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Chapter 1

Introduction

JAGS is Just Another Gibbs Sampler. It is a program for the analysis of Bayesian models
using Markov Chain Monte Carlo (MCMC) which is not wholly unlike WinBUGS (http:
//www.mrc-bsu.cam.ac.uk). JAGS was written with three aims in mind: to have an engine
for the BUGS language that runs on Unix; to be extensible, allowing users to write their own
functions, distributions, and samplers; and to be a platform for experimentation with ideas
in Bayesian modelling.

JAGS is designed to work closely with the R language and environment for statistical
computation and graphics (http://www.r-project.org). In particular, you will need R to
prepare the input data for JAGS, and you will find it useful to install the coda package for R
to analyze the output.

JAGS is licensed under the GNU General Public License version 2. You may freely modify
and redistribute it under certain conditions (see the file COPYING for details).
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Chapter 2

Running a model in JAGS

JAGS is designed for inference on Bayesian models using Markov Chain Monte Carlo (MCMC)
simulation. Running a model refers to generating samples from the posterior distribution of
the model parameters. This takes place in five steps:

1. Defining the model

2. Compiling

3. Initializing

4. Adapting and burning-in

5. Monitoring

The next stages of analysis are done outside of JAGS: convergence diagnostics, model criticism,
and summarizing the samples must be done using other packages more suited to this task.
There are several R packages designed for analyzing MCMC output, and JAGS is designed for
easy transition of data to and from R.

2.1 Definition

There are two parts to the definition of a model in JAGS: a description of the model and the
definition of the data.

2.1.1 Model definition

The model is defined in a text file using a dialect of the BUGS language. The model definition
consists of a series of relations inside a block delimited by curly brackets { and } and preceded
by the keyword model. Here is the standard linear regression example:

model {
for (i in 1:N) {

Y[i] ~ dnorm(mu[i], tau)
mu[i] <- alpha + beta * (x[i] - x.bar)

}
x.bar <- mean(x)
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alpha ~ dnorm(0.0, 1.0E-4)
beta ~ dnorm(0.0, 1.0E-4)
sigma <- 1.0/sqrt(tau)
tau ~ dgamma(1.0E-3, 1.0E-3)

}

Each relation defines a node in the model in terms of other nodes that appear on the right
hand side. These are referred to as the parent nodes. Taken together, the nodes in the model
(together with the parent/child relationships represented as directed edges) form a directed
acyclic graph. The very top-level nodes in the graph, with no parents, are constant nodes,
which are defined either in the model definition (e.g. 1.0E-3), or in the data file (e.g. x[1]).

Relations can be of two types. A stochastic relation (~) defines a stochastic node, repre-
senting a random variable in the model. A deterministic relation (<-) defines a deterministic
node, the value of which is determined exactly by the values of its parents.

Nodes defined by a relation are embedded in named arrays. The node array mu is a vector
of length N containing N nodes (mu[1], . . ., mu[N]). The node array alpha is a scalar. JAGS
follows the S language convention that scalars are considered as vectors of length 1. Hence
the array alpha contains a single node alpha[1].

Deterministic nodes do not need to be embedded in node arrays. The node Y[i] could
equivalently be defined as

Y[i] ~ dnorm(alpha + beta * (x[i] - x.bar), tau)

In this version of the model definition, the node previously defined as mu[i] still exists, but
is not accessible to the user as it does not have a name. This ability to hide determinis-
tic nodes by embedding them in other expressions underscores an important fact: only the
stochastic nodes in a model are really important. Deterministic nodes are merely a syntacti-
cally convenient way of describing the relations between, or transformations of, the stochastic
nodes.

2.1.2 Data

The data are defined in a separate file from the model definition, in the format created by
the dump() function in R. The simplest way to prepare your data is to read them into R and
then dump them. Only numeric vectors, matrices and arrays are allowed. More complex
data structures such as factors, lists and data frames cannot be parsed by JAGS nor can non-
numeric vectors. Any R attributes of the data (such as names and dimnames) are stripped
when they are read into JAGS.

The data may contain missing values, but you cannot supply partially missing values for
a multivariate node. In JAGS a node is either completely observed, or completely unobserved.
The unobserved nodes are referred to as the parameters of the model. The data file therefore
defines, by omission, the parameters of the model.

Here are the data for the LINE example:

‘x‘ <-
c(1, 2, 3, 4, 5)
#R-style comments, like this one, can be embedded in the data file
‘Y‘ <-
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c(1, 3, 3, 3, 5)
‘N‘ <-
5

It is an error to supply a data value for a deterministic node. (See, however, section 7.0.4
on observable functions).

2.1.3 Node Array dimensions

Array declarations

JAGS allows the option of declaring the dimensions of node arrays in the model file. The
declarations are modelled on classic BUGS, and consist of the keyword var (for variable)
followed by a comma-separated list of array names, with their dimensions in square brackets.
The dimensions may be given in terms of any expression of the data that returns a single
integer value.

In the linear regression example, the model block could be preceded by

var x[N], Y[N], mu[N], alpha, beta, tau, sigma, x.bar;

Undeclared nodes

If a node array is not declared then JAGS has three methods of determining its size.

1. Using the data. The dimension of an undeclared node array may be inferred if it is
supplied in the data file.

2. Using the left hand side of the relations. The maximal index values on the left
hand side of a relation are taken to be the dimensions of the node array. For example,
in this case:

for (i in 1:N) {
for (j in 1:M) {

Y[i,j] ~ dnorm(mu[i,j], tau)
}

}

Y would be inferred to be an N ×M matrix. Using this method, empty indices are not
allowed on the left hand side of any relation.

3. Using the dimensions of the parents If a whole node array appears on the left hand
side of a relation, then its dimensions can be inferred from the dimensions of the nodes
on the right hand side. For example, if A is known to be an N ×N matrix and

B <- inverse(A)

Then B is also an N ×N matrix.
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Querying array dimensions

The JAGS compiler has two built-in functions for querying array sizes. The length() function
returns the number of elements in a node array, and the dim() function returns a vector
containing the dimensions of an array. These two functions may be used to simplify the data
preparation. For example, if Y represents a vector of observed values, then using the length()
function in a for loop:

for (i in 1:length(Y)) {
Y[i] ~ dnorm(mu[i], tau)

}

avoids the need to put a separate data value N in the file representing the length of Y.
For multi-dimensional arrays, the dim function serves a similar purpose. The dim function

returns a vector, which must be stored in an array before its elements can be accessed. For
this reason, calls to the dim function must always be in a data block (see section 7.0.5).

data {
D <- dim(Z)

}
model {

for (i in 1:D[1]) {
for (j in 1:D[2]) {

Z[i,j] <- dnorm(alpha[i] + beta[j], tau)
}

}
...

}

Clearly, the length() and dim() functions can only work if the size of the node array can be
inferred, using one of the three methods outlined above.

Note: the length() and dim() functions are different from all other functions in JAGS:
they do not act on nodes, but only on node arrays. As a consequence, an expression such as
dim(a %*% b) is syntactically incorrect.

2.2 Compilation

When a model is compiled, a graph representing the model is created in computer memory.
Compilation can fail for a number of reasons:

1. The graph contains a directed cycle. These are forbidden in JAGS.

2. A top-level parameter is undefined. Any node that is used on the right hand side of
a relation, but is not defined on the left hand side of any relation, is assumed to be a
constant node. Its value must be supplied in the data file.

3. The model uses a function or distribution that has not been defined in any of the loaded
modules.

The number of parallel chains to be run by JAGS is also defined at compilation time. Each
parallel chain should produce an independent sequence of samples from the posterior distri-
bution. By default, JAGS only runs a single chain.
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2.3 Initialization

Before a model can be run, it must be initialized. There are three steps in the initialization
of a model:

1. The initial values of the model parameters are set.

2. A Random Number Generator (RNG) is chosen for each parallel chain, and its initial
value is set.

3. The Samplers are chosen for each parameter in the model.

2.3.1 Parameter values

The user may supply an initial value file containing values for the model parameters. The file
may not contain values for logical or constant nodes. The format is the same as the data file
(see section 2.1.2).

If initial values are not supplied by the user, then each parameter chooses its own initial
value based on the values of its parents. The method of choosing the initial value depends on
whether the node is classified as a fixed effect or a random effect.1

Fixed effects are parameters for which all parents are observed. In this case, the initial
value is chosen to be a “typical value” from the prior distribution. The exact meaning
of “typical value” depends on the distribution of the stochastic node, but is usually the
mean, median, or mode.

Random effects are parameters for which one or more parents are unobserved. The initial
values of these nodes are chosen by taking a random sample from the prior distribution

These heuristic rules are designed to create reasonable default starting values in a wide range
of models.

If you rely on automatic initial value generation and are running multiple parallel chains,
then the values for the top-level model parameters will be the same in all chains. You may not
want this behaviour, especially if you are using the Gelman and Rubin convergence diagnostic,
which assumes that the initial values are over-dispersed with respect to the posterior distribu-
tion. In this case, you are advised to set the starting values manually using the ”parameters
in” statement.

2.3.2 RNGs

Each chain in JAGS has its own random number generator (RNG). RNGs are more correctly
referred to as pseudo-random number generators. They generate a sequence of numbers
that merely looks random but is, in fact, entirely determined by the initial state. You may
optionally set the name of the RNG and its initial state in the initial values file.

The name of the RNG is set as follows.

.RNG.name <- "name"
1Jean Baptiste Denis points out that this distinction between fixed and random effects is a little artificial

since it depends on the parameterization of the model. However, within the context of a single parameterization,
defined by a particular BUGS-language representation of the model, the distinction is unambiguous.

9



There are four RNGs supplied by the base module in JAGS with the following names:

"base::Wichmann-Hill"
"base::Marsaglia-Multicarry"
"base::Super-Duper"
"base::Mersenne-Twister"

There are two ways to set the starting state of the RNG. The simplest is to supply an
integer value to .RNG.seed, e.g.

".RNG.seed" <- 314159

The second is way to save the state of the RNG from one JAGS session (see the “PARAM-
ETERS TO” statement, section 3.1.12) and use this as the initial state of a new chain. The
state of any RNG in JAGS can be saved and loaded as an integer vector with the name
.RNG.state. For example,

".RNG.state" <- as.integer(c(20899,10892,29018))

is a valid state for the Marsaglia-Multicarry generator. You cannot supply an arbitrary integer
to .RNG.state. Both the length of the vector and the permitted values of its elements are
determined by the class of the RNG. The only safe way to use .RNG.state is to re-use a
previously saved state.

If no RNG names are supplied, then RNGs will be chosen automatically so that each
chain has its own independent random number stream. The exact behaviour depends on
which modules are loaded. The base module uses the four generators listed above for the
first four chains. If you want to work with more than four parallel chains, then you need to
explicitly supply the RNG name and the random seed for each chain.

By default, JAGS bases the initial state on the time stamp. This means that, when a
model is re-run, it generates an independent set of samples. If you want your model run to
be reproducible, you must explicitly set the .RNG.seed for each chain.

2.3.3 Samplers

A Sampler is an object that acts on a set of parameters and updates them from one iteration
to the next. During initialization of the model, Samplers are chosen automatically for all
parameters.

The Model holds an internal list of Sampler Factory objects, which inspect the graph,
recognize sets of parameters that can be updated with specific methods, and generate Sampler
objects for them. The list of Sampler Factories is traversed in order, starting with sampling
methods that are efficient, but limited to certain specific model structures and ending with
the most generic, possibly inefficient, methods. If no suitable Sampler can be generated for
one of the model parameters, an error message is generated.

The user has no direct control over the process of choosing Samplers. However, you may
indirectly control the process by loading a module that defines a new Sampler Factory. The
module will insert the new Sampler Factory at the beginning of the list, where it will be
queried before all of the other Sampler Factories.

A report on the samplers chosen by the model, and the stochastic nodes they act on, can
be generated using the “SAMPLERS TO” command. See section 3.1.13.
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2.4 Adaptation and burn-in

In theory, output from an MCMC sampler converges to the target distribution (i.e. the
posterior distribution of the model parameters) in the limit as the number of iterations tends
to infinity. In practice, all MCMC runs are finite. By convention, the MCMC output is
divided into two parts: an initial “burn-in” period, which is discarded, and the remainder
of the run, in which the output is considered to have converged (sufficiently close) to the
target distribution. Samples from the second part are used to create approximate summary
statistics for the target distribution.

By default, JAGS keeps only the current value of each node in the model, unless a monitor
has been defined for that node. The burn-in period of a JAGS run is therefore the interval
between model initialization and the creation of the first monitor.

When a model is initialized, it is in adaptive mode, meaning that the Samplers used by the
model may modify their behaviour for increased efficiency. Since this adaptation may depend
on the entire sample history, the sequence generated by an adapting sampler is no longer
a Markov chain, and is not guaranteed to converge to the target distribution. Therefore,
adaptive mode must be turned off at some point during burn-in, and a sufficient number of
iterations must take place after the adaptive phase to ensure convergence.

By default, adaptive mode is turned off half way through first update of a JAGS model,
although the user may also control the length of the adaptive phase directly. All samplers have
a built in test to determine whether they have converged to their optimal sampling behaviour.
If any sampler fails this validation test, a warning will be printed. To ensure optimal sampling
behaviour, the model should be run again from scratch using a longer adaptation period.

2.5 Monitoring

A monitor in JAGS is an object that records sampled values. The simplest monitor is a trace
monitor, which stores the sampled value of a node, and can dump the stored values to file in
the format used by the CODA package for R and S-PLUS.

More complex monitors can be defined. For example, the dic module defines a deviance
monitor, which records the deviance of observed stochastic nodes, and a pD monitor, which
estimates the contribution of a stochastic node to the effective number of parameters (pD) of
a model.

All monitors can be dumped to a file in R dump() format in the form of a list.
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Chapter 3

Running JAGS

JAGS has a command line interface. To invoke jags interactively, simply type jags at the
shell prompt on Unix, or the Windows command prompt on Windows. To invoke JAGS with
a script file, type

jags <script file>

Output from JAGS is printed to the standard output, even when a script file is being used.
The JAGS interface is designed to be forgiving. It will print a warning message if you make
a mistake, but otherwise try to keep going. This may create a cascade of error messages, of
which only the first is informative.

3.1 Scripting commands

JAGS has a simple set of scripting commands with a syntax loosely based on Stata. Commands
are shown below preceded by a dot (.). This is the JAGS prompt. Do not type the dot in
when you are entering the commands.

C-style block comments taking the form /* ... */ can be embedded anywhere in the script
file. Additionally, you may use R-style single-line comments starting with #.

If a scripting command takes a file name, then the name may be optionally enclosed in
quotes. Quotes are required when the file name contains space, or any character which is not
alphanumeric, or one of the following: _, -, ., /, \.

In the descriptions below, angular brackets <>, and the text inside them, represents a
parameter that should be replaced with the correct value by you. Anything inside square
brackets [] is optional. Do not type the square brackets if you wish to use an option.

3.1.1 MODEL IN

. model in <file>

Checks the syntactic correctness of the model description in file and reads it into memory.
The next compilation statement will compile this model.

See also: MODEL CLEAR (3.1.15)
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3.1.2 DATA IN

. data in <file>

JAGS keeps an internal data table containing the values of observed nodes inside each node
array. The DATA IN statement reads data from a file into this data table.

Several data statements may be used to read in data from more than one file. If two data
files contain data for the same node array, the second set of values will overwrite the first,
and a warning will be printed.

See also: DATA TO (3.1.11).

3.1.3 COMPILE

. compile [, nchains(<n>)]

Compiles the model using the information provided in the preceding model and data state-
ments. By default, a single Markov chain is created for the model, but if the nchains option
is given, then n chains are created

Following the compilation of the model, further DATA IN statements are legal, but have
no effect. A new model statement, on the other hand, will replace the current model.

3.1.4 PARAMETERS IN

. parameters in <file> [, chain(<n>)]

Reads the values in file and writes them to the corresponding parameters in chain n. The
file has the same format as the one in the DATA IN statement. The chain option may be
omitted, in which case the parameter values in all chains are set to the same value.

The PARAMETERS IN statement may be used before a model has been initialized. You
may only supply the values of unobserved stochastic nodes in the parameters file. Logical
nodes and constant nodes are forbidden.

See also: PARAMETERS TO (3.1.12)

3.1.5 INITIALIZE

. initialize

Initializes the model using the previously supplied data and parameter values supplied for
each chain.

3.1.6 UPDATE

. update <n> [,by(<m>)]

Updates the model by n iterations.
The first UPDATE statement turns off adaptive mode for all samplers in the model after

n/2 iterations. A warning is printed if adaptation is incomplete. In this case the model must
be run again with a longer adaptation phase, starting from the MODEL IN statement.

A progress bar is printed on the standard output consisting of 50 asterisks. If the by
option is supplied, a new asterisk is printed every m iterations. If this entails more than 50
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asterisks, the progress bar will be wrapped over several lines. If m is zero, the printing of the
progress bar is suppressed.

3.1.7 ADAPT

. adapt <n> [,by(<m>)]

Updates the model by n iterations and then turns of adaptive mode.
Use this instead of the first UPDATE statement if you want explicit control over the

length of the adaptive sampling phase.

3.1.8 MONITOR

In JAGS, a monitor is an object that records a value based on the current state of a node. The
simplest monitor simply records the value of the node itself. This is called a “trace” monitor.
More complex monitors can be defined that do additional calculations. For example, the
dic module defines a “deviance” monitor that records the deviance of an observed stochastic
node, and a “pD” monitor that estimates the contribution of a node to the effective number
of parameters in the model.

In order to distinguish between different classes of Monitor, all monitor statements in the
JAGS scripting language have a type option. If this is omitted, a trace monitor is assumed.

. monitor <varname> [, thin(n), type(<name>)]

Sets a monitor for variable <varname>, The thin option sets the thinning interval of the
monitor so that it will only record every nth value.

. monitor [, type(<name>)]

A monitor keyword on its own, with no variable name, will create a set of monitors for default
nodes in the model. The nodes chosen as “default” nodes depend on the type of monitor.
For a trace monitor, the default nodes are all fixed effects (i.e. all model parameters with
observed parents).

. monitor clear <varname> [, type(<name>)]

Clears the monitor of the given type associated with variable <varname>.

. monitors to <filename> [, type(<name>)]

Dumps the values of all monitors of the given type to the given file in a format that can be
read into R using the source() function. The R structure is a list with one entry for each
sampler.

Note the plural (“monitors to” not “monitor to”).

3.1.9 CODA

. coda <varname> [, stem(<filename>)]

If the named node has a trace monitor, this dumps the monitored values of to files CODAindex.txt,
CODAindex1.out, CODAindex2.txt, . . . in a form that can be read by the coda package of R.
The file name stem may be changed from CODA to another value by using the stem() option.
The wild-card character “*” may be used to dump all monitored nodes
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3.1.10 EXIT

. exit

Exits JAGS. JAGS will also exit when it reads an end-of-file character. Note that although
JAGS behaves in many ways like classic BUGS, it will not automatically dump the contents
of the monitors on exit. You must use the CODA statement before exiting.

3.1.11 DATA TO

. data to <filename>

Writes the data (i.e. the values of the observed nodes) to a file in the R dump format. The
same file can be used in a DATA IN statement for a subsequent model.

See also: DATA IN (3.1.2)

3.1.12 PARAMETERS TO

. parameters to <file> [, chain(<n>)]

Writes the current parameter values (i.e. the values of the unobserved stochastic nodes) in
chain <n> to a file in R dump format. The name and current state of the RNG for chain
<n> is also dumped to the file. The same file can be used as input in a PARAMETERS IN
statement in a subsequent run.

See also: PARAMETERS IN (3.1.4)

3.1.13 SAMPLERS TO

. samplers to <file>

Writes out a summary of the samplers to the given file. The output appears in three tab-
separated columns, with one row for each sampled node

• The index number of the sampler (starting with 1). The index number gives the order
in which Samplers are updated at each iteration.

• The name of the sampler, matching the index number

• The name of the sampled node.

If a Sampler updates multiple nodes then it is represented by multiple rows with the same
index number.

3.1.14 LOAD

. load <module>

Loads a module into JAGS (see chapter 4). Once loaded, a module cannot be unloaded in the
same JAGS session.

15



3.1.15 MODEL CLEAR

. model clear

Clears the current model. The data table (see section 3.1.2) remains intact

3.1.16 Print Working Directory (PWD)

. pwd

Prints the name of the current working directory. This is where JAGS will look for files when
the file name is given without a full path, e.g. "mymodel.bug".

3.1.17 Change Directory (CD)

. cd <dirname>

Changes the working directory to <dirname>

3.1.18 Directory list (DIR)

. dir

Lists the files in the current working directory.

3.1.19 RUN

. run <cmdfile>

Opens the file <cmdfile> and reads further scripting commands until the end of the file. Note
that if the file contains an EXIT statement, then the JAGS session will terminate.

3.2 Errors

There are two kinds of errors in JAGS: runtime errors, which are due to mistakes in the model
specification, and logic errors which are internal errors in the JAGS program.

Logic errors are generally created in the lower-level parts of the JAGS library, where it is
not possible to give an informative error message. The upper layers of the JAGS program are
supposed to catch such errors before they occur, and return a useful error message that will
help you diagnose the problem. Inevitably, some errors slip through. Hence, if you get a logic
error, there is probably an error in your input to JAGS, although it may not be obvious what
it is. Please send a bug report (see “Feedback” below) whenever you get a logic error.

Error messages may also be generated when parsing files (model files, data files, command
files). The error messages generated in this case are created automatically by the program
yacc. They generally take the form “syntax error, unexpected FOO, expecting BAR” and
are not always abundantly clear.

If a model compiles and initializes correctly, but an error occurs during updating, then
the current state of the model will be dumped to a file named jags.dumpN.R where N is the
chain number. You should then load the dumped data into R to inspect the state of each
chain when the error occurred.
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Chapter 4

Modules

The JAGS library is distributed along with certain dynamically loadable modules that extend
its functionality. A module can define new objects of the following classes:

1. functions and distributions, the basic building blocks of the BUGS language.

2. samplers, the objects which update the parameters of the model at each iteration, and
sampler factories, the objects that create new samplers for specific model structures.
If the module defines a new distribution, then it will typically also define a new sampler
for that distribution.

3. monitors, the objects that record sampled values for later analysis, and monitor
factories that create them.

4. random number generators, the objects that drive the MCMC algorithm and RNG
factories that create them.

The base module and the bugs module are loaded automatically at start time. Others
may be loaded by the user.

4.1 The base module

The base module supply the base functionality for the JAGS library to function correctly. It
is loaded first by default.

4.1.1 Base Samplers

The base module defines samplers that use highly generic update methods. These sampling
methods only require basic information about the stochastic nodes they sample. Conversely,
they may not be fully efficient.

Three samplers are currently defined:

1. The Finite sampler can sample a discrete-valued node with fixed support of less than
20 possible values. The node must not be bounded using the T(,) construct

2. The Real Slice Sampler can sample any scalar real-valued stochastic node.

3. The Discrete Slice Sampler can sample any scalar discrete-valued stochastic node.
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4.1.2 Base RNGs

The base module defines four RNGs, taken directly from R, with the following names:

1. "base::Wichmann-Hill"

2. "base::Marsaglia-Multicarry"

3. "base::Super-Duper"

4. "base::Mersenne-Twister"

A single RNG factory object is also defined by the base module which will supply these
RNGs for chains 1 to 4 respectively, if “RNG.name” is not specified in the initial values file.
All chains generated by the base RNG factory are initialized using the current time stamp.

The base RNG factory can only generate four independent RNGs from a single seed.
Hence JAGS is limited to four parallel chains, unless the user specifies the RNG name and
seed in each initial value file.

4.1.3 Base Monitors

The base module defines the TraceMonitor class (type “trace”). This is the monitor class
that simply records the current value of the node at each iteration.

When default nodes for monitoring are requested, the factory object for TraceMonitors
will select all fixed effects (Unobserved stochastic nodes with observed parents) in the model.
In a typical model, these will be the highest-level model parameters.

4.2 The bugs module

The bugs module defines some of the functions and distributions from WinBUGS. These are
described in more detail in sections 5 and 6. The bugs module also defines conjugate samplers
for efficient Gibbs sampling.

4.3 The mix module

The mix module defines a novel distribution dnormmix(mu,tau,pi) representing a finite mix-
ture of normal distributions. In the parameterization of the dnormmix distribution, µ, τ , and
π are vectors of the same length, and the density of y ~ dnormmix(mu, tau, pi) is

f(y|µ, τ, π) =
∑
i

πiτ
1
2
i φ(τ

1
2
i (y − µi))

where φ() is the probability density function of a standard normal distribution.
The mix module also defines a sampler that is designed to act on finite normal mixtures.

It uses tempered transitions to jump between distant modes of the multi-modal posterior
distribution generated by such models. This sampler is still experimental and has not been
tested on a sufficiently wide range of problems.
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4.4 The dic module

The dic module defines new monitor classes for Bayesian model criticism using deviance-
based measures. The deviance monitor records the deviance of an observed stochastic node.
The pD monitor can be used to estimate the contribution of a stochastic node to the effective
number of parameters in the model. Finally, the popt monitor can be used to estimate the
optimism of the expected deviance.

The rjags package provides classes and functions for manipulating penalized deviances.
See the rjags manual for details. The use of these monitors through the command-line interface
is described below.

4.4.1 The deviance monitor

The JAGS library already has the facility to create a deviance node even without the dic
module being loaded. The deviance node gives the total deviance of the model. The deviance
monitor defined in the dic module allows more a more detailed evaluation of the model
deviance by recording the deviance of individual nodes. The command

monitor, type(deviance)

will create a deviance monitor for all observed stochastic nodes. These monitors cannot be
dumped to file in CODA format. Instead they are dumped using the command

monitors to "myfile.R", type(deviance)

The file “myfile.R” can then be read into R with the source() function. This creates a list
named “deviance” which contains the sampled values.

4.4.2 The pD monitor

The pD monitor estimates the contribution to the effective number of parameters (pD) [3]
from an observed stochastic node by comparing the deviance deviance across multiple chains
[1]. It is created by using the option type(pD). If the model has only one chain then a pD
monitor cannot be defined.

Like the deviance monitor, the pD monitor factory will create a monitor for every observed
stochastic node using the command.

monitor, type(pD)

The sum of the monitor values gives the effective number of parameters of the model, in the
same way that the sum of the deviance monitor values gives the total deviance of the model.

Again, the values of the pD monitors are dumped to file using

monitors to "myfile.R", type(pD)

When read into R using the source() function, this creates a list object named “pD” con-
taining the sampled values.
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4.4.3 The popt monitor

The popt monitor works exactly like the pD monitor, but is created using the option type(popt).
It gives an estimate of the optimism of the expected deviance (popt), which can be added to
the mean deviance to give the penalized expected deviance [2].

Under asymptotically favourable conditions in which pD � n, where n is the sample size

popt ≈ 2pD

For generalized linear models, a better approximation is

popt ≈
n∑
i=1

pDi

1− pDi

where pD =
∑

i pDi .
The popt monitor uses importance weights to estimate popt. The resulting estimates may

be numerically unstable when pDi is not small. This typically occurs in random-effects models,
so it is recommended to check the output of the popt monitor with MCMC diagnostics.

4.5 The msm module

The msm module defines the matrix exponential function mexp and the multi-state distribution
dmstate which describes the transitions between observed states in continuous-time multi-
state Markov transition models.
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Chapter 5

Functions

Functions allow deterministic nodes to be defined using the <- (“gets”) operator. Most of the
functions in JAGS are scalar functions taking scalar arguments. However, JAGS also allows
arbitrary vector- and array-valued functions, such as the matrix multiplication operator %*%
and the transpose function t() defined in the bugs module, and the matrix exponential
function mexp() defined in the msm module. JAGS also uses an enriched dialect of the BUGS
language with a number of operators that are used in the S language.

Scalar functions taking scalar arguments are automatically vectorized. They can also be
called when the arguments are arrays with conforming dimensions, or scalars. So, for example,
the scalar c can be added to the matrix A using

B <- A + c

instead of the more verbose form

D <- dim(A)
for (i in 1:D[1])

for (j in 1:D[2]) {
B[i,j] <- A[i,j] + c

}
}

5.1 Base functions

The functions defined by the base module all appear as infix or prefix operators. The syntax
of these operators is built into the JAGS parser. They are therefore considered part of the
modelling language. Table 5.1 lists them in reverse order of precedence.

Logical operators convert numerical arguments to logical values: zero arguments are con-
verted to FALSE and non-zero arguments to TRUE. Logical and comparison operators return
the value 1 if the result is TRUE and 0 if the result is FALSE. Comparison operators are
non-associative: the expression x < y < z, for example, is syntactically incorrect.

The %special% function is an exception in table 5.1. It is not a function defined by the
base module, but is a place-holder for any function with a name starting and ending with
the character “%” Such functions are automatically recognized as infix operators by the JAGS
model parser, with precedence defined by table 5.1.

21



Type Usage Description
Logical x || y Or
operators x && y And

!x Not
Comparison x > y Greater than
operators x >= y Greater than or equal to

x < y Less than
x <= y Less than or equal to
x == y Equal

Arithmetic x + y Addition
operators x - y Subtraction

x * y Multiplication
x / y Division
x %special% y User-defined operators
-x Unary minus

Power function x^y

Table 5.1: Base functions listed in reverse order of precedence

5.2 Functions in the bugs module

5.2.1 Scalar functions

Table 5.2 lists the scalar-valued functions in the bugs module that also have scalar arguments.
These functions are automatically vectorized when they are given vector, matrix, or array
arguments with conforming dimensions.

Table 5.3 lists the link functions in the bugs module. These are smooth scalar-valued func-
tions that may be specified using an S-style replacement function notation. So, for example,
the log link

log(y) <- x

is equivalent to the more direct use of its inverse, the exponential function:

y <- exp(x)

This usage comes from the use of link functions in generalized linear models.

5.3 Scalar-valued functions with vector arguments

Table 5.4 lists the scalar-valued functions in the bugs module that take general arguments.
Unless otherwise stated in table 5.4, the arguments to these functions may be scalar, vector,
or higher-dimensional arrays.

The max() and min() functions work like the corresponding R functions. They take a
variable number of arguments and return the maximum/minimum element over all supplied
arguments. This usage is compatible with WinBUGS, although more general.
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Usage Description Value Restrictions on arguments
abs(x) Absolute value Real
cos(x) Cosine Real
cloglog(x) Complementary log log Real 0 < x < 1
equals(x,y) Test for equality Logical
exp(x) Exponential Real
icloglog(x) Inverse complementary Real

log log function
ilogit(x) Inverse logit Real
log(x) Log function Real x > 0
logfact(x) Log factorial Real x > −1
loggam(x) Log gamma Real x > 0
logit(x) Logit Real 0 < x < 1
phi(x) Standard normal cdf Real
pow(x,z) Power function Real If x < 0 then z is integer
probit(x) Probit Real 0 < x < 1
round(x) Round to integer Integer

away from zero
sin(x) Sine Real
sqrt(x) Square-root Real x >= 0
step(x) Test for x ≥ 0 Logical
trunc(x) Round to integer Integer

towards zero

Table 5.2: Scalar functions in the bugs module

Link function Description Range Inverse
cloglog(y) <- x Complementary log log 0 < y < 1 y <- icloglog(x)
log(y) <- x Log 0 < y y <- exp(x)
logit(y) <- x Logit 0 < y < 1 y <- ilogit(x)
probit(y) <- x Probit 0 < y < 1 y <- phi(x)

Table 5.3: Link functions in the bugs module
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Function Description Restrictions
inprod(x1,x2) Inner product Dimensions of a, b conform
interp.lin(e,v1,v2) Linear Interpolation e scalar,

v1, v2 conforming vectors
logdet(a) Log determinant a is a square matrix
max(x1,x2,...) Maximum element among all arguments
mean(x) Mean of elements of a
min(x1,x2,...) Minimum element among all arguments
prod(x) Product of elements of a
sum(a) Sum of elements of a
sd(a) Standard deviation of elements of a

Table 5.4: Scalar-valued functions with general arguments in the bugs module

Usage Description Restrictions
inverse(a) Matrix inverse a is a square matrix
mexp(a) Matrix exponential a is a square matrix
rank(v) Ranks of elements of v v is a vector
sort(v) Elements of v in order v is a vector
t(a) Transpose a is a matrix
a %*% b Matrix multiplication a, b conforming vector or matrices

Table 5.5: Vector- or matrix-valued functions in the bugs module

5.4 Vector- and array-valued functions

Table 5.5 lists vector- or matrix-valued functions in the bugs module.
The sort and rank functions behaves like their R namesakes: sort accepts a vector and

returns the same values sorted in ascending order; rank returns a vector of ranks. This is
distinct from WinBUGS, which has two scalar-valued functions rank and ranked.
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Chapter 6

Distributions

Distributions are used to define stochastic nodes using the ~ operator. The distributions
defined in the bugs module are listed in table 6.1 (real-valued distributions), 6.2 (discrete-
valued distributions), and 6.3 (multivariate distributions).

Some distributions have restrictions on the valid parameter values, and these are indicated
in the tables. If a Distribution object is given invalid parameter values when evaluating the
log-likelihood, it returns −∞. When a model is initialized, all stochastic nodes are checked
to ensure that the initial parameter values are valid for their distribution.
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Name Usage Density Lower Upper
Beta dbeta(a,b) xa−1(1− x)b−1

β(a, b)
0 1

a > 0, b > 0
Chi-square dchisqr(k) x

k
2
−1 exp(−x/2)

2
k
2 Γ( k

2
)

0
k > 0

Double ddexp(mu,tau)
τ exp(−τ |x− µ|)/2

exponential τ > 0
Exponential dexp(lambda)

λ exp(−λx)
0

λ > 0
Gamma dgamma(r, mu) µrxr−1 exp(−µx)

Γ(r)
0

µ > 0, r > 0
Generalized dgen.gamma(r,mu,beta)

βµβrxβr−1 exp{−(µx)β} 0
gamma µ > 0, β > 0, r > 0
Log-normal dlnorm(mu,tau)

τ
1
2x−1 exp

{
−τ(log(x)− µ)2/2

} 0
τ > 0

Normal dnorm(mu,tau) (
τ

2π

) 1
2 exp{−(x− µ)2τ}τ > 0

Pareto dpar(alpha, c)
αcαx−(α+1) c

α > 0, c > 0
Student t dt(mu,tau,k) Γ( k+1

2
)

Γ( k
2

)

(
τ
kπ

) 1
2

{
1 + τ(x−µ)2

k

}− (k+1)
2

τ > 0, k > 0
Uniform dunif(a,b) 1

b− a
a b

a < b
Weibull dweib(v, lambda)

vλxv−1 exp(−λxv) 0
v > 0, λ > 0

Table 6.1: Univariate real-valued distributions in the bugs module

Name Usage Density Lower Upper
Bernoulli dbern(p)

px(1− p)1−x 0 1
0 < p < 1

Binomial dbin(p,n) (
n
x

)
px(1− p)n−x 0 n

0 < p < 1, n ∈ N∗
Categorical dcat(p) px∑

i pi
1 N

p ∈ (R+)N

Hypergeometric dhyper(n1,n2,m1,psi) (
n1

x

)(
n2

m1−x
)
ψx

max(0, n+ −m1) min(n1,m1)
0 ≤ ni, 0 < m1 ≤ n+

Negative dnegbin(p, r) (
x+r−1
x

)
pr(1− p)x 0

binomial 0 < p < 1, r ∈ N+

Poisson dpois(lambda) exp(−λ)λx
x!

0
λ > 0

Table 6.2: Discrete univariate distributions in the bugs module
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Name Usage Density
Dirichlet p ~ ddirch(alpha)

Γ(
∑

i αi)
∏
j

p
αj−1
j

Γ(αj)αj ≥ 0

Multivariate x ~ dmnorm(mu,Omega) (
|Ω|
2π

) 1
2
exp{−(x− µ)TΩ(x− µ)/2}normal Ω positive definite

Wishart Omega ~ dwish(R,k) |Ω|(k−p−1)/2|R|k/2 exp{−Tr(RΩ/2)}
2pk/2Γp(k/2)R pos. def.

Multivariate x ~ dmt(mu,Omega,k) Γ{(k + p)/2}
Γ(k/2)(nπ)p/2

|Ω|1/2
{

1 + 1
k (x− µ)TΩ(x− µ)

}− (k+p)
2

Student t Ω pos. def.
Multinomial x ~ dmulti(p, n)

n!
∏
j

p
xj

j

xj !
∑

i xi = n

Table 6.3: Multivariate distributions in the bugs module
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Chapter 7

Differences between JAGS and
WinBUGS

Although JAGS aims for the same functionality as WinBUGS, there are a number of important
differences.

7.0.1 Data format

There is no need to transpose matrices and arrays when transferring data between R and JAGS,
since JAGS stores the values of an array in “column major” order, like R and FORTRAN (i.e.
filling the left-hand index first).

If you have an S-style data file for WinBUGS and you wish to convert it for JAGS, then
use the command bugs2jags, which is supplied with the coda package.

7.0.2 Samplers

JAGS has a more limited set of samplers than WinBUGS, which leads to relatively poor
performance.

7.0.3 Distributions

Structural zeros are allowed in the Dirichlet distribution. If

p ~ ddirch(alpha)

and some of the elements of alpha are zero, then the corresponding elements of p will be fixed
to zero.

The Multinomial (dmulti) and Categorical (dcat) distributions, which take a vector of
probabilities as a parameter, may use unnormalized probabilities. The probability vector is
normalized internally so that

pi →
pi∑
j pj
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7.0.4 Observable Functions

Logical nodes in the BUGS language are a convenient way of describing the relationships
between observables (constant and stochastic nodes), but are not themselves observable. You
cannot supply data values for a logical node.

This restriction can occasionally be inconvenient, as there are important cases where the
data are a deterministic function of unobserved variables. Two important examples are

1. Censored data, which commonly occurs in survival analysis. In the most general case,
we know that unobserved failure time T lies in the interval (L,U ].

2. Aggregate data when we observe the sum of two or more unobserved variables.

JAGS contains two novel distributions to handle these situations.

1. The dinterval distribution represents interval-censored data. It has two parameters:
t the original continuous variable, and c[], a vector of cut points of length M , say. If X
∼ dinterval(t, c) then
X = 0 if t < c[1]
X = m if c[m] ≤ t < c[m+ 1] for 1 ≤ m < M
X = M if c[M ] ≤ t.

2. The dsum distribution represents the sum of two variables. It has two parameters, x1
and x2. If Y ∼ dsum(x1,x2) then Y = x1 + x2.

These distributions exist to give a likelihood to data that is, in fact, a deterministic function
of the parameters. The relation

Y ~ dsum(x1, x2)

is logically equivalent to

Y <- x1 + x2

But the latter form does not create a contribution to the likelihood, and does not allow you
to define Y as data. The likelihood function is trivial: it is 1 if the parameters are consistent
with the data and 0 otherwise. The dsum distribution also requires a special sampler, which
can currently only handle the case where both x1 and x2 are discrete-valued.

7.0.5 Data transformations

JAGS allows data transformations, but the syntax is different from BUGS. BUGS allows you
to put a stochastic node twice on the left hand side of a relation, as in this example taken
from the manual

for (i in 1:N) {
z[i] <- sqrt(y[i])
z[i] ~ dnorm(mu, tau)

}

This is forbidden in JAGS. You must put data transformations in a separate block of relations
preceded by the keyword data:
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data {
for (i in 1:N) {

z[i] <- sqrt(y[i])
}

}
model {

for (i in 1:N) {
z[i] ~ dnorm(mu, tau)

}
...

}

This syntax preserves the declarative nature of the BUGS language. In effect, the data block
defines a distinct model, which describes how the data is generated. Each node in this model
is forward-sampled once, and then the node values are read back into the data table. The
data block is not limited to logical relations, but may also include stochastic relations. You
may therefore use it in simulations, generating data from a stochastic model that is different
from the one used to analyse the data in the model statement.

This example shows a simple location-scale problem in which the “true” values of the
parameters mu and tau are generated from a given prior in the data block, and the generated
data is analyzed in the model block.

data {
for (i in 1:N) {

y[i] ~ dnorm(mu.true, tau.true)
}
mu.true ~ dnorm(0,1);
tau.true ~ dgamma(1,3);

}
model {

for (i in 1:N) {
y[i] ~ dnorm(mu, tau)

}
mu ~ dnorm(0, 1.0E-3)
tau ~ dgamma(1.0E-3, 1.0E-3)

}

Beware, however, that every node in the data statement will be considered as data in the sub-
sequent model statement. This example, although superficially similar, has a quite different
interpretation.

data {
for (i in 1:N) {

y[i] ~ dnorm(mu, tau)
}
mu ~ dnorm(0,1);
tau ~ dgamma(1,3);

}
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model {
for (i in 1:N) {

y[i] ~ dnorm(mu, tau)
}
mu ~ dnorm(0, 1.0E-3)
tau ~ dgamma(1.0E-3, 1.0E-3)

}

Since the names mu and tau are used in both data and model blocks, these nodes will be
considered as observed in the model and their values will be fixed at those values generated
in the data block.

7.0.6 Directed cycles

Directed cycles are forbidden in JAGS. There are two important instances where directed
cycles are used in BUGS.

• Defining autoregressive priors

• Defining ordered priors

For the first case, the GeoBUGS extension to WinBUGS provides some convenient ways of
defining autoregressive priors. These should be available in a future version of JAGS.

7.0.7 Censoring, truncation and prior ordering

These are three, closely related issues that are all handled using the I(,) construct in BUGS.
Censoring occurs when a variable X is not observed directly, but is observed only to lie

in the range (L,U ]. Censoring is an a posteriori restriction of the data, and is represented in
WinBUGS by the I(,) construct, e.g.

X ~ dnorm(theta, tau) I(L,U)

where L and U are constant nodes.
Truncation occurs when a variable is known a priori to lie in a certain range. Although

BUGS has no construct for representing truncated variables, it turns out that there is no
difference between censoring and truncation for top-level parameters (i.e. variables with no
unobserved parents). Hence, for example, this

theta ~ dnorm(0, 1.0E-3) I(0, )

is a perfectly valid way to describe a parameter θ with a half-normal prior distribution.
Prior ordering occurs when a vector of nodes is known a priori to be strictly increasing

or decreasing. It can be represented in WinBUGS with symmetric I(, ) constructs, e.g.

X[1] ~ dnorm(0, 1.0E-3) I(,X[2])
X[2] ~ dnorm(0, 1.0E-3) I(X[1],)

ensures that X[1] ≤ X[2].
JAGS makes an attempt to separate these three concepts.
Censoring is handled in JAGS using the new distribution dinterval (section 7.0.4). This

can be illustrated with a survival analysis example. A right-censored survival time ti with a
Weibull distribution is described in WinBUGS as follows:
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t[i] ~ dweib(r, mu[i]) I(c[i], )

where ti is unobserved if ti > ci. In JAGS this becomes

is.censored[i] ~ dinterval(t[i], c[i])
t[i] ~ dweib(r, mu[i])

where is.censored[i] is an indicator variable that takes the value 1 if ti is censored and 0
otherwise. See the MICE and KIDNEY examples in the “classic bugs” set of examples.

Truncation is represented in JAGS using the T(,) construct, which has the same syntax
as the I(,) construct in WinBUGS, but has a different interpretation. If

X ~ dfoo(theta) T(L,U)

then a priori X is known to lie between L and U . This generates a likelihood

p(x | θ)
P (L ≤ X ≤ U | θ)

if L ≤ X ≤ U and zero otherwise, where p(x | θ) is the density of X given θ according
to the distribution foo. Note that calculation of the denominator may be computationally
expensive.

Prior ordering of top-level parameters in the model can be achieved using the sort func-
tion, which sorts a vector in ascending order.

Symmetric truncation relations like this

alpha[1] ~ dnorm(0, 1.0E-3) I(,alpha[2])
alpha[2] ~ dnorm(0, 1.0E-3) I(alpha[1],alpha[3])
alpha[3] ~ dnorm(0, 1.0E-3) I(alpha[2],)

Should be replaced by this

for (i in 1:3) {
alpha0[i] ~ dnorm(0, 1.0E-3)

}
alpha[1:3] <- sort(alpha0)
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Chapter 8

Development

At some point there will be a separate manual for JAGS developers. At the moment, if you
want to start hacking JAGS then you must rely on the source file documentation. This is
written in JavaDoc style and can be processed using doxygen to generate a reference manual
in the doc directory.

The JAGS source is divided into three main directories: lib, modules, and terminal.
The lib directory contains the JAGS library, which contains all the facilities for defining a
Bayesian graphical model in the BUGS language, running the Gibbs sampler and monitoring
the sampled values. The JAGS library is divided into several convenience libraries

sarray which defines the basic SArray class, modelled on an S language array, and its asso-
ciated classes.

function which defines the interface for functions and the FuncTab class that allows you to
reference them by name.

distribution which defines the interface for distribution and the DistTab class that allows
you to reference them by name.

graph which defines the various Node classes used by JAGS when constructing a Bayesian
graphical model, as well as the Graph class which is a container for nodes.

sampler which defines the interface for Samplers, which update stochastic nodes in the
graph.

model which defines all the classes needed to create a model, including monitor classes.

compiler which contains the Compiler class and a number of supporting classes designed for
an efficient translation of a BUGS-language description the model into a Graph.

rng which defines the interface for random number generators (RNGs) and the factories that
create them.

util which contains some utility functions used in the rest of the JAGS library.

The Console class provides a clean interface to the JAGS library. The member functions of the
Console class conduct all of the operations one may wish to do on a Bayesian graphical model.
They are designed to catch any exceptions thrown by the library and print an informative
message to either an output stream or an error stream, depending on the result.
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The modules directory contains the source code for JAGS modules, which contain concrete
classes corresponding to the abstract classes defined in the JAGS library.

The terminal directory contains the source code for a reference front end for the JAGS
library, which uses the Stata-like syntax described in section 3.1.
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Chapter 9

Feedback

Please send feedback to martyn_plummer@users.sourceforge.net. I am particularly inter-
ested in the following problems:

• Crashes, including both segmentation faults and uncaught exceptions.

• Incomprehensible error messages

• Models that should compile, but don’t

• Output that cannot be validated against WinBUGS

• Documentation erors

If you want to send a bug report, it must be reproducible. Send the model file, the data
file, the initial value file and a script file that will reproduce the problem. Describe what you
think should happen, and what did happen.
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Appendix A

Installation

JAGS is currently distributed in source form only. If you want to use it, you have to compile
it. An exception is made for Microsoft Windows, for which a binary distribution is available.

JAGS has been successfully built on GNU/Linux, FreeBSD, Windows XP, Mac OS X,
IRIX and Solaris. If you manage to build JAGS on any other platform, then please let me
know at martyn_plummer@users.sourceforge.net.

These instructions assume that you in a unix environment. If you are working on Windows,
then you should skip straight to section A.3.5

A.1 Configuration

JAGS follows the usual GNU convention of

./configure
make
make install

which is described in more detail in the file INSTALL in the top-level source directory. On
some UNIX platforms, you may be required to use GNU make (gmake) instead of the native
make command.

At configure time you also have the option of defining options such as:

• The names of the C, C++, and Fortran compilers. Although JAGS contains no Fortran
code, you are required to define a Fortran compiler so that JAGS modules can be linked
against libraries written in Fortran (such as BLAS and LAPACK)

• Optimization flags for the C and C++ compilers. JAGS is optimized by default if the
GNU compiler (gcc) is used. Otherwise you must explicitly supply optimization flags.

• Installation directories. JAGS conforms to the GNU standards for where files are in-
stalled. You can control the installation directories in more detail using the flags that
are listed when you type ./configure --help.

A.1.1 Configuration for a private installation

If you do not have administrative privileges, you may wish to install JAGS in your home
directory. This can be done with the following configuration options
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export JAGS_HOME=$HOME/jags #or wherever you want it
./configure --bindir=$JAGS_HOME/bin --libdir=$JAGS_HOME/lib \
--libexecdir=$JAGS_HOME/bin --includedir=$JAGS_HOME/include

You then need to modify your PATH environment variable to include $JAGS_HOME/bin. You
may also need to set LD_LIBRARY_PATH to include $JAGS_HOME/lib (On Linux this is not
necessary as the location of libjags and libjrmath is hard-coded into the JAGS binary).

A.2 BLAS and LAPACK

BLAS (Basic Linear Algebra System) and LAPACK (Linear Algebra Pack) are two libraries
of routines for linear algebra. They are used by the multivariate functions and distributions
in the bugs module. BLAS and LAPACK must be available as shared libraries. Although
earlier versions of JAGS could be statically linked, this is no longer possible. Most unix-
like operating system vendors supply shared libraries that provide the BLAS and LAPACK
functions, although the libraries may not literally be called “blas” and “lapack”. During
configuration, a default list of these libraries will be checked. If configure cannot find a
suitable library, it will stop with an error message.

You may use alternative BLAS and LAPACK libraries using the configure options --with-blas
and --with-lapack

./configure --with-blas="-lmyblas" --with-lapack="-lmylapack"

If the BLAS and LAPACK libraries are in a directory that is not on the default linker
path, you must set the LDFLAGS environment variable to point to this directory at configure
time:

LDFLAGS="-L/path/to/my/libs" ./configure ...

If your BLAS and LAPACK libraries depend on other libraries that are not on the linker
path, you must supply these dependency libraries as additional arguments to --with-blas
and --with-lapack (See section A.3.1 for some examples of this).

At runtime, if you have linked JAGS against BLAS or LAPACK in a non-standard location,
you must supply this location with the environment variable LD_LIBRARY_PATH, e.g.

LD_LIBRARY_PATH="/path/to/my/libs:${LD_LIBRARY_PATH}"

Alternatively, you may hard-code the paths to the blas and lapack libraries at compile time.
This is compiler and platform-specific, but is typically achieved with

LDFLAGS="-L/path/to/my/libs -R/path/to/my/libs

Note: You should not link to BLAS and LAPACK libraries by giving the shared object
files as arguments to --with-blas and --with-lapack:

#DON’T DO THIS!
./configure --with-blas=/path/to/my/libblas.so \
--with-lapack=/path/to/my/liblapack.so

Although JAGS will compile correctly, the resulting bugs module will not be linked to your
BLAS or LAPACK libraries. Although this can be rectified using the LD_PRELOAD environ-
ment variable it is not recommended.
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A.3 Platform-specific notes

A.3.1 GNU/Linux

Fortran compiler

The GNU FORTRAN compiler changed between gcc 3.x and gcc 4.x from g77 to gfortran.
Code produced by the two compilers is binary incompatible. If your BLAS and LAPACK
libraries are linked against libgfortran, then they were built with gfortran and you must
also use this to compile JAGS.

Most recent GNU/Linux distributions have moved completely to gcc 4.x. However, some
older systems may have both compilers installed. Unfortunately, if g77 is on your path then
the configure script will find it first, and will attempt to use it to build JAGS. This results in
a failure to recognize the installed BLAS and LAPACK libraries. In this event, set the F77
variable at configure time.

F77=gfortran ./configure

BLAS and LAPACK

The BLAS and LAPACK libraries from Netlib (http://www.netlib.org) should be pro-
vided as part of your Linux distribution. If your Linux distribution splits packages into “user”
and “developer” versions, then you must install the developer package (e.g. blas-devel and
lapack-devel).

Suse Linux Enterprise Server (SLES) does not include BLAS and LAPACK in the
main distribution. They are included in the SLES SDK, on a set of CD/DVD images which
can be downloaded from the Novell web site. See http://developer.novell.com/wiki/
index.php/SLES_SDK for more information.

It is quite common for the Netlib implementations of BLAS and LAPACK to break when
they are compiled with the latest GNU compilers. Linux distributions that use “bleeding
edge” development tools – such as Fedora – may ship with a broken version of BLAS and
LAPACK. Normally, this problem is quickly identified and fixed. However, you need to
take care to use the online updates of the BLAS and LAPACK packages from your Linux
Distributor, and not rely on the version that came on the installation disk.

ATLAS

On Fedora Linux, pre-compiled atlas libraries are available via the atlas and atlas-devel
RPMs. These RPMs install the atlas libraries in the non-standard directory /usr/lib/atlas
(or /usr/lib64/atlas for 64-bit builds) to avoid conflicts with the standard blas and lapack
RPMs. To use the atlas libraries, you must supply their location using the LDFLAGS variable
(see section A.2)

./configure LDFLAGS="-L/usr/lib/atlas"

Runtime linking to the correct libraries is ensured by the automatic addition of /usr/lib/atlas
to the linker path (see the file /etc/ld.so.conf), so you do not need to set the environment
variable LD_LIBRARY_PATH at run time.
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AMD Core Math Library

The AMD Core Math Library (acml) provides optimized BLAS and LAPACK routines for
AMD processors. To link JAGS with acml, you must supply the acml library, and its de-
pendencies, as arguments to --with-blas. It is not necessary to set the --with-lapack
argument as acml provides both sets of functions.

For example, to link to the 64-bit acml using gcc 4.0+:

LDFLAGS="-L/opt/acml4.0.0/gfortran64/lib" \
./configure --with-blas="-lacml -lacml_mv -lgfortran"

The last version that supports gcc 3.4 is acml 3.6.0. When using gcc 3.4, link against libg2c.

LDFLAGS="-L/opt/acml3.6.0/gnu64/lib" \
./configure --with-blas="-lacml -lacml_mv -lg2c"

See also section A.2 for run-time instructions.

Intel Math Kernel Library

The Intel Math Kernel library (MKL) provides optimized BLAS and LAPACK routines for
Intel processors. The structure of the MKL changes with each major release, but a configu-
ration that works with both MKL 9.x and MKL 10.0 is

MKLPATH=/opt/intel/mkl/<version>/lib/<arch> \
LDFLAGS="-L${MKLPATH}" \
./configure --with-blas="-lmkl -lguide -lpthread" --with-lapack="-lmkl_lapack"

MKL 10.0 allows an alternative “pure layered” linking model, in which individual libraries
are selected from each layer (interface, threading, computational, and RTL) of the MKL
architecture. Using the pure layered model, the configuration above can be re-expressed as

./configure \
--with-blas="-lmkl_intel -lmkl_intel_thread -lmkl_core -lguide -lpthread"

or, for 64-bit Linux,

./configure \
--with-blas="-lmkl_intel_lp64 -lmkl_intel_thread -lmkl_core -lguide -lpthread"

See the MKL User’s guide for details.

Using Intel Compilers

JAGS has been successfully built with the Intel C, C++ and Fortran compilers. Naturally, if
you are using the Intel compilers, you should also link JAGS against MKL, as outlined above.
The additional configure options required to use the Intel compilers are:

source /opt/intel/fc/10.0.023/bin/ifortvars.sh
source /opt/intel/cc/10.0.023/bin/iccvars.sh
CC=icc CXX=icpc F77=ifort ./configure
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A.3.2 OpenSolaris

JAGS has been successfully built and tested on the Intel x86 platform under OpenSolaris
2008.05 using the Sun Studio Express 5/08 compilers.

./configure CC=cc CXX=CC F77=f95 \
CFLAGS="-xO3 -xarch=sse2" \
FFLAGS="-xO3 -xarch=sse2" \
CXXFLAGS="-xO3 -xarch=sse2"

The Sun Studio compiler is not optimized by default. Use the option -xO3 for optimization
(NB This is the letter “O” not the number “0”) In order to use the optimization flag -xO3
you must specify the architecture with the -xarch flag. The options above are for an Intel
processor with SSE2 instructions. This must be adapted to your own platform.

To compile a 64-bit version of JAGS, add the option -m64 to all the compiler flags.
Solaris provides two versions of the C++ standard library: libCrun, which is the default,

and libstlport4, which conforms more closely to the C++ standard. JAGS may be linked
to the stlport4 library by adding the options -library=stlport4 -lCrun to CXXFLAGS.

The configure script automatically detects the Sun Performance library, which implements
the BLAS/LAPACK functions. Automatic detection may not work on older versions of Sun
Studio, which used a different syntax for specifying this library. In this case, you may need
to use the configure option

--with-blas="-xlic_lib=sunperf -lsunmath"

Using acml

AMD provides a version of their Core Math Library (acml) for Solaris. To use this library
instead of the Sun Performance library add the following configure options (changing paths
as appropriate):

--with-blas="-lacml -lacml_mv -lfsu" \
LDFLAGS="-L/opt/acml4.1.0/sun64/lib \
-R/opt/acml4.1.0/sun64/lib:/opt/SunStudioExpress/lib"

The acml library is only available in 64-bit mode, so the option -m64 must also be added to
all the compiler flags.

As with using acml on Linux (section A.3.1), the configure option --with-blas must
include not only the acml library, but also its dependencies. The LDFLAGS option -R hard-
codes the paths to these libraries into the JAGS modules that require them.

A.3.3 IRIX

JAGS has been successfully built using the MIPSpro 7.4 compiler on IRIX 6.5. The following
configure options were used:

./configure CC=cc CXX=CC F77=f77 \
CFLAGS="-O2 -g2 -OPT:IEEE_NaN_inf=ON" \
CXXFLAGS="-O2 -g2 -OPT:IEEE_NaN_inf=ON"
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and JAGS was built with gmake (GNU make).
BLAS and LAPACK functions on IRIX are provided by the Scientific Computing Software

library (scs). The presence of this library is detected automatically by the configure script.
When using the MIPSpro compiler, optimization flags must be given explicitly at configure

time. If this is not done, then JAGS will not be optimized at all and will run slowly.

A.3.4 Mac OS X: instructions from Bill Northcott

If trying to build software on Mac OS X you really need to use Leopard (10.5.x). Unless
otherwise stated these instruction assume Leopard (10.5.x). The open source support has
improved greatly in recent releases. You also need the latest version of Apple’s Xcode de-
velopment tools. The current version is Xcode 3.1. Earlier versions have serious bugs which
affect R and JAGS. Xcode is available as a free download from http://developer.apple.com.
You need to set up a free login to ADC. The Apple developer tools do not include a Fortran
compiler. Without Fortran, you will not be able to build JAGS.

For instructions for building on Tiger or for older versions of R see previous versions of
this manual.

The GNU gfortran Fortran compiler is included in the R binary distribution available on
CRAN. Install the R binary and select all the optional components in the ‘Customize’ step
of the installer. These instructions assume R-2.7.x.

The default C/C++ compiler for Leopard is gcc-4.x. Xcode 3.1 also includes gcc-4.2 and
llvm-gcc4.2. The code has been successfully built with these optional compilers but will only
run on Leopard. llvm is being actively developed by Apple and may produce better code.

MacOS X 10.2 and onwards include optimised versions of the BLAS and LAPACK li-
braries. So nothing is needed for Leopard. Optimisation continues and Apple are working on
using GPUs for this sort of math. Make sure your OS is up to date.

To ensure the JAGS configure script can find the Fortran compiler for a bash shell

export F77=/usr/local/bin/gfortran

or for tchsh

setenv F77 /usr/local/bin/gfortran

To build JAGS unpack the source code and cd into the source directory. Type the following:

./configure
make

(if you have multiple CPUs try make -j 2 or make -j 4. It may need to be issued more than
once)

sudo make install

You need to ensure /usr/local/bin is in your PATH in order for ‘jags’ to work from a
shell prompt.

This will build the default architecture for you Mac: ppc on a G4 or G5 and i386 on an
Intel Mac. If you want to build 64bit versions or multiple architecture fat binaries, you will
need to ensure that libtool in the JAGS sources is version 1.5.24 or later. Then you can use
configure commands like
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CXXFLAGS="-O3 -arch i386 -arch x86_64" ./configure

Make will then build fat binaries. See the R Mac developers page http://r.research.
att.com/ for instructions to build fat R packages.

A.3.5 Windows

These instructions use MinGW, The Minimalist GNU system for Windows. You need some
familiarity with Unix in order to follow the build instructions but, once built, JAGS can be
installed on any PC running windows, where it can be run from the Windows command
prompt.

Preparing the build environment

You need to install the following packages

• MinGW

• MSYS

• NSIS

MinGW (Minimalist GNU for Windows) is a build environment for Windows. There is an
official release from http://www.mingw.org. However, we used the MinGW distribution that
comes as part of the R tools for windows (http://www.murdoch-sutherland.com/Rtools),
since the compilers in this distribution match the compilers used to build the binary distri-
bution of R for windows, as well as the R packages distributed via CRAN (http://cran.
r-project.org).

We used version 2.7 of Rtools. You only need to install the “MingGW components and
tools”, not the other components of Rtools. The installer will also ask if you wish to modify
the Windows PATH. You do not need this.

MSYS (the Minimal SYStem) provides a bash shell for you to build Unix software. These
instructions were tested with MSYS 1.0.10. It can be downloaded, as a self-extracting exe-
cutable, from the MinGW web site http://www.mingw.org. At the end of the installation
process, it will launch a post-install script that will allow you to use MSYS in conjunction
with MinGW. Note that you do not need the MSYS developer toolkit (DTK) to compile
JAGS.

MSYS creates a home directory for you in c:\msys\<version>\home\<username>, where
<version> is the version of MSYS and <username> is your user name under Windows. You
will need to copy and paste the source files for LAPACK and JAGS into this directory.

The Nullsoft Scriptable Install System (http:\\nsis.sourceforge.net) allows you to
create a self-extracting executable that installs JAGS on the target PC. These instructions
were tested with NSIS 2.33.

LAPACK

Download the LAPACK source file lapack-lite-3.1.1.tgz from http://www.netlib.org/
lapack and unpack it in your home directory.

tar xfvz lapack-lite-3.1.1.tgz
cd lapack-lite-3.1.1
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Replace the file make.inc with INSTALL/make.inc.LINUX. Then edit make.inc, replacing the
line

PLAT = _LINUX

with something more sensible, like

PLAT = _MinGW

If using gcc 4.2 (the version that comes with Rtools 2.7), you need to set the FORTRAN and
LOADER variables so that they use gfortran.

FORTRAN = gfortran
LOADER = gfortran

and uncomment the line

TIME = INT_ETIME

Edit the file Makefile so that it builds the BLAS library. The line that starts lib: should
read

lib: blaslib lapacklib tmglib

Type

make

The compilation process is slow. Eventually, it will create two static libraries blas_MinGW.a
and lapack_MingGW.a. These are insufficient for building JAGS: you need to create dynamic
link library (DLL) for each one.

First create a definition file blas.def that exports all the symbols from the BLAS library

dlltool -z blas.def --export-all-symbols blas_MinGW.a

Then link this with the static library to create a DLL (blas.dll) and an import library
(libblas.dll.a)

gcc -shared -o blas.dll -Wl,--out-implib=libblas.dll.a \
blas.def blas_MinGW.a -lgfortran

(If using gcc 3.4, the library should be linked with -lg2c instead of -lgfortran)
Repeat the same steps for the LAPACK library, creating an import library (liblapack.dll.a)

and DLL (lapack.dll)

dlltool -z lapack.def --export-all-symbols lapack_MinGW.a
gcc -shared -o lapack.dll -Wl,--out-implib=liblapack.dll.a \
lapack.def lapack_MinGW.a -L./ -lblas -lgfortran
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Compiling JAGS

Unpack the JAGS source

tar xfvz JAGS-1.0.3.tar.gz
cd JAGS-1.0.3

and configure JAGS

./configure LDFLAGS="-L/path/to/import/libs/"

where /path/to/import/libs is a directory that contains the import libraries (libblas.dll.a
and liblapack.dll.a). This must be an absolute path name, and not relative to the JAGS
build directory.

Normally you will want to distribute the blas and lapack libraries with JAGS. In this case,
put the DLLs and import libraries in the sub-directory win32/lapack. They will be detected
and included with the distribution.

Make sure that the file makensis.exe, provided by NSIS, is in your PATH. For a typical
installation of NSIS:

PATH=$PATH:/c/Program\ files/NSIS

Then type

make win32-installer

The self extracting archive will be in the subdirectory win32.
Note that you must go straight from the configure step to make win32-installer without

the usual step of typing make on its own. The win32-installer make target resets the
installation prefix, and this will cause an error if the source is already compiled.
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