).
fjuly,29g
4> P2 = setelement(2,P,25).
fadam,25,fjuly,29gg
5> tuple size(P).
3
6> tuple size(fg).
0

1.2.10 List

Compound data type with a variable number of terms.

[Term1,...,TermN]

Each term Term in the list is called an element. The number of elements is said to be the length of the list.

Formally, a list is either the empty list [] or consists of a head (first element) and a tail (remainder of
the list) which is also a list. The latter can be expressed as [H|T]. The notation [Term1,...,TermN]
above is actually shorthand for the list [Term1|[...|[TermN|[]]]].

Example:
[] is a list, thus
[c|[]] is a list, thus
[b|[c|[]]] is a list, thus
[a|[b|[c|[]]]] is a list, or in short [a,b,c].

A list where the tail is a list is sometimes called a proper list. It is allowed to have a list where the tail is
not a list, for example [a|b]. However, this type of list is of little practical use.

Examples:
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1> L1 = [a,2,fc,4g].
[a,2,fc,4g]
2> [H|T] = L1.
[a,2,fc,4g]
3> H.
a
4> T.
[2,fc,4g]
5> L2 = [d|T].
[d,2,fc,4g]
6> length(L1).
3
7> length([]).
0

A collection of list processing functions can be found in the STDLIB module lists.

1.2.11 String

Strings are enclosed in double quotes (“), but is not a data type in Erlang. Instead a string "hello" is
shorthand for the list [$h,$e,$l,$l,$o], that is [104,101,108,108,111].

Two adjacent string literals are concatenated into one. This is done at compile-time and does not incur
any runtime overhead. Example:

"string" "42"

is equivalent to

"string42"

1.2.12 Record

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a
struct in C. However, record is not a true data type. Instead record expressions are translated to tuple
expressions during compilation. Therefore, record expressions are not understood by the shell unless
special actions are taken. See shell(3) for details.

Examples:

-module(person).
-export([new/2]).

-record(person, fname, ageg).

new(Name, Age) ->
#personfname=Name, age=Ageg.

1> person:new(ernie, 44).
fperson,ernie,44g

Read more about records in Records [page 38]. More examples can be found in Programming
Examples.
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1.2.13 Boolean

There is no Boolean data type in Erlang. Instead the atoms true and false are used to denote Boolean
values.

Examples:

1> 2 =< 3.
true
2> true or false.
true

1.2.14 Escape Sequences

Within strings and quoted atoms, the following escape sequences are recognized:

Sequence Description

\b backspace

\d delete

\e escape

\f form feed

\ newline

\r carriage return

\s space

\t tab

\v vertical tab

\XYZ, \YZ, \Z character with octal representation XYZ, YZ or Z

\xXY character with hexadecimal representation XY

\xfX...g character with hexadecimal representation; X... is one or more hexadec-
imal characters

\^a...\^z \^A...\^Z control A to control Z

\’ single quote

\” double quote

\\ backslash

Table 1.2: Recognized Escape Sequences.

1.2.15 Type Conversions

There are a number of BIFs for type conversions. Examples:

1> atom to list(hello).
"hello"
2> list to atom("hello").
hello
3> binary to list(<<"hello">>).
"hello"
4> binary to list(<<104,101,108,108,111>>).
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"hello"
5> list to binary("hello").
<<104,101,108,108,111>>
6> float to list(7.0).
"7.00000000000000000000e+00"
7> list to float("7.000e+00").
7.0
8> integer to list(77).
"77"
9> list to integer("77").
77
10> tuple to list(fa,b,cg).
[a,b,c]
11> list to tuple([a,b,c]).
fa,b,cg
12> term to binary(fa,b,cg).
<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>
13> binary to term(<<131,104,3,100,0,1,97,100,0,1,98,100,0,1,99>>).
fa,b,cg

1.3 Pattern Matching

1.3.1 Pattern Matching

Variables are bound to values through the pattern matching mechanism. Pattern matching occurs when
evaluating a function call, case- receive- try- expressions and match operator (=) expressions.

In a pattern matching, a left-hand side pattern [page 15] is matched against a right-hand side term
[page 14]. If the matching succeeds, any unbound variables in the pattern become bound. If the
matching fails, a run-time error occurs.

Examples:

1> X.
** 1: variable ’X’ is unbound **
2> X = 2.
2
3> X + 1.
3
4> fX, Yg = f1, 2g.
** exception error: no match of right hand side value f1,2g
5> fX, Yg = f2, 3g.
f2,3g
6> Y.
3

1.4 Modules

1.4.1 Module Syntax

Erlang code is divided into modules. A module consists of a sequence of attributes and function
declarations, each terminated by period (.). Example:
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-module(m). % module attribute
-export([fact/1]). % module attribute

fact(N) when N>0 -> % beginning of function declaration
N * fact(N-1); % |

fact(0) -> % |
1. % end of function declaration

See the Functions [page 11] chapter for a description of function declarations.

1.4.2 Module Attributes

A module attribute defines a certain property of a module. A module attribute consists of a tag and a
value.

-Tag(Value).

Tag must be an atom, while Value must be a literal term. As a convenience in user-defined attributes,
the literal term Value the syntax Name/Arity (where Name is an atom and Arity a positive integer) will
be translated to fName,Arityg.

Any module attribute can be specified. The attributes are stored in the compiled code and can be
retrieved by calling Module:module info(attributes) or by using [beam lib(3)].

There are several module attributes with predefined meanings, some of which have arity two, but
user-defined module attributes must have arity one.

Pre-Defined Module Attributes

Pre-defined module attributes should be placed before any function declaration.

-module(Module). Module declaration, defining the name of the module. The name Module, an atom,
should be the same as the file name minus the extension erl. Otherwise code loading [page 50]
will not work as intended.
This attribute should be specified first and is the only attribute which is mandatory.

-export(Functions). Exported functions. Specifies which of the functions defined within the module
that are visible outside the module.
Functions is a list [Name1/Arity1, ..., NameN/ArityN], where each NameI is an atom and
ArityI an integer.

-import(Module,Functions). Imported functions. Imported functions can be called the same way as
local functions, that is without any module prefix.
Module, an atom, specifies which module to import functions from. Functions is a list similar as
for export above.

-compile(Options). Compiler options. Options, which is a single option or a list of options, will be
added to the option list when compiling the module. See compile(3).

-vsn(Vsn). Module version. Vsn is any literal term and can be retrieved using beam lib:version/1,
see [beam lib(3)].
If this attribute is not specified, the version defaults to the MD5 checksum of the module.
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Behaviour Module Attribute

It is possible to specify that the module is the callback module for a behaviour:

-behaviour(Behaviour).

The atom Behaviour gives the name of the behaviour, which can be a user defined behaviour or one of
the OTP standard behaviours gen server, gen fsm, gen event or supervisor.

The spelling behavior is also accepted.

Read more about behaviours and callback modules in OTP Design Principles.

Record Definitions

The same syntax as for module attributes is used by for record definitions:

-record(Record,Fields).

Record definitions are allowed anywhere in a module, also among the function declarations. Read more
in Records [page 38].

The Preprocessor

The same syntax as for module attributes is used by the preprocessor, which supports file inclusion,
macros, and conditional compilation:

-include("SomeFile.hrl").
-define(Macro,Replacement).

Read more in The Preprocessor [page 35].

Setting File and Line

The same syntax as for module attributes is used for changing the pre-defined macros ?FILE and ?LINE:

-file(File, Line).

This attribute is used by tools such as Yecc to inform the compiler that the source program was
generated by another tool and indicates the correspondence of source files to lines of the original
user-written file from which the source program was produced.

1.4.3 Comments

Comments may be placed anywhere in a module except within strings and quoted atoms. The
comment begins with the character “%”, continues up to, but does not include the next end-of-line, and
has no effect. Note that the terminating end-of-line has the effect of white space.
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1.4.4 The module info/0 and module info/1 functions

The compiler automatically inserts the two special, exported functions into each module:
Module:module info/0 and Module:module info/1. These functions can be called to retrieve
information about the module.

module info/0

The module info/0 function in each module returns a list of fKey,Valueg tuples with information
about the module. Currently, the list contain tuples with the following Keys: attributes, compile,
exports, and imports. The order and number of tuples may change without prior notice.

Warning:
The fimports,Valueg tuple may be removed in a future release because Value is always an empty
list. Do not write code that depends on it being present.

module info/1

The call module info(Key), where key is an atom, returns a single piece of information about the
module.

The following values are allowed for Key:

attributes Return a list of fAttributeName,ValueListg tuples, where AttributeName is the name
of an attribute, and ValueList is a list of values. Note: a given attribute may occur more than
once in the list with different values if the attribute occurs more than once in the module.
The list of attributes will be empty if the module has been stripped with [beam lib(3)].

compile Return a list of tuples containing information about how the module was compiled. This list
will be empty if the module has been stripped with [beam lib(3)].

imports Always return an empty list. The imports key may not be supported in future release.

exports Return a list of fName,Arityg tuples with all exported functions in the module.

functions Return a list of fName,Arityg tuples with all functions in the module.

1.5 Functions

1.5.1 Function Declaration Syntax

A function declaration is a sequence of function clauses separated by semicolons, and terminated by
period (.).

A function clause consists of a clause head and a clause body, separated by ->.

A clause head consists of the function name, an argument list, and an optional guard sequence
beginning with the keyword when.
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Name(Pattern11,...,Pattern1N) [when GuardSeq1] ->
Body1;

...;
Name(PatternK1,...,PatternKN) [when GuardSeqK] ->

BodyK.

The function name is an atom. Each argument is a pattern.

The number of arguments N is the arity of the function. A function is uniquely defined by the module
name, function name and arity. That is, two functions with the same name and in the same module, but
with different arities are two completely different functions.

A function named f in the module m and with arity N is often denoted as m:f/N.

A clause body consists of a sequence of expressions separated by comma (,):

Expr1,
...,
ExprN

Valid Erlang expressions and guard sequences are described in Erlang Expressions [page 14].

Example:

fact(N) when N>0 -> % first clause head
N * fact(N-1); % first clause body

fact(0) -> % second clause head
1. % second clause body

1.5.2 Function Evaluation

When a function m:f/N is called, first the code for the function is located. If the function cannot be
found, an undef run-time error will occur. Note that the function must be exported to be visible
outside the module it is defined in.

If the function is found, the function clauses are scanned sequentially until a clause is found that fulfills
the following two conditions:

1. the patterns in the clause head can be successfully matched against the given arguments, and

2. the guard sequence, if any, is true.

If such a clause cannot be found, a function clause run-time error will occur.

If such a clause is found, the corresponding clause body is evaluated. That is, the expressions in the
body are evaluated sequentially and the value of the last expression is returned.

Example: Consider the function fact:

-module(m).
-export([fact/1]).

fact(N) when N>0 ->
N * fact(N-1);

fact(0) ->
1.
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Assume we want to calculate factorial for 1:

1> m:fact(1).

Evaluation starts at the first clause. The pattern N is matched against the argument 1. The matching
succeeds and the guard (N>0) is true, thus N is bound to 1 and the corresponding body is evaluated:

N * fact(N-1) => (N is bound to 1)
1 * fact(0)

Now fact(0) is called and the function clauses are scanned sequentially again. First, the pattern N is
matched against 0. The matching succeeds, but the guard (N>0) is false. Second, the pattern 0 is
matched against 0. The matching succeeds and the body is evaluated:

1 * fact(0) =>
1 * 1 =>
1

Evaluation has succeed and m:fact(1) returns 1.

If m:fact/1 is called with a negative number as argument, no clause head will match. A
function clause run-time error will occur.

1.5.3 Tail recursion

If the last expression of a function body is a function call, a tail recursive call is done so that no system
resources for example call stack are consumed. This means that an infinite loop can be done if it uses
tail recursive calls.

Example:

loop(N) ->
io:format("~w~n", [N]),
loop(N+1).

As a counter-example see the factorial example above that is not tail recursive since a multiplication is
done on the result of the recursive call to fact(N-1).

1.5.4 Built-In Functions, BIFs

Built-in functions, BIFs, are implemented in C code in the runtime system and do things that are difficult
or impossible to implement in Erlang. Most of the built-in functions belong to the module erlang but
there are also built-in functions belonging to a few other modules, for example lists and ets.

The most commonly used BIFs belonging to erlang are auto-imported, they do not need to be prefixed
with the module name. Which BIFs are auto-imported is specified in erlang(3). For example, standard
type conversion BIFs like atom to list and BIFs allowed in guards can be called without specifying the
module name. Examples:

1> tuple size(fa,b,cg).
3
2> atom to list(’Erlang’).
"Erlang"

Note that normally it is the set of auto-imported built-in functions that is referred to when talking
about ’BIFs’.
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1.6 Expressions

In this chapter, all valid Erlang expressions are listed. When writing Erlang programs, it is also allowed
to use macro- and record expressions. However, these expressions are expanded during compilation and
are in that sense not true Erlang expressions. Macro- and record expressions are covered in separate
chapters: Macros [page 35] and Records [page 38].

1.6.1 Expression Evaluation

All subexpressions are evaluated before an expression itself is evaluated, unless explicitly stated
otherwise. For example, consider the expression:

Expr1 + Expr2

Expr1 and Expr2, which are also expressions, are evaluated first - in any order - before the addition is
performed.

Many of the operators can only be applied to arguments of a certain type. For example, arithmetic
operators can only be applied to numbers. An argument of the wrong type will cause a badarg run-time
error.

1.6.2 Terms

The simplest form of expression is a term, that is an integer, float, atom, string, list or tuple. The return
value is the term itself.

1.6.3 Variables

A variable is an expression. If a variable is bound to a value, the return value is this value. Unbound
variables are only allowed in patterns.

Variables start with an uppercase letter or underscore ( ) and may contain alphanumeric characters,
underscore and @. Examples:

X
Name1
PhoneNumber
Phone number

Height

Variables are bound to values using pattern matching [page 8]. Erlang uses single assignment, a variable
can only be bound once.

The anonymous variable is denoted by underscore ( ) and can be used when a variable is required but its
value can be ignored. Example:

[H| ] = [1,2,3]

Variables starting with underscore ( ), for example Height, are normal variables, not anonymous. They
are however ignored by the compiler in the sense that they will not generate any warnings for unused
variables. Example: The following code
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member( , []) ->
[].

can be rewritten to be more readable:

member(Elem, []) ->
[].

This will however cause a warning for an unused variable Elem, if the code is compiled with the flag
warn unused vars set. Instead, the code can be rewritten to:

member( Elem, []) ->
[].

Note that since variables starting with an underscore are not anonymous, this will match:

f , g = f1,2g

But this will fail:

f N, Ng = f1,2g

The scope for a variable is its function clause. Variables bound in a branch of an if, case, or receive
expression must be bound in all branches to have a value outside the expression, otherwise they will be
regarded as ’unsafe’ outside the expression.

For the try expression introduced in Erlang 5.4/OTP-R10B, variable scoping is limited so that variables
bound in the expression are always ’unsafe’ outside the expression. This will be improved.

1.6.4 Patterns

A pattern has the same structure as a term but may contain unbound variables. Example:

Name1
[H|T]
ferror,Reasong

Patterns are allowed in clause heads, case and receive expressions, and match expressions.
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Match Operator = in Patterns

If Pattern1 and Pattern2 are valid patterns, then the following is also a valid pattern:

Pattern1 = Pattern2

When matched against a term, both Pattern1 and Pattern2 will be matched against the term. The
idea behind this feature is to avoid reconstruction of terms. Example:

f(fconnect,From,To,Number,Optionsg, To) ->
Signal = fconnect,From,To,Number,Optionsg,
...;

f(Signal, To) ->
ignore.

can instead be written as

f(fconnect, ,To, , g = Signal, To) ->
...;

f(Signal, To) ->
ignore.

String Prefix in Patterns

When matching strings, the following is a valid pattern:

f("prefix" ++ Str) -> ...

This is syntactic sugar for the equivalent, but harder to read

f([$p,$r,$e,$f,$i,$x | Str]) -> ...

Expressions in Patterns

An arithmetic expression can be used within a pattern, if it uses only numeric or bitwise operators, and
if its value can be evaluated to a constant at compile-time. Example:

case fValue, Resultg of
f?THRESHOLD+1, okg -> ...

This feature was added in Erlang 5.0/OTP R7.
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1.6.5 Match

Expr1 = Expr2

Matches Expr1, a pattern, against Expr2. If the matching succeeds, any unbound variable in the pattern
becomes bound and the value of Expr2 is returned.

If the matching fails, a badmatch run-time error will occur.

Examples:

1> fA, Bg = fanswer, 42g.
fanswer,42g
2> A.
answer
3> fC, Dg = [1, 2].
** exception error: no match of right hand side value [1,2]

1.6.6 Function Calls

ExprF(Expr1,...,ExprN)
ExprM:ExprF(Expr1,...,ExprN)

In the first form of function calls, ExprM:ExprF(Expr1,...,ExprN), each of ExprM and ExprF must be
an atom or an expression that evaluates to an atom. The function is said to be called by using the fully
qualified function name. This is often referred to as a remote or external function call. Example:

lists:keysearch(Name, 1, List)

In the second form of function calls, ExprF(Expr1,...,ExprN), ExprF must be an atom or evaluate to
a fun.

If ExprF is an atom the function is said to be called by using the implicitly qualified function name. If
ExprF/N is the name of a function explicitly or automatically imported from module M, then the call is
short for M:ExprF(Expr1,...,ExprN). Otherwise, ExprF/N must be a locally defined function.
Examples:

handle(Msg, State)
spawn(m, init, [])

Examples where ExprF is a fun:

Fun1 = fun(X) -> X+1 end
Fun1(3)
=> 4

Fun2 = {lists,append}
Fun2([1,2], [3,4])
=> [1,2,3,4]

fun lists:append/2([1,2], [3,4])
=> [1,2,3,4]
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To avoid possible ambiguities, the fully qualified function name must be used when calling a function
with the same name as a BIF, and the compiler does not allow defining a function with the same name
as an explicitly imported function.

Note that when calling a local function, there is a difference between using the implicitly or fully
qualified function name, as the latter always refers to the latest version of the module. See Compilation
and Code Loading [page 49].

See also the chapter about Function Evaluation [page 12].

1.6.7 If

if
GuardSeq1 ->

Body1;
...;
GuardSeqN ->

BodyN
end

The branches of an if-expression are scanned sequentially until a guard sequence GuardSeq which
evaluates to true is found. Then the corresponding Body (sequence of expressions separated by ’,’) is
evaluated.

The return value of Body is the return value of the if expression.

If no guard sequence is true, an if clause run-time error will occur. If necessary, the guard expression
true can be used in the last branch, as that guard sequence is always true.

Example:

is greater than(X, Y) ->
if

X>Y ->
true;

true -> % works as an ’else’ branch
false

end

1.6.8 Case

case Expr of
Pattern1 [when GuardSeq1] ->

Body1;
...;
PatternN [when GuardSeqN] ->

BodyN
end
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The expression Expr is evaluated and the patterns Pattern are sequentially matched against the result.
If a match succeeds and the optional guard sequence GuardSeq is true, the corresponding Body is
evaluated.

The return value of Body is the return value of the case expression.

If there is no matching pattern with a true guard sequence, a case clause run-time error will occur.

Example:

is valid signal(Signal) ->
case Signal of

fsignal, What, From, Tog ->
true;

fsignal, What, Tog ->
true;

Else ->
false

end.

1.6.9 Send

Expr1 ! Expr2

Sends the value of Expr2 as a message to the process specified by Expr1. The value of Expr2 is also the
return value of the expression.

Expr1 must evaluate to a pid, a registered name (atom) or a tuple fName,Nodeg, where Name is an atom
and Node a node name, also an atom.

� If Expr1 evaluates to a name, but this name is not registered, a badarg run-time error will occur.

� Sending a message to a pid never fails, even if the pid identifies a non-existing process.

� Distributed message sending, that is if Expr1 evaluates to a tuple fName,Nodeg (or a pid located at
another node), also never fails.

1.6.10 Receive

receive
Pattern1 [when GuardSeq1] ->

Body1;
...;
PatternN [when GuardSeqN] ->

BodyN
end

Receives messages sent to the process using the send operator (!). The patterns Pattern are
sequentially matched against the first message in time order in the mailbox, then the second, and so on.
If a match succeeds and the optional guard sequence GuardSeq is true, the corresponding Body is
evaluated. The matching message is consumed, that is removed from the mailbox, while any other
messages in the mailbox remain unchanged.

The return value of Body is the return value of the receive expression.

receive never fails. Execution is suspended, possibly indefinitely, until a message arrives that does
match one of the patterns and with a true guard sequence.

Example:
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wait for onhook() ->
receive

onhook ->
disconnect(),
idle();

fconnect, Bg ->
B ! fbusy, self()g,
wait for onhook()

end.

It is possible to augment the receive expression with a timeout:

receive
Pattern1 [when GuardSeq1] ->

Body1;
...;
PatternN [when GuardSeqN] ->

BodyN
after

ExprT ->
BodyT

end

ExprT should evaluate to an integer. The highest allowed value is 16#ffffffff, that is, the value must fit in
32 bits. receive..after works exactly as receive, except that if no matching message has arrived
within ExprT milliseconds, then BodyT is evaluated instead and its return value becomes the return
value of the receive..after expression.

Example:

wait for onhook() ->
receive

onhook ->
disconnect(),
idle();

fconnect, Bg ->
B ! fbusy, self()g,
wait for onhook()

after
60000 ->

disconnect(),
error()

end.

It is legal to use a receive..after expression with no branches:

receive
after

ExprT ->
BodyT

end
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This construction will not consume any messages, only suspend execution in the process for ExprT
milliseconds and can be used to implement simple timers.

Example:

timer() ->
spawn(m, timer, [self()]).

timer(Pid) ->
receive
after

5000 ->
Pid ! timeout

end.

There are two special cases for the timeout value ExprT:

infinity The process should wait indefinitely for a matching message – this is the same as not using a
timeout. Can be useful for timeout values that are calculated at run-time.

0 If there is no matching message in the mailbox, the timeout will occur immediately.

1.6.11 Term Comparisons

Expr1 op Expr2

op Description

== equal to

/= not equal to

=< less than or equal to

< less than

>= greater than or equal to

> greater than

=:= exactly equal to

=/= exactly not equal to

Table 1.3: Term Comparison Operators.

The arguments may be of different data types. The following order is defined:

number < atom < reference < fun < port < pid < tuple < list < bit string

Lists are compared element by element. Tuples are ordered by size, two tuples with the same size are
compared element by element.

If one of the compared terms is an integer and the other a float, the integer is first converted into a float,
unless the operator is one of =:= and =/=. If the integer is too big to fit in a float no conversion is done,
but the order is determined by inspecting the sign of the numbers.

Returns the Boolean value of the expression, true or false.

Examples:
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1> 1==1.0.
true
2> 1=:=1.0.
false
3> 1 > a.
false

1.6.12 Arithmetic Expressions

op Expr
Expr1 op Expr2

op Description Argument type

+ unary + number

- unary - number

+ number

- number

* number

/ floating point division number

bnot unary bitwise not integer

div integer division integer

rem integer remainder of X/Y integer

band bitwise and integer

bor bitwise or integer

bxor arithmetic bitwise xor integer

bsl arithmetic bitshift left integer

bsr bitshift right integer

Table 1.4: Arithmetic Operators.

Examples:

1> +1.
1
2> -1.
-1
3> 1+1.
2
4> 4/2.
2.0
5> 5 div 2.
2
6> 5 rem 2.
1
7> 2#10 band 2#01.
0
8> 2#10 bor 2#01.
3
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9> a + 10.
** exception error: bad argument in an arithmetic expression

in operator +/2
called as a + 10

10> 1 bsl (1 bsl 64).
** exception error: a system limit has been reached

in operator bsl/2
called as 1 bsl 18446744073709551616

1.6.13 Boolean Expressions

op Expr
Expr1 op Expr2

op Description

not unary logical not

and logical and

or logical or

xor logical xor

Table 1.5: Logical Operators.

Examples:

1> not true.
false
2> true and false.
false
3> true xor false.
true
4> true or garbage.
** exception error: bad argument

in operator or/2
called as true or garbage

1.6.14 Short-Circuit Expressions

Expr1 orelse Expr2
Expr1 andalso Expr2

Expressions where Expr2 is evaluated only if necessary. That is, Expr2 is evaluated only if Expr1
evaluates to false in an orelse expression, or only if Expr1 evaluates to true in an andalso
expression. Returns either the value of Expr1 (that is, true or false) or the value of Expr2 (if Expr2
was evaluated).

Example 1:

case A >= -1.0 andalso math:sqrt(A+1) > B of
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This will work even if A is less than -1.0, since in that case, math:sqrt/1 is never evaluated.

Example 2:

OnlyOne = is atom(L) orelse
(is list(L) andalso length(L) == 1),

From R13A, Expr2 is no longer required to evaluate to a boolean value. As a consequence, andalso and
orelse are now tail-recursive. For instance, the following function is tail-recursive in R13A and later:

all(Pred, [Hd|Tail]) ->
Pred(Hd) andalso all(Pred, Tail);

all( , []) ->
true.

1.6.15 List Operations

Expr1 ++ Expr2
Expr1 -- Expr2

The list concatenation operator ++ appends its second argument to its first and returns the resulting list.

The list subtraction operator -- produces a list which is a copy of the first argument, subjected to the
following procedure: for each element in the second argument, the first occurrence of this element (if
any) is removed.

Example:

1> [1,2,3]++[4,5].
[1,2,3,4,5]
2> [1,2,3,2,1,2]--[2,1,2].
[3,1,2]

Warning:
The complexity of A -- B is proportional to length(A)*length(B), meaning that it will be very
slow if both A and B are long lists.
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1.6.16 Bit Syntax Expressions

<<>>
<<E1,...,En>>

Each element Ei specifies a segment of the bit string. Each element Ei is a value, followed by an optional
size expression and an optional type specifier list.

Ei = Value |
Value:Size |
Value/TypeSpecifierList |
Value:Size/TypeSpecifierList

Used in a bit string construction, Value is an expression which should evaluate to an integer, float or bit
string. If the expression is something else than a single literal or variable, it should be enclosed in
parenthesis.

Used in a bit string matching, Value must be a variable, or an integer, float or string.

Note that, for example, using a string literal as in <<"abc">> is syntactic sugar for <<$a,$b,$c>>.

Used in a bit string construction, Size is an expression which should evaluate to an integer.

Used in a bit string matching, Size must be an integer or a variable bound to an integer.

The value of Size specifies the size of the segment in units (see below). The default value depends on
the type (see below). For integer it is 8, for float it is 64, for binary and bitstring it is the whole
binary or bit string. In matching, this default value is only valid for the very last element. All other bit
string or binary elements in the matching must have a size specification.

For the utf8, utf16, and utf32 types, Size must not be given. The size of the segment is implicitly
determined by the type and value itself.

TypeSpecifierList is a list of type specifiers, in any order, separated by hyphens (-). Default values are
used for any omitted type specifiers.

Type= integer | float | binary | bytes | bitstring | bits | utf8 | utf16 | utf32 The default is
integer. bytes is a shorthand for binary and bits is a shorthand for bitstring. See below for
more information about the utf types.

Signedness= signed | unsigned Only matters for matching and when the type is integer. The
default is unsigned.

Endianness= big | little | native Native-endian means that the endianness will be resolved at load
time to be either big-endian or little-endian, depending on what is native for the CPU that the
Erlang machine is run on. Endianness only matters when the Type is either integer, utf16,
utf32, or float. The default is big.

Unit= unit:IntegerLiteral The allowed range is 1..256. Defaults to 1 for integer, float and
bitstring, and to 8 for binary. No unit specifier must be given for the types utf8, utf16, and
utf32.
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The value of Size multiplied with the unit gives the number of bits. A segment of type binary must
have a size that is evenly divisible by 8.

Note:
When constructing binaries, if the size N of an integer segment is too small to contain the given
integer, the most significant bits of the integer will be silently discarded and only the N least
significant bits will be put into the binary.

The types utf8, utf16, and utf32 specifies encoding/decoding of the Unicode Transformation Formats
UTF-8, UTF-16, and UTF-32, respectively.

When constructing a segment of a utf type, Value must be an integer in one of the ranges 0..16#D7FF,
16#E000..16#FFFD, or 16#10000..16#10FFFF (i.e. a valid Unicode code point). Construction will fail
with a badarg exception if Value is outside the allowed ranges. The size of the resulting binary segment
depends on the type and/or Value. For utf8, Value will be encoded in 1 through 4 bytes. For utf16,
Value will be encoded in 2 or 4 bytes. Finally, for utf32, Value will always be encoded in 4 bytes.

When constructing, a literal string may be given followed by one of the UTF types, for example:
<<"abc"/utf8>>which is syntatic sugar for <<$a/utf8,$b/utf8,$c/utf8>>.

A successful match of a segment of a utf type results in an integer in one of the ranges 0..16#D7FF,
16#E000..16#FFFD, or 16#10000..16#10FFFF (i.e. a valid Unicode code point). The match will fail if
returned value would fall outside those ranges.

A segment of type utf8 will match 1 to 4 bytes in the binary, if the binary at the match position
contains a valid UTF-8 sequence. (See RFC-2279 or the Unicode standard.)

A segment of type utf16 may match 2 or 4 bytes in the binary. The match will fail if the binary at the
match position does not contain a legal UTF-16 encoding of a Unicode code point. (See RFC-2781 or
the Unicode standard.)

A segment of type utf32 may match 4 bytes in the binary in the same way as an integer segment
matching 32 bits. The match will fail if the resulting integer is outside the legal ranges mentioned above.

Examples:

1> Bin1 = <<1,17,42>>.
<<1,17,42>>
2> Bin2 = <<"abc">>.
<<97,98,99>>
3> Bin3 = <<1,17,42:16>>.
<<1,17,0,42>>
4> <<A,B,C:16>> = <<1,17,42:16>>.
<<1,17,0,42>>
5> C.
42
6> <<D:16,E,F>> = <<1,17,42:16>>.
<<1,17,0,42>>
7> D.
273
8> F.
42
9> <<G,H/binary>> = <<1,17,42:16>>.
<<1,17,0,42>>
10> H.
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<<17,0,42>>
11> <<G,H/bitstring>> = <<1,17,42:12>>.
<<1,17,1,10:4>>
12> H.
<<17,1,10:4>>
13> <<1024/utf8>>.
<<208,128>>

Note that bit string patterns cannot be nested.

Note also that “B=<<1>>” is interpreted as “B =<<1>>” which is a syntax error. The correct way is to
write a space after ’=’: “B= <<1>>.

More examples can be found in Programming Examples.

1.6.17 Fun Expressions

fun
(Pattern11,...,Pattern1N) [when GuardSeq1] ->

Body1;
...;
(PatternK1,...,PatternKN) [when GuardSeqK] ->

BodyK
end

A fun expression begins with the keyword fun and ends with the keyword end. Between them should
be a function declaration, similar to a regular function declaration [page 11], except that no function
name is specified.

Variables in a fun head shadow variables in the function clause surrounding the fun expression, and
variables bound in a fun body are local to the fun body.

The return value of the expression is the resulting fun.

Examples:

1> Fun1 = fun (X) -> X+1 end.
#Fun<erl eval.6.39074546>
2> Fun1(2).
3
3> Fun2 = fun (X) when X>=5 -> gt; (X) -> lt end.
#Fun<erl eval.6.39074546>
4> Fun2(7).
gt

The following fun expressions are also allowed:

fun Name/Arity
fun Module:Name/Arity

In Name/Arity, Name is an atom and Arity is an integer. Name/Arity must specify an existing local
function. The expression is syntactic sugar for:

fun (Arg1,...,ArgN) -> Name(Arg1,...,ArgN) end
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In Module:Name/Arity, Module and Name are atoms and Arity is an integer. A fun defined in this way
will refer to the function Name with arity Arity in the latest version of module Module.

When applied to a number N of arguments, a tuple fModule,FunctionNameg is interpreted as a fun,
referring to the function FunctionName with arity N in the module Module. The function must be
exported. This usage is deprecated. See Function Calls [page 17] for an example.

More examples can be found in Programming Examples.

1.6.18 Catch and Throw

catch Expr

Returns the value of Expr unless an exception occurs during the evaluation. In that case, the exception
is caught. For exceptions of class error, that is run-time errors: f’EXIT’,fReason,Stackgg is returned.
For exceptions of class exit, that is the code called exit(Term): f’EXIT’,Termg is returned. For
exceptions of class throw, that is the code called throw(Term): Term is returned.

Reason depends on the type of error that occurred, and Stack is the stack of recent function calls, see
Errors and Error Handling [page 42].

Examples:

1> catch 1+2.
3
2> catch 1+a.
f’EXIT’,fbadarith,[...]gg

Note that catch has low precedence and catch subexpressions often needs to be enclosed in a block
expression or in parenthesis:

3> A = catch 1+2.
** 1: syntax error before: ’catch’ **
4> A = (catch 1+2).
3

The BIF throw(Any) can be used for non-local return from a function. It must be evaluated within a
catch, which will return the value Any. Example:

5> catch throw(hello).
hello

If throw/1 is not evaluated within a catch, a nocatch run-time error will occur.
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1.6.19 Try

try Exprs
catch

[Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] ->
ExceptionBody1;

[ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] ->
ExceptionBodyN

end

This is an enhancement of catch [page 28] that appeared in Erlang 5.4/OTP-R10B. It gives the
possibility do distinguish between different exception classes, and to choose to handle only the desired
ones, passing the others on to an enclosing try or catch or to default error handling.

Note that although the keyword catch is used in the try expression, there is not a catch expression
within the try expression.

Returns the value of Exprs (a sequence of expressions Expr1, ..., ExprN) unless an exception occurs
during the evaluation. In that case the exception is caught and the patterns ExceptionPatternwith the
right exception class Class are sequentially matched against the caught exception. An omitted Class is
shorthand for throw. If a match succeeds and the optional guard sequence ExceptionGuardSeq is true,
the corresponding ExceptionBody is evaluated to become the return value.

If an exception occurs during evaluation of Exprs but there is no matching ExceptionPattern of the
right Class with a true guard sequence, the exception is passed on as if Exprs had not been enclosed in
a try expression.

If an exception occurs during evaluation of ExceptionBody it is not caught.

The try expression can have an of section:

try Exprs of
Pattern1 [when GuardSeq1] ->

Body1;
...;
PatternN [when GuardSeqN] ->

BodyN
catch

[Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] ->
ExceptionBody1;

...;
[ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] ->

ExceptionBodyN
end

If the evaluation of Exprs succeeds without an exception, the patterns Pattern are sequentially
matched against the result in the same way as for a case [page 18] expression, except that if the
matching fails, a try clause run-time error will occur.

An exception occurring during the evaluation of Body is not caught.

The try expression can also be augmented with an after section, intended to be used for cleanup with
side effects:
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try Exprs of
Pattern1 [when GuardSeq1] ->

Body1;
...;
PatternN [when GuardSeqN] ->

BodyN
catch

[Class1:]ExceptionPattern1 [when ExceptionGuardSeq1] ->
ExceptionBody1;

...;
[ClassN:]ExceptionPatternN [when ExceptionGuardSeqN] ->

ExceptionBodyN
after

AfterBody
end

AfterBody is evaluated after either Body or ExceptionBody no matter which one. The evaluated value
of AfterBody is lost; the return value of the try expression is the same with an after section as
without.

Even if an exception occurs during evaluation of Body or ExceptionBody, AfterBody is evaluated. In
this case the exception is passed on after AfterBody has been evaluated, so the exception from the try
expression is the same with an after section as without.

If an exception occurs during evaluation of AfterBody itself it is not caught, so if AfterBody is
evaluated after an exception in Exprs, Body or ExceptionBody, that exception is lost and masked by
the exception in AfterBody.

The of, catch and after sections are all optional, as long as there is at least a catch or an after
section, so the following are valid try expressions:

try Exprs of
Pattern when GuardSeq ->

Body
after

AfterBody
end

try Exprs
catch

ExpressionPattern ->
ExpressionBody

after
AfterBody

end

try Exprs after AfterBody end

Example of using after, this code will close the file even in the event of exceptions in file:read/2 or
in binary to term/1, and exceptions will be the same as without the try...after...end expression:

termize_file(Name) ->
{ok,F} = file:open(Name, [read,binary]),
try
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{ok,Bin} = file:read(F, 1024*1024),
binary_to_term(Bin)

after
file:close(F)

end.

Example: Using try to emulate catch Expr.

try Expr
catch

throw:Term -> Term;
exit:Reason -> {’EXIT’,Reason}
error:Reason -> {’EXIT’,{Reason,erlang:get_stacktrace()}}

end

1.6.20 Parenthesized Expressions

(Expr)

Parenthesized expressions are useful to override operator precedences [page 34], for example in
arithmetic expressions:

1> 1 + 2 * 3.
7
2> (1 + 2) * 3.
9

1.6.21 Block Expressions

begin
Expr1,
...,
ExprN

end

Block expressions provide a way to group a sequence of expressions, similar to a clause body. The return
value is the value of the last expression ExprN.

1.6.22 List Comprehensions

List comprehensions are a feature of many modern functional programming languages. Subject to
certain rules, they provide a succinct notation for generating elements in a list.

List comprehensions are analogous to set comprehensions in Zermelo-Frankel set theory and are called
ZF expressions in Miranda. They are analogous to the setof and findall predicates in Prolog.

List comprehensions are written with the following syntax:

[Expr || Qualifier1,...,QualifierN]

Expr is an arbitrary expression, and each Qualifier is either a generator or a filter.
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� A generator is written as:
Pattern <- ListExpr.
ListExpr must be an expression which evaluates to a list of terms.

� A bit string generator is written as:
BitstringPattern <= BitStringExpr.
BitStringExpr must be an expression which evaluates to a bitstring.

� A filter is an expression which evaluates to true or false.

The variables in the generator patterns shadow variables in the function clause surrounding the list
comprehensions.

A list comprehension returns a list, where the elements are the result of evaluating Expr for each
combination of generator list elements and bit string generator elements for which all filters are true.

Example:

1> [X*2 || X <- [1,2,3]].
[2,4,6]

More examples can be found in Programming Examples.

1.6.23 Bit String Comprehensions

Bit string comprehensions are analogous to List Comprehensions. They are used to generate bit strings
efficiently and succinctly.

Bit string comprehensions are written with the following syntax:

<< BitString || Qualifier1,...,QualifierN >>

BitString is a bit string expression, and each Qualifier is either a generator, a bit string generator or a
filter.

� A generator is written as:
Pattern <- ListExpr.
ListExpr must be an expression which evaluates to a list of terms.

� A bit string generator is written as:
BitstringPattern <= BitStringExpr.
BitStringExpr must be an expression which evaluates to a bitstring.

� A filter is an expression which evaluates to true or false.

The variables in the generator patterns shadow variables in the function clause surrounding the bit
string comprehensions.

A bit string comprehension returns a bit string, which is created by concatenating the results of
evaluating BitString for each combination of bit string generator elements for which all filters are true.

Example:

1> << << (X*2) >> ||<<X>> <= << 1,2,3 >> >>.
<<2,4,6>>

More examples can be found in Programming Examples.
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1.6.24 Guard Sequences

A guard sequence is a sequence of guards, separated by semicolon (;). The guard sequence is true if at
least one of the guards is true. (The remaining guards, if any, will not be evaluated.)
Guard1;...;GuardK

A guard is a sequence of guard expressions, separated by comma (,). The guard is true if all guard
expressions evaluate to true.
GuardExpr1,...,GuardExprN

The set of valid guard expressions (sometimes called guard tests) is a subset of the set of valid Erlang
expressions. The reason for restricting the set of valid expressions is that evaluation of a guard
expression must be guaranteed to be free of side effects. Valid guard expressions are:

� the atom true,

� other constants (terms and bound variables), all regarded as false,

� calls to the BIFs specified below,

� term comparisons,

� arithmetic expressions,

� boolean expressions, and

� short-circuit expressions (andalso/orelse).

is atom/1

is binary/1

is bitstring/1

is float/1

is function/1

is function/2

is integer/1

is list/1

is number/1

is pid/1

is port/1

is record/2

is record/3

is reference/1

is tuple/1

Table 1.6: Type Test BIFs.

Note that most type test BIFs have older equivalents, without the is prefix. These old BIFs are
retained for backwards compatibility only and should not be used in new code. They are also only
allowed at top level. For example, they are not allowed in boolean expressions in guards.

abs(Number)

bit size(Bitstring)

byte size(Bitstring)

continued ...
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... continued

element(N, Tuple)

float(Term)

hd(List)

length(List)

node()

node(Pid|Ref|Port)

round(Number)

self()

size(Tuple|Bitstring)

tl(List)

trunc(Number)

tuple size(Tuple)

Table 1.7: Other BIFs Allowed in Guard Expressions.

If an arithmetic expression, a boolean expression, a short-circuit expression, or a call to a guard BIF fails
(because of invalid arguments), the entire guard fails. If the guard was part of a guard sequence, the
next guard in the sequence (that is, the guard following the next semicolon) will be evaluated.

1.6.25 Operator Precedence

Operator precedence in falling priority:

:

#

Unary + - bnot not

/ * div rem band and Left associative

+ - bor bxor bsl bsr or xor Left associative

++ – Right associative

== /= =< < >= > =:= =/=

andalso

orelse

= ! Right associative

catch

Table 1.8: Operator Precedence.

When evaluating an expression, the operator with the highest priority is evaluated first. Operators with
the same priority are evaluated according to their associativity. Example: The left associative arithmetic
operators are evaluated left to right:

6 + 5 * 4 - 3 / 2 evaluates to
6 + 20 - 1.5 evaluates to
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26 - 1.5 evaluates to
24.5

1.7 The Preprocessor

1.7.1 File Inclusion

A file can be included in the following way:

-include(File).
-include lib(File).

File, a string, should point out a file. The contents of this file are included as-is, at the position of the
directive.

Include files are typically used for record and macro definitions that are shared by several modules. It is
recommended that the file name extension .hrl be used for include files.

File may start with a path component $VAR, for some string VAR. If that is the case, the value of the
environment variable VAR as returned by os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR)
returns false, $VAR is left as is.

If the filename File is absolute (possibly after variable substitution), the include file with that name is
included. Otherwise, the specified file is searched for in the current working directory, in the same
directory as the module being compiled, and in the directories given by the include option, in that
order. See erlc(1) and compile(3) for details.

Examples:

-include("my records.hrl").
-include("incdir/my records.hrl").
-include("/home/user/proj/my records.hrl").
-include("$PROJ ROOT/my records.hrl").

include lib is similar to include, but should not point out an absolute file. Instead, the first path
component (possibly after variable substitution) is assumed to be the name of an application. Example:

-include lib("kernel/include/file.hrl").

The code server uses code:lib dir(kernel) to find the directory of the current (latest) version of
Kernel, and then the subdirectory include is searched for the file file.hrl.
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1.7.2 Defining and Using Macros

A macro is defined the following way:

-define(Const, Replacement).
-define(Func(Var1,...,VarN), Replacement).

A macro definition can be placed anywhere among the attributes and function declarations of a module,
but the definition must come before any usage of the macro.

If a macro is used in several modules, it is recommended that the macro definition is placed in an
include file.

A macro is used the following way:

?Const
?Func(Arg1,...,ArgN)

Macros are expanded during compilation. A simple macro ?Const will be replaced with Replacement.
Example:

-define(TIMEOUT, 200).
...
call(Request) ->

server:call(refserver, Request, ?TIMEOUT).

This will be expanded to:

call(Request) ->
server:call(refserver, Request, 200).

A macro ?Func(Arg1,...,ArgN) will be replaced with Replacement, where all occurrences of a
variable Var from the macro definition are replaced with the corresponding argument Arg. Example:

-define(MACRO1(X, Y), {a, X, b, Y}).
...
bar(X) ->

?MACRO1(a, b),
?MACRO1(X, 123)

This will be expanded to:

bar(X) ->
{a,a,b,b},
{a,X,b,123}.

It is good programming practice, but not mandatory, to ensure that a macro definition is a valid Erlang
syntactic form.

To view the result of macro expansion, a module can be compiled with the ’P’ option.
compile:file(File, [’P’]). This produces a listing of the parsed code after preprocessing and parse
transforms, in the file File.P.
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1.7.3 Predefined Macros

The following macros are predefined:

?MODULE The name of the current module.

?MODULE STRING. The name of the current module, as a string.

?FILE. The file name of the current module.

?LINE. The current line number.

?MACHINE. The machine name, ’BEAM’.

1.7.4 Flow Control in Macros

The following macro directives are supplied:

-undef(Macro). Causes the macro to behave as if it had never been defined.

-ifdef(Macro). Evaluate the following lines only if Macro is defined.

-ifndef(Macro). Evaluate the following lines only if Macro is not defined.

-else. Only allowed after an ifdef or ifndef directive. If that condition was false, the lines following
else are evaluated instead.

-endif. Specifies the end of an ifdef or ifndef directive.

Note:
The macro directives cannot be used inside functions.

Example:

-module(m).
...

-ifdef(debug).
-define(LOG(X), io:format("{~p,~p}: ~p~n", [?MODULE,?LINE,X])).
-else.
-define(LOG(X), true).
-endif.

...

When trace output is desired, debug should be defined when the module m is compiled:

% erlc -Ddebug m.erl

or

1> c(m, fd, debugg).
fok,mg

?LOG(Arg) will then expand to a call to io:format/2 and provide the user with some simple trace
output.
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1.7.5 Stringifying Macro Arguments

The construction ??Arg, where Arg is a macro argument, will be expanded to a string containing the
tokens of the argument. This is similar to the #arg stringifying construction in C.

The feature was added in Erlang 5.0/OTP R7.

Example:

-define(TESTCALL(Call), io:format("Call ~s: ~w~n", [??Call, Call])).

?TESTCALL(myfunction(1,2)),
?TESTCALL(you:function(2,1)).

results in

io:format("Call ~s: ~w~n",["myfunction ( 1 , 2 )",m:myfunction(1,2)]),
io:format("Call ~s: ~w~n",["you : function ( 2 , 1 )",you:function(2,1)]).

That is, a trace output with both the function called and the resulting value.

1.8 Records

A record is a data structure for storing a fixed number of elements. It has named fields and is similar to a
struct in C. Record expressions are translated to tuple expressions during compilation. Therefore, record
expressions are not understood by the shell unless special actions are taken. See shell(3) for details.

More record examples can be found in Programming Examples.

1.8.1 Defining Records

A record definition consists of the name of the record, followed by the field names of the record.
Record and field names must be atoms. Each field can be given an optional default value. If no default
value is supplied, undefined will be used.

-record(Name, fField1 [= Value1],
...
FieldN [= ValueN]g).

A record definition can be placed anywhere among the attributes and function declarations of a module,
but the definition must come before any usage of the record.

If a record is used in several modules, it is recommended that the record definition is placed in an
include file.
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1.8.2 Creating Records

The following expression creates a new Name record where the value of each field FieldI is the value of
evaluating the corresponding expression ExprI:

#NamefField1=Expr1,...,FieldK=ExprKg

The fields may be in any order, not necessarily the same order as in the record definition, and fields can
be omitted. Omitted fields will get their respective default value instead.

If several fields should be assigned the same value, the following construction can be used:

#NamefField1=Expr1,...,FieldK=ExprK, =ExprLg

Omitted fields will then get the value of evaluating ExprL instead of their default values. This feature
was added in Erlang 5.1/OTP R8 and is primarily intended to be used to create patterns for ETS and
Mnesia match functions. Example:

-record(person, fname, phone, addressg).

...

lookup(Name, Tab) ->
ets:match object(Tab, #personfname=Name, =’ ’g).

1.8.3 Accessing Record Fields

Expr#Name.Field

Returns the value of the specified field. Expr should evaluate to a Name record.

The following expression returns the position of the specified field in the tuple representation of the
record:

#Name.Field

Example:

-record(person, fname, phone, addressg).

...

lookup(Name, List) ->
lists:keysearch(Name, #person.name, List).

1.8.4 Updating Records

Expr#NamefField1=Expr1,...,FieldK=ExprKg

Expr should evaluate to a Name record. Returns a copy of this record, with the value of each specified
field FieldI changed to the value of evaluating the corresponding expression ExprI. All other fields
retain their old values.
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1.8.5 Records in Guards

Since record expressions are expanded to tuple expressions, creating records and accessing record fields
are allowed in guards. However all subexpressions, for example for field initiations, must of course be
valid guard expressions as well. Examples:

handle(Msg, State) when Msg==#msg{to=void, no=3} ->
...

handle(Msg, State) when State#state.running==true ->
...

There is also a type test BIF is record(Term, RecordTag). Example:

is person(P) when is record(P, person) ->
true;

is person( P) ->
false.

1.8.6 Records in Patterns

A pattern that will match a certain record is created the same way as a record is created:

#NamefField1=Expr1,...,FieldK=ExprKg

In this case, one or more of Expr1...ExprK may be unbound variables.

1.8.7 Internal Representation of Records

Record expressions are translated to tuple expressions during compilation. A record defined as

-record(Name, fField1,...,FieldNg).

is internally represented by the tuple

fName,Value1,...,ValueNg

where each ValueI is the default value for FieldI.

To each module using records, a pseudo function is added during compilation to obtain information
about records:

record info(fields, Record) -> [Field]
record info(size, Record) -> Size

Size is the size of the tuple representation, that is one more than the number of fields.

In addition, #Record.Name returns the index in the tuple representation of Name of the record Record.
Name must be an atom.
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1.9 Errors and Error Handling

1.9.1 Terminology

Errors can roughly be divided into four different types:

� Compile-time errors

� Logical errors

� Run-time errors

� Generated errors

A compile-time error, for example a syntax error, should not cause much trouble as it is caught by the
compiler.

A logical error is when a program does not behave as intended, but does not crash. An example could
be that nothing happens when a button in a graphical user interface is clicked.

A run-time error is when a crash occurs. An example could be when an operator is applied to
arguments of the wrong type. The Erlang programming language has built-in features for handling of
run-time errors.

A run-time error can also be emulated by calling erlang:error(Reason), erlang:error(Reason,
Args) (those appeared in Erlang 5.4/OTP-R10), erlang:fault(Reason) or erlang:fault(Reason,
Args) (old equivalents).

A run-time error is another name for an exception of class error.

A generated error is when the code itself calls exit/1 or throw/1. Note that emulated run-time errors
are not denoted as generated errors here.

Generated errors are exceptions of classes exit and throw.

When a run-time error or generated error occurs in Erlang, execution for the process which evaluated
the erroneous expression is stopped. This is referred to as a failure, that execution or evaluation fails, or
that the process fails, terminates or exits. Note that a process may terminate/exit for other reasons than a
failure.

A process that terminates will emit an exit signal with an exit reason that says something about which
error has occurred. Normally, some information about the error will be printed to the terminal.

1.9.2 Exceptions

Exceptions are run-time errors or generated errors and are of three different classes, with different
origins. The try [page 29] expression (appeared in Erlang 5.4/OTP-R10B) can distinguish between the
different classes, whereas the catch [page 28] expression can not. They are described in the Expressions
chapter.

Class Origin

error Run-time error for example 1+a, or the process called erlang:error/1,2 (appeared in Erlang
5.4/OTP-R10B) or erlang:fault/1,2 (old equivalent)

exit The process called exit/1

throw The process called throw/1

Table 1.9: Exception Classes.
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An exception consists of its class, an exit reason (the Exit Reason [page 42]), and a stack trace (that aids
in finding the code location of the exception).

The stack trace can be retrieved using erlang:get stacktrace/0 (new in Erlang 5.4/OTP-R10B from
within a try expression, and is returned for exceptions of class error from a catch expression.

An exception of class error is also known as a run-time error.

1.9.3 Handling of Run-Time Errors in Erlang

Error Handling Within Processes

It is possible to prevent run-time errors and other exceptions from causing the process to terminate by
using catch or try, see the Expressions chapter about Catch [page 28] and Try [page 29].

Error Handling Between Processes

Processes can monitor other processes and detect process terminations, see the Processes [page 44]
chapter.

1.9.4 Exit Reasons

When a run-time error occurs, that is an exception of class error, the exit reason is a tuple
fReason,Stackg. Reason is a term indicating the type of error:

Reason Type of error

badarg Bad argument. The argument is of wrong data type, or is otherwise
badly formed.

badarith Bad argument in an arithmetic expression.

fbadmatch,Vg Evaluation of a match expression failed. The value V did not match.

function clause No matching function clause is found when evaluating a function call.

fcase clause,Vg No matching branch is found when evaluating a case expression. The
value V did not match.

if clause No true branch is found when evaluating an if expression.

ftry clause,Vg No matching branch is found when evaluating the of-section of a try

expression. The value V did not match.

undef The function cannot be found when evaluating a function call.

fbadfun,Fg There is something wrong with a fun F.

fbadarity,Fg A fun is applied to the wrong number of arguments. F describes the
fun and the arguments.

timeout value The timeout value in a receive..after expression is evaluated to
something else than an integer or infinity.

noproc Trying to link to a non-existing process.

fnocatch,Vg Trying to evaluate a throw outside a catch. V is the thrown term.

system limit A system limit has been reached. See Efficiency Guide for information
about system limits.

continued ...
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... continued

Table 1.10: Exit Reasons.

Stack is the stack of function calls being evaluated when the error occurred, given as a list of tuples
fModule,Name,Arityg with the most recent function call first. The most recent function call tuple may
in some cases be fModule,Name,[Arg]g.

1.10 Processes

1.10.1 Processes

Erlang is designed for massive concurrency. Erlang processes are light-weight (grow and shrink
dynamically) with small memory footprint, fast to create and terminate and the scheduling overhead is
low.

1.10.2 Process Creation

A process is created by calling spawn:

spawn(Module, Name, Args) -> pid()
Module = Name = atom()
Args = [Arg1,...,ArgN]
ArgI = term()

spawn creates a new process and returns the pid.

The new process will start executing in Module:Name(Arg1,...,ArgN) where the arguments is the
elements of the (possible empty) Args argument list.

There exist a number of other spawn BIFs, for example spawn/4 for spawning a process at another node.

1.10.3 Registered Processes

Besides addressing a process by using its pid, there are also BIFs for registering a process under a name.
The name must be an atom and is automatically unregistered if the process terminates:

register(Name, Pid) Associates the name Name, an atom, with the process Pid.

registered() Returns a list of names which have been registered using
register/2.

whereis(Name) Returns the pid registered under Name, orundefinedif the name is
not registered.

Table 1.11: Name Registration BIFs.
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1.10.4 Process Termination

When a process terminates, it always terminates with an exit reason. The reason may be any term.

A process is said to terminate normally, if the exit reason is the atom normal. A process with no more
code to execute terminates normally.

A process terminates with exit reason fReason,Stackg when a run-time error occurs. See Error and
Error Handling [page 42].

A process can terminate itself by calling one of the BIFs exit(Reason), erlang:error(Reason),
erlang:error(Reason, Args), erlang:fault(Reason) or erlang:fault(Reason, Args). The
process then terminates with reason Reason for exit/1 or fReason,Stackg for the others.

A process may also be terminated if it receives an exit signal with another exit reason than normal, see
Error Handling [page 44] below.

1.10.5 Message Sending

Processes communicate by sending and receiving messages. Messages are sent by using the send
operator ! [page 19] and received by calling receive [page 19].

Message sending is asynchronous and safe, the message is guaranteed to eventually reach the recipient,
provided that the recipient exists.

1.10.6 Links

Two processes can be linked to each other. A link between two processes Pid1 and Pid2 is created by
Pid1 calling the BIF link(Pid2) (or vice versa). There also exists a number a spawn link BIFs, which
spawns and links to a process in one operation.

Links are bidirectional and there can only be one link between two processes. Repeated calls to
link(Pid) have no effect.

A link can be removed by calling the BIF unlink(Pid).

Links are used to monitor the behaviour of other processes, see Error Handling [page 44] below.

1.10.7 Error Handling

Erlang has a built-in feature for error handling between processes. Terminating processes will emit exit
signals to all linked processes, which may terminate as well or handle the exit in some way. This feature
can be used to build hierarchical program structures where some processes are supervising other
processes, for example restarting them if they terminate abnormally.

Refer to OTP Design Principles for more information about OTP supervision trees, which uses this
feature.

Emitting Exit Signals

When a process terminates, it will terminate with an exit reason as explained in Process Termination
[page 44] above. This exit reason is emitted in an exit signal to all linked processes.

A process can also call the function exit(Pid,Reason). This will result in an exit signal with exit
reason Reason being emitted to Pid, but does not affect the calling process.
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Receiving Exit Signals

The default behaviour when a process receives an exit signal with an exit reason other than normal, is
to terminate and in turn emit exit signals with the same exit reason to its linked processes. An exit
signal with reason normal is ignored.

A process can be set to trap exit signals by calling:

process flag(trap exit, true)

When a process is trapping exits, it will not terminate when an exit signal is received. Instead, the signal
is transformed into a message f’EXIT’,FromPid,Reasong which is put into the mailbox of the process
just like a regular message.

An exception to the above is if the exit reason is kill, that is if exit(Pid,kill) has been called. This
will unconditionally terminate the process, regardless of if it is trapping exit signals or not.

1.10.8 Monitors

An alternative to links are monitors. A process Pid1 can create a monitor for Pid2 by calling the BIF
erlang:monitor(process, Pid2). The function returns a reference Ref.

If Pid2 terminates with exit reason Reason, a ’DOWN’ message is sent to Pid1:

{’DOWN’, Ref, process, Pid2, Reason}

If Pid2 does not exist, the ’DOWN’ message is sent immediately with Reason set to noproc.

Monitors are unidirectional. Repeated calls to erlang:monitor(process, Pid) will create several,
independent monitors and each one will send a ’DOWN’ message when Pid terminates.

A monitor can be removed by calling erlang:demonitor(Ref).

It is possible to create monitors for processes with registered names, also at other nodes.

1.10.9 Process Dictionary

Each process has its own process dictionary, accessed by calling the following BIFs:

put(Key, Value)
get(Key)
get()
get keys(Value)
erase(Key)
erase()
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1.11 Distributed Erlang

1.11.1 Distributed Erlang System

A distributed Erlang system consists of a number of Erlang runtime systems communicating with each
other. Each such runtime system is called a node. Message passing between processes at different nodes,
as well as links and monitors, are transparent when pids are used. Registered names, however, are local
to each node. This means the node must be specified as well when sending messages etc. using
registered names.

The distribution mechanism is implemented using TCP/IP sockets. How to implement an alternative
carrier is described in ERTS User’s Guide.

1.11.2 Nodes

A node is an executing Erlang runtime system which has been given a name, using the command line
flag -name (long names) or -sname (short names).

The format of the node name is an atom name@host where name is the name given by the user and host
is the full host name if long names are used, or the first part of the host name if short names are used.
node() returns the name of the node. Example:

% erl -name dilbert
(dilbert@uab.ericsson.se)1> node().
’dilbert@uab.ericsson.se’

% erl -sname dilbert
(dilbert@uab)1> node().
dilbert@uab

Note:
A node with a long node name cannot communicate with a node with a short node name.

1.11.3 Node Connections

The nodes in a distributed Erlang system are loosely connected. The first time the name of another
node is used, for example if spawn(Node,M,F,A) or net adm:ping(Node) is called, a connection
attempt to that node will be made.

Connections are by default transitive. If a node A connects to node B, and node B has a connection to
node C, then node A will also try to connect to node C. This feature can be turned off by using the
command line flag -connect all false, see erl(1).

If a node goes down, all connections to that node are removed. Calling erlang:disconnect(Node) will
force disconnection of a node.

The list of (visible) nodes currently connected to is returned by nodes().
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1.11.4 epmd

The Erlang Port Mapper Daemon epmd is automatically started at every host where an Erlang node is
started. It is responsible for mapping the symbolic node names to machine addresses. See epmd(1).

1.11.5 Hidden Nodes

In a distributed Erlang system, it is sometimes useful to connect to a node without also connecting to all
other nodes. An example could be some kind of O&M functionality used to inspect the status of a
system without disturbing it. For this purpose, a hidden node may be used.

A hidden node is a node started with the command line flag -hidden. Connections between hidden
nodes and other nodes are not transitive, they must be set up explicitly. Also, hidden nodes does not
show up in the list of nodes returned by nodes(). Instead, nodes(hidden) or nodes(connected) must
be used. This means, for example, that the hidden node will not be added to the set of nodes that
global is keeping track of.

This feature was added in Erlang 5.0/OTP R7.

1.11.6 C Nodes

A C node is a C program written to act as a hidden node in a distributed Erlang system. The library
Erl Interface contains functions for this purpose. Refer to the documentation for Erl Interface and
Interoperability Tutorial for more information about C nodes.

1.11.7 Security

Authentication determines which nodes are allowed to communicate with each other. In a network of
different Erlang nodes, it is built into the system at the lowest possible level. Each node has its own
magic cookie, which is an Erlang atom.

When a nodes tries to connect to another node, the magic cookies are compared. If they do not match,
the connected node rejects the connection.

At start-up, a node has a random atom assigned as its magic cookie and the cookie of other nodes is
assumed to be nocookie. The first action of the Erlang network authentication server (auth) is then to
read a file named $HOME/.erlang.cookie. If the file does not exist, it is created. The UNIX
permissions mode of the file is set to octal 400 (read-only by user) and its contents are a random string.
An atom Cookie is created from the contents of the file and the cookie of the local node is set to this
using erlang:set cookie(node(), Cookie). This also makes the local node assume that all other
nodes have the same cookie Cookie.

Thus, groups of users with identical cookie files get Erlang nodes which can communicate freely and
without interference from the magic cookie system. Users who want run nodes on separate file systems
must make certain that their cookie files are identical on the different file systems.

For a node Node1 with magic cookie Cookie to be able to connect to, or accept a connection from,
another node Node2 with a different cookie DiffCookie, the function erlang:set cookie(Node2,
DiffCookie) must first be called at Node1. Distributed systems with multiple user IDs can be handled
in this way.

The default when a connection is established between two nodes, is to immediately connect all other
visible nodes as well. This way, there is always a fully connected network. If there are nodes with
different cookies, this method might be inappropriate and the command line flag -connect all false
must be set, see [erl(1)].

The magic cookie of the local node is retrieved by calling erlang:get cookie().
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1.11.8 Distribution BIFs

Some useful BIFs for distributed programming, see erlang(3) for more information:

erlang:disconnect node(Node) Forces the disconnection of a node.

erlang:get cookie() Returns the magic cookie of the current node.

is alive() Returns trueif the runtime system is a node and
can connect to other nodes, falseotherwise.

monitor node(Node, true|false) Monitor the status of Node. A message
fnodedown, Nodegis received if the connection
to it is lost.

node() Returns the name of the current node. Allowed
in guards.

node(Arg) Returns the node where Arg, a pid, reference, or
port, is located.

nodes() Returns a list of all visible nodes this node is con-
nected to.

nodes(Arg) Depending on Arg, this function can return a list
not only of visible nodes, but also hidden nodes
and previously known nodes, etc.

set cookie(Node, Cookie) Sets the magic cookie used when connecting to
Node. If Nodeis the current node, Cookiewill be
used when connecting to all new nodes.

spawn[ link| opt](Node, Fun) Creates a process at a remote node.

spawn[ link|opt](Node, Module,

FunctionName, Args)

Creates a process at a remote node.

Table 1.12: Distribution BIFs.

1.11.9 Distribution Command Line Flags

Examples of command line flags used for distributed programming, see erl(1) for more information:

-connect all false Only explicit connection set-ups will be used.

-hidden Makes a node into a hidden node.

-name Name Makes a runtime system into a node, using long node names.

-setcookie Cookie Same as calling erlang:set cookie(node(), Cookie).

-sname Name Makes a runtime system into a node, using short node names.

Table 1.13: Distribution Command Line Flags.

1.11.10 Distribution Modules

Examples of modules useful for distributed programming:

In Kernel:
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global A global name registration facility.

global group Grouping nodes to global name registration groups.

net adm Various Erlang net administration routines.

net kernel Erlang networking kernel.

Table 1.14: Kernel Modules Useful For Distribution.

In STDLIB:

slave Start and control of slave nodes.

Table 1.15: STDLIB Modules Useful For Distribution.

1.12 Compilation and Code Loading

How code is compiled and loaded is not a language issue, but is system dependent. This chapter
describes compilation and code loading in Erlang/OTP with pointers to relevant parts of the
documentation.

1.12.1 Compilation

Erlang programs must be compiled to object code. The compiler can generate a new file which contains
the object code. The current abstract machine which runs the object code is called BEAM, therefore the
object files get the suffix .beam. The compiler can also generate a binary which can be loaded directly.

The compiler is located in the Kernel module compile, see compile(3).

compile:file(Module)
compile:file(Module, Options)

The Erlang shell understands the command c(Module) which both compiles and loads Module.

There is also a module make which provides a set of functions similar to the UNIX type Make functions,
see make(3).

The compiler can also be accessed from the OS prompt, see erl(1).

% erl -compile Module1...ModuleN
% erl -make

The erlc program provides an even better way to compile modules from the shell, see erlc(1). It
understands a number of flags that can be used to define macros, add search paths for include files, and
more.

% erlc <flags> File1.erl...FileN.erl

49Erlang Reference Manual



Chapter 1: Erlang Reference Manual

1.12.2 Code Loading

The object code must be loaded into the Erlang runtime system. This is handled by the code server, see
code(3).

The code server loads code according to a code loading strategy which is either interactive (default) or
embedded. In interactive mode, code are searched for in a code path and loaded when first referenced. In
embedded mode, code is loaded at start-up according to a boot script. This is described in System
Principles.

1.12.3 Code Replacement

Erlang supports change of code in a running system. Code replacement is done on module level.

The code of a module can exist in two variants in a system: current and old. When a module is loaded
into the system for the first time, the code becomes ’current’. If then a new instance of the module is
loaded, the code of the previous instance becomes ’old’ and the new instance becomes ’current’.

Both old and current code is valid, and may be evaluated concurrently. Fully qualified function calls
always refer to current code. Old code may still be evaluated because of processes lingering in the old
code.

If a third instance of the module is loaded, the code server will remove (purge) the old code and any
processes lingering in it will be terminated. Then the third instance becomes ’current’ and the
previously current code becomes ’old’.

To change from old code to current code, a process must make a fully qualified function call. Example:

-module(m).
-export([loop/0]).

loop() ->
receive

code switch ->
m:loop();

Msg ->
...
loop()

end.

To make the process change code, send the message code switch to it. The process then will make a
fully qualified call to m:loop() and change to current code. Note that m:loop/0 must be exported.

For code replacement of funs to work, the tuple syntax fModule,FunctionNamegmust be used to
represent the fun.

1.13 Ports and Port Drivers

Examples of how to use ports and port drivers can be found in Interoperability Tutorial. The BIFs
mentioned are as usual documented in erlang(3).
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1.13.1 Ports

Ports provide the basic mechanism for communication with the external world, from Erlang’s point of
view. They provide a byte-oriented interface to an external program. When a port has been created,
Erlang can communicate with it by sending and receiving lists of bytes, including binaries.

The Erlang process which creates a port is said to be the port owner, or the connected process of the port.
All communication to and from the port should go via the port owner. If the port owner terminates, so
will the port (and the external program, if it is written correctly).

The external program resides in another OS process. By default, it should read from standard input (file
descriptor 0) and write to standard output (file descriptor 1). The external program should terminate
when the port is closed.

1.13.2 Port Drivers

It is also possible to write a driver in C according to certain principles and dynamically link it to the
Erlang runtime system. The linked-in driver looks like a port from the Erlang programmer’s point of
view and is called a port driver.

Warning:
An erroneous port driver will cause the entire Erlang runtime system to leak memory, hang or crash.

Port drivers are documented in erl driver(4), driver entry(1) and erl ddll(3).

1.13.3 Port BIFs

To create a port:

open port(PortName, PortSettings Returns a port identifier Portas the result of opening a new Er-
lang port. Messages can be sent to and received from a port
identifier, just like a pid. Port identifiers can also be linked to or
registered under a name using link/1and register/2.

Table 1.16: Port Creation BIF.

PortName is usually a tuple fspawn,Commandg, where the string Command is the name of the external
program. The external program runs outside the Erlang workspace unless a port driver with the name
Command is found. If found, that driver is started.

PortSettings is a list of settings (options) for the port. The list typically contains at least a tuple
fpacket,Ng which specifies that data sent between the port and the external program are preceded by
an N-byte length indicator. Valid values for N are 1, 2 or 4. If binaries should be used instead of lists of
bytes, the option binary must be included.

The port owner Pid can communicate with the port Port by sending and receiving messages. (In fact,
any process can send the messages to the port, but the messages from the port always go to the port
owner).

Below, Data must be an I/O list. An I/O list is a binary or a (possibly deep) list of binaries or integers in
the range 0..255.
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fPid,fcommand,Datagg Sends Datato the port.

fPid,closeg Closes the port. Unless the port is already closed, the port replies with fPort,
closedgwhen all buffers have been flushed and the port really closes.

fPid,fconnect,NewPidgg Sets the port owner of Portto NewPid. Unless the port is already closed, the
port replies withfPort,connectedgto the old port owner. Note that the old
port owner is still linked to the port, but the new port owner is not.

Table 1.17: Messages Sent To a Port.

fPort,fdata,Datagg Datais received from the external program.

fPort,closedg Reply to Port ! fPid,closeg.

fPort,connectedg Reply to Port ! fPid,fconnect,NewPidgg

f’EXIT’,Port,Reasong If the port has terminated for some reason.

Table 1.18: Messages Received From a Port.

Instead of sending and receiving messages, there are also a number of BIFs that can be used. These can
be called by any process, not only the port owner.

port command(Port,Data) Sends Datato the port.

port close(Port) Closes the port.

port connect(Port,NewPid) Sets the port owner of Portto NewPid. The old port owner
Pidstays linked to the port and have to call unlink(Port)if this
is not desired.

erlang:port info(Port,Item) Returns information as specified by Item.

erlang:ports() Returns a list of all ports on the current node.

Table 1.19: Port BIFs.

There are some additional BIFs that only apply to port drivers: port control/3 and
erlang:port call/3.
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