dfc takes as argument a real or a rational or a
floating point number a and an integer n
(or a real epsilon).
dfc returns the list of the continued fraction representation
of a of order n (or with precision epsilon i.e.
the continued fraction representation which
approachs a or evalf(a) with precision
epsilon, by default epsilon is the value of the epsilon
defined in the cas configuration with the menu
Cfg▸Cas Configuration).
convert with the option confrac has a similar
functionnality: in that case
the value of epsilon is the value of the epsilon
defined in the cas configuration with the menu
Cfg▸Cas Configuration (see
2.21.23)
and the answer may be stored in an optionnal third argument.
Remarks
If dfc(a)=[a0,a1,a2,[b0,b1] that means :
a=a0+ |
|
If dfc(a)=[a0,a1,a2,r] that means :
a=a0+ |
|
Input :
Output :
Input :
Or :
Output :
Input :
Output (if in the cas configuration epsilon=1e-9) :
and [1,2,2,2,2,2,2,2,2,2,2,2,2] is stored in dev.
Input :
Output :
Input to verify:
1+1/(2+1/(3+1/(4+1/(5+7/43))))
Output :
9976/6961
Input :
Output (if in the cas configuration epsilon=1e-9) :
and [1,2,3,4,5,6,7] is stored in l
Input :
Output :
Input :
Output (if floats are hardware floats, e.g. for Digits=12) :
Input :
Or :
Or (if in the cas configuration epsilon=1e-9) :
Output :