
SSH

version 1.1

Typeset in LATEX from SGML source using the DocBuilder-0.9.8.6 Document System.

Contents

1 SSH Reference Manual 1

1.1 ssh . 7

1.2 ssh channel . 11

1.3 ssh connection . 18

1.4 ssh sftp . 22

1.5 ssh sftpd . 29

Index of Modules and Functions 31

iiiSSH

iv SSH

SSH Reference Manual

Short Summaries

� Erlang Module ssh [page 7] – Main API of the SSH application

� Erlang Module ssh channel [page 11] – Generic Ssh Channel Behavior

� Erlang Module ssh connection [page 18] – This module provides an API to the ssh
connection protocol.

� Erlang Module ssh sftp [page 22] – SFTP client.

� Erlang Module ssh sftpd [page 29] – Specifies a channel process to handle a sftp
subsystem.

ssh

The following functions are exported:

� close(ConnectionRef) -> ok
[page 7] Closes a ssh connection

� connect(Host, Port, Options) ->
[page 7] Connect to an ssh server.

� connect(Host, Port, Options, Timeout) -> fok, ssh connection ref()g
| ferror, Reasong
[page 7] Connect to an ssh server.

� connection info(ConnectionRef, [Option]) ->[fOption, Valueg]
[page 8] Retrieves information about a connection.

� daemon(Port) ->
[page 8] Starts a server listening for SSH connections on the given port.

� daemon(Port, Options) ->
[page 8] Starts a server listening for SSH connections on the given port.

� daemon(HostAddress, Port, Options) -> ssh daemon ref()
[page 8] Starts a server listening for SSH connections on the given port.

� shell(Host) ->
[page 9]

� shell(Host, Option) ->
[page 9]

� shell(Host, Port, Option) ->
[page 9]

1SSH

SSH Reference Manual

� start() ->
[page 10] Starts the Ssh application.

� start(Type) -> ok | ferror, Reasong
[page 10] Starts the Ssh application.

� stop() -> ok
[page 10] Stops the Ssh application.

� stop daemon(DaemonRef) ->
[page 10] Stops the listener and all connections started by the listener.

� stop daemon(Address, Port) -> ok
[page 10] Stops the listener and all connections started by the listener.

� stop listener(DaemonRef) ->
[page 10] Stops the listener, but leaves existing connections started by the listener
up and running.

� stop listener(Address, Port) -> ok
[page 10] Stops the listener, but leaves existing connections started by the listener
up and running.

ssh channel

The following functions are exported:

� call(ChannelRef, Msg) ->
[page 11] Makes a synchronous call to a channel.

� call(ChannelRef, Msg, Timeout) -> Reply | ferror, Reasong
[page 11] Makes a synchronous call to a channel.

� cast(ChannelRef, Msg) -> ok
[page 11] Sends an asynchronous message to the channel ChannelRef and returns
ok.

� enter loop(State) ->
[page 12] Makes an existing process into a ssh channel process.

� init(Options) -> fok, Stateg | fok, State, Timeoutg | fstop, Reasong
[page 12] Initiates a ssh channel process.

� reply(Client, Reply) ->
[page 12] Send a reply to a client.

� start(SshConnection, ChannelId, ChannelCb, CbInitArgs) ->
[page 13] Starts a processes that handles a ssh channel.

� start link(SshConnection, ChannelId, ChannelCb, CbInitArgs) -> fok,
ChannelRefg | ferror, Reasong
[page 13] Starts a processes that handles a ssh channel.

� CallbackModule:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 13] Converts process state when code is changed.

� CallbackModule:init(Args) -> fok, Stateg | fok, State, Timeoutg |
fstop, Reasong
[page 14] Makes necessary initializations and returns the initial channel state if the
initializations succeed.

� CallbackModule:handle call(Msg, From, State) -> Result
[page 14] Handles messages sent by calling ssh channel:call/[2,3]

2 SSH

SSH Reference Manual

� CallbackModule:handle cast(Msg, State) -> Result
[page 15] Handles messages sent by calling ssh channel:cact/2

� CallbackModule:handle msg(Msg, State) -> fok, Stateg | fstop,
ChannelId, Stateg
[page 15] Handle other messages than ssh connection protocol, call or cast
messages sent to the channel.

� CallbackModule:handle ssh msg(Msg, State) -> fok, Stateg | fstop,
ssh channel id(), Stateg
[page 15] Handles ssh connection protocol messages.

� CallbackModule:terminate(Reason, State) ->
[page 17]

ssh connection

The following functions are exported:

� adjust window(ConnectionRef, ChannelId, NumOfBytes) -> ok
[page 19] Adjusts the ssh flowcontrol window.

� close(ConnectionRef, ChannelId) -> ok
[page 19] Sends a close message on the channel ChannelId.

� exec(ConnectionRef, ChannelId, Command, TimeOut) ->
ssh request status()
[page 19] Will request that the server start the execution of the given command.

� exit status(ConnectionRef, ChannelId, Status) -> ok
[page 20] Sends the exit status of a command to the client.

� reply request(ConnectionRef, WantReply, Status, CannelId) -> ok
[page 20] Send status replies to requests that want such replies.

� send(ConnectionRef, ChannelId, Data) ->
[page 20] Sends channel data

� send(ConnectionRef, ChannelId, Data, Timeout) ->
[page 20] Sends channel data

� send(ConnectionRef, ChannelId, Type, Data) ->
[page 20] Sends channel data

� send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | ferror,
timeoutg
[page 20] Sends channel data

� send eof(ConnectionRef, ChannelId) -> ok
[page 20] Sends eof on the channel ChannelId.

� session channel(ConnectionRef, Timeout) ->
[page 21] Opens a channel for a ssh session. A session is a remote execution of a
program. The program may be a shell, an application, a system command, or some
built-in subsystem.

� session channel(ConnectionRef, InitialWindowSize, MaxPacketSize,
Timeout) -> fok, ssh channel id()g | ferror, Reasong
[page 21] Opens a channel for a ssh session. A session is a remote execution of a
program. The program may be a shell, an application, a system command, or some
built-in subsystem.

3SSH

SSH Reference Manual

� setenv(ConnectionRef, ChannelId, Var, Value, TimeOut) ->
ssh request status()
[page 21] Environment variables may be passed to the shell/command to be
started later.

� shell(ConnectionRef, ChannelId) -> ssh request status()
[page 21] Will request that the user’s default shell (typically defined in
/etc/passwd in UNIX systems) be started at the other end.

� subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) ->
ssh request status()
[page 21]

ssh sftp

The following functions are exported:

� start channel(ConnectionRef) ->
[page 22] Starts a sftp client

� start channel(ConnectionRef, Options) ->
[page 22] Starts a sftp client

� start channel(Host, Options) ->
[page 22] Starts a sftp client

� start channel(Host, Port, Options) -> fok, Pidg | fok, Pid,
ConnectionRefg | ferror, Reasong
[page 22] Starts a sftp client

� stop channel(ChannelPid) -> ok
[page 23] Stops the sftp client channel.

� read file(ChannelPid, File) ->
[page 23] Read a file

� read file(ChannelPid, File, Timeout) -> fok, Datag | ferror, Reasong
[page 23] Read a file

� write file(ChannelPid, File, Iolist) ->
[page 23] Write a file

� write file(ChannelPid, File, Iolist, Timeout) -> ok | ferror,
Reasong
[page 23] Write a file

� list dir(ChannelPid, Path) ->
[page 23] List directory

� list dir(ChannelPid, Path, Timeout) -> fok, Filenamesg | ferror,
Reasong
[page 23] List directory

� open(ChannelPid, File, Mode) ->
[page 23] Open a file and return a handle

� open(ChannelPid, File, Mode, Timeout) -> fok, Handleg | ferror,
Reasong
[page 23] Open a file and return a handle

� opendir(ChannelPid, Path) ->
[page 24] Open a directory and return a handle

4 SSH

SSH Reference Manual

� opendir(ChannelPid, Path, Timeout) -> fok, Handleg | ferror, Reasong
[page 24] Open a directory and return a handle

� close(ChannelPid, Handle) ->
[page 24] Close an open handle

� close(ChannelPid, Handle, Timeout) -> ok | ferror, Reasong
[page 24] Close an open handle

� read(ChannelPid, Handle, Len) ->
[page 24] Read from an open file

� read(ChannelPid, Handle, Len, Timeout) -> fok, Datag | eof | ferror,
Errorg
[page 24] Read from an open file

� pread(ChannelPid, Handle, Position, Len) ->
[page 24] Read from an open file

� pread(ChannelPid, Handle, Position, Len, Timeout) -> fok, Datag |
eof | ferror, Errorg
[page 24] Read from an open file

� aread(ChannelPid, Handle, Len) -> fasync, Ng | ferror, Errorg
[page 25] Read asynchronously from an open file

� apread(ChannelPid, Handle, Position, Len) -> fasync, Ng | ferror,
Errorg
[page 25] Read asynchronously from an open file

� write(ChannelPid, Handle, Data) ->
[page 25] Write to an open file

� write(ChannelPid, Handle, Data, Timeout) -> ok | ferror, Errorg
[page 25] Write to an open file

� pwrite(ChannelPid, Handle, Position, Data) -> ok
[page 25] Write to an open file

� pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | ferror,
Errorg
[page 25] Write to an open file

� awrite(ChannelPid, Handle, Data) -> ok | ferror, Reasong
[page 25] Write asynchronously to an open file

� apwrite(ChannelPid, Handle, Position, Data) -> ok | ferror, Reasong
[page 25] Write asynchronously to an open file

� position(ChannelPid, Handle, Location) ->
[page 26] Seek position in open file

� position(ChannelPid, Handle, Location, Timeout) -> fok, NewPosition
| ferror, Errorg
[page 26] Seek position in open file

� read file info(ChannelPid, Name) ->
[page 26] Get information about a file

� read file info(ChannelPid, Name, Timeout) -> fok, FileInfog |
ferror, Reasong
[page 26] Get information about a file

� read link info(ChannelPid, Name) -> fok, FileInfog | ferror, Reasong
[page 27] Get information about a symbolic link

5SSH

SSH Reference Manual

� read link info(ChannelPid, Name, Timeout) -> fok, FileInfog |
ferror, Reasong
[page 27] Get information about a symbolic link

� write file info(ChannelPid, Name, Info) ->
[page 27] Write information for a file

� write file info(ChannelPid, Name, Info, Timeout) -> ok | ferror,
Reasong
[page 27] Write information for a file

� read link(ChannelPid, Name) ->
[page 27] Read symbolic link

� read link(ChannelPid, Name, Timeout) -> fok, Targetg | ferror,
Reasong
[page 27] Read symbolic link

� make symlink(ChannelPid, Name, Target) ->
[page 27] Create symbolic link

� make symlink(ChannelPid, Name, Target, Timeout) -> ok | ferror,
Reasong
[page 27] Create symbolic link

� rename(ChannelPid, OldName, NewName) ->
[page 28] Rename a file

� rename(ChannelPid, OldName, NewName, Timeout) -> ok | ferror,
Reasong
[page 28] Rename a file

� delete(ChannelPid, Name) ->
[page 28] Delete a file

� delete(ChannelPid, Name, Timeout) -> ok | ferror, Reasong
[page 28] Delete a file

� make dir(ChannelPid, Name) ->
[page 28] Create a directory

� make dir(ChannelPid, Name, Timeout) -> ok | ferror, Reasong
[page 28] Create a directory

� del dir(ChannelPid, Name) ->
[page 28] Delete an empty directory

� del dir(ChannelPid, Name, Timeout) -> ok | ferror, Reasong
[page 28] Delete an empty directory

ssh sftpd

The following functions are exported:

� subsystem spec(Options) -> subssystem spec()
[page 29] Returns the subsystem specification that allows an ssh daemon to handle
the subssystem ”sftp”.

6 SSH

SSH Reference Manual ssh

ssh
Erlang Module

Interface module for the SSH application

COMMON DATA TYPES

Type definitions that are used more than once in this module:

boolean() = true | false

string() = list of ASCII characters

ssh daemon ref() - opaque to the user returned by ssh:daemon/[1,2,3]

ssh connection ref() - opaque to the user returned by ssh:connect/3

ip address() - fN1,N2,N3,N4g % IPv4 | fK1,K2,K3,K4,K5,K6,K7,K8g % IPv6

subsystem spec() = fsubsystem name(), fchannel callback(),
channel init args()gg

subsystem name() = string()

channel callback() = atom() - Name of the erlang module implementing the
subsystem using the ssh channel behavior see ssh channel(3) [page 11]

channel init args() = list()

Exports

close(ConnectionRef) -> ok

Types:

� ConnectionRef = ssh connection ref()

Closes a ssh connection.

connect(Host, Port, Options) ->

connect(Host, Port, Options, Timeout) -> fok, ssh connection ref()g | ferror, Reasong

Types:

� Host = string()
� Port = integer()

The default is 22, the registered port for SSH.
� Options = [fOption, Valueg]
� Timeout = infinity | integer(milliseconds)

7SSH

ssh SSH Reference Manual

Connects to an SSH server. No channel is started this is done by calling
ssh connect:session channel/2.

Options are:

fuser dir, Stringg Sets the user directory e.i. the directory containing ssh
configuration files for the user such as known hosts, id rsa, id dsa and
authorized key. Defaults to the directory normally referd to as ~/.ssh

fsilently accept hosts, boolean()g When true hosts are added to the file
known hosts without asking the user. Defaults to false.

fuser interaction, boolean()g If false disables the client to connect to the server if
any user interaction is needed such as accepting that the server will be added to
the known hosts file or supplying a password. Defaults to true. Even if user
interaction is allowed it can be suppressed by other options such as
silently accept hosts and password. Do note that it may not always be desirable to
use those options from a security point of view.

fpublic key alg, ssh rsa | ssh dsag Sets the preferred public key algorithm to use
for user authentication. If the the preferred algorithm fails of some reason, the
other algorithm is tried. The default is to try ssh rsa first.

fconnect timeout, timeout()g Sets a timeout on the transport layer connection.
Defaults to infinity.

fuser, Stringg Provide a user name. If this option is not given, ssh reads from the
environment (LOGNAME or USER on unix, USERNAME on Windows).

fpassword, string()g Provide a password for password authentication. If this option
is not given, the user will be asked for a password if the password authentication
method is attempted.

fuser auth, Fun/3g Provide a fun for password authentication. The fun will be called
as fun(User, Password, Opts) and should return true or false.

fkey cb, atom() = KeyCallbackModuleg Provide a special call-back module for key
handling. The call-back module should be modeled after the ssh file module.
The functions that must be exported are: private host rsa key/2,
private host dsa key/2, lookup host key/3 and add host key/3. This is
considered somewhat experimental and will be better documented later on.

ffd, file descriptor()g Allow an existing file-descriptor to be used (simply passed
on to the transport protocol).

connection info(ConnectionRef, [Option]) ->[fOption, Valueg]

Types:

� Option = client version | server version | peer
� Value = term()

Retrieves information about a connection.

daemon(Port) ->

daemon(Port, Options) ->

daemon(HostAddress, Port, Options) -> ssh daemon ref()

Types:

� Port = integer()

8 SSH

SSH Reference Manual ssh

� HostAddress = ip address() | any
� Options = [fOption, Valueg]
� Option = atom()
� Value = term()

Starts a server listening for SSH connections on the given port.

Options are:

fsubsystems, [subsystem spec()] Provides specifications for handling of
subsystems. The “sftp” subsystem-spec can be retrived by calling
ssh sftd:subsystem spec/1. If the subsystems option in not present the value of
[ssh sftd:subsystem spec([])] will be used. It is of course possible to set the
option to the empty list if you do not want the daemon to run any subsystems at
all.

fshell, fModule, Function, Argsg | fun(string() = User) - > pid() | fun(string() = Us
Defines the read-eval-print loop used when a shell is requested by the client.
Example use the erlang shell: fshell, start, []g which is the default behavior.

fssh cli,fchannel callback(), channel init args()gg Provide your own cli
implementation, e.i. a channel callback module that implements a shell and
command execution. Note that you may customize the shell read-eval-print loop
using the option shell which is much less work than implementing your own cli
channel.

fsystem dir, string()g Sets the system directory, containing the host files that
identifies the host for ssh. The default is /etc/ssh, note that SSH normally
requires the host files there to be readable only by root.

fuser passwords, [fstring() = User, string() = Passwordg]g Provide
passwords for password authentication.They will be used when someone tries to
connect to the server and public key user authentication fails. The option provides
a list of valid user names and the corresponding password.

fpassword, string()g Provide a global password that will authenticate any user.
From a security perspective this option makes the server very vulnerable.

fpwdfun, fun/2g Provide a function for password validation. This is called with user
and password as strings, and should return true if the password is valid and false
otherwise.

ffd, file descriptor()g Allow an existing file-descriptor to be used (simply passed
on to the transport protocol).

shell(Host) ->

shell(Host, Option) ->

shell(Host, Port, Option) ->

Types:

� Host = string()
� Port = integer()
� Options - see ssh:connect/3

Starts an interactive shell to an SSH server on the given Host. The function waits for
user input, and will not return until the remote shell is ended (e.g. on exit from the
shell).

9SSH

ssh SSH Reference Manual

start() ->

start(Type) -> ok | ferror, Reasong

Types:

� Type = permanent | transient | temporary
� Reason = term()

Starts the Ssh application. Default type is temporary. See also [application(3)] Requires
that the crypto application has been started.

stop() -> ok

Stops the Ssh application. See also [application(3)]

stop daemon(DaemonRef) ->

stop daemon(Address, Port) -> ok

Types:

� DaemonRef = ssh daemon ref()
� Address = ip address()
� Port = integer()

Stops the listener and all connections started by the listener.

stop listener(DaemonRef) ->

stop listener(Address, Port) -> ok

Types:

� DaemonRef = ssh daemon ref()
� Address = ip address()
� Port = integer()

Stops the listener, but leaves existing connections started by the listener up and running.

10 SSH

SSH Reference Manual ssh channel

ssh channel
Erlang Module

Ssh services are implemented as channels that are multiplexed over an ssh connection
and communicates via the ssh connection protocol. This module provides a callback
API that takes care of generic channel aspects such as flow control and close messages
and lets the callback functions take care of the service specific parts.

COMMON DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to
indicate the intended use of the data type:

boolean() = true | false

string() = list of ASCII characters

timeout() = infinity | integer() - in milliseconds.

ssh connection ref() - opaque to the user returned by ssh:connect/3 or
sent to a ssh channel process

ssh channel id() = integer()

ssh data type code() = 1 ("stderr") | 0 ("normal") are currently valid
values see RFC 4254 section 5.2.

Exports

call(ChannelRef, Msg) ->

call(ChannelRef, Msg, Timeout) -> Reply | ferror, Reasong

Types:

� ChannelRef = pid()
As returned by start link/4

� Msg = term()
� Timeout = timeout()
� Reply = term()
� Reason = closed | timeout

Makes a synchronous call to the channel process by sending a message and waiting until
a reply arrives or a timeout occurs. The channel will call
CallbackModule:handle call/3 to handle the message. If the channel process does
not exist ferror, closedg is returned.

cast(ChannelRef, Msg) -> ok

11SSH

ssh channel SSH Reference Manual

Types:

� ChannelRef = pid()
As returned by start link/4

� Msg = term()

Sends an asynchronous message to the channel process and returns ok immediately,
ignoring if the destination node or channel process does not exist. The channel will call
CallbackModule:handle cast/2 to handle the message.

enter loop(State) ->

Types:

� State = term() - as returned by ssh channel:init/1

Makes an existing process into a ssh channel process. Does not return, instead the
calling process will enter the ssh channel process receive loop and become a
ssh channel process. The process must have been started using one of the start
functions in proc lib, see [proc lib(3)]. The user is responsible for any initialization of
the process and needs to call ssh channel:init/1.

init(Options) -> fok, Stateg | fok, State, Timeoutg | fstop, Reasong

Types:

� Options = [fOption, Valueg]

The following options must be present:

fchannel cb, atom()g The module that implements the channel behavior.

finit args(), list()g The list of arguments to the callback modules init function.

fcm, connection ref()g Reference to the ssh connection.

fchannel id, channel id()g Id of the ssh channel.

Note:
This function is normally not called by the user, it is only needed if for some reason
the channel process needs to be started with help of proc lib instead calling
ssh channel:start/4 or ssh channel:start link/4

reply(Client, Reply) ->

Types:

� Client - opaque to the user, see explanation below
� Reply = term()

This function can be used by a channel to explicitly send a reply to a client that called
call/[2,3] when the reply cannot be defined in the return value of
CallbackModule:handle call/3.

Client must be the From argument provided to the callback function handle call/3.
Reply is an arbitrary term, which will be given back to the client as the return value of
ssh channel:call/[2,3].

12 SSH

SSH Reference Manual ssh channel

start(SshConnection, ChannelId, ChannelCb, CbInitArgs) ->

start link(SshConnection, ChannelId, ChannelCb, CbInitArgs) -> fok, ChannelRefg |
ferror, Reasong

Types:

� SshConnection = ssh connection ref()
� ChannelId = ssh channel id()

As returned by ssh connection:session channel/[2,4]
� ChannelCb = atom()

The name of the module implementing the service specific parts of the channel.
� CbInitArgs = [term()]

Argument list for the init function in the callback module.
� ChannelRef = pid()

Starts a processes that handles a ssh channel. Will be called internally by the ssh
daemon or explicitly by the ssh client implementations. A channel process traps exit
signals by default.

CALLBACK FUNCTIONS

The functions init/1, terminate/2, handle ssh msg/2 and handle msg/2 are the functions
that are required to provide the implementation for a server side channel, such as a ssh
subsystem channel that can be plugged into the erlang ssh daemon see ssh:daemon/[2,
3] [page 7]. The handle call/3, handle cast/2 code change/3 and enter loop/1 functions
are only relevant when implementing a client side channel.

CALLBACK TIMEOUTS

If an integer timeout value is provided in a return value of one of the callback functions,
a timeout will occur unless a message is received within Timeout milliseconds. A
timeout is represented by the atom timeout which should be handled by the
handle msg/2 [page ??] callback function. The atom infinity can be used to wait
indefinitely, this is the default value.

Exports

CallbackModule:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� Converts process state when code is changed.

13SSH

ssh channel SSH Reference Manual

This function is called by a client side channel when it should update its internal state
during a release upgrade/downgrade, i.e. when the instruction
fupdate,Module,Change,...gwhere Change=fadvanced,Extrag is given in the appup
file. See [OTP Design Principles] for more information. Any new connection will
benefit from a server side upgrade but already started connections on the server side will
not be affected.

Note:
If there are long lived ssh connections and more than one upgrade in a short time this
may cause the old connections to fail as only two versions of the code may be loaded
simultaneously.

In the case of an upgrade, OldVsn is Vsn, and in the case of a downgrade, OldVsn is
fdown,Vsng. Vsn is defined by the vsn attribute(s) of the old version of the callback
module Module. If no such attribute is defined, the version is the checksum of the
BEAM file.

State is the internal state of the channel.

Extra is passed as-is from the fadvanced,Extrag part of the update instruction.

The function should return the updated internal state.

CallbackModule:init(Args) -> fok, Stateg | fok, State, Timeoutg | fstop, Reasong

Types:

� Args = term()
Last argument to ssh channel:start link/4.

� State = term()
� Timeout = timeout()
� Reason = term()

Makes necessary initializations and returns the initial channel state if the initializations
succeed.

For more detailed information on timeouts see the section CALLBACK TIMEOUTS
[page ??].

CallbackModule:handle call(Msg, From, State) -> Result

Types:

� Msg = term()
� From = opaque to the user should be used as argument to ssh channel:reply/2
� State = term()
� Result = freply, Reply, NewStateg | freply, Reply, NewState, Timeoutg | fnoreply,

NewStateg | fnoreply , NewState, Timeoutg | fstop, Reason, Reply, NewStateg |
fstop, Reason, NewStateg

� Reply = term() - will be the return value of ssh channel:call/[2,3]
� Timeout = timeout()
� NewState = term() - a possible updated version of State
� Reason = term()

14 SSH

SSH Reference Manual ssh channel

Handles messages sent by calling ssh channel:call/[2,3]

For more detailed information on timeouts see the section CALLBACK TIMEOUTS
[page ??].

CallbackModule:handle cast(Msg, State) -> Result

Types:

� Msg = term()
� State = term()
� Result = fnoreply, NewStateg | fnoreply, NewState, Timeoutg | fstop, Reason,

NewStateg
� NewState = term() - a possible updated version of State
� Timeout = timeout()
� Reason = term()

Handles messages sent by calling ssh channel:cast/2

For more detailed information on timeouts see the section CALLBACK TIMEOUTS
[page ??].

CallbackModule:handle msg(Msg, State) -> fok, Stateg | fstop, ChannelId, Stateg

Types:

� Msg = timeout | term()
� State = term()

Handle other messages than ssh connection protocol, call or cast messages sent to the
channel.

Possible erlang ’EXIT’-messages should be handled by this function and all channels
should handle the following message.

fssh channel up, ssh channel id(), ssh connection ref()g This is the first
messages that will be received by the channel, it is sent just before the
ssh channel:init/1 function returns successfully. This is especially useful if the
server wants to send a message to the client without first receiving a message from
the client. If the message is not useful for your particular problem just ignore it by
immediately returning fok, Stateg.

CallbackModule:handle ssh msg(Msg, State) -> fok, Stateg | fstop, ssh channel id(),
Stateg

Types:

� Msg = fssh cm, ssh connection ref(), SshMsgg
� SshMsg = tuple() - see message list below
� State = term()

Handles ssh connection protocol messages that may need service specific attention.

All channels should handle the following messages. For channels implementing
subsystems the handle ssh msg-callback will not be called for any other messages.

fssh cm, ssh connection ref(), fdata, ssh channel id(), ssh data type code(), binary() =
Data has arrived on the channel. When the callback for this message returns the
channel behavior will adjust the ssh flow control window.

15SSH

ssh channel SSH Reference Manual

fssh cm, ssh connection ref(), feof, ssh channel id()gg Indicteas that the
other side will not send any more data.

fssh cm, ssh connection ref(), fsignal, ssh channel id(), ssh signal()gg
A signal can be delivered to the remote process/service using the following
message. Some systems may not implement signals, in which case they should
ignore this message.

fssh cm, ssh connection ref(), fexit signal, ssh channel id(), string() = exit signal, string
A remote execution may terminate violently due to a signal then this message may
be received. For details on valid string values see RFC 4254 section 6.10

fssh cm, ssh connection ref(), fexit status, ssh channel id(), integer() = ExitStatusgg
When the command running at the other end terminates, the following message
can be sent to return the exit status of the command. A zero ’exit status’ usually
means that the command terminated successfully.

Channels implementing a shell and command execution on the server side should also
handle the following messages.

fssh cm, ssh connection ref(), fenv, ssh channel id(), boolean() = WantReply, string() = Var
Environment variables may be passed to the shell/command to be started later.
Note that before the callback returns it should call the function
ssh connection:reply request/4 with the boolean value of WantReply as the
second argument.

fssh cm, ConnectionRef, fexec, ssh channel id(), boolean() = WantReply, string() = Cmdgg
This message will request that the server start the execution of the given
command. Note that before the callback returns it should call the function
ssh connection:reply request/4 with the boolean value of WantReply as the
second argument.

fssh cm, ssh connection ref(), fpty, ssh channel id(), boolean() = WantReply, fstring() = Te
A pseudo-terminal has been requested for the session. Terminal is the value of the
TERM environment variable value (e.g., vt100). Zero dimension parameters must
be ignored. The character/row dimensions override the pixel dimensions (when
nonzero). Pixel dimensions refer to the drawable area of the window. The Opcode
in the TerminalModes list is the mnemonic name, represented as an lowercase
erlang atom, defined in RFC 4254 section 8, or the opcode if the mnemonic name
is not listed in the RFC. Example OP code: 53, mnemonic name ECHO erlang
atom: echo. Note that before the callback returns it should call the function
ssh connection:reply request/4 with the boolean value of WantReply as the
second argument.

fssh cm, ConnectionRef, fshell, boolean() = WantReplygg This message will
request that the user’s default shell be started at the other end. Note that before
the callback returns it should call the function ssh connection:reply request/4 with
the value of WantReply as the second argument.

fssh cm, ssh connection ref(), fwindow change, ssh channel id(), integer() = CharWidth, int
When the window (terminal) size changes on the client side, it MAY send a
message to the other side to inform it of the new dimensions.

The following message is completely taken care of by the ssh channel behavior

fssh cm, ssh connection ref(), fclosed, ssh channel id()gg The channel
behavior will send a close message to the other side if such a message has not
already been sent and then terminate the channel with reason normal.

16 SSH

SSH Reference Manual ssh channel

CallbackModule:terminate(Reason, State) ->

Types:

� Reason = term()
� State = term()

This function is called by a channel process when it is about to terminate. Before this
function is called ssh connection:close/2 will be called if it has not been called earlier.
This function should be the opposite of CallbackModule:init/1 and do any necessary
cleaning up. When it returns, the channel process terminates with reason Reason. The
return value is ignored.

17SSH

ssh connection SSH Reference Manual

ssh connection
Erlang Module

This module provides an API to the ssh connection protocol. Not all features of the
connection protocol are officially supported yet. Only the ones supported are
documented here.

COMMON DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to
indicate the intended use of the data type:

boolean() = true | false

string() = list of ASCII characters

timeout() = infinity | integer() - in milliseconds.

ssh connection ref() - opaque to the user returned by ssh:connect/3 or
sent to a ssh channel processes

ssh channel id() = integer()

ssh data type code() = 1 ("stderr") | 0 ("normal") are currently valid
values see RFC 4254 section 5.2.

ssh request status() = success | failure

MESSAGES SENT TO CHANNEL PROCESSES

As a result of the ssh connection protocol messages on the form fssh cm,
ssh connection ref(), term()g will be sent to a channel process. The term will
contain information regarding the ssh connection protocol event, for details see the ssh
channel behavior callback handle ssh msg/2 [page 11]

18 SSH

SSH Reference Manual ssh connection

Exports

adjust window(ConnectionRef, ChannelId, NumOfBytes) -> ok

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()
� NumOfBytes = integer()

Adjusts the ssh flowcontrol window.

Note:
This will be taken care of by the ssh channel behavior when the callback
handle ssh msg/2 [page 11] has returned after processing a fssh cm,
ssh connection ref(), fdata, ssh channel id(), ssh data type code(), binary()gg
message, and should normally not be called explicitly.

close(ConnectionRef, ChannelId) -> ok

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()

Sends a close message on the channel ChannelId

Note:
This function will be called by the ssh channel behavior when the channel is
terminated see ssh channel(3) [page 11] and should normally not be called explicitly.

exec(ConnectionRef, ChannelId, Command, TimeOut) -> ssh request status()

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()
� Command = string()
� Timeout = timeout()

Will request that the server start the execution of the given command, the result will be
received as:

N X fssh cm, ssh connection ref(), fdata, ssh channel id(), ssh data type code(), binar
The result of executing the command may be only one line or thousands of lines
depending on the command.

1 X fssh cm, ssh connection ref(), feof, ssh channel id()gg Indicates that
no more data will be sent.

19SSH

ssh connection SSH Reference Manual

0 or 1 X fssh cm, ssh connection ref(), fexit signal, ssh channel id(), string() = ExitSigna
Not all systems send signals. For details on valid string values see RFC 4254 section
6.10

0 or 1 X fssh cm, ssh connection ref(), fexit status, ssh channel id(), integer() = ExitStat
It is recommended by the ssh connection protocol that this message shall be
sent, but that may not always be the case.

1 X fssh cm, ssh connection ref(), fclosed, ssh channel id()gg Indicates
that the ssh channel started for the execution of the command has now been
shutdown.

These message should be handled by the client. The ssh channel behavior [page 11] can
be used when writing a client.

exit status(ConnectionRef, ChannelId, Status) -> ok

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()
� Status = integer()

Sends the exit status of a command to the client.

reply request(ConnectionRef, WantReply, Status, CannelId) -> ok

Types:

� ConnectionRef = ssh connection ref()
� WantReply = boolean()
� Status = ssh request status()
� ChannelId = ssh channel id()

Sends status replies to requests where the requester has stated that they want a status
report e.i . WantReply = true, if WantReply is false calling this function will be a
“noop”. Should be called after handling an ssh connection protocol message containing a
WantReply boolean value. See the ssh channel behavior callback handle ssh msg/2
[page 11]

send(ConnectionRef, ChannelId, Data) ->

send(ConnectionRef, ChannelId, Data, Timeout) ->

send(ConnectionRef, ChannelId, Type, Data) ->

send(ConnectionRef, ChannelId, Type, Data, TimeOut) -> ok | ferror, timeoutg

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()
� Data = binary()
� Type = ssh data type code()
� Timeout = timeout()

Sends channel data.

send eof(ConnectionRef, ChannelId) -> ok

Types:

20 SSH

SSH Reference Manual ssh connection

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()

Sends eof on the channel ChannelId.

session channel(ConnectionRef, Timeout) ->

session channel(ConnectionRef, InitialWindowSize, MaxPacketSize, Timeout) -> fok,
ssh channel id()g | ferror, Reasong

Types:

� ConnectionRef = ssh connection ref()
� InitialWindowSize = integer()
� MaxPacketSize = integer()
� Timeout = timeout()
� Reason = term()

Opens a channel for a ssh session. A session is a remote execution of a program. The
program may be a shell, an application, a system command, or some built-in subsystem.

setenv(ConnectionRef, ChannelId, Var, Value, TimeOut) -> ssh request status()

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()
� Var = string()
� Value = string()
� Timeout = timeout()

Environment variables may be passed to the shell/command to be started later.

shell(ConnectionRef, ChannelId) -> ssh request status()

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()

Will request that the user’s default shell (typically defined in /etc/passwd in UNIX
systems) be started at the other end.

subsystem(ConnectionRef, ChannelId, Subsystem, Timeout) -> ssh request status()

Types:

� ConnectionRef = ssh connection ref()
� ChannelId = ssh channel id()
� Subsystem = string()
� Timeout = timeout()

Sends a request to execute a predefined subsystem.

21SSH

ssh sftp SSH Reference Manual

ssh sftp
Erlang Module

This module implements an SFTP (SSH FTP) client. SFTP is a secure, encrypted file
transfer service available for SSH.

COMMON DATA TYPES

Type definitions that are used more than once in this module and/or abstractions to
indicate the intended use of the data type:

ssh connection ref() - opaque to the user returned by ssh:connect/3

timeout() = infinity | integer() - in milliseconds.

TIMEOUTS

If the request functions for the sftp channel return ferror, timeoutg it does not mean
that the request did not reach the server and was not performed, it only means that we
did not receive an answer from the server within the time that was expected.

Exports

start channel(ConnectionRef) ->

start channel(ConnectionRef, Options) ->

start channel(Host, Options) ->

start channel(Host, Port, Options) -> fok, Pidg | fok, Pid, ConnectionRefg | ferror,
Reasong

Types:

� Host = string()
� ConnectionRef = ssh connection ref()
� Port = integer()
� Options = [fOption, Valueg]
� Reason = term()

If not provided, setups a ssh connection in this case a connection reference will be
returned too. A ssh channel process is started to handle the communication with the
SFTP server, the returned pid for this process should be used as input to all other API
functions in this module.

Options are:

22 SSH

SSH Reference Manual ssh sftp

ftimeout, timeout()g The timeout is passed to the ssh channel start function, and
defaults to infinity.

All other options are directly passed to ssh:connect/3 [page 7] or ignored if a
connection is already provided.

stop channel(ChannelPid) -> ok

Types:

� ChannelPid = pid()

Stops a sftp channel. If the ssh connection should be closed call ssh:close/1 [page 7].

read file(ChannelPid, File) ->

read file(ChannelPid, File, Timeout) -> fok, Datag | ferror, Reasong

Types:

� ChannelPid = pid()
� File = string()
� Data = binary()
� Timeout = timeout()
� Reason = term()

Reads a file from the server, and returns the data in a binary, like file:read file/1.

write file(ChannelPid, File, Iolist) ->

write file(ChannelPid, File, Iolist, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� File = string()
� Data = binary()
� Timeout = timeout()
� Reason = term()

Writes a file to the server, like file:write file/2. The file is created if it’s not there.

list dir(ChannelPid, Path) ->

list dir(ChannelPid, Path, Timeout) -> fok, Filenamesg | ferror, Reasong

Types:

� ChannelPid = pid()
� Path = string()
� Filenames = [Filename]
� Filename = string()
� Timeout = timeout()
� Reason = term()

Lists the given directory on the server, returning the filenames as a list of strings.

open(ChannelPid, File, Mode) ->

open(ChannelPid, File, Mode, Timeout) -> fok, Handleg | ferror, Reasong

23SSH

ssh sftp SSH Reference Manual

Types:

� ChannelPid = pid()
� File = string()
� Mode = [Modeflag]
� Modeflag = read | write | creat | trunc | append | binary
� Timeout = timeout()
� Handle = term()
� Reason = term()

Opens a file on the server, and returns a handle that is used for reading or writing.

opendir(ChannelPid, Path) ->

opendir(ChannelPid, Path, Timeout) -> fok, Handleg | ferror, Reasong

Types:

� ChannelPid = pid()
� Path = string()
� Timeout = timeout()
� Reason = term()

Opens a handle to a directory on the server, the handle is used for reading directory
contents.

close(ChannelPid, Handle) ->

close(ChannelPid, Handle, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� Handle = term()
� Timeout = timeout()
� Reason = term()

Closes a handle to an open file or directory on the server.

read(ChannelPid, Handle, Len) ->

read(ChannelPid, Handle, Len, Timeout) -> fok, Datag | eof | ferror, Errorg

pread(ChannelPid, Handle, Position, Len) ->

pread(ChannelPid, Handle, Position, Len, Timeout) -> fok, Datag | eof | ferror,
Errorg

Types:

� ChannelPid = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� Timeout = timeout()
� Data = string() | binary()
� Reason = term()

24 SSH

SSH Reference Manual ssh sftp

Reads Len bytes from the file referenced by Handle. Returns fok, Datag, or eof, or
ferror, Reasong. If the file is opened with binary, Data is a binary, otherwise it is a
string.

If the file is read past eof, only the remaining bytes will be read and returned. If no bytes
are read, eof is returned.

The pread function reads from a specified position, combining the position and read
functions.

aread(ChannelPid, Handle, Len) -> fasync, Ng | ferror, Errorg

apread(ChannelPid, Handle, Position, Len) -> fasync, Ng | ferror, Errorg

Types:

� ChannelPid = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� N = term()
� Reason = term()

Reads from an open file, without waiting for the result. If the handle is valid, the
function returns fasync, Ng, where N is a term guaranteed to be unique between calls
of aread. The actual data is sent as a message to the calling process. This message has
the form fasync reply, N, Resultg, where Result is the result from the read, either
fok, Datag, or eof, or ferror, Errorg.

The apread function reads from a specified position, combining the position and
aread functions.

write(ChannelPid, Handle, Data) ->

write(ChannelPid, Handle, Data, Timeout) -> ok | ferror, Errorg

pwrite(ChannelPid, Handle, Position, Data) -> ok

pwrite(ChannelPid, Handle, Position, Data, Timeout) -> ok | ferror, Errorg

Types:

� ChannelPid = pid()
� Handle = term()
� Position = integer()
� Data = iolist()
� Timeout = timeout()
� Reason = term()

Write data to the file referenced by Handle. The file should be opened with write or
append flag. Returns ok if successful and ferror, Reasong otherwise.

Typical error reasons are:

ebadf The file is not opened for writing.

enospc There is a no space left on the device.

awrite(ChannelPid, Handle, Data) -> ok | ferror, Reasong

apwrite(ChannelPid, Handle, Position, Data) -> ok | ferror, Reasong

25SSH

ssh sftp SSH Reference Manual

Types:

� ChannelPid = pid()
� Handle = term()
� Position = integer()
� Len = integer()
� Data = binary()
� Timeout = timeout()
� Reason = term()

Writes to an open file, without waiting for the result. If the handle is valid, the function
returns fasync, Ng, where N is a term guaranteed to be unique between calls of
awrite. The result of the write operation is sent as a message to the calling process.
This message has the form fasync reply, N, Resultg, where Result is the result
from the write, either ok, or ferror, Errorg.

The apwrite writes on a specified position, combining the position and awrite
operations.

position(ChannelPid, Handle, Location) ->

position(ChannelPid, Handle, Location, Timeout) -> fok, NewPosition | ferror, Errorg

Types:

� ChannelPid = pid()
� Handle = term()
� Location = Offset | fbof, Offsetg | fcur, Offsetg | feof, Offsetg | bof | cur | eof
� Offset = int()
� Timeout = timeout()
� NewPosition = integer()
� Reason = term()

Sets the file position of the file referenced by Handle. Returns fok, NewPosition (as
an absolute offset) if successful, otherwise ferror, Reasong. Location is one of the
following:

Offset The same as fbof, Offsetg.

fbof, Offsetg Absolute offset.

fcur, Offsetg Offset from the current position.

feof, Offsetg Offset from the end of file.

bof | cur | eof The same as above with Offset 0.

read file info(ChannelPid, Name) ->

read file info(ChannelPid, Name, Timeout) -> fok, FileInfog | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Handle = term()
� Timeout = timeout()
� FileInfo = record()
� Reason = term()

26 SSH

SSH Reference Manual ssh sftp

Returns a file info record from the file specified by Name or Handle, like
file:read file info/2.

read link info(ChannelPid, Name) -> fok, FileInfog | ferror, Reasong

read link info(ChannelPid, Name, Timeout) -> fok, FileInfog | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Handle = term()
� Timeout = timeout()
� FileInfo = record()
� Reason = term()

Returns a file info record from the symbolic link specified by Name or Handle, like
file:read link info/2.

write file info(ChannelPid, Name, Info) ->

write file info(ChannelPid, Name, Info, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Info = record()
� Timeout = timeout()
� Reason = term()

Writes file information from a file info record to the file specified by Name, like
file:write file info.

read link(ChannelPid, Name) ->

read link(ChannelPid, Name, Timeout) -> fok, Targetg | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Target = string()
� Reason = term()

Read the link target from the symbolic link specified by name, like file:read link/1.

make symlink(ChannelPid, Name, Target) ->

make symlink(ChannelPid, Name, Target, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Target = string()
� Reason = term()

Creates a symbolic link pointing to Target with the name Name, like
file:make symlink/2.

27SSH

ssh sftp SSH Reference Manual

rename(ChannelPid, OldName, NewName) ->

rename(ChannelPid, OldName, NewName, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� OldName = string()
� NewName = string()
� Timeout = timeout()
� Reason = term()

Renames a file named OldName, and gives it the name NewName, like file:rename/2

delete(ChannelPid, Name) ->

delete(ChannelPid, Name, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Timeout = timeout()
� Reason = term()

Deletes the file specified by Name, like file:delete/1

make dir(ChannelPid, Name) ->

make dir(ChannelPid, Name, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Timeout = timeout()
� Reason = term()

Creates a directory specified by Name. Name should be a full path to a new directory.
The directory can only be created in an existing directory.

del dir(ChannelPid, Name) ->

del dir(ChannelPid, Name, Timeout) -> ok | ferror, Reasong

Types:

� ChannelPid = pid()
� Name = string()
� Timeout = timeout()
� Reason = term()

Deletes a directory specified by Name. The directory should be empty.

28 SSH

SSH Reference Manual ssh sftpd

ssh sftpd
Erlang Module

Specifies a channel process to handle a sftp subsystem.

COMMON DATA TYPES

subsystem spec() = fsubsystem name(), fchannel callback(),
channel init args()gg

subsystem name() = "sftp"

channel callback() = atom() - Name of the erlang module implementing the
subsystem using the ssh channel behavior see ssh channel(3) [page 11]

channel init args() = list() - The one given as argument to function
subssystem spec/1.

Exports

subsystem spec(Options) -> subssystem spec()

Types:

� Options = [fOption, Valueg]

Should be used together with ssh:daemon/[1,2,3]

Options are:

fcwd, Stringg Sets the initial current working directory for the server.

ffile handler, CallbackModuleg Determines which module to call for
communicating with the file server. Default value is ssh sftpd file that uses the
file and filelib API:s to access the standard OTP file server. This option may be
used to plug in the use of other file servers.

fmax files, Integerg The default value is 0, which means that there is no upper
limit. If supplied, the number of filenames returned to the sftp client per READDIR
request, is limited to at most the given value.

froot, Stringg Sets the sftp root directory. The user will then not be able to see any
files above this root. If for instance the root is set to /tmp the user will see this
directory as / and if the user does cd /etc the user will end up in /tmp/etc.

29SSH

ssh sftpd SSH Reference Manual

30 SSH

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

adjust_window/3
ssh connection , 19

apread/4
ssh sftp , 25

apwrite/4
ssh sftp , 25

aread/3
ssh sftp , 25

awrite/3
ssh sftp , 25

call/2
ssh channel , 11

call/3
ssh channel , 11

CallbackModule:code_change/3
ssh channel , 13

CallbackModule:handle_call/3
ssh channel , 14

CallbackModule:handle_cast/2
ssh channel , 15

CallbackModule:handle_msg/2
ssh channel , 15

CallbackModule:handle_ssh_msg/2
ssh channel , 15

CallbackModule:init/1
ssh channel , 14

CallbackModule:terminate/2
ssh channel , 17

cast/2
ssh channel , 11

close/1
ssh , 7

close/2

ssh connection , 19
ssh sftp , 24

close/3
ssh sftp , 24

connect/3
ssh , 7

connect/4
ssh , 7

connection_info/2
ssh , 8

daemon/1
ssh , 8

daemon/2
ssh , 8

daemon/3
ssh , 8

del_dir/2
ssh sftp , 28

del_dir/3
ssh sftp , 28

delete/2
ssh sftp , 28

delete/3
ssh sftp , 28

enter_loop/1
ssh channel , 12

exec/4
ssh connection , 19

exit_status/3
ssh connection , 20

init/1

31SSH

ssh channel , 12

list_dir/2
ssh sftp , 23

list_dir/3
ssh sftp , 23

make_dir/2
ssh sftp , 28

make_dir/3
ssh sftp , 28

make_symlink/3
ssh sftp , 27

make_symlink/4
ssh sftp , 27

open/3
ssh sftp , 23

open/4
ssh sftp , 23

opendir/2
ssh sftp , 24

opendir/3
ssh sftp , 24

position/3
ssh sftp , 26

position/4
ssh sftp , 26

pread/4
ssh sftp , 24

pread/5
ssh sftp , 24

pwrite/4
ssh sftp , 25

pwrite/5
ssh sftp , 25

read/3
ssh sftp , 24

read/4
ssh sftp , 24

read_file/2
ssh sftp , 23

read_file/3

ssh sftp , 23

read_file_info/2
ssh sftp , 26

read_file_info/3
ssh sftp , 26

read_link/2
ssh sftp , 27

read_link/3
ssh sftp , 27

read_link_info/2
ssh sftp , 27

read_link_info/3
ssh sftp , 27

rename/3
ssh sftp , 28

rename/4
ssh sftp , 28

reply/2
ssh channel , 12

reply_request/4
ssh connection , 20

send/3
ssh connection , 20

send/4
ssh connection , 20

send/5
ssh connection , 20

send_eof/2
ssh connection , 20

session_channel/2
ssh connection , 21

session_channel/4
ssh connection , 21

setenv/5
ssh connection , 21

shell/1
ssh , 9

shell/2
ssh , 9
ssh connection , 21

shell/3
ssh , 9

32 SSH

ssh
close/1, 7
connect/3, 7
connect/4, 7
connection_info/2, 8
daemon/1, 8
daemon/2, 8
daemon/3, 8
shell/1, 9
shell/2, 9
shell/3, 9
start/0, 10
start/1, 10
stop/0, 10
stop_daemon/1, 10
stop_daemon/2, 10
stop_listener/1, 10
stop_listener/2, 10

ssh channel
call/2, 11
call/3, 11
CallbackModule:code_change/3, 13
CallbackModule:handle_call/3, 14
CallbackModule:handle_cast/2, 15
CallbackModule:handle_msg/2, 15
CallbackModule:handle_ssh_msg/2, 15
CallbackModule:init/1, 14
CallbackModule:terminate/2, 17
cast/2, 11
enter_loop/1, 12
init/1, 12
reply/2, 12
start/4, 13
start_link/4, 13

ssh connection
adjust_window/3, 19
close/2, 19
exec/4, 19
exit_status/3, 20
reply_request/4, 20
send/3, 20
send/4, 20
send/5, 20
send_eof/2, 20
session_channel/2, 21
session_channel/4, 21
setenv/5, 21
shell/2, 21
subsystem/4, 21

ssh sftp
apread/4, 25

apwrite/4, 25
aread/3, 25
awrite/3, 25
close/2, 24
close/3, 24
del_dir/2, 28
del_dir/3, 28
delete/2, 28
delete/3, 28
list_dir/2, 23
list_dir/3, 23
make_dir/2, 28
make_dir/3, 28
make_symlink/3, 27
make_symlink/4, 27
open/3, 23
open/4, 23
opendir/2, 24
opendir/3, 24
position/3, 26
position/4, 26
pread/4, 24
pread/5, 24
pwrite/4, 25
pwrite/5, 25
read/3, 24
read/4, 24
read_file/2, 23
read_file/3, 23
read_file_info/2, 26
read_file_info/3, 26
read_link/2, 27
read_link/3, 27
read_link_info/2, 27
read_link_info/3, 27
rename/3, 28
rename/4, 28
start_channel/1, 22
start_channel/2, 22
start_channel/3, 22
stop_channel/1, 23
write/3, 25
write/4, 25
write_file/3, 23
write_file/4, 23
write_file_info/3, 27
write_file_info/4, 27

ssh sftpd
subsystem_spec/1, 29

start/0
ssh , 10

33SSH

start/1
ssh , 10

start/4
ssh channel , 13

start_channel/1
ssh sftp , 22

start_channel/2
ssh sftp , 22

start_channel/3
ssh sftp , 22

start_link/4
ssh channel , 13

stop/0
ssh , 10

stop_channel/1
ssh sftp , 23

stop_daemon/1
ssh , 10

stop_daemon/2
ssh , 10

stop_listener/1
ssh , 10

stop_listener/2
ssh , 10

subsystem/4
ssh connection , 21

subsystem_spec/1
ssh sftpd , 29

write/3
ssh sftp , 25

write/4
ssh sftp , 25

write_file/3
ssh sftp , 23

write_file/4
ssh sftp , 23

write_file_info/3
ssh sftp , 27

write_file_info/4
ssh sftp , 27

34 SSH

