Gambit-C v4.2.6

A portable implementation of Scheme
Edition v4.2.6, March 02, 2008

Marc Feeley

Copyright (©) 1994-2008 Marc Feeley.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the copyright holder.

Chapter 1: The Gambit-C system 1

1 The Gambit-C system

The Gambit programming system is a full implementation of the Scheme language which
conforms to the R4RS, R5RS and IEEE Scheme standards. It consists of two main programs:
gsi, the Gambit Scheme interpreter, and gsc, the Gambit Scheme compiler.

Gambit-C is a version of the Gambit programming system in which the compiler gen-
erates portable C code, making the whole Gambit-C system and the programs compiled
with it easily portable to many computer architectures for which a C compiler is available.
With appropriate declarations in the source code the executable programs generated by the
compiler run roughly as fast as equivalent C programs.

For the most up to date information on Gambit and add-on packages please check the
Gambit web page at http://gambit.iro.umontreal.ca. The web page has links to
the Gambit mailing list, the bug reporting system, and the source code repository.

1.1 Accessing the system files

The Gambit installation directory is where all system files are installed. This directory
is prefiz / version, where version is the system version number (e.g. v4.2.6 for Gambit
v4.2.6) and prefic is /usr/local/Gambit-C under UNIX, /Library/Gambit-C
under Mac OS X and C:/Program Files/Gambit—C under Microsoft Windows. The
prefix can be overridden when the system is built with the command ‘configure
——prefix=/my/own/Gambit-C’. Moreover, under UNIX and Mac OS X,
prefix/current is a symbolic link which points to the installation directory.

Executable programs such as the interpreter gsi and compiler gsc can be found in
the bin subdirectory of the installation directory. Adding this directory to the PATH
environment variable allows these programs to be started by simply entering their name.
This is done automatically by the Mac OS X and Microsoft Windows installers.

The runtime library is located in the 1ib subdirectory. When the system’s runtime
library is built as a shared-library (with the command ‘configure ——enable-shared’)
all programs built with Gambit-C, including the interpreter and compiler, need to find
this library when they are executed and consequently this directory must be in the path
searched by the system for shared-libraries. This path is normally specified through an
environment variable which is LD_LIBRARY_PATH on most versions of UNIX, LIBPATH
on AIX, SHLIB_PATH on HPUX, DYLD_LIBRARY_PATH on Mac OS X, and PATH on
Microsoft Windows. If the shell is sh, the setting of the path can be made for a single
execution by prefixing the program name with the environment variable assignment, as in:

$ LD_LIBRARY PATH=/usr/local/Gambit-C/current/lib gsi

A similar problem exists with the Gambit header file gambit . h, located in the include
subdirectory. This header file is needed for compiling Scheme programs with the Gambit-
C compiler. When the C compiler is being called explicitly it may be necessary to use
a —I<dir> command line option to indicate where to find header files and a —L<dir>
command line option to indicate where to find libraries. Access to both of these files can be
simplified by creating a link to them in the appropriate system directories (special privileges
may however be required):

$ 1ln -s /usr/local/Gambit-C/current/lib/libgambc.a /usr/lib # name may vary
$ 1n -s /usr/local/Gambit-C/current/include/gambit.h /usr/include

http://gambit.iro.umontreal.ca

Chapter 1: The Gambit-C system 2

This is not done by the installation process. Alternatively these files can also be copied or
linked in the directory where the C compiler is invoked (this requires no special privileges).

Chapter 2: The Gambit Scheme interpreter 3

2 The Gambit Scheme interpreter

Synopsis:

gsi [-:runtimeoption, .. [-i] [-f] [-v] [[-] [-e expressions| [fil€]]...

The interpreter is executed in interactive mode when no file or ‘=’ or ‘—e’ option is given
on the command line. Otherwise the interpreter is executed in batch mode. The ‘~i’ option
is ignored by the interpreter. The initialization file will be examined unless the ‘—f’ option
is present (see Section 2.3 [GSI customization], page 4). The ‘—v’ option prints the system
version string on standard output and exits (e.g. v4.2.6 for Gambit v4.2.6). Runtime
options are explained in Chapter 4 [Runtime options]|, page 21.

2.1 Interactive mode

In interactive mode a read-eval-print loop (REPL) is started for the user to interact with
the interpreter. At each iteration of this loop the interpreter displays a prompt, reads a
command and executes it. The commands can be expressions to evaluate (the typical case)
or special commands related to debugging, for example *, g’ to terminate the process (for a
complete list of commands see Chapter 5 [Debugging], page 24). Most commands produce
some output, such as the value or error message resulting from an evaluation.

The input and output of the interaction is done on the interaction channel. The
interaction channel can be specified through the runtime options but if none is specified
the system uses a reasonable default that depends on the system’s configuration.
When the system’s runtime library was built with support for GUIDE, the Gambit
Universal IDE (with the command ‘configure ——enable-guide’) the interaction
channel corresponds to the console window of the primordial thread (for details see
Section 5.7 [GUIDE], page 36), otherwise the interaction channel is the user’s console,
also known as the controlling terminal in the UNIX world. When the REPL starts, the
ports associated with ‘(current-input-port)’, ‘(current-output-port)’ and
‘(current—-error—port)’ all refer to the interaction channel.

Expressions are evaluated in the global interaction environment. The interpreter adds
to this environment any definition entered using the define and define-macro special
forms. Once the evaluation of an expression is completed, the value or values resulting
from the evaluation are output to the interaction channel by the pretty printer. The special
“void” object is not output. This object is returned by most procedures and special forms
which the Scheme standard defines as returning an unspecified value (e.g. write, set!,
define).

Here is a sample interaction with gsi:

$ gsi
Gambit v4.2.6

> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (map fact (1 2 3 4 5 6))

(1 2 6 24 120 720)

> (values (fact 10) (fact 40))

3628800
815915283247897734345611269596115894272000000000

>, q

What happens when errors occur is explained in Chapter 5 [Debugging], page 24.

Chapter 2: The Gambit Scheme interpreter 4

2.2 Batch mode

In batch mode the command line arguments denote files to be loaded, REPL interactions
to start (‘~’ option), and expressions to be evaluated (‘—e’ option). Note that the ‘-’ and
‘—e’ options can be interspersed with the files on the command line and can occur multiple
times. The interpreter processes the command line arguments from left to right, loading
files with the 1oad procedure and evaluating expressions with the eval procedure in the
global interaction environment. After this processing the interpreter exits.

When the file name has no extension the 1oad procedure first attempts to load the file
with no extension as a Scheme source file. If that file doesn’t exist it completes the file
name with a ‘.on’ extension with the highest consecutive version number starting with
1, and loads that file as an object file. If that file doesn’t exist the file extensions ‘. scm’
and ‘.six’ will be tried in that order. When the file name has an extension, the load
procedure will only attempt to load the file with that specific name.

When the extension of the file loaded is ‘. scm’ the content of the file will be parsed
using the normal Scheme prefix syntax. When the extension of the file loaded is ‘. six’ the
content of the file will be parsed using the Scheme infix syntax extension (see Section 18.12
[Scheme infix syntax extension], page 167). Otherwise, gsi will parse the file using the
normal Scheme prefix syntax.

The ports associated with ‘ (current-input-port)’, ‘ (current-output-port)’
and ‘(current-error-port)’ initially refer respectively to the standard input
(‘stdin’), standard output (‘stdout’) and the standard error (‘stderr’) of the
interpreter. This is true even in REPLs started with the ‘=’ option. The usual interaction
channel (console or IDE’s console window) is still used to read expressions and commands
and to display results. This makes it possible to use REPLs to debug programs which
read the standard input and write to the standard output, even when these have been
redirected.

Here is a sample use of the interpreter in batch mode, under UNIX:

$ cat h.scm

(display "hello") (newline)

$ cat w.six

display ("world"); newline();

$ gsi h.scm - w.six —-e " (pretty-print 1) (pretty-print 2)"
hello

> (define (display x) (write (reverse (string->list x))))
> , (c 0)

(#\d #\1 #\r #\o #\w)
1
2

2.3 Customization

There are two ways to customize the interpreter. When the interpreter starts off it tries to
execute a ‘ (Load "~ " /gambcext ")’ (for an explanation of how file names are interpreted
see Chapter 16 [Host environment|, page 118). An error is not signaled when the file does
not exist. Interpreter extensions and patches that are meant to apply to all users and all
modes should go in that file.

Extensions which are meant to apply to a single user or to a specific working directory
are best placed in the initialization file, which is a file containing Scheme code. In all modes,

Chapter 2: The Gambit Scheme interpreter 5)

the interpreter first tries to locate the initialization file by searching the following locations:
‘.gambcini’ and ‘”/.gambcini’ (with no extension, a ‘.scm’ extension, and a ‘.six’
extension in that order). The first file that is found is examined as though the expression
(include initialization-file) had been entered at the read-eval-print loop where
initialization-file is the file that was found. Note that by using an include the macros
defined in the initialization file will be visible from the read-eval-print loop (this would not
have been the case if 1oad had been used). The initialization file is not searched for or
examined when the ‘—f’ option is specified.

2.4 Process exit status

The status is zero when the interpreter exits normally and is nonzero when the interpreter
exits due to an error. Here is the meaning of the exit statuses:

0 The execution of the primordial thread (i.e. the main thread) did not
encounter any error. It is however possible that other threads termi-
nated abnormally (by default threads other than the primordial thread
terminate silently when they raise an exception that is not handled).

64 The runtime options or the environment variable ‘GAMBCOPT’ contained
a syntax error or were invalid.

70 This normally indicates that an exception was raised in the primordial
thread and the exception was not handled.

71 There was a problem initializing the runtime system, for example insuf-
ficient memory to allocate critical tables.

For example, if the shell is sh:

$ gsi -:d0 -e " (pretty-print (expt 2 100))"
1267650600228229401496703205376

S echo $?

0

$ gsi —:d0,unknown # iry to use an unknown runtime option
$ echo $7?

64

$ gsi —-:d0 nonexistent.scm # try to load a file that does not exist
$ echo $7?

70

$ gsi nonexistent.scm

*** ERROR IN ##main —-— No such file or directory
(load "nonexistent.scm")

$ echo $7?

70

$ gsi —:m4000000 # ask for a 4 gigabyte heap

*** malloc: vm_allocate(size=528384) failed (error code=3)
*** malloc[15068]: error: Can’t allocate region

$ echo $?

71

4

Note the use of the runtime option ‘—:d0’ that prevents error messages from being
output, and the runtime option ‘—=:m4000000’ which sets the minimum heap size to 4
gigabytes.

Chapter 2: The Gambit Scheme interpreter 6

2.5 Scheme scripts

The 1oad procedure treats specially files that begin with the two characters ‘4!’ and ‘@; .
Such files are called script files. In addition to indicating that the file is a script, the first
line provides information about the source code language to be used by the 1oad procedure.
After the two characters ‘“# !’ and ‘@; ’ the system will search for the first substring matching
one of the following language specifying tokens:

scheme-ridrs RA4RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme-r5rs R5RS language with prefix syntax, case-insensitivity, keyword syntax
not supported

scheme—-ieee-1178-1990
IEEE 1178-1990 language with prefix syntax, case-insensitivity, keyword
syntax not supported

scheme-srfi-0 R5RS language with prefix syntax and SRFI 0 support (i.e. cond-
expand special form), case-insensitivity, keyword syntax not supported

gsi-script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

gsc—script Full Gambit Scheme language with prefix syntax, case-sensitivity, key-
word syntax supported

six—-script Full Gambit Scheme language with infix syntax, case-sensitivity, key-
word syntax supported

If a language specifying token is not found, load will use the same language as a
nonscript file (i.e. it uses the file extension and runtime system options to determine the
language).

After processing the first line, 1oad will parse the rest of the file (using the syntax of
the language indicated) and then execute it. When the file is being loaded because it is an
argument on the interpreter’s command line, the interpreter will:

e Setup the command-1ine procedure so that it returns a list containing the expanded
file name of the script file and the arguments following the script file on the command
line. This is done before the script is executed. The expanded file name of the script
file can be used to determine the directory that contains the script (i.e. (path-
directory (car (command-line)))).

e After the script is loaded the procedure main is called with the command-line argu-
ments. The way this is done depends on the language specifying token. For scheme-
rdrs, scheme-r5rs, scheme-ieee-1178-1990, and scheme-srfi-0, the main
procedure is called with the equivalent of (main (cdr (command-line))) and
main is expected to return a process exit status code in the range 0 to 255. This con-
forms to the “Running Scheme Scripts on Unix SRFI” (SRFI 22). For gsi-script
and six—script the main procedure is called with the equivalent of (apply main
(cdr (command-line))) and the process exit status code is 0 (main’s result is ig-
nored). The Gambit-C system has a predefined main procedure which accepts any
number of arguments and returns 0, so it is perfectly valid for a script to not define

Chapter 2: The Gambit Scheme interpreter 7

main and to do all its processing with top-level expressions (examples are given in the
next section).

e When main returns, the interpreter exits. The command-line arguments after a script
file are consequently not processed (however they do appear in the list returned by the
command-1ine procedure, after the script file’s expanded file name, so it is up to the
script to process them).

2.5.1 Scripts under UNIX and Mac OS X

Under UNIX and Mac OS X, the Gambit-C installation process creates the executable
‘gsi’ and also the executables ‘six’, ‘gsi-script’, ‘six-script’, ‘scheme-r5rs’,
‘scheme—-srfi-0’, etc as links to ‘gsi’. A Scheme script need only start with the name
of the desired Scheme language variant prefixed with ‘“#!’ and the directory where the
Gambit-C executables are stored. This script should be made executable by setting the
execute permission bits (with a ‘chmod +x script’). Here is an example of a script which
lists on standard output the files in the current directory:
#!/usr/local/Gambit-C/current/bin/gsi-script
(for-each pretty-print (directory-files))
Here is another UNIX script, using the Scheme infix syntax extension, which takes a
single integer argument and prints on standard output the numbers from 1 to that integer:
#!/usr/local/Gambit-C/current/bin/six—-script

void main (obj n_str)
{
int n = \string->number (n_str);
for (int i=1; i<=n; 1i++)
\pretty-print (i);
}

For maximal portability it is a good idea to start scripts indirectly through the
‘/usr/bin/env’ program, so that the executable of the interpreter will be searched in
the user’s ‘PATH’. This is what SRFI 22 recommends. For example here is a script that
mimics the UNIX ‘cat’ utility for text files:

#!/usr/bin/env gsi-script

(define (display-file filename)
(display (call-with-input-file filename
(lambda (port)
(read-line port #£f)))))

(for-each display-file (cdr (command-line)))

2.5.2 Scripts under Microsoft Windows

Under Microsoft Windows, the Gambit-C installation process creates the exe-
cutable ‘gsi.exe’ and ‘six.exe’ and also the batch files ‘gsi-script.bat’,
‘six-script.bat’, ‘scheme-r5rs.bat’, ‘scheme-srfi-0.bat’, etc which simply
invoke ‘gsi.exe’ with the same command line arguments. A Scheme script need only
start with the name of the desired Scheme language variant prefixed with ‘@;’. A UNIX
script can be converted to a Microsoft Windows script simply by changing the first line
and storing the script in a file whose name has a ‘.bat’ or ‘. cmd’ extension:

o)

@;gsi-script $7f0 %*

Chapter 2: The Gambit Scheme interpreter 8

(display "files:\n")
(pretty-print (directory-files))

Note that Microsoft Windows always searches executables in the user’s ‘PATH’, so there
is no need for an indirection such as the UNIX ‘/usr/bin/env’. However the first line
must end with ‘$7£0 $*’ to pass the expanded filename of the script and command line
arguments to the interpreter.

2.5.3 Compiling scripts

A script file can be compiled using the Gambit Scheme compiler (see Chapter 3 [GSC],
page 9) into a dynamically loadable object file or into a standalone executable. The first
line of the script will provide information to the compiler on which language to use. The
first line also provides information on which runtime options to use when executing the
script. The compiled script will be executed similarly to an interpreted script (i.e. the list
of command line arguments returned by the command-1ine procedure and the invocation
of the main procedure).

For example:

$ cat square.scm
#!/usr/local/Gambit-C/current/bin/gsi-script
(define (main arqg)

(pretty-print (expt (string->number arg) 2)))
$ gsi square 30 # will load square.scm
900
$ gsc square
$ gsi square 30 # will load square.ol
900

Chapter 3: The Gambit Scheme compiler 9

3 The Gambit Scheme compiler

debug] [-debug-source] [-debug-environments] [-track-scheme]
o output| [-c| [~keep-c| [-1link| [-flat] [-1 base]
-] [-e expressions| [file]]...

Synopsis:

gsc [-:runtimeoption,..] [-i] [-f] [-V]
[-prelude expressions| [-postlude expressions|
[-dynamic] [-cc-options options]
[-1d-options-prelude options| [-ld-options options]
[-warnings] [-verbose] [-report] [-expansion| [-gvm]
-
-
[

[

3.1 Interactive mode

When no command line argument is present other than options the compiler behaves like
the interpreter in interactive mode. The only difference with the interpreter is that the
compilation related procedures listed in this chapter are also available (i.e. compile-
file, compile-file-to-c, etc).

3.2 Customization

Like the interpreter, the compiler will examine the initialization file unless the ‘—f’ option
is specified.

3.3 Batch mode

In batch mode gsc takes a set of file names (with either no extension, or a ‘. c’ extension,
or some other extension) on the command line and compiles each Scheme file into a C
file. The extension can be omitted from file when the Scheme file has a ‘. scm’ or ‘. six’
extension. When the extension of the Scheme file is ‘. six’ the content of the file will
be parsed using the Scheme infix syntax extension (see Section 18.12 [Scheme infix syntax
extension|, page 167). Otherwise, gsc will parse the Scheme file using the normal Scheme
prefix syntax. Files with a ‘. ¢’ extension must have been previously produced by gsc and
are used by Gambit’s linker.

For each Scheme file a C file ‘file.c’ will be produced. The C file’s name is the same
as the Scheme file, but the extension is changed to ‘.c’. By default the C file is created in
the same directory as the Scheme file. This default can be overridden with the compiler’s
‘~o’ option.

The C files produced by the compiler serve two purposes. They will be processed by a C
compiler to generate object files, and they also contain information to be read by Gambit’s
linker to generate a link file. The link file is a C file that collects various linking information
for a group of modules, such as the set of all symbols and global variables used by the
modules. The linker is only invoked when the ‘~1ink’ option appears on the command
line.

Compiler options must be specified before the first file name and after the ‘—:’ runtime
option (see Chapter 4 [Runtime options], page 21). If present, the ‘-i’, ‘£’ and ‘-v’
compiler options must come first. The available options are:

Chapter 3: The Gambit Scheme compiler 10

-1 Force interpreter mode.
-f Do not examine the initialization file.
-v Print the system version number on standard output and exit.

-prelude expressions
Add expressions to the top of the source code being compiled.

-postlude expressions
Add expressions to the bottom of the source code being compiled.

—-cc-options options

Add options to the command that invokes the C compiler.
—1ld-options—-prelude options

Add options to the command that invokes the C linker.
—ld-options options

Add options to the command that invokes the C linker.

-warnings Display warnings.

-verbose Display a trace of the compiler’s activity.

-report Display a global variable usage report.

—expansion Display the source code after expansion.

-gvm Generate a listing of the GVM code.

—-debug Include all debugging information in the code generated.

—-debug-source Include source code debugging information in the code generated.

—debug-environments
Include environment debugging information in the code generated.

—-track-scheme Generate ‘#1ine’ directives referring back to the Scheme code.
-0 output Set name of output file or directory where output file(s) are written.

—dynamic Compile Scheme source files to dynamically loadable object files (this is

the default).

~keep-c Keep the intermediate ‘. c’ file that is generated when compiling to a

dynamically loadable object file.

e Compile Scheme source files to C without generating link file.
-link Compile Scheme source files to C and generate a link file.

-flat Generate a flat link file instead of the default incremental link file.
-1 base Specify the link file of the base library to use for the link.

- Start REPL interaction.

—-e expressions
Evaluate expressions in the interaction environment.

Chapter 3: The Gambit Scheme compiler 11

The ‘-1’ option forces the compiler to process the remaining command line arguments
like the interpreter.

The ‘—prelude’ option adds the specified expressions to the top of the source code
being compiled. The main use of this option is to supply declarations on the command line.
For example the following invocation of the compiler will compile the file ‘bench.scm’ in
unsafe mode:

$ gsc —-prelude " (declare (not safe))" bench.scm

The ‘—postlude’ option adds the specified expressions to the bottom of the source code
being compiled. The main use of this option is to supply the expression that will start the
execution of the program. For example:

$ gsc —-postlude " (start-bench)" bench.scm

The ‘—~cc-options’ option is only meaningful when a dynamically loadable object file
is being generated (neither the ‘—~c’ or ‘~1ink’ options are used). The ‘-cc-options’
option adds the specified options to the command that invokes the C compiler. The main
use of this option is to specify the include path, some symbols to define or undefine, the
optimization level, or any C compiler option that is different from the default. For example:

$ gsc —-cc-options "-U___ SINGLE_HOST -02 -I../include" bench.scm

The ‘~1d-options—-prelude’ and ‘-~1d-options’ options are only meaningful when
a dynamically loadable object file is being generated (neither the ‘—c’ or ‘~1ink’ options
are used). The ‘-1d-options-prelude’ and ‘-~1d-options’ options add the specified
options to the command that invokes the C linker (the options in Id-options-prelude are
passed to the C linker before the input file and the options in Id-options are passed after).
The main use of this option is to specify additional object files or libraries that need to be
linked, or any C linker option that is different from the default (such as the library search
path and flags to select between static and dynamic linking). For example:

$ gsc -ld-options "-L/usr/X11R6/1lib -1X11 -dynamic" bench.scm

The ‘-warnings’ option displays on standard output all warnings that the compiler

may have.

The ‘-verbose’ option displays on standard output a trace of the compiler’s activity.

The ‘—report’ option displays on standard output a global variable usage report. Each
global variable used in the program is listed with 4 flags that indicate whether the global
variable is defined, referenced, mutated and called.

The ‘—expansion’ option displays on standard output the source code after expansion
and inlining by the front end.

The ‘—gvm’ option generates a listing of the intermediate code for the “Gambit Virtual
Machine” (GVM) of each Scheme file on ‘file.gvm’.

The ‘-debug’ option causes debugging information to be saved in the code
generated. It is equivalent to the combination of the ‘~debug-source’ option and the
‘~debug-environments’ option. Note that the debugging information will substantially
increase the size of the generated code (the size of the object file is typically 2 to 4 times
bigger).

The ‘-debug-source’ option causes source code debugging information to be saved in
the code generated. With this option run time error messages indicate the source code and
its location, the backtraces are more precise, and the pp procedure will display the source
code of compiled procedures.

Chapter 3: The Gambit Scheme compiler 12

The ‘—~debug-environments’ option causes environment debugging information to
be saved in the code generated. With this option the debugger will have access to the
environments of the continuations. In other words the local variables defined in compiled
procedures (and not optimized away by the compiler) will be shown by the ¢, e’ REPL
command.

The ‘~track—-scheme’ options causes the generation of ‘#1ine’ directives that refer
back to the Scheme source code. This allows the use of a C debugger or profiler to debug
Scheme code.

The ‘-0’ option sets the filename of the output file, or the directory in which the output
file(s) generated by the compiler are written.

If the ‘=1ink’ option appears on the command line, the Gambit linker is invoked to
generate the link file from the set of C files specified on the command line or produced by
the Gambit compiler. By default the link file is ‘Iast_.c’, where ‘1ast.c’ is the last file
in the set of C files. When the ‘—c’ option is specified, the Scheme source files are compiled
to C files. If neither the ‘~1ink’ or ‘~c’ options appear on the command line, the Scheme
source files are compiled to dynamically loadable object files (‘.on’ extension). When a
dynamically loadable object file is generated the ‘~keep—c’ option will prevent the deletion
of the intermediate ‘. c’ file that is generated. Note that in this case the intermediate . c’
file will be generated in the same directory as the Scheme source file even if the ‘—o’ option
is used.

The ‘—flat’ option is only meaningful when a link file is being generated (i.e. the
‘~1link’ option also appears on the command line). The ‘~flat’ option directs the Gambit
linker to generate a flat link file. By default, the linker generates an incremental link file
(see the next section for a description of the two types of link files).

The ‘-1’ option is only meaningful when an incremental link file is being generated (i.e.
the ‘~1ink’ option appears on the command line and the ‘~flat’ option is absent). The
‘-1’ option specifies the link file (without the ‘. c’ extension) of the base library to use for
the incremental link. By default the link file of the Gambit runtime library is used (i.e.
‘"~ /1lib/_gambc.c’).

The ‘=" option starts a REPL interaction.

The ‘—e’ option evaluates the specified expressions in the interaction environment.

3.4 Link files

Gambit can be used to create programs and libraries of Scheme modules. This section
explains the steps required to do so and the role played by the link files.

In general, a program is composed of a set of Scheme modules and C modules. Some
of the modules are part of the Gambit runtime library and the other modules are supplied
by the user. When the program is started it must setup various global tables (including
the symbol table and the global variable table) and then sequentially execute the Scheme
modules (more or less as though they were being loaded one after another). The information
required for this is contained in one or more link files generated by the Gambit linker from
the C files produced by the Gambit compiler.

The order of execution of the Scheme modules corresponds to the order of the modules
on the command line which produced the link file. The order is usually important because

Chapter 3: The Gambit Scheme compiler 13

most modules define variables and procedures which are used by other modules (for this
reason the program’s main computation is normally started by the last module).

When a single link file is used to contain the linking information of all the Scheme
modules it is called a flat link file. Thus a program built with a flat link file contains in
its link file both information on the user modules and on the runtime library. This is fine
if the program is to be statically linked but is wasteful in a shared-library context because
the linking information of the runtime library can’t be shared and will be duplicated in all
programs (this linking information typically takes hundreds of kilobytes).

Flat link files are mainly useful to bundle multiple Scheme modules to make a runtime
library (such as the Gambit runtime library) or to make a single file that can be loaded
with the 1oad procedure.

An incremental link file contains only the linking information that is not already con-
tained in a second link file (the “base” link file). Assuming that a flat link file was produced
when the runtime library was linked, a program can be built by linking the user modules
with the runtime library’s link file, producing an incremental link file. This allows the cre-
ation of a shared-library which contains the modules of the runtime library and its flat link
file. The program is dynamically linked with this shared-library and only contains the user
modules and the incremental link file. For small programs this approach greatly reduces the
size of the program because the incremental link file is small. A “hello world” program built
this way can be as small as 5 Kbytes. Note that it is perfectly fine to use an incremental
link file for statically linked programs (there is very little loss compared to a single flat link
file).

Incremental link files may be built from other incremental link files. This allows the
creation of shared-libraries which extend the functionality of the Gambit runtime library.

3.4.1 Building an executable program

The simplest way to create an executable program is to call up gsc to compile each Scheme
module into a C file and create an incremental link file. The C files and the link file must
then be compiled with a C compiler and linked (at the object file level) with the Gambit
runtime library and possibly other libraries (such as the math library and the dynamic
loading library).

Here is for example how a program with three modules (one in C and two in Scheme)
can be built. The content of the three source files (‘ml.c’, ‘m2.scm’ and ‘m3.scm’) is:

/* File: "ml.c" */
int power_of_2 (int x) { return 1<<x; }

File: "m2.scm"

(c—declare "extern int power_of_2 ();")
(define pow2 (c—-lambda (int) int "power_of_2"))
(define (twice x) (cons x X))

; File: "m3.scm"
(write (map twice (map pow2 (1 2 3 4)))) (newline)
The compilation of the two Scheme source files can be done with three invocations of
gsc:

$ gsc —-c m2.scm # create m2.c (note: .scm is optional)
$ gsc —c m3.scm # create m3.c (note: .scm is optional)

Chapter 3: The Gambit Scheme compiler 14

$ gsc -link m2.c m3.c # create the incremental link file m3-.c

Alternatively, the three invocations of gsc can be replaced by a single invocation:

$ gsc -link m2 m3
m2:
m3:

At this point there will be 4 C files: ‘ml.c’, ‘m2.c’, ‘m3.c’, and ‘m3_.c’. To
produce an executable program these files must be compiled with a C compiler
and linked with the Gambit-C runtime library. The C compiler options needed
will depend on the C compiler and the operating system (in particular it may be
necessary to add the options ‘-I/usr/local/Gambit-C/current/include
-L/usr/local/Gambit-C/current/1lib’ to access the ‘gambit.h’ header file and
the Gambit-C runtime library).

Here is an example under Mac OS X:

$ uname -srmp

Darwin 8.1.0 Power Macintosh powerpc
$ gcc ml.c m2.c m3.c m3_.c -lgambc

$./a.out

((2 . 2) (4 . 4) (8 . 8) (16 . 16))

Here is an example under Linux:

$ uname -srmp

Linux 2.6.8-1.521 1686 athlon

$ gcc ml.c m2.c m3.c m3_.c —-lgambc -1m -1dl -lutil
$./a.out

((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.2 Building a loadable library

To bundle multiple modules into a single object file that can be dynamically loaded with
the 1oad procedure, a flat link file is needed. The compiler’s ‘-0’ option must be used
to name the C file generated as follows. If the dynamically loadable object file is to be
named ‘myfile.on’ then the ‘—o’ option must set the name of the link file generated
to ‘myfile.on.c’ (note that the ‘.c’ extension could also be ‘.cc’, ‘.cpp’ or whatever
extension is appropriate for C/C++ source files). The three modules of the previous example
can be bundled by generating a link file in this way:

$ gsc -link —-flat -o foo.ol.c m2 m3

m2:

m3:

*** WARNING —-- "cons" is not defined,
KK referenced in: ("m2.c")
*** WARNING —-- "map" is not defined,

* k% referenced in: ("m3.c")
*** WARNING —-- "newline" is not defined,
* %k referenced in: ("m3.c")
*** WARNING —-- "write" is not defined,

* % referenced in: ("m3.c")

The warnings indicate that there are no definitions (defines or set !s) of the variables
cons, map, newline and write in the set of modules being linked. Before ‘foo.ol’ is
loaded, these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

Chapter 3: The Gambit Scheme compiler 15

When compiling the C files and link file generated, the flag ‘D DYNAMIC’ must
be passed to the C compiler and the C compiler and linker must be told to generate a
dynamically loadable shared library.

Here is an example under Mac OS X:

$ uname -srmp

Darwin 8.1.0 Power Macintosh powerpc

$ gsc -link -flat -o foo.0l.c m2 m3 > /dev/null

m2:

m3:

$ gecec -bundle -D___ DYNAMIC ml.c m2.c m3.c foo.o0l.c -o foo.ol
$ gsi foo.ol

((2 . 2) (4 . 4) (8 .8) (le . 1o6))

Here is an example under Linux:

$ uname -srmp

Linux 2.6.8-1.521 1686 athlon

$ gsc -link -flat -o foo.0l.c m2 m3 > /dev/null

m2 :

m3:

$ gecc -shared -D___ DYNAMIC ml.c m2.c m3.c foo.o0l.c -o foo.ol
$ gsi foo.ol

((2 . 2) (4 . 4) (8 .8) (16 . 16))

Here is a more complex example, under Solaris, which shows how to build a loadable
library ‘mymod.ol’ composed of the files ‘m4.scm’, ‘m5.scm’ and ‘x.c’ that links to
system shared libraries (for X-windows):

$ uname -srmp
SunOS ungava 5.6 Generic_105181-05 sund4m sparc SUNW, SPARCstation-20
$ gsc -link —-flat —-o mymod.ol.c m4 m5

m4 :

mb5:

*** WARNING —-- "*" is not defined,

*kx referenced in: ("m4.c")

**% WARNING —— "+" is not defined,

* % x referenced in: ("m5.c")

*** WARNING —-- "display" is not defined,

* k& referenced in: ("m5.c" "m4.c")
**%* WARNING —-- "newline" is not defined,

* kK referenced in: ("m5.c" "m4.c")
*** WARNING —-- "write" is not defined,

* k% referenced in: ("m5.c")

$ gecec —-fPIC -c -D___ DYNAMIC mymod.ol.c md.c m5.c x.c

$ /usr/cecs/bin/ld -G -o mymod.ol mymod.ol.o md.o m5.0 x.0 -1X11 -lsocket
$ gsi mymod.ol

hello from m4

hello from mb5

(f1 10) = 22

$ cat mé4.scm

(define (f1 x) (* 2 (f2 x)))

(display "hello from m4")

(newline)

(c—declare #<<c-declare—-end

#include "x.h"

c—declare—end

)

(define x-initialize (c-lambda (char-string) bool "x_initialize"))

Chapter 3: The Gambit Scheme compiler 16

(define x-display-name (c—-lambda () char-string "x_display_name"))
(define x-bell (c-lambda (int) void "x_bell"))

$ cat m5.scm

(define (f2 x) (+ x 1))

(display "hello from mb")

(newline)

(display " (f1 10) = ")
(write (£1 10))
(newline)

(x—-initialize (x-display-name))
(x-bell 50) ; sound the bell at 50%
$ cat x.c

#include <X11/X1lib.h>

static Display *display;

int x_initialize (char *display_name)

{
display = XOpenDisplay (display_name);
return display != NULL;

}

char *x_display_name (void)

{
return XDisplayName (NULL) ;

}

void x_bell (int volume)

{
XBell (display, volume);
XFlush (display);
}
$ cat x.h
int x_initialize (char *display_name);
char *x_display_name (void);
void x_bell (int);

3.4.3 Building a shared-library

A shared-library can be built using an incremental link file or a flat link file. An incre-
mental link file is normally used when the Gambit runtime library (or some other library)
is to be extended with new procedures. A flat link file is mainly useful when building
a “primal” runtime library, which is a library (such as the Gambit runtime library) that
does not extend another library. When compiling the C files and link file generated, the
flags ‘“-D___ LIBRARY’ and ‘-D____ SHARED’ must be passed to the C compiler. The flag
‘~D____PRIMAL’ must also be passed to the C compiler when a primal library is being built.

A shared-library ‘mylib.so’ containing the two first modules of the previous example
can be built this way:

$ uname -srmp

Linux bailey 1.2.13 #2 Wed Aug 28 16:29:41 GMT 1996 1586

$ gsc -link -o mylib.c m2

$ gcc -shared —-fPIC -D___ LIBRARY -D___ SHARED ml.c m2.c mylib.c -o mylib.so

Chapter 3: The Gambit Scheme compiler 17

Note that this shared-library is built using an incremental link file (it extends the Gambit
runtime library with the procedures pow2 and twice). This shared-library can in turn be
used to build an executable program from the third module of the previous example:

$ gsc -link -1 mylib m3
$ gece m3.c m3_.c mylib.so —-lgambc

$ LD_LIBRARY PATH=.:/usr/local/lib ./a.out
((2 . 2) (4 . 4) (8 . 8) (16 . 16))

3.4.4 Other compilation options

The performance of the code can be increased by passing the ‘-D__ SINGLE_HOST’ flag
to the C compiler. This will merge all the procedures of a module into a single C procedure,
which reduces the cost of intra-module procedure calls. In addition the ‘-0’ option can be
passed to the C compiler. For large modules, it will not be practical to specify both ‘-0’
and ‘-D____SINGLE_HOST’ for typical C compilers because the compile time will be high
and the C compiler might even fail to compile the program for lack of memory. It has been
observed that lower levels of optimization (e.g. ‘—01’) often give faster compilation and
also generate faster code. It is a good idea to experiment.

Normally C compilers will not automatically search ‘/usr/local/Gambit-C/current/include’
for header files so the flag ‘~I/usr/local/Gambit-C/current/include’ should
be passed to the C compiler. Similarly, C compilers/linkers will not automati-
cally search ‘/usr/local/Gambit-C/current/1lib’ for libraries so the flag
‘-L/usr/local/Gambit-C/current/1ib’ should be passed to the C compiler/linker.
Alternatives are given in Section 1.1 [Accessing the system files], page 1.

A variety of flags are needed by some C compilers when compiling a shared-library or
a dynamically loadable library. Some of these flags are: ‘—shared’, ‘-call_shared’,
‘—~rdynamic’, ‘-fpic’, ‘-fPIC’, ‘-Kpic’, ‘“-KPIC’, ‘-pic’, ‘+z’, ‘=G’. Check your com-
piler’s documentation to see which flag you need.

3.5 Procedures specific to compiler

The Gambit Scheme compiler features the following procedures that are not available in
the Gambit Scheme interpreter.

(compile-file-to-c file [options: options] [output: [procedure]
output])

The file argument must be a string naming an existing file containing Scheme source
code. The extension can be omitted from file when the Scheme file has a ‘. scm’ or
‘.six’ extension. This procedure compiles the source file into a file containing C
code. By default, this file is named after file with the extension replaced with ‘.c’.
The name of the generated file can be specified with the output argument. If output
is a string naming a directory then the C file is created in that directory. Otherwise
the name of the C file is output.

Compilation options are specified through the options argument which must be a
list of symbols. Any combination of the following options can be used: ‘verbose’,
‘report’, ‘expansion’, ‘gvm’, and ‘debug’.

Chapter 3: The Gambit Scheme compiler 18

(compile-file file [options: options|[output: output] [procedure]
[cc-options: cc-options][ld-options-prelude:
ld-options-prelude] [ld-options: Id-options])

The file, options, and output arguments have the same meaning as for the compile—
file—-to-c procedure. The cc-options argument is a string containing the options
to pass to the C compiler and the Id-options-prelude and Id-options arguments are
strings containing the options to pass to the C linker (the options in Id-options-prelude
are passed to the C linker before the input file and the options in Id-options are passed
after).

The compile-file procedure compiles the source file into an object file by first
generating a C file and then compiling it with the C compiler. The C file is always
generated in the same directory as file.

9

By default the object file is named after file with the extension replaced with ‘. on’,
where n is a positive integer that acts as a version number. The next available version
number is generated automatically by compile—file. The name of the generated
object file can be specified with the output argument. If output is a string naming a
directory then the object file is created in that directory. Otherwise the name of the
object file is output.

Object files can be loaded dynamically by using the load procedure. The ‘.on’
extension can be specified (to select a particular version) or omitted (to load the
highest numbered version). When older versions are no longer needed, all versions
must be deleted and the compilation must be repeated (this is necessary because the
file name, including the extension, is used to name some of the exported symbols of
the object file).

Note that this procedure is only available on host operating systems that support
dynamic loading.

(link-incremental module-list [output: output] [base: [procedure]
basel)

The first argument must be a non empty list of strings naming Scheme modules to link
(extensions must be omitted). An incremental link file is generated for the modules
specified in module-list. By default the link file generated is named ‘1ast_.c’, where
last is the name of the last module. The name of the generated link file can be specified
with the output argument. If output is a string naming a directory then the link file
is created in that directory. Otherwise the name of the link file is output.

The base link file is specified by the base parameter, which must be a string. By
default the base link file is the Gambit runtime library link file *~~/1ib/_gambc.c’.
However, when base is supplied the base link file is named ‘base.c’.

The following example shows how to build the executable program ‘hello’ which
contains the two Scheme modules ‘h.scm’ and ‘w.six’.

$ uname -srmp

Darwin 8.1.0 Power Macintosh powerpc
$ cat h.scm

(display "hello") (newline)

$ cat w.six

display ("world"); newline();

$ gsc

Chapter 3: The Gambit Scheme compiler 19

Gambit v4.2.6

> (compile—-file-to-c "h")

#t

> (compile-file-to-c "w"

#t

> (link-incremental ’' ("h" "w") "hello.c")

>, q
$ gecec h.c w.c hello.c -lgambc -o hello
$./hello

hello

world

(link-flat module-1ist [output: output]) [procedure]
The first argument must be a non empty list of strings naming Scheme modules to
link. The first string must be the name of a Scheme module or the name of a link file
and the remaining strings must name Scheme modules (in all cases extensions must
be omitted). A flat link file is generated for the modules specified in module-list. By
default the link file generated is named ‘last_.c’, where last is the name of the
last module. The name of the generated link file can be specified with the output
argument. If output is a string naming a directory then the link file is created in that
directory. Otherwise the name of the link file is output. If a dynamically loadable
object file is produced from the link file ‘output’, then the name of the dynamically
loadable object file must be ‘output’ stripped of its file extension.

The following example shows how to build the dynamically loadable object file
‘1ib.ol’ which contains the two Scheme modules ‘m6.scm’ and ‘m7.scm’.

$ uname -srmp

Darwin 8.1.0 Power Macintosh powerpc
$ cat m6.scm

(define (f x) (g (* x x)))

$ cat m7.scm

(define (g y) (+ n y))

$ gsc

Gambit v4.2.6

> (compile-file-to-c "mé6")

#t

> (compile-file-to-c "m7")

#t

> (link-flat ’ ("m6é" "m7") "lib.ol.c")
**% WARNING —-- "*" is not defined,

* Kk x referenced in: ("m6.c")
**%* WARNING —-- "+" is not defined,

it referenced in: ("m7.c")
**%* WARNING —-- "n" is not defined,

* k% referenced in: ("m7.c")
> .9

$ gcc -bundle -D___ DYNAMIC m6.c m7.c lib.ol.c -o lib.ol
$ gsc

Gambit v4.2.6

> (load "1ib")

*** WARNING —-- Variable "n" used in module "m7" is undefined
"/Users/feeley/gambit/doc/lib.ol"

> (define n 10)

Chapter 3: The Gambit Scheme compiler 20

> (£ 5)

35

> .9
The warnings indicate that there are no definitions (defines or set!s) of the vari-
ables *, + and n in the modules contained in the library. Before the library is used,

these variables will have to be bound; either implicitly (by the runtime library) or
explicitly.

Chapter 4: Runtime options for all programs 21

4 Runtime options for all programs

Both gsi and gsc as well as executable programs compiled and linked using gsc take a
‘—:” option which supplies parameters to the runtime system. This option must appear first
on the command line. The colon is followed by a comma separated list of options with no
intervening spaces. The available options are:

mHEAPSIZE Set minimum heap size in kilobytes.
hHEAPSIZE Set maximum heap size in kilobytes.

1LIVEPERCENT Set heap occupation after garbage collection.

s Select standard Scheme mode.

S Select Gambit Scheme mode.

d[oPT. . .] Set debugging options.

=DIRECTORY Override the Gambit installation directory.

+ARGUMENT Add ARGUMENT to the command line before other arguments.
floPT. . .] Set file options.
t[oPT. . .] Set terminal options.
-[opT. . .] Set standard input and output options.

The ‘m’ option specifies the minimum size of the heap. The ‘m’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not shrink lower
than this size. By default, the minimum size is 0.

The ‘h’ option specifies the maximum size of the heap. The ‘h’ is immediately followed
by an integer indicating the number of kilobytes of memory. The heap will not grow larger
than this size. By default, there is no limit (i.e. the heap will grow until the virtual memory
is exhausted).

The ‘1’ option specifies the percentage of the heap that will be occupied with live objects
after the heap is resized at the end of a garbage collection. The ‘1’ is immediately followed
by an integer between 1 and 100 inclusively indicating the desired percentage. The garbage
collector resizes the heap to reach this percentage occupation. By default, the percentage
is 50.

The ‘s’ option selects standard Scheme mode. In this mode the reader is case-insensitive
and keywords are not recognized. The ‘S’ option selects Gambit Scheme mode (the reader is
case-sensitive and recognizes keywords which end with a colon). By default Gambit Scheme
mode is used.

‘d’

The ‘d’ option sets various debugging options. The letter is followed by a sequence

of letters indicating suboptions.

P Uncaught exceptions will be treated as “errors” in the primordial thread
only.

a Uncaught exceptions will be treated as “errors” in all threads.

r When an “error” occurs a new REPL will be started.

Chapter 4: Runtime options for all programs 22

s When an “error” occurs a new REPL will be started. Moreover the
program starts in single-stepping mode.

q When an “error” occurs the program will terminate with a nonzero exit
status.
R When a user interrupt occurs a new REPL will be started. User inter-

rupts are typically obtained by typing ("C).

D When a user interrupt occurs it will be deferred until the parameter
current—-user-interrupt—handler is bound.

0 When a user interrupt occurs the program will terminate with a nonzero
exit status.
i The REPL interaction channel will be the IDE REPL window (if the

IDE is available).
c The REPL interaction channel will be the console.

- The REPL interaction channel will be standard input and standard
output.

LEVEL The verbosity level is set to LEVEL (a digit from 0 to 9). At level 0 the
runtime system will not display error messages and warnings.

The default debugging options are equivalent to —:dpgQil (i.e. an uncaught exception
in the primordial thread terminates the program after displaying an error message). When
the letter ‘d’ is not followed by suboptions, it is equivalent to —:dprRil (i.e. a new
REPL is started only when an uncaught exception occurs in the primordial thread). When
gsi is running the main REPL, the debugging options are changed to cause errors in the
primordial thread and user interrupts to start a nested REPL.

The ‘=" option overrides the setting of the Gambit installation directory.
The ‘+’ option adds the text that follows to the command line before other arguments.

The ‘£, ‘t” and ‘-’ options specify the default settings of the ports created for files,
terminals and standard input and output respectively. The default character encoding,
end-of-line encoding and buffering can be set. Moreover, for terminals the line-editing
feature can be enabled or disabled. The ‘f’, ‘t’” and ‘=’ must be followed by a sequence of
these options:

ASCII character encoding.
ISO-8859-1 character encoding.
UCS-2 character encoding.
UCS-4 character encoding.
UTF-16 character encoding.
UTF-8 character encoding.

[T oo BENNe) WY~ O T .

UTF character encoding.

c End-of-line is encoded as CR (carriage-return).

Chapter 4: Runtime options for all programs 23

1 End-of-line is encoded as LF (linefeed)
cl End-of-line is encoded as CR-LF.
u Unbuffered 1/0.
n Line buffered I/O (‘n’ for “at newline”).
£ Fully buffered I/0.
e Enable line-editing (applies to terminals only).
E Disable line-editing (applies to terminals only).
When the environment variable ‘GAMBCOPT’ is defined, the runtime system will take its
options from that environment variable. A ‘—:’ option can be used to override some or all

of the runtime system options. For example:

$ GAMBCOPT=d0,="/my—gambit2
$ export GAMBCOPT

$ gsi -e ' (pretty-print (path-expand """")) (/ 1 0)’
"/Users/feeley/my—-gambit2/"

$ echo $7?

70

$ gsi —-:dl -e ’ (pretty-print (path-expand """")) (/ 1 0)’
"/Users/feeley/my—gambit2/"

*** ERROR IN (string)@l.3 —-- Divide by zero

(/1 0)

Chapter 5: Debugging 24

5 Debugging

5.1 Debugging model

The evaluation of an expression may stop before it is completed for the following reasons:
a. An evaluation error has occured, such as attempting to divide by zero.
b. The user has interrupted the evaluation (usually by typing (CO)).
c. A breakpoint has been reached or (step) was evaluated.

d. Single-stepping mode is enabled.

When an evaluation stops, a message is displayed indicating the reason and location
where the evaluation was stopped. The location information includes, if known, the name
of the procedure where the evaluation was stopped and the source code location in the
format ‘stream@line.column’, where stream is either a string naming a file or a symbol
within parentheses, such as ‘ (console)’.

A nested REPL is then initiated in the context of the point of execution where the
evaluation was stopped. The nested REPL’s continuation and evaluation environment are
the same as the point where the evaluation was stopped. For example when evaluating the
expression ‘(let ((y (=11))) (* (/ xvy) 2))’, a “divide by zero” error is reported
and the nested REPL’s continuation is the one that takes the result and multiplies it
by two. The REPL’s lexical environment includes the lexical variable ‘y’. This allows
the inspection of the evaluation context (i.e. the lexical and dynamic environments and
continuation), which is particularly useful to determine the exact location and cause of an
error.

The prompt of nested REPLs includes the nesting level; ‘1>’ is the prompt at the first
nesting level, ‘2>" at the second nesting level, and so on. An end of file (usually (D)) will
cause the current REPL to be terminated and the enclosing REPL (one nesting level less)
to be resumed.

At any time the user can examine the frames in the REPL’s continuation, which is
useful to determine which chain of procedure calls lead to an error. A backtrace that lists
the chain of active continuation frames in the REPL’s continuation can be obtained with
the ¢, b’ command. The frames are numbered from 0, that is frame 0 is the most recent
frame of the continuation where execution stopped, frame 1 is the parent frame of frame
0, and so on. It is also possible to move the REPL to a specific parent continuation (i.e.
a specific frame of the continuation where execution stopped) with the ¢, +’, ¢, =" and ¢, n’
commands (where n is the frame number). When the frame number of the frame being
examined is not zero, it is shown in the prompt after the nesting level, for example ‘1\5>’
is the prompt when the REPL nesting level is 1 and the frame number is 5.

Expressions entered at a nested REPL are evaluated in the environment (both lexical
and dynamic) of the continuation frame currently being examined if that frame was created
by interpreted Scheme code. If the frame was created by compiled Scheme code then
expressions get evaluated in the global interaction environment. This feature may be used
in interpreted code to fetch the value of a variable in the current frame or to change its value
with set!. Note that some special forms (define in particular) can only be evaluated in
the global interaction environment.

Chapter 5: Debugging 25

5.2 Debugging commands

In addition to expressions, the REPL accepts the following special “comma” commands:

2
7 <

rq

rqt

Give a summary of the REPL commands.

Terminate the process with exit status 0. This is equivalent to calling
(exit 0).

Terminate the current thread (note that terminating the primordial
thread terminates the process).

Return to the outermost REPL, also known as the “top-level REPL”.

Leave the current REPL and resume the enclosing REPL. This com-
mand does nothing in the top-level REPL.

Leave the current REPL and continue the computation that initiated
the REPL with a specific value. This command can only be used to
continue a computation that signaled an error. The expression expr is
evaluated in the current context and the resulting value is returned as
the value of the expression which signaled the error. For example, if the
evaluation of the expression ‘ (* (/ x y) 2)’ signaled an error because
‘y’ is zero, then in the nested REPL a *, (¢ (+ 4 y))’ will resume the
computation of ‘ (* (/ x y) 2)’ as though the value of ‘ (/ x y)’ was
4. This command must be used carefully because the context where
the error occured may rely on the result being of a particular type. For
instance a ‘, (c #f)’ in the previous example will cause ‘*’ to signal
a type error (this problem is the most troublesome when debugging
Scheme code that was compiled with type checking turned off so be
careful).

Leave the current REPL and continue the computation that initiated
the REPL. This command can only be used to continue a computation
that was stopped due to a user interrupt, breakpoint or a single-step.

Leave the current REPL and continue the computation that initiated
the REPL in single-stepping mode. The computation will perform an
evaluation step (as defined by step-level-set!) and then stop, caus-
ing a nested REPL to be entered. Just before the evaluation step is
performed, a line is displayed (in the same format as trace) which
indicates the expression that is being evaluated. If the evaluation step
produces a result, the result is also displayed on another line. A nested
REPL is then entered after displaying a message which describes the
next step of the computation. This command can only be used to con-
tinue a computation that was stopped due to a user interrupt, break-
point or a single-step.

This command is similar to ¢, s’ except that it “leaps” over procedure
calls, that is procedure calls are treated like a single step. Single-
stepping mode will resume when the procedure call returns, or if and
when the execution of the called procedure encounters a breakpoint.

Chapter 5: Debugging 26

;€

Move to frame number n of the continuation. After changing the cur-
rent frame, a one-line summary of the frame is displayed as if the ¢, y’
command was entered.

Move to the next frame in the chain of continuation frames (i.e. towards
older continuation frames). After changing the current frame, a one-line
summary of the frame is displayed as if the ¢, vy’ command was entered.

Move to the previous frame in the chain of continuation frames (i.e.
towards more recently created continuation frames). After changing
the current frame, a one-line summary of the frame is displayed as if
the ¢, vy’ command was entered.

Display a one-line summary of the current frame. The information is
displayed in four fields. The first field is the frame number. The second
field is the procedure that created the frame or ‘ (interaction)’if the
frame was created by an expression entered at the REPL. The remaining
fields describe the subproblem associated with the frame, that is the
expression whose value is being computed. The third field is the location
of the subproblem’s source code and the fourth field is a reproduction of
the source code, possibly truncated to fit on the line. The last two fields
may be missing if that information is not available. In particular, the
third field is missing when the frame was created by a user call to the
‘eval’ procedure, and the last two fields are missing when the frame
was created by a compiled procedure not compiled with the ‘~debug’
or ‘—~debug-source’ options.

Display a backtrace summarizing each frame in the chain of continua-
tion frames starting with the current frame. For each frame, the same
information as for the ¢, y’ command is displayed (except that location
information is displayed in the format ‘stream@line:column’). If
there are more that 15 frames in the chain of continuation frames, some
of the middle frames will be omitted.

Pretty print the procedure that created the current frame or
‘(interaction)’ if the frame was created by an expression entered
at the REPL. Compiled procedures will only be pretty printed when
they are compiled with the ‘~debug’ or ‘-~debug-source’ options.

Display the environment which is accessible from the current frame. The
lexical environment is displayed, followed by the dynamic environment
if the parameter object repl-display—-dynamic—environment? is
not false. Global lexical variables are not displayed. Moreover the frame
must have been created by interpreted code or code compiled with the
‘~debug’ or ‘-~debug-environments’ options. Due to space safety
considerations and compiler optimizations, some of the lexical variable
bindings may be missing. Lexical variable bindings are displayed us-
ing the format ‘variable = expression’ and dynamically-bound pa-
rameter bindings are displayed using the format ‘ (parameter) = ex—
pression’. Note that expression can be a self-evaluating expression

Chapter 5: Debugging 27

(number, string, boolean, character, ...), a quoted expression, a lambda
expression or a global variable (the last two cases, which are only used
when the value of the variable or parameter is a procedure, simplifies the
debugging of higher-order procedures). A parameter can be a quoted
expression or a global variable. Lexical bindings are displayed in in-
verse binding order (most deeply nested first) and shadowed variables
are included in the list.

, (e expr) Display the environment of expr’s value, X, which is obtained by evalu-

ating expr in the current frame. X must be a continuation, a procedure,
or a non-negative integer. When X is a continuation, the environment
at that point in the code is displayed. When X is a procedure, the
lexical environment where X was created is combined with the current
continuation and this combined environment is displayed. When X is
an integer, the environment at frame number X of the continuation is
displayed.

, (v expr) Start a new REPL visiting expr’s value, X, which is obtained by evalu-

ating expr in the current frame. X must be a continuation, a procedure,
or a non-negative integer. When X is a continuation, the new REPL’s
continuation is X and evaluations are done in the environment at that
point in the code. When X is a procedure, the lexical environment where
X was created is combined with the current continuation and evalua-
tions are done in this combined environment. When X is an integer,
the REPL is started in frame number X of the continuation.

5.3 Debugging example

Here is a sample interaction with gsi:

$ gsi
Gambit v4.2.6

> (define (invsqr x) (/ 1 (expt x 2)))
> (define (mymap fn 1lst)
(define (mm in)
(if (null? in)
" ()

(cons (fn (car in)) (mm (cdr in)))))

(mm 1lst))
> (mymap invsqgr ' (5 2 hello 9 1))
**% ERROR IN invsqgr, (console)@1l.25 -- (Argument 1) NUMBER expected
(expt "hello 2)
1> ,1i

#<procedure #2 invsgr> =
(lambda (x) (/ 1 (expt x 2)))

1> ,e

x = "hello

1> ,b

0 invsqr (console)@1:25 (expt x 2)

1 f#<procedure #4> (console)@6:17 (fn (car in))
2 #<procedure #4> (console)@6:31 (mm (cdr in))
3 #<procedure #4> (console)@6:31 (mm (cdr 1in))
4 (interaction) (console)@8:1 (mymap invsqgr

"(5 2 hel...

Chapter 5: Debugging 28

1> ,+

1 #<procedure #4> (console)@6.17 (fn (car in))

IN1> (pp #4)

(lambda (in) (if (null? in) ’ () (cons (fn (car in)) (mm (cdr in)))))

I\1> ,e

in = ' (hello 9 1)

mm = (lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr in)))))
fn = invsqgr

lst = (5 2 hello 9 1)
1\1> , (e mm)

mm = (lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr in)))))
fn = invsqgr

lst = (5 2 hello 9 1)

1\1> £n

#<procedure #2 invsqgr>

1\1> (pp £n)

(lambda (x) (/ 1 (expt x 2)))

I\N1> ,+

2 ff<procedure #4> (console) @6.31 (mm (cdr in))
1\2> ,e

in = /(2 hello 9 1)

fn invsqgr

lst = (5 2 hello 9 1)
1\2> , (c (list 3 4 5))
(1/25 1/4 3 4 5)

>, q

5.4 Procedures related to debugging

(repl-result-history-ref 1) [procedure]

(repl-result-history-max—-length-set! n) [procedure]
The REPL keeps a history of the last few results printed by the REPL. The call
(repl-result-history-ref i) returns the ith previous result (the last for i=0,
the next to last for i=1, etc). By default the REPL result history remembers up to
3 results. The maximal length of the history can be set to n between 0 and 10 by a
call to (repl-result-history-max—length-set! n).

For convenience the reader defines an abbreviation for calling repl-result-
history-ref. Tokens formed by a sequence of one or more hash signs, such as ‘#’,
‘#4’, etc, are expanded by the reader into the list (repl-result-history-ref
1), where i is the number of hash signs minus 1. In other words, ‘#’ will return the
last result printed by the REPL, ‘#4#’ will return the next to last, etc.

For example:
> (map (lambda (x) (* x x)) "(1 2 3))
(1 4 9)
> (reverse #)
(9 4 1)
> (append # ##)
9411 4 9)
1

1

VBV PV~

(+ # #4#)

mm = (lambda (in) (if (null? in) ' () (cons (fn (car in)) (mm (cdr in)))))

Chapter 5: Debugging 29

2

> (+ # ##)

3

> (+ # ##)

5

> Hi##

**% ERROR IN (console)@9.1 -- (Argument 1) Out of range

(repl-result-history-ref 3)

1>
(trace proc...) [procedure]
(untrace proc...) [procedure]

The trace procedure starts tracing calls to the specified procedures. When a traced
procedure is called, a line containing the procedure and its arguments is displayed
(using the procedure call expression syntax). The line is indented with a sequence of
vertical bars which indicate the nesting depth of the procedure’s continuation. After
the vertical bars is a greater-than sign which indicates that the evaluation of the call
is starting.

When a traced procedure returns a result, it is displayed with the same indentation
as the call but without the greater-than sign. This makes it easy to match calls and
results (the result of a given call is the value at the same indentation as the greater-
than sign). If a traced procedure P1 performs a tail call to a traced procedure P2,
then P2 will use the same indentation as P1. This makes it easy to spot tail calls.
The special handling for tail calls is needed to preserve the space complexity of the
program (i.e. tail calls are implemented as required by Scheme even when they involve
traced procedures).

The untrace procedure stops tracing calls to the specified procedures. When no
arguments is passed to the trace procedure, the list of procedures currently being
traced is returned. The void object is returned by the trace procedure when it
is passed one or more arguments. When no argument is passed to the untrace
procedure stops all tracing and returns the void object. A compiled procedure may
be traced but only if it is bound to a global variable.

For example:
> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (trace fact)
> (fact 5)
| > (fact 5)
| | > (fact 4)
\ (fact 3)
\ (fact 2)
\ > (fact 1)
\ 1
\
\
\

N— — V

>
|
|
|
|
6

|

|

|

|

|

|
| 24
| 120
120
> (trace -)

***x WARNING -- Rebinding global variable "-" to an interpreted procedure
> (define (fact-iter n r) (if (< n 2) r (fact-iter (- n l1l) (* n r))))
> (trace fact-iter)
> (fact-iter 5 1)

Chapter 5: Debugging 30

fact—-iter 5 1)
(- 5 1)

fact—-iter 4 5)
(-4 1)

(

>

4

(

>

3
(fact—-iter 3 20)
> (= 3 1)

2

(fact—iter 2 60)
> (- 2 1)

1
(
0

>
|
|
>
|
|
>
|
|
>
|
|
> (fact—-iter 1 120)
1

2
120
> (trace)

(#<procedure #2 fact-iter> #<procedure #3 —-> #<procedure #4 fact>)
> (untrace)

> (fact 5)

120
(step) [procedure]
(step—level-set! level) [procedure]

The step procedure enables single-stepping mode. After the call to step the com-
putation will stop just before the interpreter executes the next evaluation step (as
defined by step-level-set!). A nested REPL is then started. Note that because
single-stepping is stopped by the REPL whenever the prompt is displayed it is point-
less to enter (step) by itself. On the other hand entering (begin (step) expr)
will evaluate expr in single-stepping mode.

The procedure step—level-set ! sets the stepping level which determines the gran-
ularity of the evaluation steps when single-stepping is enabled. The stepping level
level must be an exact integer in the range 0 to 7. At a level of 0, the interpreter
ignores single-stepping mode. At higher levels the interpreter stops the computation
just before it performs the following operations, depending on the stepping level:

1. procedure call

delay special form and operations at lower levels
lambda special form and operations at lower levels
define special form and operations at lower levels

set ! special form and operations at lower levels

S v N

variable reference and operations at lower levels

7. constant reference and operations at lower levels

The default stepping level is 7.

For example:
> (define (fact n) (if (< n 2) 1 (* n (fact (- n 1)))))
> (step-level-set! 1)
> (begin (step) (fact 5))
**%* STOPPED IN (console)@3.15
1> ,s
| > (fact 5)
*** STOPPED IN fact, (console)@1.22

Chapter 5: Debugging 31

1> ,s
| | > (< n 2)
| | #£
*** STOPPED IN fact, (console)@1.43
1> ,s
[| > (= n 1)
| | 4
*** STOPPED IN fact, (console)@1l.37
1> ,s
| | > (fact (= n 1))
*** STOPPED IN fact, (console)@1.22
1> ,s
I 11 > (<n 2)
|| | #£
*** STOPPED IN fact, (console)@1.43
1> ,s
[1 | > (=n 1)
I N
*** STOPPED IN fact, (console)@1.37
1> ,1
[| | > (fact (- n 1))
*** STOPPED IN fact, (console)@1.22
1> ,1
[| > (* n (fact (- n 1)))
| | 24
*** STOPPED IN fact, (console)@1.32
1> ,1
| > (* n (fact (- n 1)))
| 120
120
(break proc...) [procedure]
(unbreak proc...) [procedure]

The break procedure places a breakpoint on each of the specified procedures. When
a procedure is called that has a breakpoint, the interpreter will enable single-stepping
mode (as if step had been called). This typically causes the computation to stop
soon inside the procedure if the stepping level is high enough.

The unbreak procedure removes the breakpoints on the specified procedures. With
no argument, break returns the list of procedures currently containing breakpoints.
The void object is returned by break if it is passed one or more arguments. With
no argument unbreak removes all the breakpoints and returns the void object. A
breakpoint can be placed on a compiled procedure but only if it is bound to a global
variable.

For example:
> (define (double x) (+ x x))

> (define (triple y) (- (double (double y)) y))

> (define (f z) (* (triple z) 10))

> (break double)

> (break -)

*** WARNING —-- Rebinding global variable "-" to an interpreted procedure
> (£ 5)

*** STOPPED IN double, (console)@1l.21

1> ,b

0 double (console)@l:21 +

1 triple (console)@2:31 (double vy)

Chapter 5: Debugging 32

2 £ (console)@3:18 (triple z)
3 (interaction) (console)@6:1 (f 5)
1> ,e

x =5

1> ,c

**% STOPPED IN double, (console)@1.21

1> ,c

*** STOPPED IN f, (console)@3.29

1> ,e

150

> (break)

(#<procedure #3 —-> #<procedure #4 double>)

> (unbreak)

> (£ 5)

150

(generate-proper-tail-calls [new-value|) [procedure]
The parameter object generate-proper—-tail-calls is bound to a boolean value
controlling how the interpreter handles tail calls. When it is bound to #f the inter-
preter will treat tail calls like nontail calls, that is a new continuation will be created
for the call. This setting is useful for debugging, because when a primitive signals an
error the location information will point to the call site of the primitive even if this
primitive was called with a tail call. The initial value of this parameter object is #t,
which means that a tail call will reuse the continuation of the calling function.

This parameter object only affects code that is subsequently processed by load or
eval, or entered at the REPL.

For example:

> (generate-proper-tail-calls)

#t

> (let loop ((i 1)) (if (< i 10) (loop (* i 2)) oops))

*** ERROR IN #<procedure #2>, (console)@2.47 —- Unbound variable: oops

1> ,b

0 #<procedure #2> (console)@2:47 oops

1 (interaction) (console)@2:1 ((letrec ((loop (lambda..
1> ,t

> (generate-proper-tail-calls #f)
> (let loop ((i 1)) (if (< i 10) (loop (* i 2)) oops))

*** ERROR IN #<procedure #3>, (console)@6.47 —- Unbound variable: oops

1> ,b

0 #<procedure #3> (console)@6:47 oops

1 #<procedure #3> (console)@6:32 (loop (* 1 2))

2 #<procedure #3> (console)@6:32 (loop (* 1 2))

3 #<procedure #3> (console)@6:32 (loop (* 1 2))

4 #<procedure #3> (console)@6:32 (loop (* 1 2))

5 (interaction) (console) @6: ((letrec ((loop (lambda
(display—-environment-set! display?) [procedure]

This procedure sets a flag that controls the automatic display of the environment by
the REPL. If display? is true, the environment is displayed by the REPL before the
prompt. The default setting is not to display the environment.

Chapter 5: Debugging 33

(pretty-print obj [port]) [procedure]
This procedure pretty-prints obj on the port port. If it is not specified, port defaults
to the current output-port.

For example:

> (pretty-print
(let* ((x '(1 2 3 4)) (y (list x x x))) (list y y y¥)))
(((1L 2 3 4) (1 23 4) (1 2 3 4))
((1 2 3 4) (1 23 4) (1 2 3 4))
((L 2 3 4) (1 23 4) (L 23 4)))

(pp obj [port]) [procedure]
This procedure pretty-prints obj on the port port. When obj is a procedure created
by the interpreter or a procedure created by code compiled with the ‘-debug’ or
‘~debug-source’ options, the procedure’s source code is displayed. If it is not
specified, port defaults to the interaction channel (i.e. the output will appear at the
REPL).

For example:
> (define (f g) (+ (time (g 100)) (time (g 1000))))

> (pp £)
(lambda (qg)
(+ (##time (lambda () (g 100)) ' (g 100))
(##time (lambda () (g 1000)) ' (g 1000))))
(gc—report-set! report?) [procedure]

This procedure controls the generation of reports during garbage collections. If the
argument is true, a brief report of memory usage is generated after every garbage
collection. It contains: the time taken for this garbage collection, the amount of
memory allocated in megabytes since the program was started, the size of the heap
in megabytes, the heap memory in megabytes occupied by live data, the proportion
of the heap occupied by live data, and the number of bytes occupied by movable and
nonmovable objects.

5.5 Console line-editing

The console implements a simple Scheme-friendly line-editing user-interface that is enabled
by default. It offers parentheses balancing, a history of previous commands, symbol com-
pletion, and several emacs-compatible keyboard commands. The user’s input is displayed
in a bold font and the output produced by the system is in a plain font. The history of
previous commands is saved in the file *”/.gambc_history’. It is restored when a REPL
is started.

Symbol completion is triggered with the tab key. When the cursor is after a sequence of
characters that can form a symbol, typing the tab key will search the symbol table for the
first symbol (in alphabetical order) that begins with that sequence and insert that symbol.
Typing the tab key in succession will cycle through all symbols with that prefix. When all
possible symbols have been shown or there are no possible completions, the text reverts to
the uncompleted symbol and the bell is rung.

Here are the keyboard commands available (where the ‘M-’ prefix means the escape key
is typed and the ‘C-’ prefix means the control key is pressed):

Chapter 5: Debugging 34

c-d Generate an end-of-file when the line is empty, otherwise delete charac-
ter at cursor.

C-a Move cursor to beginning of line.
C-e Move cursor to end of line.
C-b or left-arrow Move cursor left one character.

M—-C-b or M-left-arrow
Move cursor left one S-expression.

C—f or right-arrow
Move cursor right one character.

M-C-f or M-right-arrow
Move cursor right one S-expression.

C—p or up-arrow Move to previous line in history.

C—-n or down-arrow
Move to next line in history.

C-t Transpose character at cursor with previous character.

M-C-t Transpose S-expression at cursor with previous S-expression.

c-1 Clear console and redraw line being edited.

C-nul Set the mark to the cursor.

C-w Delete the text between the cursor and the mark and keep a copy of

this text on the clipboard.

C-k Delete the text from the cursor to the end of the line and keep a copy
of this text on the clipboard.

C-y Paste the text that is on the clipboard.

F8 Same as typing ‘# | | #, c;’ (REPL command to continue the computa-
tion).

F9 Same as typing ‘4| | #, —;’ (REPL command to move to newer frame).

F10 Same as typing ‘#| | #, +;’ (REPL command to move to older frame).

F11 Same as typing ‘#| | #, s;’ (REPL command to step the computation).

Fl12 Same as typing ‘# | | #, 1;’ (REPL command to leap the computation).

On Mac OS X, depending on your configuration, you may have to press the fn key to
access the function key F12 and the option key to access the other function keys.

On Microsoft Windows the clipboard is the system clipboard. This allows text to be
copied and pasted between the program and other applications. On other operating systems
the clipboard is internal to the program (it is not integrated with the operating system).

Chapter 5: Debugging 35

5.6 Emacs interface

Gambit comes with the Emacs package ‘gambit.el’ which provides a nice environment
for running Gambit from within the Emacs editor. This package filters the standard out-
put of the Gambit process and when it intercepts a location information (in the format
‘stream@line.column’ where stream is either ‘ (stdin)’ when the expression was ob-
tained from standard input, ‘ (console)’ when the expression was obtained from the con-
sole, or a string naming a file) it opens a window to highlight the corresponding expression.

To use this package, make sure the file ‘gambit.el’ is accessible from your load-path
and that the following lines are in your ‘. emacs’ file:

(autoload ’"gambit-inferior-mode "gambit" "Hook Gambit mode into cmuscheme.")

(autoload ’"gambit-mode "gambit" "Hook Gambit mode into scheme.")
(add-hook ’inferior-scheme-mode-hook (function gambit-inferior-mode))
(add-hook ’scheme-mode-hook (function gambit-mode))

(setg scheme-program-name "gsi —-:d-")

Alternatively, if you don’t mind always loading this package, you can simply add this
line to your ‘.emacs’ file:

(require ’'gambit)

You can then start an inferior Gambit process by typing ‘M-x run—-scheme’. The
commands provided in ‘cmuscheme’ mode will be available in the Gambit interaction
buffer (i.e. ‘*scheme*’) and in buffers attached to Scheme source files. Here is a list of the
most useful commands (for a complete list type ‘C—h m’ in the Gambit interaction buffer):

C-x C-e Evaluate the expression which is before the cursor (the expression will
be copied to the Gambit interaction buffer).

C-c C-z Switch to Gambit interaction buffer.

C-c C-1 Load a file (file attached to current buffer is default) using (load
file).

C-c C-k Compile a file (file attached to current buffer is default) using

(compile—-file file).

The file ‘gambit .el’ provides these additional commands:

F8 or C-c c Continue the computation (same as typing ‘4| | #, c;’ to the REPL).
F9 or C-c 1] Move to newer frame (same as typing ‘# | | #, —;’ to the REPL).
F10 or C-c [Move to older frame (same as typing ‘# | | #, +;’ to the REPL).

F11l or C-c s Step the computation (same as typing ‘4| | #, s;’ to the REPL).
F12 or C-c 1 Leap the computation (same as typing ‘# | | #, 1;’ to the REPL).
C-c _ Removes the last window that was opened to highlight an expression.
The two keystroke version of these commands can be shortened to ‘M-c’, ‘M- [’, ‘M—-]",
‘M-s’, ‘M-1’, and ‘M—_’ respectively by adding this line to your ‘.emacs’ file:
(setqg gambit-repl-command-prefix "\e")

This is more convenient to type than the two keystroke ‘C—c’ based sequences but the
purist may not like this because it does not follow normal Emacs conventions.

Here is what a typical ‘.emacs’ file will look like:

Chapter 5: Debugging 36

(setq load-path ; add directory containing gambit.el
(cons "/usr/local/Gambit-C/current/share/emacs/site-1lisp"

load-path))
(setg scheme-program—-name "/tmp/gsi —-:d-") ; if gsi not in executable path
(setq gambit-highlight-color "gray") ; if you don’t like the default
(setqg gambit-repl-command-prefix "\e") ; if you want M-c, M-s, etc
(

require ’'gambit)

5.7 GUIDE

The implementation and documentation for GUIDE, the Gambit Universal IDE, are not
yet complete.

Chapter 6: Scheme extensions 37

6 Scheme extensions

6.1 Extensions to standard procedures

(transcript-on file) [procedure]
(transcript-off) [procedure]
These procedures do nothing.

(call-with-current-continuation proc) [procedure]

(call/cc proc) [procedure]
The procedure call-with-current—-continuation is bound to the global vari-
ables call-with-current-continuation and call/cc.

6.2 Extensions to standard special forms

(lambda lambda-formals body) [special form)]
(define (variable define-formals) body) [special form)]
lambda-formals = (formal-argument-list) | r4rs-lambda-formals

define-formals = formal-argument-list | r4rs-define-formals
formal-argument-list = dsssl-formal-argument-list | rest-at-end-formal-
argument-list

dsssl-formal-argument-list = reqs opts rest keys

rest-at-end-formal-argument-list = reqs opts keys rest | reqs opts keys . rest-
formal-argument

reqs = required-formal-argument®
required-formal-argument = variable
opts = #!optional optional-formal-argument™ | empty
optional-formal-argument = wvariable | (variable initializer)
rest = # ! rest rest-formal-argument | empty
rest-formal-argument = variable
keys = #'key keyword-formal-argument™® | empty
keyword-formal-argument = variable | (variable initializer)
initializer = expression
r4rs-lambda-formals = (variable®*) | (variable+ . variable) | wvariable
r4rs-define-formals = variable®™ | variable® . variable
These forms are extended versions of the 1ambda and define special forms of stan-

dard Scheme. They allow the use of optional formal arguments, either positional or
named, and support the syntax and semantics of the DSSSL standard.

When the procedure introduced by a lambda (or define) is applied to a list of
actual arguments, the formal and actual arguments are processed as specified in the
R4RS if the lambda-formals (or define-formals) is a r4rs-lambda-formals (or r4rs-
define-formals).

If the formal-argument-list matches dsssil-formal-argument-list or extended-formal-
argument-list they are processed as follows:

Chapter 6: Scheme extensions 38

a. Variables in required-formal-arguments are bound to successive actual arguments
starting with the first actual argument. It shall be an error if there are fewer
actual arguments than required-formal-arguments.

b. Next wvariables in optional-formal-arguments are bound to remaining actual ar-
guments. If there are fewer remaining actual arguments than optional-formal-
arguments, then the variables are bound to the result of evaluating initializer,
if one was specified, and otherwise to #f. The initializer is evaluated in an
environment in which all previous formal arguments have been bound.

c. If #!key does not appear in the formal-argument-list and there is no rest-formal-
argument then it shall be an error if there are any remaining actual arguments.

d. If #!key does not appear in the formal-argument-list and there is a rest-formal-
argument then the rest-formal-argument is bound to a list of all remaining actual
arguments.

e. If #!key appears in the formal-argument-list and there is no rest-formal-
argument then there shall be an even number of remaining actual arguments.
These are interpreted as a series of pairs, where the first member of each pair is
a keyword specifying the argument name, and the second is the corresponding
value. It shall be an error if the first member of a pair is not a keyword. It
shall be an error if the argument name is not the same as a variable in a
keyword-formal-argument. If the same argument name occurs more than once
in the list of actual arguments, then the first value is used. If there is no actual
argument for a particular keyword-formal-argument, then the variable is bound
to the result of evaluating initializer if one was specified, and otherwise to #f.
The initializer is evaluated in an environment in which all previous formal
arguments have been bound.

f. If # ! key appears in the formal-argument-list and there is a rest-formal-argument
before the # ! key then there may be an even or odd number of remaining actual
arguments and the rest-formal-argument is bound to a list of all remaining actual
arguments. Then, these remaining actual arguments are scanned from left to
right in pairs, stopping at the first pair whose first element is not a keyword.
Each pair whose first element is a keyword matching the name of a keyword-
formal-argument gives the value (i.e. the second element of the pair) of the
corresponding formal argument. If the same argument name occurs more than
once in the list of actual arguments, then the first value is used. If there is no
actual argument for a particular keyword-formal-argument, then the variable is
bound to the result of evaluating initializer if one was specified, and otherwise to
#£. The initializer is evaluated in an environment in which all previous formal
arguments have been bound.

g. If # ' key appears in the formal-argument-list and there is a rest-formal-argument
after the #!key then there may be an even or odd number of remaining actual
arguments. The remaining actual arguments are scanned from left to right in
pairs, stopping at the first pair whose first element is not a keyword. Each
pair shall have as its first element a keyword matching the name of a keyword-
formal-argument; the second element gives the value of the corresponding formal
argument. If the same argument name occurs more than once in the list of
actual arguments, then the first value is used. If there is no actual argument for

Chapter 6: Scheme extensions 39

a particular keyword-formal-argument, then the variable is bound to the result
of evaluating initializer if one was specified, and otherwise to #£. The initializer
is evaluated in an environment in which all previous formal arguments have
been bound. Finally, the rest-formal-argument is bound to the list of the actual
arguments that were not scanned (i.e. after the last keyword/value pair).

In all cases it is an error for a variable to appear more than once in a formal-argument-
lust.

Note that this specification is compatible with the DSSSL language standard (i.e. a
correct DSSSL program will have the same semantics when run with Gambit).

It is unspecified whether variables receive their value by binding or by assignment.
Currently the compiler and interpreter use different methods, which can lead to dif-
ferent semantics if call-with-current—-continuation is used in an initializer.
Note that this is irrelevant for DSSSL programs because call-with—-current-—
continuation does not exist in DSSSL.

For example:

> ((lambda (#'rest x) x) 1 2 3)

(1 2 3)

> (define (f a #!'optional b) (list a b))

> (define (g a #'!optional (b a) #!'key (k (* a b))) (list a b k))
> (define (hl a #!rest r #'!key k) (list a k r))

> (define (h2 a #'key k #!rest r) (list a k r))

> (£ 1)

(1 #1£)

7 #f ()
(h2 7 k: 8 9)
(7 8 (9))
> (h2 7 k: 8 z: 9)
*%% ERROR IN (console)@l7.1 —-- Unknown keyword argument passed to procedure
(h2 7 k: 8 z: 9)

6.3 Miscellaneous extensions

(vector-copy vector) [procedure]
This procedure returns a newly allocated vector with the same content as the vector
vector. Note that the elements are not recursively copied.

Chapter 6: Scheme extensions 40

(vector—append vector...) [procedure]
This procedure is the vector analog of the st ring—append procedure. It returns a
newly allocated vector whose elements form the concatenation of the given vectors.

(subvector vector start end) [procedure]
This procedure is the vector analog of the substring procedure. It returns a newly
allocated vector formed from the elements of the vector vector beginning with index
start (inclusive) and ending with index end (exclusive).

(box ob3) [procedure]
(box? obj) [procedure]
(unbox box) [procedure]
(set-box! box obj) [procedure]

These procedures implement the box data type. A box is a cell containing a single
mutable field. The lexical syntax of a box containing the object obj is #&obj (see
Section 18.7 [Box syntax], page 166).

The procedure box returns a new box object whose content is initialized to obj. The
procedure box? returns #t if obj is a box, and otherwise returns #£. The procedure
unbox returns the content of the box box. The procedure set-box! changes the
content of the box box to obj. The procedure set-box! returns an unspecified
value.

For example:

> (define b (box 0))

> b

#&0

> (define (inc!) (set-box! b (+ (unbox b) 1)))
> (inc!)

> b

#s&1

> (unbox b)

1

(keyword? ob7) [procedure]

(keyword->string keyword) [procedure]

(string->keyword string) [procedure]
These procedures implement the keyword data type. Keywords are similar to symbols
but are self evaluating and distinct from the symbol data type. The lexical syntax of
keywords is specified in Section 18.6 [Keyword syntax|, page 166.

The procedure keyword? returns #t if obj is a keyword, and otherwise returns #f.
The procedure keyword->string returns the name of keyword as a string. The
procedure string—->keyword returns the keyword whose name is string.
For example:

> (keyword? ’'color)

#f

> (keyword? color:)

#t

> (keyword->string color:)
"color"

> (string->keyword "color")
color:

Chapter 6: Scheme extensions 41

(gensym [prefix]) [procedure]
This procedure returns a new uninterned symbol. Uninterned symbols are guaranteed
to be distinct from the symbols generated by the procedures read and string-
>symbol. The symbol prefix is the prefix used to generate the new symbol’s name.
If it is not specified, the prefix defaults to ‘g’.

For example:

> (gensym)

#:90

> (gensym)

#:9l

> (gensym ’'star-trek-)

#:star-trek-2
(make-uninterned-symbol name [hash]) [procedure]
(uninterned-symbol? obj) [procedure]

The procedure make—uninterned-symbol returns a new uninterned symbol whose
name is name and hash is hash. The name must be a string and the hash must be a
nonnegative fixnum.

The procedure uninterned-symbol? returns #t when obj is a symbol that is
uninterned and #f otherwise.
For example:

> (uninterned-symbol? (gensym))

#t

> (make—uninterned-symbol "foo")

#:foo:

> (uninterned-symbol? (make—uninterned-symbol "foo"))

#t

> (uninterned-symbol? ’'hello)

#f

> (uninterned-symbol? 123)

#£
(make-uninterned-keyword name [hash]) [procedure]
(uninterned-keyword? obj) [procedure]

The procedure make-uninterned-keyword returns a new uninterned keyword
whose name is name and hash is hash. The name must be a string and the hash must
be a nonnegative fixnum.

The procedure uninterned-keyword? returns #t when obj is a keyword that is
uninterned and #f otherwise.

For example:
> (make—uninterned-keyword "foo")
#:foo:
> (uninterned-keyword? (make—uninterned-keyword "foo"))
#t
> (uninterned-keyword? hello:)
#£f
> (uninterned-keyword? 123)
#£f

(void) [procedure]
This procedure returns the void object. The read-eval-print loop prints nothing when
the result is the void object.

Chapter 6: Scheme extensions 42

(eval expr [env]) [procedure]
The first argument is a datum representing an expression. The eval procedure
evaluates this expression in the global interaction environment and returns the result.
If present, the second argument is ignored (it is provided for compatibility with R5RS).

For example:
> (eval " (+ 1 2))

3
> ((eval ’'car) ' (1 2))
1
> (eval ' (define x 5))
> x
5
(include file) [special form)]

The file argument must be a string naming an existing file containing Scheme source
code. The include special form splices the content of the specified source file. This
form can only appear where a define form is acceptable.

For example:

(include "macros.scm")

(define (f 1lst)
(include "sort.scm")
(map sgrt (sort 1lst)))

(define-macro (name define-formals) body) [special form)]
Define name as a macro special form which expands into body. This form can only
appear where a define form is acceptable. Macros are lexically scoped. The scope
of a local macro definition extends from the definition to the end of the body of the
surrounding binding construct. Macros defined at the top level of a Scheme module
are only visible in that module. To have access to the macro definitions contained in
a file, that file must be included using the include special form. Macros which are
visible from the REPL are also visible during the compilation of Scheme source files.

For example:

(define-macro (unless test . body)
‘(if ,test #f (begin ,@body)))

(define-macro (push var #!optional wval)
‘(set! ,var (cons ,val ,var)))

To examine the code into which a macro expands you can use the compiler’s
‘—expansion’ option or the pp procedure. For example:

> (define-macro (push var #!optional val)
‘(set! ,var (cons ,val ,var)))
> (pp (lambda () (push stack 1) (push stack) (push stack 3)))
(lambda ()
(set! stack (cons 1 stack))
(set! stack (cons #f stack))
(set! stack (cons 3 stack)))

(define-syntax name expander) [special form]
Define name as a macro special form whose expansion is specified by expander. This
form is available only after evaluating (load "~ ~/syntax-case"), which can be

Chapter 6: Scheme extensions 43

done at the REPL or in the initialization file. This file contains Hieb and Dyb-
vig’s portable syntax—-case implementation that has been ported to the Gambit
interpreter and compiler. Note that this implementation of syntax—case does not
correctly track source code location information, so the error messages will be much
less precise.

For example:

> (load "~ " /syntax—case")
"/usr/local/Gambit-C/4.0b22/syntax—case.scm"
> (define-syntax unless
(syntax-rules ()
((unless test body ...)
(if test #f (begin body ...)))))
> (let ((test 111)) (unless (= 1 2) (list test test)))

(111 111)
> (pp (lambda () (let ((test 111)) (unless (= 1 2) (list test test)))
(lambda () ((lambda (%%testl4d) (if (= 1 2) #f (list %%testld %$%testld
> (unless #f (pp xxx))
*** ERROR IN (console)@8.16 —- Unbound variable: xxx

(declare declaration. . .) [special form)]

This form introduces declarations to be used by the compiler (currently the inter-
preter ignores the declarations). This form can only appear where a define form
is acceptable. Declarations are lexically scoped in the same way as macros. The
following declarations are accepted by the compiler:

(dialect) Use the given dialect’s semantics. dialect can be:
‘ieee—scheme’, ‘rdrs—scheme’, ‘rSrs—scheme’ or
‘gambit-scheme’.

(strategy) Select block compilation or separate compilation. In block com-
pilation, the compiler assumes that global variables defined in the
current file that are not mutated in the file will never be mutated.
strategy can be: ‘block’ or ‘separate’.

([not] inline) Allow (or disallow) inlining of user procedures.

([not] inline-primitives primitive...)
The given primitives should (or should not) be inlined if possible
(all primitives if none specified).

(inlining-1limit n)
Select the degree to which the compiler inlines user procedures. n
is the upper-bound, in percent, on code expansion that will result
from inlining. Thus, a value of 300 indicates that the size of the
program will not grow by more than 300 percent (i.e. it will be
at most 4 times the size of the original). A value of 0 disables
inlining. The size of a program is the total number of subexpres-
sions it contains (i.e. the size of an expression is one plus the size
of its immediate subexpressions). The following conditions must
hold for a procedure to be inlined: inlining the procedure must
not cause the size of the call site to grow more than specified by
the inlining limit, the site of definition (the define or lambda)

))
))

)

111))

Chapter 6: Scheme extensions 44

and the call site must be declared as (inline), and the com-
piler must be able to find the definition of the procedure referred
to at the call site (if the procedure is bound to a global variable,
the definition site must have a (block) declaration). Note that
inlining usually causes much less code expansion than specified
by the inlining limit (an expansion around 10% is common for
n=350).

([not] lambda-1ift)
Lambda-lift (or don’t lambda-lift) locally defined procedures.

([not] constant-fold)
Allow (or disallow) constant-folding of primitive procedures.

([not] standard-bindings var. ..
The given global variables are known (or not known) to be equal
to the value defined for them in the dialect (all variables defined
in the standard if none specified).

([not] extended-bindings var...)
The given global variables are known (or not known) to be equal
to the value defined for them in the runtime system (all variables
defined in the runtime if none specified).

([not] run-time-bindings var...)
The given global variables will be tested at run time to see if they
are equal to the value defined for them in the runtime system (all
variables defined in the runtime if none specified).

([not] safe) Generate (or don’t generate) code that will prevent fatal errors at
run time. Note that in ‘safe’ mode certain semantic errors will
not be checked as long as they can’t crash the system. For example
the primitive char=? may disregard the type of its arguments in
‘safe’ as well as ‘not safe’ mode.

([not] interrupts—enabled)
Generate (or don’t generate) interrupt checks. Interrupt checks
are used to detect user interrupts and also to check for stack
overflows. Interrupt checking should not be turned off casually.

(number-type primitive...)
Numeric arguments and result of the specified primitives are
known to be of the given type (all primitives if none specified).
number-type can be: ‘generic’, ‘fixnum’, or ‘flonum’.

(mostly—number-type primitive...)
Numeric arguments and result of the specified primi-
tives are expected to be most often of the given type

(all primitives if none specified). mostly-number-type
can be: ‘mostly—-generic’, ‘mostly-fixnum’,
‘mostly-fixnum-flonum’, ‘mostly-flonum’, or

‘mostly-flonum-fixnum’.

Chapter 6: Scheme extensions

The default declarations used by the compiler are equivalent to:

(declare
(gambit-scheme)
(separate)

(inline)
(inline-primitives)
(inlining-1limit 350)
(constant—-fold)
(lambda—-1ift)

(not standard-bindings)

(not extended-bindings)

(run-time-bindings)

(

(

(

(

interrupts-enabled)
generic)
mostly—-fixnum-flonum)

)

45

These declarations are compatible with the semantics of R5RS Scheme and includes
a few procedures from R6RS (mainly fixnum specific and flonum specific procedures).
Typically used declarations that enhance performance, at the cost of violating the

R5RS Scheme semantics, are: (standard-bindings), (block),

and (fixnum).

6.4 Undocumented extensions

The procedures in this section are not yet documented.

(continuation-capture proc)
(continuation—-graft cont proc obj...)
(continuation-return cont obj...)

(display-exception exc [port])

(display-exception-in-context exc cont [port])

(display-procedure—environment proc [port])

(display-continuation-environment cont [port])

(display-continuation-dynamic-environment cont
[port])

(print [port: port] obj...)
(println [port: port]| obj...)

(make-thread—-group [name [thread-group]])
(thread-group? ob7j)

(thread—-group—name thread-group)
(thread—group-parent thread-group)
(thread—-group-resume! thread-group)
(thread—-group-suspend! thread-group)
(thread-group-terminate! thread-group)

(thread-suspend! thread)

(not safe)

[procedure]
[procedure]
[procedure]

[procedure]
[procedure]
[procedure]
[procedure]
[procedure]

[procedure]
[procedure]

[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]
[procedure]

[procedure]

Chapter 6: Scheme extensions 46

(thread-resume! thread) [procedure]
(thread-thread-group thread) [procedure]
(define-type-of-thread name field...) [special form)]
(thread-init! thread thunk [name [thread-group]|) [procedure]
(initialized-thread-exception? obj) [procedure]
(initialized-thread-exception-procedure exc) [procedure]
(initialized-thread-exception—-arguments exc) [procedure]
(uninitialized-thread-exception? obj7) [procedure]
(uninitialized-thread-exception-procedure exc) [procedure]
(uninitialized-thread-exception-arguments exc) [procedure]
(process—-pid process—-port) [procedure]
(process-status process-port [timeout [timeout-vall]) [procedure]
(unterminated-process—exception? ob7) [procedure]
(unterminated-process—-exception-procedure exc) [procedure]
(unterminated-process—-exception—-arguments exc) [procedure]
(timeout—->time timeout) [procedure]
(open—dummy) [procedure]
(port—-settings—set! port settings) [procedure]
(input—-port-bytes-buffered port) [procedure]
(input-port—-characters-buffered port) [procedure]
(nonempty-input-port-character-buffer—-exception? [procedure]
ob7j)
(nonempty-input-port-character-buffer-exception-argumprdeedure]
exc)
(nonempty-input-port-character-buffer-exception-procelgmeedure|
exc)
(repl-input-port) [procedure]
(repl-output-port) [procedure]
(console-port) [procedure]
(current-user—-interrupt-handler [handler]) [procedure]
(primordial-exception-handler exc) [procedure]
(err-code->string code) [procedure]
(foreign? obj) [procedure]
(foreign—-tags foreign) [procedure]
(foreign—-address foreign) [procedure]
(foreign-release! foreign) [procedure]
(foreign-released? foreign) [procedure]
(invalid-hash-number—-exception? ob7) [procedure]

Chapter 6: Scheme extensions

invalid-hash-number-exception-procedure exc)
invalid-hash—-number-exception—-arguments exc)

network—-info network)
network—-info? obj)
network—info—name network—-info)
network—info-net network-info)
network—-info—-aliases network—info)

protocol-info protocol)
protocol-info? obj)
protocol-info—-name protocol-info)
protocol-info-number protocol-info)
protocol-info-aliases protocol-info)

service-info service [protocoll)
service—-info? obj)
service—-info—name service—info)
service—-info-port service-info)
service-info-protocol service-info)
service-info-aliases service—-info)

tcp-client-peer-socket—-info tcp-client-port)
tcp-client-self-socket-info tcp-client-port)

socket—-info—-address socket—-info)
socket—-info-family socket-info)
socket-info-port—-number socket-info)

six.make-array ...)

system-version)
system-version-string)

system—type)
system-type-string)

system—stamp)
touch obj)

tty? ob7j)

tty-history tty)

tty-history-set! tty history)
tty-history-max—-length-set! tty n)
tty-paren-balance-duration-set! tty duration)
tty-text-attributes-set! tty attributes)
tty-mode-set! tty mode)

tty-type-set! tty type)

with-input-from-port port thunk)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(socket—-info? ob7)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(with-output-to-port port thunk)
(

input-port-char-position port)

47

Chapter 6: Scheme extensions 48

(output-port—-char-position port) [procedure]
(open—event—-queue n) [procedure]

(main ...) [procedure]

Chapter 7: Namespaces

7 Namespaces

TO DO!

49

Chapter 8: Characters and strings 50

8 Characters and strings

Gambit supports the Unicode character encoding standard. Scheme characters can be any
of the characters whose Unicode encoding is in the range 0 to #x10ffff (inclusive) but not in
the range #xd800 to #xdfff. Source code can also contain any Unicode character, however
to read such source code properly gsi and gsc must be told which character encoding to
use for reading the source code (i.e. ASCII, ISO-8859-1, UTF-8, etc). This can be done by
specifying the runtime option ‘—: £’ when gsi and gsc are started.

8.1 Extensions to character procedures

(char->integer char) [procedure]
(integer—->char n) [procedure]
The procedure char—>integer returns the Unicode encoding of the character char.
The procedure integer->char returns the character whose Unicode encoding is
the exact integer n.
For example:
> (char->integer #\!)

33

> (integer->char 65)

#\A

> (integer->char (char->integer #\ul234))

#\ul234

> (integer->char #xd800)

**% ERROR IN (console)@4.1 -- (Argument 1) Out of range

(integer->char 55296)

char=? charl...) procedure
char<? charl...) procedure
char>? charl...) procedure
char<=? charl...) procedure

(
(
(
(
(
(
(
(
(
(

char-ci=? charl...) procedure
char—-ci<? charl...) procedure
char—-ci>? charl...) procedure
char—-ci<=? charl...) procedure
char-ci>=? charl...) procedure

[]
[|
[]
[]
char>=? charl...) [procedure]
[]
[|
[]
[]
[]

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of characters 1st is sorted in nondecreasing order can be done
with the call (apply char<? 1st).

8.2 Extensions to string procedures

(string=? stringl...) [procedure]
(string<? stringl...) [procedure]
(string>? stringl...) [procedure]
(string<=? stringl...) [procedure]

Chapter 8: Characters and strings 51

string>=? stringl...) procedure
string-ci=? stringl...) procedure

([|
([]
(string—-ci<? stringl...) [procedure]
([]
([]
([]

string-ci>? stringl...) procedure
string-ci<=? stringl...) procedure
string-ci>=? stringl...) procedure

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of strings 1st is sorted in nondecreasing order can be done with
the call (apply string<? lst).

Chapter 9: Numbers 52

9 Numbers

9.1 Extensions to numeric procedures

(= z1...) [procedure]
(< x1...) [procedure]
(> x1...) [procedure]
(<= x1...) [procedure]
(>= x1...) [procedure]

These procedures take any number of arguments including no argument. This is
useful to test if the elements of a list are sorted in a particular order. For example,
testing that the list of numbers 1st is sorted in nondecreasing order can be done
with the call (apply < 1st).

9.2 IEEE floating point arithmetic

To better conform to IEEE floating point arithmetic the standard numeric tower is extended
with these special inexact reals:

+inf.0 positive infinity
-inf.0 negative infinity
+nan.0 “not a number”
-0. negative zero (‘0. is the positive zero)

The infinities and “not a number” are reals (i.e. (real? +inf.0) is #t) but are not
rational (i.e. (rational? +inf.0) is #f).

Both zeros are numerically equal (i.e. (= -0. 0.) is #t) but are not equivalent (i.e.
(eqv? -0. 0.) and (equal? -0. 0.) are #f). All numerical comparisons with “not a
number” | including (= +nan.0 +nan.0), are #f.

9.3 Integer square root and nth root

(integer—-sgrt n) [procedure]
This procedure returns the integer part of the square root of the nonnegative exact
integer n.

For example:

> (integer-sqrt 123)
11

(integer—-nth-root nl n2) [procedure]
This procedure returns the integer part of nl raised to the power 1/n2, where nl is
a nonnegative exact integer and n2 is a positive exact integer.
For example:

> (integer—-nth-root 100 3)
4

Chapter 9: Numbers 53

9.4 Bitwise-operations on exact integers

The procedures defined in this section are compatible with the withdrawn “Integer Bitwise-
operation Library SRFI” (SRFI 33). Note that some of the procedures specified in SRFI
33 are not provided.

Most procedures in this section are specified in terms of the binary representation of exact
integers. The two’s complement representation is assumed where an integer is composed
of an infinite number of bits. The upper section of an integer (the most significant bits)
are either an infinite sequence of ones when the integer is negative, or they are an infinite
sequence of zeros when the integer is nonnegative.

(arithmetic-shift nl n2) [procedure]
This procedure returns nl shifted to the left by n2 bits, that is (floor (* nl (expt
2 n2))). Both nl and n2 must be exact integers.

For example:
> (arithmetic-shift 1000 7) ; ni=...0000001111101000

128000
> (arithmetic-shift 1000 -6) ; ni=...0000001111101000
15
> (arithmetic-shift -23 -3) ; ni=..1111111111101001
-3
(bitwise-merge nl n2 n3) [procedure]

This procedure returns an exact integer whose bits combine the bits from n2 and n3
depending on nl. The bit at index i of the result depends only on the bits at index i
in nl, n2 and n3: it is equal to the bit in n2 when the bit in nl is 0 and it is equal
to the bit in n3 when the bit in nl is 1. All arguments must be exact integers.

For example:
> (bitwise-merge -4 -11 10) ;...11111100 ...11110101 ...00001010

9
> (bitwise-merge 12 -11 10) ; ...00001100 ...11110101 ...00001010
=7
(bitwise—-and n...) [procedure]
This procedure returns the bitwise “and” of the exact integers n. ... The value -1 is

returned when there are no arguments.

For example:

> (bitwise—and 6 12) ;...00000110 ...00001100
4
> (bitwise—and 6 -4) ;...00000110 ...11111100
4
> (bitwise-and -6 -4) ;...11111010 ...11111100
-8
> (bitwise-—and)
-1
(bitwise—-ior n...) [procedure]
This procedure returns the bitwise “inclusive-or” of the exact integers n.... The

value 0 is returned when there are no arguments.

For example:

Chapter 9: Numbers 54

> (bitwise-ior 6 12) ;...00000110 ...00001100
14
> (bitwise—ior 6 -4) ;...00000110 ...11111100
-2
> (bitwise—-ior -6 -4) ;...11111010...11111100
-2
> (bitwise-ior)
0
(bitwise-xor n...) [procedure]
This procedure returns the bitwise “exclusive-or” of the exact integers n.... The

value 0 is returned when there are no arguments.

For example:

> (bitwise-xor 6 12) ; ...00000110 ...00001100
io (bitwise-xor 6 —-4) ;...00000110 ...11111100
;6 (bitwise—-xor -6 —-4) ;..11111010...11111100
S (bitwise—-xor)

0

(bitwise-not n) [procedure]
This procedure returns the bitwise complement of the exact integer n.

For example:

> (bitwise-not 3) ;...00000011
-4
> (bitwise-not -1) ;...11111111
0
(bit-count n) [procedure]

This procedure returns the bit count of the exact integer n. If n is nonnegative, the
bit count is the number of 1 bits in the two’s complement representation of n. If n is
negative, the bit count is the number of 0 bits in the two’s complement representation
of n.

For example:

> (bit-count 0) 5 ...00000000
S (bit-count 1) ; ...00000001
i (bit-count 2) ;...00000010
i (bit—-count 3) ;...00000011
i (bit—-count 4) ;5 ...00000100
i (bit-count -23) ;...11101001
3
(integer—length n) [procedure]

This procedure returns the bit length of the exact integer n. If n is a positive integer
the bit length is one more than the index of the highest 1 bit (the least significant bit
is at index 0). If n is a negative integer the bit length is one more than the index of
the highest 0 bit. If n is zero, the bit length is 0.

Chapter 9: Numbers 55

For example:

> (integer-length 0) ;...00000000
S (integer-length 1) ; ...00000001
i (integer-length 2) ;5 ...00000010
i (integer-length 3) ;...00000011
i (integer-length 4) ;...00000100
i (integer-length -23) ;...11101001
5
(bit—-set? nl n2) [procedure]

This procedure returns a boolean indicating if the bit at index nl of n2 is set (i.e.
equal to 1) or not. Both nl and n2 must be exact integers, and nl must be nonneg-
ative.

For example:

> (map (lambda (i) (bit-set? i -23)) ;...11101001
(7 6 543 210))
(#t #t #t #f£ #t #£ #f #t)

(any-bits-set? nl n2) [procedure]
This procedure returns a boolean indicating if the bitwise and of n1 and n2 is different
from zero or not. This procedure is implemented more efficiently than the naive
definition:

(define (any-bits—-set? nl n2) (not (zero? (bitwise—-and nl n2))))

For example:

> (any-bits-set? 5 10) ;...00000101 ...00001010
#£
> (any-bits-set? -23 32) ;..11101001 ...00100000
#t
(all-bits-set? nl n2) [procedure]

This procedure returns a boolean indicating if the bitwise and of nl and n2 is equal to
nl or not. This procedure is implemented more efficiently than the naive definition:
(define (all-bits-set? nl n2) (= nl (bitwise—and nl n2)))

For example:
> (all-bits-set? 1 3) ;...00000001 ...00000011

#t
> (all-bits-set? 7 3) ;...00000111 ...00000011
#f
(first-bit-set n) [procedure]

This procedure returns the bit index of the least significant bit of n equal to 1 (which
is also the number of 0 bits that are below the least significant 1 bit). This procedure
returns -1 when n is zero.

For example:
> (first-bit-set 24) ;...00011000
3
> (first-bit-set 0) ;...00000000
-1

Chapter 9: Numbers 56
(extract-bit-field nl n2 n3) [procedure]
(test-bit-field? nl n2 n3) [procedure]
(clear-bit-field nl n2 n3) [procedure]
(replace-bit-field nl n2 n3 n4) [procedure]
(copy-bit—-field nl n2 n3 n4) [procedure]

These procedures operate on a bit-field which is nl bits wide starting at bit index n2.
All arguments must be exact integers and nl and n2 must be nonnegative.

The procedure extract-bit-field returns the bit-field of n3 shifted to the right
so that the least significant bit of the bit-field is the least significant bit of the result.

The procedure test-bit-field? returns #t if any bit in the bit-field of n3 is equal
to 1, otherwise #f is returned.

The procedure clear-bit—-field returns n3 with all bits in the bit-field replaced
with 0.

The procedure replace-bit-field returns n4 with the bit-field replaced with the
least-significant nl bits of n3.

The procedure copy-bit—-field returns n4 with the bit-field replaced with the
(same index and size) bit-field in n3.

For example:

> (extract-bit-field 5 2 -37) ;...11011011
iz(test—bit—field? 5 2 -37) ;... 11011011

ﬁt (test-bit-field? 1 2 -37) ;... 11011011
ﬁf(clear—bit—field 5 2 -37) ;... 11011011
;lz(f:eplace—bit—field 5 2 -6 =-37) ;..11111010 ...11011011
;Zl(copy—bit—field 52 -6 -37) ;...11111010 ...11011011
-5

9.5 Fixnum specific operations

(fixnum? ob7) [procedure]
(fx* nl...) [procedure]
(fx+ nl...) [procedure]
(fx— nln2...) [procedure]
(fx< nl...) [procedure]
(fx<= nl...) [procedure]
(fx= nl...) [procedure]
(fx> nl...) [procedure]
(fx>= nl...) [procedure]

[]

(fxand nl...)

procedure

Chapter 9: Numbers

(fxarithmetic—shift nl n2)
(fxarithmetic—-shift-left nl n2)
(fxarithmetic-shift-right nl n2)
(fxbit-count n)
(fxbit—-set? nl n2)
(fxeven? n)
(fxfirst-bit-set n)

(fxif nl n2 n3)

(fxior nl...)

(fxlength n)

(fxmax nl n2...)

(fxmin nl n2...)

(fxmodulo nl n2)
(fxnegative? n)

(fxnot n)

(fxodd? n)

(fxpositive? n)
(fxquotient nl n2)
(fxremainder nl n2)
(fxwrap* nl...)

(fxwrap+ nl...)

(fxwrap— nl nZ2...)

(fxwraparithmetic-shift nl n2)

(fxwraparithmetic-shift-left nl n2)

(fxwraplogical-shift-right nlI n2)
(fxwrapquotient nl n2)

(fxxor nl...)

(fxzero? n)

(fixnum-overflow—exception? obj)

(fixnum-overflow—-exception—-procedure exc)
(fixnum-overflow—-exception—-arguments exc)

o7

procedure
procedure
procedure

procedure

procedure
procedure
procedure
procedure
procedure
procedure

procedure

procedure

procedure
procedure
procedure

procedure

procedure
procedure

procedure

procedure
procedure
procedure

procedure

[]
[|
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[procedure]
[procedure]
[]
[]
[|
[]
[]
[]
[]
[]
[]
[]
[]
[]
[|
[|

]

[procedure

Fixnum-overflow-exception objects are raised by some of the fixnum specific proce-
dures when the result is larger than can fit in a fixnum. The parameter exc must be

a fixnum-overflow-exception object.

Chapter 9: Numbers 58

The procedure fixnum-overflow-exception? returns #t when obj is a fixnum-
overflow-exception object and #f otherwise.

The procedure fixnum-overflow-exception-procedure returns the proce-
dure that raised exc.

The procedure fixnum-overflow—exception-arguments returns the list of ar-
guments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (fixnum-overflow-exception? exc)
(list (fixnum-overflow-exception-procedure exc)
(fixnum-overflow—-exception—arguments exc))
"not-fixnum-overflow—exception))
> (with—exception-catcher
handler
(lambda () (f£x* 100000 100000)))
(#<procedure #2 fx*> (100000 100000))

9.6 Flonum specific operations

(flonum? obj) [procedure]
(fixnum->flonum n) [procedure]
(f1* x1...) [procedure]
(f1+ x1...) [procedure]
(fl1- x1 x2...) [procedure]
(f1/ x1 x2) [procedure]
(f1< x1...) [procedure]
(fl<= x1...) [procedure]
(fl= x1...) [procedure]
(f1> x1...) [procedure]
(fl>= x1...) [procedure]
(flabs x) [procedure]
(flacos x) [procedure]
(flasin x) [procedure]

(flatan x) [procedure]

Chapter 9: Numbers

(flatan y x)
(flceiling x)
(flcos x)
(fldenominator x)
(fleven? x)
(flexp x)
(flexpt x y)
(flfinite? x)
(flfloor x)
(flinfinite? x)
(flinteger? x)
(fllog x)
(flmax x1 x2...)
(flmin x1I x2...)
(flnan? x)
(flnegative? x)
(flnumerator x)
(flodd? x)
(flpositive? x)
(flround x)
(flsin x)
(flsgrt x)
(fltan x)
(fltruncate x)

(

flzero? x)

9.7 Pseudo random numbers

99

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[procedure]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

procedure

The procedures and variables defined in this section are compatible with the “Sources

of Random Bits SRFI” (SRFI 27).

The implementation is based on Pierre L’Ecuyer’s

MRG32k3a pseudo random number generator. At the heart of SRFI 27’s interface is the
random source type which encapsulates the state of a pseudo random number generator.
The state of a random source object changes every time a pseudo random number is gen-

erated from this random source object.

default-random—-source

[variable]

The global variable default-random-source is bound to the random source ob-
ject which is used by the random-integer and random—-real procedures.

Chapter 9: Numbers 60

(random—-integer n) [procedure]
This procedure returns a pseudo random exact integer in the range 0 to n-1. The
random source object in the global variable default-random-source is used to
generate this number. The parameter n must be a positive exact integer.

For example:

> (random—-integer 100)

24

> (random—-integer 100)

2

> (random—-integer 100)
6143360270902284438072426748425263488507

(random-real) [procedure]
This procedure returns a pseudo random inexact real between, but not including, 0
and 1. The random source object in the global variable default-random-source
is used to generate this number.

For example:

> (random-real)
.24230672079133753
> (random-real)
.02317001922506932

(make—-random-source) [procedure]
This procedure returns a new random source object initialized to a predetermined
state (to initialize to a pseudo random state the procedure random-source-
randomize! should be called).

For example:

> (define rs (make—-random-source))
> ((random-source-make-integers rs) 10000000)
8583952

(random-source? obj) [procedure]
This procedure returns #t when obj is a random source object and #f otherwise.

For example:
> (random-source? default-random-source)

#t

> (random—-source? 123)

#£
(random-source—-state-ref random-source) [procedure]
(random-source-state-set! random-source state) [procedure]

The procedure random-source-state-ref extracts the state of the random
source object random-source and returns a vector containing the state.

The procedure random—-source-state-set! restores the state of the random
source object random-source to state which must be a vector returned from a call to
the procedure random-source—-state-ref.

For example:

> (define s (random-source-state-ref default-random-source))
> (random-integer 100)
7583880188903074396261960585615270693321

Chapter 9: Numbers 61

> (random-source-state-set! default-random-source s)
> (random-integer 100)
7583880188903074396261960585615270693321

(random-source—-randomize! random-source) [procedure]

(random-source-pseudo-randomize! random-source 1 j) [procedure]
These procedures change the state of the random source object random-source. The
procedure random-source-randomize! sets the random source object to a state
that depends on the current time (which for typical uses can be considered to ran-
domly initialize the state). The procedure random-source-pseudo-randomize!!
sets the random source object to a state that is determined only by the current state
and the nonnegative exact integers i and j. For both procedures the value returned
is unspecified.

For example:

> (define s (random-source-state-ref default-random-source))

> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767

> (random-source-state-set! default-random-source s)

> (random-source-pseudo-randomize! default-random—-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767

> (random-source-pseudo-randomize! default-random-source 5 99)
> (random-integer 100)
9816755163910623041601722050112674079767

> (random-source-state-set! default-random-source s)

> (random—-source-randomize! default-random-source)

> (random-integer 100)
2271441220851914333384493143687768110622

> (random-source-state-set! default-random-source s)

> (random-source-randomize! default-random-source)

> (random-integer 100)
6247966138948323029033944059178072366895

(random-source-make—-integers random-source) [procedure]
This procedure returns a procedure for generating pseudo random exact integers using
the random source object random-source. The returned procedure accepts a single
parameter n, a positive exact integer, and returns a pseudo random exact integer in
the range 0 to n-1.

For example:

> (define rs (make-—-random-source))

> (define ri (random-source-make-integers rs))
> (ri 10000000)

8583952

> (ri 10000000)

2879793

(random—-source—make—-reals random—-source) [procedure]
This procedure returns a procedure for generating pseudo random inexact reals using
the random source object random-source. The returned procedure accepts no param-
eters and returns a pseudo random inexact real between, but not including, 0 and
1.

For example:

Chapter 9: Numbers

> (define rs (make—-random-source))

> (define rr (random—-source-make-reals rs))
> (rr)

.857402537562821

> (rr)

.2876463473845367

62

Chapter 10: Homogeneous vectors 63

10 Homogeneous vectors

Homogeneous vectors are vectors containing raw numbers of the same type (signed or
unsigned exact integers or inexact reals). There are 10 types of homogeneous vectors:
‘s8vector’ (vector of exact integers in the range -2°7 to 277-1), ‘u8vector’ (vector
of exact integers in the range 0 to 2°8-1), ‘sl6vector’ (vector of exact integers in the
range -2°15 to 2715-1), ‘ul6vector’ (vector of exact integers in the range 0 to 2°16-1),
‘s32vector’ (vector of exact integers in the range -2°31 to 2°31-1), ‘u32vector’ (vector
of exact integers in the range 0 to 2°32-1), ‘s64vector’ (vector of exact integers in the
range -2763 to 2763-1), ‘u64dvector’ (vector of exact integers in the range 0 to 2764-1),
‘f32vector’ (vector of 32 bit floating point numbers), and ‘£64vector’ (vector of 64 bit
floating point numbers).

The lexical syntax of homogeneous vectors is specified in Section 18.9 [Homogeneous
vector syntax|, page 166.

The procedures available for homogeneous vectors, listed below, are the analog of the
normal vector/string procedures for each of the homogeneous vector types.

s8vector? obj) procedure
make-s8vector k [fill]) procedure
s8vector exact—-int8...) procedure
s8vector—-length s8vector) procedure
s8vector-ref s8vector k) procedure
s8vector-set! s8vector k exact-int8) procedure
s8vector->1list s8vector) procedure
list—>s8vector list—-of—-exact—-int8) procedure
s8vector-fill! s8vector fill) procedure
s8vector-copy s8vector) procedure
s8vector—append s8vector...) procedure
subs8vector s8vector start end) procedure
u8vector? obj) procedure
make-u8vector k [fill]) procedure

u8vector-length u8vector) procedure
u8vector-ref uSvector k) procedure
u8vector-set! u8vector k exact—-int8) procedure
u8vector—->1list u8vector) procedure
list->u8vector list-of-exact-int$8) procedure
u8vector—-fill! u8vector fill) procedure
u8vector-copy u8vector) procedure
u8vector—-append u8vector...) procedure
subu8vector uSvector start end) procedure
slévector? obj) procedure
make-slb6vector k [fill]) procedure
slévector exact—-intlé6...) procedure
slévector—-length slIévector) procedure

([]
([|
([|
([]
([]
([]
([]
([]
([]
([]
([]
([]
([]
([]
(u8vector exact-int$...) [procedure]
([]
([]
([]
([]
([|
([]
([]
([]
([]
([]
([]
([|
([]
([]

slovector—-ref slévector k)

Chapter 10: Homogeneous vectors

(slovector—-set! slévector k exact—intl6)
(slovector—->1ist slévector)
(list—->slo6vector list-of-exact-intlé6)
(slovector—-fill! slévector fill)
(slévector—-copy slévector)
(slévector—append slévector...)
(subsl6vector slévector start end)

(ulbvector? ob7)

(make-ul6vector k [fill])

(ulbvector exact—-intl6...)
(ulévector-length ulévector)
(ulévector—-ref ulévector k)
(ulbvector—-set! ulévector k exact—-intl6)
(ulovector—->1list ulévector)
(list->ul6vector list-of-exact-intlé6)
(ulévector—-£fill! ulévector fill)
(ulévector—-copy ulévector)
(ulbvector—append ulébvector...)
(subul6bvector ulévector start end)

(s32vector? obj)

(make-s32vector k [fill])

(s32vector exact—-int32...)
(s32vector—-length s32vector)
(s32vector-ref s32vector k)
(s32vector—-set! s32vector k exact—-int32)
(s32vector—->1list s32vector)
(list—->s32vector list—-of-exact—-int32)
(s32vector—-fill! s32vector £fill)
(s32vector-copy s32vector)
(s32vector—append s32vector...)
(subs32vector s32vector start end)
(u32vector? obj)

(make-u32vector k [fill])

(u32vector exact—-int32...)
(u32vector-length u32vector)
(u32vector-ref u32vector k)
(u32vector—-set! u32vector k exact—-int32)
(u32vector—->1list u32vector)
(list->u32vector list-of-exact-int32)
(u32vector—-£fill! u32vector fill)
(u32vector-copy u3Zvector)
(u32vector—append u32Zvector...)
(subu32vector u32vector start end)

(s64vector? obj)
(make-s64vector k [fill])

64

Chapter 10: Homogeneous vectors

(s6dvector exact—-inté4...)
(s64vector-length sé64vector)
(s6dvector-ref sé64vector k)
(s6dvector—-set! sé64vector k exact—-inté64)
(s6dvector—->1ist sé64vector)
(list—->so64dvector list-of-exact—-int64)
(s6dvector—-£fill! sé64vector fill)
(sbdvector—-copy sé64vector)
(sbdvector—append s64vector...)
(subsb6dvector s64dvector start end)
(u6d4vector? ob7)

(make-u64dvector k [fill])

(ubdvector exact—-inté4...)
(ubdvector—-length ué64vector)
(ubdvector-ref ub4dvector k)
(ucdvector—-set! uéb64vector k exact—-inté64)
(u6dvector—->1list ué4vector)
(list->u6bdvector list-of-exact-inté4)
(ucdvector—-£fill! u64vector £ill)
(ubdvector—-copy ub4vector)
(u6d4vector—append ub64dvector...)
(sububdvector uéb4vector start end)
(f32vector? obj)

(make-f32vector k [fill])

(f32vector inexact-real...)
(f32vector-length f32vector)
(f32vector—-ref f32vector k)
(f32vector-set! f32vector k inexact-real)
(f32vector—->1ist f32vector)
(list—->f32vector list—-of-inexact—-real)
(f32vector—-fill! f32vector fill)
(f32vector-copy f32vector)
(f32vector—append f32vector...)
(subf32vector f32vector start end)

(f6dvector? obj)

(make-f64vector k [fill])

(f6dvector inexact-real...)
(f6dvector—-length fé64vector)
(fe6dvector—-ref fé64dvector k)
(fodvector—-set! fé64vector k inexact—-real)
(f6dvector->1list fé64vector)
(list->f64dvector list-of-inexact-real)
(f6dvector—-£fill! fé64vector fill)
(f64vector-copy f64vector)
(f6dvector—append fé64vector...)

65

Chapter 10: Homogeneous vectors 66

(subf6dvector fé4vector start end) [procedure]
For example:
> (define v (u8vector 10 255 13))
> (u8vector-set! v 2 99)
> v
#u8 (10 255 99)
> (u8vector-ref v 1)

255

> (u8vector->list wv)

(10 255 99)
(object->u8vector obj[encoder]) [procedure]
(u8vector->object u8vector [decoder]) [procedure]

The procedure object->u8vector returns a u8vector that contains the sequence
of bytes that encodes the object obj. The procedure u8vector—>object decodes
the sequence of bytes contained in the u8vector u8vector, which was produced by the
procedure object—->u8vector, and reconstructs an object structurally equal to the
original object. In other words the procedures object->u8vector and u8vector—-
>object respectively perform serialization and deserialization of Scheme objects.
Note that some objects are non-serializable (e.g. threads, wills, some types of ports,
and any object containing a non-serializable object).

The optional encoder and decoder parameters are single parameter procedures which
default to the identity function. The encoder procedure is called during serialization.
As the serializer walks through obj, it calls the encoder procedure on each sub-
object X that is encountered. The encoder transforms the object X into an object Y
that will be serialized instead of X. Similarly the decoder procedure is called during
deserialization. When an object Y is encountered, the decoder procedure is called to
transform it into the object X that is the result of deserialization.

The encoder and decoder procedures are useful to customize the serialized represen-
tation of objects. In particular, it can be used to define the semantics of serializing
objects, such as threads and ports, that would otherwise not be serializable. The
decoder procedure is typically the inverse of the encoder procedure, i.e. (decoder
(encoder X)) = X.

For example:
> (define (make-adder x) (lambda (y) (+ x y)))
> (define £ (make-—adder 10))
> (define a (object->u8vector f))
> (define b (u8vector->object a))

> (u8vector-length a)
1639

> (£ 5)

15

> (b 5)

15

> (pp b)

(lambda (y) (+ x vy))

Chapter 11: Hashing and weak references 67

11 Hashing and weak references

11.1 Hashing

(object—->serial-number obj) [procedure]

(serial-number->object n [default]) [procedure]
All Scheme objects are uniquely identified with a serial number which is a nonneg-
ative exact integer. The object->serial-number procedure returns the serial
number of object obj. This serial number is only allocated the first time the cbject -
>serial-number procedure is called on that object. Objects which do not have
an external textual representation that can be read by the read procedure, use
an external textual representation that includes a serial number of the form #n.
Consequently, the procedures write, pretty—-print, etc will call the object-
>serial-number procedure to get the serial number, and this may cause the serial
number to be allocated.

The serial-number->object procedure takes an exact integer argument n and
returns the object whose serial number is n. If no object currently exists with that se-
rial number, default is returned if it is specified, otherwise an unbound-serial-number-
exception object is raised. The reader defines the following abbreviation for calling
serial-number—->object: the syntax #n, where n is a sequence of decimal digits
and it is not followed by ‘=’ or ‘#’, is equivalent to the list (serial-number-
>object n).

For example:

> (define z (list (lambda (x) (* x x)) (lambda (y) (/ 1 y))))

>z

(#<procedure #2> #<procedure #3>)

> (#3 10)

1/10

> 7 (#3 10)

((serial—-number->object 3) 10)

> car

#<procedure #4 car>

> (#4 z)

#<procedure #2>
(unbound-serial-number—-exception? ob7) [procedure]
(unbound-serial-number—-exception-procedure exc) [procedure]
(unbound-serial-number-exception-arguments exc) [procedure]

Unbound-serial-number-exception objects are raised by the procedure serial-
number—>object when no object currently exists with that serial number. The
parameter exc must be an unbound-serial-number-exception object.

The procedure unbound-serial-number—exception? returns #t when obj is a
unbound-serial-number-exception object and #f otherwise.

The procedure unbound-serial-number-exception-procedure returns the
procedure that raised exc.

The procedure unbound-serial-number-exception—arguments returns the
list of arguments of the procedure that raised exc.

For example:

Chapter 11: Hashing and weak references 68

> (define (handler exc)
(if (unbound-serial—-number-exception? exc)
(1list (unbound-serial—-number—-exception-procedure exc)
(unbound-serial—-number—-exception-arguments exc))
"not—unbound-serial—-number—-exception))
> (with—-exception-catcher
handler
(lambda () (serial—-number->object 1000)))
(#<procedure #2 serial-number->object> (1000))

(symbol-hash symbol) [procedure]
The symbol-hash procedure returns the hash number of the symbol symbol. The
hash number is a small exact integer (fixnum). When symbol is an interned symbol the
value returned is the same as (string=?-hash (symbol->string symbol)).

For example:
> (symbol-hash ’car)
444471047

(keyword-hash keyword) [procedure]
The keyword-hash procedure returns the hash number of the keyword keyword.
The hash number is a small exact integer (fixnum). When keyword is an interned
keyword the value returned is the same as (string=?-hash (keyword->string
keyword)).
For example:

> (keyword-hash car:)
444471047

(string=?-hash string) [procedure]
The string=?-hash procedure returns the hash number of the string string. The
hash number is a small exact integer (fixnum). For any two strings sl and s2,
(string=? sl s2) implies (= (string=?-hash s1) (string=?-hash s2)).
For example:

> (string=?-hash "car")
444471047

(string-ci=?-hash string) [procedure]
The string-ci=?-hash procedure returns the hash number of the string string.
The hash number is a small exact integer (fixnum). For any two strings sI and s2,
(string-ci=? s1 s2) implies (= (string-ci=?-hash sl) (string-ci=2?-
hash s2)).
For example:

> (string-ci=?-hash "CaR")
444471047

(eg?-hash ob7) [procedure]
The eg?-hash procedure returns the hash number of the object obj. The hash
number is a small exact integer (fixnum). For any two objects ol and 02, (eg? ol
02) implies (= (eg?-hash ol) (eg?-hash 02)).

For example:
> (eg?-hash #{#t)
536870910

Chapter 11: Hashing and weak references 69

(eqv?-hash obj) [procedure]
The eqv?-hash procedure returns the hash number of the object obj. The hash
number is a small exact integer (fixnum). For any two objects ol and 02, (eqv? ol
02) implies (= (egv?-hash ol) (eqv?-hash 02)).

For example:

> (eqv?-hash 1.5)
496387656

(equal?-hash obj) [procedure]
The equal?-hash procedure returns the hash number of the object obj. The hash
number is a small exact integer (fixnum). For any two objects ol and 02, (equal?
ol 02) implies (= (equal?-hash ol) (equal?-hash 02)).

For example:

> (equal?-hash (list 1 2 3))
442438567

11.2 Weak references

The garbage collector is responsible for reclaiming objects that are no longer needed by
the program. This is done by analyzing the reachability graph of all objects from the
roots (i.e. the global variables, the runnable threads, permanently allocated objects such
as procedures defined in a compiled file, nonexecutable wills, etc). If a root or a reachable
object X contains a reference to an object Y then Y is reachable. As a general rule,
unreachable objects are reclaimed by the garbage collector.

There are two types of references: strong references and weak references. Most objects,
including pairs, vectors, records and closures, contain strong references. An object X is
strongly reachable if there is a path from the roots to X that traverses only strong references.
Weak references only occur in wills and tables. There are two types of weak references: will-
weak references and table-weak references. If all paths from the roots to an object Y traverse
at least one table-weak reference, then Y will be reclaimed by the garbage collector. The
will-weak references are used for finalization and are explained in the next section.

11.2.1 Wills

The following procedures implement the will data type. Will objects provide support for
finalization. A will is an object that contains a will-weak reference to a testator object (the
object attached to the will), and a strong reference to an action procedure which is a one
parameter procedure which is called when the will is executed.

make-will testator action) [procedure]

will? ob7) [procedure]

will-testator will) [procedure]

will-execute! will) [procedure]
The make-will procedure creates a will object with the given testator object and
action procedure. The will? procedure tests if obj is a will object. The will-
testator procedure gets the testator object attached to the willl The will-
execute! procedure executes will.

(
(
(
(

A will becomes executable when its testator object is not strongly reachable (i.e. the
testator object is either unreachable or only reachable using paths from the roots that

Chapter 11: Hashing and weak references 70

traverse at least one weak reference). Some objects, including symbols, small exact
integers (fixnums), booleans and characters, are considered to be always strongly
reachable.

When the runtime system detects that a will has become executable the current com-
putation is interrupted, the will’s testator is set to #f and the will’s action procedure
is called with the will’s testator as the sole argument. Currently only the garbage col-
lector detects when wills become executable but this may change in future versions of
Gambit (for example the compiler could perform an analysis to infer will executability
at compile time). The garbage collector builds a list of all executable wills. Shortly
after a garbage collection, the action procedures of these wills will be called. The link
from the will to the action procedure is severed when the action procedure is called.

Note that the testator object will not be reclaimed during the garbage collection that
determined executability of the will. It is only when an object is not reachable from
the roots that it is reclaimed by the garbage collector.

A remarkable feature of wills is that an action procedure can “resurrect” an object.
An action procedure could for example assign the testator object to a global variable
or create a new will with the same testator object.

For example:

> (define a (list 123))

(set-cdr! a a) ; create a circular list

(define b (vector a))

(define c #£f)

(define w

(let ((obj a))
(make-will obj
(lambda (x) ; x will be eq? to obj

(display "executing action procedure")
(newline)
(set! ¢ x)))))

vV V V V

> (will? w)

#t

> (car (will-testator w))
123

(##gc)

(set! a #f£)

(##gc)

(set! b #f£)

(##gc)

executing action procedure
> (will-testator w)

#£

> (car c)

123

11.2.2 Tables

The following procedures implement the table data type. Tables are heterogenous structures
whose elements are indexed by keys which are arbitrary objects. Tables are similar to
association lists but are abstract and the access time for large tables is typically smaller.
Each key contained in the table is bound to a value. The length of the table is the number
of key/value bindings it contains. New key/value bindings can be added to a table, the
value bound to a key can be changed, and existing key/value bindings can be removed.

vV V V V

\

Chapter 11: Hashing and weak references 71

The references to the keys can either be all strong or all table-weak and the references
to the values can either be all strong or all table-weak. The garbage collector removes
key/value bindings from a table when 1) the key is a table-weak reference and the key is
unreachable or only reachable using paths from the roots that traverse at least one table-
weak reference, or 2) the value is a table-weak reference and the value is unreachable or
only reachable using paths from the roots that traverse at least one table-weak reference.
Key/value bindings that are removed by the garbage collector are reclaimed immediately.

Although there are several possible ways of implementing tables, the current implemen-
tation uses hashing with open-addressing. This is space efficient and provides constant-time
access. Hash tables are automatically resized to maintain the load within specified bounds.
The load is the number of active entries (the length of the table) divided by the total number
of entries in the hash table.

Tables are parameterized with a key comparison procedure. By default the equal?
procedure is used, but eq?, eqv?, string=?, string—ci=?, or a user defined procedure
can also be used. To support arbitrary key comparison procedures, tables are also param-
eterized with a hashing procedure accepting a key as its single parameter and returning a
fixnum result. The hashing procedure hash must be consistent with the key comparison
procedure test, that is, for any two keys k1 and k2 in the table, (test k1 k2) implies (=
(hash k1) (hash k2)). A default hashing procedure consistent with the key comparison
procedure is provided by the system. The default hashing procedure generally gives good
performance when the key comparison procedure is eq?, eqv?, equal?, string=2?, and
string—ci=?. However, for user defined key comparison procedures, the default hashing
procedure always returns 0. This degrades the performance of the table to a linear search.

Tables can be compared for equality using the equal? procedure. Two tables X and Y
are considered equal by equal? when they have the same weakness attributes, the same
key comparison procedure, the same hashing procedure, the same length, and for all the
keys k in X, (equal? (table-ref X k) (table-ref Y k)).

(make-table [size: size| [init: init] [weak-keys: [procedure]
weak—-keys| [weak-values: weak—-values| [test: test] [hash:
hash|] [min-load: min-Iload] [max-load: max-load])

The procedure make—table returns a new table. The optional keyword parameters
specify various parameters of the table.

The size parameter is a nonnegative exact integer indicating the expected length of
the table. The system uses size to choose an appropriate initial size of the hash table
so that it does not need to be resized too often.

The init parameter indicates a value that is associated to keys that are not in the
table. When init is not specified, no value is associated to keys that are not in the
table.

The weak-keys and weak-values parameters are extended booleans indicating respec-
tively whether the keys and values are table-weak references (true) or strong references
(false). By default the keys and values are strong references.

The test parameter indicates the key comparison procedure. The default key com-
parison procedure is equal?. The key comparison procedures eqg?, eqv?, equal?,
string=7?, and string—-ci="? are special because the system will use a reasonably
good hash procedure when none is specified.

Chapter 11: Hashing and weak references 72

The hash parameter indicates the hash procedure. This procedure must accept a
single key parameter, return a fixnum, and be consistent with the key comparison
procedure. When hash is not specified, a default hash procedure is used. The default
hash procedure is reasonably good when the key comparison procedure is eq?, eqv?,
equal?, string=?, or string—-ci=".

The min-load and max-load parameters are real numbers that indicate the minimum
and maximum load of the table respectively. The table is resized when adding or
deleting a key/value binding would bring the table’s load outside of this range. The
min-load parameter must be no less than 0.05 and the max-load parameter must
be no greater than 0.95. Moreover the difference between min-load and max-load
must be at least 0.20. When min-load is not specified, the value 0.45 is used. When
max-load is not specified, the value 0.90 is used.

For example:

> (define t (make-table))
> (table? t)

#t

> (table-length t)

(table-set! t (list 1 2) 3)
(table-set! t (l1list 4 5) 6)
(table-ref t (list 1 2))

(table-length t)

NV WV VvV VO

(table? obj) [procedure]
The procedure table? returns #t when obj is a table and #f otherwise.

For example:

> (table? (make-table))
#t

> (table? 123)

#£

(table-length table) [procedure]
The procedure table-length returns the number of key/value bindings contained
in the table table.

For example:

(define t (make-table weak-keys: #t))
(define x (list 1 2))

(define y (list 3 4))

(table-set! t x 111)

(table-set! t y 222)

(table-length t)

\

(table-set! t x)
(table-length t)

(##gc)
(table-length t)

(set! y #f£)
(##gc)

VVEVVEVVNVVYVVYV

Chapter 11: Hashing and weak references 73

> (table-length t)
0

(table-ref table key [default]) [procedure]
The procedure table-ref returns the value bound to the object key in the table
table. When key is not bound and default is specified, default is returned. When
default is not specified but an init parameter was specified when table was created,
init is returned. Otherwise an unbound-table-key-exception object is raised.

For example:

> (define tl (make-table init: 999))
> (table-set! tl1 (list 1 2) 3)

> (table-ref tl1 (list 1 2))

3

> (table-ref tl1 (list 4 5))

999

> (table-ref tl (list 4 5) #f)

#f

> (define t2 (make-table))

> (table-ref t2 (list 4 5))

**% ERROR IN (console)@7.1 -- Unbound table key
(table—ref ’#<table #2> 7 (4 5))

(table—-set! table key [value]) [procedure]
The procedure table-set! binds the object key to value in the table table. When
value is not specified, if table contains a binding for key then the binding is removed
from table. The procedure table—set ! returns an unspecified value.

For example:

> (define t (make-table))
(table-set! t (list 1 2) 3)
(table-set! t (list 4 5) 6)
(table-set! t (list 4 5))
(table-set! t (list 7 8))
(table-ref t (list 1 2))

vV WV V V VYV

(table-ref t (list 4 5))
*** ERROR IN (console)@7.1 —-- Unbound table key
(table-ref "#<table #2> 7 (4 5))

(table-search proc table) [procedure]
The procedure table—search searches the table table for a key/value binding for
which the two argument procedure proc returns a non false result. For each key/value
binding visited by table-search the procedure proc is called with the key as the
first argument and the value as the second argument. The procedure table—-search
returns the first non false value returned by proc, or #f if proc returned #f for all
key /value bindings in table.

The order in which the key/value bindings are visited is unspecified and may vary
from one call of table-search to the next. While a call to table-search is
being performed on table, it is an error to call any of the following procedures on
table: table-ref, table-set!, table-search, table-for-each, table-
copy, table-merge, table-merge!, and table->1ist. It is also an error to
compare with equal? (directly or indirectly with member, assoc, table-ref, etc.)

Chapter 11: Hashing and weak references 74

an object that contains table. All these procedures may cause table to be reordered
and resized. This restriction allows a more efficient iteration over the key/value
bindings.

For example:

Vv

(define square (make-table))

> (table-set! square 2 4)

> (table-set! square 3 9)

> (table-search (lambda (k v) (and (odd? k) v)) square)
9

(table-for—-each proc table) [procedure]
The procedure table-for-each calls the two argument procedure proc for each
key /value binding in the table table. The procedure proc is called with the key as the
first argument and the value as the second argument. The procedure table-for—
each returns an unspecified value.

The order in which the key/value bindings are visited is unspecified and may vary
from one call of table-for-each to the next. While a call to table-for—each is
being performed on table, it is an error to call any of the following procedures on ta-
ble: table-ref, table—-set!, table-search, table-for—each, and table-
>list. It is also an error to compare with equal? (directly or indirectly with
member, assoc, table-ref, etc.) an object that contains table. All these proce-
dures may cause table to be reordered and resized. This restriction allows a more
efficient iteration over the key/value bindings.

For example:
> (define square (make-table))

> (table-set! square 2 4)
> (table-set! square 3 9)
> (table—-for—-each (lambda (k v) (write (list k v)) (newline)) square)
(2 4)
(3 9)
(table->1ist table) [procedure]

The procedure table->1ist returns an association list containing the key/value
bindings in the table table. Each key/value binding yields a pair whose car field is
the key and whose cdr field is the value bound to that key. The order of the bindings
in the list is unspecified.

For example:

> (define square (make-table))
> (table—-set! square 2 4)

> (table-set! square 3 9)

> (table->list square)

((3 . 9) (2 . 4))

(list->table list [size: size][init: init|[weak-keys: [procedure]
weak—keys| [weak—-values: weak—values| [test: test] [hash:
hash] [min-load: min—-load| [max—-load: max-load])

The procedure 1ist->table returns a new table containing the key/value bindings
in the association list list. The optional keyword parameters specify various parame-
ters of the table and have the same meaning as for the make-table procedure.

Chapter 11: Hashing and weak references 75

Each element of list is a pair whose car field is a key and whose cdr field is the value
bound to that key. If a key appears more than once in list (tested using the table’s
key comparison procedure) it is the first key/value binding in list that has precedence.

For example:
> (define t (list->table "((b . 2) (a . 1) (¢ . 3) (a . 4))))
> (table->list t)
((a . 1) (b . 2) (c . 3))

(unbound-table-key—-exception? obj) [procedure]
(unbound-table-key—-exception-procedure exc) [procedure]
(unbound-table-key-exception—-arguments exc) [procedure]

Unbound-table-key-exception objects are raised by the procedure table—-ref when
the key does not have a binding in the table. The parameter exc must be an unbound-
table-key-exception object.

The procedure unbound-table-key-exception? returns #t when obj is a
unbound-table-key-exception object and #f otherwise.

The procedure unbound-table-key—-exception-procedure returns the proce-
dure that raised exc.

The procedure unbound-table-key—-exception—arguments returns the list of
arguments of the procedure that raised exc.

For example:

> (define t (make-table))
> (define (handler exc)
(if (unbound-table-key-exception? exc)
(list (unbound-table-key-exception-procedure exc)
(unbound-table-key—-exception—arguments exc))
"not-unbound-table-key-exception))
> (with—exception-catcher
handler
(lambda () (table-ref t ' (1 2))))
(#<procedure #2 table-ref> (#<table #3> (1 2)))

(table—-copy table) [procedure]
The procedure table—-copy returns a new table containing the same key /value bind-
ings as table and the same table parameters (i.e. hash procedure, key comparison
procedure, key and value weakness, etc).

For example:

> (define t (list->table '((b . 2) (a . 1) (¢ . 3))))
> (define x (table-copy t))

> (table-set! t 'b 99)

> (table->1list t)

((a . 1) (b . 99) (c . 3))

> (table->1list x)

((a . 1) (b . 2) (c . 3))

(table-merge! tablel table2 [procedure]
[table2-takes-precedence?])

The procedure table-merge! returns tablel after the key/value bindings contained

in table2 have been added to it. When a key exists both in tablel and table2, then

the parameter table2-takes-precedence? indicates which binding will be kept (the one

Chapter 11: Hashing and weak references 76

in tablel if table2-takes-precedence? is false, and the one in table2 otherwise). If
table2-takes-precedence? is not specified the binding in tablel is kept.

For example:

> (define tl1l (list->table "((a . 1) (b . 2) (¢ . 3))))
> (define t2 (list->table '((a . 4) (b . 5) (z . 6))))
> (table—->list (table-merge! tl t2))
((a . 1) (b . 2) (¢ . 3) (z . 6))
> (define tl1l (list->table ’'((a . 1) (b . 2) (c . 3))))
> (define t2 (list->table "((a . 4) (b . 5) (z . 6))))
> (table->list (table-merge! tl t2 #t))
((a . 4) (b . 5 (c . 3) (z . 6))
(table-merge tablel table2 [procedure]

[table2-takes-precedence?])
The procedure table-merge returns a copy of tablel (created with table-copy)
to which the key/value bindings contained in table2 have been added using
table-merge!. When a key exists both in tablel and table2, then the parameter
table2-takes-precedence? indicates which binding will be kept (the one in
tablel if table2-takes-precedence? is false, and the one in table2 otherwise). If
table2-takes-precedence? is not specified the binding in tablel is kept.

For example:

> (define tl1 (list->table "((a . 1) (b . 2) (c .
> (define t2 (list->table ’'((a . 4) (b . 5) (z .
> (table—->list (table-merge tl t2))

((a . 1) (b . 2) (¢ . 3) (z . 6))

> (table->list (table-merge tl t2 #t))

((a . 4) (b . 5 (c . 3) (z . 6))

o W
~ ~
~ ~

Chapter 12: Records 7

12 Records

(define-structure name field...) [special form]
Record data types similar to Pascal records and C struct types can be defined
using the define-structure special form. The identifier name specifies the name
of the new data type. The structure name is followed by k identifiers naming each
field of the record. The define-structure expands into a set of definitions of the
following procedures:

e ‘make-name’ — A k argument procedure which constructs a new record from the
value of its k fields.

e ‘name?’ — A procedure which tests if its single argument is of the given record
type.

e ‘name—field’ — For each field, a procedure taking as its single argument a value
of the given record type and returning the content of the corresponding field of
the record.

e ‘name—field—set !’ — For each field, a two argument procedure taking as its first
argument a value of the given record type. The second argument gets assigned
to the corresponding field of the record and the void object is returned.

Record data types have a printed representation that includes the name of the type
and the name and value of each field. Record data types can not be read by the read
procedure.

For example:

> (define-structure point x y color)
> (define p (make-point 3 5 ’'red))
> P

#<point #2 x: 3 y: 5 color: red>

> (point-x p)

3

> (point-color p)

red

> (point-color-set! p ’'black)

> P

#<point #2 x: 3 y: 5 color: black>

Chapter 13: Threads 78

13 Threads

Gambit supports the execution of multiple Scheme threads. These threads are managed
entirely by Gambit’s runtime and are not related to the host operating system’s threads.
Gambit’s runtime does not currently take advantage of multiprocessors (i.e. at most one
thread is running).

13.1 Introduction

Multithreading is a paradigm that is well suited for building complex systems such as:
servers, GUIs, and high-level operating systems. Gambit’s thread system offers mecha-
nisms for creating threads of execution and for synchronizing them. The thread system
also supports features which are useful in a real-time context, such as priorities, priority
inheritance and timeouts.

The thread system provides the following data types:

e Thread (a virtual processor which shares object space with all other threads)
e Mutex (a mutual exclusion device, also known as a lock and binary semaphore)

e Condition variable (a set of blocked threads)

13.2 Thread objects

A running thread is a thread that is currently executing. A runnable thread is a thread
that is ready to execute or running. A thread is blocked if it is waiting for a mutex to
become unlocked, an I/O operation to become possible, the end of a “sleep” period, etc.
A new thread is a thread that has been allocated but has not yet been initialized. An
initialized thread is a thread that can be made runnable. A new thread becomes runnable
when it is started by calling thread-start!. A terminated thread is a thread that can
no longer become runnable (but deadlocked threads are not considered terminated). The
only valid transitions between the thread states are from new to initialized, from initialized
to runnable, between runnable and blocked, and from any state except new to terminated
as indicated in the following diagram:

unblock
start <——————=
NEW ——————— > INITIALIZED —-—————-— > RUNNABLE ——————-— > BLOCKED
\ | block /
\ v /
+————— > TERMINATED <-———+

Each thread has a base priority, which is a real number (where a higher numerical value
means a higher priority), a priority boost, which is a nonnegative real number represent-
ing the priority increase applied to a thread when it blocks, and a quantum, which is a
nonnegative real number representing a duration in seconds.

Each thread has a specific field which can be used in an application specific way to
associate data with the thread (some thread systems call this “thread local storage”).

Each thread has a mailbox which is used for inter-thread communication.

Chapter 13: Threads 79

13.3 Mutex objects

A mutex can be in one of four states: locked (either owned or not owned) and unlocked
(either abandoned or not abandoned).

An attempt to lock a mutex only succeeds if the mutex is in an unlocked state, otherwise
the current thread will wait. A mutex in the locked/owned state has an associated owner
thread, which by convention is the thread that is responsible for unlocking the mutex (this
case is typical of critical sections implemented as “lock mutex, perform operation, unlock
mutex”). A mutex in the locked /not-owned state is not linked to a particular thread.

A mutex becomes locked when a thread locks it using the ‘mutex-lock!’ primitive.
A mutex becomes unlocked/abandoned when the owner of a locked/owned mutex termi-
nates. A mutex becomes unlocked/not-abandoned when a thread unlocks it using the
‘mutex—unlock!’ primitive.

The mutex primitives do not implement recursive mutex semantics. An attempt to lock
a mutex that is locked implies that the current thread waits even if the mutex is owned by
the current thread (this can lead to a deadlock if no other thread unlocks the mutex).

Each mutex has a specific field which can be used in an application specific way to
associate data with the mutex.

13.4 Condition variable objects

A condition variable represents a set of blocked threads. These blocked threads are waiting
for a certain condition to become true. When a thread modifies some program state that
might make the condition true, the thread unblocks some number of threads (one or all
depending on the primitive used) so they can check if the condition is now true. This allows
complex forms of interthread synchronization to be expressed more conveniently than with
mutexes alone.

Each condition variable has a specific field which can be used in an application specific
way to associate data with the condition variable.

13.5 Fairness

In various situations the scheduler must select one thread from a set of threads (e.g. which
thread to run when a running thread blocks or expires its quantum, which thread to unblock
when a mutex becomes unlocked or a condition variable is signaled). The constraints on
the selection process determine the scheduler’s fairness. The selection depends on the order
in which threads become runnable or blocked and on the priority attached to the threads.

The definition of fairness requires the notion of time ordering, i.e. “event A occured
before event B”. For the purpose of establishing time ordering, the scheduler uses a clock
with a discrete, usually variable, resolution (a “tick”). Events occuring in a given tick can
be considered to be simultaneous (i.e. if event A occured before event B in real time, then
the scheduler will claim that event A occured before event B unless both events fall within
the same tick, in which case the scheduler arbitrarily chooses a time ordering).

Each thread T has three priorities which affect fairness; the base priority, the boosted
priority, and the effective priority.
e The base priority is the value contained in T’s base priority field (which is set with
the ‘thread-base-priority-set!’ primitive).

Chapter 13: Threads 80

e T’s boosted flag field contains a boolean that affects T’s boosted priority. When the
boosted flag field is false, the boosted priority is equal to the base priority, otherwise
the boosted priority is equal to the base priority plus the value contained in T"s priority
boost field (which is set with the ‘thread-priority-boost-set!’ primitive). The
boosted flag field is set to false when a thread is created, when its quantum expires,
and when thread-yield! is called. The boosted flag field is set to true when a thread
blocks. By carefully choosing the base priority and priority boost, relatively to the
other threads, it is possible to set up an interactive thread so that it has good 1/0O
response time without being a CPU hog when it performs long computations.

e The effective priority is equal to the maximum of T’s boosted priority and the effective
priority of all the threads that are blocked on a mutex owned by T. This priority
inheritance avoids priority inversion problems that would prevent a high priority thread
blocked at the entry of a critical section to progress because a low priority thread inside
the critical section is preempted for an arbitrary long time by a medium priority thread.

Let P(T) be the effective priority of thread T and let R(T) be the most recent time
when one of the following events occurred for thread T, thus making it runnable: T was
started by calling ‘thread-start!’, T called ‘thread-yield!’, T expired its quantum,
or T became unblocked. Let the relation NL(T1,T2), “T1 no later than T2”, be true if
P(T1)<P(T2) or P(T1)=P(T2) and R(T1)>R(T2), and false otherwise. The scheduler
will schedule the execution of threads in such a way that whenever there is at least one
runnable thread, 1) within a finite time at least one thread will be running, and 2) there
is never a pair of runnable threads T1 and T2 for which NL(T1,T2) is true and T1 is not
running and T2 is running.

A thread T expires its quantum when an amount of time equal to T’s quantum
has elapsed since T entered the running state and T did not block, terminate or call
‘thread-yield!’. At that point T exits the running state to allow other threads to run.
A thread’s quantum is thus an indication of the rate of progress of the thread relative to
the other threads of the same priority. Moreover, the resolution of the timer measuring
the running time may cause a certain deviation from the quantum, so a thread’s quantum
should only be viewed as an approximation of the time it can run before yielding to
another thread.

Threads blocked on a given mutex or condition variable will unblock in an order which
is consistent with decreasing priority and increasing blocking time (i.e. the highest priority
thread unblocks first, and among equal priority threads the one that blocked first unblocks
first).

13.6 Memory coherency

Read and write operations on the store (such as reading and writing a variable, an element
of a vector or a string) are not atomic. It is an error for a thread to write a location in the
store while some other thread reads or writes that same location. It is the responsibility of
the application to avoid write/read and write/write races through appropriate uses of the
synchronization primitives.

Concurrent reads and writes to ports are allowed. It is the responsibility of the im-
plementation to serialize accesses to a given port using the appropriate synchronization
primitives.

Chapter 13: Threads 81

13.7 Timeouts

All synchronization primitives which take a timeout parameter accept three types of values
as a timeout, with the following meaning;:

e a time object represents an absolute point in time

e an exact or inexact real number represents a relative time in seconds from the moment
the primitive was called

e ‘#f’ means that there is no timeout

When a timeout denotes the current time or a time in the past, the synchronization
primitive claims that the timeout has been reached only after the other synchronization
conditions have been checked. Moreover the thread remains running (it does not enter the
blocked state). For example, (mutex-lock! m 0) will lock mutex m and return ‘#t’ if m
is currently unlocked, otherwise ‘#f’ is returned because the timeout is reached.

13.8 Primordial thread

The execution of a program is initially under the control of a single thread known as the
primordial thread. The primordial thread has an unspecified base priority, priority boost,
boosted flag, quantum, name, specific field, dynamic environment, ‘dynamic-wind’ stack,
and exception-handler. All threads are terminated when the primordial thread terminates
(normally or not).

13.9 Procedures

(current—-thread) [procedure]
This procedure returns the current thread. For example:

> (current-thread)

#<thread #1 primordial>

> (eq? (current-thread) (current-thread))
#t

(thread? obj) [procedure]
This procedure returns #t when obj is a thread object and #f otherwise.

For example:

> (thread? (current-thread))
#t

> (thread? ’'foo)

#f

(make-thread thunk [name [thread-group]]) [procedure]
This procedure creates and returns an initialized thread. This thread is not auto-
matically made runnable (the procedure thread-start! must be used for this). A
thread has the following fields: base priority, priority boost, boosted flag, quantum,
name, specific, end-result, end-exception, and a list of locked /owned mutexes it owns.
The thread’s execution consists of a call to thunk with the initial continuation. This
continuation causes the (then) current thread to store the result in its end-result field,
abandon all mutexes it owns, and finally terminate. The ‘dynamic-wind’ stack of
the initial continuation is empty. The optional name is an arbitrary Scheme object

Chapter 13: Threads 82

which identifies the thread (useful for debugging); it defaults to an unspecified value.
The specific field is set to an unspecified value. The optional thread-group indicates
which thread group this thread belongs to; it defaults to the thread group of the cur-
rent thread. The base priority, priority boost, and quantum of the thread are set to
the same value as the current thread and the boosted flag is set to false. The thread’s
mailbox is initially empty. The thread inherits the dynamic environment from the cur-
rent thread. Moreover, in this dynamic environment the exception-handler is bound
to the initial exception-handler which is a unary procedure which causes the (then)
current thread to store in its end-exception field an uncaught-exception object whose
“reason” is the argument of the handler, abandon all mutexes it owns, and finally
terminate.

For example:

> (make-thread (lambda () (write ’'hello)))
#<thread #2>

> (make-thread (lambda () (write ’'world)) ’a-name)
#<thread #3 a-name>

(thread-name thread) [procedure]
This procedure returns the name of the thread. For example:
> (thread-name (make-thread (lambda () #£f) ’'£foo0))

foo
(thread-specific thread) [procedure]
(thread-specific—-set! thread obj) [procedure]

The thread-specific procedure returns the content of the thread’s specific field.
The thread-specific—set! procedure stores obj into the thread’s specific field
and returns an unspecified value.

For example:

> (thread-specific-set! (current-thread) "hello")
> (thread-specific (current—thread))

"hello"
(thread-base-priority thread) [procedure]
(thread-base-priority-set! thread priority) [procedure]

The procedure thread-base-priority returns a real number which corresponds
to the base priority of the thread.

The procedure thread-base-priority—-set! changes the base priority of the

thread to priority and returns an unspecified value. The priority must be a real
number.

For example:

> (thread-base-priority-set! (current-thread) 12.3)
> (thread-base-priority (current-thread))

12.3
(thread-priority-boost thread) [procedure]
(thread-priority—-boost-set! thread priority-boost) [procedure]

The procedure thread-priority-boost returns a real number which corresponds
to the priority boost of the thread.

Chapter 13: Threads 83

The procedure thread-priority-boost-set! changes the priority boost of the
thread to priority-boost and returns an unspecified value. The priority-boost must
be a nonnegative real.

For example:

> (thread-priority-boost-set! (current-thread) 2.5)
> (thread-priority-boost (current-thread))

2.5
(thread-quantum thread) [procedure]
(thread—-quantum-set! thread quantum) [procedure]

The procedure thread—quantum returns a real number which corresponds to the
quantum of the thread.

The procedure thread—-quantum-set ! changes the quantum of the thread to quan-
tum and returns an unspecified value. The quantum must be a nonnegative real. A
value of zero selects the smallest quantum supported by the implementation.

For example:

> (thread—quantum-set! (current—-thread) 1.5)
> (thread—quantum (current—-thread))

1.5

> (thread—quantum-set! (current-thread) 0)

> (thread—-quantum (current-—thread))

0.

(thread-start! thread) [procedure]
This procedure makes thread runnable and returns the thread. The thread must be
an initialized thread.

For example:
> (let ((t (thread-start! (make-thread (lambda () (write ’a))))))
(write ’Db)
(thread-join! t))
ab> or ba>
NOTE: It is useful to separate thread creation and thread activation to avoid the race
condition that would occur if the created thread tries to examine a table in which
the current thread stores the created thread. See the last example of the thread-
terminate! procedure which contains mutually recursive threads.

(thread-yield!) [procedure]
This procedure causes the current thread to exit the running state as if its quantum
had expired and returns an unspecified value.

For example:
; a busy loop that avoids being too wasteful of the CPU

(let loop ()
(1f (mutex—lock! m 0) ; try to lock m but don’t block
(begin

(display "locked mutex m")
(mutex—unlock! m))

(begin
(do-something-else)
(thread-yield!) ; relinquish rest of quantum

(loop))))

Chapter 13: Threads 84

(thread-sleep! timeout) [procedure]
This procedure causes the current thread to wait until the timeout is reached and
returns an unspecified value. This blocks the thread only if timeout represents a
point in the future. It is an error for timeout to be ‘“#£’.

For example:
; a clock with a gradual drift:

(let loop ((x 1))
(thread-sleep! 1)
(write x)

(loop (+ x 1)))

; a clock with no drift:

(let ((start (time—->seconds (current—-time)))
(let loop ((x 1))
(thread-sleep! (seconds->time (+ x start)))
(write x)

(loop (+ x 1))))

(thread-terminate! thread) [procedure]
This procedure causes an abnormal termination of the thread. If the thread is not
already terminated, all mutexes owned by the thread become unlocked/abandoned
and a terminated-thread-exception object is stored in the thread’s end-exception field.
If thread is the current thread, thread-terminate! does not return. Otherwise
thread-terminate! returns an unspecified value; the termination of the thread
will occur at some point between the calling of thread-terminate! and a finite
time in the future (an explicit thread synchronization is needed to detect termination,
see thread-join!).

For example:

(define (amb thunkl thunk2)
(let ((result #f)
(result—-mutex (make-mutex))
(done-mutex (make-mutex)))
(letrec ((childl
(make—-thread
(lambda ()
(let ((x (thunkl)))
(mutex—lock! result-mutex #f #f)
(set! result x)
(thread-terminate! child2)
(mutex—-unlock! done-mutex)))))
(child2
(make—-thread
(lambda ()
(let ((x (thunk2)))
(mutex—lock! result-mutex #f #f)
(set! result x)
(thread-terminate! childl)
(mutex—-unlock! done-mutex))))))
(mutex—lock! done-mutex #f #f)
(thread-start! childl)
(thread-start! child2)
(mutex—-lock! done-mutex #f #£f)

Chapter 13: Threads 85

result)))

NOTE: This operation must be used carefully because it terminates a thread abruptly
and it is impossible for that thread to perform any kind of cleanup. This may be a
problem if the thread is in the middle of a critical section where some structure has
been put in an inconsistent state. However, another thread attempting to enter this
critical section will raise an abandoned-mutex-exception object because the mutex
is unlocked/abandoned. This helps avoid observing an inconsistent state. Clean
termination can be obtained by polling, as shown in the example below.

For example:

(define (spawn thunk)

(let ((t (make-thread thunk)))
(thread-specific-set! t #t)
(thread-start! t)

t))

(define (stop! thread)
(thread-specific-set! thread #f)
(thread-join! thread))

(define (keep-going?)
(thread-specific (current-thread)))

(define count!
(let ((m (make-mutex))
(1 0))
(lambda ()
(mutex—-lock! m)
(let ((x (+ 1 1)))
(set! 1 x)
(mutex—unlock! m)

x))))

(define (increment-forever!)
(let loop () (count!) (if (keep—-going?) (loop))))

(let ((tl (spawn increment-forever!))
(t2 (spawn increment-forever!)))
thread-sleep! 1)

(
(stop! t1)
(stop! t2)
(count!)) ==> 377290
(thread—-join! thread [timeout [timeout-vall|) [procedure]

This procedure causes the current thread to wait until the thread terminates (normally
or not) or until the timeout is reached if timeout is supplied. If the timeout is reached,
thread-join! returns timeout-val if it is supplied, otherwise a join-timeout-exception
object is raised. If the thread terminated normally, the content of the end-result field
is returned, otherwise the content of the end-exception field is raised.

For example:

(let ((t (thread-start! (make-thread (lambda () (expt 2 100))))))
(do—something-else)
(thread-join! t)) ==> 1267650600228229401496703205376

(let ((t (thread-start! (make-thread (lambda () (raise 123))))))

Chapter 13: Threads 86

(do—-something-else)
(with-exception-handler
(lambda (exc)
(if (uncaught-exception? exc)
(* 10 (uncaught-exception-reason exc))
99999))
(lambda ()
(+ 1 (thread-join! t))))) ==> 1231

(define thread-alive?
(let ((unique (list ’"unique)))
(lambda (thread)
; Note: this procedure raises an exception if
; the thread terminated abnormally.
(eg? (thread-join! thread 0 unique) unique))))

(define (wait-for-termination! thread)

(let ((eh (current-exception-handler)))
(with-exception-handler
(lambda (exc)
(if (not (or (terminated-thread-exception? exc)
(uncaught-exception? exc)))
(eh exc))) ; unexpected exceptions are handled by eh
(lambda ()

; The following call to thread-join! will wait until the
thread terminates. TIf the thread terminated normally
thread-join! will return normally. If the thread
terminated abnormally then one of these two exception
objects is raised by thread-join!:

- terminated-thread-exception object
— uncaught-exception object
thread-join! thread)
f

=+ Ne Ne Ne Ne Ne Ne N

)))) ; ignore result of thread-join!
(thread-send thread msqg) [procedure]
Each thread has a mailbox which stores messages delivered to the thread in the order
delivered.

The procedure thread-send adds the message msg at the end of the mailbox of
thread thread and returns an unspecified value.

For example:

> (thread-send (current-thread) 111)
> (thread-send (current-thread) 222)
> (thread-receive)

111

> (thread-receive)

222
(thread-receive [timeout [default]]) [procedure]
(thread-mailbox-next [timeout [default]]) [procedure]
(thread-mailbox-rewind) [procedure]
(thread-mailbox-extract-and-rewind) [procedure]

To allow a thread to examine the messages in its mailbox without removing them
from the mailbox, each thread has a mailbox cursor which normally points to the
last message accessed in the mailbox. When a mailbox cursor is rewound using

Chapter 13: Threads 87

the procedure thread-mailbox-rewind or thread-mailbox-extract—and-—
rewind or thread-receive, the cursor does not point to a message, but the next
call to thread-receive and thread-mailbox—-next will set the cursor to the
oldest message in the mailbox.

The procedure thread-receive advances the mailbox cursor of the current thread
to the next message, removes that message from the mailbox, rewinds the mailbox
cursor, and returns the message. When timeout is not specified, the current thread
will wait until a message is available in the mailbox. When timeout is specified
and default is not specified, a mailbox-receive-timeout-exception object is raised if
the timeout is reached before a message is available. When timeout is specified and
default is specified, default is returned if the timeout is reached before a message is
available.

The procedure thread-mailbox—next behaves like thread-receive except that
the message remains in the mailbox and the mailbox cursor is not rewound.

The procedures thread-mailbox-rewind or thread-mailbox-extract-
and-rewind rewind the mailbox cursor of the current thread so that the
next call to thread-mailbox-next and thread-receive will access the
oldest message in the mailbox. Additionally the procedure thread-mailbox-—
extract—-and-rewind will remove from the mailbox the message most recently
accessed by a call to thread-mailbox-next. When thread-mailbox—next
has not been called since the last call to thread-receive or thread-
mailbox-rewind or thread-mailbox—-extract—-and-rewind, a call to
thread-mailbox-extract-and-rewind only resets the mailbox cursor (no
message is removed).

For example:

> (thread-send (current-thread) 111)
> (thread-receive 1 999)

111

> (thread-send (current-thread) 222)
> (thread-send (current-thread) 333)
> (thread-mailbox-next 1 999)

222

> (thread—-mailbox—-next 1 999)

333

> (thread—-mailbox—-next 1 999)

999

> (thread—-mailbox-extract—and-rewind)
> (thread-receive 1 999)

222

> (thread-receive 1 999)

999
(mailbox-receive-timeout-exception? obj) [procedure]
(mailbox-receive-timeout-exception-procedure exc) [procedure]
(mailbox-receive-timeout-exception-arguments exc) [procedure]

Mailbox-receive-timeout-exception objects are raised by the procedures thread-
receive and thread-mailbox—-next when a timeout expires before a message
is available and no default value is specified. The parameter exc must be a mailbox-
receive-timeout-exception object.

Chapter 13: Threads 88

The procedure mailbox—receive-timeout—exception? returns #t when obj
is a mailbox-receive-timeout-exception object and #f otherwise.

The procedure mailbox-receive-timeout-exception—-procedure returns
the procedure that raised exc.

The procedure mailbox-receive-timeout-exception—arguments returns
the list of arguments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (mailbox-receive-—-timeout-exception? exc)
(list (mailbox-receive-timeout-exception-procedure exc)
(mailbox—-receive—-timeout-exception—-arguments exc))
"not-mailbox—-receive-timeout—-exception))
> (with-exception-catcher
handler
(lambda () (thread-receive 1)))
(#<procedure #2 thread-receive> (1))

(mutex? ob3j) [procedure]
This procedure returns #t when obj is a mutex object and #f otherwise.

For example:

> (mutex? (make-mutex))
#t

> (mutex? ' foo)

#f

(make-mutex [name]) [procedure]
This procedure returns a new mutex in the unlocked/not-abandoned state. The op-
tional name is an arbitrary Scheme object which identifies the mutex (useful for
debugging); it defaults to an unspecified value. The mutex’s specific field is set to an
unspecified value.

For example:

> (make-mutex)
#<mutex #2>

> (make-mutex ’foo0)
#<mutex #3 foo>

(mutex—name mutex) [procedure]
Returns the name of the mutex. For example:
> (mutex—name (make—-mutex ’'£fo0))

foo
(mutex—specific mutex) [procedure]
(mutex—specific—set! mutex obj) [procedure]

The mutex—-specific procedure returns the content of the mutex’s specific field.

The mutex—specific—set! procedure stores obj into the mutex’s specific field
and returns an unspecified value.

For example:

> (define m (make-mutex))
> (mutex—specific-set! m "hello")
> (mutex-specific m)

Chapter 13: Threads 89

"hello"
> (define (mutex-lock-recursively! mutex)
(if (eq? (mutex-state mutex) (current-thread))
(let ((n (mutex-specific mutex)))
(mutex—-specific-set! mutex (+ n 1)))
(begin
(mutex-lock! mutex)
(mutex—specific-set! mutex 0))))
> (define (mutex-unlock-recursively! mutex)
(let ((n (mutex-specific mutex)))
(if (= n 0)
(mutex—-unlock! mutex)
(mutex—-specific-set! mutex (- n 1)))))

> (mutex—-lock-recursively! m)
> (mutex—lock-recursively! m)
> (mutex—-lock-recursively! m)
> (mutex-specific m)
2
(mutex-state mutex) [procedure]
Thos procedure returns information about the state of the mutex. The possible results

are:

e thread T: the mutex is in the locked/owned state and thread T is the owner of
the mutex

e symbol not-owned: the mutex is in the locked/not-owned state
e symbol abandoned: the mutex is in the unlocked /abandoned state

e symbol not-abandoned: the mutex is in the unlocked/not-abandoned state

For example:
(mutex—state (make-mutex)) ==> not—-abandoned

(define (thread-alive? thread)
(let ((mutex (make-mutex)))
(mutex—lock! mutex #f thread)
(let ((state (mutex—-state mutex)))
(mutex—-unlock! mutex) ; avoid space leak
(eg? state thread))))

(mutex—lock! mutex [timeout [thread]]) [procedure]
This procedure locks mutex. If the mutex is currently locked, the current thread waits
until the mutex is unlocked, or until the timeout is reached if timeout is supplied.
If the timeout is reached, mutex—lock! returns ‘#f’. Otherwise, the state of the
mutex is changed as follows:

e if thread is ‘4 £’ the mutex becomes locked /not-owned,
e otherwise, let T be thread (or the current thread if thread is not supplied),
e if T is terminated the mutex becomes unlocked/abandoned,
e otherwise mutex becomes locked/owned with T as the owner.
After changing the state of the mutex, an abandoned-mutex-exception object is raised
if the mutex was unlocked/abandoned before the state change, otherwise mutex-—

lock! returns ‘#t’. It is not an error if the mutex is owned by the current thread
(but the current thread will have to wait).

Chapter 13: Threads 90

For example:

an implementation of a mailbox object of depth one; this
implementation does not behave well in the presence of forced
thread terminations using thread-terminate! (deadlock can occur

if a thread is terminated in the middle of a put! or get! operation)

Ne Ne o Ne N

(define (make-empty-mailbox)
(let ((put-mutex (make-mutex)) ; allow put! operation
(get-mutex (make-mutex))
(cell #f£f))

(define (put! obj)
(mutex—-lock! put-mutex #f #f) ; prevent put! operation
(set! cell obj)
(mutex—-unlock! get-mutex)) ; allow get! operation

(define (get!)
(mutex—-lock! get-mutex #f #f) ; wait until object in mailbox
(let ((result cell))
(set! cell #f) ; prevent space leaks
(mutex-unlock! put-mutex) ; allow put! operation
result))

(mutex—lock! get-mutex #f #f) ; prevent get! operation

(lambda (msg)

(case msg
((put!) put!)
((get!) get!)
(else (error "unknown message"))))))
(define (mailbox-put! m obj) ((m "put!) obj))
(define (mailbox—-get! m) ((m 'get!)))

; an alternate implementation of thread-sleep!

(define (sleep! timeout)

(let ((m (make-mutex)))

(mutex—lock! m #f #£f)
(mutex—lock! m timeout #f£f)))

; a procedure that waits for one of two mutexes to unlock

(define (lock-one-of! mutexl mutex2)
; this procedure assumes that neither mutexl or mutex2
; are owned by the current thread
(let ((ct (current—-thread))
(done-mutex (make-mutex)))
(mutex—lock! done-mutex #f #f)
(let ((tl (thread-start!
(make—-thread
(lambda ()
(mutex—lock! mutexl #f ct)
(mutex—unlock! done-mutex)))))
(t2 (thread-start!
(make—-thread
(lambda ()
(mutex—lock! mutex2 #f ct)

Chapter 13: Threads 91

(mutex—unlock! done-mutex))))))
mutex—lock! done-mutex #f #f)
thread-terminate! t1l)
thread-terminate! t2)
if (eg? (mutex-state mutexl) ct)

(
(
(
(

(begin
(i1f (eg? (mutex—-state mutex2) ct)
(mutex—-unlock! mutex2?2)) ; don’t lock both
mutexl)
mutex2))))
(mutex—unlock! mutex [condition-variable [timeout]]) [procedure]

This procedure unlocks the mutex by making it unlocked/not-abandoned. It is not
an error to unlock an unlocked mutex and a mutex that is owned by any thread.
If condition-variable is supplied, the current thread is blocked and added to the
condition-variable before unlocking mutex; the thread can unblock at any time but
no later than when an appropriate call to condition-variable—-signal! or
condition-variable-broadcast! is performed (see below), and no later than
the timeout (if timeout is supplied). If there are threads waiting to lock this mutex,
the scheduler selects a thread, the mutex becomes locked /owned or locked /not-owned,
and the thread is unblocked. mutex—-unlock! returns ‘#f’ when the timeout is
reached, otherwise it returns ‘#t’.

NOTE: The reason the thread can unblock at any time (when condition-variable is
supplied) is that the scheduler, when it detects a serious problem such as a deadlock,
must interrupt one of the blocked threads (such as the primordial thread) so that it can
perform some appropriate action. After a thread blocked on a condition-variable has
handled such an interrupt it would be wrong for the scheduler to return the thread
to the blocked state, because any calls to condition-variable-broadcast!
during the interrupt will have gone unnoticed. It is necessary for the thread to
remain runnable and return from the call to mutex—unlock! with a result of ‘#t’.

NOTE: mutex-unlock! is related to the “wait” operation on condition variables
available in other thread systems. The main difference is that “wait” automatically
locks mutex just after the thread is unblocked. This operation is not performed by
mutex-unlock! and so must be done by an explicit call to mutex—-1ock!. This has
the advantages that a different timeout and exception-handler can be specified on the
mutex—-lock! and mutex—-unlock! and the location of all the mutex operations is
clearly apparent.

For example:

(let loop ()
(mutex—lock! m)
(1f (condition-is-true?)

(begin
(do-something-when-condition-is-true)
(mutex—unlock! m))

(begin
(mutex—-unlock! m cv)

(loop))))

(condition-variable? obj) [procedure]
This procedure returns #t when obj is a condition-variable object and #f otherwise.

Chapter 13: Threads 92

For example:
> (condition-variable? (make—-condition-variable))

#t
> (condition-variable? ' £foo0)
#f
(make-condition-variable [name]) [procedure]

This procedure returns a new empty condition variable. The optional name is an
arbitrary Scheme object which identifies the condition variable (useful for debugging);
it defaults to an unspecified value. The condition variable’s specific field is set to an
unspecified value.

For example:

> (make-condition-variable)
#<condition-variable #2>

(condition-variable-name condition-variable) [procedure]
This procedure returns the name of the condition-variable. For example:
> (condition-variable—name (make—-condition-variable ’'foo0))

foo
(condition-variable-specific condition-variable) [procedure]
(condition-variable-specific-set! [procedure]

condition-variable ob7)
The condition-variable-specific procedure returns the content of the
condition-variable’s specific field.

The condition-variable-specific—set! procedure stores obj into the
condition-variable’s specific field and returns an unspecified value.

For example:

> (define cv (make-condition-variable))

> (condition-variable-specific-set! cv "hello")
> (condition-variable-specific cv)

"hello"

(condition-variable-signal! condition-variable) [procedure]
This procedure unblocks a thread blocked on the condition-variable (if there is at
least one) and returns an unspecified value.

For example:

an implementation of a mailbox object of depth one; this
implementation behaves gracefully when threads are forcibly
terminated using thread-terminate! (an abandoned-mutex—exception
object will be raised when a put! or get! operation is attempted
after a thread is terminated in the middle of a put! or get!
operation)

Ne Ne Ne Ne Ne N

(define
(let (

(make-empty-mailbox)

(mutex (make-mutex))

(put—-condvar (make-condition-variable))
(get—-condvar (make-condition-variable))
(full? #1£)

(cell #f))

(define (put! obj)

Chapter 13: Threads 93

(mutex—-lock! mutex)

(if full?
(begin
(mutex—-unlock! mutex put-condvar)
(put! obj))
(begin

(set! cell obj)

(set! full? #t)
(condition-variable-signal! get-condvar)
(mutex—unlock! mutex))))

(define (get!)
(mutex—lock! mutex)
(1f (not full?)
(begin
(mutex-unlock! mutex get-condvar)
(get!))
(let ((result cell))
(set! cell #f) ; avoid space leaks
(set! full? #I)
(condition-variable-signal! put-condvar)
(mutex—unlock! mutex))))

(lambda (msg)
(case msg

((put!) put!)
((get!) get!)
(else (error "unknown message"))))))
(define (mailbox-put! m obj) ((m "put!) obj))
(define (mailbox-get! m) ((m 'get!)))
(condition-variable-broadcast! condition-variable) [procedure]

This procedure unblocks all the thread blocked on the condition-variable and returns
an unspecified value.

For example:

(define (make-semaphore n)
(vector n (make-mutex) (make-—-condition-variable)))

(define (semaphore-wait! sema)
(mutex—-lock! (vector-ref sema 1))

(let ((n (vector-ref sema 0)))
(if (> n 0)
(begin
(vector-set! sema 0 (- n 1))
(mutex—-unlock! (vector-ref sema 1)))
(begin
(mutex—-unlock! (vector-ref sema 1) (vector-ref sema 2))

(semaphore-wait! sema))))

(define (semaphore-signal-by! sema increment)
(mutex—lock! (vector-ref sema 1))
(let ((n (+ (vector-ref sema 0) increment)))
(vector—-set! sema 0 n)
(if (> n 0)
(condition-variable-broadcast! (vector-ref sema 2)))
(mutex—-unlock! (vector-ref sema 1))))

Chapter 14: Dynamic environment 94

14 Dynamic environment

The dynamic environment is the structure which allows the system to find the value returned
by the standard procedures current-input-port and current-output-port. The
standard procedures with—input—-from-file and with-output—-to-file extend the
dynamic environment to produce a new dynamic environment which is in effect for the
dynamic extent of the call to the thunk passed as their last argument. These procedures are
essentially special purpose dynamic binding operations on hidden dynamic variables (one
for current-input-port and one for current-output-port). Gambit generalizes
this dynamic binding mechanism to allow the user to introduce new dynamic variables,
called parameter objects, and dynamically bind them. The parameter objects implemented
by Gambit are compatible with the specification of the “Parameter objects SRFI” (SRFI
39).

One important issue is the relationship between the dynamic environments of the parent
and child threads when a thread is created. Each thread has its own dynamic environment
that is accessed when looking up the value bound to a parameter object by that thread.
When a thread’s dynamic environment is extended it does not affect the dynamic environ-
ment of other threads. When a thread is created it is given a dynamic environment whose
bindings are inherited from the parent thread. In this inherited dynamic environment the
parameter objects are bound to the same cells as the parent’s dynamic environment (in
other words an assignment of a new value to a parameter object is visible in the other

thread).

Another important issue is the interaction between the dynamic-wind procedure and
dynamic environments. When a thread creates a continuation, the thread’s dynamic envi-
ronment and the ‘dynamic-wind’ stack are saved within the continuation (an alternate
but equivalent point of view is that the ‘dynamic-wind’ stack is part of the dynamic en-
vironment). When this continuation is invoked the required ‘dynamic-wind’ before and
after thunks are called and the saved dynamic environment is reinstated as the dynamic en-
vironment of the current thread. During the call to each required ‘dynamic-wind’ before
and after thunk, the dynamic environment and the ‘dynamic-wind’ stack in effect when
the corresponding ‘dynamic-wind’ was executed are reinstated. Note that this specifica-
tion precisely defines the semantics of calling ‘call-with-current-continuation’ or
invoking a continuation within a before or after thunk. The semantics are well defined even
when a continuation created by another thread is invoked. Below is an example exercising
the subtleties of this semantics.

(with-output-to-file
n foo n
(lambda ()
(let ((k (call-with-current-continuation
(lambda (exit)
(with-output-to-file
"bar"
(lambda ()
(dynamic-wind
(lambda ()
(write ' (b1l))
(force—-output))
(lambda ()
(let ((x (call-with-current-continuation

Chapter 14: Dynamic environment 95

(lambda (cont) (exit cont)))))
(write 7 (t1))
(force-output)
X))
(lambda ()
(write ' (al))
(force-output)))))))))
(if k
(dynamic-wind
(lambda ()
(write 7 (b2))
(force-output))
(lambda ()
(with-output-to-file
"baZ"
(lambda ()
(write 7 (t2))
(force-output)
; go back inside (with-output-to-file "bar" ...)
(k #£))))
(lambda ()
(write ' (a2))
(force—output)))))))

The following actions will occur when this code is executed: (bl) (al) is written to

“bar”, (b2) is then written to “foo”, (t2) is then written to “baz”, (a2) is then written
to “foo”, and finally (bl) (t1) (al) is written to “bar”.

(make-parameter obj [filter]) [procedure]
The dynamic environment is composed of two parts: the local dynamic environment
and the global dynamic environment. There is a single global dynamic environment,
and it is used to lookup parameter objects that can’t be found in the local dynamic
environment.

The make-parameter procedure returns a new parameter object. The filter argu-
ment is a one argument conversion procedure. If it is not specified, filter defaults to
the identity function.

The global dynamic environment is updated to associate the parameter object to
a new cell. The initial content of the cell is the result of applying the conversion
procedure to obj.

A parameter object is a procedure which accepts zero or one argument. The cell
bound to a particular parameter object in the dynamic environment is accessed by
calling the parameter object. When no argument is passed, the content of the cell is
returned. When one argument is passed the content of the cell is updated with the
result of applying the parameter object’s conversion procedure to the argument. Note
that the conversion procedure can be used for guaranteeing the type of the parameter
object’s binding and/or to perform some conversion of the value.

For example:

> (define radix (make-parameter 10))
> (radix)

10

> (radix 2)

> (radix)

Chapter 14: Dynamic environment 96

2
> (define prompt
(make—-parameter

123
(lambda (x)
(if (string? x)
x
(object->string x)))))
> (prompt)
" l 2 3 n
> (prompt " $ ")
> (prompt)
" $ "

> (define write-shared
(make—-parameter
#£
(lambda (x)
(if (boolean? x)
x
(error "only booleans are accepted by write-—-shared")))))
> (write—-shared 123)

*** ERROR IN ##make-parameter —-- only booleans are accepted by write-
shared
(parameterize ((procedure value)...) body) [special form)]

The parameterize form, evaluates all procedure and wvalue expressions in an un-
specified order. All the procedure expressions must evaluate to procedures, either
parameter objects or procedures accepting zero and one argument. Then, for each
procedure p and in an unspecified order:

e If p is a parameter object a new cell is created, initialized, and bound to the
parameter object in the local dynamic environment. The value contained in
the cell is the result of applying the parameter object’s conversion procedure
to wvalue. The resulting dynamic environment is then used for processing the
remaining bindings (or the evaluation of body if there are no other bindings).

e Otherwise p will be used according to the following protocol: we say that the
call (p) “gets p’s value” and that the call (p z) “sets p’s value to z”. First, the
parameterize form gets p’s value and saves it in a local variable. It then sets
p’s value to value. It then processes the remaining bindings (or evaluates body if
there are no other bindings). Then it sets p’s value to the saved value. These steps
are performed in a dynamic—-wind so that it is possible to use continuations to
jump into and out of the body (i.e. the dynamic-wind’s before thunk sets p’s
value to value and the after thunk sets p’s value to the saved value).

The result(s) of the parameterize form are the result(s) of the body.

Note that using procedures instead of parameter objects may lead to unexpected re-
sults in multithreaded programs because the before and after thunks of the dynamic—
wind are not called when control switches between threads.

For example:

> (define radix (make-parameter 2))
> (define prompt
(make—-parameter
123

Chapter 14: Dynamic environment 97

(lambda (x)
(if (string? x)
x
(object->string x)))))
> (radix)
2
> (parameterize ((radix 16)) (radix))
16
> (radix)
2
> (define (f n) (number->string n (radix)))
> (£ 10)
"lOlO"
> (parameterize ((radix 8)) (f 10))
"12"
> (parameterize ((radix 8) (prompt (f 10))) (prompt))
"lolo"
> (define p
(let ((x 1))
(lambda args
(if (null? args) x (set! x (car args))))))
> (let* ((a (p))
(b (parameterize ((p 2)) (list (p))))
(c (P)))
(list a b ¢))
(1 (2) 1)

Chapter 15: Exceptions 98

15 Exceptions

15.1 Exception-handling

Gambit’s exception-handling model is inspired from the withdrawn “Exception Handling
SRFI” (SRFI 12), the “Multithreading support SRFI” (SRFI 18), and the “Exception
Handling for Programs SRFI” (SRFI 34). The two fundamental operations are the dynamic
binding of an exception handler (i.e. the procedure with-exception-handler) and the
invocation of the exception handler (i.e. the procedure raise).

All predefined procedures which check for errors (including type errors, memory allo-
cation errors, host operating-system errors, etc) report these errors using the exception-
handling system (i.e. they “raise” an exception that can be handled in a user-defined
exception handler). When an exception is raised and the exception is not handled by a
user-defined exception handler, the predefined exception handler will display an error mes-
sage (if the primordial thread raised the exception) or the thread will silently terminate
with no error message (if it is not the primordial thread that raised the exception). This
default behavior can be changed through the ‘- :d’ runtime option (see Chapter 4 [Runtime
options|, page 21).

Predefined procedures normally raise exceptions by performing a tail-call to the exception
handler (the exceptions are “complex” procedures such as eval, compile-file, read,
write, etc). This means that the continuation of the exception handler and of the REPL
that may be started due to this is normally the continuation of the predefined procedure
that raised the exception. By exiting the REPL with the , (¢ expression) command
it is thus possible to resume the program as though the call to the predefined procedure
returned the value of expression. For example:

> (define (f x) (+ (car x) 1))
> (£ 2) ; typo... we meant to say (f '(2))

*** ERROR IN f, (console)@1.18 —-- (Argument 1) PAIR expected
(car 2)
1>, (¢ 2)
3
(current-exception-handler [new—excepti on—handl er]) [procedure]

The parameter object current-exception-handler is bound to the current
exception-handler. Calling this procedure with no argument returns the current
exception-handler and calling this procedure with one argument sets the current
exception-handler to new-exception-handler.

For example:

> (current-exception-handler)

#<procedure #2 primordial-exception-handler>

> (current-exception-handler (lambda (exc) (pp exc) 999))
> (/ 10)

#<divide-by-zero-exception #3>

999

(with—-exception-handler handler thunk) [procedure]
Returns the result(s) of calling thunk with no arguments. The handler, which must be
a procedure, is installed as the current exception-handler in the dynamic environment

Chapter 15: Exceptions 99

in effect during the call to thunk. Note that the dynamic environment in effect during
the call to handler has handler as the exception-handler. Consequently, an exception
raised during the call to handler may lead to an infinite loop.

For example:

> (with—-exception-handler
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 2 3) 4)))
11
> (with-exception-handler
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 'foo 3) 4)))
#<type-exception #2>10
> (with-exception-handler
(lambda (e) (write e 9))
(lambda () (+ 1 (* 'foo 3) 4)))
infinite loop

(with—-exception-catcher handler thunk) [procedure]
Returns the result(s) of calling thunk with no arguments. A new exception-handler is
installed as the current exception-handler in the dynamic environment in effect during
the call to thunk. This new exception-handler will call the handler, which must be a
procedure, with the exception object as an argument and with the same continuation
as the call to with-exception-catcher. This implies that the dynamic environ-
ment in effect during the call to handler is the same as the one in effect at the call to
with-exception-catcher. Consequently, an exception raised during the call to
handler will not lead to an infinite loop.

For example:

> (with—-exception-catcher
(lambda (e) (write e) 5)
(lambda () (+ 1 (* 2 3) 4)))
11
> (with—-exception-catcher
(lambda (e) (write e) 5)
(lambda () (+ 1 (* "foo 3) 4)))
#<type—-exception #2>5
> (with-exception-catcher
(lambda (e) (write e 9))
(lambda () (+ 1 (* '"foo 3) 4)))
**% ERROR IN (console)@7.1 —-—- (Argument 2) OUTPUT PORT expected
(write ’#<type-exception #3> 9)

(raise obj) [procedure]
This procedure tail-calls the current exception-handler with obj as the sole argument.
If the exception-handler returns, the continuation of the call to raise is invoked.

For example:

> (with-exception-handler
(lambda (exc)
(pp exc)
100)
(lambda ()
(+ 1 (raise "hello"))))
"hello"
101

Chapter 15: Exceptions 100

(abort obj) [procedure]
(noncontinuable-exception? obj) [procedure]
(noncontinuable-exception-reason exc) [procedure]

The procedure abort calls the current exception-handler with obj as the sole argu-
ment. If the exception-handler returns, the procedure abort will be tail-called with
a noncontinuable-exception object, whose reason field is obj, as sole argument.

Noncontinuable-exception objects are raised by the abort procedure when the
exception-handler returns. The parameter exc must be a noncontinuable-exception
object.

The procedure noncontinuable-exception? returns #t when obj is a
noncontinuable-exception object and #f otherwise.

The procedure noncontinuable-exception—-reason returns the argument of
the call to abort that raised exc.

For example:

> (call-with-current-continuation
(lambda (k)
(with—exception-handler
(lambda (exc)
(PP exc)
(if (noncontinuable-exception? exc)
(k (list (noncontinuable-exception-reason exc)))

100))
(lambda ()
(+ 1 (abort "hello"))))))
"hello"
#<noncontinuable-exception #2>
("hello")

15.2 Exception objects related to memory management

(heap-overflow-exception? obj) [procedure]
Heap-overflow-exception objects are raised when the allocation of an object would
cause the heap to use more memory space than is available.

The procedure heap-overflow-exception? returns #t when obj is a
heap-overflow-exception object and #f otherwise.

For example:

> (define (handler exc)

(if (heap-overflow-exception? exc)
exc
"not-heap-overflow—exception))

> (with-exception-catcher

handler

(lambda ()

(define (f x) (f (cons 1 x)))
(£70)))

#<heap-overflow-exception #2>

(stack—-overflow—-exception? obj) [procedure]
Stack-overflow-exception objects are raised when the allocation of a continuation
frame would cause the heap to use more memory space than is available.

Chapter 15: Exceptions 101

The procedure stack-overflow-exception? returns #t when obj is a stack-
overflow-exception object and #f otherwise.

For example:

> (define (handler exc)

(if (stack-overflow—-exception? exc)
exc
"not-stack-overflow—exception))

> (with—-exception-catcher

handler

(lambda ()

(define (£) (+ 1 (£)))
(£)))

#<stack-overflow-exception #2>

15.3 Exception objects related to the host environment

(os—
(os—
(os—
(os—
(os—

(no—
(no—

exception? obj) []
exception-procedure exc) []
exception—-arguments exc) [procedure]
exception-code exc) []
exception-message exc) []
Os-exception objects are raised by procedures which access the host operating-
system’s services when the requested operation fails. The parameter exc must be a
os-exception object.

The procedure os—exception? returns #t when obj is a os-exception object and
#f otherwise.

The procedure os—exception-procedure returns the procedure that raised exc.

The procedure os—exception-arguments returns the list of arguments of the
procedure that raised exc.

The procedure os—exception—-code returns an exact integer error code that can
be converted to a string by the err-code—>string procedure. Note that the error
code is operating-system dependent.

The procedure os—exception-message returns #f or a string giving details of the
exception in a human-readable form.

For example:

> (define (handler exc)
(if (os—exception? exc)

(list (os—-exception-procedure exc)
(os—exception—-arguments exc)
(err-code->string (os—exception-code exc))
(os—exception-message exc))

"not-os—-exception))

> (with-exception-catcher

handler

(lambda () (host-info "x.y.z")))
(#<procedure #2 host-info> ("x.y.z") "Unknown host" #f)

such—-file—-or-directory-exception? ob7) [procedure]
such-file-or-directory-exception-procedure [procedure]
exc)

Chapter 15: Exceptions 102

(no—such-file-or—-directory—-exception—arguments [procedure]
exc)
No-such-file-or-directory-exception objects are raised by procedures which access the
filesystem (such as open-input-file and directory-files) when the path
specified can’t be found on the filesystem. The parameter exc must be a no-such-file-
or-directory-exception object.

The procedure no-such-file-or-directory—-exception? returns #t when
obj is a no-such-file-or-directory-exception object and #f otherwise.

The procedure no—-such-file-or—-directory—-exception—-procedure returns
the procedure that raised exc.

The procedure no-such-file-or-directory—-exception—-arguments returns
the list of arguments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (no-such-file-or-directory-exception? exc)
(list (no-such-file-or-directory—-exception-procedure exc)
(no—-such-file-or-directory—-exception—-arguments exc))
"not—no-such-file-or—-directory-exception))
> (with—exception-catcher
handler
(lambda () (with-input—from—-file "nofile" read)))
(#<procedure #2 with—-input-from-file> ("nofile" #<procedure #3 read>))

(unbound-os—-environment-variable-exception? obj) [procedure]

(unbound-os—-environment-variable-exception-procedure [procedure]
exc)

(unbound-os—environment-variable-exception—-arguments [procedure]
exc)

Unbound-os-environment-variable-exception objects are raised when an unbound
operating-system environment variable is accessed by the procedures getenv and
setenv. The parameter exc must be an unbound-os-environment-variable-exception
object.

The procedure unbound-os—environment-variable—-exception? returns #t
when obj is an unbound-os-environment-variable-exception object and #f otherwise.

The procedure unbound-os-environment-variable-exception—
procedure returns the procedure that raised exc.

The procedure unbound-os-environment-variable-exception—
arguments returns the list of arguments of the procedure that raised
exc.

For example:

> (define (handler exc)
(if (unbound-os—-environment-variable-exception? exc)
(list (unbound-os-environment-variable-exception-procedure exc)
(unbound-os—-environment-variable—exception—arguments exc))
"not-unbound-os—-environment-variable—exception))
> (with—exception-catcher
handler
(lambda () (getenv "DOES_NOT_EXIST")))
(#<procedure #2 getenv> ("DOES_NOT_EXIST"))

Chapter 15: Exceptions 103

15.4 Exception objects related to threads

(scheduler—-exception? obj) [procedure]

(scheduler-exception-reason exc) [procedure]
Scheduler-exception objects are raised by the scheduler when some operation re-
quested from the host operating system failed (e.g. checking the status of the devices
in order to wake up threads waiting to perform I/O on these devices). The parameter
exc must be a scheduler-exception object.

The procedure scheduler—exception? returns #t when obj is a scheduler-
exception object and #f otherwise.

The procedure scheduler—exception-reason returns the os-exception object
that describes the failure detected by the scheduler.

(deadlock-exception? obj) [procedure]
Deadlock-exception objects are raised when the scheduler discovers that all threads
are blocked and can make no further progress. In that case the scheduler unblocks
the primordial-thread and forces it to raise a deadlock-exception object.

The procedure deadlock-exception? returns #t when obj is a deadlock-exception
object and #f otherwise.

For example:

> (define (handler exc)
(if (deadlock-exception? exc)
exc
"not-deadlock—-exception))
> (with-exception-catcher
handler
(lambda () (read (open-vector))))
#<deadlock-exception #2>

(abandoned-mutex—exception? obj) [procedure]
Abandoned-mutex-exception objects are raised when the current thread locks a mutex
that was owned by a thread which terminated (see mutex-lock!).

The procedure abandoned-mutex—exception? returns #t when obj is a
abandoned-mutex-exception object and #f otherwise.

For example:

> (define (handler exc)

(if (abandoned-mutex—-exception? exc)
exc
"not-abandoned-mutex-exception))

> (with—-exception-catcher

handler

(lambda ()

(let ((m (make-mutex)))
(thread-join!
(thread-start!
(make—-thread
(lambda () (mutex—-lock! m)))))
(mutex—-lock! m))))
#<abandoned-mutex—-exception #2>

Chapter 15: Exceptions 104

(join-timeout-exception? ob7) [procedure]
(join-timeout-exception-procedure exc) [procedure]
(Join-timeout—-exception—arguments exc) [procedure]

Join-timeout-exception objects are raised when a call to the thread-join! pro-
cedure reaches its timeout before the target thread terminates and a timeout-value
parameter is not specified. The parameter exc must be a join-timeout-exception
object.

The procedure join-timeout-exception? returns #t when obj is a join-timeout-
exception object and #f otherwise.

The procedure join-timeout-exception-procedure returns the procedure
that raised exc.

The procedure join-timeout-exception-arguments returns the list of argu-
ments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (join-timeout-exception? exc)
(list (join-timeout-exception-procedure exc)
(join-timeout-exception—-arguments exc))
"not-join-timeout-exception))
> (with—-exception-catcher
handler
(lambda ()
(thread-join!
(thread-start!
(make—-thread
(lambda () (thread-sleep! 10))))
5)))
(#<procedure #2 thread-join!> (#<thread #3> 5))

(started-thread-exception? obj) [procedure]
(started-thread-exception-procedure exc) [procedure]
(started-thread-exception-arguments exc) [procedure]

Started-thread-exception objects are raised when the target thread of a call to the
procedure thread-start! is already started. The parameter exc must be a started-
thread-exception object.

The procedure started-thread-exception? returns #t when obj is a started-
thread-exception object and #f otherwise.

The procedure started-thread-exception—-procedure returns the procedure
that raised exc.

The procedure started-thread-exception—arguments returns the list of ar-
guments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (started-thread-exception? exc)
(list (started-thread-exception-procedure exc)
(started-thread-exception—arguments exc))
"not-started-thread-exception))
> (with—-exception-catcher
handler

Chapter 15: Exceptions 105

(lambda ()
(let ((t (make-thread (lambda () (expt 2 1000)))))
(thread-start! t)
(thread-start! t))))
(#<procedure #2 thread-start!> (#<thread #3>))

(terminated-thread-exception? obj) [procedure]
(terminated-thread-exception-procedure exc) [procedure]
(terminated-thread-exception—arguments exc) [procedure]

Terminated-thread-exception objects are raised when the thread-join! procedure
is called and the target thread has terminated as a result of a call to the thread-
terminate! procedure. The parameter exc must be a terminated-thread-exception
object.

The procedure terminated-thread-exception? returns #t when obj is a
terminated-thread-exception object and #f otherwise.

The procedure terminated-thread-exception-procedure returns the proce-
dure that raised exc.

The procedure terminated-thread-exception—arguments returns the list of
arguments of the procedure that raised exc.

For example:

> (define (handler exc)
(if (terminated-thread—-exception? exc)
(list (terminated-thread-exception-procedure exc)
(terminated-thread—-exception—-arguments exc))
"not-terminated-thread-exception))
> (with—-exception-catcher
handler
(lambda ()
(thread-join!
(thread-start!
(make—-thread
(lambda () (thread-terminate! (current-thread))))))))
(#<procedure #2 thread-join!> (#<thread #3>))

(uncaught-exception? ob7) [procedure]
(uncaught-exception—-procedure exc) [procedure]
(uncaught-exception—arguments exc) [procedure]
(uncaught-exception—-reason exc) [procedure]

Uncaught-exception objects are raised when an object is raised in a thread and that
thread does not handle it (i.e. the thread terminated because it did not catch an
exception it raised). The parameter exc must be an uncaught-exception object.

The procedure uncaught-exception? returns #t when obj is an uncaught-
exception object and #f otherwise.

The procedure uncaught-exception-procedure returns the procedure that
raised exc.

The procedure uncaught-exception—-arguments returns the list of arguments
of the procedure that raised exc.

The procedure uncaught-exception—-reason returns the object that was raised
by the thread and not handled by that thread.

Chapter 15: Exceptions 106

For example:
> (define (handler exc)
(if (uncaught-exception? exc)

(list (uncaught-exception—-procedure exc)
(uncaught-exception—-arguments exc)
(uncaught-exception-reason exc))

"not—uncaught-exception))

> (with—-exception-catcher
handler
(lambda ()
(thread-join!
(thread-start!
(make—-thread
(lambda () (open-input-file "data" 99)))))))
(#<procedure #2 thread-join!>
(#<thread #3>)
#<wrong-number-of-arguments-exception #4>)

15.5 Exception objects related to C-interface

(cfun—-conversion—exception? obj) [procedure]
(cfun-conversion—-exception-procedure exc) [procedure]
(cfun-conversion-exception-arguments e