Previous Up Next

4.3.4  Solution approchée de y’=f(t,y) : odesolve

On tape :

odesolve(sin(t*y),[t,y],[0,1],2)

ou :

odesolve(sin(t*y),t=0..2,y,1)

ou :

odesolve(0..2,(t,y)->sin(t*y),1)

ou encore on définit la fonction :

f(t,y):=sin(t*y)

et on tape:

odesolve(0..2,f,1)

On obtient :

[1.82241255675]

puis on tape :

odesolve(0..2,f,1,tstep=0.3)

On obtient :

[1.82241255675]

On tape :

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5)

On obtient :

[1.82241255675]

On tape :

odesolve(sin(t*y),t=0..2,y,1,tstep=0.5,curve)

On obtient :

[[0.760963063136,[1.30972370515]],[1.39334557388,[1.86417104853]]]

Previous Up Next