Portable Batch System

Internal Design Specification

Albeaus Bayucan
Casimir Lesiak
Bhroam Mann

Robert L. Henderson
Tom Proett
Dave Tweten T

MRJ Technology Solutions
2672 Bayshore Parkway
Suite 810
Mountain View, CA 94043
http://pbs.mrj.com

Release: 2.2
Printed: November 30, 1999

t Numerical Aerospace Simulation Systems Division, NASA Ames Research Center, Moffett Field, CA

PBS IDS

PBS IDS

Portable Batch System (PBS) Software License

Copyright © 1999, MRJ Technology Solutions.
All rights reserved.

Acknowledgment: The Portable Batch System Software was originally developed as a joint
project between the Numerical Aerospace Simulation (NAS) Systems Division of NASA Ames
Research Center and the National Energy Research Supercomputer Center (NERSC) of
Lawrence Livermore National Laboratory.

Redistribution of the Portable Batch System Software and use in source and binary forms,
with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright and acknowledgment

notices, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright and acknowledg-
ment notices, this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

All advertising materials mentioning features or use of this software must display the

following acknowledgment:

This product includes software developed by NASA Ames Research Center,
Lawrence Livermore National Laboratory, and MRJ Technology Solutions.

DISCLAIMER OF WARRANTY

THIS SOFTWARE IS PROVIDED BY MRJ TECHNOLOGY SOLUTIONS ("MRJ")
"AS IS" WITHOUT WARRANTY OF ANY KIND, AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PUR-
POSE, AND NON-INFRINGEMENT ARE EXPRESSLY DISCLAIMED.

IN NO EVENT, UNLESS REQUIRED BY APPLICABLE LAW, SHALL MRJ,
NASA, NOR THE U.S. GOVERNMENT BE LIABLE FOR ANY DIRECT DAM-
AGES WHATSOEVER, NOR ANY INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARIS-
ING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This license will be governed by the laws of the Commonwealth of Virginia, without reference
to its choice of law rules.

This product includes software developed by the NetBSD Foundation, Inc. and its contribu-

tors.

pfl-

PBS IDS

PBS Revision History

Revision 1.0 June, 1994 — Alpha Test Release
Revision 1.1 March 15, 1995

Revision 1.1.9 December 20, 1996
Revision 1.1.10 July 31, 1997
Revision 1.1.11 December 19, 1997
Revision 1.1.12 July 9, 1998
Revision 2.0 October 14, 1998
Revision 2.1 May 12, 1999
Revision 2.2 November 30, 1999

pf2

PBS IDS

Table of Contents

PBS LiCeNSe AQIrEEMENTcooiiiiiiiiiiiit ettt e e e e e e pfl
REVISION HISTONY ...eetiiiiiiiiieii it e e e e e pf2
1. INTrOAUCTION ..o 1-5
L. L. PUFPOSE ettt ettt e e e e e e e e e e e e e e e e e eeeeeeaeanaae 1-5
1.2, GIOSSANY ettt a e 1-2
1.3. SYSTEM OVEIVIBW ..ottt ettt e e e e e e 1-2
1.3.1. Batch Pre-hiStory ... 1-2
1.3.2. PBS OVEIVIBW ..ottt e e e e e 1-2
2. User CommanNds ... 2-1
2.1. User Commands OVEINVIEWccciiiiiiiiiiiiiiiiiiiieeetaaa e 2-1
2.2. PAaCKagINGg oot 2-1
2.3. Program: qalter ... 2-1
2.3. 1. OVEIVIBW .ottt ettt e e et e e e e e e e e e e e e nnnbeeeeees 2-1
2.3.2. External INterfacescoooiiiiiiiiiiiiiie e 2-1
2.3.3. QAILEE.C oo e 2-1
2.4. Program: el ... 2-2
2.4. 1. OVEIVIBW .ottt e e e e e et e e e e e e e e e e e e e nnnbeeeeees 2-2
2.4.2. External INterfacescoooiiiiiiiiiiiiii e 2-2
2.4.3. QUELC e 2-2
2.5. Program: ghRold ... 2-3
2.5.1. OVEIVIBW .ottt e e ettt e e e e e e e e e e e e eeees 2-3
2.5.2. External INterfacescoooiiiiiiiiiiiieee e 2-3
2.5.3. gholA.C e 2-3
2.6. Program: gIMOVEcooeiiiiiiiiiiiiiiaiaa e aa e e e e e e e e e aaeeeeeeeeeeaeeeeeebeennaa s 2-4
2.6. 1. OVEIVIBW ..ttt ettt e et e e e e e e e e e e e e e nnnnbeeeeees 2-4
2.6.2. External INterfacescoooiiiiiiiiiiiii e 2-4
2.6.3. IMOVE.C oottt e e e e e e e e e e e e e e e et e e e eebe bbb b s 2-4
2.7. Program: gIMISQcoooeeiiimiiieiiiuieiiiuiaaaaaaaaeaaaaaaaaaateaeeeeessssssssnsnnnnnnnnns 2-5
2.7. 0. OVEIVIBW .ottt e e et e e e e e e e e e e e e e nnnbeeeeees 2-5
2.7.2. External INterfacescoooiiiiiiiiiiiiiiii e 2-5
P S T o | 0 T T o PP P TP TP TP PP 2-5
2.8. Program: greIUNoooiiiiiiiiiiiiiiaiaa e e e e e e e e e e e e e e e e e e eeeeeerearebeeaeaa s 2-6
2.8. 1. OVEIVIBW ...ttt e e et e e e e e e e e e e e e e nnnbeeeeees 2-6
2.8.2. External INterfacescoooiiiiiiiiiiiiiii e 2-6
P TS TR0 | £=1 g 1 o Y o PP U P TP TP PT PP 2-6
2.9. Program: qrlS ... 2-7
2.9.1. OVEIVIBW .ottt e e et e e e e e e e e e e e e e nnnbeeeeees 2-7
2.9.2. External INterfacescoooiiiiiiiiiiiiiii e 2-7
2.9.3. QFIS.C i 2-7
2.10. Program: gSEIECTcoooiiiiiiiiiii e 2-7
2.10.1. OVEIVIBW ..ttt a e e e et e et e e e e e e e e e e e nnnbeeeeees 2-8
2.10.2. External INterfacescoooiiiiiiiiiiiee e 2-8
2.10.3. QSEIECL.C .t 2-8
22 I o eTe | o= 1o o B e 1] [o PR UUT TR 2-10
2.10.0. OVEIVIEBW .ttt ettt e e e e e e e e ettt et e e e e e e e e e e nnnbeeeeees 2-10
2.11.2. External INTErfacesoooiiiiiiiiiiiiiiie e 2-10
P2 B G T o 1~ [Y PP EUUTT PR 2-10
2.12. Program: gSTAtcoooiiiiiiiiiiiiiiiiae e 2-11
2.012.0. OVEIVIBW .ottt e e e e e e ettt e e e e e e e e e e e nnnbeeeeees 2-11
2.12.2. External INterfacesoooiiiiiiiiiiiiiee e 2-11
2.02.3. QSTAL.C et 2-11
2.13. Program: gSUD ... 2-15

pf3-

pfa

PBS IDS

2.13.1. OVEIVIBW .ottt e e ettt e e e e e e e e e e e nnenbeeeeees 2-15
2.13.2. External INterfacescooo i 2-15
2.013.3. QSUDLC o 2-16
2. 14, LIDCMIAS ..t 2-23
2.14.1. CK_JOD NAIME.C .etttiiiiiiiiaaae ettt e e e e e 2-23
2.14.2. CVEAATE.C et 2-23
2.04.3. QBE_SBIVEI.C .ottt e e e e e e e e e e e e e e e e e e rebe bbb s 2-24
2.14.4.10CAte_JOD.C ueeiiiieieeie e 2-25
2.14.5. PArse_deSTIA.C ..uuveiiiiiiiei i 2-26
2.14.6. PArSE_BOUAL.C ..oveiiiiiiiiiee e 2-26
2.14.7. PArSE_JODIA.C .eeeviiiiiiiiiie e 2-27
2.14.8. Prepare_Path.C e 2-28
Y2 e R o] o ol [o =1 o o EUUT TP 2-28
2.04.10. SET ATLI.C .oiovviiie i 2-29
2.04. 10, SET_FESOUNCES.C oevvvvrrunieeeeeiitiiaseeseattiseeeseesataseaesestaaeeaeeassenaeesensenns 2-29
3. Operator ComMmAaNdS ... 3-1
3.1 QAISADIE.C i 3-1
3.2, 0BNADIE.C e 3-2
1 J0C T o 11 011 I U T OO UPPPTTPPR 3-3
IR o | g] o T o PP PTTPPPRPP 3-4
I ST o 151 = o S o TP PTUPPPRPP 3-5
I ST o 11 (o] o N o T TP TTPTUPPPRPPI 3-6
I o | (=1 ¢ 1 ¢ T o TP PPPRPP 3-8
4. Administrator Commands ..., 4-1
o | 0 ¢ [0 oo TP PRUPPPPPP 4-1
5. The BatCh SErVEr ... 5-1
5.1, SEIVEE OVEIVIEW ...ttt a e e 5-1
5.1.1. Server Objects and AtLribULESoeviiiiiiiiiiiiiee e 5-1
51,01, J0D OBJECLS tuuueeitieiiiieeeeti e e et e e e ete e e et eeeat e e e st e e e et e e esaneessnnaeeetnaaeeannaes 5-1
5.1.1.2. QUEUE OBJECES .evvuiiiirieeiiiieeeet e et ite e e et eeeete e e e aae e e et e eesaeeesnn e setnaaeennnaes 5-2
5.1.1.3. The SErVEr ODBJECT ...eevuneeirieeeitieeetie e e et e e e eee e e e eae e e et e e esteessaeeeetneaeesnnnns 5-2
5.1.1.4. Just What are AttribULES?ccuuiiiiieiiiiee it eeeie e e et e e eeee e e e e e et eeeannas 5-2
5.1.1.5. WhAt Gre RESOUICES .evuueeiruneeietnetetieeeetuaaeesteessnaesetnaeesnnaessnnaesstnaaeesnaaes 5-3
5.2. PACKAGING oooiiiiiii e 5-3
5.3. Program: PDS_SEIVEK ...ttt 5-3
5.3. L. OVEIVIBW ittt ettt e e e e e e et e e e e e e e e e e e s anes 5-4
5.3.2. EXternal INTErfaCesooiiiiiiiiiiiiieee et 5-4
5.3.3. SErver Main LOOPcuueieeiiiiiaaiiiiiiiiiiiie ettt ee e e e e e e e 5-4
5.3.4. Server INitialization ... 5-7
5.3.5. 30D FUNCLIONS ...t 5-16
5.3.6. Request and Reply FUNCLIONSuiiiiiiiiiiieii e 5-25
5.3.7. Issuing Requests t0 Other SErVersccccccoiiiiiiiiiiiiiiieeee e 5-32
5.3.8. QUEUE FUNCLIONSuviiiiiiiiiiiiie e e e e e e e e 5-38
5.3.9. Server FUNCHIONSuuiiiiiiiiiaaeii et 5-41
5.3.10. NOAE FUNCLIONSeeiiiiiiiiiiiieee ettt e e e e e e e e e 5-56
5.3.11. Server Batch Request FUNCLIONS ... 5-64
5.3.12. JOD ROULETr OVEIVIEW ...coiiiiiiiiiiiiiiiiiiie ettt 5-126
5.3.13. Header FIles ...t 5-132
5.3.14. Site Modifiable FIles ... 5-135
6. JOb Scheduler ... 6-1
6.1. The BASL Scheduler ... 6-1
6.1.1. BASL Scheduler OVEIVIEBWceiiiiiiiiiiiiiiiiiiieeee e 6-1
I €] - 1] ¢ =1 PP TP TP TT PP 6-2
8. 0.2, 0. LB B i 6-3

PBS IDS

B.1.2.1. 0. LeXerfl .o 6-3
6.1.2.1.2. ParLexGIob.h ... 6-3
B.1.2.0.3. LEXEI.C ettt 6-3
B.0.2.2. PaISEI ..ot 6-5
B.1.2.2.1. PAISEED oo 6-5
B.1.2.2.2. PAISEI.C .ottt e e e e e e e e e e et e e e 6-15
6.1.2.3. SYMDOI TabIE ..ooeeiiiiiiieii e 6-18
6.1.2.3.1. NOAE.N e 6-18
B.1.2.3.2. INOUE.C ittt et e e e e e e e e e 6-18
B.1.2.3.3. LEST.C oottt 6-25
6.1.2.3.4. SYMTAD.LC ettt 6-31
6.1.2.4. SemMantic ANAIYZEroooiiiiiiiii e 6-35
6.1.2.4.1. SEMANTIC.C ..uvviriiiiiiiiaeae ittt e et e e e e e e e e e e e eees 6-35
6.1.2.5. COAE GENEIFALONceiiiiiiiiiiiiitit et a e 6-44
0 2 Y0 B O To (= 1] o Y o PP R UUT TP 6-44
6.1.3. PSeudo-Compiler ... 6-53
B.1.3.1. BASIZ2C.C it 6-53
6.1.4. ASSIST FUNCLIONS ...eiiiiiiiiiiiii e 6-54
6.1.4.1. General PUrpose FUNCLIONSccooiiiiiiiiiiiiiiiiiieeee e 6-54
B.1.4. 0.0, AF.C ceiiiiiii e 6-57
6.1.4.2. RESIMOIM ..t 6-86
0 N = =Y 1o o 1Yo 6-86
I e T 0 N [o o [P EURTT PP 6-89
0 I 0 70 = 1 o] T Lo (= X o 6-90
6.1.4.3.2. af_ cnodemap.h ... 6-119
6.1.4.3.3. af_CNOAEMAP.C .eeeiiiiieieiii it 6-119
B.1.4.4. JOD i 6-123
B.1.4.4.0. @F JOD.C oot 6-123
B.1.4.5. QUE iiiiiiiii ittt e e e e e e e 6-138
B.1.4.5. 1. @F QUE.C ettt 6-138
B.1.4.6. SBIVEI .ot 6-153
6.1.4.6.1. af SEIVEIN ..o ——————— 6-154
R T 1= /=1 G 6-154
B.1.4.7. SYSTEIM L. e e 6-175
6.1.4.7.1. @F CONFIQ.C uuueiiiiiiiiiiie e 6-176
6.1.4.7.2. @F CONFIQ.C eueiiiiiiiii e 6-177
6.2. The Tcl Scheduler ... 6-181
6.2.1. Tcl Scheduler OVENVIEWcc.cuiiiiiiiiiiaie et 6-181
6.2.2. PDS_TCIVWIAP.C ..t 6-181
6.2.3. PDS_SCREA.C e 6-187
6.2.4. SITE _TCIWIAP.C oot 6-187
6.3. The C SChedUler ... 6-188
6.3.1. PDS_SCREA.C e 6-188
B.3. 1. FESTANT() oeeeii ittt a e e 6-188
6.3.2. FIFO Sample C scheduler ... 6-189
6.3.2.1. gloDAIS.C ... 6-192
B.3.2.2. CHECK.C e 6-192
6.3.2.3. TAIFSNAIE.C .. 6-199
6.3.2.4. JOD _INTO.C oo 6-205
B.3.2.5. IMHSC.C 1oieiiei ittt e e e e e et e e e e e e e e e e e e 6-210
B.3.2.6. PAISE.C et e e e 6-211
6.3.2.7. QUEUE_INTO.C ..evtiiiiiiiiii e 6-212
6.3.2.8. SEIVEr_INFO.C ..oooiiiiiiiieeee e 6-214
6.3.2.9. STAE_COUNT.C ..uviiiiiiiiii et e e e e e e e eeaaaas 6-218

pf5-

pf6

PBS IDS

B.3.2.10. FI0.C oooiiiiiii e 6-219
R I I o1 g 11 1= PP EUUTT PR 6-223
6.3.2.12. Prev_job iNfO ... 6-225
6.3.2.13. dedliME.C ...cciiiiiiie e 6-226
6.3.2.14. Node_INTO.C ...coiiiiiiieee e ———————— 6-227
7. RESOUrCce MORNITOK ..o, 7-1
7.1. Resource Monitor OVEIVIEWcccceeiiiiiiiiiiiiieieeeeeeeee 7-1
7.2. PaCKAGING ..o 7-1
7.3. Program: pbs_mom ... 7-1
7.3.1. Configuration File ... 7-1
7.3.2. External INterfacesuuvuuiiiiiiiiiiiii e 7-1
7.3.2.1. Scheduler to Resource Monitor communicationccccceeennnn. 7-1
7.3.2.2. Resource Monitor to Scheduler communicationccccceenn.n. 7-2
7.3.2.3. Communication LiDrarycccccccooiiiiiiiiiiieeeee e 7-2
7.3.2.4. Signal Handling ... 7-2
7.3.3. TESIMON.N e ————————— 7-2
ARG T T 1 T T 2 =1 7-3
7.3.5. suN0S4/MOM_MACK.Coovviiiiiccccc s 7-7
7.3.6. IriX5/MOM_MACR.Cooviiiicccr e 7-14
7.3.7. 501aris5/MomM_MACN.C ...ocvviiiiiiiiiiicei e 7-14
7.3.8. UNicoS8/MOM_MACKN.Coevviiiiiiiiiciie e 7-14
7.3.9. @iX4/MOM_MACN.C ..ooiiieiiieice e 7-17
7.3.10. SP2/MOM_IMACK.C ..eeiiiiiiiiiii e 7-17
8. MOM - Machine-Oriented Miniserverccccoo..... 8-1
8.1. Machine-Oriented Miniserver OVEIrVIEWccccccevviviiiiieieeeeeenn, 8-1
8.1.1. MOM'’s Interpretation of PBS Protocolcccoiiiiiiis 8-1
8.1.1.1. Unchanged PBS Protocol MESSAQJESccuuueeeernieeruueeeitiieeesteeesneeeetnaeeesnaaes 8-1
8.1.1.2. Re-interpreted PBS Protocol MESSAQESceevvureeiuueeeiiiieeeiieeesnieeeetneeeesnnans 8-1
8.1.1.2.1. MOAify JOD ...oeviiiiiiiiiic i 8-1
8.1.1.2.2. DEIELE JOD ..o 8-2
8.1.1.2.3. HOIA JOD .t 8-2
8.1.1.2.4. QUEUE JOD ...oviiiiiiiiicce e 8-2
8.1.1.2.5. Server SNULAOWNcccooiiiiiiii e 8-2
8.1.1.3. Unused PBS Protocol MESSAQESccuueeerrueeeernieeineeeetnaeeesueeesneeeetnaeeesnaaes 8-2
8.1.1.4. MOM-specific PBS Protocol MESSAQESceevrueerrueeeiiiieeeiteeesnieeeetneeeesnnaaes 8-2
8.1.1.4.1. CoPY FIIES .t 8-2
8.1.1.4.2. DEIELE FIIES ..oovveieiiicece e 8-3
8.1.1.5. MOM-specific PBS Protocol Message Sent by MOMccccuvveivueeiiineeennnnnns 8-3
8.1.1.5.1. JOD ODITUAIY ...ceeiiiiiiiiiiiiee e 8-3
8.2. Program: PBS_MOMoiiiiiiiiiiiiiiiiie et 8-3
S T B @ 1 1= T oY1= YRR 8-3
8.2.2. PACKAGING ooeiiiieie i 8-3
8.2.3. External INterfacesccccoeeiiiiiiiiii e 8-3
8.2.4. Machine-independent Files ... 8-3
8.2.4.1. PDS_MOMLN oo 8-3
8.2.4.2. JOD.N 1o 8-4
S Ja 9ec o o) o ¢ T 1 = U 1Y oSSR 8-4
S P ST =L = (=T RS 8-7
8.2.4.5. catCh_Child.Cvvvieiiiiiiie e 8-15
8.2.4.6. MOM_INTEI.C .ovvviiiiiiiiiiiiieee e e e e e e e e e e e e e e e e e eaaaeas 8-18
8.2.4.7. FEOUESTES.C ettt ettt ettt e e e e e e e e 8-22
8.2.4.8. PrOlOQ.C ceeeeieeiiie ittt a e e 8-31
8.2.4.9. reg_QUEJOD.C oot 8-33
8.2.4.10. MOM_COMITILC eiiiitiiieeieetiiae e e e e eati e e e e eataas s e e e eaab e e e e eetaan s e e e eeasan s 8-34

PBS IDS

S Pt I I 1 0T JEST=T /=T o oS 8-40
8.2.5. Machine-dependent Files ... 8-41
8.2.5.1. MOM_MACNH.N ..o 8-41
8.2.5.2. MOM_MACKN.C .ooviiiiiiiiiiicce e e e e e e 8-41
8.2.5.3. MOM_STANT.C ..oiviiiiiiiii e e s 8-46
8.2.6. Site Modifiable Files ... 8-48
8.3. Program: PDS_FCP ...uuiiiiiiiiiiiaaii ittt 8-50
8.3.1. OVEIVIBW ..eeiiiiiiiiiie ittt ettt e s e s 8-50
9. IFF - User Credential Granter ..., 9-1
9.1. PBS IFF OVEIVIEWouviiiiiiiiiii et 9-1
9.2, PACKAGING .eeiiiiiieiiii e 9-2
9.2.1. EXternal INTErfacescoviiiiiiiiiiiiie e 9-2
9.2.2. PBS_IF.C e 9-2
10. LIDFAFTES ..o 10-1
10.1. libattr.a - Attribute Library ... 10-1
10.1.2. Attribute Manipulation FUNCLIONSc.ceeeviiiiiiiiiiiiiiieeeeeeeeen 10-5
10.2. libcred.a - Credential Librarycccoo, 10-36
10.3. liblog.a - Log Record Library ... 10-39
10.3.2. PDS_10Q.C et 10-40
10.3.2. 10g_BVENT.C .eeviiiiiiiieeee ettt e e e e e e e e e 10-41
10.3.3. ChK_fil@ _SEC.C ooiiiiei e 10-42
10.3.4. SEEUP_BINV.C ettt e e e e e e e e e e e e e e eeeeeeeennnnes 10-43
10.3.5. SVI_IMESSAGES.C o ieieeieeeeieeieiee et eeeettetebb et s s e e e e e e e e e aaaaaaaeeeeeeesennnnes 10-43
10.4. libnet.a - Network Library ..., 10-43
O o I o 1= 1= V= o o USSP 10-44
10.4.2. NEL CHENT.C .o e e e e e e e e e e e aaaanans 10-47
10.4.3. get_hoStaddr.Ccoooiiiiiie e 10-48
10.4.4. get_NOSTNAME.C .oooiiiiiieeeee e 10-48
10.5. libpbs.a - Command API and Data Encode Library 10-49
10.5.1. Design Concepts of the Interface Libraryccooooiiiiiiinn. 10-49
10.5.2. AP MOAUIESooiiiiiiiiiii ettt 10-51
10.5.3. Request/Reply Encode/Decode ModUIESccooovviiiiiiiiiiiienneneenn. 10-63
10.6. Resource Monitor Library ... 10-81
10.7. libpbs.a - Reliable Packet Protocolccccccciiiiiiiiiiiin, 10-84
10.7.1. Structures and DefiNeScccceeeiiiiiiiiiiiiiie e 10-85
10.7.2. FUNCLIONS ..eeiiiiiiiiiiee ettt e e s e e e e 10-86
O o] o oS PRSP PP PP PP PUPPFPTPPPPPRPTIN 10-86
10.8. libsite.a - Site Modifiable Library ..., 10-94
10.8.1. How to Modify these ROULINESocouiiiiiiiiiiiiieeeiiieeieeeee e 10-94
11. Interprocess CommunNicationcccccoceoeoiininnnccceenn, 11-1
11.1. InterProcess CommuURNICAtION"ccooviiiieiiiiieee e 111
12. Graphical User Interface ..., 12-1
12. 1. GUI OVEIVIEW ...coiiiiiiiiiiiie ettt e e 12-1
12.2. XPBS Packagingcoooiiiiiiiiiiiiiee et 12-1
12,3, XS e e e 12-1
12,4, MAINTK oo 12-2
L2.5. WIMGETK oot e e e e 12-9
12.6. DINAINGS.TK ..eeiiiiiiiiiee e 12-9
L2.7. PBSECE <o 12-15
12.8. COMMON.TK ...oiiiiiiie e 12-33
12.9. BUTEON.TK e 12-43
12.00. @NTFYTK oo 12-49
12,11 TISTDOXTK oottt 12-51
12.22. SPINDOXEK oottt a e e 12-53

pf7-

pf8

PBS IDS

12,130 EEXEEK it aae e 12-56
12,04, QSUDLEK .ottt 12-57
12.05. QAITEITK ..o 12-61
12.26. dePENU.TK ..ooeeeiiiiiiiee e 12-63
12.07. STAQING.TK ..oeeeieiiii e 12-65
12,18 MHSC.EK oetiiiiii ittt e e e e b e e e sbae e e nnneeens 12-67
12.19. email_HSttK ..o 12-69
12.20. dAtetime.TKccoiiiiiiee et 12-70
1220, QEEIMLEK oot e e e e 12-71
12.22. QUELTK oo 12-72
12.23. gROI0.EK oo 12-72
12,24, QrIS.EK e 12-73
12.25. gSIG-TK i 12-74
12.26. OMSGTK ottt a e e e e 12-75
12.27. QIMOVE.TK .ttt e e e e e e st e e e e e e e e as 12-75
12.28. OWNEES.TK ..o 12-76
12.29. STALE.EK ..eiiiiiii ittt aae e 12-77
12.30. JODNAME.TK ..o 12-77
12.31. NOKAEK ittt naee e 12-78
12.32. @CCTNAME.TK ..ooiiiiiiiiie et e e e e 12-79
12.33. CheCKPOINTEK ...ooiiiiiii e 12-79
12.34. QIME.TK oot e 12-80
12.35. TES.EK ittt aane e 12-81
12.36. PFIOFTEY. K oo 12-82
12.37. FEIUNTK oo 12-82
12.38. traCKjob.tKeeeiiiiieeee e 12-83
12.39. QULO UPA.TK et e e e e 12-86
12.40. Prefuth o 12-87
12,40, PrefSAVE.TK ...oeeiiiiieiiee e 12-87
12.42. PreferenCeS.tCl ... 12-87
12.43. Program: Xpbs_datadumpccooiiiiiiiiiiieeeeee e 12-91
12.43.1. OVEIVIBW ..oeiiiiiiiiiee ettt e et e st e e e e e s abre e e e e e e 12-91
12.43.2. External INTErfacesccoiiiiiiiiiiiiiiee e 12-91
12.43.3. XPhS_datadUmP.C ...cooiiiiiiiieiee e 12-91
12.44. Program: Xpbs_scriptloadccooiiiiiiiiieeeen 12-97
12.44. 1. OVEIVIBW ..oeiiiiiiiiiee ettt ettt e e e e s b e ee e e 12-97
12.44.2. External INTErfacesccooiiiiiiiiiiiiiiee e 12-97
12.44.3. Xpbs_SCriptload.Cccceeiiiiiiiiiiiee e 12-97
12.45. Xpbsmon Packaging ..o 12-100
12.46. XPOSIMON ...ttt e e e e e e e 12-101
12,47, NOUEEK ..ottt 12-101
12.48. CIUSTEITK .o 12-128
12.49. SYSTEMLTK ..o 12-151
12.50. PBS.EK ...t 12-176
L1250, EXPIEEK e a e 12-178
12.52. COMMON.TK L..oeiiiiiiiiiii e 12-182
12.53. COIONTK oo 12-184
12.54. preferenCes.tCl ... 12-198
12.55. MAINTK .ooiiiiiiiii et 12-199
12.56. HSTDOXEK ettt 12-202
12.56.2. DOXEK ..eiiiiiiiiit et 12-202
12.57. BINAINGS.TK .oeeeiiiiiiee e 12-208
L12.58. BNTFYTK oo 12-209
12.59. QULO UPA.TK oo e e e e 12-210

PBS IDS

12.60. dialog.tKcoeeeiiiie e 12-210

pf9-

PBS IDS

[This page is blank.]

pf10

PBS IDS Introduction

1. Introduction

The Portable Batch System is a product designed and developed at the Numerical Aerody-
namic Simulation Systems Division at NASA's Ames Research Center, and at the Livermore
Computer Center and National Energy Research Supercomputer Center, both at Lawrence
Livermore National Labs.

This product provides support for batch processing on POSIX! and UNIX?2 systems.

1.1. Purpose

This document is the Portable Batch System Internal Design Specification, also called the
IDS. The IDS describes the detailed design of the Portable Batch System, PBS. Included in
this design is detailed information about each package that makes up PBS, the programs
that make up each package, the files and functions that make up each program. The level of
detail is such to provide an experienced C language and Unix programmer with all the infor-
mation required to understand, maintain, and expand PBS.

The structure of this document is provided by figure 1-1.

1. Overview Over?/iew

,,,,,,,,,,,,,,,,,,,, L
W. Package server comands Libraries
W.X Program pbs server gsub libpbs.a
W.X.Y. File Modues Hfﬁgger protocols
W.X.Y.Z. Functions main()

Figure 1-1: IDS Document Structure

1 Copyright IEEE, see IEEE standards 1003.1, 1003.2, and 1003.2d.

2 Unix is a trademark of USL.

Chapt Draft Revision: 2.2

Introduction PBS IDS

Two other documents are provided as part of the PBS package, the Portable Batch System
Requirements Specification, the Requirements Spec, and the Portable Batch System
External Reference Specification, the ERS. It is strongly recommended that those two docu-
ments be read before attempting to delve into this document.

1.2. Glossary

In order to save trees, the glossary is not reproduced here. Please refer to the glossary sec-
tion of the PBS ERS.

1.3. System Overview

1.3.1. Batch Pre-history

PBS was developed to provide support for batch processing. As opposed to simply placing a
process in the background, batch processing encompasses the scheduling of multiple jobs ac-
cording to a policy of system resource management. Each job may consist of multiple pro-
cesses. Jobs may be routed to processing hosts over a network. Resources may be reserved
for a job before its execution begins, and limits are established on the consumption of re-
sources by the job. This goes well beyond the traditional process scheduling provided by
Unix systems.

Other batch systems have been developed for Unix system. The most well know was NQS,
also developed at the Numerical Aerodynamic Simulation Systems Division, NAS. PBS was
developed to:

- Overcome the problems associated with NQS.

- Extend the features of NQS.

- Be asuperset of the POSIX Batch Extensions Standard, P1003.2d.

- Provide a growth platform for batch cluster computing and distributed jobs.

1.3.2. PBS Overview
The PBS batch system consist of the following major sections:

1. The user/operator/administrator client commands which are discussed in chapters 2, 3,
and 4.

2. The main server, pbs_server, which is the focal point for all client communication and
manages the batch jobs. It is covered in chapter 5.

3. The job scheduler, pbs_sched, which determines which jobs should be executed. There
are two supplied version discussed in chapter 6.

4. The job executor and resource monitor, pbs_mom, which manages job execution and
monitors system activity and resource usage on a "per host" basis. MOM'’s resource mon-
itor functons are covered in chapter 7 and job executor functons are described in chapter
8.

The user client authentication system is covered in chapter 9.
6. A number of libraries, including the API, are discussed in chapter 10.

8. The network based interprocess communication between the client commands and the
server, between the server and MOM, and between the server and the scheduler is cov-
ered in chapter 11.

The design concept of PBS follows the “client — server” paradigm. Clients make requests of
the server to perform actions on a set of objects. The actions include creation, deletion, modi-
fication, and status. There are three classes of objects known to the PBS Server: server,
gueue, and job. The PBS job executor, MOM, is also aware of the job object, but not the oth-
ers.

1-2 Chapt Draft Revision: 2.2

PBS IDS Introduction

The server owns and manages all batch jobs. All access to jobs are through requests the
server. The server performs other services for jobs on a time or event driven basis. These
services are known as deferred services. Deferred services include initiation into execution,
routing to processing hosts, and resource management.

Queues are collection points for jobs. The term queue is used for historical reasons, it does
not imply any ordering of jobs within the queue. A better term might have been “pool”.

Each of the objects discussed above consist of a name and a set of attributes. Attributes are
a data name and data value. The objects and their attributes are discussed in great detail at
the start of chapter 5.

Chapt Draft Revision: 2.2 1-3

Introduction

1-4

PBS IDS

[This page is blank.]

Chapt Draft Revision: 2.2

PBS IDS Introduction

2. User Commands

2.1. User Commands Overview

This section describes the commands available to the general user. Unless otherwise noted,
the command must conform to the POSIX.15 specification of the command as to syntax and
functionality.

When more than one operand is specified on the command line, the command processes each
operand in turn. An error reply from a server on one operand will be noted in the standard
error stream. The command continues processing the other operands. If an error reply was
received for any operand, the final exit status for the command will be greater than zero.

2.2. Packaging

The source code for each of these routines consists a single file for each routine and a set of li-
brary routines that are shared among some of the other programs. The main file for each
command contains a section that parses the execute line options followed by a loop that exe-
cutes the appropriate command for each operand on the command line. The library has rou-
tines for holding attributes created from the options, separating the parts of each operand,
and related functions.

2.3. Program: galter

The galter command modifies the attributes of the job or jobs specified by job_identifier on
the command line. Only those attributes listed as options on the command will be modified.
If any of the specified attributes cannot be modified for a job for any reason, none of that jobs
attributes will be modified.

The galter command accomplishes the modifications by sending a Modify Job batch request
to the batch server which owns each job.

2.3.1. Overview

Parse the options on the execute line and build up an attribute list. For each job given, send
the attribute list in the Modify Job batch request to the batch server which owns each job.

2.3.2. External Interfaces

Upon successful processing of all the operands presented to the the galter command, the exit
status will be a value of zero.

If the galter command fails to process any operand, the command exits with a value greater
than zero.

2.3.3. File: qalter.c
This file contains the main routine only. All other functions are in the library.

2.3.3.1.

main()

main(int argc, char **argv, char **envp)

Chapt Draft Revision: 2.1 2-1

User Commands PBS IDS

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-a date_time] [-A account_string] [—c interval] [—e path] [-h hold_list]
[-jjoin] [~k keep] [-Iresource_list] [-m mail_options] [-M user_list]
[-N jobname] [-o0 path] [-p priority] [-r c] [-S path] [-u user_list] [-W de-
pendency_list] job_identifier...
envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Build the attribute list for the modify job request
Get appropriate path name where needed
For each remaining operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the modify job request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.4. Program: qdel

The gdel command deletes jobs in the order in which their job identifiers are presented to
the command. A job is deleted by sending a Delete Job batch request to the batch server that
owns the job. A job that has been deleted is no longer subject to management by batch ser-
vices.

2.4.1. Overview

Parse the options on the execute line. For each job on the execute line send a Delete Job
batch request to the batch server that owns the job.

2.4.2. External Interfaces

Upon successful processing of all the operands presented to the the gdel command, the exit
status will be a value of zero.

If the gdel command fails to process any operand, the command exits with a value greater
than zero.

2.4.3. File: qdel.c
This file contains the main routine only. All other functions are in the library.

2.4.3.1.

main()

main(int argc, char **argv, char **envp)

2-2 Chapt Draft Revision: 2.1

PBS IDS User Commands

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-W delay] job_identifier...

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Build the delay argument for the delete job request
For each remaining operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the delete job request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.5. Program: ghold

The ghold command requests that a server place one or more holds on a job. A job that has
a hold is not eligible for execution. The ghold command sends a Hold Job batch request to
the server that owns the job.

2.5.1. Overview

Parse the options on the execute line. For each job on the execute line send a Hold Job batch
request to the batch server that owns the job.

2.5.2. External Interfaces

Upon successful processing of all the operands presented to the the ghold command, the exit
status will be a value of zero.

If the ghold command fails to process any operand, the command exits with a value greater
than zero.

2.5.3. File: ghold.c
This file contains the main routine only. All other functions are in the library.

25.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-h hold_list] job_identifier ...

Chapt Draft Revision: 2.1 2-3

User Commands PBS IDS

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Set the hold type and expedite flag
For each remaining operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the hold job request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.6. Program: gmove

To move a job is to remove the job from the queue in which it resides and instantiate the job
in another queue. The gmove command issues a Move Job batch request to the batch server
that currently owns each job.

2.6.1. Overview

Get the destination from the execute line, and for each remaining argument, move the re-
guested job to the destination queue.

2.6.2. External Interfaces

Upon successful processing of all the operands presented to the the gmove command, the exit
status will be a value of zero.

If the gmove command fails to process any operand, the command exits with a value greater
than zero.

2.6.3. File: gmove.c
This file contains the main routine only. All other functions are in the library.

2.6.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
destination job_identifier ...

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

2-4 Chapt Draft Revision: 2.1

PBS IDS User Commands

Control Flow:
The first argument is the destination
For each remaining operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the move job request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.7. Program: gmsg

The gmsg command writes messages into the files of jobs by sending a Job Message batch
request to the batch server that owns the job.

2.7.1. Overview

Parse the options on the execute line. The argument after any options is the message. Send
the message to each job indicated by the remaining operands.

2.7.2. External Interfaces

Upon successful processing of all the operands presented to the the gmsg command, the exit
status will be a value of zero.

If the gmsg command fails to process any operand, the command exits with a value greater
than zero.

2.7.3. File: gmsg.c
This file contains the main routine only. All other functions are in the library.

2.7.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-E] [-O] message_string job_identifier ...
envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Set the tofile flag
The next argument is the message string
For each remaining operand
Determine the job identifier and server name

Chapt Draft Revision: 2.1 2-5

User Commands PBS IDS

cnt:
Connect to the server
Send the job message request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.8. Program: grerun
The grerun command directs that the specified jobs are to be rerun if possible.

2.8.1. Overview
For each operand try rerunning the job.

2.8.2. External Interfaces

Upon successful processing of all the operands presented to the the grerun command, the ex-
it status will be a value of zero.

If the grerun command fails to process any operand, the command exits with a value greater
than zero.

2.8.3. File: grerun.c
This file contains the main routine only. All other functions are in the library.

2.8.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
job_identifier ...

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
For each operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the rerun job request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2-6 Chapt Draft Revision: 2.1

PBS IDS User Commands

2.9. Program: grls
The grls command removes or releases holds which exist on batch jobs.

2.9.1. Overview

Parse the execute line to get the hold type. For each remaining operand release the hold on
the indicated job.

2.9.2. External Interfaces

Upon successful processing of all the operands presented to the the grls command, the exit
status will be a value of zero.

If the grls command fails to process any operand, the command exits with a value greater
than zero.

2.9.3. File: gris.c
This file contains the main routine only. All other functions are in the library.

2.9.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-h hold_list] job_identifier ...

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Set the hold type
For each remaining operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the release job request
f Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.10. Program: gselect

The gselect command provides a method to list the job identifier of those jobs which meet a
list of selection criteria.

Chapt Draft Revision: 2.1 2-7

User Commands PBS IDS

2.10.1. Overview

Parse the options on the execute line and build up an attribute list. For each job given, send
the attribute list in the Select Job batch request to the batch server which owns each job.

2.10.2. External Interfaces

Upon successful processing of all the operands presented to the the gselect command, the ex-
it status will be a value of zero.

If the gselect command fails to process any operand, the command exits with a value greater
than zero.

2.10.3. File: gselect.c

This file contains the main routine and some other functions related to job selection only. All
other functions are in the library.

2.10.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-a [op]date_time] [-A account_string] [—c [op]interval] [—h hold_list]
[-] resource_list] [-N name] [—-p [op]priority] [—q destination] [-rc] [-s
states] [-u user-name]

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Build the attribute list for the select job request
If destination is given Then
Determine the queue and server name
Connect to the server
Send the select job request
Print the job identifiers returned
Disconnect from the server

2.10.3.2.

set_attrop()

void set_attrop(struct attropl **list, char *name, char *resource, char *value, enum batch

2-8 Chapt Draft Revision: 2.1

PBS IDS User Commands

Args:
list The attribute list.
name The name part of the attribute.
resource The resource part of the attribute.
value The value part of the attribute.
op The operation part of the attribute.

Control Flow:

Allocate the memory for an attribute structure

If name is defined Then
Allocate the memory for the name part
Copy the name part

If resource is defined Then
Allocate the memory for the resource part
Copy the resource part

If value is defined Then
Allocate the memory for the value part
Copy the value part

Set the operation part

Add the attribute structure to the beginning of the attribute list

2.10.3.3.

check_op()

void check_op(char *opstring, enum batch_op *op, char *value)

Args:
opstring The operator and value string from the command line.

op The operator part of the string turned into an enum batch_op. The operator de-
faults to EQ if none is given.

value The value part of the string.

Control Flow:
Set the operatro to EQ
If opstring contains an operator Then
Find out which operator was used
Copy the value part

2.10.3.4.

check_res_op()

int check_res_op(char *resources, char *name, enum batch_op *op, char *value, char **posit

Args:
resourcesThe comma delimited list of resources. The list looks like

name op value, ...

Chapt Draft Revision: 2.1 2-9

User Commands PBS IDS

name The resource name.

op The operator.

value The value.

position The next position in the resource list to parse.

Returns:
Zero, if the resource list is parsed correctly, one otherwise.

Control Flow:
Scan for the resource name
Find out which operator was used
Scan for the resource value
Set the next character position

2.10.3.5.

check_user()

int check_user(char *users, enum batch_op *op, char *user, char **position)

Args:
users The comma delimited list of users.
op The operator is always EQ.
user The next user name in the list.
position The next character position to parse in the list.

Returns:
Zero, there are no errors.

Control Flow:
Set the operator to EQ Scan for the user name

2.11. Program: gsig
The gsig command requests that a signal be sent to executing batch jobs.

2.11.1. Overview

Parse the execute line to get the signal. For each remaining operand send the signal to the
indicated job.

2.11.2. External Interfaces

Upon successful processing of all the operands presented to the the gsig command, the exit
status will be a value of zero.

If the gsig command fails to process any operand, the command exits with a value greater
than zero.

2.11.3. File: gsig.c
This file contains the main routine only. All other functions are in the library.

2-10 Chapt Draft Revision: 2.1

PBS IDS User Commands

2.11.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-s signal] job_identifier ...
envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Set the signal
For each remaining operand
Determine the job identifier and server name
cnt:
Connect to the server
Send the signal job request
If Unknown Job Id and not Located Then
Locate job
go to cnt
Disconnect from the server

2.12. Program: gstat
The gstat command is used to request the status of jobs, queues, or a batch server.

2.12.1. Overview

Parse the execute line for options and set the mode of the status request. Depending on the
mode set, give the status of the jobs listed on the execute line, the queues listed on the exe-
cute line, or the server.

2.12.2. External Interfaces

Upon successful processing of all the operands presented to the the gstat command, the exit
status will be a value of zero.

If the gstat command fails to process any operand, the command exits with a value greater
than zero.

2.12.3. File: gstat.c

This file contains the main routine and some other functions related to job status only. All
other functions are in the library.

2.12.3.1.

Chapt Draft Revision: 2.1 2-11

User Commands PBS IDS

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-f] [job_identifier... | destination...]

-Q [-f] [destination...]

-B [-f] [server_name]

envp The envp array contains environment variables for this process. None are used
by the main routine, but some may be used by the library.
Returns:
Zero, if no errors are detected. Positive, otherwise.
Control Flow:
Use getopt to get each option
Set the full display flag and the mode of the status request
If no operands Then
Case mode is
job:
Set default job id and server name
go to job_no_args
queue:
Set default queue name
go to queue_no_args
server:
Set default server name
go to server_no_args
For each remaining operand
Case mode is

job:
If operand is a job id Then
Get full job id and server name
Else
Get queue and server name
job_no_args:

Connect to the server
Send the status job request
If Unknown Job Id and not Located Then
Locate job
go to job_no_args
Print the job status returned
Disconnect from the server
queue:
Get queue and server name
queue_no_args:
Connect to the server
Send the status queue request
Print the queue status returned
Disconnect from the server

2-12 Chapt Draft Revision: 2.1

PBS IDS User Commands

server:
server_no_args:
Connect to the server
Send the status server request
Print the server status returned
Disconnect from the server

2.12.3.2.

isjobid()

int isjobid(char *string)

Args:
string Is this string a job identifier? A job identifier begins with a number.

Returns:
True, if the string is a job identifier, false otherwise.

Control Flow:
Is the first non-blank character a digit?

2.12.3.3.

istrue()

int istrue(char *string)

Args:
string Is this string some textual form of TRUE?

Returns:
True, if the strings represents true, false otherwise.

Control Flow:
Does the string match TRUE
Does the string match True
Does the string match true
Does the string match 1

2.12.3.4.

states()

void states(char *string, char *q, char *r, char *h, char *w, char *t, char *e, int len)

Args:
string The string that holds the count of jobs in each state from the server.

Chapt Draft Revision: 2.1 2-13

User Commands PBS IDS

o} The number of queued jobs.

r The number of running jobs.
h The number of held jobs.

w The number of waiting jobs.

t The number of jobs in transit.
e The number of exiting jobs.

Control Flow:
While the string is not empty Do

Scan for the next word
If it is Queued Then set the output pointer to q
If it is Running Then set the output pointer to r
If it is Held Then set the output pointer to h
If it is Waiting Then set the output pointer to w
If it is Transit Then set the output pointer to t
If it is Exiting Then set the output pointer to e
Copy the next word to where the output pointer is pointing

2.12.3.5.

display_statjob()

void display_statjob(struct batch_status *status, int header, int full)

Args:

A list of information about each job returned by the server.

header True, if the header is to be printed, false otherwise.

full True, if a full display is requested, false for a normal display.

Control Flow:
If not full and header Then
Print the header
While there is an item in the status list Do
If full Then
Print a full job display of all the attributes
Else
Print a normal display of the attributes listed in the ERS
Get the next item in the list

2.12.3.6.

display_statque()

void display_statque(struct batch_status *status, int header, int full)

Args:
status A list of information about each queue returned by the server.

2-14 Chapt Draft Revision: 2.1

PBS IDS User Commands

header True, if the header is to be printed, false otherwise.
full True, if a full display is requested, false for a normal display.

Control Flow:
If not full and header Then
Print the header
While there is an item in the status list Do
If full Then
Print a full queue display of all the attributes
Else
Print a normal display of the attributes listed in the ERS
Get the next item in the list

2.12.3.7.

display_statserver()

void display_statserver(struct batch_status *status, int header, int full)

Args:
status A list of information about the server returned by the server.
header True, if the header is to be printed, false otherwise.
full True, if a full display is requested, false for a normal display.

Control Flow:
If not full and header Then
Print the header
While there is an item in the status list Do
If full Then
Print a full server display of all the attributes
Else
Print a normal display of the attributes listed in the ERS
Get the next item in the list

2.13. Program: gsub

To create a job is to submit an executable script to a batch server. Typically, the script is a
shell script which will be executed by a command shell such as sh or csh.

2.13.1. Overview

Parse the execute line and build an attribute list. Get the script and check for embedded
operands. Send the script to the server, and, if successful, display the retunred job identifier.

If the job is an interactive job, qsub binds a socket to a port and passes the port number as
the interactive attribute. After submitting the job, qsub waits to accept a connection from
MOM on that socket. Data from standard in is written to the socket and data from the sock-
et is written to standard out.

2.13.2. External Interfaces

Upon successful processing of all the operands presented to the the gsub command, the exit
status will be a value of zero.

If the gsub command fails to process any operand, the command exits with a value greater
than zero.

Chapt Draft Revision: 2.1 2-15

User Commands PBS IDS

2.13.3. File: gsub.c

This file contains the main routine and some other functions related to job submission only.
All other functions are in the library.

2.13.3.1.

main()

main(int argc, char **argv, char **envp)

Args:
argc The number of arguments on the command line.

argv The argv array contain the following arguments:
[-a date_time] [-A account_string] [—-cinterval] [-C directive_prefix]
[-e pathname] [-h] [-] join] [~k keep] [-I resource_list] [-m mail_options]
[-M user_list] [-N name] [-0 pathname] [—-p priority] [—qg destination_id]
[-r c] [-S pathname] [-u user_list] [-W dependency_list] [-Vv variable_list]
[-V]1[-z] [script]

envp The envp array contains environment variables for this process. The variables

HOME, LOGNAME, PATH, MAIL, SHELL and TZ are sent along with the job.

Returns:
Zero, if no errors are detected. Positive, otherwise.

Control Flow:
Use getopt to get each option
Build an attribute list to go in the submit job request
Get the script and any options embedded in the script
Get the queue and server name
Connect to the server
Build the list of environment variables to send
Send the submit job request
Print the job identifier returned
If the job is an interactive job,
Install handler for SIGTSTP so “Z will not suspend gsub and hand up MOM.
Call interactive to wait for a connection from the job.
Disconnect from the server

2.13.3.2.

set_dir_prefix()

char *set_dir_prefix(char *prefix)

Args:
prefix The directive prefix supplied by the user, if given.

Returns:
The directive prefix.

2-16 Chapt Draft Revision: 2.1

PBS IDS

Control Flow:
If prefix has something in it Then
Use prefix
Else If the environment variable PBS DPREFIX is defined Then
Use PBS_DPREFIX
Else
Use the default PBS_DPREFIX_DEFAULT

2.13.3.3.

isexecutable()

int isexecutable(char *line)

Args:
line A line of the script file.

Returns:
True, if the line is not a comment, false otherwise.

Control Flow:
Is the first non-blank character a #?

2.13.3.4.

ispbsdir()

int ispbsdir(char *line)

Args:
line A line from the script file.

Returns:
True, if the line is a PBS directive, false otherwise.

Control Flow:
Does the first part of the line match the PBS directive prefix?

2.13.3.5.

get_script()

int get_script(FILE *file, char *script, char *prefix)

Args:
file The file descriptor of the script.
script The name of the copy that is made of the script.
prefix The PBS directive prefix.

Chapt Draft Revision: 2.1

User Commands

2-17

User Commands PBS IDS

Returns:
Zero, if the script was copied okay, non-zero otherwise.

Control Flow:

Create a temporary file
While there is a line left in the script file Do
If first line of the file Then
Check for : or #!
If no executable statements yet and this is a PBS directive Then
Continuation is TRUE
While Continuation DO
Check if this line is continued
Parse the PBS directives
If the line is continued Then
Get the next line in the script
Else If no executable statements and this an executable statement Then
Now there are executable statements
Write the line to the temporary file

2.13.3.6.

make_argv()

void make_argv(int *argc, char *argv[], char *line)

Args:
argc The number of PBS directives found in the line.
argv The individual PBS directives.
line The PBS directives line from the script.

Control Flow:
Set argv[0] to gsub
While the line is not empty Do
If the next character is a quote Then
Find the matching quote
Make it a blank
Scan for the next blank
Allocate memory for the word
Copy the word
Put the word's address into the argv array
Increment the number of things in argv

2.13.3.7.

do_dir

int do_dir(char *line)

Args:

2-18 Chapt Draft Revision: 2.1

PBS IDS User Commands

line A PBS directives line from the script.

Returns:
The value returned from processing the directives (see process_opts).

Control Flow:
If the first time through Then
Clear out the array that will hold the words of the line
Parse the line into words
Process the word list

2.13.3.8.

set_job_env()

int set_job_env(char **environment)

Args:

environment
The environment variables known to this process.

Returns:
True, if the environment was made correctly, false otherwise.

Control Flow:
Calculate how big to make the environment
Allocate the memory for the environment
Put the required variables in the environment
Parse the environment variables from the command line and add them
If -V was given Then
Add all the environment variable known to this process
Add the environment to the attribute list

2.13.3.9. Interactive job support routines
If interactive job support is compiled in...

interactive_port()

Returns:
a numeric character string representing the port number obtained.

This routine is called if the interactive attribute is specified either by the -1 option or directly
via -W.

A socket is opened an bound to a port. The port number assigned it obtained and encoded in-
to a numeric string which is returned. If errors occur, the program exits.

settermraw()

void settermraw(struct termios *ptio)

Chapt Draft Revision: 2.1 2-19

User Commands PBS IDS

Args:
ptio Pointer to the saved terminal characteristics.

The saved terminal charactersistics are duplicated and the copy is altered to place the termi-
nal into “raw” mode. tcsetattr() is called with {TCsaNOw} to set the altered characters.

stopme()

void stopme(pid)

Args:
pid the pid of the process to suppend, zero (0) for all processes in the group

tesetattr() is called with {Tcsanow} and the original terminal characteristics to reset the ter-
minal. The SIGTSTP signal is sent to the supplied process (or group if 0). When the process
resumes, settermraw() is called to return the terminal to raw mode.

reader()

int reader(int socket)

Args:
socketconnection to the job.

Returns:
Zero (0) on EOF, -1 on error.

This routine reads data from the job over the network and writes to the local terminal (stan-
dard output) in raw mode. It loops until either the connection is closed, EOF received, or an
error occurs. See the figure 8-1 for a picture of the communication flow between gsub,
pbs_mom’s children, and the job.

writer()

int writer(int socket)

Args:
socketconnection to the job.

Returns:
Zero (0) on EOF, -1 on error.

This routine reads from the local terminal (standard input) in raw mode and writes data to
the job over the network. It loops until either the connection is closed, EOF received, or an
error occurs.

getwinsize()

int getwinsize(struct winsize *size)

2-20 Chapt Draft Revision: 2.1

PBS IDS User Commands

Args:
size pointer to the window size structure, see sys/tty.h or termios.h or some such header.

Returns:
zero (0) if ok, -1 on error.

Gets the current window size by calling ioctl() {TIOCGWINSZ}

send_winsize()

void send_winsize(int socket)

Args:
socketconnection to the job.

Encodes the window size information obtained in a prior call to getwinsize() into a string and
writes it to the job.

send_term()

void send_term(int socket)

Args:
socketconnection to the job.

Gets the TERM environment variable and writes it as a string TERMzype to the job. Also
writes the {PBS_TERM_CCA} (number of) terminal control characters obtained earlier to the job.

catchchild()

void catchchild()

Signal handler for SIGCHLD. Invoked by death of the reader process. Resets the terminal
to normal (cooked) mode.

catchint()

void catchint()

Signal handler for SIGINT and SIGTERM while gsub is waiting for the job to start. The
function asked the user if it should terminate or not. If any string starting with 'y’ is re-
ceived, pbs_deljob() is called to delete the job and gsub exits.

interactive()

Chapt Draft Revision: 2.1 2-21

User Commands PBS IDS

void interactive()

This routine waits for the job to connect with it over the socket set up earlier, see
interactive_port(). The routine catchint() is installed as the signal handler for SIGINT and
SIGTERM. The current terminal settings are saved by calling tcgetattr(). The window size
is obtained by calling getwinsize(). select() is called in a loop with a 30 second time out. Af-
ter each time out, locate_job() is called to see if the job still exists. If the job is gone, gsub ex-
its.

When a connection request is received, the function reads in what should be the job id from
MOM. If the string does not match the job id as submitted, qsub aborts. If the job id is cor-
rect, we send the termal type, send_term() and window size send_winsize(). We print that
the job is ready and set SIGINT and SIGTERM handler to the default. A child process is
forked to become the reader() process. The parent (gsub) becomes the writer() process. Both
processes exit when EOF or an error is received. The writer process will make sure the read-
er child is killed and resets the terminal.

2.13.3.10.

process_opts()

int process_opts(int argc, char **argv, int pass)

Args:
argc The number of arguments in argv.
argv The command line or PBS directives line arguments.
pass Zero, if a command line argument list, positive if a PBS directive argument list.

Control Flow:
If pass is greater than zero Then

Start at the beginning of the argument list
While getopt Do

The appropriate thing for each option

Note that the following rules are enforced:

1. Option argument values supplied on the command line take precedence over values for
the same option supplied in script directivies.

2. If an option is repeated on the command line (or in the script, subject to rules 1), the
argument value for the last occurrence:

- replaces the prior value if the option is singled valued (integer or string).

- is appended to the prior value(s) if the option is list valued (comma separated ele-
ments).

set_opt_defaults()

void set_opt_defaults()

2-22 Chapt Draft Revision: 2.1

PBS IDS User Commands

This function is called after all command line options and script directives have been parsed.
According to POSIX, certain job attributes must be set to default values if not set by the user.
This is where that happens for: checkpoint, hold, join, keep, mail-points, priority, and rerun-
able.

2.14. Libcmds

The Libcmds library has supporting routines for the PBS utilities. These mostly consist of
parsing job identifiers and destinations, building attribute lists, and some miscellaneous rou-
tines.

2.14.1. File: ck_job_name.c
This file has one routine to validate the job name specified vi the -N option.

2.14.1.1.

ck_job_name()

int ck_job_name.c(char *name, int alpha)

Args:
nameof job specified on -N option.

alphalf set to one (1), the first character of the name must start with a alphabetic char-
acter. Set to zero (0), this check is not made.

Returns:
Zero (0) if name is valid, -1 if invalid.

The name must be less than or equal to 15 characters in length. The first character must be
alphabetic if alpha is set to 1. PBS allows the remaining characters to be any printable char-
acter. The POSIX Batch standard calls for only alphanumeric, but then conflicts with itself
to default to the script base-name which may have non-alphanumeric characters. Since the
users like to use under_score and dot, we allow it.

2.14.2. File: cvtdate.c
This file has one routine to convert POSIX touch date/time to seconds since epoch time.

2.14.2.1.

cvtdate()

time_t cvtdate(char *datestr)

Args:
datestr The string datestr is a date/time string in the form [[CC]YY]MMDDhhmmI[.SS]
as defined by POSIX, where
CC = century, ie 19 or 20
YY = year, if CC is not provided and YY is < 69,
then CC is assumed to be 20, else CC is 19.
MM = Month, [1,12]

Chapt Draft Revision: 2.1 2-23

User Commands PBS IDS

DD = Day of month, [1,31];
hh = hour, [00, 23]

mm = minute, [00, 59]

SS = seconds, [00, 59]

Returns:
Seconds since epoch, or -1 if an error occurred (see man mktime).

Control Flow:
If datestr contains a .’ Then
Set the seconds from SS
Take the .SS off datestr
else
Set seconds to zero
Make sure the rest of the datestr contains all digits
Get the current year
Case length of datestr is
12: /* CCYYMMDDhhmm */
Get the century
Fall through
10: /* YYMMDDhhmm */
Get the year
If century is not set Then
Set century according to the year
Combine the century and year together
Set the year
Fall Through
8: [MMDDhhmm */
Set the month from the next two digits
Set the day from the next two digits
Set the hour from the next two digits
Set the minutes from the next two digits
default:
Return -1
Return the result of mktime using the above data

2.14.3. File: get_server.c

This file has one routine to parse the job identifier from the command line into a full job iden-
tifier and a server name. The complete syntax for a command line job identifier is defined in
parse_jobid.c. The routine implements the procedure outlined in Section 5.1.2 of the ERS for
setting the name of the server.

2.14.3.1.

get_server()

int get_server(char *job_id_in, char *job_id_out, char *server_out)

Args:
job_id_inThe job identifier from the command line.

job_id_out
The sequence number and an appropriate server name.

2-24 Chapt Draft Revision: 2.1

PBS IDS User Commands

server_out
The name of the server to send the request to.

Returns:
Zero, if the job identifier parse correctly, one otherwise.

Control Flow:
Parse the job_id_in into sequence number, parent server, and current server
If current server is defined Then
Set server_out to the current server (5.1.2 Step 1)
Elseif parent server is defined Then
Set the server_out to the parent server (5.1.2 Step 2)
Else
Set the server_out to NULL (5.1.2 Step 4)
If parent server is defined Then
Set the job_id_out to the sequence number and the fully qualified
parent server
Else
Set the parent server to the environment variable PBS_DEFAULT value
If no value exist Then
Set the parent server to the name in the PBS DEFAULT FILE
Set the job_id_out to the sequence number and the fully qualified
parent server
Note that the routine get_fullhostname() in libnet.a is used to obtain the fully qualified
hostname.

2.14.4. File: locate_job.c

This file has one routine that connects to the server the job was submitted to and sends a Lo-
cate Job request. The result should be the server the job is at.

2.14.4.1.

locate_job()

int locate_job(char *job_id, char *parent_server, char *located_server)

Args:
job_id The full job identifier.

parent_server
The name of the server to send the request to.

located_server
The name of the server the job is current at.

Returns:
True, if the job is located, false otherwise.

Control Flow:
Connect to the parent server
Send the Locate Job request
Disconnect from the server

Chapt Draft Revision: 2.1 2-25

User Commands PBS IDS

2.14.5. File: parse_destid.c

This file has one routine that parses the destination from the command line. The destination
can have the following forms:

gueue_name[@server_name[:port_number]]
@server_name[:port_number]

2.14.5.1.

parse_destination_id()

int parse_destination_id(char *destination, char **queue, char **server)

Args:
destination
The destination to be parsed.
queue The queue part of the destination.

located_server
The server part of the destination.

Returns:
Zero, if the destination was parsed correctly, one otherwise.

Control Flow:
Initialize the queue and server names to NULL
Get the queue name if it is given
Get the server name if it is given

2.14.6. File: parse_equal.c

This file has one routine that parses set of comma delimited name = value_list into separate
name = value_list. On the first call, the first name = value_list is returned. On subsequent
calls, the next name = value_list is returned until there are no more.

2.14.6.1.

parse_equal_string()

int parse_equal_string(char *start, char **name, char **value)

Args:
start Where to start parsing.
queue The name part.
value The value_list part.

Returns:
One, if a name = value_list is found, zero if nothing is left, and minus one if there is a
parsing error.

2-26 Chapt Draft Revision: 2.1

PBS IDS User Commands

Control Flow:

If there is nothing left to parse Then
return O

Find the beginning of the name

Find the end of the name

Make sure it is followed by an '=

If value starts with a quote Then
Find the matching quote

Scan for the next equal sign

If at end of input string Then
return 1

Back up to the first comma

If the comma is after the start of the value string Then
Strip off trailing blanks

2.14.7. File: parse_jobid.c

This file has one routine that parses the complete job identification from the command line
into it’s various parts. The complete syntax is

seq_number[.parent_server[:port]][@current_server[:port]]

The routine returns the sequence number, parent server and current server as separate val-
ues. The port is returned as part of the server name.

2.14.7.1.

parse_jobid()

int parse_jobid(char *jobid, char **s_number, char **p_server, char **c_server)

Args:
jobid The job identification from the command line.

s_number
The sequence number part.

p_serverThe parent server part.
c_server The current server part.

Returns:
Zero, if parse was okay, non-zero on a parsing error.

Control Flow:
Initialize the sequence number, parent server and current server names to NULL
Scan for the sequence number
If the next character is’.’ Then
Scan for the parent server
If the next character is '@’ Then
Scan for the current server
If we are at the end of the jobid Then
Return the separate values

Chapt Draft Revision: 2.1 2-27

User Commands PBS IDS

2.14.8. File: prepare_path.c

This file has one routine that path given on the command line and turns it into a full path
name if needed. The syntax of the path name is

host:path

2.14.8.1.

prepare_path()

int prepare_path(char *path_in, char *path_out)

Args:
path_in The path to turn into an absolute path name.
path_outThe absolute path name.

Returns:
Zero, if path was converted okay, non-zero not.

Control Flow:

Initialize the host and path to NULL

Scan for the host name

Scan for the path

Get fully qualified host name

Put the fully qualified host name in path_out

Append a ™’

If the path name is relative Then
Get the current working directory
Append it to path_out

Append the path to path_out

Note, if the the path is relative and the current directory is in an NFS Automounted
path, the currently location may not be mounted when the output is returned. Hence it
is neccessary to make the path NFS Automounter "friendly”. This entails finding the
path name used to cause the automounter to mount. This might be obtained from the
shell environment variable PWD if it exists. Otherwise we fall back to using getcwd()
to expand the relative path name.

2.14.9. File: prt_job_err.c

This file has one routine that prints a standard error message if a request that involves a job
identification fails.

2.14.9.1.

prt_job_err()

void prt_job_err(char *cmd, int connection, char *jobid)

Args:

2-28 Chapt Draft Revision: 2.1

PBS IDS

cmd The PBS utility that is calling this routine.

connection
The connection identifier to the server.

jobid The job identifier of the failed request.

Control Flow:
If error message returned by server Then
Print server error message
Else
Print generic error message

2.14.10. File: set_attr.c
This file has one routine that builds an attribute list.

2.14.10.1.

set_attr()

void set_attr(struct attrl **attrib, char *name, char *value)

Args:
attrib The attribute list.
connection

The name part.
jobid The value part.

Control Flow:
Allocate the space needed for an attribute structure

Allocate the space needed for the name field and copy the name into it

Set the resource field to NULL

Allocate the space needed for the value field and copy the value into it
Append the attribute structure to the end of the attribute list

2.14.11. File: set _resources.c

User Commands

This file has one routine that parses the resource list and makes an attribute structure from

this that it appends to the attribute list. The syntax of a resource list is

resource = value, ...

2.14.11.1.

set_resources()

void set_resources(struct attrl **attrib, char *resources, int add)

Args:
attrib The attribute list.

Chapt Draft Revision: 2.1

2-29

User Commands PBS IDS

resourcesThe resource list.

Force the append or only add if the resource is not already on the attribute list.

Control Flow:

2-30

While the resource list is not empty Do

Get the resource
If followed by an '=" Then

Get the value
Allocate memory for the attribute structure
Allocate memory for the name ATTR_I and copy it to the name
Allocate memory for the resource name and copy the resource to it
If value is defined Then

Allocate memory for the value name and copy the value to it
Else

Set the value name to NULL
If the attribute list is empty Then

Put the attribute structe on it
Else

Search the attribute list to see if the resource is there

If add is true or not found Then

Append the attribute structure to the list

Chapt Draft Revision: 2.1

PBS IDS User Commands

3. Operator Commands

A batch operator is a user of the system who is granted privilege to perform actions beyond
those available to the normal user. Typical of those actions are starting and stopping queues
and the server, and modification or deleting of jobs of other users.

In addition to the general user commands, the operator has access to the gdisable, genable,
ginit, qrun, gstart, gstop, and gqterm commands.

3.1. File: qdisable.c
The gdisable command directs that a destination should no longer accept batch jobs.

3.1.1.

main()

main(int argc, char **argv)

Args:
argc The number of arguments on the command line.
argv The argv array contain the following arguments:

destination ...
A destination is in one of the following forms:
queue
@server
queue@server
Returns:
None

Control Flow:
for each argument
parse(in:argument, out:queue, server)
execute(in:queue, server)

3.1.1.1.

parse()

int parse(char *destination, char *queue, char *server)

Args:
destination The destination queue in the form queue, @server, or queue@server.
queue The queue part of the destination.
server The server part of the destination.
Returns:
int Zero, if no errors occurred. One, if a syntax error occurred.

Control Flow:
Anything before the @ is the queue name

Chapt Draft Revision: 2.1 3-1

Operator Commands PBS IDS
Anything after the @ is the server name
If (null argument) Then set error return

3.1.1.2.

execute()

int execute(char *queue, char *server)

Args:
queue The queue name.
server The server name.
Returns:
None

Control Flow:
Connect to the server
Disable the queue
Disconnect from the server

3.2. File: genable.c
The genable command directs that a destination should accept batch jobs.

3.2.1.

main()

main(int argc, char **argv)

Args:
argc The number of arguments on the command line.
argv The argv array contain the following arguments:

destination ...
A destination is in one of the following forms:
queue
@server
queue@server
Returns:
None

Control Flow:
for each argument
parse(in:argument, out:queue, server)
execute(in:queue, server)

3.2.1.1.

3-2 Chapt Draft Revision: 2.1

PBS IDS Operator Commands

parse()

int parse(char *destination, char *queue, char *server)

Args:
destination The destination queue in the form queue, @server, or queue@server.
queue The queue part of the destination.
server The server part of the destination.
Returns:
int Zero, if no errors occurred. One, if a syntax error occurred.

Control Flow:
Anything before the @ is the queue name
Anything after the @ is the server name
If (null argument) Then set error return

3.2.1.2.

execute()

int execute(char *queue, char *server)

Args:
queue The queue name.
server The server name.
Returns:
None

Control Flow:
Connect to the server
Enable the queue
Disconnect from the server

3.3. File: ginit.c
The ginit command starts the operation of the server.

3.3.1.

main()

main(int argc, char **argv)
Args:

argc The number of arguments on the command line.
argv The argv array contain the following arguments:

Chapt Draft Revision: 2.1 3-3

Operator Commands PBS IDS

-t type
The type of initialization of the server: hot, warm, cold, clean, create.

-d config_path
The directory path which is the home of the configuration files.

server_path
The path name of the server to execute.

Returns:
None

Control Flow:
get the arguments with getopt
get the server path
fork
exec the server

3.4. File: grun.c
The grun command forces the server to execute a batch job.

3.4.1.

main()

main(int argc, char **argv)

Args:
argc The number of arguments on the command line.
argv The argv array contain the following arguments:

job_identifier ...
The list of jobs to have the server run of the form:
sequence_number[.server_name][@server]

Returns:
None

Control Flow:
for each argument
parse(in:argument, out:job, server, location)
execute(in:job, server, location)

3.4.1.1.

parse()

int parse(char *identifier, char *job, char *server, char *location)

Args:
identifier The identifier in the form sequence_number[.server_name][@server].
job The sequence_number part of the identifier.

3-4 Chapt Draft Revision: 2.1

PBS IDS Operator Commands

server The server part of the identifier that owns the job now.

location The location part of the identifier to the server which will run the job.
Returns:

int Zero, if no errors occurred. One, if a syntax error occurred.

Control Flow:
Anything before the . is the job
Anything after the . and before the @ is the server name
Anything after the @ is the location
If (no job number) Then set error return

3.4.1.2.

execute()

int execute(char *job, char *server, char *location)

Args:

job The job number.

server The server name.

location The location to run the job at.
Returns:

None

Control Flow:
Connect to the server
Run the job
Disconnect from the server

3.5. File: gstart.c

The gstart command directs that a destination should process batch jobs.

3.5.1.

main()

main(int argc, char **argv)

Args:
argc The number of arguments on the command line.
argv The argv array contain the following arguments:

destination ...
A destination is in one of the following forms:
queue
@server
queue@server
Returns:
None

Chapt Draft Revision: 2.1

Operator Commands PBS IDS

Control Flow:
for each argument
parse(in:argument, out:queue, server)
execute(in:queue, server)

3.5.1.1.

parse()

int parse(char *destination, char *queue, char *server)

Args:
destination The destination queue in the form queue, @server, or queue@server.
queue The queue part of the destination.
server The server part of the destination.
Returns:
int Zero, if no errors occurred. One, if a syntax error occurred.

Control Flow:
Anything before the @ is the queue name
Anything after the @ is the server name
If (null argument) Then set error return

3.5.1.2.

execute()

int execute(char *queue, char *server)

Args:
queue The queue name.
server The server name.
Returns:
None

Control Flow:
Connect to the server
Start the queue
Disconnect from the server

3.6. File: gstop.c
The gstop command directs that a destination should stop processing batch jobs.

3.6.1.

main()

3-6 Chapt Draft Revision: 2.1

PBS IDS Operator Commands

main(int argc, char **argv)

Args:
argc The number of arguments on the command line.
argv The argv array contain the following arguments:

destination ...
A destination is in one of the following forms:
queue
@server
queue@server
Returns:
None

Control Flow:
for each argument
parse(in:argument, out:queue, server)
execute(in:queue, server)

3.6.1.1.

parse()

int parse(char *destination, char *queue, char *server)

Args:
destination The destination queue in the form queue, @server, or queue@server.
queue The queue part of the destination.
server The server part of the destination.
Returns:
int Zero, if no errors occurred. One, if a syntax error occurred.

Control Flow:
Anything before the @ is the queue name
Anything after the @ is the server name
If (null argument) Then set error return

3.6.1.2.

execute()

int execute(char *queue, char *server)

Args:
queue The queue name.
server The server name.
Returns:
None

Chapt Draft Revision: 2.1 3-7

Operator Commands PBS IDS

Control Flow:
Connect to the server
Stop the queue
Disconnect from the server

3.7. File: qterm.c
The gterm command terminates the server.

3.7.1.

main()

main(int argc, char **argv)

Args:
argc The number of arguments on the command line.
argv The argv array contain the following arguments:

-t type

The type of termination of the server: immediater, delay, or quick.
Server ...

The list of servers to terminate.

Returns:
None

Control Flow:
get the arguments with getopt
get the server names
for each server
execute(in:type, server)

3.7.1.1.

execute()

int execute(int type, char *server)

Args:
type The type of termination.
server The server name.
Returns:
None

Control Flow:
Connect to the server
Stop the server
Disconnect from the server

3-8 Chapt Draft Revision: 2.1

PBS IDS Operator Commands

4. Administrator Commands

A batch administrator is a user of the system who is granted the highest level of privilege in
the batch system. The batch administrator is able to perform all operator functions and ad-
ditionally modify queue and server configurations.

In addition to the general user commands and operator commands, the administrator has ac-
cess to the gmgr command.

4.1. File: gmgr.c

The gmgr command provides an administrator interface to the batch system. The command
reads directives from standard input or from the command line. The syntax of each directive
is checked and the appropriate request is sent to the one or more batch servers.

4.1.1.

main()

main(int argc, char **argv)

Args:
argc The number of options on the command line.
argv The argv array contains the following options:
-a Abort gmgr on any syntax errors or any requests rejected by a server.

-c command
Execute a single command and exit.

-e Echo all commands to standard output.
-n No commands are executed, syntax checking only is performed.
-z No errors are written to standard error.

Server ...
The list of servers to manage.

Returns:
Nothing

Main is controls the flow for the entire program. It first parses the arguments with help
from the getops(3) call. If there were servers passed in on the command line, the rest of the
command line arguments are passed through strings2objname() to convert then into objname
structures. If no servers are on the command line default_server_name() is called to get the
default server objname struct. The objname struct is passed into connect_servers() to connect
to the servers and set the servers global variable. These servers are set to be the active
servers. If there was an error and the "-a" flag was given, gmgr exits. At this point is the im-
portant part of the main function. The following can be done in a loop depending on if the
"-c" flag was given. First, if the "-e" flag was set. If it was, print the command. Next, the
parse() function is called to parse the command. If the there was an error and the "-a" flag
was set gmgr exits. Finally if "-n" was not set and parse did not return an error execute() is
called to package up the command and send it to the server. If the "-c" flag is not given, it
will loop on the get_request() function until an EOF is returned. Lastly it disconnects from
all the servers and exits.

Chapt Draft Revision: 2.1 4-1

Administrator Commands PBS IDS

41.1.1.

get_request()

int get_request(char *request)

Args:

request OUT: buffer for the string passed by reference
Returns:

int Zero, if a request was found. EOF, otherwise.

There are two while loops are do most of the work in this function.

The first takes care of getting line from standard input. It will remove whitespace and new-
lines. It will also ignore comments, and concatinte continuation lines ending with(. Note,
this loop could be skipped if a command seperator was used the last time through. There is
still more to be executed.

The second while loop copies the string into the request buffer passed in by the caller. It
copies the string character by character handling special cases when they arise. It will end
the command if it sees a command seperator(;), start of a comment(#), or null byte. If it en-
counters a quote (" or ") it will copy the string until it finds another quote of the same type.

The function will make one last check: Is there any more on the line? If the command has
ended in a commanx seperator(;), and there is more on the line then just white space, it will
set the empty flag to false. If the line ended with a comment or a null byte, the empty flag is
set to true. Lastly, the rest (could be all) of the static buffer is filled with null bytes.

4.1.1.2.

parse()

int parse(char *request, int *operation, int *type, char **names, struct attropl *attribut

Args:
request One entire gmgr request.
oper OUT: parsed operator (active / create / delete / set / unset / list)
type OUT: parsed type of object (server / queue / node)
names OUT: parsed names of object
attributes OUT: parsed list of attributes
Returns:
int Zero, if there are no syntax errors. Non-zero, otherwise.

The parse function is what takes the input line and parses out the necessary things to do
the command. A call to parse_request() is made to parse out the command, object, and

4-2 Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

possible name. The command is used to set the oper variable. The object is used to set
the type variable. If there is a name it is passed to the function is_attr() to check and see
if it is attribute. If it is, then back up what is returned by parse_request() and clear the
IND_NAME field of the req req array. If it is not an attribute, it is passed into the func-
tion check_list() to check for errors in a comma seperated list of names. Next, the rest of
the request is passed through the function attributes() which converts the attribute val-
ue pairs to attrl structures. Lastly, a little error checking is done.

4.1.1.2.1.

attributes()

int attributes(char *attrs, struct attropl **attrlist, int doper)

Args:
attrs The text of the attributes to parse
attrlist OUT: the attropl structure to return the parsed attributes in
doper The operation being done (active/create/delete/set/unset/list)
Returns:

0: no syntax errors
index:the index into the attrs var of where the error occurred otherwise.

The form of the attributes is either
attr OP value

or attr.res OP value

where OP is either = +=or -=

freeattropl() is called right off to free the space of previous structures. A forever loop starts
here. The first thing that happens in the find the name of the attribute. A attropl struct is
created, and space for the attribute name is also allocated and assigned. If the attrs string is
currently at a period(.), then the attribute is a resource. Space is allocated and the text of
the resource is saved in it. The operator is found and set. If the operator is a comma goto
the end of the loop to check for more attriburtes. The value is the last thing to find. If the
value is quoted, find the other side of the quote and allocate and assign the string. If it is not
guoted, look forward to find a comma or the end of the line and allocate and assign the
string.

The last thing is the look if there are any more attributes to to parse. (Remember that goto a
second ago... this is where it went)

4.1.1.3.

execute()

int execute(int aopt, int oper, int type, char *names, struct attropl *attribs)

Chapt Draft Revision: 2.1 4-3

Administrator Commands PBS IDS

Args:
aopt If the -a option was on the command line. Abort on an error.
oper The operation part of the request. (list/set/unset/create/delete)
type The type of object from the request. (server/queue/node)
names The names of the objects.
attribs The list of attributes of the object.

Returns:

0 success

non-zero
on error

The first thing which is done is th convert the comma seperated list of names into a objname
linked list. This is done by a call to commalist2objname() if the operation is to set active, call
set_actiive() and return. Otherwise we need to loop through all the objects doing the right
thing. If if the list of names was not passed it, the active objects are used. This starts the
two main loops of the function. The outer loop is of the objects, and the inner loop is the
servers. If the object has specified a server, the request will only be sent to that server. If it
doesnt specify, it will be sent to all the active servers. The outer loop doesnt too anything but
the inner loop. The first thing that happens in the inner loop is that it will check if it needs
to connect to a server. This is where the meat of the function happens. If the operation is list
or print, a pbs_stat* (server/queue/node) call is sent to the server and the result sent to dis-
play. Everything else is packaged up into a pbs_manager() and sent to the server. Lastly a
little error checking is doen so make sure there wasn't an error and then the error, if any is
returned.

4.1.1.3.1.

commalist2objname

int commalist2objname(char *names, int type)

Args:
names A comma seperated list of names or NULL
type The type of the object

Returns:

pointer to array of names

This function will take a list of comma seperated names and turn it into a linked list of obj-
name strutures. There is one main loop in this function. We shoot forward in the string
looking for either a comma or an at sign. We allocate an objname structure. If we found an
at sign, we look for a comma we copy whats before the at sign into the object name, and after
the comma into the server name. If we ended on a comma, we just need to copy the object
name. If the type is a server, then assign the object name into the server name. After the
loop we check for an error. Ifthere was one, clean up and return. If not, return the objname
list.

4-4 Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

4.1.1.3.2.
struct attrl *attropl2attri(struct attropl *from)

Args:
from an attropl list to be transformed into an attrl list
Returns:

Pointer
attrl list

This whole function revolves around a loop which goes through the entire attropl list in from.
Mainly two things are done in this loop. The first is to allocate and initalize a new attrl
struct in the new attrl list. The second is to copy the name, resource, and value fields from the
current attropl struct into the new attrl struct. This ends the loop. Lastly, the new list will
be returned.

4.1.1.3.3.

freeattrl()

int freeattrl(struct attrl *attr)

Args:
attr The list of attrl structures to be freed

Returns:
Nothing

March through the attrl list freeing all the inner variables, and finally the structure its self.

4.1.1.3.4.

display()

int display(int otype, char *oname, struct batch_status *status, int format)

Args:
otype The type of the object
oname The name of the object
status The list of status structures to display.
format True, if the output is to be formatted as input.
Returns:
Nothing

Chapt Draft Revision: 2.1 4-5

Administrator Commands PBS IDS

The output of this function will depend on the format variable. If it is true, the output of the
function could be used as input into the gmgr. If it is false, the output will be easier to read
output for information. Throughout the function there are checks to print either method de-
pending on the format variable. There is a series of while loops since the batch_status struc-
ture is a linked list of objects which contain a linked list of attributes. The outer while loop is
to go through the batch_status structs. The inner one is for attributes.

Everything is the same for the two methods of output until you get to printing attributes
whose values have multiple values (i.e. managers=root,bob,susan). If format is true, the mul-
tiple values will be seperated into multiple lines while using the addition operator(i.e. man-
agers = root ; managers += bob...). If format is false, the multiple values are line wrapped.
Sample output:

Set server attributes. # set server scheduling = True set server max_running = 3 set
server managers = root set server managers += bob set server managers += susan set server
resources_max.mem = 128mb set server resources_available.mem = 100mb set server sched-
uler_iteration = 120

4.1.1.4.

clean_up_and_exit()

int clean_up_and_exit(int extflg)

Args:
extflg the exit value

Returns:
This function never returns, its exits.

Free the active object lists. Then call pbs_disconnect() on each of the open servers. Finally
exit with exit_val return code.

make_connection()

int make_connection(char *name, struct server *svr)

Args:

name
the name of the server to connect

Returns:
Pointer to newly connected server

A connection attempt is made through the cnt2server() library call. If it is successful, a new
server struct is allocated and the the server fields s_name and s_connect are assigned. If it
fails print an error.

4-6 Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

connect_servers()

int connect_servers(char **server_names, int numservers)

Args:
server_names
array of server names to make connections

numservers
the number of servers to connect to on the list

Returns

TRUE
on error

FALSE
NOTE: This function modifies the servers global variable.

First of all, nonreferenced servers are closed. If the ammount of open servers is still under
the max ammount of servers that can be open, then run through a forloop from 1 .. numervers
and call make_connection() to each one. The objname svr field is set.

blanks()

void blanks(int number)

Args:
number
the number of spaces to print

Returns
Nothing

print number spaces to standard error by filling a buffer with spaces and printing them.

check_list()

int check_list(char *list)

Args:
list
A comma delemited list

Chapt Draft Revision: 2.1 4-7

Administrator Commands PBS IDS

Returns
0
If the syntax is correct
>
If the index into the string where the error occured

This function checks for validity of a comma seperated list. There is one main loop which
checks for eronious conditions and returns the index into the string where it happened.
Case 1:
First char is not not alpha or an '@’ Ex Good: "ueue" Ex Fail: "lqueue"

Case 2:
error situation with an "@" Ex Good: "name@svr" Ex Fail: "name@," "name@"

Case 3:
After a name with an "@" if doesnt end with a ", or EOL Ex Good:
"name@svr,name" Ex Fail: "name@svr@name"

Case 4:
a comma at the end of the line. Ex Good: "name@svr" Ex Fail: "name,"

freeattropl()

void freeattropl(struct attropl *attr)

Args:
attr
A pointer to a linked list of attropl structs to free

Returns
Nothing

Loop through the attropl list freeing the members and finally freeing the structure its-
self.

is_attr()

int is_attr(int object, char *name, int attr_type)

Args:

object
The type of object

4-8 Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

name
The name of the attribute

attr_type
The type of the attribute: Public or Readonly

Returns

TRUE
if the attribute is public

FALSE
if not

There are six attribute arrays which are are initialized with the contents of header
files. They are used to see if the name is an attribute or not. The object type and at-
tribute type is checked to see what arrays to use. The check is doen by iterating
through the arrays.

pstderr()

static void pstderr(char *)

Args:

string
the string to print to stderr

Returns
Nothing

If the global variable zopt is false, then print to standard error string. else do nothing

pstderrl()

void pstderr(char *string, char *arg)

Args:

string
The format string

Arg
Argument

Returns
Nothing

Chapt Draft Revision: 2.1 4-9

Administrator Commands PBS IDS

This function is like pstderr() but instead of just printing a string, it will print a string
and one string argument. It uses fprintf().

show_help()

void show_help(char *str)

Args:

str
Possible subject to get help on

Returns:
Nothing

if the string is NULL or a null byte, print basic help. If there is a string, print more
specific help.

find_server()

struct server * find_server(char *name)

Args:

name
Then name of the server to find

Returns:
The server structure if found or NULL of not

Basically loop though all of the servers in the global variable servers. If the server is
found, return it. If not return NULL,;

new_server()

struct server *new_server()

Args:None

4-10 Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

Returns:
Newly allocated server structure

Allocates a new server structure and initializes it.

new_objname()

struct objname *new_objname()

Args:None

Returns:
newly allocated objname structure

Allocates a new objname structure and initializes it.

strings2objname()

struct objname *strings2objname(char **str, int num, int type)

Args:

str
the array of strings

num
The number of strings in the array

type
The type of objects

Returns:
objname linked list

Loop through all the elements in the array and create a linked list of objnames. If the
type is a server set the svr_name to the obj_name field.

default_server_name()

struct objname * default_server_name()

Chapt Draft Revision: 2.1 4-11

Administrator Commands PBS IDS

4-12

Returns
objname structure with default server information

If pbs_connect() is passed a null string(""), it will open a connection to the server speci-
fied in the pbs default file. This function will create an objname structure and fill it
with the correct information for the default server.

temp_objname()

struct objname *temp_objname(char *obj_name, char *svr_name,
struct server *svr)

Args
obj_name
The name for the temp obj

Svr_name
The server name for the temp obj

svr
The server for the temp obj

Returns
The temporary object

This function has a static struct objname which it will use. It clears all data from the
objname, and then assigns in the new data. It will adjust the reference counts on the
new and old servers as necessary.

parse_request()

int parse_request(char *request, char req[][])

Args
request
the request line to parse
req
OUT: The array to assign

Returns
length of the request line parsed or zero on error

Parse out the first three words of the request. The first word should be the command,
the second the object, and the third will be a name. There are five symbolic constants
used to help with this array. IND_FIRST is the first index of the array. IND_LAST is

Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

the last index. We then have IND_CMD, IND_OBJ, and IND_NAME. These are for
command, object and name indicies of the array.

free_objname_list

void free_objname_list(struct objname *list);

Args:
list
the objname list to free

Returns:
Nothing

Free all the objnames by looping through the linked list calling free_objname()

free_server()

void free_server(struct server *svr)

Args
SVr
The server to free

Returns
Nothing

This function will first attempt to remove the server from the servers list. If it can find
the server, it will unlink it from the servers list. Reguardless, it will free the memory
used by the structure.

free_objname()

void free_objname(struct objname *obj)

Args:
list
the objname to free

Chapt Draft Revision: 2.1 4-13

Administrator Commands PBS IDS

4-14

Returns
Nothing

Free the memory used by the objname and decrement the server which it referenced.

close_non_ref_servers()

void close_non_ref_servers()

Returns
Nothing

This function goes through the server linked list and will close connections to servers
with a zero reference count. This is done by calling disconnect_from_server().

set_active()

int set_active(int obj_type, struct objname *obj_names)

Args
obj_type
The type of object we are setting the active list
obj_names
the objname linked list to set active to
Returns

0 on success / non-zero on failure

This function will set the active servers, or print the active object depending on whether
obj_names is NULL. If it is not NULL then the active object will be set. If its a call to
set the active servers, then each server is connected to if needed. Otherwise a call to
is_valid_object() is made to see if the object is exists and is valid.

is_valid_object()

int is_valid_object(struct objname *obj, int type)

Args

Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

obj
the object to check

type
The type of object

Returns
1 if the object is valid, O if not

If the type is queue, a pbs_statque() is done to check for the existence of the queue. It acually
gueries queue type, but nothing is done with this value. This is because something has to be
gueried, or everything is returned. Simularly with nodes the state of the node is querried for
the same reason. If the call is successful, the object exists and is valid. The other case of a
valid object is if obj is NULL. A null object means any requests will be sent to all active
Sservers.

disconnect_from_server()

void disconnect_from_server(struct server *svr)

Args
Svr
The server to disconnect from
Returns
Nothing

call pbs_disconnect() on the connection descriptor for the server, and make a call to
free_server(). Lastly

Chapt Draft Revision: 2.1 4-15

Administrator Commands PBS IDS

[This page is blank.]

4-16 Chapt Draft Revision: 2.1

PBS IDS Administrator Commands

5. The Batch Server

5.1. Server Overview

The batch server is the heart of the batch processing system. There is typically one server
per main processing host. Additional servers may exist for testing or special purposes. Also,
a single server may be configured to support a cluster of processing nodes.

The batch server has the following responsibilities:

- Own and manage batch jobs.

- Own and manage queues.

- Recover state of jobs and queues upon restart of batch server.

- Perform services on behalf of clients based on batch service requests.

- Perform deferred services on behalf of jobs based on external events (changes in envi-
ronment, resources, etc.) or time.

- Initiate selection of jobs for execution based on a set of site defined policy rules.

- Establish resource reservations and usage limits for jobs being placed into execution.
- Place a batch job into execution and monitor its progress.

- Perform post job execution processing and clean-up.

5.1.1. Server Objects and Attributes
With apologies to Lewis Carroll...

‘The time has come,’ the Walrus said,
‘To talk of many things:

Of Queues - and Jobs - and Attributes -
Of cabbages - and kings -

And why the sea is boiling hot -
And whether PBS has wings.’

To understand the design of the PBS server, it is necessary to understand the concepts be-
hind server objects, like jobs and queue, and the object attributes. Three classes of objects
exist within the server: jobs, queues, and the server itself. An instantiation of an object is
represented by a structure and the data it contains. There is a separate structure for each
object.

5.1.1.1. Job Objects

A job is a set of data about the job and the job script. The job data is maintained in a job
structure which is defined in job.h. This information, along with the script, is also recorded
on disk to prevent lose in case of a crash. The job data controls how the server deals with the
job, the resources made available to the job during execution, and what happens to the stan-
dard output and standard error files of the job when it completes processing.

The job data can be divided in two groups, the fixed data and the attributes. The fixed data
is typically private to the server or read-only to the client. This data is fixed in size and
maintained in a sub-structure.

The client supplied/modifiable data is in the form of attributes. The ERS names these at-
tributes and explains their purposes. The attributes of a job are defined in the file job_at-
tr_def.c as an array of attribute definition structures, attribute_def job_attr_def[]

It is critical to maintain the ordering between the definitions in job_attr_def[] and the enum

Chapt Draft Revision: 2.3 5-1

Batch Server PBS IDS

job_atr defined in job.h. The values in this enum are used to index into the job attribute
array.

5.1.1.2. Queue Objects

A queue is little more than a collection of jobs. There are attributes associated with a queue
which control how the server deals with the queue. As with the job, the queue structure is
recorded to disk to preserve it across crashes and shutdowns.

POSIX 1003.2d defined and PBS supports two basic queue types, execution and routing.
Jobs remain in execution queues until they are run or aborted. Jobs in routing queues are to
be moved to another queue. The destination may be a queue in the same server or in a re-
mote server.

The queue attributes are defined in the file queue_attr_def.c as an array of attribute defini-
tion structures attribute_def que_attr_def]] . As with jobs, the ordering between the
members of the array que_attr_def[] and the “enum queueattr” defined in queue.h must
be maintained. The two types of queues have slightly different attributes. The que_attr_def
array contains both sets. Only the attributes defined for the type of a queue are used with
that queue.

5.1.1.3. The Server Object

The server itself is an object, a structure and a set of attributes which control various aspects
of the servers operation. The server attributes are defined in the file svr_attr_def.c as the
attribute definition array svr_attr_def[] Again it is critical to maintain the ordering between
the attributes and the “enum srv_atr” defined in server.h .

5.1.1.4. Just What are Attributes?

The concept of an attribute in PBS provides it with much of flexibility and power of PBS. In
one sense, an attribute is just another data item, a element of the parent objects structure.
What sets attributes apart is the two tier representation of an attribute and the encapsula-
tion of the data and its associated functions.

An attribute is represented by its name and its value. Exterior to the server, an attribute is
seen as a pair of character strings, one for the attribute name and one for its value. Internal-
ly, attributes are represented in one of two ways depending on if the meaning of the attribute
is known to the program. If the meaning is unknow to the program (specifically a Job Serv-
er), the internal representation is very similiar to the external form. This will be discussed
in more detail shortly. For those attributes whose meaning is known, i.e. there is code to do
something with the value, the attribute is represented by two structures, the attribute struc-
ture (often referred to as the value), and the attribute_def structure. The attribute structure
contains the actual attribute value in a machine dependent form. There is one attribute
structure for each instance (occurrence) of an attribute.

The attribute_def structure contains the attribute name, flags, and pointers to the functions
used to access and manipulate the attribute, see the section Attribute Manipulation
Functions later in this chapter. There is one and only one attribute_def structure for each
named attribute of an object. Attributes of the same data type (integer, character string, ...)
may share the access functions. To add an attribute with a new name and new capability, it
is only necessary to add the new definition structure and any access function which might be
unique.

The attribute definitions exist in an array of attribute_def for each type of parent object. At-
tributes with the same name but different types and meaning may exist in different types of
objects such as jobs and queues. However, this is not recommended for the confusion factor.

The attribute value is represented in a attr_value union within the attribute structure. This
union contains all possible value data types, see attribute.h. It is assumed that any code
needing the attribute value knows what type it is; however, that information is available in

5-2 Chapt Draft Revision: 2.3

PBS IDS Batch Server

the attribute_def. Some of the attribute value data types, (or more simply attribute types) re-
quire additional storage to hold the value. In these cases, the additional space is allocated
and freed as required.

All possible attributes for the server and queues are known to the server by name. Any ref-
erence to an unknown attribute name for those objects is illegal. This is not true for jobs
however. Since jobs may be "just passing through" to another server or the name and value
may have meaning to the Job Scheduler. The meaning of such attributes are unknown to
this specific Job Server. To handle this case, a special attribute, the unknown attribute, is cre-
ated for jobs. Any unrecognized attribute for a job is maintained under the unknown at-
tribute as a linked list of two strings, name and value, and a control or header structure.
The strings and the control structure, which gives their lengths and the total storage re-
quired, are placed in a single allocated block of storage. This block can be easily saved to
disk without any knowledge of the type. This form is known as the svrattrl structure (for
server attribute list).

The svrattrl structure also acts to isolate the server from the actual form used for network
encoding.

5.1.1.5. What are Resources

Up to this point, there have been a few scattered references to resources. So the time has
come to describe what they are. The answer depends on whom you ask. POSIX 1003.2d de-
fined a job attribute named resource_list. which has two meanings; and thus it exist in the
PBS Server. The resource_list job attribute is actually a set of requirements of system re-
sources needed by the job to execute and a set of limits to place on the usage by the job of
thoses resources. For example, a job may need two tape drives to execute. Thus it would
have a requirement in the resource_list of “tapes=2". A limit on the cpu usage of a job can be
stated by a resource_list entry of “cput=10".

MOM will interpret the resource_list as limits. The scheduler sees the list as a list of job re-
guirements, a slightly different view point. The resource monitor reports the availability of
system resources to the scheduler. They have nothing to do with the job resource_list.

Within the Server, resources are treated as a special case of a job attribute. They are special
in that they have multiple names and values and are in fact maintained by the server as a
linked list headed by the attribute.

The resources for a batch complex managed by a Server are defined within the server. PBS
supplies sets of resource definitions in the form of an array of resource definition structure,
svr_resc_def[] defined in a series of files resc_def *.c . There is a file for each target system
supported by PBS. Additional resources may be added to the Server by inserting the appro-
priate definition in the correct file. However, code to process the resource will likely be re-
quired in MOM. Be sure to read the section on resource.h.

5.2. Packaging

The PBS Server is a single program which is run with root privilege as a daemon process.
The source code for the server consists of the files in the directory src/server, many of the
header files in src/include, and many of the libraries found under src/lib/*. The descrip-
tions of the server’s routines are groups by the object on which they act or the general pur-
pose of the function.

5.3. Program: pbs_server

5.3.1. Overview

The PBS Server is started by the pbs_server(8) command. The pbs_server command may
be entered by a operator manually or it may be placed in boot time start up file (/etc/rc.local).
Once the pbs_server has been started, it will:

Chapt Draft Revision: 2.3 5-3

Batch Server PBS IDS

Validate the server database structure (see pbsd_init).

Abort, requeue, restart, or reconnect to executing jobs depending on the initializa-
tion mode.

3. Initialize the network (and other interprocess communication) connections.

4. Begin to accept and process batch service requests and to perform deferred ser-
vices.

The pbs_server will continue to perform services until it is terminated by the receipt of a
shutdown request or a SIGTERM (or SIGSHUTDN) signal. The actions taken by pbs_server
upon shutdown depend on the type of shutdown, delayed or immediate, see pbs_terminate(3)
and qterm(8); but will always include updating the server’s database.

5.3.2. External Interfaces
The pbs_server process has the following external interfaces:
- Arguments supplied on the command line.
- The server database which is described in the section ??.??.?? Server Database.

- The batch requests received over the network interface, described in the section
11.3 Protocols.

- The information available from the PBS Scheduler, described in the section 6.1.1
Scheduler/Server Communication and 8.1 MOM’s Interpretation of PBS Protocol.

The following modules (source files) are part of the pbs_server.

5.3.3. Server Main Loop

The file pbsd_main.c in directory src/server contains the initial entry point for the pbs dae-
mon, the code to interpret the arguments passed to the daemon, the call to initialize the in-
ternal data and state, the call to initialize the network interfaces, and the main process loop.

The server’s main loop is event driven. The event types are the arrival of a batch service re-
guest, the arrival of a reply to a request made to another server or daemon, the arrival of a
signal, and the expiration of some timed event. The server runs as a pseudo multi-threaded
serial server. Unlike parallel servers which fork a child copy of itself for each service request,
the PBS Server runs as a single program which processes all requests. This is to insure con-
sistency of the internal data. There are two situations in which the server will fork, to send
mail to a job owner and to send a job to another server. The latter may be time consuming
and rather than handle the complexity, the server creates a child which sends the job. The
server treats the send operations as atomic, it either successes or fails.

The pseudo multi-threaded comes from the method by which the server handles tasks which
might result in a delay. For example when the serve sends a request to another server,
rather than block waiting for the reply, the fact that a reply is expected, on which communi-
cation connection it is expected, and what function should process the reply is saved as an
event. The arrival of the reply triggers the event processing. This is know as a “deferred re-
ply” event. There are several other types of events, they are described in the routine
set_task().

main()

main(int argc, char **argv)

Args:The argv array may contain the following options:

5-4 Chapt Draft Revision: 2.3

PBS IDS Batch Server

[-a true] false]
Sets the scheduling attribute.

[-d config_path]
Path of top level, see {PBS_DIR} in figure 5-1.

[-P dis_port]
Specifies the port on which the server listens for DIS encoded requests; must be
numberic.

[-t type]
Initialization type
[-A account _file]
Specifies the absolute path to the accounting log file.
[-L log_file]
Specifies the absolute path to the general log file.
[-M port]
Specifies a port on which MOM should be contacted.
[-S port]
Specifies a port on which the scheduler should be contacted.

See pbs_server(8) for more detail on the -t and -d options.

Returns:
None.

Control flow:
Get local host name and default ports.
uses DIS_tcp_setup() to set tcp routines for DIS encoding
Process arguments, setting flags based on options.
Set log_event_mask and open the log file
Set up to ignore or catch signals.
Perform initialization processing based on type of initialization.
Initialize the network communications.

Begin the main processing loop.
Process any ready work task event in the various work lists,
see next_task().
If the server is in state RUNNING,
If the recovery type was RECOV_HOT,
If more than SVR_HOT_CYCLE seconds have passed since last time,
call start_hot_jobs()
If more than SVR_HOT_LIMIT seconds have passed since server up,
reset recovery type to RECOV_WARM to ignore hot jobs.
If time or event to run scheduler and attribute Scheduling is true,
call schedule_jobs()
For each routing queue,
call queue_route() to route jobs.
Wait on arrival of batch service request.
If a request arrived,
Process request.
Else if received a signal,
If signal was death of child,
Perform sub-server clean up processing.
Else
Shutdown the server.
Continue with main processing loop.

Chapt Draft Revision: 2.3 5-5

Batch Server PBS IDS

Update all server databases.

respond to the shutdown request (if one).
Close network connections.

Log the final shutdown event.

Close the log.

Exit

PBS_HOME

server_logs sched_logs

Figure 5-1: PBS Home Directory

next_task()

static time_t next_task (void);

Returns:
time_ttime to next event

This function scans the various work task lists and for any for which service is now required,
calls dispatch_task() to invoke the processing routine. The lists are processed in the follow-
ing order:

1. If the svr_delay_entry global variable is set non-zero, then the external event list,
task_list_event, is scanned for events which have been changed to type {immed}, see

5-6 Chapt Draft Revision: 2.3

PBS IDS Batch Server

catch_child() for details.
2. Any entry in the immediate list, task_list_immed, is dispatched.

3. If the event time of any entries in the timed list, task_list_timed, has been reached, they
are dispatched.

If there is a need to run the job scheduler and scheduling is active, that is done by setting
svr_do_schedule to {SCH_SCHEDULE_TIME}.

The least of (1) the time to the next timed action (if one), or (2) the time to the next scheduler
run.

start_hot_jobs()

static void start_hot_jobs()

This routine is called in the main loop when the server recovery mode is {RECOV_HOT}. Its
purpose is to restart jobs which were running when the server last went down. Each job
owned by the server which (1) are in state {JOB_SUBSTATE_QUEUED}, and (2) have the
{JoB_sVFLG_HOTSTART} flag set in ji_svrflags is placed into execution by calling svr_startjob() .

5.3.4. Server Initialization

The file pbsd_init.c in directory src/server contains the code to initialize the batch server.
This code is called once when pbs_server begins execution. The actions performed depend on
the type of initiation.

pbsd_init()

int pbsd_init(int type)

Args:
type The type of initialization
Returns:
0 If initialization is successful. Note, many internal tables have been loaded and the
global server state has been changed.
non-zero

If initialization failed.
The sequence of events for the initialization is:

Catch the following signals: SIGHUP, SIGINT, SIGTERM, and SIGCHLD. Set up path
names to various server directories and clear the head of server lists. Set the various default
server attribute values, network retry time and force logging of all event types. Set the de-
fault log file name to the Julian day of the year.

If this initialization is not of type create, load the server attributes from database, see svr_re-
cov().

Initialize server global data items, such as the name of this server, its network address and
port, and MOM'’s address and port number.

Then, if not a create initialization, recover the queue attributes from the files in the queue di-
rectory. For each queue database file, call que_recov().

Chapt Draft Revision: 2.3 5-7

Batch Server PBS IDS

If not a create or clean initization, recover the jobs from the save files in the jobs directory.
Change the server’s current working directory to the jobs directory. For each file with a
name ending in the job suffix, .JB, recover the job information, by calling job_recov() and
process the job to either re-queue or delete, see pbsd_init_job(). Report on number of jobs re-
covered.

If the queue rank number used to order jobs in the queue has gone negative, it is reset to ze-
ro and each job has its queue rank updated starting from one. This is to prevent overflow.
While this should take a minimum of five years, PBS is such a great product, it is bound to
run that long :-).

The job tracking records are recovered from their save file and reloaded into a tracking array.
The array is allocated to whole the larger of the number of records in the save file or the min-
imum number of records {PBS_TRACK_MINSIZE}.

If the initialization type is Cold or CREATE, set the server attribute Idle to true.

build_path()

static char *build_path(parent, name, suffix)

Args:

parent
the name of the parent directory, used as the prefix.

namethe desired file name.
suffixthe suffix to append or null.
Returns:

pointer
to the name string.

The size of the path name is calculated and that amount of space is allocated. The parent di-
rectory name is copied into the allocated space. If the parent does not end in a slash, '/, one
will be appended. Then the name and any suffix is appended.

pbsd_init_job()

static void pbsd_init_job(job *pjob, int type)

Args:
pjob Pointer to job structure to process.
type Initialization type.

This function is called by pbsd_init() for each job file found and recovered. The actions taken
depend upon the state (substate) of the job at the time the server went down, and upon the
initialization type.

If the initialization type is clean, then abort the job by calling job_abt() .

Otherwise, act according to the job substate. Unless otherwise noted, the route pb-
sd_init_reque() is called to requeue the job. For job in substate:

TRANSICM
If the job was created here, the client was a temporary one not a server, then set sub-

5-8 Chapt Draft Revision: 2.3

PBS IDS Batch Server

state to QUEUED. Otherwise, hold on to the job in the new job list and wait for some
server to send a commit.

TRANSOUT
Requeue the job as QUEUED.

TRANSOUTCM
We need to (re)send the “Ready to Commit” and “Commit” messages, however the net
connection has not yet been initialized. So, requeue the job as is and establish a work
task to finish sending the job.

QUEUED, PRESTAGEIN, STAGEIN, STAGECMP, STAGEFAIL, STAGEGO, HELD, SYN-
CHOLD, DEPNDOLD, WAITING, RUNNING, or STARTING
Requeue the job as is.

JOB_SUBSTATE_RESOURCE
Requeue the job in state JOB_STATE_QUEUED. It will need to look for its resources
again.
JOB_SUBSTATE_SYNCRES
Clear all recorded ready” dependencies and requeue the job.
EXITING or STAGEOUT
Set a task entry to complete job the exit processing.

Any other
Abort the job.

pbsd_init_reque()

static void pbsd_init_reque(job *pjob, int change)

Args:
pjob Pointer to job structure.

change
flag to change or keep current job state.

This function is called by pbsd_init_job() to perform the enqueue. Messages about the re-
gueuing are placed in the log file.

If the change flag is set to {CHANGE_STATE} (1), svr_evaljobstate() is called to determine to what
the job state and substate should be set; svr_setjobstate() is called to set them. If change is
{KEEP_STATE} (0), the job state and substate are unchanged.

Then svr_enquejob() is called to add the job to the queue.

catch_child()

void catch_child(int sig)

Args:
sig The signal {sIGCcHLD} which caused this signal handler to be invoked.

This function is the signal handler for SIGCHLD, death of child. Upon receipt of a
SIGCHLD, a waitpid() system call is performed to collect the pid and exit status of any ter-
minated child. The event work task list is searched for entry with a type of {Deferred_Child} and

Chapt Draft Revision: 2.3 5-9

Batch Server PBS IDS

an event id matching the child pid. If found, the exit status is saved in the entry and the en-
try type is changed to {Immed}. The global flag svr_delay_entry is updated to indicate that the
main loop should search the delayed list for entries to be moved to the immediate list. We do
this rather than immediately the process the entry to minimize the work performed in the
signal handler and to prevent relinking the list when an interrupted function might already
have been doing so.

change_logs()

static void change_logs()
This is the signal handler for SIGHUP. When a hup is received, the handler closes the ac-

counting file calling acct_close() and reopens it calling acct_open() with path_acct. This al-
lows the file to moved to a new name and restarted.

stop_me()

static void stop_me();

This is the signal handler for all signals which are to terminate the server.

The signal number is saved for a log_event() call which is made outside of the handler, and
the server state is set to {SV_STATE_SHUTSIG}.

5.3.4.1. attr_recov.c

The file src/server/attr_recov.c contains the functions to write an array of attributes to a file
and to restore the attributes from the file. The attributes of an object are saved whenever
they are changed and when the server is shut down. This allows the server to recover its
state when restarted.

When attributes are being saved, they are encoded into a list of svrattrl entries. This list is
packed into a buffer by calling save_struct(). The buffer is only written whenever it becomes
full. This saves I/O calls. On a recovery or restart, performance is not critical.

save_setup()

void save_setup(int fds)

Args:
fds The open file descriptor to which to write.

The file descriptor is squirreled away for calls to other functions in this file. The pointer into
the buffer and the amounts of space used and available are initialized.

save_struct()

int save_struct(char *pobj, size_t objsize)

5-10 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:

pobj A character pointer to a object (structure) to save. The object cannot have data
that exists (is pointed to) outside of the object itself.

objsize
The size, in bytes, of the object. This amount of data is saved.
Returns:
0 If object is written to the file successfully.

-1 If an error occurs.

As much data as will currently fit into the “pack buffer” is copied from the object to the
buffer. If not all of the object fits, the buffer is written and the pointer into it and the space
available/used are reset.

save_flush()

int save_flush()

Returns:
0 on success
-1 on error

Any data which resides in the “pack buffer” is written to disk. The saved file descriptor is re-
set to a value to indicate the current save operation is complete.

Note, save_setup() must be called before attempting to pack any additional data. Also, it up
to the caller to close the file descriptor if that is appropriate.

save_attr()

int save_attr(attribute_def *padef, attribute *pattr, int numattr)

Args:
padefPointer to the attribute definition structure, used to obtain the attribute name.
attr Pointer to the first attribute in the array to be saved.

numattr
The number of attributes in the array to save.

Returns:
0 if successful
-1 if error

Each attribute in the array (see below) is in turn encoded into a svrattrl entry using the
at_encode routine for that attribute. The {ATR_VFLAG_MODIFY} is cleared to indicate the data
has been saved. Then the svrattrl entry is packed into the output buffer by calling
save_struct(). The entry is unlinked from the list and freed.

After the final attribute is encoded into the buffer, a dummy svrattrl entry with a size set to a
magic number, {ENDATTRIBUTES}, is appended using save_struct(). This entry will be recog-
nized by recov_attr() as indicating the end of the attributes has been reached.

Chapt Draft Revision: 2.3 5-11

Batch Server PBS IDS

Note, attributes of type {ATR_TYPE_ACL}, are ignored. These access control list attributes are
not saved in the same matter as other attributes, see save_acl().

recov_attr()

int recov_attr(int fd, void *parent, attribute_def *padef, attribute *pattr,
int limit, int unknown)

Args:
fd The open file descriptor to read.

parent
Pointer to the parent object (structure) which contains the attributes.

padefThe attribute definition structures for these attributes.
pattr A pointer to the array of attributes which is being restored.

limit The number of attributes in the attribute array and attribute definition array,
passed to find_attr().

unknown
If greater than zero, this is the index into the attribute definition array to use when
the attribute does not match any known attributes, the attribute to use for “un-
known” attributes. This is used only for jobs.

Returns:
0 if successful
-1 if error

Each attribute in turn, is reloaded in two reads, the first read gets the fixed size portion of
the svrattrl structure itself, this gives the size of the encoded attribute. The second read ob-
tains the variable portion containing the encoded strings. The attribute is identified using
the name string and the find_attr() function.

If the attribute name does not match any in the definition array, either (1) the job is a tran-
sient job (in a routing queue) and has attributes that are not known here; or (2) the server
has been rebuilt and the attributes changed. In case one, the attribute is saved in the at-
tribute given by the unknown parameter. In case two, unknown will be zero, the event is
logged, and the attribute ignored.

The attribute value is then passed to the appropriate decode function. If the attribute defini-
tion structure contains a non-null pointer to an action function (at_action), the action routine
is called. The pointer to the parent structure is passed to the action routine along with the
pointer to the attribute and the action mode. In this case, the action mode is set to
{ATR_ACTION_RECOV}.

The loop is terminated when the total size (al_tsize) specified in the svrattrl structure is
equal to the magic number {ENDATTRIBUTES}.

5.3.4.2. job_recov.c

The file src/server/job_recov.c contains the functions to save and recover (restore) a job
structure and its associated sub structures and lists from a job file on disk.

job_save()

5-12 Chapt Draft Revision: 2.3

PBS IDS Batch Server

int job_save (job *pjob, int updatetype)

Args:
pjob Pointer to job structure which is to be saved.

updatetype
The type of save, quick, full update or new

Returns:
0 If save was successful.
-1 If error.

The job structure is saved to disk in a file whose name matches the job identifier. The save is
one of two types: quick (mode = {SAVEJOB_QuICK}), or full (mode = {SAVEJOB_FULL} or mode =
{SAVEJOB_NEW}).

If the ji_modified flag in the job structure is set indicating that one or more attributes have
been modified, the {JOB_ATR mtime} attribute is update to the current time. Note, this flag
should be set any time a non Read-Only attribute is changed on behalf of a client.

A quick save is performed to record state and other internal data changes. Only the basic
fixed length section of the job structure is re-recorded. A rewrite in place is performed. This
minimizes the amount of 1/O for a common type of save.

A full save is performed for a new job or whenever an attribute changes or an dependency is
registered. This update records the basic job structure plus all of the variable length sub-
structures and lists. The various pieces of the structure are packed (buffered) and the num-
ber of write calls are minimized for performance.

1. The basic structure is written to disk using save_struct() .

2. The attributes are encoded and packed into a buffer, using save_attr().

If an error occurs on a write, the whole series is retried once from the start.

Author’s Note:

The whole series of save operations uses synchronous writes, the file is opened
with {0_syNcC}. For some incomprehensible reason, O_SYNC is not included in
POSIX.1 at this time. However, it is felt that the benefit of insuring the comple-
tion of the write out-weighs this slight incompatibility.

job_recov()

job *job_recov(char *filename)

Args:
filename
The name of the job file from which a job is to be reloaded.

Returns:

Non-null
job pointer to the newly created job structure on success.

Null job pointer if the recovery failed.

An new job structure is allocated in memory. The job structure, its working attributes, and
its dependencies are recovered from disk. This takes place in two steps:

1. The basic job structure is read in.

2. The attributes are restored using recov_attr() .

Chapt Draft Revision: 2.3 5-13

Batch Server PBS IDS

5.3.4.3. svr_recov.c

The file src/server/svr_recov.c contains the functions that save and restore the server struc-
ture and the server attributes to or from disk.

svr_recov()

int svr_recov(char *serverdb)

Args:

serverdb
name of the server save file.

Returns:
0 on success
-1 on error

The server save file is opened. The server structure data is read directly into the structure.
Then recov_attr() is called to reload the attributes. The server database file is closed

The server’s attributes are searched for one of type {ATR_TYPE_HOSTACL}. When found, re-
cov_acl() is called to reload the access control list.

svr_save()

int svr_save(server *ps, int mode)

Args:
ps Pointer to the server structure.
modeof save, quick or full.
Returns:
0 on success
-1 onerror

If the mode is set for a quick save, {SVR_SAVE_QUICK}, the server database file is opened and
the fixed portion, server.sv_gs, of the server structure is written. The file is closed.

Otherwise, a new server database file is opened and save_setup() is called to initialize the
save 1/O buffer. Then save_struct() and save_attr() are called to save the server structure
(serverobj) and the server attributes. Save_flush() is called to finish the I/O and the file is
closed. The original save file is unlinked and the new file linked to its name. The new name
is unlinked. All this work minimizes the window in which the server database file could be
lost if the system crashes.

The server’s attributes are searched for one of type {ATR_TYPE_HOSTACL}. When found,
save_acl() is called to save the access control list.

save_acl()

int save_acl(attribute *pattr, attribute_def *pdef, char *path, char *name)

5-14 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:
pattr pointer to acl attribute.
pdef pointer to attribute def structure for acl attribute.
path of directory in which acl file lives.
nameof parent object, also the file name.
Returns:
0 if successful.
<0 iferror.

Access control list attributes are saved, not with the other attributes of the object, but in
their own file. This is done for two reasons. First, the size of the attribute value, the acl en-
tries, might be large. This would slow the updating of the parent object save file and in-
crease the window where a crash might cause loss of data. Second and more important, the
separate file allows the administrator to directly edit the access control list. Since the list
might be large, its is easier to input directly than through gmgr. Note, any changes will not
take effect unless the server is shutdown and reloads the acl.

If the {ATR_VFLAG_MODIFY} is off in the attribute, need do nothing so just return. The file name
is created by concatenating the path and the parent object name. The suffix “.new” is ap-
pended to the name and this file is created. The attribute is encoded by calling its at_encode
routine. Note, as the attribute uses the array of strings, arst, encoding, the
{ATR_ENCODE_SAVE} flag causes each string entry to be concatenated with a new line separat-
ing the sub strings.

Just the value portion of the encoded entry, not the full svrattrl structure is written to disk.
This yields an editable file.

The file is closed. The old file name, without the .new suffix is unlinked and then relinked to
the new file. The new file name, with the suffix, is unlinked. This ensures the old contents
are not lost before the new contents are safe.

recov_acl()

void recov_acl(attribute *pattr, attribute_def *pdef, char *path, char *name)

Args:
pattr pointer to acl attribute.
pdef pointer to attribute def structure for acl attribute.
path of directory in which acl file lives.
nameof parent object, also the file name.

This function reloads the value of an access control list into the attribute. It is only called
when the server is initializing.

The file name is created from the path and parent object name. The file is stat-ed to obtain
its size. If the stat fails or the size is zero, the function returns.

The file is opened for read. A buffer large enough to whole the entire file is allocated and the
file is read into it. The file is closed.

The data is decoded into the attribute by calling the at_decode() routine for the attribute.
Then the buffer is freed.

Chapt Draft Revision: 2.3 5-15

Batch Server PBS IDS

5.3.5. Job Functions

5.3.5.1. job_func.c

The file src/server/job_func.c contains general functions to deal with job structures. Func-
tions to allocate and free the job structure, initialize or set the working attributes, abort and
restart jobs are included.

job_abt()

int job_abt(job *pjob, char *text)

Args:
pjob Pointer to job structure for job to be aborted.
text Message to be logged and mailed to owner.
Returns:
0 Job successfully aborted.
-1 Error occurred.

The job state is set to {JOB_STATE_EXITING} and the substate to {JOB_SUBSTATE_ABORT}. A mail
message is set to the job owner. A track job batch request is sent to the server which created
the job and any defined alternate server.

If the job state was {JOB_STATE_RUNNING} and the server is not initializing, a kill signal is set
to the job and the job state is updated to disk.

Else if the job was {JOB_STATE_RUNNING} and the server is initializing (the job was running
when the server went down), job exit processing is started to deal with output files.

Otherwise, the job is removed from the system by calling job_purge().

job_alloc()

job *job_alloc()
Returns:

address
of job structure

NULL.f allocation of memory fails.

This function allocates the space for the job structure. The working array of attributes is ini-
tialized to “unset” by calling job_init_wattr().

job_free()

void job_free(job *pj)

Args:

5-16 Chapt Draft Revision: 2.3

PBS IDS Batch Server

pj Pointer to job structure to be freed.

The various sub-structures of the job structure are freed:

(1) the dependency structures, depend_p and depend_child,
(2) the attribute string set, attrlist, and

(3) the extra space allocated to any of the working attributes.

Finally the job structure itself is freed.

job_init_wattr()

void job_init_wattr(job *pj)

Args:
pj Pointer to job structure in which to initialize the attributes.

This function is called to initialize the working attribute array in a job structure. For each
attribute, the attribute type field is set to match that of the corresponding member of the job
attribute definition array. The attribute value flag {ATR_VFLAG_SET} is cleared to indicate the
attribute has not be set by a client request (is set to a default unset value).

job_purge()

void job_purge(job *pjob)

Args:
pjob Pointer to job structure of job to be purged from system.

The job structure is dequeued from any queue by calling svr_dequejob(). The job control file
and job script file are unlinked (deleted). If the job has output or checkpoint files in the PBS
spool area, they are unlinked. The job structure and all associated structures are freed by
calling job_free().

find_job()

job *find_job(char *jobid)

Args:
jobid The job id character string.
Returns:

Pointer
to the job structure if found, otherwise NULL

Each job in the server’s list of all jobs is checked until a job structure with the same job id is
found or the end of the list is reached.

5.3.5.2. svr_jobfunc.c
The file src/server/svr_jobfunc.c contains general job related server functions.

Chapt Draft Revision: 2.3 5-17

Batch Server PBS IDS

svr_enquejob()

void svr_enquejob(job *pjob)

Args:
pjob Pointer to the job.

It is linked into the list of all server jobs. The counts of jobs managed by the server and man-
aged by the server per state are incremented. The queue is located from the queue name in
the job structure, find_queuebyname() is called. The job structure is linked into the list of
jobs owned by the queue.

The position of the job in the server list of all jobs and the queue list is determined by the
JOB_ATR_grank, queue_rank, attribute of the job. Starting at the end of the queue, the most
likely place for the job to be placed, the list is searched backwards for a job with rank lower
than the new job. The new job is inserted after that job.

The the current count of jobs in the queue, qu_numjobs, the number of jobs in the given
state, qu_njstat[state] and sv_jobstates[state], and the number of total jobs in the server
sv_numjobs are incremented. The current location attribute, {JOB_ATR_current_loc}, iS update to
the queue and server name.

If the job is changing queue types, routing to execution for example, the queue dependent
type fields in the ji_un union are set according to the new queue type.

The job attribute JOB_ATR_gtime is set to the current time if it was unset. This notes the first
time into the queue. At this time account_record() is called with {PBS_ACCT_QUEUE} to make
an accounting file entry. Any unset resource which has a queue specific default value is set
to the default value.

If the job is being enqueued in an execution queue, several checks are made. If the job at-
tribute JOB_ATR_depend is set, the function depend_on_que() is called to process any job de-
pendency actions which might be required. Note, the use of the {ATR_ACTION_NOOP} mode, this
is because depend_on_que() is the at_action routine for dependencies and needs to limit what
it does when called for enqueued jobs as opposed to jobs actually being modified. Additional-
ly, the scheduling flag svr_do_schedule is set to {SCH_SCHEDULE_NEW}.

If the job is being enqueued in an route (push) queue, the ji_un union in the job structure is
set up for {JOB_UNION_TYPE_ROUTE} type. The ji_quetime field is set to the current time to
mark the time in the queue and the next retry time, ji_rteretry, is cleared.

svr_dequejob()

void svr_dequejob(job *pjob)

Args:

pjob Pointer to job structure to remove from a queue.
The job is unlinked from the queue in which it resides. The the current count of jobs in the
queue, qu_numjobs, the number of jobs in the given state, qu_njstat[state] and
sv_jobstates[state], and the number of total jobs in the server sv_numb_jobs are decrement-

ed. Clear any job resource values which are marked as being set to the queue specific de-
fault.

5-18 Chapt Draft Revision: 2.3

PBS IDS Batch Server

svr_setjobstate()

int svr_setjobstate(job *pjob, int newstate, int newsubstate)

Args:
pjob pointer to job structure.

newstate
the new value for the job state.

newsubstate
the new value for the job substate.

Returns:
0 if successful.

non zero
if save of job structure failed.

Sets the job state and substate to the supplied values and updates the job save file if needed.

If the job is in substate {JOB_SUBSTATE_TRANSICM}, then it is a brand new job and it has never
been added into the various server and queue state counts. Therefore these are not updated
at this time. When the job is enqueued into a queue, very shortly, then the counts will be in-
cremented to include this job.

Otherwise, if the state is changed, the server and queue state counts are updated. The state
and substate are set to the supplied values. If the queue is an execution queue and the new
state is {JOB_STATE_QUEUED}, then svr_do_schedule is set to {SCH_SCHEDULE_NEW} to kick start
the scheduler as the job is eligible to run. For the later accounting entry, the job attribue
JOB_ATR_etime is set to the current time. This will be recorded as the “eligible” time.

If the ji_modified flag in the job is set, the job attributes have been modified, then the com-
plete job is save by calling job_save() with the save mode of {SAvEJOB_FULL}. Or, if only the
state or substate changed, and if you change the state you had better change the substate,
then job_save() is called with {savejoB_qQuick}. The return value from job_save is passed
back to the caller.

svr_evaljobstate()

void svr_evaljobstate(job *pjob, int *newstate, int *newsub, int force)

Args:
pjob pointer to job structure.

newstate
RETURN: pointer to where recommended job state is returned.

newsub
RETURN: pointer to where recommended job substate is returned.

force if true, force the state evaluation.

When evaluating the state, the attributes of the job which might effect the job state are ex-
amined and the recommended state and substate are returned. This function should not be
used to directly set the job state. That should only be done via svr_setjobstate() as it also up-
dates the job attribute JOB_ATR_state and updates the server and queue state counts.

Chapt Draft Revision: 2.3 5-19

Batch Server PBS IDS

- If force is false and the current job state is {JOB_STATE_TRANSIT} Or {JOB_STATE_RUNNING}, the
current state and substate are returned as the suggested state. Code was added to
svr_evaljobstate() to not change things when the job was in JOB_STATE_TRANSIT, oth-
erwise a job submitted with a past due execution time screwed up by having its state
changed to Queued while still being received; the wait event timer was set to the old time
and would go off immediately.

If force is true, the job is evaluated according to the following rules regardless of the cur-
rent state.

- Ifany hold is set it takes precedence over waiting and {JOB_STATE_HELD} is returned.

- If the execute time attribute is set and that time has not been reached,
{JOB_STATE_WAITING} is set.

- If the job has a stage-in files attribute JOB_ATR_stagein, set, the state will be
{JOB_STATE_QUEUED}. If the files have been staged in (flag {JOB_SVFLG_Stagedin} is set in
ji_svrflags), the substate is {JOB_SUBSTATE_STAGECMP} (stage in complete), otherwise the sub-
state is {JOB_SUBSTATE_PRESTAGEIN} (pre-stagein).

- Otherwise, {JOB_STATE_QUEUED} is returned.

get_variable()

char *get_variable(job *pjob, char *variable)

Args:
pjob pointer to job.

variable
name of an environment variable passed with job.

Returns:
A pointer to the value part of the nhame=value environment string if found, null other-
wise.

This function finds the environment variable name=value string passed with a job and re-
turns a pointer to the value. It is most often used to find the variable PBS_O_HOST to deter-
mine the name of the host from which the job was submitted.

chk_svr_resc_limit()

static void chk_svr_resc_limit(attribute *jobatr, attribute *queatr,
attribute *svratr)

Args:
jobatrpointer to the job’s resource list attribute.

queatr
pointer to the specific queue’s resource limit (max) attribute.

svratrpointer to the server’s resource limit (max) attribute.

Returns:
The global variables comp_resc_gt and comp_resc_lt are set according to the comparisions.

5-20 Chapt Draft Revision: 2.3

PBS IDS Batch Server

For each resource limit (requirement) specified for the job that is not an inherited default
value, the limit is compared with:

a. The corresponding queue’s limit if one is set for that resource, or
b. The server’s limit if one is set for that limit.

The job’s resource request (limit) is compared with the the queue or server limit. If the re-
guest exceeds the limit, the global variable comp_resc_gt or comp_resc_lIt is incremented de-
pending on the relationship of the request to the limit. If neither a queue nor a server limit
is set, neither of the global variables is changed.

chk_resc_limits()

int chk_resc_limits(attribute *pattr, pbs_queue *pque)

Args:
pattr pointer to job's Resource_L ist attribute.
pque pointer to queue in which the job resides.

Returns:
zero if job’s limits are within queue/server bounds, PBSE_EXCQRESC if not.

Each set resource limit (requirement) of the job is checked against the queue’s minimum lim-
it specified in the attribute QA_ATR_ResourceMin. If the queue has a maximum limit at-
tribute, QA_ATR_ResourceMax, the job’s requirements are checked against it or if there is not a
gueue max limit, the job is checked against the server’s maximum limit SRV_ATR_Resource-
Max by calling chk_svr_resc_limit() .

svr_chkque()

int svr_chkque(job *pjob, queue *pque, char *host, int move_type)

Args:
pjob pointer to job structure.
pque pointer to queue structure for queue to check.
host name of host submitting job.

move_type
type of move, MOVE_TYPE_* as defined in server_limits.h

Returns:
0 if job can be enqueued.

nonzero
if error, return is an PBSE_ error number.

The move_typeargument as a result of:

MOVE_TYPE_Move
new submission or gmove by non-privileged user.

MOVE_TYPE_Route
routing from a routing queue.

Chapt Draft Revision: 2.3 5-21

Batch Server PBS IDS

The
1.

MOVE_TYPE_MgrMv
gmove by privileged user (manager).

MOVE_TYPE_Order
gorder request.

following checks are made to see if the job can be enqueued into the queue:
If the queue is an execution queue, then check the following:

a. Can the execution uid and gid be established? This is checked first because a return
of [PBSE_BADUSER] or [PBSE_BADGRP] is fatal event to a request by a manager to
move a job.

b. Does the job have an “unknown” resource, [PBSE_UNKRESC]? Also fatal to a manag-
er.

c. Does the job have an “unknown” attribute, [PBSE_NOATTR]? Also fatal to a manager.

d. If the queue’s group ACL is enabled, is the execution group allowed, [PBSE_PERM]?
This is not fatal if requested by a manager.

The queue is enabled, [PBSE_QUNOENB], and the queue job limit, max_queuable
(QA_ATR_MaxJobs) is not exceeded, [PBSE_MAXQUED]. This is not fatal if requested by
a manager. This check is skipped for a queue order request on the basis that two jobs
are being swapped so the queue limits are not affected.

If the queue is marked as accepting jobs only from a routing queue, QA_ATR_From-
RouteOnly is true, [PBSE_QACESS]. This is not fatal if either a manger request or the job
is from a routing queue. It is not checked for a queue order.

If the queue has an enabled host ACL, then the submitting host must be able to access
the queue, [PBSE_BADHOST]. This is not fatal if requested by a manager.

If the queue has an enabled user ACL, then the job owner must be able to access the
gqueue, [PBSE_PERM]. This is not fatal if requested by a manager.

The resources of the job must be with in the range specified by the minimum and maxi-
mum resources allowed in the queue, [PBSE_EXCQRESC]. This is not fatal if requested
by a manager.

If any check fails, the appropriate error number is returned. If all checks pass, then zero is

retu

rned.

job_set_wait()

int job_set_wait(attribute *pattr, void *pobject, int actmode)

Args:

pattr pointer to the execute-time, {JOB_ATR_exectime}, attribute of a job.
pobject
pointer to a job structure, cast as a void * to match prototype.

actmode
the attribute set mode, see attribute.h.

Returns:

5-22

0 if ok.

-1-zero
if error.

Chapt Draft Revision: 2.3

PBS IDS Batch Server

This routine is called at the at_action() function whenever the execute-time attribute of a job is
set.

A search is made for an existing work task on the job’s list pointing to job_wait_over(). If one
is found, the event time is updated to the value of the job wait (execution) time. If one is not
found, and if the execution time is later than the current time, an work task entry is created
for the wait time and set to invoke job_wait_over().

job_wait_over()

static void job_wait_over(struct work_task *pwt)

Args:
pwt pointer to a work task entry.

This function is invoked off the server's work task list. The entry was set up with the event
time of a job’s execution wait time and member wt_parm1 as a pointer to the job. All we need
to do is re-evaluate the job’s state by calling svr_evaljobstate() and svr_setjobstate() .

default_std()

static void default_std(job *pjob, char key, char *to)

Args:
pjob pointer to job.
key to which file, the single character '0’ for output or e’ for error.
to pointer to buffer in which the file name is placed.

The default name for either the standard output or standard error stream of a job is generat-
ed. The name is of the form job_name".[e|o]job_sequence_number , Where e’ is used for
error or the '0’ for output. The job_name is from the JOB_ATR_jobname attribute. The buffer
in which the name is placed must be sufficiently large to hold the name.

prefix_std_file()

char *prefix_std_file(job *pjob, char key)

Args:

pjob pointer to job.

key to which stream, output or error.
Returns:

pointer
to malloc-ed space holding the generated full path name.

This function builds the fully specified (absolute) default path name for the either the stan-
dard output or standard error of a job. The result is of the form:
gsub_host:$PBS_O_WORKDIR/job_name.[e|o]job_sequence_number

where gsub_host is the name of the host on which the gsub command ran when the job was

Chapt Draft Revision: 2.3 5-23

Batch Server PBS IDS

submitted, $PBS_O_WORKDIRs replaced by the value of the PBS_O WORKDIR environ-
ment variable associated with the job, i.e. the current working directory of the qsub com-
mand. The remainder of the path name, the default name, is built by calling default_std()
described above.

get_jobowner()

void get_jobowner(char *from, char *to)

Args:
from string from which the owner is obtained.
to buffer to which the owner name is returned.

This function returns the owner name (or any first part of a string) stripping off the “@host”
portion (or any part following and including a '@’ character). The destination buffer must be
large enough to hold the resulting string, for a user name this is {PBS_MAXUSER}+1 charac-
ters.

set_deflt_resc()

static void set_deflt_resc(attribute *ja, attribute *default)

Args:
ja ponter to the job resource attribute (typically Resource_List).

default
pointer to the queue/server attribute to use as a default.

For each resource listed in the default attribute, if the corresponding resource is unset in the
job resource_list, set it to the value in the default. Also set {ATR_VFLAG_DEFLT} to indicate it is
a default value so it will not be passed if the job is moved to a new queue or server.

set_resc_deflt()

void set_resc_deflt(job *pjob)

Args:

pjob pointer to job.
This public routine is used to set any default Resource_L.ist values for a job. The function
set_deflt_resc() (very close in name isn't it) is called in turn with: the queue’s resource_de-

fault, the server’s resource_default, the queue’s resource_max, and the server’s resource_max
attribute.

set_statechar()

void set_statechar(job *pjob)

5-24 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:

pjob pointer to job.
The job_state attribute, JOB_ATR_state, issetto T, Q, H, W, R, or E depending on the job
state in ji_substate. A special case — if job state is {JOB_STATE_RUNNING} and the flag

{JOB_SUBSTATE_SUSPEND} is set in ji_svrflags, the state character is set to S. This is found only
for jobs running under Unicos, see post_signal_req() .

eval_chkpnt()

static void eval_chkpnt(attribute *jobckp, attribute *queckp)

Args:
jobckppointer to a job checkpoint attribute.

queckp
pointer to a queue checkpoint attribute.

This function is called when a job is enqueued in an execution queue. It is to insure the that
if the job’s checkpoint attribute JOB_ATR_chkpnt, is of the form "c=dddd", then the interval
value, dddd, is not more than the value of the queue’s checkpoint_ min attribute,
QE_ATR_ChkptMin.

5.3.6. Request and Reply Functions

This section covers the functions related to receiving requests and to issuing requests and
replies. Much of the design and implementation was mandated by the use of ISODE.

5.3.6.1. process_request.c

The file src/server/process_request.c contains the top level routine invoked to process a
batch request from a client program as well as some supporting functions.

process_request()

void process_request(socket)

Args:
socket
is the socket descriptor from which the request is to be read.

This function is invoked when accept_conn() determines that input is available on a socket
connected to a client. The purpose of process_request() is to read in the request and dispatch
it to the appropriate function for processing.

The server only accepts DIS requests and calls dis_request_read() to read and decode the re-
qguest. If any connection comes in marked as FromClientASN will cause the server to abort.
Note, that MOM only accepts DIS and so only calls dis_request_read().

If the return from dis_request_read() routine indicates end-of-file, The connection is closed by
calling a local function close_netconn(), If there was a new job being received over the connec-
tion, close_netconn is directed to consider enqueuing it.

If the return from the read (isode_request_read()) routine indicates that a read or system er-
ror occurred, the connection is just terminated on the assumption that a reply would not get

Chapt Draft Revision: 2.3 5-25

Batch Server PBS IDS

through either.

If the return from the read routine indicates that the request did not decode correctly, a re-
ject reply is sent to the client.

The host from which the request is being sent is determined by calling get_connecthost() .
The client host is authorized against the server’s host ACL by calling acl_check().

If the client connected to the server on a “reserved” port, the standard socket authorization
scheme, we take it as meaning that the client is another server with full privileges. Other-
wise, the user making the request is authenticated by calling authenticate_user() and the
privileges are established by calling >l svr_get_privilege() . If any authentication or autho-
rization fails, the request is rejected with the appropriate error code.

If the server’s state is anything other than {Sv_STATE_RUN}, then certain requests will be re-
jected. These ususally entail the running of new jobs or the enqueing of new jobs.

Next, the request is dispatched, via dispatch_request(), to the appropriate service function
based upon request type. Each service function is required to reply to the request and deallo-
cate the batch_request structure when processing of the request is completed.

dispatch_request()

void dispatch_request(sock, request)

Args:
sock the socket over which the request arrived.

request
a pointer to the batch_request structure.

The request is dispatched to the appropriate routine for processing. Any unrecognized re-
guest is rejected.

alloc_br()

struct batch_request *alloc_br()

Returns:

pointer
to an allocated batch_request structure.

A batch_request structure is allocated and cleared. The socket descriptor, rg_conn, is set to -1
to indicate there is no connection, This is filled in by the calling routine. The allocated re-
guest structure is linked into the list of request structures headed in the global variable
svr_requests. The structure should be freed by calling free_br().

close_client()

static void close_client(int socket)

5-26 Chapt Draft Revision: 2.3

Args:

PBS IDS Batch Server

socketthe connection to close.

First, the connection is closed by calling close_conn(). The list of active request structures,
headed by the global variable svr_requests, is searched for any with the fields rg_conn and
rg_orgconn equal to the socket parameter. If found, the field is set to -1 to indicate the connec-
tion has been closed and no reply should be returned.

free_br()

void free_br(struct batch_request *request)

Args:

request

pointer to the batch_request structure (allocated by process_request).

The batch request structure is unlinked for the list headed by svr_requests. The structure and
any allocated sub-structures, including the reply structure, are freed. This is a place where
code will have to be added if new types of requests are added.

There are a few routines named freebr_*() that are local to this file. They are called by
free_br() depending on the type of request.

close_quejob()

static

Args:

void close_quejob(int socket)

socketthe socket descriptor of a closed connection.

When invoked, this function searches the list of incoming jobs headed by sv_newjobs in the

serve

r structure. This list is comprised of jobs for which a Queue Job request has been re-

ceived, but no Commit request.

When the connection to the sending agent is lost one of the following actions is taken.

If a Ready to Commit has not be received for the job, the job still belongs to the sending
agent. The local structure is discarded.

If a Ready to Commit has been received, the substate is {JOB_SUBSTATE_TRANSICM}, and
the job is marked as being created here for the first time, {JOB_SVFLG_HERE} is set in
ji_svrflags in the job structure, then the client is a user gsub command. In this case all
the information is at hand and the client is transitory, so we accept ownership of the job
and enqueue it.

If the substate is {JOB_SUBSTATE_TRANSICM} but {JOB_SVFLG_HERE} is not set, then the job
is being transferred from another server. That server retains ownership until it send a
Commit. The defined recovery process calls for to just wait for the Commit. Therefore,
we leave the job as is.

5.3.6.2. dis_read.c
The file src/server/dis_read.c contains the high level functions to read and decode Data Is

Strin

gs or DIS encoded requests and replies. The lower level routines that perform the actu-

al decode are found as decode_*() routines in libpbs.a and disr*() routines in libdis.a. An

Chapt Draft Revision: 2.3 5-27

Batch Server PBS IDS

advantage of the DIS routines is that the data may be decoded directly into the server’s
batch_request structure eliminating several data copy operations.

dis_request_read()

int dis_request_read(int socket, struct batch_request *request)

Args:
socketthe socket on which a request has been received.

request
pointer to an allocated batch request structure which will be filled in.

Returns:

0 A request was received and decoded correctly.

-1 EOF received, the client has closed the connection.

positive

PBS error number.

The function DIS_tcp_reset() is called to reset the read buffer for the DIS 1/O over TCP/IP
support routines before the data is read. This would only be required once for the server as it
only uses TCP/IP. However MOM uses both TCP/IP and RPP intermixed, so the routines
must be reset each time.

The request is in three pieces, (1) the header which contains the requestor’'s name and the re-
guest type, (2) the request body which varies with each type of request, and (3) the request
extension. decode_DIS_ReqgHdr() is called to decode the header. If it fails or if the protocol
type and verison in the header are not recognized, [PBSE_DISPROTO] is returned. If de-
code_DIS_ReqHdr() returns EOF, we also return it (-1).

Based on the request type contained in the header, a large switch statement results in calling
the decode_*() routine corresponding to the request type. If an error is returned, it is logged
and passed upwards.

The request extension is decoded by decode_DIS_RegExtend() .

DIS_reply_read()

int DIS_reply_read(int socket, struct batch_reply *reply)

Args:
socketon which to write the reply.
reply pointer to a batch reply structure (contained within a batch_request structure).

Returns:
0 on success, non-zero if error.

This function simply calls DIS_tcp_reset() to reset the DIS 1/O buffer for TCP/IP and then in-
vokes decode DIS_replySvr() to perform the real work. Any error returned by de-
code_DIS_replySvr() is just passed on.

5-28 Chapt Draft Revision: 2.3

PBS IDS Batch Server

5.3.6.3. reply_send.c

The file src/server/reply_send.c contains the functions to form an error (or reject) reply and
to send a reply back to the requesting client.

set_err_reply()

static void set_err_reply(int code, char *msg, struct batch_request *preq)

Args:
code The error code to return to the client.
msg pointer to a character buffer in which a message is built.

request

pointer to the batch request.
This routine fills in the basic reply structure within a batch_request. If the current reply
union is other than {BATCH_REPLY_CHOICE_NULL}, the structure is freed by calling
reply_free().

If the error code is [PBSE_SYSTEM], then the value of errno is checked for non-zero and hav-
ing an associated error message, see perror(3). If it exists, the message is appended to the
text of msg_system for return to the client. If the value of code is any other PBS error or if
code is less than the base number of PBS errors, {PBSE_}, it is assumed to be a local system
error number, the routine sees if that error has an associated message. If there is one, that
message is placed into msg.

reply_send()

int reply_send(struct batch_request *request)

Args:
request

A pointer to the protocol independent batch request structure which also contains
the reply structure.

Returns:
0 If ok
-1 If error

The connection socket descriptor is obtained from the request structure. If the socket de-
scriptor, sfds, has the value of {PBS_LOCAL_CONNECTION}, then the request being replied to was
from this server. A work task of type {Deferred_Reply_Local} and the event equal to the address
of the request structure is located and dispatched by moving the work task entry from the
event list to the immediate list. [Note, originally dispatch_task() was called directly to pro-
vide immediate processing of the event task. This resulted in a problem of what to do when
register dependency request was rejected. The desired end result is to abort the requesting
job, however that cannot be done by the routine processing the reply if it is called directly be-
cause the higher level routines assume the job will still be around. By moving the work task
entry to the immediate list and having it dispatched out of the main loop, all higher level
routines have completed their work and we have generalized the case to match that of the re-
guest having going off host over the net.]

Chapt Draft Revision: 2.3 5-29

Batch Server PBS IDS

If the socket descriptor has a positive value, the request came from a different server. The
reply is encode by calling dis_reply_write().

Note, if the socket descriptor is negative, but not {PBS_LOCAL_CONNECTION}, then this indicates
that the connection was closed on End of File back in process_request(). In this case, no reply
is sent and no error is returned.

Following either success or failure in sending the reply, the original batch request/reply
structure is freed by calling free_br(). On an error, a PBS error number is returned.

reply_ack()

void reply_ack(batch_request *request)

Args:

request
pointer to the batch request.

This routine returns a success reply to a client. The reply structure with in the request
structure is filled in with the choice set to {BATCH_REPLY_CHOICE_None}, the code to
[PBSE_NONE], and the auxcode to 0. The request and reply are then passed to reply_send().

req_reject()

void req_reject(int code, int aux, struct batch_request *request)

Args:
code The error code to return to the client.
aux The auxiliary error core.

request
pointer to the batch request.

A batch reply structure with in the request is filled in by calling set_err_reply(). The auxcode
in the reply is set to the value of aux. Then reply_send() is called to complete the reply and
send it.

reply_badattr()

void reply_badattr(int code, int aux, struct svrattrl *pal,
struct batch_request *request)

Args:
code The error code to return to the client.
aux The auxiliary error core.
pal pointer to the client supplied attributes, in the form of a list of svrattrl.

request
pointer to the batch request.

5-30 Chapt Draft Revision: 2.3

PBS IDS Batch Server

This routine forms a error reply for a request which is being rejected for an invalid at-
tribute/resource name or value. The basic reply structure is filled in by calling
set_err_reply(). It is identical to req_reject() except that aux is used as an index into the pal
attribute list. The name of that attribute, and resource name if one, is appended to the error
message. The main purpose is to identify the offending attribute/resource to the user.

reply_text()

void reply_text(struct batch_request *request, int code, char *text)

Args:

request
pointer to the batch request structure.

code The error code to return to the client.
text The text string to send to the client.

Set the code to the supplied value, the auxcode to 0, the type to text, and copy in whatever of
the text parameter that will fit. Then call reply_send() .

reply_jobid()

int reply_jobid(struct batch_request *request, char *jobid, int which)

Args:

request
pointer to the batch request structure.

jobid the job id string.

whichreply type, the choice discriminator.
Returns:

0 No error

error value if error.

This is used to generate and send a reply containing the job id. It is used to repond to the fol-
lowing requests: Queue Job, Ready to Commit, and Commit.

5.3.6.4. reqg_getcred.c

The file src/server/req_getcred.c contains functions relating authentication of a client mak-
ing batch requests.

req_getcred()

This function is retained until version 1.1.6 to provide compatibility with 1.1.4 and earlier
clients. In 1.1.6, only the non-credential pbs_iff method of authentication will be supported
in order to remove encryption and allow export of PBS.

Chapt Draft Revision: 2.3 5-31

Batch Server PBS IDS

req_connect()

void req_connect(struct batch_request *preq)

Args:
preq pointer to a Connection Batch Request.

With the removal of encrypted credentials in 1.1.5, the credential type is
{int_BATCH_credentialtype_credential__none} and this routine serves mainly to insure the connection
from pbs_connect() to the server has been made before pbs_iff is called to authenticate it.

req_authenuser()

void req_authenuser(struct batch_request *preq)

Args:
preq pointer to the Authenticated User batch request.

This routine forms the server side of the authentication method introduced in version 1.1.5.
The program pbs_iff will send over a privileged port the port number of the client. If this
connection is found by the server and it is not already authenticated, the connection
svr_conn[socket] is marked with {PBS_NET_CONN_AUTHENTICATED} and the current time (for his-
torical reasons), and the user and hostname from the request are saved as the credential in
conn_credent[socket].

5.3.7. Issuing Requests to Other Servers

When the server must issue a request to another server, the Scheduler, or MOM, the server
cannot wait on the reply; the issuance of the request and the reception of the reply must be
asynchronous events. This is accomplished through the use of a work task order. For each
request issued, there is a work task order created that specifies the function to be called
when the reply is received. The work task is of type {Deferred_Reply}, and it is connected to the
reply by having the event set to the socket number on which the reply will be read.

Another factor which complicates the process of issuing requests is that the request may ac-
tually be for the local server itself. For example, a Register Dependency Request may need
to be sent to a different server or to the local server depending on the location of the parent
job. In order to remove the decision process about location from the request itself, this deci-
sion is moved into three common functions:

svr_connect()
will return a special value, {PBS_LOCAL_CONNECTION}, for the connection handle if the ad-
dress is local.

issue_request()
will either connect to a remote server and send it the request, or the function will dis-
patch the request locally. The decision is based on the value of the connection handle
pass to issue_request().

reply_send()
compliments the issue_request() function by either transmitting the reply to a request
to a remote client-server or by directly dispatching the reply if the request was from the
local server.

Since the ASN.1 data encoding has been removed, only issue_Drequest() is used to issue re-
guests now. Requests will be only use process_Dreply() to reply with. All channels should be

5-32 Chapt Draft Revision: 2.3

PBS IDS Batch Server

marked with {ToServerDIS}.

5.3.7.1. issue_request.c

The file | src/server/issue_request.c contains the function issue_request() described in “Issu-
ing Requests to Other Servers”.

issue_Drequest()

int issue_Drequest(int handle, struct batch_request *request,
void (*func)(struct work_task *));

Args:
handle

the connection handle for the connection (real or imaginary) to the server. This is
not the socket, but the return from svr_connect() .

request
the batch request structure.

func the function to deal with the reply, it inserted in the work task.

Returns:
0 if request sent ok.
Non-zero

if could not deliver the request.

If the value of the connection handle is the special value {PBS_LOCAL_CONNECTION}, then
the request is for the local server itself. The special value is saved in the request. A
work task structure is set up with the the passed function, the type {Deferred_Reply_Local},
and the event being the address of the request structure. Then dispatch_request() is
called to pass the request to the correct local processing routine. The socket number is
set to {PBS_LOCAL_CONNECTION} to indicate this is a request to the local server. (When the
reply is returned through reply_send(), the work task will be dispatched.)

If the host is a remote host, the work task is set up with the passed function, the type
{Deferred_Reply}, and the event equal to the socket number extracted from the connection han-
dle. DIS_tcp_reset() is called to reset the write buffer used by the DIS I/O routines. The re-
guest is then passed to the appropriate routine to be encoded and written on the network.
(Some of these routines reside in the API library, libpbs.a, others are particular to the server.
These are handled by calling encode_DIS_ReqHdr(), some variant of encode_DIS_*() depend-
ing on the request, encode_DIS_RegExtend() and DIS_tcp_wflush() to complete and write out
the request.

issue_Arequest()

int issue_Arequest(int handle, struct batch_request *request,
void (*func)(struct work_task *));

Args:

handle
the connection handle for the connection (real or imaginary) to the server. This is

Chapt Draft Revision: 2.3 5-33

Batch Server PBS IDS

not the socket, but the return from svr_connect() .

request
the batch request structure.

func the function to deal with the reply, it inserted in the work task.

Returns:
0 if request sent ok.
Non-zero

if could not deliver the request.

If the value of the connection handle is the special value {PBS_LOCAL_CONNECTION}, then the
request is for the local server itself. The special value is saved in the request. A work task
structure is set up with the the passed function, the type {Deferred_Reply_Local}, and the event
being the address of the request structure. Then dispatch_request() is called to pass the re-
gquest to the correct local processing routine. The socket number is set to
{PBS_LOCAL_CONNECTION} to indicate this is a request to the local server. (When the reply is
returned through reply_send(), the work task will be dispatched.)

If the host is a remote host, the work task is set up with the passed function, the type
{Deferred_Reply}, and the event equal to the socket number extracted from the connection han-
dle. The request is then passed to the appropriate routine to be encoded and written on the
network. (Some of these routines reside in the API library, libpbs.a, others are particular to
the server.

process_reply()

void process_reply(int sock)

Args:
sock The socket file descriptor from which the reply was read.

This function is called by wait_request() when a reply to a request is ready to be read, the
call to svr_connect() was typically established process_reply() as the call back function.

A work task entry on the task_list_event list is located with the event matching the socket. A
pointer to the original request is in the work task field wt_parml1. The request address, along
with the socket, is passed to isode_reply _read which will decode the reply and insert it into
the request. The work task is then dispatched.

relay_to_mom()

int relay_to_mom(pbs_net_t mom, struct batch_request *request,
void (*function)(struct work_task *))

Args:
mom The network address of MOM.

request
pointer to the request which is to be sent to MOM.

function
to be invoked when the reply from MOM is received.

5-34 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Returns:
ZEero on success

non-zero
if error, see issue_request().

This is a short cut function for transferring an existing or new request to the Machine Ori-
ented Mini-server, MOM. A connection is established to the MOM specified by mom and the
request is sent by calling issue_request().

This may be used to relay a request received from a client to MOM. issue_request() will in-
sert the MOM connection socket into the request in rg_conn over-writing the socket to the
client which will be needed to reply. Thus, the original socket is saved in the request in
rg_orgconn. Warning: this value must be restore to rg_conn by whatever routine processes the
reply data.

reissue_to_svr()

static void reissue_to_svr(struct work_task *task)

Args:
task work task pointer created by issue_to_svr().

This routine is called via a time delayed work task entry created by issue_to _svr(). It at-
tempts to retry sending a request to a remote server via issue_to_svr(). If the retry time lim-
it is exceeded or the new attempt to connect the remote server fails with no retry possibility,
the work task entry will be forwarded to the post processing routine specified by the function
which made the request. The wt_aux field of the work task is set to -1 to indicate an error.
Since, all the post processing routines expect a connection handle in wt_event, and this event
is a time, wt_event is also set to -1.

If the call to issue_to_svr() was not rejected, this function just returns and lets the dis-
patch_request() function free the work task entry. Note, that if issue_to_svr() chooses to
retry, then a new work task entry is created by it.

issue_to_svr()

int issue_to_svr(char *server_name, struct batch_request *preq,
void (*reply_function)(struct work_task *))

Args:

server_name
of server where request is to be sent.

preq pointer to request to send.

reply_function
is the function to be invoked when the request reply is received.

Returns:
0 on success.
-1 if hard error.

This request is used to send or forward a request to a server. The server may be remote or it
may be our self. It is not typically used to send requests to MOM because different error pro-

Chapt Draft Revision: 2.3 5-35

Batch Server PBS IDS

cessing is required.

The destination server name is copied into the request and the rq_fromsvr flag is set to indi-
cate it comes from a server incase the destination server is our self and we use the same
structure. Likewise, permissions are set to manager read/write. The server name turned in-
to an address via calls to parse_servername() and get_hostaddr(). If get_hostaddr() returns
busy, retry, we will retry later. Any other error is fatal.

svr_connect() is called to obtain a connection to the destination server. If svr_connect() re-
turn {PBS_NET_RC_RETRY}, we do so. The handle, request, and post processing function, re-
ply_function, are included in a call to issue_request() .

If retry is indicated, a work task entry is created by calling set_task(). This is a timed entry
with a delay of {PBS_NET_RETRY_TIME} seconds.

release_req()

void release_req(struct work_task task)

Args:
task setup by issue_request() and used to dispatch this function.

This routine is used as “reply processor routine” when there is no interest in the content of
the reply. It frees, free_br(), the request structure and disconnects, svr_disconnect(), from
the other server. It must not be used when the request originated from an outside client, or
the client will not receive the answer.

5.3.7.2. svr_connect.c

The file src/server/svr_connect.c contains three functions. The function svr_connect() is the
server’s equivalent to the API routine pbs_connect(). This function is used by the server to
establish a connection to a peer server. The calling server assumes the role of a client to the
peer server. The function svr_disconnect() is the server’s equivalent to the API routine
pbs_disconnect() .

These two functions brings together the requirements of both the server and its net_server
system of waiting on 1/O together with the connection_handle used by the API routines such
as _pbs_queuejob(). This allows the server to asynchronously wait on the reply from the peer
server and use the _pbs_*.c routines of the API. The connection_handle array is much larger
than for the typical client.

The function parse_servername() will return the host name section of a server name and the
optional service port section.

svr_connect()

int svr_connect(pbs_net_t hostaddr, int port, void (*function)(int socket),
enum conn_type type)

Args:
hostaddr
is a pbs_net_t (unsigned long) containing the Internet address in network byte or-
der.

5-36 Chapt Draft Revision: 2.3

PBS IDS Batch Server

port is the port to which to connect, in network byte order.

function
to be invoked by wait_request() when data (a reply) is ready to be read on the con-
nection. The argument to the function is the socket. This function is typically
process_reply() .

type of data encoding for the connection: {ToServerDIS}.
Returns:
>= 0 is a connection handle for a connection to a remote server.

PBS_LOCAL_CONNECTION
a special value if the destination server is this server.

-1 if an error occurred.

If the host address and port number match that of this server, then {PBS_LOCAL_CONNECTION}
is returned. No physical connection is made, see issue_request().

Otherwise, the libnet.a routine client_to_svr() is called to open the connection with the speci-
fied host address and port number. The socket is added to the svr_conn array by calling
add_conn(). The entries type is {General} and the call-back function for data ready to read is
func. If func is not null, meaning that a reply will be read, add_conn() is called to make func
the call back function. For releases 1.1.9 and 1.1.10, PBS marks the connection with the type
passed in the call.

The connection handle array used by the API routines has an entry added and the the index
into the array is the return value. An ISODE Presentation Stream is allocated for use by the
API routines.

svr_disconnect()

void svr_disconnect(int handle)

Args:

handle
the connection handle returned by svr_connect().

If the handle is valid, the ISODE presentation stream is freed, the connect_handle array
member is released, and the socket is closed by calling net_close(). Note, a handle of
{PBS_LOCAL_CONNECTION} is greater that the maximum allow handle index and a handle of -1
indicates the connection is not open.

socket_to_handle()

int socket_to_handle(int socket)

Args:
socketnumber of the socket.

Returns:
The number of a “connection handle” set up for the socket; -1 if error.

An unused entry in the connection table, connection[], is located and assigned to the socket.
ISODE streams are allocated for it.

Chapt Draft Revision: 2.3 5-37

Batch Server PBS IDS

parse_servername()

char *parse_servername(char *name, int *service)

Args:
namethe server’s name in the form hostname[:port]

service
RETURN: the port number, if specified in name, is returned. If there is not a :port
in the name argument, *service is unchanged.

Returns:
A pointer to the host name, up to but not includeding any :port returned. The host name
is in static storage and will be overwritten on the next call to parse_servername().

The hostname[:port] passed in name is parsed.

5.3.8. Queue Functions
5.3.8.1. queue_func.c

The file src/server/queue_func.c contains general functions for queue structure manage-
ment.

que_alloc()

gueue *que_alloc()
Returns:

Pointer
to queue structure created

Null if unable to create queue.

This function is called to create a queue structure in memory. The space is allocated and
cleared. The structure is linked into the server list of queues headed in sv_queues. The num-
ber of queues, sv_numque, is incremented. Each attribute array entry is set to“unset”. For
the attributes in the array of those common to all queues, the attribute type flag is set. In
the union of attributes that are queue type dependent, the type flag is not set.

The queue is marked as modified, qu_modified is set to one, but the structure is not written to
disk by this routine.

que_free()

void que_free(queue *pq)

Args:
pg Pointer to the queue structure to be freed.

Any space allocated to the attributes is freed. The server count of queues, sv_numque, is
decremented and the queue structure is unlinked from the server list. Then the queue struc-
ture itself is freed.

5-38 Chapt Draft Revision: 2.3

PBS IDS Batch Server

que_purge()

int que_purge(queue *pq)

Args:

pg Pointer to the queue to be removed from the system.
Returns:

0 If successful

-1 Iferror.

An error is returned if the queue to be purged owns any jobs.
The queue save file is unlinked and the queue structure is released by calling que_free() .

find_queuebyname()

gueue *find_queuebyname(char *gname)

Args:
gname
The name of the desired queue.

Returns:

Pointer
to the queue structure if found

Null If no queue found

Search linked list of server’s queues for one with given name. Any @server suffix on the
gueue name is ignored.

get_dfltque()

gueue *get_dfltque()

Returns:

pointer
to the default queue if defined, or NULL.

If the server attribute default_queue is set, and if there is a queue by that name, a pointer to it
is returned. Otherwise, a null pointer is returned.

5.3.8.2. queue_recov.c

The file src/server/queue_recover.c contains the functions to save and restore a queue struc-
ture and its associate attributes.

que_save()

Chapt Draft Revision: 2.3 5-39

Batch Server PBS IDS

int que_save(queue *pque)

Args:

pque Pointer to queue structure which is to be saved.
Returns:

0 if success

-1 iferror

If the queue is marked as modified, it is saved to disk. If not, it isn't.

The queue file name is based on the queue name, which is obtained from the queue structure.
This file is opened. save_setup() is called to initialize the save buffer. The queue structure is
written using save_struct().

The queue attributes are saved by calling save_attr().

The save buffer is flushed, save_flush(), and the file is closed. The queue is marked an not
modified.

The queue’s attributes are searched for any of type {ATR_TYPE_HOSTACL}, {ATR_TYPE_USERACL},
or {ATR_TYPE_GRPACL}. When found, save_acl() is called to save the contents of the access con-
trol list to its own file.

que_recov()

gue *que_recov(char *filename)

Args:
filename
The name of the queue save file.

Returns:

Non null
gueue pointer to the new queue structure upon success.

Null pointer on failure.

The queue structure is allocated and initialize via que_alloc(). The file specified is opened.
The basic queue data is read into the queue structure pointed to by pque. The attributes are
reloaded by calling recov_attr().

The queue’s attributes are searched for any of type {ATR_TYPE_HOSTACL}, {ATR_TYPE_USERACL},
or {ATR_TYPE_GRPACL}. When found, recov_acl() is called to reload the contents of the access
control list from its own file.

The queue is marked as not modified to prevent an unnecessary rewrite to disk.

5.3.9. Server Functions

This section of the IDS covers a collection of modules which contain general bookkeeping
functions for the server. If they did not fit else where, they are probably here.

5.3.9.1. run_sched.c

The file src/server/run_sched.c contains functions used by the Server to contact and com-
mand the job Scheduler. The connection to the Scheduler is a two faced connection, or maybe
I should say it turns on you. The Server contacts the Scheduler to open the connection and
sends it a schedule command. This makes the Server a client to the Scheduler. But the

5-40 Chapt Draft Revision: 2.3

PBS IDS Batch Server

scheduler needs to send requests to the Scheduler as a client. Thus after sending the com-
mand the Server adds the connection to those from which it accepts requests and the Sched-
uler sets up the connection to look like it was created via a call to pbs_connect().

The schedule command sent from the Server and the Scheduler is a simple 4 byte integer, in
network order. The integer has the wvalue of: {SCH_SCHEDULE_NEW}(1),
{SCH_SCHEDULE_TERM}(2), {SCH_SCHEDULE_TIME}(3), {SCH_SCHEDULE_RECYC}(4), or
{SCH_SCHEDULE_cMD}(5). Additional commands are planned but not currently supported.

schedule_jobs()

int schedule_jobs()

Returns:
-1 Error occurred, could not contact the Scheduler.
0 Scheduler was sent the schedule command.

+1 An unresponded schedule command is already outstanding to the Scheduler, only
one at a time is allowed.

This routine is called from the main scheduler loop in pbsd_main(). If this is the first time
the function has been called, the scheduler command {SCH_SCHEDULE_FIRST} will be sent to the
scheduler regardless of the reason it was called. If scheduler_sock is minus one (otherwise it is
the socket of the existing connection to the Scheduler), contact_sched() is called to send the
command, listed above to the scheduler. The command is found in the external variable
svr_do_schedule.

contact_sched()

static int contact_sched(int command)

Args:
command
is the integer command to be sent to the scheduler.
Returns:

socketof the connection to the scheduler or -1 if error.

The function client_to_svr() is called to open a connection to the Scheduler at address
pbs_scheduler_addr and port pbs_scheduler_port. Then add_conn() is called to add the connec-
tion to the set to which the server will listen for requests, and net_add_close_func() to regis-
ter the locat function scheduler_close() as the function to be called when the connection clos-
es. Next put_4byte() is called to output the command.

put_4byte()

static int put_4byte(int socket, unsigned int command)

Args:

Chapt Draft Revision: 2.3 5-41

Batch Server PBS IDS

socketconnection to the Scheduler.

command
to be sent.

Returns:
0 for success, or -1 if error.

This function takes the least significant four bytes of the command, places them in network
order and writes them on the connection. It will work for any architecture where the size of
an unsigned int is at least 4 bytes.

The corresponding routine, get_4byte(), is found in src/scheduler.rules/get_4byte.c.
The return value is -1 if 4 bytes could not be written on the socket.

scheduler_close()

static void scheduler_close(int socket)

Args:
socketconnection which was closed, unused.

The variable scheduler_sock is set to -1 to indicate to schedule_jobs() that the Scheduler con-
nection is terminated.

If only one job was “run” by the scheduler during the cycle, as shown by scheduler_jobct being
set to one, then the external (see pbsd_main.c) svr_do_schedule is set to {SCH_SCHEDULE_RECYC}
to recall the scheduler. A scheduler script may be written to run only one job per cycle to en-
sure its newly taken resources are considered by the scheduler before selecting another job.
In that case, rather than wait a full cycle before scheduling the next job, we check that one
(and only one) job was run by the scheduler. If true, then we recycle the scheduler (a com-
mittee decision).

5.3.9.2. geteusernam.c

The file src/server/geteusernam.c contains functions to obtain the login name and group un-
der which the job should be executed and set the corresponding uid, gid in the job structure.

geteusernam()

static char *geteusernam(job *pjob, attribute *pattr)

Args:

pjob pointer to the job structure.

pattr pointer to the User_L st attribute, either the job’s or the newly modified (qalter).
Returns:

pointer
to the user name.

The name is located by trying the following steps in the order listed until a name is found.

1. A username@bhost in the attribute User-List with a host name matching the local host
name.

5-42 Chapt Draft Revision: 2.3

PBS IDS Batch Server

2. A username in the attribute User-List with no host name specified, this is the wild
card username.

3. The username from the job attribute owner-name. This name is mapped to a local
name by calling site_map user(). (Remember, the PBS supplied version of
site_map_user() just returns the name given as input.)

The User-List attribute is of type {ATTR_TYPE_ARST}, array of strings. Each string in the array
is of the form username [@host].

The selected name is saved in a static buffer and stripped of any host name.

getegroup()

static char *getegroup(job *pjob, attribute *pattr)

Args:
pjob pointer to the job.

pattr pointer to the group_list attribute, either from the job structure or a newly modified
one (qalter).

Returns:

pointer
to a string containing the the group name, null if one is not specified.

This function returns the name of the group under which the job should execute if one was
specified. The passed attribute, JOB_ATR_grouplst, is searched for

1. A name with a host name matching the server host, or
2. No host name (the wild card host).
If neither is found, a null pointer is returned.

set_jobexid()

int set_jobexid(job *pjob, attribute *attr_array)

Args:
pjob pointer to job structure.

attr_array
pointer to array of job attributes, either the actual job's, or if they are being modi-
fied, the newly modified array, see modify_job_attr().

Returns:
0 if successful.
non-zero

error number, if error.

The execution uid and gid fields in the job, ji_euid, ji_egid, are set. The name under which
the job should be executed is obtained by calling geteusernam(). It is called with either the
User_List attribute from the passed in attribute array; or it is unset, the actual job's working
attribute ji_wattr[JOB_ATR_userlst].

Chapt Draft Revision: 2.3 5-43

Batch Server PBS IDS

The password entry for returned name is retrieved. If there is not an entry [PBSE_BADUSER]
is returned. If {PBS_ROOT_JOBS} is defined non-zero, an UID of zero is allowed if and only if
the job owner is root@this host. If {PBS_ROOT_JOBS} is defined to zero, then an UID of zero is
not allowed at all and is returned.

The job structure, which contains the job owner name and submitting host name, and the lo-
cal user name are passed to site_check_user_map() to see if the user is authorized to execute
a job as the selected user. The user name is placed into the job attribute JOB_ATR_euser.

For Cray Unicos system, an addition check is performed. These systems have a User Data
Base (UDB) which contains permission bits. Two are of interest at this point, if either
{PERMBITS_NOBATCH} Or {PERMBITS_RESTRICTED} is set for the user, he is denied access to the
system for batch jobs (or at all). The job is aborted with [PBSE_QACESS]. Also for the Cray, if
the job account attribute, JOB_ATR_account, is not set, the default account id, ACID, is ob-
tained from the UDB entry.

The routine getegroup() is called with either the group_listmember ji_wattr[JOB_ATR_grouplst] of
the job; the function determines if a group was specified for the execution. If a group name
was specified and the group is not the user’s primary group and the user name is not listed
as a member of the specified group, [PBSE_BADGRP] is returned. If a group was specified,
and it was the user’s login group, then that is allowed. If a group was not specied for this
host, then the user’s login group is taken as the default. The job attribute JOB_ATR_egroup is
set to the group name; or in the case of defaulting to the login group and getgrnam() return
null (no such group), the numerical value (gid) is converted into a string for
JOB_ATR_egroup.

Also, if the group is the primary group from the password file, the attribute default value
flag, {ATR_VFLAG_DEFLT} is added to the attribute. This has special meaning to MOM, see
start_exec(), and setup_cpyfiles() in server/req_jobobit.c.

5.3.9.3. svr_chk owner.c

The file src/server/svr_chk_owner.c contains functions supporting authorization and authen-
tication checking of batch requests.

svr_chk_owner()

int svr_chk_owner(preq, pjob)

Args:
preq pointer to the batch request structure.
pjob pointer to the job structure.

Returns:
0 if requesting user is the job owner.

non
if not job owner.

The user name and host name from the request are mapped to a local name by
site._ map_user(). The owner of the job is obtained from the job owner attribute
JOB_ATR_job_owner. The host name from which the job was submitted is obtained from the
job by calling get_orighost() . It along with the job owner’s name is mapped via site_map_us-
er(). If the two resulting local names are equal, zero (0) is returned; else non-zero is re-
turned.

5-44 Chapt Draft Revision: 2.3

PBS IDS Batch Server

svr_authorize_jobreq()

int svr_authorize_jobreq(struct batch_request *request, job *pjob);

Args:

request
pointer to the batch request.

pjob pointer to the job structure.

Returns:
0 if the client is authorized to act on the job.
non-zero

if not authorized.

The requester or client is autorized to act on a job if the requester is the job owner, see
svr_chk_owner(), or has been granted Operator or Manager privileges.

svr_get_privilege()

int svr_get_privilege(char *user, char *host)

Args:
user the name of the user (client).
host the host from which the request is being made.
Returns:
(integer)
which is the read/write privilege granted.

The function svr_get_privilege() returns the access privilege granted to the named user.
There are three levels of privilege defined:

User has no special level of privilege. A user has the ability to create, alter, status and delete
his/her own jobs. A user can also status queues and the server.

Operator
has one level of special privilege. An operator can alter, status, and delete any user’s
jobs, status and alter queues, and status the server.

Administrator
has the highest level of privilege. An administrator has all the capabilities of an opera-
tor plus the privilege to create and delete queues and alter the server.

Any client user is automatically granted “user” privilege. Administrator and operator privi-
lege is granted on a name at host basis. If the user name associated with the host (or wild
card) appears in the server’s administrators or operators attribute, then that user is granted the
corresponding additional privilege.

The return value from svr_get_priv() is the bitwise “and” of the following values which are
defined in attribute.h:

user ATR_DFLAG_USRD & ATR_DFLAG_USWR

operator ATR_DFLAG_OPRD & ATR_DFLAG_OPWR

administrator ATR_DFLAG_MGRD & ATR_DFLAG_MGWR

Chapt Draft Revision: 2.3 5-45

Batch Server PBS IDS

authenticate_user()

int authenticate _user(struct batch_request *request)

Args:
request
pointer to the server network independent batch_request structure.
Returns:
0 if user is authenticated
<0 if authenticate fails.

In the basic provided system, the user is authenticated if the user name and host nhame pro-
vided in the credential matches the user name in the request and the host nhame determined
from the network interface. The time stamp must be current, not less than
{CREDENTIAL_TIME_DELTA}seconds {CREDENTIAL_LIFETIME} seconds more than the local system
time.

chk_job_request()

job *chk_job_request(char *jobid, struct batch_request *preq, int sock)

Args:
jobid the job identifier of the job to which the request applies.
preq pointer to the batch request.
sock the socket over which any reply is sent.

Returns:

pointer
to the job, null if error.

This function provides the common checks for batch service requests that apply to existing
jobs. First the job is located; if not found [PBSE_UNKJOBID] is returned to the client.

If the client is not authorized to make the request against the job, see svr_authorize_jobreq(),
[PBSE_PERM] is returned to the client.

Finally, if the job is in the exiting state, [PBSE_BADSTATE] is returned.

On any error, a reply is sent to the client via reqg_reject() and the function returns a null job
pointer. The caller should just return up the line.

5.3.9.4. svr_func.c
the file src/server/svr_func.c contains various server support functions.

encode_svrstate()

int encode_svrstate(attribute *pattr, list_head *head, char *name, char *rescn,
int mode)

5-46 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:
pattr pointer to the server state attribute.
head head of list of encoded attributes, svratrlst, to which to append the attribute.
namename of the server state attribute.
rescnresource name, null.
modethe encode mode.
Returns:
zero if successful, non-zero if error.

This is a special “at_encode” routine for the server state attribute. It turns the numeric state
into the corresponding textual name: ldle, Active, Scheduling, Terminating, or Terminating
Delayed.

The choice between Idle and Active is made based on the setting of the scheduling attribute. If
there is a call outstanding to the scheduler, its socket is not -1, then the state is mapped into
Scheduling.

set_resc_assigned()

void set_resc_assigned(job *pjob, enum batch_op op)

Args:
pjob pointer to job which is being taken into running or exiting state.
op operator, {Incr} or {Decr}.

When a job is being placed into run state or taken out of run state, this routine is called to
update the server attribute SRV_ATR_resource_assn, resources used. This attribute is the sum
of certain resource requirements of jobs in the running state. The attribute may be useful in
scheduling scripts.

If the job is not in state {JOB_STATE_RUNNING}, this function just returns. (Might be called
twice if MOM is restarted after the job terminates). For each resource list member which is
marked in the resource definition with {ATR_DFLAG_RASSN}, that resource limit value is
added/subtracted to/from the corresponding resource member. of SRV_ATR_resource_assn.

ck_chkpnt()

int ck_chkpnt(attribute *pattr, void *pobject, int mode)

Args:
pattr pointer to job checkpoint attribute.

pobject
not used here

modenot used here

Returns:
a PBS error number or 0 if ok.

This is the “at_action” routine for the job’s checkpoint, JOB_ATR_chkpnt, attribute. Ck_chkpnt
is called whenever the checkpoint attribute value is set or changed. The routine makes sure

Chapt Draft Revision: 2.3 5-47

Batch Server PBS IDS

the value is proper, equal to "n", "s", "u", "c", or "c=dddd", where dddd is a number.

5.3.9.5. svr_mail.c
The file src/server/svr_mail.c contains the function to send mail to a job’s mail list.

svr_mailowner()

void svr_mailowner(job *pjob, char mailpoint, int force, char * text)

Args:
pjob Pointer to the job about which mail is to be sent.
mailpoint
The single character indicating the mail point.
force flag to force sending the mail.
text The character string of the message to mail.
The mailpoint parameter is a single character which identifies the point at which mail is be-
ing sent:
a for abort,
b for beginning of execution,
e for exit, and
S for file staging (in) error.

If the force flag is true, the mail message is to be sent. Otherwise the job attribute
JOB_ATR_mailpnts is checked to see if the user requested mail at this point. If not, the func-
tion just returns.

If mail is to be sent, the function forks with out setting up a work task on the pid as there is
nothing to do when the child exits. The parent returns to the caller.

The child process builds the sendmail command is built up in a buffer. It includes the -f op-
tion to specifiy the “sender’s name” which is obtained from the server attribute SRV_ATR_mail-
from, “mail_from”. Also included is the mail destination, if the job has a specified
JOB_ATR_mailuser attribute, that list is used instead of the job owner as the recipient of the
mail. The command line is passed to popen() and the mail headers and body message are
written on the pipe. The headers includes a subject phrase based on the mail point. The
child process then exits.

The server will reap the child and clean up the child_task entry.

5.3.9.6. svr_messages.c

The file src/server/svr_messages.c has been replaced by src/lib/Liblog/pbs_messages.c be-
cause of a change to log_err() to print messages associated with PBS error numbers.

5.3.9.7. svr_resccost.c

The file src/server/svr_resccost.c contains functions associated with the resources cost at-
tribute and calculating the resource cost of a job. This attribute and these functions support
the synchronous job starting functions found in req_register.c.

It was the original intent to have the resource cost be an integer recorded in the re-
source_definition structure itself. It seemed logical, one value per definition, why not. But
"the old atomic set" destroys that idea. Is is necessary to be able to have temporary at-
tributes with their own values, hence it came down to another linked-list of values. Each en-

5-48 Chapt Draft Revision: 2.3

PBS IDS Batch Server

try contains the cost value and a pointer to the resource definition structure to tie the cost to
that resource.

add_cost_entry()

static struct resource_cost *add_cost_entry(attribute *pattr,
resource_def *pdef);

Args:

pattr pointer to the resources_cost attribute.

pdef pointer to the resource definition structure for the specific resource.
Returns:

pointer
to the newly created resource cost entry, NULL if error.

A new entry is allocated and initialized to zero.

decode_rcost()

int decode_rcost(struct attribute *pattr, char *name, char *rescn, char *val)

Args:
pattr pointer to the resources_cost attribute.
nameof the attribute.
resc the resource name.
val The cost of the resource (the value).
Returns:
Zero on success.

non-zero
on error.

The resource cost entry for the specified resource is found in the list headed in the attribute.
If not found, a new one is created by calling add_cost_entry(). The value string is converted
to an integer and inserted in the structure.

encode_rcost()

int encode_rcost(attribute *pattr, list_head *phead, char *athame,
char *rsname, int mode)

Args:All arguments are standard for an at_encode() routine.

Return:
Greater than zero on success, zero if attribute was unset, negative if error.

For each entry in the resource cost attribute list, a svrattrist entry is created by calling
attrlist_create. The al_value field is set to the resource cost value and the entry is linked on

Chapt Draft Revision: 2.3 5-49

Batch Server PBS IDS

the list headed by phead.

set_rcost()

int set_rcost(attribute *old, attribute *new, enum batch_op op)

Args:
old the attribute whose value is to be modified.
new the attribute whose value is the modifier.
op SET, INCR, or DECR operation.

Return:
ZEero on SuUccess, NoN-zero on error.

For each entry in the new attribute, the corresponding value in the old attribute is modified
according to the operation.

free_rcost()

void free_rcost(attribute *pattr)

Args:
pattr pointer to the resource cost attribute which is to be freed.

All entries in the list of resource_cost structures headed in the attribute are deleted from the
list and freed.

calc_job_cost()

long calc_job_cost(job *pjob)

Args:
pjob pointer to the job for which the resource cost is to be calculated.

Returns:
The resource cost of the job.

The resource cost of the job is the sum of the “per system cost,” SVR_ATR_sys_cost, and the
products of the specified resource costs and their respective amounts of resources. To the the
produce for becoming too large, for those resources measured in “size”, the size is converted
to megabytes before multiplying by the cost, i.e. the cost is in terms of megabytes, not bytes.

5.3.9.8. svr_task.c

The file src/server/svr_task.c contains the server functions for maintaining the list of de-
ferred services such as route retry, job waiting, and completion of batch requests that depend
on communication with other processes, e.g. MOM.

The tasks fit into one of three major types:

Immediate Tasks which the server should act upon immediately. Many entries are
placed into this list by pbsd_init() during server recovery.

5-50 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Time Tasks which are deferred to a specific time (in the future). Jobs in the Wait
state have a task entry of this type.

Event Tasks which are deferred to the occurrence of a specific (external) event. All
child processes are recorded by this type of task entry as are batch requests
which depend on the response of another process.

The deferred tasks are recorded in a work task structure. All tasks of the same type are
linked together in lists headed in the global variables task_list_immed, task List_time, or
task_list_event. An entry is created and added to the appropriate list by set_task(). An entry
is removed by calling delete_task() .

Note that set_task() returns a pointer to the work task entry. This is often used to add the
entry to a list headed in the structure referenced by wt_parml. Wt_parml is often a pointer
to a structure, such as a job structure. This pointer is typically used by the function invoked
by the task dispatcher. If it is at all possible that the “pointed to” structure could be freed be-
fore the work task is acted on, the list of work tasks in the structure is used to delete the
work task along with the “pointed to” structure. The caller of set_task() MUST add the work
task entry to the structure’s list of work tasks.

The tasks on the immediate and timed list are processed in the main server loop. Events on
the event list are either processed when the event is detected or shortly there after by mov-
ing the event to the immediate list.

WARNING:
You should never move an entry from one list to another in a signal handler as
you cannot be sure of the state of the links.

set_task()

struct work_task *set_task(enum work_type type, long event_id,
void (*func)(struct work_task *),
void *parm1l)

Args:
type The type of task.

event_id
An identifier to relate this task with a specific event.

func The function to perform the task.

parml
The parameter to be saved in wt_parm1 in the work task entry.

Returns:

pointer
to the allocated work task entry.

Null if an error occurred and no entry was allocated.

A work task entry is allocated and initialized with the data passed as arguments to this func-
tion. The entry is added to one of the three lists maintained by the server depending on the
event type: immediate, timed, or external event. If the additional parameter entries in the
work task entry wt_parm2 and wt_aux are meaningful to the invoked function, set_task the
caller of must initialize them.

The function assigned to process the task, func(), must take one argument, a pointer to the
work task entry.

Chapt Draft Revision: 2.3 5-51

Batch Server PBS IDS

dispatch_task()

void dispatch_task(struct work_task *task)

Args:
task pointer to a work task entry to dispatch.

The work task entry is unlinked from both the main server list and the optional (job) struc-
ture list. If specified, the function in the task entry is called and passed a pointer to the work
task itself. When the function returns, the work task entry is freed.

delete_task()

void delete_task(struct work_task *ptask)

Args:
ptaskpointer to the task entry to clear.
The task entry is unlinked from its list(s) and freed.

5.3.9.9. list_link.c

The file src/server/list_link.c contains routines for maintenance of a doubly linked list. The
list is linked through a structure list_link in each entry. The list is headed by a list_head
structure (nothing more than another list_link), Each link is contained in a list_link struc-
ture. In addition to forward and backward pointers, the list_link structure contains a pointer
to the parent structure which contains the link. This allows a structure to have multiple
list_link structures and to reside in multiple lists. In the head entry, this pointer to the par-
ent structure is a NULL pointer. This allows the end and head of the list to be recognized.
NEVER, NEVER, allow the parent structure pointer in a list member TO BE NULL; or the
parent structure pointer in the head structure TO BE NOT NULL; or the next and prior
pointers in the head to be NULL!

The definition of the link structures are contained in the file include/list_link.h. Also de-
fined in the header file are the following macros:

CLEAR_HEAD()
which clears a list head structure including the parent structure pointer.

CLEAR_LINK()
which clears the next and prior members of a list link structure.

GET_NEXT()
which returns the address of the parent structure of the next item in the list. A NULL
pointer is returned if the end of the list is reached.

GET_PRIOR()
which returns the address of the parent structure of the previous item in the list. A
NULL pointer is returned if the head of the list is reached.

insert_link()

void insert_link(struct list_link *old, struct list_link *new,
void *pnewobj, int position)

5-52 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:
old Pointer to an list_link entry already in the list or the head structure.
new Pointer to the list_link sub-structure in the new entry.

pnewobj
Pointer to the parent structure, holding the new list_link sub-structure.
position
If 0, then the new entry is added before the old, else it is added afterwards.
The new entry is added to the list either before or after the old entry depending on the set-

ting of position. Note, if the old entry is the list head, inserting “after” makes the new entry
the first in the list; inserting “before” makes the new entry the last in the list.

The seemingly extra parameter, pnewobj, is a pointer to the parent structure of the list_link
sub-structure, If the list_link could always be the first member of the parent structure, this
would not be needed. However, to allow for the structure to be in multiple lists, this extra
parameter is required. The links always point to the top of the parent structure, allowing
other members to be addressed.

append_link()

void append_link(struct list_head *head, struct list_link *new,
void *newpobj)

Args:
head Pointer to (address of) the list_head structure.
new Pointer to the list_link sub-structure in the new entry.

pnewobj
Pointer to the parent structure containing the new list_link structure.

The new entry is appended to the end of the list.

delete_link()

void delete_link(struct list_link *old)

Args:
old Pointer to the entry to be deleted from the list.

The entry is removed from the list. The forward and back link pointers in the old entry are
set to point to itself. Otherwise the old entry is not disturbed.

swap_link()

void swap_link(list_link *one, list_link *two)

Args:
one pointer to one entry in a list.

Chapt Draft Revision: 2.3 5-53

Batch Server PBS IDS

two pointer to another entry in the same list.

This routine swaps the positions in a list of two members of the list. If the two members are
adjacent, one is moved after the other. Otherwise, each entry is unlinked and relinked after
the entry ahead of the other.

is_linked()

int is_linked(list_head *head, list_link *entry)

Args:
head Pointer to head of list.
entryPointer to list_link structure in question.
Returns:
1 if the entry is in the list headed by head.
0 if the entry is not in the list.

This function walks the list until it encounters the entry in question or reaches the end of the
list.

list_move()

void list_move(list_head *from, list_head *to)

Args:
from pointer to a list_head.
to pointer to a list_head.

The list headed by from is moved to be headed by to instead. The list head from is cleared.
The whole thing is just insuring that the pointer in the head and tail list elements point to
the correct list_head structure.

5.3.9.10. accounting.c

The file src/server/accounting.c contains routines for the creation of the server accounting
file.

acct_job()

static void acct_job(job *pjob, char *buf)

Args:
pjob pointer to job for which the accounting record is to be written.
buf pointer to a buffer in which the record is built. It must be big enough.

Returns:
pointer to next available byte in buffer.

5-54 Chapt Draft Revision: 2.3

PBS IDS Batch Server

This private routine is used by account_jobstr() and account_jobend() to add the following in-
formation to the accounting record being built in buffer: user, group, account, job name, ses-
sion id, job creation time, job queued time, time when the job became eligible for execution,
the time the job started execution, and the job resource requirements.

acct_open()

int acct_open(char *filename)

Args:
filename
of the accounting file to be opened.

Returns:
Zero on success, -1 if error.

Calling acct_open() with a null pointer request that the default account file, based on the cur-
rent day be opened. The file will be switch each day with the first record after midnight, see
account_record().

Calling it will a pointer to a null string, from a -A ", is direction to not to open a file. This in
effect, turns off account recording. Calling acct open() with a full path name turns off
switching to a new file each day.

void

void acct_close()

Closes the accounting file if open.

account_record()

void account_record(char type, job *pjob, char *text)

Args:
type of record
pjob pointer to job
text to append to record.

This function formats and records the basic record. The supplied text is appended to the date
time stamp, type character, and job id.

If automatic file switching is on (using default file name) and the current day is not the same
day as the the day the file was opened, then the file is closed, acct_close(), and opened anew,
acct_open().

account_jobstr()

Chapt Draft Revision: 2.3 5-55

Batch Server PBS IDS

void account_jobstr(job *pjob)

Args:
pjob pointer to job

This function builds the text part of a job start (of execution) record. The function acct_job()
is used to list the basic information about the job. Then account_record() is called.

account_jobend()

void account_jobend(job *pjob, char *used)

Args:
pjob pointer to job
used text about the resources which were used by the job.

This function builds the text part of a job end (of execution) record. The function acct_job() is
used to list the basic information about the job. Then the information from req_jobobit()
about resource usage is appended. Last, account_record() is called.

5.3.10. Node Functions

The functions in this section deal with Node resources. The functions include allocating, re-
serving, and freeing.

5.3.10.1. node_manager.c

The file src/server/node_manager.c contains functions that

(1) Deal with nodes as resources: allocating, reserving, and freeing.
(2) Server to Mom communication used to tract state of the nodes.

write_node_state()

void write_node_state()

This routines writes the node state file {NODE_stAaTUS} which is PBS_HOME/serv-
er_priv/node_status . If the file is not already open, it is opened. If already opened, the
file is truncated to zero length.

The file is written as the node name and the state as an integer. Only those nodes which are
marked off-line are recorded in this file. If a node is allocated to a job, that is determined by
the recovered job attributes. If a job is down, that is discovered when the server cannot com-
municat with the node.

free_prop()

static void free_prop(struct prop *proplist)

5-56 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:
proplist
A pointer to a linked list of properities of a node.
A properity is just a string, which may be descriptive of some property of the node, assigned
by the Batch Administrator. Zero or more may be assigned via the node description file, see
setup_nodes ().

This routine frees the structures used to hold the property strings.

node_unreserve()

void node_unreserve(resource_t handle)

Args:
handle
A resource handle used to identify a set of reserved resources.

This function releases the reservation on a set of nodes. The reservation is identified by han-
dle. If handle is the special value {RESOURCE_T_ALL}, then all reserved resources are released.

hasprop()

static int hasprop(struct pbsnode *node, struct prop *props)

Args:
node pointer to a single pbsnode structure
propsA list of properities, some or all of which are marked as "needed"

Returns:
One if the node has the "needed" properities, zero if not.

For each "needed" properity in the props list, check the properity list of the specified node. If
all needed properites are in the nodes properity list return 1, else return 0.

mark() nodes

static void mark(struct pbsnode *node, struct prop *props)

Args:
node pointer to a single pbsnode structure
propsa list of properities
For each properity in props, mark that properity in the node properity list.

search() nodes

int search(struct prop *glorf, int skip, int order, int depth)

Chapt Draft Revision: 2.3 5-57

Batch Server PBS IDS

Args:
glorf a properity list
skip a bit mask, if bits match those in the inuse field of the node, that node is skipped
(ignored)
orderthe position or order of the needed node in the user’s specification
depththe limit of the depth of the recursive search - used to limit the search time

Returns:
One if the nodes are available - the nodes are marked in the flag field with the {thinking}
flag. If the nodes are not available, zero is returned.

This function looks for a node which contains the properties given in the list glorf. The pa-
rameter check is a flag to indicate if nodes which are in use should be checked. The parame-
ter order is the order of this particular node in the user’s specification. First, the node list is
searched for one with the given properties. If one is found, it is marked "thinking" and a 1 is
returned. If not, the nodes which are marked "thinking" are searched. If one is found with
the given properties, mark it "conflict" and call search() recursively to find a node with the
properties being used by the conflict node. If one is found, return 1. If this second loop fin-
ishes without finding a match, return 0. The depth of recursive calls is limited by the param-
eter depth.

number()

static int number(char **ptr, int *num)

Args:
ptr pointer into a node specification string; it is updated
num RETURN: the integer found is returned in the location pointed to
Returns:
0 A valid integer was found in the node spec location pointed to by ptr
1 No integer found
-1 An integer of value zero was found, not legal in the node spec

The next token in the node spec is checked to see if it is an integer. The pointer to the node
spec is updated to point beyond the integer.

property() of node

static int property(char **ptr, char **prop)

Args:
ptr pointer into a node specification; will be updated
prop RETURN: pointer to the located valid properity nhame in the node spec

Returns:
Zero if a valid properity name was the next token, 1 if not.

To be a legal properity name, the first character of its name must be alphabetic, the remain-
ing chacters must be alphanumeric or -’ or ".". The next token in the node spec is checked to
see if it is an legal properity name. The pointer to the node spec is updated to point beyond

5-58 Chapt Draft Revision: 2.3

PBS IDS Batch Server

the name.

proplist()

static int proplist(char **str, struct prop **list)

Args:
str A pointer into a node specification, updated
prop RETURN: a pointer to a new property list is return

Returns:
Zero on success, 1 else

Starting at str, the next element in a supplied node spec is checked by calling properity() to
see if it is a properity name. If it is, a new element in a generated property is allocated and
filled in. If it is not a valid property name, 1 is returned. The processing is stopped at the

first invalid property name or at the colon, ":", that ends the node spec section.

listelem()

static int listelem(char *str, int order)

Args:
str pointer into a node specification, it is updated
orderThe order of this node spec within the total specification

Returns:
1 if the node spec can be satisfied
0 if the node spec cannot be completely satisified

-1 if the node spec is impossible to satisify ever.

This function handles a singular node specification. It checks for a leading number,
number(), followed by a sequence of properties (proplist() , and creates a list for each one.

The number of nodes in the total pool which have the required set of properities is counted
via calling hasprop() on each node. If the number of nodes with the properties is less than
the requested number, -1 is returned. If sufficient nodes are available, +1 is returned.

If neither of the above cases are true, an addition search is made via search(), ignoring none
of the nodes (checking allocated/down ones) to see if the request can be satisifed if all were
free.

mod_spec() nodes

static char *mod_spec(char *spec, char *global)

Args:
spec pointer to a node specification

Chapt Draft Revision: 2.3 5-59

Batch Server PBS IDS

globalpointer to a properity to add

Return:
a pointer to a modified node specification string

The properity given by global is appended to each node specification section within the spec.

l.e. with a global value of general and a node spec of 2:propA:propB+3:propC a new spec
of 2:propA:propB:general+3:propC:general is returned.
nodecmp()

int nodecmp(void *aa, void *bb)

Args:Both aa and bb are pointers to pbsnode structures

Returns:
The comparison relationship is returned

This routine is passed as the comparison function for the general C lib sort routine. It orders
nodes by

- free nodes first if the global variable exclusive is set, or
- shared nodes first if exclusive is not set.

When assigned nodes, we want to assign matching free nodes for exclusive use and match
nodes already shared for shared use.

node_spec()

int node_spec(char *str, int early)

Args:
str pointer to node specification string
early flag to quit test early
Returns:
>0 number of nodes required to meet spec, if they are available
0 if cannot currently be satisfied
-1 if cannot ever be satisfied

We assume unless the key word shared is found that the node request is for exclusive alloca-
tion, so the global variable exclusive is set by default. If any global properities are specified
at the end of the spec, they are checked for the key word shared ; if found, exclusive is
cleared.

ctnodes() is used to determine the total number of nodes specified in the spec. It that is
greater than the total number of nodes, we bail out with a -1.

The nodes are sorted by free or shared depending on the setting of exclusive. The flag field of
each node is cleared to {okay}. If the node is free, it is counted in a count of nodes,
svr_numnodes.

The node spec is checked by calling listelem() which also tentively allocates nodes matching
the subspec by marking them thinking

5-60 Chapt Draft Revision: 2.3

PBS IDS Batch Server

If any node is marked for allocation with thinking , but is not available to the job (already in
use), then search() is used to attempt to find a replacement. This may entail given up a
node already marked thinking which matches the empty spec and finding a replacement
node for the one surrendered. A complex problem.

setup_nodes()

int setup_nodes()

Returns:
Zero on success, -1 otherwise.

Open and read the (PBS_HOME)/server_priv/nodes file. Allocate structures for pbsnodes
and props as requried. The total number of nodes in the file is maintained in svr_numnodes.

Each primary host name is validated by calling gethostbyname(). The IP address for the
node is recorded in the node structure.

The state of each node is initialized to {INUSE_UNKNOWN} until the server is able to check with
pbs_mom on that node.

set_nodes()

int set_nodes(job *pjob, char *spec, char **rtnlist)

Args:
pjob pointer to a job to which nodes are to be assigned
spec node specification required by that job
rtnlistRETURN: a list of allocated nodes (if possible) will be returned here.

Returns:
Zero if ok, or a PBS error number if not.

This function allocates nodes to a job. The requirement is given in the node specification
spec.

The nodes to allocate are chosen by calling node_spec(). If the return indicates the request
cannot be satisified currently, [PBSE_RESCUNAV] (temporarily unavailable) is returned, if the
return from node_spec() indicates the request can never be satisified, [PBSE_BADATVAL] is re-
turned.

If exclusive is set, the number of allocated nodes is deducted from the total number available,
svr_numnodes. Each node selected by node_spec() is marked in the flag field with the flag
{thinking}, each of those nodes is marked as being allocated to the job either as shared,
{INUSE_JOBSHARE]}, or exclusively {INUSE_JOB}. A pointer to the job is linked into the node
structure. Note, a share node may be allocated to more than one job.

The list of nodes is ordered to match the specification given. This was carried around in the
order field. The list is a string of the form: nodel+node2+node3+...

node_avail()

int node_avail(char *spec, int *avail, int *alloc, int *reserved, int *down)

Chapt Draft Revision: 2.3 5-61

Batch Server PBS IDS

Args:
spec pointer to a node spec

avail RETURN: pointer to a integer in which the number of available nodes that match
the spec is returned.

alloc RETURN: pointer to a integer in which the number of allocated nodes that match
the spec is returned.

reserved
RETURN: pointer to a integer in which the number of reserved nodes that match
the spec is returned.

downRETURN: pointer to a integer in which the number of down nodes that match the
spec is returned.

Returns:
Zero on success or PBS error number.

This is the node specific part of a batch Resource Query request, see pbs_rescquery(). The
node specification may come in two flavors:

simple
The request is of the form nodes or nodes= and covers all possible nodes; or the
request deals with a single set of properities, nodes=prop[:prop...] in which

case the numbers returned concern the number of nodes with those properities.
All four numbers are valid. The above is determined by calling hasprop() against
each known node. If the node has the requested properities, the count of avail-
able, allocated, ... is incremented depending on the node state.

complex
The request is of the forms: nodes=number or with multiple nodes
nodes=prop[:prop]+prop... In this case, only the avail number has meaing

and it is kludged. If greater than zero, it is the number of nodes requested by the
spec and some set of nodes is currently available which would satisify the spec. If
equal zero, the spec is possible, but some node or nodes are currently allocated/re-
served/down. If avail is -1, the spec could never be satisfied. This is determined
by calling node_spec() with the spec and setting avail to its return value. Note,
the number of available nodes, svr_numnodes would be reduced by node_spec()
and must be reset since the nodes are not actually assigned.

node_reserve()

int node_reserve(char *spec, resource_t tag)

Args:
spec another node spec
tag A resource reservation handle
Returns:
>0 if the reservation was made
0 if the reservation was not made or was made in part but may be satified later
-1 if the reservation could never be made
This is the node specific piece of the Resource Reserver batch request, see req_rescreserve ().

If this is a reservation that had been attempted before (was partially satisfied), then tagwill
{RESOURCE_T_NuLL} and the nodes currently reserved for that tag are freed by calling

5-62 Chapt Draft Revision: 2.3

PBS IDS Batch Server

node_unreserve () This allows us to reallocate them (or differents ones as the case may be).

The routine node_spec() is called to determine if the nodes requested are available. If they
are, the {thinking} nodes are reset to {INUSE_RESERVE}. If the reservation cannot be currently
satisfied, those nodes which are {thinking} and {INUSE_FREE} are reserved as above.

free_nodes()

void free_nodes(job *pjob)

Args:
pjob pointer to a job struture

Any node with the given job in its allocated to job list has that job removed. If and only if
the job list becomes null, is the node marked free.

ping_nodes()

void ping_nodes(struct work_task *ptask)

Args:
ptaskpointer to a work_task structure

This routine is called off of the server’s work task list. It is used to ping Mom on nodes peri-
odically to see if they are alive.

If the node is down, or in use by a job it is not pinged. When a down node comes up, its Mom
should yell at the server. If required, an RPP stream is setup to Mom on the node. is_com-
pose() starts a message to the Mom and rpp_flush() sends it. If there is a failure, the RPP
steam is closed and the node marked {INUSE_DOWN}. Note, there is no reply to this ping mes-
sage, if the stardard RPP handshaking acknowledges receipt of the message, that tells us it
is up.

A new work task is set for 300 seconds later.

set_old_nodes()

void set_old_nodes(job *pjob)

Args:
pjob pointer to job structure

This routine is called on the server’s startup from pbsd_init(). It looks at the nodes assigned
to running jobs in the attribute JOB_ATR_exec_host and calls set_one_old() to mark that node
as in use and allocated to this job. The job attribute JOB_ATR_resource is scanned for the re-
source neednodes . If found (and set), a search is made for the global property shared . If
found, then the nodes allocated to the job are marked as {INUSE_JOBSHARE}, else they are
marked {INUSE_JOB}.

Chapt Draft Revision: 2.3 5-63

Batch Server PBS IDS

set_one_old()

static void set_one_old(char *name, job *pjob, int shared)

Args:
nameof the node to mark as belong to the job
pjob pointer to the job

shared
either {INUSE_JOB} or {INUSE_JOBSHARE}

This is a helper routine for set_old_nodes(). The list of pbsnode structures is scanned for a
node with this name. Note, the node name is the last property in the prop list. The node is
marked in use with the value of shared and the job pointer is added to the list of jobs allocat-
ed to the node.

5.3.11. Server Batch Request Functions

The functions in the following sections perform the processing required for batch requests re-
ceived from clients, including other servers.

The first item of business in processing each job related task is to determine if the requesting
user has the authority to make the request. This is done by calling svr_authorize_jobreq().
If the request is not a job related request, then that request will use another mechanism.

For job related requests, unless otherwise specified, the request must be rejected if the job is
in the {JOB_STATE_EXITING} state.

The last item of business required for each batch request function is the generation and is-
suance of a reply to the client.

5.3.11.1. req_quejob.c

The file src/server/req_quejob.c contains the functions associated with the sequence of batch
requests that request a server to create (queue) a job. The job may be a new job, the request-
ing client is gsub(1)/pbs_submit(3). Or the job may be an existing job, the client is a another
server routing the job to this server.

req_queuejob()

void req_queuejob(batch_request *request)

Args:

request
pointer to the batch_request structure containing the request.

This request is to create a new job or to transfer a job from one server to another. The desti-
nation, a queue name, for the job is specified in the request. When a job is being transferred
(routed), the job identifier will be specified in the request and the client must be another
server. A null user name in the credential indicates the client is another server. If the job is
not from another server, it cannot have a job id specified in the request. If the job is from a
user client and thus being created here, the next job sequence sv_jobidnumber, number is as-
signed. Together with the server name, this is the job id.

5-64 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Both the list of new (inbound) jobs and existing jobs is searched for a job with the same id. If
found this is a serious error.

The destination queue is validated. If it does not exist or is not enabled (receiving new jobs),
an error reply is returned to the client.

It would be nice to be able to use the job id as the base file name under which the job infor-
mation is maintained. However, since the job name contains the server (host) name, it can
be quite long; longer than the 14 characters guaranteed by POSIX. Hence, we make up a
name which is the job name shorted to 11 characters, 14 - 3 for the “.JB” suffix. Unfortunate-
ly, this name might collide with one from a different server whoses name starts the same.
The made up, or hashed name is opened. If one already exists, the name is changed starting
with the eleventh character and working toward the first until a uniqgue name is created.
The 11 character basename is recorded in the job structure.

The routine job_alloc() function is called to allocate and initialize the job structure. Error
replies are returned if the job cannot be created or already exists.

Each attribute in the request is decoded via the appropriate at_decode() function into a local
copy of the job attribute array. If any attribute name is unknown to the server, it is main-
tained in the special unknown attribute list. If any attribute fails to decode correctly, an er-
ror is returned. The auxcode field in the reply identifies the attribute in error. On any error,
the job is purged from the server.

When all supplied attributes, including resources, are successfully decoded, the job attributes
are updated by “setting” them to the decoded values.

If the job is being created by this server, the job-owner attribute is set to the client user name,
the ctime (create time) attribute is set to the current time, and the hopcount attribute is initial-
ized to one.

Otherwise, if the job is being routed here, not created here, then if the job-owner attribute was
not been passed with the request, the request is rejected. The hopcount is incremented and if
too big, the request is rejected.

If the destination queue is an execution queue, the job execution uid and gid are set by call-
ing set_jobexid(). This has the side effect of checking any queue access control list; the user
must have access rights or the request is rejected. For security reasons, no batch job is al-
lowed to be submitted or run with the uid of zero (0); it might allow a user to crack security
and submit a job which would cause root-rot.

In addition to the attributes, the following fields in the job structure are set: ji_state, ji_sub-
state, ji_svrflags, ji_numattr, ji_ctime, ji_un_type (to {JOB_UNION_TYPE_NEW}), ji_jobid, ji_quen,
ji_euid, ji_egid. The job state is set to {JOB_STATE_TRANSIT} and the substate to
{JOB_SUBSTATE_TRANSIN}.

If any error occurs after the job structure has been allocated, the request is rejected and the
job structure is freed via job_purge(). Job_purge must be used rather than job_free() because
the control (save) file has been created.

The job structure is linked into the server’'s new job list, sv_newjobs. A success reply is re-
turned to the client.

req_jobcredential()

void req_jobcredential(batch_request *request)
Args:

request
pointer to the batch_request structure containing the request.

Chapt Draft Revision: 2.3 5-65

Batch Server PBS IDS

In the standard PBS release, this routine is a stub which will reject the request. It is provid-
ed to allow a site or vendor to add support for Kerberos or AFS (Andrew File System) where
access tickets must be passed with the job.

req_jobscript()

void req_jobscript(batch_request *request)

Args:

request
pointer to the batch_request structure containing the request.

The job’s script is passed by one or more jobscript requests. The amount of data in each re-
guest is limited to just under 8KB. This allows the use of UDP protocol if anyone ever cares
to implement PBS on it. Since the Job Script request must follow a Queue Job request, the
network connection table has already been set up with a pointer to the job structure. This
pointer is used to locate the job for which the script is intended.

The size of the script file is maintained in the job structure. If the size is zero when a job-
script request is received, we assume that the request must be the first and create the script
file. Otherwise, we open the file with {0_APPEND}. The script file name is based upon the job
control file name with a different suffix, “ .SC".

The script data is written to the file, the file is closed, the file size in the job structure is up-
dated, and an reply is returned to the client.

req_rdytocommit()

void req_rdytocommit(batch_request *request)

Args:

request
pointer to the batch_request structure containing the request.

When this request is received, we know the client has completed sending all data for the job.
The job is manually marked in state {JOB_STATE_TRANSIT} and substate
{JOB_SUBSTATE_TRANSICM}. The state is set manually to prevent the server and queue (which
the job is not yet in anyway) from being updated. The job structure is saved in the job file by
calling job_save(). It will remain in substate {JOB_SUBSTATE_TRANSICM} until the Commit Re-
guest is received.

req_commit()

void req_commit(batch_request *request)
Args:

request
pointer to the batch_request structure containing the request.

5-66 Chapt Draft Revision: 2.3

PBS IDS Batch Server

When this request is received, the job should reside in the server’s new job list and be in sub-
state {JOB_SUBSTATE_TRANSICM}. This request tells us that the client is giving up control of the
job to us. The job state and substate are updated to reflect the setting of certain attributes,
see svr_evaljobstate(). Typically, the new state will be either {JOB_STATE QUEUED},
{JOB_STATE_HELD}, Or {JOB_STATE_WAITING}.

The JOB_ATR_grank, queue_rank, attribute is set from the global variable queue_rank. This is
used to insure the job will be ordered in the queue in the correct place on a restart of the
server. The job is placed into its destination queue and the various state counts are updated
by calling svr_enquejob(). The job file is “quickly” updated by calling job_save(). It is now
ready for processing depending on the queue type.

If the job was not created here and is not a new job, then the server calls issue_track() to no-
tify the tracking server of the job's new location.

5.3.11.2. req_delete.c

The file src/server/req_delete.c contains the functions used in processing a delete job batch
request.

remove_stagein()

void remove_stagein(job *pjob)

Args:
pjob pointer to job which has had files staged in.
When a file has had files staged in but not yet run and the job is to be deleted or moved, the

staged files should be removed to restore the system to the state before the job was submit-
ted.

A delete files request is built by calling cpy_stage() , see req_jobobit.c, and the request is sent
to MOM via relay_to_mom(). Note, only one try is made, win or lose. The request structure
is freed after the send by release_req() .

req_deletejob()

void req_deletejob(batch_request *request)

Args:

request
pointer to the batch_request structure containing the request.

If the job is in the {JOB_STATE_TRANSIT} state (outbound) and a job routing process has been
forked and recorded in a work task entry, a pointer to the delete job batch request structure
is recorded in a new work_task entry with a processing function of post_delete_route(). The
routing process is sent a {SIGTERM} signal. The abort processing is continued when the rout-
ing process terminates, the death of child processing locates the work task entries and places
them on the immediate work list. The work task entry for the routing child will be processed
before the entry with the post_delete_route(). If the router process returned an exit status of
zero, the job was routed to another server before it could be deleted, and the job is purged
from this server. If however, the router exit status was non-zero, then the job is still ours to
delete. See what happens in post_delete_route() .

Chapt Draft Revision: 2.3 5-67

Batch Server PBS IDS

If the job is substate {JOB_SUBSTATE_PRERUN}, then we need to wait for MOM to finish receiv-
ing the job so we can delete it, otherwise there is a race condition and the runjob command
may hang. Therefore, the delete job request is placed in the work task for one second later
by calling set_task() with a timed event pointing to post_delete_route().

Otherwise, if the requesting client is not the job owner, then send mail to the user to inform
him of the delete. If the request extend field, rq_extend is a non null pointer, and the text to
which it points does not start with deldelay= , then the text is a message (from the Sched-
uler) which is appended to the mail message.

If the job is in the state of {JOB_STATE_RUNNING} then the function issue_signal() is called to
send a Signal Job request to the MOM responsible for the execution of the job requesting a
{SIGTERM} signal be sent to the job. The address of the client batch_request structure is
passed to issue_signal() so that it can be found and completed with MOM responds. Like-
wise, the function post_delete_mom1() is passed to issue_signal() as the reply processor. The
real work continues within post_delete_ mom1().

If the job has a non-migratable (Cray style) checkpoint image as shown by ji_svrflags con-
taining {JOB_SVFLG_CHKPT}, then job exit processing is performed to deliver the output and re-
move the job files under MOM'’s control. The job is set to state {JOB_STATE_EXITING} and sub-
state {JOB_SUBSTATE_EXITING}. The variable ji_momhandle is set to -1 force on_job_exit() to ob-
tain a new connection to MOM and a work task entry is created to invoke on_job_exit() im-
mediately.

If the job has files that have been staged in already, marked by setting {JOB_SVFLG_Stagedin} in
the job structure field ji_svrflags, then remove_stagein() is called to ask MOM to delete the
files and the job is aborted via job_abt().

If the job is in any other state, job_abt() is called to dispose of the job immediately and a re-
ply is generated for the request.

post_delete_route()

static void post_delete_route(struct work_task *pwt)

Args:
pwt pointer to the work_task entry whoses dispatch resulting in calling this function.

All that need be done is to recall the req_delete() function. The work_task member, wt_parm1
contains a pointer to the original Delete Job batch request. and it will either (1) find the job
has been requeued by the router when it received the signal, or (2) the job was already gone
(and now forgotten) in which case [PBSE_UNKJOBID] is returned and the client can look else-
where.

post_delete_mom1()

static void post_delete_mom1(struct work_task *pwt)

Args:
pwt pointer to the work_task entry whoses dispatch resulting in calling this function.

Here we continue the work started in req_deletejob() for a job in the running state. The work
task pointed to by pwt is the one especially created to send to MOM. It the rg_extra field is a
pointer to the original client request. If MOM did not reject the signal request, we can ac-

5-68 Chapt Draft Revision: 2.3

PBS IDS Batch Server

knowledge the client request. (If we wait till after the job is signaled a second time, coming
up, the user may feel the delay is too long.) Note, at this point, the original request is gone.
We now build a new work task entry for the time delay, (1) either specified in the original re-
guest in the request extension, (2) the queue attribute kill_delay, or (3) 2 seconds (why 2, why
not?). This new work task points to the function post_delete_mom2(), which will continue the
work and points to not the batch request, but directly to the job.

post_delete_mom2()

static void post_delete_mom2(struct work_task *pwt)

Args:
pwt pointer to the work_task entry whoses dispatch resulting in calling this function.

When we get here, it is time to send the {SIGKILL} signal to the job, if the job still exists in the
running state. We will assume that MOM will accept the signal request, so just pass re-
lease_req() as the post processing function to issue_signal() .

Once the job dies, normal job exit processing will occur.

5.3.11.3. req_holdjob.c

The file src/server/req_holdjob.c contains the functions to process the Hold Job and Release
Job requests.

chk_hold_priv()

int chk_hold_priv(long value, int privilege)

Args:
valuethe hold value specified.

privilege
of the calling client.

Returns:
0 if ok, PBS error number otherwise.

This routine checks that the client has the required privilege for setting a hold:

HOLD u

No special privilege is required.
HOLD o

Operator, {ATR_DFLAG_OPWR}, Or manager, {ATR_DFLAG_MGWR}, privilege is required.
HOLD o

Manager privilege is required.

req_holdjob()

void req_holdjob(batch_request *request)

Chapt Draft Revision: 2.3 5-69

Batch Server PBS IDS

Args:
r

equest
pointer to the batch_request structure containing the request.

The hold types specified in the request are determined by calling a private routine get_hold()
which finds the holds to be set, decodes them, and checks the privilege required against the
clients. These holds are then added to the job JOB_ATR_hold attribute. (This should be done

by ca

lling at_set(), but | cheat and set them directly.)

If the job is in {JOB_STATE_RUNNING} state, and if checkpoint is supported by the server, and if
the checkpoint attribute is not n, then the following additional actions are taken:

a Hold Request is sent to the MOM which is shepherding the job in execution. Upon re-
ceipt of the Hold Request, MOM will attempt to checkpoint the job and terminate its ex-
ecution.

If MOM returned a reply indicating she was successful in checkpointing the job, the job
substate is set to {JOB_SUBSTATE_RERUN} to cause rerun post job processing, and the job is
retained in the execution queue. Note, the job is left in run state until MOM aborts the
job and notifies us with the Job Obit notice.

If MOM returned a reply indicating that the checkpoint failed, the error reply is re-
turned to the client requesting the hold. If the reply from MOM indicated that check-
point was not supported on the execution host, the job is left in execution state, with the
hold noted just as if checkpoint was not supported by the server.

If checkpoint is not supported, or if the checkpoint attribute is n, no additional processing is

perfo

rmed, the job is left executing.

req_releasejob()

void req_releasejob(batch_request *request)

Args:

request

pointer to the batch_request structure containing the request.

The hold types specified in the request are determined by calling a private routine get_hold()
which finds the holds to be released, decodes them, and checks the privilege required against
the clients. Each hold type specified in the request is removed from the job hold-list attribute
by calling the at_decode() routine and clearing the corresponding bit in JOB_ATR_holdvia
at_set() routine for the attribute.

static

Args:

get_hold()

int get_hold(list_head *head, char **pstring)

head of list of svrattrl structures containing the attributes from the request.

pstring

5-70

RETURN: pointer to a string pointer which will be set to point to the hold charac-
ters, n, u, o, and/or s.

Chapt Draft Revision: 2.3

PBS IDS Batch Server

Returns:
0 if ok, error otherwise.

The Hold_Types attribute in the supplied list is located, there should be one and only one such
attribute, otherwise the hold or release request was ill formed. The character pointer,
pstring, is set to point to the attribute (external) value. The attribute is decoded into a tem-
porary attribute which is available to the routine routines in this file.

post_hold()

static void post_hold(struct work_task *pwt)

Args:
pwt Pointer to the work task entry.

This routine is called to when MOM responds to the Hold Job request passed to her from
reg_holdjob () when checkpointing is supported by the server. If MOM returns an error indi-
cating that checkpoint failed (including not supported), it is logged and the error is returned
to the client that initiated the Hold Request. The job state is restored to
{JOB_SUBSTATE_RUNNING} since the job is still running.

If checkpointing succeeded, ji_svrflags is updated with {JOB_SVFLG_HASRUN} and either
{JoB_SVFLG_cHKP} (for Cray style non-migratable checkpoint) or {JOB_SVFLG_ChkptMig} (for yet
non implemented migratable checkpoint). account_record() is called with {PBS_ACCT_CHKPNT}
to record the checkpoint suspension in the accounting file.

The Hold Job request is acknowledged.

5.3.11.4. req_jobobit.c

The file src/server/req_jobobit.c contains the function to process the Job Obituary batch re-
guest and associated post-execution functions. The Job Obituary request is actually a notice
from MOM that the referenced job has terminated execution. Generally, if the job terminat-
ed, post processing is performed to return output and remove the job, see on_job_exit(). If
the job is to be rerun, the job is requeued in its current queue, see on_job_rerun().

There are several special cases of job termination which are handled.

< If MOM dies, either on her own or because the system crashed, MOM has lost control of
the executing jobs. Either they died also or they became detached from MOM. When
MOM recovers, she will attempt to kill all jobs and mark them as exited. She will insert a
special exit status code of {JOB_EXEC_INITABT} to be returned to the server as the job exit
status. This exit status notes the job died/was killed on recovery. The server will rerun
the job if allowed or terminate it if not.

< If MOM aborted the job on recovery and the job had a Cray style non-migratable check-
point file, mom returns a special job exit code of {JOB_EXEC_INITRST}. The job is marked in
ji_svrflags with {JOB_SVFLG_HASRUN} and {JOB_SVFLG_CHKPT}. The job state is simply re-
queued.

- If MOM aborted the job on recovery and the job had a as yet unimplemented migratable
checkpoint image, mom returns a job exit status of {JOB_EXEC_INITRMG}. The job is marked
in ji_svrflags with {JOB_SVFLG_HASRUN} and {JOB_SVFLG_ChkptMig} and its substate is set to
{JOB_SUBSTATE_RERUN} to cause rerun processing.

< If MOM is unable to start a job for some reason that is permanent, i.e. the user account
was invalid or the job asked for an unknown resource, then MOM will set the job exit code
to either {JoB_EXEC_FAIL1} if the error was detected before the standard output of the job
was created or if the error was noted after the standard output was set up. In both cases

Chapt Draft Revision: 2.3 5-71

Batch Server PBS IDS

the server will abort the job; the difference is the message mailed to the user.

< If MOM is unable to start a job for some reason that is believed to be temporary, such as a
resource has be gobbled up by an interactive session, then MOM will set the job exit code
to {JOB_EXEC_RETRY}. The server will requeue the job; it is treated as a rerun except that
the job’s output is not saved.

wait_for_send()

static void wait_for_send(struct work_task *ptask)

Args:
ptaskpointer to the work task entry that called this routine.

This routine just calls back req_jobobit(). The work task was set up there as a delay mecha-
nism.

req_jobobit()

void req_jobobit(struct batch_request *req)

Args:
req pointer to the batch_request structure.

This function validates the request, updates the list of resources used, records the job exit
status in ji_exitstat, and replies to MOM. The scheduling flag, svr_do_schedule, is set to
{SCH_SCHEDULE_TERM}. If the job cannot be found and the server was initiated {RECOV_COLD}
or {RECOV_CREATE}, then the jobs were blown away. The server replies to MOM with
[PBSE_CLEANEDOUT] to instruct her to trash her files relating to that job. Otherwise if the
job cannot be found, the server returns {PBSE_UNKJOBID}.

If the job is already in the {JOB_STATE_EXITING} state, then MOM must be recovering and send-
ing the server a second notice. Return [PBSE_ALRDYEXIT] to MOM which tells her to mark
the job as exiting and close the connection. The server will continue to process the job on the
thread started by the original notice.

If the job state is not {JOB_STATE_RUNNING}, an obit should never have been issued, so this
logged and ignored. Otherwise if the substate is {JOB_SUBSTATE_PRERUN}, then the obit notice
“won the race” condition between it and the SIGCHLD from the child of the server that sent
the job to MOM to run, see svr_strtjob2() in req_runjob.c. We need to wait for the send side
to complete so the run job request can be acknowledged. So a work task with a one second
delay is created to call wait_for_send(). It will just restart req_jobobit().

The information in the request is processed first, saving the status and building the mail/log
message before replying to MOM, otherwise the information is lost. The reply is then made
to keep MOM from waiting any longer.

A normal exit status from a job can never be negative, since only 8 bits is return. If the exit
status of the job is negative, it is a special status from MOM, and is one of the following:

JOB_EXEC_INITABT
The job was aborted by MOM on her recovery. If the job can be rerun, its substate is set
to {JOB_SUBSTATE_RERUN} and the {JOB_SVFLG_HASRUN} flag is set in ji_svrflags. Rerun
processing will take place.

5-72 Chapt Draft Revision: 2.3

PBS IDS Batch Server

JOB_EXEC_RETRY
MOM was unable to start the job, but it should be retried. If the job has been rerun be-
fore and has output files, this case is treated as another rerun. If the job has not be run
before, the empty output files are not saved, but other rerun processing is performed.
This is accomplished by setting the substate to {JOB_SUBSTATE_RERUN1}, see on_job_re-
run().

all other
A special mail message is sent to the owner and normal exit processing takes place.

If the exit value is greater than 10000, then the job ended on a signal. 10000 was added by
MOM to the signal number. Different executions hosts may have different size exit masks in
wait.h, so the signal value is forced to be uniform. This allows us to issue a different mail
message to the user on job end.

If the job is being terminated, not rerun, then the job state is set to {JOB_STATE_EXITING} and
the substate to {JOB_SUBSTATE_EXITING}. If requested, mail is sent to the mail_list by calling
svr_mailowner(). The new-lines in the resource usage message are replaced with spaces for
the log entry. The function account_jobend() is called to record the usage to the accounting
file. If {PBSEVENT_JOB_USAGE} is sent in the server’s log_events attribute, then the same mes-
sage is recorded in the log, otherwise a short form is recorded.

The function on_job_exit() is called with a pointer to a work task of type WORK_Immed.

If the job is being truly rerun, not restarted from checkpoint, then the resources used at-
tribute, JOB_ATR_resc_used, and the execution host attribute, JOB_ATR_exec_host, are cleared.
Then the function on_job_rerun() is invoked with a work task entry of WORK_Immed.

If the job has a Cray style checkpoint file, {J0B_SVFLG_CHKPT} is set, the job is requeued direct-
ly.

As a reminder, both on_job_exit() and on_job_rerun() are invoked via dispatch_task() so that
the work task structure is deleted when the on_job_* function returns.

on_job_exit()

void on_job_exit(struct work_task * ptask)

Args:
ptask pointer to a work task entry which points to the job in exit state.
The steps required for a normally terminating job are:

1. Set the job state to {JOB_STATE_EXITING} and the substate to {JOB_SUBSTATE_EXITING}. Deal
with any job termination dependences.

2. Set the substate to {JOB_SUBSTATE_STAGEOUT}. Send a Copy Files request to MOM to move
the standard output, standard error, and any “staged out]*U files of the job and the files
listed in the stage out resource to the final destination.

3. Set the job substate to {JOB_SUBSTATE_STAGEDEL}. Send a Delete Files request to MOM to
delete any “staged in” files.

4. Set the job substate to {JO0B_SUBSTATE_EXITED}. Send a Delete Job request to MOM to re-
move remaining traces of job including the job control file, job script, and any checkpoint
file.

5. Send the final Track Job request to the original server (if not me) and purge the job from
the system.

This function is invoked by req_jobobit(), by work task when various copy and delete file re-
guests to MOM complete, and by pbsd_init() on recovery. Its purpose to determine where in

Chapt Draft Revision: 2.3 5-73

Batch Server PBS IDS

the exiting processing the job is and resume with the next step. If the work task type is
{WORK_Immed} or {WORK_Timed}, this routine is being called to perform the cycle or stage of pro-
cessing the job indicated by its substate. Otherwise, the work task type is
{WORK_Deferred_Reply}, and this routine is being called back after MOM has been replied to a
request. A {WORK_Timed} call back results when on_job_exit() is called from pbsd_init(). In
this case, as with the first time on_job_exit() is called for a job, there is not a connection to
MOM and one must be made by calling mom_comm(). If the connection cannot be estab-
lished, MOM is not (yet) alive, a time delay work task is created to retry MOM after a delay.

Switch on the job substate:

JOB_SUBSTATE_EXITING or JOB_SUBSTATE_ABORT
Process any dependencies by calling depend_on_term(). Advance the job substate to
JOB_SUBSTATE_STAGEOUT.

JOB_SUBSTATE_STAGEOUT
If the work task type is {WORK_Immed}, then this is the first call into this routine. The
first task is to determine which of the standard job files (output and error) are to be
moved.

- If the job attribute JOB_ATR_join is set to other than n, then determine which file is
listed first (exists and will be moved) and which are joined into that one (does not
exist).

- For each file not joined to another file, determined if it is to be kept by checking
the job attribute JOB_ATR_keep. If kept, add to the Copy File list with the destina-
tion (remote) name set to the default file name.

- For each file not joined and not kept, add the file to the the Copy File request with
the the destination name set to the name given in the corresponding path at-
tribute.

If the job has a stage-out resource, then append thoses files to the Copy Files request.

Then send the request to MOM.

If the work_task type is not {WORK_Immed},
MOM has replied to the Copy File request. If the reply indicates a failure, generate a
mail message to the job owner and set the substate to {JOB_SUBSTATE_EXITING}.

Regardless of the reply from MOM, free the prior batch request, set the substate to
{JOB_SUBSTATE_STAGEDEL} and set up a work task of type {WORK_Immed} and pointing back
to on_job_exit. On being dispatched, the appropriate next action will be performed.

JOB_SUBSTATE_STAGEDEL
If the work task type is {WORK_Immed}, this is the first time into this section. Build and
send MOM a Delete Files request for each file that was “staged in”.

If the work task type is not immediate and If the reply indicates a failure, generate a
mail message to the job owner. Free the the batch request, set the job substate to
{JOB_SUBSTATE_EXITED} and continue with that action.

JOB_SUBSTATE_EXITED
Send a Delete Job Request to Mom. Send the final Track Job request to the creating
server if that is not here. Call job_purge() to remove the job.

on_job_rerun()

void on_job_rerun(struct work_task * ptask)

Args:

5-74 Chapt Draft Revision: 2.3

PBS IDS Batch Server

ptaskpointer to a work task entry which points to the job in exit state.

This function requeues a job when it stops following a rerun request. The substate of the job
has already been set to {JOB_SUBSTATE_RERUN} by req_rerunjob(). At the end of processing, the
job state is reset to {JOB_STATE_QUEUED}, and the substate to {JOB_SUBSTATE_QUEUED}. The job
is left in the current queue. The actions on the job are driven by the substate recorded in the
job.
JOB_SUBSTATE_RERUN
On the first entry in on_job_rerun(), the substate will already be set to
{JOB_SUBSTATE_RERUN}, and the work task pointer will be of type WORK_Immed.
mom_commy() is called to obtain a connection to MOM. If the host on which the job was
executing is the server host, no file action is required. The job state is set to
{JOB_STATE_EXITING} and substate to {JOB_SUBSTATE_RERUN1}. A work task entry is created
to pick up at that point in post processing.
If the execution host is not the server host, then the various files must be recovered to
the server in case the job is rerun elsewhere. A Rerun Job request is sent to MOM.
This directs her to return standard output, standard error, and any checkpoint file to
the server using a Job Files request.

If MOM responds with success, the job state and substate are set to {JOB_STATE_EXITING}
and {JOB_SUBSTATE_RERUN1} and the server proceeds with the next step.

JOB_SUBSTATE_RERUN1
If there are file to be staged-out, the server builds a Copy Files request, see
cpy_stage(), and the server sends it to MOM. Note, MOM will delete any files she
stages out. Regardless of sucess or failure, the substate is updated to
{JOB_SUBSTATE_RERUN2}.

JOB_SUBSTATE_RERUN2
If the job had files staged-in, cpy_stage() is called to build a copy files request for those
files and the request is converted to a Delete Files request which is sent to mom. If
there are no staged-in files to delete or after the request is prcessed (success or failure),
the job substate is updated for the next phase.

JOB_SUBSTATE_RERUNS3
The job is removed from MOM'’s custody by sending her a Delete Job request.

The socket handle, ji_momhandle and the {JOB_SVFLG_Stagedin} flag in ji_svrflags are cleared. The
new job state and substate are determined by calling svr_evaljobstate() and set by
svr_setjobstate(). In effect, this requeues the job.

mom_commy()

int mom_comm(job *pjob, void (*function)(struct work_task *))

Args:
pjob pointer to job structure.

function
to invoke via a work task if the connection to MOM cannot be established.

Returns:
the connection handle or -1 if no connection was established.

If a handle has already be recorded in ji_momhandle of the job structure (not -1), it is returned.
Otherwise, a new connection to MOM is established by calling svr_connect() with the host
address of MOM found in ji_un.ji_exect.jimomaddr. If this address is zero (which might be the
case if the ji_un union was cleared on by moving the job), the address of the host in the

Chapt Draft Revision: 2.3 5-75

Batch Server PBS IDS

JOB_ATR_exec_host attribute is obtained prior to calling svr_connect(). If the connection is es-
tablished, the handle is saved in ji_momhandle and returned to the caller.

If the connection cannot be established, a work task structure is set up with a time delay of
{PBS_NET_RETRY_TIME} and a call back function as passed in the parameter function.

setup_from()

static char *setup_from(job *pjob, char *suffix)

Args:
pjob pointer to job structure
suffixto append to file based on output, error, or checkpoint.

Return:
Pointer to allocated string containing file name.

This function returns a name for a standard file for a job. The suffixes are defined in job.h
as: {JOB_STDOUT_SUFFIX} — .OU for standard output, {JOB_STDERR_SUFFIX} — .ER for standard
error, and {JOB_CKPT_SUFFIX} — .CK for checkpoint.

setup_cpyfiles()

static struct batch_request *setup_cpyfiles(struct batch_request *preq,
job *pjob, char *from, char *to, int direction, int flag)

Args:
preq Pointer to copy file request structure to build. If null, the structure will be allocat-
ed, otherwise the existing one will be expanded.
pjob pointer to job.
from name of file local to mom.
to name of file remote to mom (destination on stage-out, source on stage-in).

direction
of transfer: {STAGE_DIR_IN} — in to Mom, or {STAGE_DIR_OUT}.

flag indication type of file: {STDJOBFILE} — standard job file (output, error), {JOBCKPFILE} —
checkpoint file, or {STAGEFILE} — user specified stage-in/out file.

Return:
Pointer to the copy files batch request structure.

If preq is null, then a batch_request structure is allocated and initialized for
{PBS_BATCH_CopyFiles} including the job id, owner, effective user and effective group names.
Note, if the effective group is the user’s login group as indicated by {ATR_VFLAG_DEFL} set in
the JOB_ATR_egroup attribute, the group name is set to the null string. This tells mom to use
the gid from the password entry. If the preq is not null, the existing copy files request struc-
ture is used by appending the new file pair to the current list.

A file pair structure, rgfpair, is allocated and initialized with the from and to names and the
file type flag which is an indication to Mom as to where the local file is/should be.

5-76 Chapt Draft Revision: 2.3

PBS IDS Batch Server

is_joined()

static int is_joined(job *pjob, enum job_atr nat)

Args:
pjob pointer to job

nat indicates which attribute the file name concerns: {JOB_ATR outpath} Or
{JOB_ATR_errpath}.

Returns:
1 if file is joined to another.
0 if not joined.

This routine takes the number, nat, of a job attribute and determines if that file (output or er-
ror) is joined to another in the job’s JOB_ATR_join attribute. Note in the case of “-j oe” option,
the error file is joined to the output file. If nat was JOB_ATR_errpath, the return would be
true (1).

cpy_stdfile()

static struct batch_request *cpy_stdfile(struct batch_request *preq,
job *pjob, enum job_atr nat)

Args:

preq Pointer to copy file request structure to build. If null, the structure will be allocat-
ed, otherwise the existing one will be expanded.

pjob pointer to job.
nat identifies attribute specifying output or error path.

Return:
Pointer to the copy files batch request structure.

This function determines if one of the job’s standard files (output or error) should be copied.
If so, it builds or adds to the copy files request.

If the job is interactive, there is no output to copy. Otherwise we choose the suffix and a de-
fault key letter based on the file. The key letter is used to check the keep list, JOB_ATR_keep.
is_joined() is used to determine if the file was joined to another and doesn't exist separately.

The to file name is based on the job attribute value. The from name is returned from
setup_from().

The function setup_cpyfiles() does the rest of the work.

cpy_stage()

struct batch_request *cpy_stage(struct batch_request *preq, job *pjob,
enum job_atr nat, int direction)

Args:

Chapt Draft Revision: 2.3 5-77

Batch Server PBS IDS

preq Pointer to copy file request structure to build. If null, the structure will be allocat-
ed, otherwise the existing one will be expanded.

pjob pointer to job.
nat identifies attribute specifying path.

direction
of transfer.

Returns:
pointer to new or expanded copy files batch request.

This is the equivalent to cpy_stdfile() for stage-in/out files. If the attribute specified by nat is
set, then for each local_name@remote_host:remote_name element in its value, the element is
parsed into the to path, and the from path. setup_cpyfiles() does

5.3.11.5. req_locate.c

The file src/server/req_locate.c contains the function to process the Locate Job batch re-
quest.

req_locatejob()

void req_locatejob (struct batch_request *req)

Args:
req pointer to the batch_request structure.

The function will attempt to find information about the job in two places. First, the server
will search its list of all active jobs by calling find_job(). If that fails, the server will search
the array of tracking records pointed to by the server structure member sv_track.

If found in either place, the current location is reported to the client in the reply. If not
found, the server responds with [PBSE_UNKJID].

5.3.11.6. req_manager.c

The file src/server/req_manage.c contains the server function for processing the Manager
batch request, creating and deleting queues and setting server queue and node attributes.

req_manager()

void req_manager(struct batch_request *req)

Args:
req pointer to the batch_request structure.

As this is not a job related batch request, the authorization is performed differently. The us-
er’s privilege is obtained. If the manage command is a create or delete, the privilege must be
at the administrator level. If the manage operation is a set or unset, the privilege generally
can be at either the administrator or operator level. The exception to this statement comes
when dealing with node-attributes, where certain changes are only available to managers.

A function to perform the requested operation is now called. The function called is chosen
based on the command and object type specified in the Manage request. The command val-
ues can be {Create}, {Delete}, {Set} and {Unset}. The object type values can be {Server} or {Queue.} It

5-78 Chapt Draft Revision: 2.3

PBS IDS Batch Server

is not legal to either create or delete a server.
If any error is detected, an error reply is returned to the client.

Each command — object specific function generates and sends a success or error reply to the
client.

mgr_server_set()

void mgr_server_set(int sfds, struct batch_request *req)

Args:
sfds the socket connection to the requesting client.
req pointer to the batch_request structure.

The specified attributes of the server are set by calling mgr_set_attr() with the address of the
server attribute array, the address of the server attribute definition array, the number of at-
tributes in the array, the list of attributes from the batch request, and the privilege of the re-
quester.

Svr_update() is called to save the server information to disk and mgr_log_attr() to log the
changes in the log file. An appropriate reply is generated and sent to the client.

mgr_server_unset()

void mgr_server_unset(int sfds, struct batch_request *req)

Args:
sfds the socket connection to the requesting client.
req pointer to the batch_request structure.

The specified attributes of the server are set by calling mgr_unset_attr() with the address of
the server attribute array, the address of the server attribute definition array, the number of
attributes in the array, the list of attributes from the batch request, and the privilege of the
requester.

Svr_upatedb() is called to save the server information to disk. The routine mgr_log_attr() is
called to log the attributes changes. An appropriate reply is generated and sent to the client.

mgr_queue_create()

void mgr_queue_create(int sfds, struct batch_request *req)

Args:
sfds the socket connection to the requesting client.
req pointer to the batch_request structure.

Find_queuebyname() is called to insure a queue does not already exist with the specified
name. Space for the queue structure is allocated and initialized by calling que_alloc() .

Chapt Draft Revision: 2.3 5-79

Batch Server PBS IDS

At this point the type of the queue is indeterminate. It is established by the first attribute
found which is restricted to a certain queue type. The attribute list in the request is scanned
for the first attribute whose definition contains a parent type flag of other than
{PARENT_TYPE_QUE_ALL}. The queue takes on the queue type indicated by that attribute.

The function mgr_set_attr() is called to actually set the queue values. If successful,
svr_save() and que_save() are called to write the queue save file and update the server’s save
file. A success reply is returned to the users.

If any attribute being set is incompatible with the queue_type as determined by calling
check_que_attr(), a “warning” message is returned to the client. Any errors in the request
will result in the queue structure being freed by que_free() and a error reply returned to the
user.

mgr_queue_delete()

void mgr_queue_delete(int sfds, struct batch_request *req)

Args:
sfds the socket connection to the requesting client.
req pointer to the batch_request structure.

The function que_purge() is called to remove the queue. If the queue contains any jobs, the
request is rejected.

mgr_queue_set()

void mgr_queue_set(int sfds, struct batch_request *req)

Args:
sfds the socket connection to the requesting client.
req pointer to the batch_request structure.

The queue is located by calling find_queuebyname(). Then mgr_set_attr() is called to update
the queue attributes.

The routine check_que_attr() is called to insure the specified attributes are appropriate to the
gueue type; if there is a problem, a “warning” message is sent. An appropriate reply is re-
turned to the client.

mgr_queue_unset()

void mgr_queue_unset(int sfds, struct batch_request *req)

Args:
sfds the socket connection to the requesting client.
req pointer to the batch_request structure.

The queue is located by calling find_queuebyname(). The specified attributes of the queue
are unset (cleared) by calling mgr_unset_attr(). An appropriate reply is returned to the

5-80 Chapt Draft Revision: 2.3

PBS IDS Batch Server

client.

mgr_set_attr()

int mgr_set_attr(attribute *patr, attribute_def *padef, int numattr,
svrattrl *reqattr, int privilege, int *bad)

Args:
patr pointer to the attribute array in the server or queue to be set.
padefpointer to the attribute definition array for the objects attributes.

numattr
integer number of attributes in the parent object attribute array.

regattr

pointer to the list of attributes in the batch request
privilege

level of the client.

bad RETURN: pointer to integer, if an error occurs, the integer is set to the index of
the attribute in error.

Returns:
0 if successful.
>0 error number if not successful.

The setting of the requested attributes is treated as an atomic operation, all are set or none
are. This is accomplished by calling attr_atomic_set() which duplicates the attribute values
and updates the copies with the new values. If any error occurs, the copies are removed by
calling attr_atomic_kill().

For each and every modified attribute, the original parent object attribute is cleared and set
to the temporary (new) value. If there is an at_action() routine associated with the attribute,
it is invoked.

When all modification have been completed successfully, the temporary new attributes are
removed. Note, the values are not freeded because the real attributes point to the values
where malloc-ed storage is involved.

If an specified attribute is not found in the attribute definition array, if the attribute cannot
be written with the client privilege, or the attribute is read-only, the integer pointed to by
bad is set to the number, starting with 1, of the attributes ordinal position in the request list.
An error value is returned.

mgr_unset_attr()

int mgr_unset_attr(attribute *patr, attribute_def *padef, int numattr,
svrattrl *plist, int privilege, int *bad)

Args:
patr pointer to the attribute array in the server or queue to be unset.
padefpointer to the attribute definition array for the objects attributes.

Chapt Draft Revision: 2.3 5-81

Batch Server PBS IDS

numattr
the integer number of the attributes in the definition array.

plist pointer to the list of svrattrl elements in the batch request.
privilege
level of the client.

bad RETURN: pointer to integer, if an error occurs, the integer is set to the index of the
attribute in error.

Returns:
0 if successful.
>0 error number if not successful.

If an named attribute is not found in the attribute definition array or the attribute cannot be
written with the client privilege, the integer pointed to by bad is set to the number, starting
with 1, of the attributes ordinal position in the request list. An error value is returned.

If the attribute(s) specified in the request are not resources, the appropriate at_free() routine
is called for each attribute of the parent object, queue or server, listed in the request. This al-
so results in the flag {ATR_VFLAG_SET} being cleared.

If the attribute(s) are of type resource, {ATTR_TYPE_RESC}, and if a specific resource (member)
is not specified, the attribute is freed as above. If however, a specific resource member is giv-
en, that member only is freed.

Kludge Warning

The server attribute “resources_cost”, {SRV_ATR_resource_cost}, iS set as a resource type at-
tribute, i.e. the type field is set to {ATTR_TYPE_RESC}. This is because they relate to the differ-
ent resource names. However, the structures in the value list are not resource structures,
but are resource_cost structures. Therefore, when unsetting a single member of this at-
tribute, the at_free() routine associated with the resource cannot be used; the value is just
unlinked and freed. Rather then set up a new attribute type and have to check it where ever
the server checks for ATTR_TYPE_RESC, in this one place in mgr_unset_attr(), we special
case resource_cost structures by checking that the attribute parent type is
{PARENT_TYPE_SERVER} as only the server has this type of resource and that the index into the
attribute definition array is SRV_ATR_resource_cost.

mgr_node_set()

void mgr_node_set(struct batch_request *preq)

Args:
preq pointer to the batch request structure that holds the specific node request.

If the request is to apply to all nodes at the server, the local flag allnodes is set. Otherwise,
the server’s array of pbsnode structs is searched for the node specified in the request. If the
node is not found in the server’s array, the value [PBSE_UNKNODE] is sent back to the re-
questor.

If the node is found in the server’s pbsnode array or the request applies to all nodes, the re-
quest is logged with the server and function mgr_set _node_attr() is called for each node in
the request in an attempt to satisfy it. Assuming the entire request was able to be satisfied,
reply_ack is called to send back the simple acknowledgement message and function
write_node_state is called if any changed node-state information needs to be permanently
recorded by the server. A return from function follows.

5-82 Chapt Draft Revision: 2.3

PBS IDS Batch Server

If for some reason the node modification request could not be satisfied, mgr_set node_attr re-
turns with a nonzero return code. The specific return code indicates the type of error encoun-
tered.

For the case where an error has occurred and the modifications were intended for a specific
node an appropriate reply message is generated and returned to the requestor, along with
the error code, either by calling req_reject or reply_badattr. In the latter case the variable bad
will contain the node-attribute (its list position) that created a problem for the request. A re-
turn from function follows.

For the case where an error has occurred and the modifications are intended for all nodes, a
pointer to the failed node is recorded in an array and processing advances to the next of the
server’s nodes. After processing all nodes, the array of failed nodes is scanned to construct a
reply message listing those nodes that failed to get modified. This generated message is
passed to the function reply text(). Following this, memory malloc’'d for the temporary
recording of failures and message building is freed and, a return from function occurs.

mgr_node_delete()

void mgr_node_delete(struct batch_request *preq)

Args:

preq
pointer to batch-request structure holding specific node request.
Top level function for deleting a node (or all nodes) in the server’s node list. The pbsnode will
be marked as deleted. It will no longer be assigned to any new jobs, will no longer be pinged
in the server’s main loop and, any current job tasks will continue executing on the node until
they terminate or the job aborts, or the job is killed.

A check is made to determine if the node specification in the request is valid. If it is, the node
is effectively deleted from the server’s internal node list by calling effective_node_delete. At
this point the function chk_characteristic is called to determine if the node is also marked as
INUSE_OFFLINE. If it is so marked, an indicator is set to signal the fact that the file
node_status, which tracks nodes that are offline, must be updated. Likewise, a global
indicator, svr_chngNodesfile, is set to alert the server that the nodes file needs to be
regenerated from the server’s internal pbsnode list. Finally, the function reply_ack is called
to send an acknowledgement of the request, an indication of success.

If the batch request cannot be successfully completed, an appropriate reply is sent back to
the requester. During a global modification, a list of those nodes not being able to be modi-
fied is sent back as part of that reply.

mgr_node_create()

void mgr_node_create(struct batch_request *preq)

Args:
preq pointer to batch-request structure holding specific node request.

Top level function for creating a node for the server’s internal node list. After the pbsnode is
initialized, any properties or state or node type that has also been specified in the batch-re-
guest is set on the pbsnode by calling the function mgr_set_node_attr.

Chapt Draft Revision: 2.3 5-83

Batch Server PBS IDS

Assuming that all of this occurs successfully, a global indicator is set which will, at server
shutdown, cause the nodes file to be regenerated based on the server’s current internal pb-
snodes list. And, the other thing which transpires on successful pbsnode creation is that
each pbsnode which has not been "effectively deleted" from the server’s list will have its
INUSE_NEEDS_HELLO_PING bit set in the pbsnode’s inuse field. This causes the ping_nodes
function, called periodically in the server’s main loop, to send a HELLO message to the MOM
on the node being pinged. This message ultimately leads to the server sending to the MOM
on the node in question all of the IP addresses for all the non-deleted nodes that it has in its
list. The MOM can then update its internal set of okclients, those nodes from whom a com-
munication is deemed valid. Finally, function reply_ack is called sending back to the re-
guester an acknowledgement, all was successful.

If the pbsnode creation does not meet with success, the reason for the failure shows up in an
error return code (rc) variable and that is processed to generate an appropriate reply to the
requester. The possible error codes are PBSE_NONODES, PBSE_NODEEXIST, PBSE_SYSTEM,
PBSE_INTERNAL, PBSE_NOATTR, PBSE_MUTUALEX, PBSE_BADNATVAL.

mgr_node_set_attr()

static int mgr_node_set_attr(struct pbsnode *pnode, attribute def *pdef,
int limit, svrattrl *plist, int privil,
int *bad, void *parent, int mode)

Args:

pnode
pointer to pbsnode structure needing modification

pdef beginning of the definitions array for node attributes
limit
length of the node-attribute definitions array

plist

pointer to the batch request’s list of svrattrl structures
privil

requester’s privilege level

bad for a "bad node-attribute" type of error, pass back the offending attribute’s position
in the request list

parent
may go unused in this function

modepassed to attrib’s action func, not currently used by this func

Returns:
0 if successful in doing all modifications
>0 return code if a problem occurs (modifications are rolled back)

This function is called by the top level function mgr_node_set. A successful (0) return means
all necessary modifications to various data fields belonging to the specified pbsnode have got-
ten appropriately modified. If a problem occurs in mid-process, any partially completed mod-
ifications are abandoned, allocated memory is freed, an error return code indicating the
source of the problem is passed back to the caller and, no modification is made to the subject
pbsnode.

Processing occurs as follows:
Space for a temporary array of node-attribute structures is acquired on the heap. The num-

5-84 Chapt Draft Revision: 2.3

PBS IDS Batch Server

ber of node-attribute structures requested is the number that reside in the definitions file,
server/attr_node_def.c. For each attribute in the array, that attribute’'s "action" function in
the definition is called to give an initialization to the node-attribute. Any error that might
occur mid way through halts the process, with function attr_atomic_Kkill being called to facili-
tate the roll back of the processing that has occurred to this point and an error code is passed
back to the caller.

Once the temporary node-attribute array is setup, it is passed to function attr_atom-
ic_node_set along with the list of requested node-attribute changes specified in the batch re-
guest received by the server. Attr_atomic_node_set calls upon the "decode" and "set" func-
tions for each node-attribute specified in the request. Assuming this process is successful for
the entire request, the temporary node-attribute array will have been updated appropriately
and those node-attributes of the array that received an update have been marked. Should
any problem occur mid way through the process, function attr_atomic_kill is called upon to
roll back the processing and a non-zero error return code is passed back to the caller, for use
in shaping a reply.

Give processing success to this point, a temporary copy (tnode) of the pbsnode is nhow updated
using the data from the node-attributes in the temporary array. With success at this step,
the temporary pbsnode gets copied back to the original pbsnode, the temporary node-at-
tribute array is freed and success (0) is returned. Any failure during update of the tempo-
rary node gets handled as before.

mgr_log_attr()

static void mgr_log_attr(svrattrl *list, int log_class, char *object_name)

Args:
list of svrattrl structures containing the attributes from the request.

log_class
an object class defined in log.h.

object_name
the name of the parent object, queue or server.

For each attribute modified by a Manager Request, a log entry is formatted as:
attributes set: attribute_name =|+|- value

and written to the log file.

set_queue_type()

int set_queue_type(attribute *pattr, void *pque, int mode)

Args:
pattr pointer to the QA_ATR_QType attribute.
pque pointer to the queue being created or modified.
(unused).

This is the at_action() routine for the queue type attribute. The new string value of the
QA_ATR_QType attribute is checked against the allowable values: Execution and Route. The
match is made regardless of case and the string may be shorted to any set of initial charac-

Chapt Draft Revision: 2.3 5-85

Batch Server PBS IDS

ters. The attribute value string is replaced with a copy of the full string for consistency in
the status display.

The internal type representation, qu_type, is also set.

check_que_enable()

int check_que_enable(attribute *pattr, void *pque, mode)

Args:
pattr pointer to the queue Enabled attribute.
pque pointer to the queue being enabled.
mode(unused).

Returns:
0 if queue completely defined.

Non-zero
error if queue has not be defined sufficiently to determine its type.

This function is the at_action() function associated with the queue QA_ATR_Enabled attribute.
It is called whenever the attribute is modified. If the queue type has not yet been set, the en-
able is disallowed and [PBSE_QUENOEN] is returned.

check_que_attr()

static char *check_que_attr(queue *pque)

Args:

pque pointer to the queue being modified or created.
Returns:

Null if no conflict is found.

pointer
to the name of the attribute if one conflicts with the queue type.

This strangeness requires some explanation. A queue can either of two types: execution, or
route. Some queue attributes are common to both types, others are specific to a single type.
Rather than have two attribute definition arrays, one is defined with all possible queue at-
tributes included. The tentative type of the queue is defined by “usage,” the first type specific
attribute specified determines the tentative queue type. Once that has happened, no at-
tribute is allowed that is specific to a different type. Thus the existence of this routine.

For each attribute set in the queue, it is determined if the attribute is appropriate to the
gueue type. If the queue type has not yet been fixed, it is tentatively (internal to this rou-
tine) set to {QTYPE_Unset}, then any attribute is allowed, but the first attribute associated with
only one type of queue forces the queue to that type (internal to this routine).

If the attribute does not fit with the real or tentative queue type, a pointer is the name of the
attribute is returned.

5-86 Chapt Draft Revision: 2.3

PBS IDS Batch Server

manager_oper_chk()

int manager_oper_chk(attribute *pattr, void *pobject,int actmode)

Args:
pattr pointer to server managers or operators attribute.
pobject
pointer to parent object, the server.

actmode
the the type of action affecting the attribute.

Returns:
0 if no error

PBS error
number, if error.

This is the at_action () routine for two server attributes, managers, and operators. When the
list of those with manager or operator privilege is set, altered, or otherwise modified, this
routine is invoked. The routine validates each list entry to insure that the entry is in the
form user@fully.qualified.hostname or user@*.wildcard.domain . This is done to
insure that the list is not created with an invalid host name or a name that might be resolved
in a different domain than was intended.

The user name must be followed by an '@’ sign. If the string after the '@’ does not start with
a wild card character, ™', the string is used to obtain a fully qualified host name by calling
get_fullhostname(). It is an error if the returned host name does not match the specified
name. If the string does start with *’, no additional checks are possible. On any error on a
set or alter actions (resulting from a batch request), [PBSE_BADHOST] is returned. On a re-
covery action (server initialization), any improper lines are logged, but no error is returned.
An error might occur here if the access files were edited by hand.

5.3.11.7. node_func.c

The file src/server/node_func.c contains certain functions which are used in support batch
requests pertaining to nodes.

find_nodebyname()

struct pbsnode *find_nodebyname (char *nodename)

Args:
nodename pointer to the name of the node being sought
Returns:

0 if node name isn't found in the server’s node list or the server doesn't have a
list of nodes

address pointer to the pbsnode

This function walks the server’s node list pbsnlist and returns the address of the pbsnode
structure whose name field, last, matches the name pointed to by nodename. Zero is returned
for the value of the pointer if no match is found or the list is empty.

Chapt Draft Revision: 2.3 5-87

Batch Server PBS IDS

save_characteristic()

void save_characteristic(struct pbsnode *pnode)

Args:
pnode
pointer to the pbsnode structure in question

Saves the characteristics of the pbsnode along with the address of the pbsnode. These are
saved to static variables in the file and are later examined by the function, chk_characteris-
tic, whose job it is to report back any changes in the node’s characteristics to the caller.

chk_characteristic()

int chk_characteristic(struct pbsnode *pnode, int *need_todo)

Args:
pnode
pointer to the pbsnode structure in question
need_todo
return various bit flags into this location
Returns:

-1 current pbsnode address doesn’t match that stored by save_characteristic.

0 check was performed successfully and flag bits in need_todo got appropriately
set/cleared

This function is the companion to function save characteristic(), which should be invoked
prior to the invocation of the current function. If the function is successful, the integer loca-
tion pointed to by need_todo will hold the result of the check. Currently, the results of the
check are encoded in a pair of bits in this integer location and are used in determining
whether or not file nodes should be updated from the internal pbsnode array, and whether
the file tracking nodes that are marked as being offline needs an update.

status_nodeattrib()

int status_nodeattrib (svrattrl *pal, attribute_def *padef, struct pbsnode *pnode,
int limit, int priv, list_head *phead, int *bad)

Args:
pal pointer to an svrattrl structure from the batch request
padef pointer to the array of node-attribute definitions
pnode pointer to the subject pbsnode
limit number of elements in the array pointed to by padef
priv requester’s privileges
phead heads a list of svrattrl structs in the reply area of the batch request structure

5-88 Chapt Draft Revision: 2.3

PBS IDS Batch Server

bad if there is a node-attribute error in processing, record it's list position here
Returns:
0 all requested status information was successfully obtained

1=0 some kind of error occured; if it's a node-attribute error *bad returns the position;
an appropriate PBS error code is returned to the caller to shape the reply

This function is invoked when a batch status request regarding a node(s) is received by the
server. It adds the status of each requested (or all) node-attribute to the status reply.

initialize_pbsnode()

void initialize_pbsnode (struct pbsnode *pnode, struct prop *pname, ulong *pul, int ntype)

Args:
pnode
pointer to pbsnode being initialized

pname
pointer to a prop struct carring the node's name

pul pointer to an array of unsigned ints. Each entry holds an ipaddrs for this node

ntype
flag indicating whether to set the node to time-shared or cluster
This function is invoked to carry out initialization on any new pbsnode being created via the
gmgr command. The assumption is that all the input parameters are valid. This initializa-
tion parallels that done in function setup_nodes where the server reads the file nodes as part
of its startup process.

effective_node_delete()

void effective_node_delete (struct pbsnode *pnode)

Args:
pnode pointer to pbsnode being effectively deleted

The pbsnode pointed to by pnode is effectively deleted from the server’s internal pbsnodes
list. This is accomplished by setting the INUSE_DELETED bit on the inuse field, removing the
prop list that hangs from the pbsnode (including the name prop) and, clearing any
INUSE_NEEDS_HELLO_PING bit that might be set in the pbsnode’s inuse filed. Depending on
the node’s ntype field, the server’s count of time-shared nodes or its count of cluster nodes is
decremented by one.

setup_notification()

void setup_notification()

Chapt Draft Revision: 2.3 5-89

Batch Server PBS IDS

This function is invoked to Set up the mechanism for notifying the other members of the
server’s node pool that a new node was added manually via gmgr. Actual notification really
occurs some time later via the server’s invocation of the ping_nodes routine from within the
server’s main loop. For each node that does not have its INUSE_DELETED bit set in the inuse
field, the INUSE_NEEDS_HELLO_PING bit is set. Setting of the bit causes the server to send a
Hello Ping message to the node during the server’s later invocation of the ping_nodes func-
tion. The node responds with a HELLO and the server then builds and sends to the node a list
of all the IP addresses of all the non-deleted nodes that it has in its list. This message is read
by the MOM on the node being pinged and the new IP address-set gets used to update the
tree of okclients for the MOM on that node.

process_host_name_part()

int process_host_name_part (struct batch_request *preq, ulong **pul,
struct prop **pname, int *ntype)

Args:
preq pointer to a batch request (INPUT)
pul receives location of null terminated array with node’s ip addresses (OUTPUT)

pname
receives location of a struct prop with name field that of the node in the batch_re-
quest (OUTPUT)

ntype
address of an integer location. Records into this integer whether the node is to be of
type time-shared or of type cluster (OUTPUT)

Returns:
0 Success
=0 An error code (PBSE_UNKNODE,PBSE_SYSTEM)

When invoked this function does the following, processes into a prop structure the hostname
portion of a batch request involving a node, gets that host’s set of IP addresses into an array
and, places a code for the node’s specified node-type (cluster/time-shared) into an integer
variable. If the object name contained in the batch request is not null and, that name is a
valid host name, a prop structure is allocated on the heap to hold the name. The IP address-
es for the node are obtained from the system and written to a null terminated array of ints
allocated on the heap. The location of these data structures are passed back via the calling
parameters as is an indication of whether the request is for a node of type time-shared or
cluster.

update_nodes_file()

int update_nodes_file()

When called, this function will attempt to update the nodes file of the server. It walks the
server’s array of pbsnodes constructing for each entry, which is not marked as deleted, a line
for a new nodes file. The lines are written to a temporary file which subsequently, after all
node processing is done, replaces the current nodes file. If any system errors happen along
the way, the temporary file, if it exists, is closed and removed and the original nodes file is

5-90 Chapt Draft Revision: 2.3

PBS IDS Batch Server

not modified.

This function gets called by various primary functions in the req_manager.c file whenever a
node is created/deleted or its properties/ntype modified. Should for some reason the function
return error, a global indicator svr_chngNodesfile is set signaling that this function ought to
be call during the server’s shutdown process.

recompute_ntype_cnts()

void recompute_ntype_cnts()

The action of this function is to walk the server’s array of pbsnodes and for each entry that is
not marked as deleted notes its ntype value and increments one of the appropriate local
counters (time-shared or cluster).

The server’s global node counters, svr_clnodes and svr_tsnodes, are then replaced by the val-
ues from these local counters.

5.3.11.8. req_messagejob.c

The file src/server/req_messagejob.c contains the server function for processing the Message
Job batch request.

req_messagejob()

void req_messagejob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

If the job is not in state {JOB_STATE_RUNNING} and substate {JOB_SUBSTATE_RUNNING} the request
is rejected with [PBSE_BADSTATE].

The request is forwarded to the MOM responsible for the running job by calling
relay_to_mom(). The action will be picked up in post_message_req() when MOM replies.

post_message_req()

static void post_message_req(struct work_task *task)

Args:
task pointer to the work task entry.

When MOM replies to a relayed Message Job Request, the delayed child work task entry
points to this function. All it does is reply to the client with an acknowledge or reject based
on the code in the reply from MOM.

5.3.11.9. req_modify.c

The file src/server/req_modify.c contains the server function for processing the Modify Job
batch request.

Chapt Draft Revision: 2.3 5-91

Batch Server PBS IDS

req_modifyjob()

void req_modifyjob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

It is critical that the Modify Job request be atomic, either all of the attributes modifications
are performed or none are. Therefore the function attr_atomic_set() is used to perform the
set.

First, certain checks must be made first if the job is in the {JOB_STATE_RUNNING} state. If so,
each specified attribute or resource is identified by calling find_attr(). If the attribute or re-
source is not marked as alterable in the run state, {ATR_DFLAG_ALTRUN} set, then the request is
rejected with [PBSE_MODATRRUN]. Which resources are alterable when a job is running de-
pends on MOM's ability to update the limit. Polled limits such as walltime can be updated
on any host. On systems which use the setrlimit() system call, those system enforced limits
are not updatable since they can only be set by the process which they control.

The routine modify_job_attr() is called to perform the set operation. If an error is detected,
the attributes and resources are not updated and the error is returned to the user. The rou-
tine set_resc_deflt() is called to set to the default values any Resource_L.ist values which may
have been unset.

If the job is not currently running, svr_evaljobstate() and svr_setjobstate() are called to re-
view and update the job state. Svr_setjobstate will also save the job structure and updated
attributes to disk.

If a resource limit for a running job is being changed, relay_to_mom() is used to forward the
request to MOM. When the reply is received, post_modify_req() is invoked.

modify_job_attr()

int modify_job_attr(job *pjob, svrattrl *list, int permission, int *bad)

Args:
pjob pointer to job whose attributes are to be modified.

list pointer to the first member of a list of svrattrl structures containing the new at-
tributes values from the modify request.

permission
of the client from the request.

bad RETURN: pointer to an integer in which the index of the first bad attribute is re-
turned.

Returns:
0 if ok.

non-zero
error number if error.

The function attr_atomic_set() is called to decode and set a copy of the job attributes. If the
set is unsuccessful, the copies are freed and the error is returned.

If one or more resource limits are being changed, additional checks are made: If the job is
running, only a manager or operator is allowed to raise them. The function comp_resc() is

5-92 Chapt Draft Revision: 2.3

PBS IDS Batch Server

used to compare the current and new values. If the job is not running, the limits may be ad-
justed up or down, but must remain with the queue minimum and maximum as established
by QA_ATR_ResourceMax and QA_ATR_ResourceMin.

If there are no errors, each modified attribute value replaces the original. The original at-
tribute value is freed and the new value inserted. It is important to note that the attribute
copy value is not freed, it now belongs to the original. It is also should be noted that for those
attributes whoses value is represented by linked list, the first and last list elements must be
relinked, this is accomplished by calling list_move() .

If there is an at_action() routine associated with the attribute, it is invoked. If there are any
failures, an error reply is returned. If either the User_List or group_list attributes changed,
then set_jobexid() is called to determine the effective execution user and group names. This
is done outside of any at_action routine because it involves two inter-dependent attributes.

Finally, the job modified flag, ji_modified, is set.

post_modify_req()

static void post_modify_req(struct work_task task)

Args:
task pointer to work task established by relay_to_mom().

This function is invoked to process the return from MOM of a modify job request. The con-
nection to MOM s closed ane the original request is reset to point back to the original client
connection. If there was an error, it is logged and the error code returned to the client.

5.3.11.10. req_movejob.c

The file src/server/req_movejob.c contains the server function for processing the Move Job
batch request.

req_movejob()

void req_movejob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

The job must be in one of the following states: {JOB_STATE_QUEUED}, {JOB_STATE_HELD}, Or
{JOB_STATE_WAITING}, otherwise the request is rejected.

If the destination is another queue on this server, the state of the destination queue and the
authorization of the user to access that queue is checked. If the may be moved, the job is de-
gueued by calling svr_dequejob() and queue in the new destination by calling svr_enquejob() .
A success reply is returned to the client. If the job cannot be moved, the request is rejected.

If the destination is on a different server, the destination specified in the request is saved in
the job structure member ji_destin and ji_un_typeis {JOB_UNION_TYPE_ROUTE}.

The function create_child_entry() is called to create a child process table entry of type
{child_ROUTER}. The batch request is linked into the list headed in the child table entry field
cp_deferred. The job state and substate are set to {JOB_STATE_TRANSIT} and
{JoB_sUBSTATE_TRNOUT}. A child process is created by calling fork(), the cp_pid field of the
child process table entry is updated by the parent. The parent server returns to continue

Chapt Draft Revision: 2.3 5-93

Batch Server PBS IDS

processing other events and requests.

The child process calls the function svr_routejob() to perform the move operation. The child
process will generate and create the various subrequests which are part of the Queue Job
batch request. If any errors or network time outs occur, an error code is returned as the child
process exit status.

req_orderjob()

void req_orderjob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

This function provides the batch service in Order Job batch request. This request is to swap
the positions of two jobs in a queue. The requestor must have permission to operate on both
jobs; be owner of both or be privileged. Neither job can be running, or [PBSE_BADSTATE] is re-
turned.

If the two jobs are in the same queue, the problem is fairly simple. The list_link function,
swap_link () is called twice, first to swap the position of the two jobs in the server’s all job list
and the second time to swap positions in the queue list. The JOB_ATR_grank, “queue_rank”, is
also exchanged between to the two jobs so they will be correctly ordered if the server is
restarted. Both jobs are saved to disk to record the queue rank change.

When the two jobs are in different queues, extra checks must be made to be sure that each
job is allowed into the other’s queue. The function svr_chkque() is called for both of the jobs
with the opposite queue header. If the two jobs are allowed in the opposite queue, the rank
in JOB_ATR_grank, is swapped as above. The parent queue name in the job structure,
ji_queue, is swapped and the two jobs are dequeued from their existing queue and requeued
into the other. This insures that the current queue attribute and queue type are updated. A
"Q" record is also produced for the accounting log.

5.3.11.11. req_register.c

The file src/server/req_register.c contains the functions to deal with the Register Dependent
Job batch request as well as additional dependency related functions. This file and the simi-
larly named function are mis-named since the register operation is only one of several depen-
dency related operations. It is just too much bother to go back and change all the references.
It is quickly determined by the reader that this set of functions is the strangest and most dif-
ficult to understand in all of PBS. A extra credit “A” is here by given to the reader that fig-
ures it all out.

req_register()

void req_register (struct batch_request *req)

Args:
req pointer to the batch_request structure.

This function provides the batch service in response to a Register Dependent batch request.
The request may ask for one of four operations.

5-94 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Three of the operations are used for the non-synchronous dependencies and are fairly
straight forward:

REGISTER
This operation registers a dependency relation between parent and child. It results
from an after* dependency attribute on the child or a before* dependency attribute on the
parent. Included in the request is the full type of dependency and the id of the register-
ing job. When received, the server will set up a mirror image type dependency at-
tribute. This will remind the server to send notification to the child job when the par-
ent reaches the specified state.

Note, if the server is built with {PBS_DEPENDENCY_SECURE=1}, then any Register Depen-
dent batch request must be from the owner of the job affected. This prohibits cross user
dependencies. If the server is built with {PBS_DEPENDENCY_SECURE=0}, then Register De-
pendent batch requests which “register” the “after” types and corresponding “release”
operations described below, are accepted even when the requesting user does not own
the affected job. This allows cross-user dependencies, however with the check on the
ready request described below, the only type of dependency that can be established by
another user is one where that user’s job runs after another users. This prevents a us-
er from delaying or expediting another user’s program execution.

RELEASE
This operation is sent from the parent to the child's server. It indicates that the speci-
fied after* dependency has been satisfied and can be removed from the dependency list.
When all after dependencies have been removed, the hold is removed from the child and
it is free to run.

DELETE
The DELETE operation requests that a server abort a dependent job. It is sent to de-
pendent jobs whoses dependency cannot be satisfied. For example, if Job-B is depen-
dent on Job-A termination normally, exit status of zero, and Job-A terminates abnor-
mally, then the server managing Job-A will send a DELETE operation to the server
managing Job-B.

UNREGISTER
The UNREG operation is the reverse of the register. An existing relationship between
the job and a child is to be removed. Either unregister_sync() or unregister_dep() is
called depending on type dependency type.

If the dependency type is synchronous, the work is a bit more involved. There are three ap-
proached that could be taken here, which oh which ???

1. When the “master” job has received a register operation from all other jobs in the set,
the server will send a release operation to each job. This will remove the system hold
and allow the job to begin to compete for resources. When each job has its resources, it
would notify the master; when all have their resources at the same time, a run request
would be sent to each.

2. As each job registers, it sends the “cost” of its required resources. When all jobs have
registered, the job with the highest resource cost is released from its hold. When that
job is scheduled, the lower cost jobs are “forced” into running as well.

3. As each job registers, it sends the “cost” of its required resources. When all jobs have
registered, the job with the lowest resource cost is released from its hold. When that
job is scheduled and begins to run, it notifies the master. Then the job with the next
lowest resource cost is released. This continues until all jobs are placed into execution.

Approach 1 seems too complex to work. Without a master scheduler, it is unlikely on loaded
systems that all jobs would have resources available at the same time. To keep from choking
the system, the jobs could not hold onto their slot forever, but would have to time out and re-
lease their run window. Approach 2 is a possibility but might lead to threshing when the

Chapt Draft Revision: 2.3 5-95

Batch Server PBS IDS

lower cost jobs are “forced” to run. But it might still work.

To start with, the PBS team chose to go with approach 3, even though it is the least syn-
chronous of the approaches.

REGISTER
The register operation dependency request is sent to the server managing the “master”
job. This establishes the link from the master back to the child and reports the cost of
resources for each job. It is also used to update the location of the child/master when
that job moves.

Requests must be from the job owner regardless of the setting of
{PBS_DEPENDENCY_SECURE}.

RELEASE
When an Register operation has received for each expected dependent child, and when
a Ready operation is received from a prior released job, the master server will send a re-
lease request to release the hold on the job with the cheapest resource cost which has
not yet been released. This allows that job to fight for resources (be scheduled).

READY
When a child job is able to obtain its resources (has be scheduled), a Ready operation is
sent to the master. When the master scheduler receives a Ready operation from a child,
as described above, it will release the next cheapest job until all have been released.

alter_unreg()

static void alter_unreg(job *pjob, attribute *old, attribute *new)

Args:
pjob pointer to job being altered.
old pointer to job’s current (old) dependency attribute.
new pointer to job's new (as altered) dependency attribute.

For any dependency type currently established for the job which are being deleted (are not in
the new [altered] attribute), an unregister, {JOB_DEPEND_OP_UNREG}, operation is send to the
parner job. This deletes the corresponding dependency listed with that job. This routine is
called by depend_on_que() when it is acting as the at_action() routine for the dependency at-
tribute.

depend_on_que()

int depend_on_que(attribute *pattr, job *pjob, int mode)

Args:
pattr pointer to the dependency attribute.
pjob pointer to a job structure.
modeis the at_action mode.

Returns:
Zero if ok, non-zero otherwise.

5-96 Chapt Draft Revision: 2.3

PBS IDS Batch Server

The function is called on two events, when a job is moved into an execution queue, the mode
will be {ATR_ACTION_NOOP},

and when the dependency attribute is altered, the mode is {ATR_ACTION_ALTER}. The alter
case happens when this routine is called as the at_action routine for the dependency at-
tribute. In either case, we want the actions to only happen if the job is in an execution queue
so jobs are not held in routing queues. The other time this routine is called is when a job is
moved into an execution queue, so it is called from svr_enquejob() .

For the alter case only, existing dependencies could be deleted, so alter_unreg() is called to
check for that possibility.

If the job has dependencies which required placing a system hold on the job, that is done by
calling set_depend_hold() .

If the job has SYNCCT dependency, the (master) job’s resource cost is calculated by
calc_job_cost() and a entry in the syncct list is created (as if a Register operation request had
been received) by calling register_sync(). If all jobs have registered (unlikely in this case as
this is the master job), release_cheapest() is called to send a release to the cheapest job.

For all other dependency types except JOB_DEPEND_TYPE_ON (all Before and After types), a
Register Dependency — Register operation is sent to the parent job (job on which the depen-
dency is based).

post_doq()

static void post_doq(struct work_task *pwt)

Args:
pwt pointer to work task entry created by issue_request().

This routine is the call back routine when the reply to a Register dependency request is sent
from within depend_on_que(). If the request was rejected, then the job for which the request
was sent is aborted.

depend_on_exec()

void depend_on_exec(job *pjob)

Args:
pjob pointer to a job structure.

This routine is called when a job with dependencies goes into execution. If the job has BE-
FORESTART dependencies, a Register Dependencies — Release message is sent to each job in
the set. If the job is a member of a sync set and not the master (has dependency of
SYNCWITH), a Register Dependencies — Ready message is sent to the master stating that
this job is about to run. If the job is the master of a sync set, (has dependency of SYNCCT),
then release_cheapest() is called directly to release the next cheapest job.

post_doe()

static void post_doe(struct work_task *pwt)

Chapt Draft Revision: 2.3 5-97

Batch Server PBS IDS

Args:
pwt pointer to work task entry created by issue_request().

This routine is the call back routine when the reply to a Register dependency request is sent
from within depend_on_exec(). If the request was rejected, then the job for which the request
was sent is aborted.

depend_on_term()

void depend_on_term(job *pjob)

Args:
pjob pointer to a job structure.

This routine is called when a job with dependencies terminates execution. If the job has BE-
FOREANY dependencies, a Register Dependencies — Release message is sent. If the job has
BEFOREOK dependencies and the job terminated “normally”, and/or BEFORENOTOK depen-
dencies and the job terminated abnormally, a Register Dependencies — Release message is
sent to each job. Otherwise, a Register Dependencies — Delete message is sent to those jobs
that will never run because of the dependency on the reverse exit status.

If the job has JOB_DEPEND_TYPE_SYNCCT a special check must be performed. The whole
purpose behind the sync set concept is to have jobs run at the same time and communicate
with each other. If there is no communication, there is no need to run together. So if a job,
especially the master, quits before all jobs have started running, then there must be a prob-
lem. Doubly so for the master, not because of any relation internal to the jobs, but because
with out it there is no place to register the Release and Ready operations. Therefore, if the
master has terminated and not all of the jobs in the sync set have reported Ready (running),
then all jobs are aborted.

release_cheapest()

static void release_cheapest(job *pjob, struct depend *pdep)

Args:
pjob pointer to job for which the resource cost should be calculated.
pdep pointer to the SYNCCT dependency.

For each job in the set (list) headed by the SYNCCT dependency which have not been Re-
leased or Readied (running), find the one with the lowest resource cost. If this is the first job
of the set to be released, then set the scheduler hint field to {SYNC_SCHED_HINT_FIRST}, other-
wise, set it to {SYNC_SCHED_HINT_OTHER}. Call send_depend_req() to send a Register Depen-
dency — Release operation message.

The scheduler hint field is recorded in the receiving job’s Sched_hint attribute. As explained
in the ERS, this is purely a hint to the scheduler to decrease the priority of the first job to
prevent cheating and increase priority of the other jobs in the set to improve synchronism.

set_depend_hold()

5-98 Chapt Draft Revision: 2.3

PBS IDS Batch Server

static void set_depend_hold(job *pjob, attribute *depend)

Args:
pjob pointer to job structure

depend
pointer to the dependency attribute.

This function examines the dependencies on a job and if required, sets a system hold. De-
pending on the dependency type, the job state is set to {JOB_STATE_HELD} and the substate to
either:

JOB_SUBSTATE_SYNCHOLD
If the job has either {JOB_DEPEND_TYPE_SYNCWITH} or {JOB_DEPEND_TYPE_SYNCCT} depen-
dencies that have not been released.

JOB_SUBSTATE_DEPNHOLD
If the job has any {JOB_DEPEND_TYPE_AFTER*} Or {JOB_DEPEND_TYPE_ON} type dependen-
cies.

If the job has none of the above dependencies and was in substate
{JOB_DEPEND_TYPE_SYNCWITH} Or {JOB_DEPEND_TYPE_SYNCCT}, the system hold is removed and
the state is re-evaluated by calling svr_evaljobstate() .

depend_clrrdy()

void depend_clrrdy(job *pjob)

Args:

pjob pointer to a job structure.
This function clears any synchronous dependency ready flags in the job's dependency at-
tribute. It is called from pbsd_init() during recover. The flags are cleared because it is un-

likely that the children are still ready. At some point in the future, the children will again
notify the parent that they are ready.

find_depend()

static depend *find_depend(int type, attribute *pattr)

Args:

type of the dependency to find.

pattr pointer to the dependency attribute of the job.
Returns:

pointer
to the depend structure found of the requested type.

This function searchs the dependency attribute of a job for a certain dependency type, a de-
pend structure of the specified type. If it is found, a pointer to it is returned.

Chapt Draft Revision: 2.3 5-99

Batch Server PBS IDS

make_depend()

static depend *make_depend(int type, attribute *pattr)

Args:

type of the dependency to be added.

pattr pointer to the dependency attribute of the job.
Returns:

pointer
to the created depend structure.

This function allocates and initializes a depend structure and links it on the list of structures
headed in the dependency attribute.

register_sync()

static int register_sync(struct depend *depend, char *child, char *host,
long cost)

Args:
depend
pointer to the {JOB_DEPEND_TYPE_SYNCCT} dependency structure.
child the job id of the child (non-master) job.
host the name of the server (host name) which manages the child job.
cost the resource cost for the child job.
Returns:
0 if successful
error [PBSE_SYSTEM] if failed.

This function is called when a Register Dependency request is received with an operation of
{JOB_DEPEND_OP_REGISTER} and the dependency type is {JOB_DEPEND_TYPE_SYNCWITH}. If the
client job has already been registered with this, the “master” job, the location of client job is
updated. Otherwise, the client (child) job is registered by making adding a depend_job
structure, see make_dependjob(), to the “syncwith” depend structure. The child job’s re-
source cost is recorded and the count of registered job is incremented in dp_numreg. If
dp_numreg exceeds the number of expected jobs, dp_numexp, [PBSE_IVALREQ] is returned.

register_after()

static int register_dep(attribute *pattr, struct batch_request *request,
int type, int *made)

Args:
pattr pointer to the dependency attribute of a job.

request
pointer to the Register Dependency batch request.

5-100 Chapt Draft Revision: 2.3

PBS IDS Batch Server

type of the dependency to set up.

makeRETURN: pointer to integer which is set to 1 if the child dependency is new (was
made), 0O if already exists.

Returns:
0 on success.
error number if fails.

This function is called from req_register() when a register request is received with the opera-
tion of {JOB_DEPEND_OP_REGISTER} and a type of any of the {JOB_DEPEND_TYPE_AFTER*} Or
{JOB_DEPEND_TYPE_BEFORE*} forms. The purpose is to set up or update a dependency of the op-
posite form (before_X becomes after_X, after_Y becomes before_Y) to remind the server to re-
lease the depend job at the right time. First, find or make a depend structure of the type
needed, opposite of that in the request. Then add or update the location of the dependent
child job. One is returned in the argument pointed to by made if the dependency is created,
zero is returned if just updated.

unregister_dep()

static int unregister_dep(attribute *pattr, struct batch_request *preq)

Args:
pattr pointer to the job's dependency attribute.
preq pointer to the batch request (dependency register, op of unregister).

Returns:
zero on success, [PBSE_IVALREQ)] if the dependency to unregister is not present.

This handles unregistering (deleting) before/after dependencies. The mirror image type de-
pendency (before* <-> after*) pointing to the requesting job is located. It is deleted by calling
del_depend_job() .

unregister_sync()

static int unregister_sync(attribute *pattr, struct batch_request *preq)

Args:
pattr pointer to the job's dependency attribute.
preq pointer to the batch request (dependency register, op of unregister).

Returns:
zero on success, [PBSE_IVALREQ)] if the dependency to unregister is not present.

This handles unregistering (deleting) syncwith dependencies. The master,
{JOB_DEPEND_TYPE_SYNCCT} dependency is located and within it the registration pointing to
the requesting job. It is deleted by calling del_depend_job(). The number of registered jobs is
decremented. Assuming that drops the count below what is required to release the first job,
if the master job has been released, is re-held.

Chapt Draft Revision: 2.3 5-101

Batch Server PBS IDS

find_dependjob()

static struct depend_job *find_dependjob(struct depend *depend, char *jobid)

Args:

depend
pointer to the depend structure.

jobid of the job of which the depend_job structure is desired.
Returns:

pointer
to the depend_job structure if found.

The list of depend_job structures attached to the depend structure is searched for one with
the child id matching the supplied job id.

make_dependjob()

static struct depend_job *make_dependjob(struct depend *depend,
char *jobid, char *host)

Args:

depend
pointer to the parent depend structure.

jobid of the job to add.
host name (server name) owning the child job.
Returns:

pointer
to the created depend_job structure.

A depend_job structure is allocated, initialized and appended to the list headed in the parent
depend structure.

send_depend_req()

static int send_depend_req(job *pjob, struct depend_job *parent, int type,
int op, int scheduler_hint,
void postfunc(struct work_task *))

Args:
pjob pointer to the job which is to be registered with another.

parent
pointer to the depend_job structure holding the parent job’s name.

type the type of dependency of the child (to register).
op the operation, Register, Ready, Delete, ...

scheduler_hint
the value of the scheduler hint to pass to the other job.

5-102 Chapt Draft Revision: 2.3

PBS IDS Batch Server

postfunc
the function to call when the reply to the request is received.

Returns:
ZEero on success.

non-zero
error value if an error occurred.

This function forms and issues a Register Dependent Job batch request. The owner of the
job, not the server, is inserted into the request as the requester. The job id of the parent job
is taken from the job dependency structure pointed to by parent. The dependency type and
operation code is set according to the arguments type and op. The destination server is ob-
tained from the job dependency structure.

If the request is of type {JOB_DEPEND_TYPE SYNCWITH} and the operation is
{JOB_DEPEND_OP_REGISTER}, then the child job'’s resource cost is calculated, calc_job_cost() and
included in the request. Otherwise it is set to 0.

The function issue_to_svr() is called to send the request on its way, with postfunc as the call
back routine.

decode_depend()

int decode_depend(attribute *pattr, char *name, char *rescn, char *val)

The value string passed in parameter val is a null string or a comma-separated series of sub-
strings. Each substring is of the form:
depend_type=argument[,argument,...][,depend_type=argument[,argument,...]...]

where depend_type is one of the following:

on after before syncwith
afterok beforeok syncct
afternotok beforenotok
afterany beforeany

as described in the ERS. The argument portion of the substring depends on the depend_type.
For on or syncct , the argument is a numeric string which is a count of jobs. Otherwise, ar-
gument is a job identifier.

If the val is the null string, the attribute is being “unset”. The attribute is freed by calling
free_depend() and marked with {ATR_VFLAG_MODIFY} (free_depend() cleared

Otherwise, for each depend_type specified in the value string:

1. If a depend structure of that form does not already exist, one is created and linked into
the list headed in the attribute structure. This structure identifies the base dependency
type and the number of jobs listed for this type.

2. An explicit “On” form will have set its count in the number of expected jobs in the “on”
structure. The “on” structure is created if non-existent.

3. For each “after”, “before”, or “sync” form, a depend_job structure is created containing
the job identifier, the job location, and the registered/ready flags.

The attribute flags are set with {ATR_VFLAG_MODIFY} and {ATR_VFLAG_SET}.

Chapt Draft Revision: 2.3 5-103

Batch Server PBS IDS

cpy_jobsvr()

static int cpy_jobsvr(char *dest, char *source)

Args:
dest pointer to destination string.
sourcepointer to source string.

This little kludge is used in encode depend() to copy a job id of the form seq.serv-
er[:port][@server[:port]] to seq.server[:port][@server[:port]] . It escapes
the colons since the colon is also used to separate job ids within the dependency string.

dup_depend()

static int dup_depend(attribute *pattr, struct depend *depend)

Args:
pattr pointer to job's dependency attribute in which a dependency is to be duplicated.

depend
pointer to the dependency to be duplicated.

Returns:
Zero on success, non-zero if error.

This function duplicate (adds) a dependency to attribute. A new dependency sub-structure is
allocated by calling make_depend() with the attribute and the type of the dependency from
the existing one. Various fields are copied into the new and for each child job, the depend_job
structure is reproduced.

encode_depend()

int encode_depend(attribute *pattr, list_head *phead, char *atname,
char *rsname, int mode)

The values of the dependencies are encoded into a series of strings and placed into a buffer.
The encoding performed is according to the following rules:

1. For each depend structure in the list, a depend_type string is placed in the buffer fol-
lowed by an equal sign, “=", followed by the appropriate argument string.

2. If the the depend_type is syncct or on, the argument string is a numeric string express-
ing the dependency count. Otherwise the string is a colon separated list of the job identi-
fiers associated with the depend_type. Colons within each job identifier, used to indicate
an alternative server port, must be escaped with a leading back slash.

Then the function attrlist_create() is called to create an svrattrl entry containing the at-
tribute name and the encode string is inserted into the entry.

5-104 Chapt Draft Revision: 2.3

PBS IDS Batch Server

set_depend()

int set_depend(attribute *old, attribute *new, enum set_op op)

The value of the depend attribute old is set according to the operation:
Set old is replaced with new.

Incr [Not currently supported.]

Decr [Not currently supported.]

If the type of dependency to be "set" already exists in the “old” attribure, it is deleted via
del_depend(). The dependency from the “new” attribute is copied via dup_depend() .

comp_depend()

int comp_depend(attribute *pattr, attribute *with)

Not used, does nothing, always returns -1.

free_depend()

void free_depend(attribute *pattr)

The depend attribute lists are freed and in the attribute flag {ATR_VFLAG_SET} is cleared.

build_depend()

static int build_depend(list_head *head, char *key, char *value)

Args:
head of list of depend structures.
key is keyword, name of dependency type.
valueis the value string, following the equal sign.
Returns:
0 if ok,
non-0if error.

The keyword is used to determine the dependency type. If it does not match a legal value,
[PBSE_BADATVAL] is returned.

Since certain combinations of dependencies are illegal, the existing dependencies are scanned
and the types noted. If the new dependency would create an illegal combination,
[PBSE_BADATVAL] is returned. The illegal combinations are:

- syncwith with syncct, on, or any of the after forms.
- syncct with syncwith or another syncct.

Chapt Draft Revision: 2.3 5-105

Batch Server PBS IDS

If the base depend structure does not already exist for the type of dependency being created,
one of the correct type is allocated. The value string is parsed by calling parse_com-
ma_string() and an appropriate depend_job structure is allocated. Note that within a job id,
a colon indicating an alternative server port must be escaped with a leading back slash in the
external form. Otherwise, it would be taken as the colon that separates multiple job ids.
Within the depend_job structure, the back slash is not needed and in fact gets in the way of
comparing job ids. So the back slash is removed.

Note that a command line value of depend=type without a colon and following value is a
means of clearing that type of dependency. build_depend makes an "empty" depend struc-
ture for that type. If the job is being altered, set_depend() will replace the existing entries
for that type of dependency with the new (non-existent) ones, in effect, clearing the old en-
tries.

clear_depend()

static void clear_depend(struct depend *pd, int type, int exist)

Args:
pd pointer to depend structure to clear.
type of depend structure to set.

exist flag, if true the depend structure already exists and any associated depend_job
structures should be freed.

The depend structure is cleared.

del_depend()

void del_depend(struct depend *pd)

Args:
pd pointer to depend structure to delete.
A depend structure and any associated depend_job structures are freeded.

5.3.11.12. req_rescq.c

The file src/server/req_rescq.c deals with batch requests to query {PBS_BATCH_Rescq}, reserve
{PBS_BATCH_ReserveResc}, and release {PBS_BATCH_ReleaseResc} resources.

req_rescq()

void req_rescq(struct batch_request *preq)

Args:
preq pointer to the {PBS_BATCH_Rescq} Query Resource batch request.

If the number of resource items, strings in the resource array, is less than one, the request is
reject with [RM_ERR_BADPARAM]. The 4 integer arrays (available, allocated, reserved, down)
to hold the returns are malloced and initialized to zero.

5-106 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Each string in the resource list is parsed for the resource name and value. Depending on the
resource name, the appropriate function is called. At the present time, only nodes is sup-
ported and the supporting function is node_avail(). If an unrecognized type of resource is
specified, the request is rejected with [RM_ERR_BADPARAM].

req_rescreserve()

void req_rescreserve(struct batch_request *preq)

Args:
preq pointer to the {PBS_BATCH_ReserveResc} Reserve Resource batch request.
At the present time, the only reserverable resources handled via this request are nodes .

The client must have manager or operator privilege to make this request. If the number of
resource items, strings in the resource array, is less than one, the request is reject with
[RM_ERR_BADPARAM].

If the suppied resource handle is not null, {RESOURCE_T_NULL}, any existing resources allocat-
ed to that handle are released by calling node_unreserve(). Otherwise, a new resource han-
dle is generated to be returned.

For each resource string in the array, the corresponding resource support function is called.
For nodes the function is node_reserve ().

If the reservation is only partially successful (some but not all nodes were reserved),
[PBSE_RMPART] is returned. The resource handle is returned.

req_rescfree()

void req_rescfree(struct batch_request *preq)

Args:

preq pointer to the Reserve Resource batch request.
At the present time, the only reserverable resources handled via this request are nodes .
node_unreserve() is called to free (release or unreserve) the nodes.

5.3.11.13. req_rerun.c

The file src/server/req_rerun.c contains the server function for processing the Run Job batch
request.

req_rerunjob()

void req_rerunjob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

Chapt Draft Revision: 2.3 5-107

Batch Server PBS IDS

The job structure is located. The job state must be {JOB_STATE_RUNNING} and the substate
{JOB_SUBSTATE_RUNNING} or the request is rejected. The job rerunable attribute must be set toy
or the request is rejected.

The job substate is set to {JOB_SUBSTATE_RERUN}. The function send_signal() is called to re-
guest that MOM send SIGKILL to the process group. The function post_rerun() will handle
the reply from MOM about the signal request.

Latter, when MOM notifies the server of job termination, the post-execution processing rou-
tine, reqg_jobobit(), will note the rerun substate of JOB_SUBSTATE_RERUN, set
{JOB_SVFLG_HASRUN} in the job server flags (ji_svrflags) and requeue the job. The flags
{JOB_SVFLG_CHKPT} and {JOB_SVFLG_ChkptMig} are cleared to prevent the job from being set up
for restart when next run, see send_job ().

account_record() is called with {PBS_ACCT_RERUN} to note the rerun in the accounting file.

post_rerun()

static void post_rerun(struct work_task *pwt)

Args:
pwt pointer to a work task entry.

This routine processes the reply from MOM regarding the signal job request sent in req_re-
run(). If MOM had no problem, the work task entry (and therefore the request structure) is
released.

If MOM rejected the request, about the only valid reason would be that she did not know if
the job id. Why this might happen | don't know, but it has once or twice. Anyway, the job is
directly requeued.

5.3.11.14. req_runjob.c

The file src/server/req_runjob.c contains the server functions for processing the Run Job
batch request and general placing a job into execution.

req_runjob()

void req_runjob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

This function handles the Run Job and Async Run Job requests. These requests requires the
requesting user to have operator or administrator privilege, otherwise the request is rejected.
The client may be another server performing a synchronous dependency job start, the Sched-
uler, or the qrun command. Servers/schedulers always have privilege. This is checked by
calling chk_job_torun().

If the request is the Async Run request, the request is acknowledged now to prevent any de-
lays. The pointer to the request, preq, is nulled to prevent any later attempt to use it since
the request structure is freed by the acknowledgement.

The function svr_startjob() is called to initiate the job into execution. If svr_startjob() re-
turns a error, the Run Job request is rejected by req_runjob(). For a normal (non async) Run
request, the request is acknowledged by one of the follow up routines, svr_stagein() or

5-108 Chapt Draft Revision: 2.3

PBS IDS Batch Server

post_sendmom() .

req_stagein()

void req_stagein(struct batch_request *request)

Args:

request
pointer to the Stage In batch request.

This starts the file stage-in process. It is normally invoke by the scheduler. If the job does
not have files to stage in, the request is rejected with [PBSE_IVALREQ)].

svr_stagein() is called to send the copy file request to MOM. That function is requested to
update the job to state {JOB_STATE_QUEUED} and substate {JOB_SUBSTATE_STAGEIN} during the
stage in operation.

svr_stagein()

static int svr_stagein(job *pjob, struct batch_request *preq, int state,
int substate)

Args:
pjob pointer to the job.
preq pointer to the Run Job batch request.
state The next job state.

substate
The next job substate.

Returns:
0 if the Copy Files was successfully sent to Mom.

non-zero
error reply otherwise.

The function cpy_stage() is called to build a Copy Files batch request. A copy of the job id is
created and a pointer to it is placed in the batch request, rq_extra. This string is used to find
the job structure in post_stagein() rather than saving the value of pjob. It is remotely possi-
ble that the job might be deleted before Mom replies to the request, in which case, the point-
er to the job would be invalid.

If the Copy Files request was built by cpy_stage(), then there are indeed files to copy. The
Copy Files request is sent to Mom by calling relay_to_mom() with the host address saved in
the job structure, ji_gs.ji_un.ji_exect.jimomaddr. The job state and substate are set to state and
substate.

At this point, a reply is sent to the original batch request, rather than wait the possibly long
time it may take Mom to copy the requested files. This does mean that a failure of the copy
will cause a asynchronous wait being placed on the job.

If the Copy Files request was not built by cpy stage(), there were no files listed in the stage-
in attribute. The routine svr_strtjob2() is called to start the job execution and its return is
our return.

Chapt Draft Revision: 2.3 5-109

Batch Server PBS IDS

post_stagein()

static void post_stagein(struct work_task *task)

Args:
task pointer to work task structure.

This function is called when the reply to a Copy Files request to Mom, initiated in
svr_stagein(), is received by the server. The job for which the request was issued is located
by calling find_job() with the job id saved in the copy request, see svr_stagein(). If the job is
not found (was deleted, unlikely but possible), the function just returns.

If the copy request return is zero, the next action is determined by the current substate of the
job. If it is {JOB_SUBSTATE_STAGEGO}, svr_strtjob2() is called to send the job to Mom for execu-
tion. Note that the batch request pointer, the second parameter, is null. The original request
has already be acknowledged in svr_stagein(). If the job substate is not JOB_SUB-
STATE_STAGEGO, it is {JOB_SUBSTATE_STAGEIN} and the state and substate are updated by
calling svr_evaljobstate() and svr_setjobstate(). The job is most likely to be placed in state
{JOB_STATE_QUEUED} and substate {JOB_SUBSTATE_STAGECMP}.

If the return from MOM is non-zero, the copy failed and the job is placed in a waitting state,
{JOB_STATE_WAITING}, Substate {JOB_SUBSTATE_STAGEFAIL}. The execution time attribute,
JOB_ATR_exectime, is set for {PBS_STAGEFAIL_WAIT} seconds in the future. This is done to keep
the job from being rescheduled over and over in a short amount of time. A mail message is
and sent to the job owner requesting that he/she investigate and fix the problem.

svr_startjob()

int svr_startjob(job *pj, struct batch_request *request)

Args:
pj Pointer to job structure of a job to run.

request
to run the job to which must be responded, or NULL if server staring jobs on ini-
tialization.

Returns:
0 If contact with MOM was successful (see below).

non-zero
if job could not be placed into execution.

This function attempts to place the job into running state. It is called when the Run Job
Batch Request is received, this may be from the scheduler or the operator.

The short file name used as the base for saving the job structure and script must be made
available to Mom, she will used the same name as we know there will not be a conflict with
other jobs. To ship it to Mom, this name is placed in a read-only attribute, JOB_ATR_hash-
name.

If the job has the JOB_ATR_stagein attribute set, then svr_stagein() is called to direct Mom to
copy the files. It is passed the state and substate of {JOB_STATE_RUNNING} and
{JOB_SUBSTATE_STAGEGO} to indicate that the job will be run as soon as the files are staged-in.
If svr_stagein() returns non-zero indicating it was unable to contact Mom, the Run Job re-
guest is rejected. If svr_stagein() is able to contact Mom, it will reply to the request (see the

5-110 Chapt Draft Revision: 2.3

PBS IDS Batch Server

commentary in svr_stagein).
If there are no files to stage in, svr_strtjob2() is called.

svr_strtjob2()

static int svr_strtjob2(job *pjob, struct batch_request *request)

Args:
pj Pointer to job structure of a job to run.

request
to run the job to which must be responded, or NULL if server staring jobs on ini-
tialization.

Returns:
0 If contact with MOM was successful (see below).

non-zero
if job could not be placed into execution.

The job state and substate are set to {JOB_STATE_RUNNING} and {JOB_SUBSTATE_PRERUN}. Then
send_job(), see svr_movejob.c, is called to “move” the job to MOM. This creates a child pro-
cess to send the job. When the child process completes, the routine post_sendmom() is given
control to update the job substate to {JOB_SUBSTATE_RUNNING}, or to requeue the job depending
on success or failure of the move. post_sendmom() will also repond as required to the Run
Job batch request if it exists.

post_sendmom()

static void post_sendmom(struct work_task *task)

Args:
task pointer to work task entry which caused the dispatch of this function. In the work

task, wt_parml points to the job, and if wt_parm2 is not NULL, it point to a Run
Job batch request.

This function is equivalent to post_routejob for the case of sending a job to MOM for execu-
tion. When the child process exits, post_sendmom is dispatched as a result of the work task
associated with the child.

If the send was successfully, the job is placed in state {JOB_STATE_RUNNING} and substate
{JOB_SUBSTATE_RUNNING}. Note, for a very short job, there can be a race condition between the
completion of the child process that sent the job to mom and the Obit notice from MOM, see
req_jobobit(). It might be that the job substate has already been set to exiting. Also a rerun
request could have changed the substate to indicate the rerun. Hence the state and substate
is not updated if the substate is not {JOB_SUBSTATE_PRERUN} as set in svr_strtjob2().

If there is an out standing Run Job batch request, pointed to wt_parm2, it is acknowledged.
The time of the start is recorded in ji_chkpttime which is overloaded for this purpose for ac-
counting. If the job is being restarted from a checkpoint file, account_record() is called with
{PBS_ACCT_RESTRT}, otherwise account_jobstr() is called to make the accounting entry. The
job Session Id attribute is updated by calling stat_mom_job(). If this job is the parent job of
any dependent jobs waiting on this job to start, the dependent jobs are notified by calling
depend_on_exec() .

Chapt Draft Revision: 2.3 5-111

Batch Server PBS IDS

If the send failed, and the substate is {JOB_SUBSTATE_ABORT} we assume the send was inter-
rupted because the job is being deleted, and we do nothing except reject the batch request, if
it exists. Otherwise, the job is requeued for a later retry; and if there is a batch request, it is
rejected.

chk_job_torun()

static job *chk_job_torun(struct batch_request *preq)

Args:
preq pointer to the batch request (run job or stagein).

Returns:
a pointer to the job specified in the request if all is well, otherwise null.

The job is located via chk_job_request(). The request will be rejected if the job is in
{JOB_STATE_TRANSIT} Or {JOB_STATE_EXITING} state, or substates {JOB_SUBSTATE_STAGEGO},
{JOB_SUBSTATE_PRERUN}, Or {JOB_SUBSTATE_RUNNING}. If the request is to stage in files, it will
also be rejected if the substate is {JOB_SUBSTATE_STAGEIN}.

The requesting client must have operator or administrator privilege (which the Scheduler
does). The job must be in an execution queue.

A host for execution may be specified in the request. If this is the null string, either the local
host is assumed or if the the job is to be restarted from a checkpoint, then the prior execution
host is assumed as the new execution host. If the host name is not the null string and if the
job is being restarted from a checkpoint, then the execution host must be the same as the
earlier execution host or [PBSE_BADHOST] is returned. The name of the host on which to exe-
cute the job is saved in the job structure in ji_destin for svr_statjob(). This host name is also
converted to a host address which is saved in ji_gs.ji_un.ji_exectji_momaddr. The attribute
JOB_ATR_exec_host, execution host, is set to the selected/specified host name.

5.3.11.15. req_select.c

The file src/server/req_select.c contains the server function for processing the Select Job
batch request and the Select-Status (selstat) Job batch request.

req_selectjobs()

void req_selectjobs(struct batch_request *req)

Args:
req pointer to the batch_request structure.

This function handles both the Select Job and the special Select-Status Job request. The lat-
ter is provided primarily to enable the job Scheduler to obtain status about jobs that it
should consider. It is a waste of bandwidth to receive status about jobs in routing queues or
(depending on policy) held or waiting jobs in execution queues. There are two differences in
the treatment of the requests, first the return values differ and second the sequence of pro-
cessing. The Select Job request has as a return a list of job identifiers which meet the selec-
tion criteria. The Select-Status, or selstat, request has as its return a set of job status
replies, one for each job which meets the selection criteria. The Select Job is straight fore-
ward to process, just go through the list of jobs for those that match the selection criteria.

5-112 Chapt Draft Revision: 2.3

PBS IDS Batch Server

However, for Selstat, the same problem with running jobs exists as does for Status Job, the
server’s resources used information for some running jobs may be stale. A status request to
MOM is required to update the server’s information.

For both requests, each attribute specified in the request is decoded into a selection list
which contains the decoded attribute value, the selection operator, and a pointer to the at-
tribute definition, see build_selist(). For Select Job, the flow process to the final selection
step in sel_step3(). For Selstat, two passes are required, the first in sel_step2() preselects the
jobs and gets an status update from MOM for any that need it. Then sel_step3() re-selects
the jobs for the reply. Information about the request are passed to both sel_step2() and
sel_step3() in a stat_cntl structure as used by req_stat_job().

One of the specified attributes, {ATTR_q} or “destination” is not a true attribute and receives
special treatment in build_selist() if present.... If {ATTR_q} was specified, then the search for
jobs will be limited to the list headed by that queue. Otherwise, the search is among all jobs
managed by the server.

sel_step2()

static void sel_step2(struct stat_cntl *cntl)

Args:
cntl pointer to a stat_cntl structure used to keep state for the search through the list of
jobs.

The search starts with the job identified in the stat_cntl struture:
null The case for the first entry, start from the top of the list.

job name
The job on which broke the search the prior round (i.e. caused a stat request to MOM).
If this job is missing, restart at the beginning.

With in the loop, the “next” job is obtained. This is either the first job if starting from the
top, or the job following the one we left off with in the prior round.

For each job in the search list which the user is entitled to query status, the function se-
lect_job() is called to determine if the job meets the selection criteria, see sel_step3. For each
“selected” job, if the job is running and the information from MOM s stale, older than
{PBS_RESTAT_JOB} seconds as recorded in ji_momstat, the loop is broken to send a request to
mom to update all jobs, see stat_to_mom(). The current job id is saved in the stat_cntl struc-
ture. When MOM replies, sel_step2 will be restarted with the next job. When all jobs have
been checked, sel_step3() is called to repeat the selection and build the status replies.

static void sel_step3(struct stat_cntl *cntl)

Args:
cntl pointer to a stat_cntl structure used to keep state for the search through the list of
jobs.

Here is where the reply to the request is actually built. The stat_cntl structure is passed in
from either req_selectjobs() for a simple Select Jobs request or from sel_step2() for a Select-
status request. We loop through the list of jobs in the queue or server looking (again) for
those that meet the criteria, select_job() is called for those jobs which the user is privileged to
see. If the requesting user does not have special privilege, the ability to query jobs owned by
other uses is determined by the setting of the server attribute query_other_jobs. For the batch
request type of:

Chapt Draft Revision: 2.3 5-113

Batch Server PBS IDS

Select If a job meets the criteria, its job id is entered into the select reply list.

Selstat If a job meets the criteria, status_job() is called to append the status of that job to
the reply.

After the search is complete, any space allocated to the selection list is freed. The select re-
ply list, or job status list is included in the reply to the client.

select_job()

static int select_job(job *pj, struct select_list *psel)

Args:
pj pointer to a candidate job.
psel pointer to the selection list set up from the request.

Returns:
0 if job does not meet criteria.
1 if job does meet criteria.

For each attribute in the list pointed to by psel which has a value that has been set, the at-
tribute’s at_comp() function is called to determine the relationship between the requested at-
tribute and the job attribute. If the relation matches that specified in the corresponding
member of the operator array, the comparison continues. Otherwise the job is not selected, ze-
ro is returned. If all attributes match, then the job is selected. One is returned.

There is one attribute which must be special cased. If -u, is specified, it is a list of job own-
ers, not the user-list job attribute. If the job owner is in the list, we accept the job.

sel_attr()

static int sel_attr(attribute *pattr, struct select_list *select)

Args:
pattr pointer to an attribute.
selectpointer to a select_list entry.

Returns:
1 if attribute matches the selection criteria.
0 if not.

The attribute value and the value in the selection list are compared via a call to the appropri-
ate at_comp() routine. The comparison result is matched against the selection operator. If it
fits 1 is returned, otherwise O is returned.

build_selentry()

static int build_selentry(svrattrl *plist, attribute_def *pdef, int perm,
struct select_list **rtnentry);

5-114 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:
plist pointer to a member of the list of attributes in request on which to select.
pdef pointer to the attribute definition for the above attribute.
permthe users access permissions.

rtnentry
RETURN: the address of the created entry is returned here.

Returns:
zero if ok, error code if not.

A single selection list entry is created for the specified attribute. The entry contains a point-
er to the attribute definition structure. This provides access to the comparison routine
(at_comp). It also contains the decode attribute value from the request and the selection op-
erator.

If the privilege level is not sufficient to read the attribute, or the attribute cannot be selected
in the manner requested [some attributes are restricted to an equal/not equal test], an error
is returned.

free_sellist()

static void free_sellist(struct select_list *pslist)
Args:

pslistpointer to a select list structure.
A select list, created by build_selist(), is freed.

build_selist()

static int build_selist(svrattrl *list, int permission,
struct select_list **select, queue **pque, int *bad)

Args:
list pointer to a list of svrattrl structures from the select request.

permission
the client’s privilege level.

selectRETURN: pointer to a pointer to a select list. The location of the create select list
is returned here.

pgue RETURN: pointer to a queue pointer. If job search is limited to a queue, this is set.

bad RETURN: pointer to an integer which will be set to the index (starting with 1) of a
bad attribute.

Returns:
0 if the selection list was built.
error number if an error occurred.
The parameters above marked as returns.

For each member of the svrattrl (attribute) list from the request, a select_list structure is al-
located, the attribute is decoded into the structure, the operator is set from the request, and

Chapt Draft Revision: 2.3 5-115

Batch Server PBS IDS

the structure is linked into the select_list. All this is done via the call to build_selentry().

If an ATTR_qg (-q) pseudo-attribute was specified, a search is make for a queue of that name
and a pointer to it is returned in pque.

Another special case is when the attribute is for -s, JOB_ATR_state, the actual attribute is sin-
gle character of type {ATTR_TYPE_CHAR}, but the selection may be a string of multiple letters,
see the -s option is gselect(1). Hence there is a special attribute definition structure for this
case which decodes a string and supplies a special comparison routine, comp_state() which
compares each letter of the selection string with the job’s state.

5.3.11.16. req_shutdown.c
The file src/server/svr_shutdown.c contains the functions to gracefully terminate the server.

req_shutdown()

void req_shutdown(struct batch_request *req)

Args:

req pointer to the batch_request structure.
Returns:

0 if success.

non
if error.

The requesting user must have operator or administrator privilege or the request is rejected.
The address of the shutdown request is saved in pshutdown_request for the function
shutdown_ack(). Then the function svr_shutdown() is called with the type of shutdown re-
guested.

shutdown_ack()

void shutdown_ack()

This function is called from the server’s main routine just before it exits. The purpose is to
check if the shutdown is because of a request (qterm) and reply to it.

svr_shutdown()

void svr_shutdown(int type)

Args:
type The type of shutdown requested.
The server state is set to indicate the type of shutdown:

{SV_STATE_SHUTIMM}
for type immediate,
{SHUT_IMMEDIATE},

5-116 Chapt Draft Revision: 2.3

PBS IDS Batch Server

or for receipt of signal SIGTERM.

{SV_STATE_SHUTDEL}

for type delay,

{SHUT_DELAY},

{SV_STATE_DOWN}

for type quick,

{SHUT_QUICK}.

to restrict services. Note, a SHUT _IMMEDIATE or a SIGTERM while the server is in state
SV_STATE_SHUTIMM will force the server into SV_STATE_DOWN. The type of shutdown
is recorded in the event log. If the shutdown type is quick, return now; the main loop will be
broken.

For each job managed by the server, if the job is in the {JOB_STATE_RUNNING} state, the follow-
ing actions are performed:

- The {JOB_SVFLG_HOTSTART} and {JOB_SVFLG_HASRUN} bits are turned on in
ji_svrflags.

- If checkpoint/restart is supported and the job checkpoint attribute is not "n", then
an attempt is made to checkpoint and terminate the job is made by calling
shutdown_chkpt() .

- Else if the job cannot be checkpointed or the checkpoint fails, then attempt to re-
run the job or kill it off by calling rerun_or_kill().

shutdown_chkpt()

static int shutdown_chkpt(job *job)

Args:
job pointer to the job to checkpoint.
Returns:
0 if the checkpoint request (hold request) was successfully set to MOM.

non-zero
error number if not.

A batch_request structure is allocated and set up as a Hold Job request. This request is sent
to MOM, relay_to_mom(), for action. The routine post_chkpt() will in invoked when MOM
responds.

post_chkpt()

static void post_chkpt(struct work_task *task)

Args:
task pointer to the work task entry.

This function is called when MOM replies to a request sent by shutdown_chkpt(). If the
checkpoint/hold was successful, either the {JOB_SVFLG_CHKPT} or {JOB_SVFLG_ChkptMig} bit is set
in the job server flags, ji_gs.ji_svrflag depending on the checkpoint type return information

Chapt Draft Revision: 2.3 5-117

Batch Server PBS IDS

from MOM. The checkpoint type is found in the brp_auxcode word of the reply to the check-
point request.

Otherwise, we attempt to rerun the job or Kill it off by calling rerun_or_kill() .

rerun_or_Kkill()

void rerun_or_kill(job *pjob, char *text)

Args:
pjob pointer to job to rerun or kill off.
text message to log, the reason this function is being called.

If the job attribute JOB_ATR_rerunable is true, a {SIGKILL} signal request is sent to MOM. The
job substate is set to {JOB_SUBSTATE_RERUN} to indicate to post job execution processing that
the job is not to be discarded.

If the job cannot be rerun, and the server state is not {Sv_STATE_SHUTDEL}, job_abt() is called
to kill off the job.

5.3.11.17. req_signal.c

The file src/server/req_signal.c contains the server function for processing the Signal Job
batch request.

req_signaljob()

void req_signaljob(struct batch_request *req)

Args:
req pointer to the batch_request structure.

The job must be in state {JOB_STATE_RUNNING}. The signal value supplied in the request is a
string, it may either be a numeric string or an alphanumeric signal name. The special
names suspend and resume are reserved for the special suspend/resume functions. Use of
these names require manager or operator privilege.

The request is forwarded to MOM by relay_to_mom(). Note, if the signal value is a numeric
string, MOM will convert it to the corresponding integer value. If it is a name, which may or
may not have the“SIG” prefix, the name is converted to the correct signal value. If the name
is not known on the execution system, the request is rejected with error [PBSE_UNKSIG].

When the MOM replies, the function post_signal_req() is invoked to generate the reply to the
client.

issue_signal()

int issue_signal(job *pjob, char *signal, void (*func)(struct work_task *),
void *extra)

Args:

5-118 Chapt Draft Revision: 2.3

PBS IDS Batch Server

pjob pointer to job structure of job to be signaled.

signalalphabetic signal name or numerical string value of signal to send to job.
func the function to invoke when the reply to the signal request is received.
extrabit of information to insert in generated signal job batch_request structure.

Returns:
0 if successful.
-1 if error.

This function is provided to allow the server itself to initiate a signal to a running job. A Sig-
nal Job batch request structure is allocated via alloc_br() and initialized. The void pointer
extra is inserted into the structure in rq_extra. The request is sent to the MOM in charge of
the job by calling relay_to_mom(). On the reply from MOM, the function release_req() is in-
voked which just frees the batch_request structure.

An error is returned from issue_job only if it cannot allocate the batch_request structure or if
relay_to_mom fails. We have no idea what MOM did with the signal.

When MOM replies to the Signal Job request, the function specified as func will be invoked
via the work task mechanism. This function MUST free the batch request and close the
connection. The easiest way is to call release_req() .

The extra parameter, and in fact the func post process function were added to issue_signal() to
generalize it (how does one spell “kludge”) for req_delete.c.

post_signal_req()

static void post_signal_req(struct work_task *task)

Args:
task pointer to the deferred child work task.

When MOM replies to a Signal Job request forwarded to her on behalf of an external client,
this function will receive her reply and relay its code to the client.

If either of the special signal names, suspend or resume, was issued and MOM acknowl-
edged the request without error, the flag {J0B_SVFLG_Suspend} is updated in ji_svrflags (set for
suspend, cleared for resume). The job_state attribute value letter is changed to S or R by
calling set_statechar().

5.3.11.18. req_stat.c
The file src/server/req_stat.c contains the server functions for providing status about

- A job or set of jobs in reply to a Status Job batch request. The client may request status
of a single job by supplying the job id, or a set of job by supplying a destination id. If a
destination id is supplied, then status of all jobs at that destination, a queue, that the
user is entitled to status is returned.

- A queue or all the queues in owned by the server.

- The server itself.

req_stat_job()

void req_stat_job(struct batch_request *req)

Chapt Draft Revision: 2.3 5-119

Batch Server PBS IDS

Args:
req pointer to the batch_request structure.

If the id supplied in the request, rg_id, is not null and begins with a numeric character, the
request is for status of a single job whose id is specified.

If the id in the request is not null and begins with a alphabetic character, then the id speci-
fies a queue. An attempt is made to locate the queue of that name. If the queue does not ex-
ist on this server, [PBSE_UNKQUE] is returned to the user.

Else if the id in the request is null, or starts with the '@’ character, then the request is for all
jobs in the server.

A private status control structure is allocated and initialized to hold the type of status and
pointer to the job or queue as required. This structure is passed to req_stat_job_step2() .

req_stat_job_step2()

static void req_stat_job_step2(struct stat_cntl control)

Args:

control
is a pointer to privately defined status control structure.

This function, stat_step_2(), is a effect of the complication of having MOM be responsible for
running jobs. When a user requests status of a running job, the user expects to see informa-
tion about resource utilization by that job. This implies that the server must obtain reason-
ably current status information from MOM for each job the client requested status. Addi-
tional complication arises from the desire to kept the Server free from waiting on any other
server, that is no synchronous requests. As the server works through the list of jobs for
which the client requested status, rather than ask MOM for an update and block waiting on
her reply, each time the server goes to a MOM, a work task is established and the server re-
turns to its main loop. This adds two additional routines stat_to_mom() and stat_update() .

The checking state of jobs and asking MOM for recent updates and then building the final re-
ply to the client is done in two separate passes. This is to eliminates the possibility of start-
ing to build the status for a job and having to go to MOM, only to have the job disappear be-
fore we hear from MOM.

The first part of req_stat_job_step2() checks each job for which status is requested. The type
of request, single job, jobs in queue, all jobs, as well as the last job checked is passed in the
status control structure. The “last job checked” is null the first time in, this causes
stat_step_2 to start with the first job in the queue or server list, or the single job in the re-
quest.

If any job is running and the last update from MOM was received more than
{PBS_RESTAT_JOB} seconds ago, then it goes to MOM again. PBS_RESTAT JOB is used to
keep the server from flooding MOM with status request for a anxious user. The function
stat_to_mom()is it to the appropriate MOM. If the user asked for status of a single job, that
is all we ask from MOM, otherwise we ask MOM for status of all her jobs. This may save ad-
ditional requests later. At this point req_stat_job_step2 returns back to the main server loop.
When MOM replies, the action picks up in stat_update() which updates the job status infor-
mation and re-invokes stat_step 2() passing it a pointer to the stat_cntl structure used to
maintain the position amoung the jobs. The process continues with the next job. This ex-
plains the funny initialization of pjob with in the while() loop. Note, if the job disappears
while the server is waiting for MOM to reply to the status, the server just starts over as
find_job() returns a null, the starting condition.

5-120 Chapt Draft Revision: 2.3

PBS IDS Batch Server

The second part of req_stat_job_step2 (which should be step 3) is to loop back through the
jobs and build up the status reply to be returned to the user. This is done by calling sta-
tus_job() for each job for which status is being provided. Then, at long last, the status can be
returned to the client. Note, if status job returns any non-zero status other than
[PBSE_PERM], that error is returned to the client. If PBSE_PERM is returned, that job is ig-
nored, it is invisible to the client.

stat_to_mom()

int stat_to_mom(job *pjob, struct stat_cntl *control)

Args:
pjob pointer to the job.

control
pointer to the status control structure.

Returns:
0 if no errors.
error number if problem.

A Status Job batch request is created and initialized, see alloc_br(). This request has a
pointer to the status control structure. A connection is opened to MOM by calling
svr_connect(). The connection is maintained until MOM replies. The status request is sent
to MOM by calling issue_request() .

stat_update()

static void stat_update(struct work_task *task)

Args:
task pointer to the deferred child work task.

This function is invoked by process_reply() when the reply to a status request is received
from MOM. Per the overall paradigm (does a paradigm make four nickels?), process_reply
calls a specific processing routine identified in a work task structure associated with the con-
nection. This work task points to the original batch request structure. In this case, the spe-
cific processing routine is stat_update and the batch request structure also points to the pri-
vate status control structure.

For each object status element returned, the job structure is located by calling find_job()
with the job name from the reply. The job attributes contained in the reply are passed to
modify_job_attr() which updates the job structure. Note, the {ATR_DFLAG_FSET} flag is set in
the permissions passed to modify_job_attr. This allows “Read Only” attributes, such as the
Session ID to be modified.

If ji_momstat is zero in the job structure, this is the first update since the job started to run.
Hence we should save the job info to disk with a call to job_save() with SAVEJOB_FULL.
ji_momstat is set non-zero so we will not save after future updates from MOM.

If the job structure could not be found, it might have been deleted after we issued the request
to MOM. We just ignore the situation here. When req_stat_job_step2() discovers the missing
job, it will restart the update process from the beginning of the queue or server’s list. With-
out the job, we cannot continue to the next because the link field has been unlinked and

Chapt Draft Revision: 2.3 5-121

Batch Server PBS IDS

freed.

In either case, the batch request built to send to MOM is freed and the connection is broken.
Typically the the routine that called stat_to_mom(), likely req_stat_job_step2(), is specified in
the status control structure. This routine is re-invoked to continue with the next job. Should
no routine be specified, see stat_mom_job(), the control structure is freed even though it was
not allocated here. This saves an extra function just to do that.

stat_mom_job()

void stat_mom_job(job *pjob)

Args:
pjob pointer to a single job.

This routine is a special front end to stat_to_mom() to allow functions outside of this source
file to issue a status call to MOM. The primary user is post_sendmom(). We need to obtain
the session id of the job newly placed into execution.

A status control structure is built and passed along with the job pointer to stat_ to_mom(). In
this case, the function to invoke after MOM replies is null.

req_stat_que()

void req_stat_que(struct batch_request *req)

Args:
req pointer to the batch_request structure.

The reply structure is initialized. If the id in the request is either the null string or a null
pointer, then status of all queues at the server is being requested. The routine status_que()
is called in turn or each queue managed by the server.

Otherwise, it is a request for status of a single specified queue. The queue is located and sta-
tus_que() is called for that queue. If the specified queue does not exist, then [PBSE_UNKQUE]
is returned.

status_que()

void status_que(queue *pque, struct batch_request *preq, list_head *preqattr)

Args:
pque pointer to the queue structure.

pliststat
pointer to the head of the list to which a status structure is appended.

preq pointer to the batch request, used to access the requested attribute list and client
permissions.

A status structure is allocated, the object type is set to “queue,” and the object name to the
gueue name. The structure is linked to pliststat.

5-122 Chapt Draft Revision: 2.3

PBS IDS Batch Server

The private function status_attrib() is called to encode and attach the attributes of the queue
to the reply.

req_stat_svr()

void req_stat_svr(struct batch_request *req)

Args:
req pointer to the batch_request structure.

A status structure is allocated, the object type is set to “server,” and the object name to the
server name. The structure is linked to pliststat.

The private function status_attrib() is called to encode and attach the attributes of the server
to the reply.

update_state_ct()

static void update_state_ct(attribute_def *padef, attribute *pattr,
int ct_array)

Args:
padefpointer to an attribute definition.
pattr pointer to an attribute value.

ct_array
pointer to the array of integers which holds the count of jobs per state.

This function is used to update the “jobs per state” attribute of queue and the server. It is
called whenever a status request is made of the queue or server. The count of the number of
jobs in each state is maintained in private data space within the queue or server structure.
These values are converted to strings and placed in the public attribute.

The data space for the public Jobs by State attribute is a fixed character array in the server
or queue structure. Note the special decode_null() and set_null() routines associated with
this attribute.

5.3.11.19. stat_job.c

The file src/server/stat_job.c contains functions to support the Status Job Request. These
are separated to make them available for use in MOM.

status_job()

int status_job(job *pj, batch_request *preq, svrattrl *pal,
list_head *pliststat, int *bad)

Args:
pj pointer to the job structure.

Chapt Draft Revision: 2.3 5-123

Batch Server PBS IDS

preq pointer to the batch request.
pal pointer to first of a list of svrattrl structs containing attributes to be returned.

pliststat
UPDATED: pointer to the head of the list to which a status structure is appended.

bad UPDATED: set if one of the specific attribute in pal is invalid.

Returns:
0 if no error.
non zero

error number if error occurred.

The privilege to read (request status of) the job is validated. If the client does not have oper-
ator or manager permission, then the request is accepted only if the client is the job owner or
the server allows all jobs to be read, see server attribute SRV_ATR_query_others. If the client
is denied access, [PBSE_PERM)] is returned.

A status structure is allocated, the object type is set to job, and the object name is set to the
job identifier.

The state attribute {JOB_ATR_state} is updated from the ji_state field in the job structure.
The attributes of the job are encoded and attached to the reply structure by status_attrib() .

status_attrib()

static void status_attrib(svrattrl *pal, attribute_def *padef,
attribute *pattr, int limit, int priv,
list_head *phead, int *bad)

Args:
pal pointer to the list of requested attributes.
padefpointer to the attribute definition structure array for the object.
pattr pointer to the parent objects attributes.
limit the number of attributes in the above arrays.
priv the privilege of the client.

pheadpointer to the head of the list in the reply structure to which the encoded at-
tributes are linked.

bad UPDATED: set to the index of the first invalid attribute in pal.

If no specific attributes of the statused object were requested, the list pointed to by pal will be
empty (null), then each attribute of the job which is readable with the client level of privilege
is encoded into a svrattrl structure by calling the at_encode() routine for the attribute. The
svrattrl entry is appended to the list headed in the status structure.

If specific attributes were specified in the batch request, the list pointed to by pal is not emp-
ty, then only those attributes which are known to the server, and readable are returned to
the client. For each attribute above, the corresponding attribute entry is located and encoded
into a svrattrl as above.

Note that MOM'’s version of this routine is simplier. MOM encodes for the status reply only
those attributes listed in an array of specified attributes, mom_rtn_list, contained in this file.

5-124 Chapt Draft Revision: 2.3

PBS IDS Batch Server

5.3.11.20. req_trackjob.c

The file src/server/req_track.c contains the server functions for recording job tracking infor-
mation received in a Track Job batch request. The information is recorded in a member of a
tracking array. There is a pointer, sv_track, to the array in the server structure, as well as its
current size of the array, sv_tacksize, and a flag, sv_trackmodified, indicating if the structure has
been modified.

req_trackjob()

void req_trackjob(struct batch_request *req)

Args:

req pointer to the batch_request structure.
The tracking array is searched for a matching job id. In case it is not found, a pointer is kept
to where in the array to insert a new record. If an entry with a matching job id is located and
its hopcount is less than that in the request, it is updated with the new information from the

request. Otherwise a new entry is allocated, set with the information from the request, and
linked into the list.

The sv_trackmodified flag is set in the server to indicate the list has been modified since the
last time it was saved. information

track_save()

static void track_save()

This function saves job tracking entries to disk. If the server flag sv_trackmodified is not set,
there are no updated entries, so just exit.

The save file specified in path_track is opened and the save buffer is written out. Then the
save file is closed. The sv_trackmodified flag is cleared.

5.3.12. Job Router Overview

The purpose of the Job Router is to find a destination queue which matches the requirements
for a job in a route queue. Each queue given as a destination for a route queue is tried. If
the destination is local (in the same server that contains the route queue), the communica-
tion with the destination queue is internal. If not, a process is created to deal with sending
the job over the network.

Each attempt to send a job to a queue starts with a Queue Job Request which includes infor-
mation about the requirements for the job. If the queue can accommodate the job, it accepts
the queue request. If not, it rejects it. If the error return indicates the rejection is perma-
nent, the queue name is added to a list kept with each job of destinations to not try again.

5.3.12.1. job_route.c

The major functions in file src/server/job_route.c which make up the Job Router are de-
scribed below.

Chapt Draft Revision: 2.3 5-125

Batch Server PBS IDS

add_dest()

badplace *add_dest(job *pjob)

Args:
pjob The job which has an entry made in its bad destination list.
Returns

pointer
if call is successful.

NULLIf call is not successful.

is_bad_dest()

badplace *is_bad_dest(job *pjob, char *dest)

Args:
pjob The job to check for the destination.
dest The destination to look for.

Returns

pointer
If dest is found.

NULLIf dest is not found.

The list of badplace structures attached to the job is searched for one with the specified desti-
nation. If found a pointer to it is returned, otherwise a null pointer is returned.

default_router()

int default_router(job *pjob, pbs_queue *pque, long retry)

Args:
pjob pointer to job to route.
pque pointer to queue in which the job resides.
retry next time to retry the route.

Returns:
0 if job is being routed or is still ok in the queue, non-zero if cannot be and should be
aborted.

An attempt is made to route the job to each destination listed in order in the queue attribute
QR_ATR_RouteDestin. Upon having attempted the last destination, if ji_retryok in the job
structure is false, no destination would accept the job, that is logged and [PBSE_ROUTEREJ] is
returned. If ji_retryok is true, at least one destination can be retried at retry time, zero is re-
turned.

Foreach destination, is_bad_dest() is called to check if the current destination is listed in the
job structure as a “bad” destination, one which has permanently rejected the job. If bad, the

5-126 Chapt Draft Revision: 2.3

PBS IDS Batch Server

next destination is tried. The function svr_movejob() is invoked to attempt the move (route)
the job to the current trial destination. If it returns -1, the current destination is added to
the bad list by calling add_dest(). If the move succeeded, or is underway (move to a different
server), we return zero. If svr_movejob() returns 1, the move failed, but may be retried, so
ji_retryok is set true and the next destination is tried.

job_route()

int job_route(job *job)

Args:
job The job which is to be routed.

Returns:
0 If call is successful. Note, the job may still be "owned" by the local server.
non-zero

error number if call failed.

Check the job state. If the job is in state {JOB_STATE_TRANSIT}, ignore it, it is already routing.
If the job is in {JOB_STATE_HELD} and attribute QR_ATR_RouteHeld is not true or the job is in
State {JOB_STATE_WAITING} and attribute QR_ATR_RouteWaiting is not true, then we will ignore
the job shortly. If the job is in any other state other than the above or {JOB_STATE_QUEUED}, a
record is added to the log and the job is ignored.

Next we check the queue in which the job resides. It must be started, QA_ATR_Started true,
and if the queue attribute QA_ATR_MaxRun is set the number of jobs in the queue in state
{JOB_STATE_TRANSIT} must be less than that specified in the attribute.

If the job has been laying around in the queue for longer than the allowable life time,
QR_ATR_RouteLifeTime, return [PBSE_ROUTEEXPD]. The retry time is calculated to be the cur-
rent time plus either the value of the queue attribute QR_ATR_RouteRetryTime if set, or the de-
fault retry time {PBS_NET_RETRY_TIME}. If the job is to be ignore because of its state we do that
now (after the test for life time).

We are now in the main routing loop. If the job has been through all the possible destina-
tions without being routed we check the retry flag, ji_retryok. If it is cleared, all destinations
rejected the job for reasons which seem permanent, [PBSE_ROUTEREJ] is returned. If any
destination rejected the job for “temporary” reasons, unable to contact the server, or the
gueue was not enabled, the route retry time for the job, ji_un.ji_routet.ji_rteretry, is set to the
retry time and zero is returned.

Otherwise, we have more destinations to try. The next one is selected and is_bad_dest()
called to determine if it is on the “bad” list. If not, svr_movejob() is called to attempt to route
the job. If svr_movejob returns an indication that the destination gave a permanent rejec-
tion, the destination is added to the bad list by add_dest() . If the rejection is temporary, the
retry flag, ji_retryok, is set and we go on to the next candidate destination. Otherwise, the
route is in progress or has be completed (if local) and so zero is returned.

gueue_route()

void queue_route(queue *que)

Chapt Draft Revision: 2.3 5-127

Batch Server PBS IDS

Args:
gque pointer to a routing queue.

For each job whose route retry time, ji_un.ji_routet.ji_rteretry, has been reached, we call
job_route(). If job_route() returns [PBSE_ROUTEREJ], rejected by all destinations, or
[PBSE_ROUTEEXPD], life in queue expired, the job is aborted.

5.3.12.2. svr_movejob.c

The major functions in file src/server/svr_movejob.c which make up the Job Mover are de-
scribed below.

svr_movejob()

int svr_movejob(job *job, char *destination, batch_request *request)

Args:
job The job which is to be routed.
destination
The destination queue where the job will be sent.
request
The batch request from the client or NULL if this is from route.
Returns:
0 If move is complete. The job is now owned by the destination queue.

-1 Ifcall failed. The job has not moved.
1 A “temporary” failure. The call failed but may be tried again.

The move is deferred (in progress). A child has been created to process it and will
return sometime in the future.

Copy the destination into the job structure. If the destination is local to this server, call
local_move(), else call net_move().

local_move()

int local_move(job *job, batch_request *request)

Args:
job The job which is to be routed.

request
The batch request from the client or NULL if this is from route.

Returns:
0 If route is complete. The job is now owned by the destination queue.
-1 If call failed. The job has not moved.
1 The move failed but may be retried.

Search for the destination queue, if it does not exist return -1. If the queue is not enabled,
return 1. If the job is not being move at the specific request of the administrator, then check
the resource requirements of the job against the queue limits via The function svr_chkque()

5-128 Chapt Draft Revision: 2.3

PBS IDS Batch Server

is called to check the destination queue state and the resource requirements of the job
against the queue limits. The type of move (route, non-privileged user move, privileged
move) determines what items are enforced in svr_chkque(). If the job requirements fit the
destination queue limits, unlink job from current queue via svr_dequejob(), reset the queue
rank job attribute JOB_ATR_grank to a new value (job goes to the end of the queue), and link
into queue via svr_enquejob() .

net_move()

int net_move(job *job, batch_request *request)

Args:
job The job which is to be moved, or routed.

request
The batch request from the client or NULL if this is from route.

Returns:

2 If no error occurred. The job is in the state JOB_STATE_TRANSIT. A child has
been created which will return with a status indicating success or failure.

-1 If call failed. The job has not changed state.
Returns from child:
0 If route is complete. The job is now owned by the destination queue.
1 If call failed. The job has not moved.
2 The move failed but may be retried.

This function serves double duty. It is used to route a job (from a routing queue, see
job_route()), or to move a job (a move request) to another batch server.

The server name (host name) and service port is determined by passing the destination sub-
string following a “@” character to parse_servername(). The host address is obtained from
get_hostaddr(). The job state is set to {JOB_STATE_TRANSIT}. This information, along with the
type of move and post child processing function, is passed to send_job() to actually fork a
child to send the job.

If the batch_request pointer is not null, the move is the direct result of a Move Job batch re-
guest. The move_type parameter is set to {MOVE_TYPE_Move}, the post child processing func-
tion desired is post_movejob(), and the data pointer to place in the work task points to the re-
guest. Otherwise, the move results from a route operation. The move_type parameter is set
to {MOVE_TYPE_Route}, the post child function is post_routejob(), and the data pointer is set to
NULL (after all, there is no request to which to point).

send_job()

int send_job(job *pjob, pbs_net_t address, int port, int move_type,
void (*post_func)(struct work_task *),
void *data_pointer)

Args:
pjob pointer to the job to be sent.

Chapt Draft Revision: 2.3 5-129

Batch Server PBS IDS

address
of the destination server (host).

port number for the service (server or MOM).

move_type
the type of send: move, route, or execute (to MOM).

post_func
address of a function to invoke after completion of the move/route.

data_pointer
pointer to the data of interest to the post child function, saved in the work task.

Returns:
2 if the child was successfully created (see svr_movejob).
-1 if error, pbs_errno set to the error number.

The death-of-child signal is blocked until the work task is set and the child is underway. A
child process is forked to do the queue job request sequence.

The parent creates a work task to be dispatched on death of the child. The job pointer is
passed to set_task() to be placed in wt_parml. The data_pointer item, either NULL or a point-
er to the batch request is inserted into wt_parm2. The post processing routine had better ex-
pect what is in wt_parm2. The dispatched function depends on the type of move. It is passed
in as post_func, and is typically:

post_routejob() if the move type is route.

post_movejob() if the move type is move.

post_to_mom() if the move type is execute.
Now, unblock the death-of-child signals and return 2.

The created child process, the router performs the following actions. It sets up a signal
catcher to insure an error return. The job attributes are encoded into a list of svrattrl struc-
tures. The encoding mode is according to the destination, {ATR_ENCODE_MOM} if the job is be-
ing sent to MOM, move type is {MOVE_TYPE_Exec}; and {ATR_ENCODE_SVR} if the job is being
routed to another server, move type is {MOVE_TYPE_Route}. The svrattrl structures contain the
attrl structures required by the API routines in libpbs.a. The attrl sub-structures are correct-
ly linked by calling attrl_fixlink(). The path name of the job’s script file is set up based on
the file prefix information in ji_gs.ji_fileprefix.

The following steps are tried several times:

If this is not the first time around the loop, there must have been an error the prior
time. Disconnect from the server. Call should_retry route() to determine if we should
retry, if not exit with a status of 1.

Connect to the destination server by calling svr_connect(). If the connection fails for a
reason marked by svr_connect as {PBS_NET_RC_FATAL}, the failure is recorded in the log
and and exit status of one (1) indicates the permanent failure. If the failure is not per-
manent, continue with the next cycle around the loop.

If the job is already in substate {JOB_SUBSTATE_TRNOUTCM}, we are attempting to com-
plete an interrupted job send operation. We skip steps up to sending the “ready to com-
mit”.

Call the API routine _pbs_queuejob() to send the job attributes. If the job has a check-
point file at MOM, JOB_SVFLG_CHKPT is set and if the move is a send to MOM, then
skip steps up to the commit step.

Call the API routine _pbs_jscript() to send the script file.

If the move type is to MOM and the job has already been run once, {JOB_SVFLG_HASRUN}
set, then copy over the job's standard output, error and (if exists) migratable checkpoint
file.

5-130 Chapt Draft Revision: 2.3

PBS IDS Batch Server

Now block all signals so the final stages of the transfer cannot be stopped by the server.
Send the ready to commit by calling the API routine _pbs_rdytocmt(). If it is rejected,
unblock signals and continue the next cycle around the loop.

The receiving server now has everything and except when sending to MOM for execu-
tion, we purge our copy to prevent duplicate jobs. If the move type is not type execute,
delete the job files by calling job_purge(). Send the commit, call _pbs_commit().

Disconnect from the destination server, and indicate a successful move with an exit of 0.

post_routejob()

void post_routejob(struct work_task *pwt)

Args:
pwt A pointer to the work task entry.

This function is invoked from a work_task entry when the job router process terminates.
The work_task member wt_parm1 points to the job being routed and wt_aux is set to the exit
status of the router. If the router exit status shows the job was sent ok:

- if files where already staged-in, call remove_stagein(),

- delete the job by calling job_purge() and return 0.

If the exit status indicates a permanent failure, its either a “bad” destination or the router
caught a signal. If the job substate is set to {JOB_SUBSTATE_ABORT}, the server has received a
request to delete the job, so stop the routing; another work task will complete the delete pro-
cess. Otherwise the destination is bad, mark it not to be tried again for this job, add_dest().
On either a permanent or temporary failure, attempt to route to the next destination by re-
calling job_route() . If job_route returns any error abort the job.

post_movejob()

void post_movejob(struct work_task *pwt)

Args:
pwt pointer to the work task entry.

This function is invoked from a work task entry when the job router process has terminated.
The route was the result of a Move Job request. The pointer to the batch_request structure
for the move request is in wt_parml1. The exit status of the child process which attempted the
move (route) is in wt_aux.

When the child process which was forked to perform a route operation in response to a Move
Job batch request terminates, this function is called by the work task dispatch routine.

A reply is returned to the client based on the exit status of the routing child process. If the
status is zero, there were no errors and the job has been routed to a new server. If files had
been staged-in for the job, they are deleted by calling remove_stagein(). The job is purged
and a success reply is returned to the client.

If errors occurred, the job still exists on this server. An error reply is returned to the client
and the job is requeued by setting the state to the value returned by svr_evaljobstate() and
calling svr_setjobstate() .

Chapt Draft Revision: 2.3 5-131

Batch Server PBS IDS

should_retry_route()

static int should_retry route(int error)

Args:

error to be examined to determine retry or not retry.
Returns:

1 if the route should be retried.

-1 if the route should not be retried.

this function looks at the error passed as a parameter and determines if the route should be
retried.

5.3.13. Header Files

5.3.13.1. attribute.h

The structures, symbols, and access function prototypes needed to declare and define at-
tributes are located in this header file.

Attributes are represented in one or both of two forms, external and internal. When an at-
tribute is moving external to the server, either to the network or to disk (for saving), it is rep-
resented in the external form, a svrattrl structure. This structure holds the attribute name
as a string. If the attribute is a resource type, the resource name is encoded as a string, else
it is null. The value of the attribute (or resource) is encoded into a third string. The struc-
ture contains a length field for all three strings and a field which gives the over all size of the
svrattrl structure and the appended strings.

Internally, attributes exist in two separate structures. The attribute type is defined by a defi-
nition structure, attribute_def, which contains the name of the attribute, flags, and pointers
to the functions used to access the value. This info is "hard coded". There is one "attribute
definition" per (attribute name, parent object type) pair.

The attribute value is contained in another structure, attribute, which contains the value
with in a union of the possible value types. The possible types are:

ATR_TYPE_LONG
the data is arithmetic or boolean and fits in a C long type internal to the structure.

ATR_TYPE_CHAR
the data is a single character and is maintained internal to the structure.

ATR_TYPE_STR
the data is null terminated sting. Storage for the data is on the heap and a pointer to it
is in the attribute structure.
ATR_TYPE_ARST
the data is an array of strings. The value in the attribute structure points to a ar-
ray_strings structure on the heap. This structure has an array of pointers to each
string. The strings are maintained on the heap in contiguous storage.
ATR_TYPE_SIZE
the data is a size. It is maintained as a long integer and two flag sets which specify
K,M,G,T and bytes or words.

ATR_TYPE_RESC
the data is list of resources, see resource.h. Each resource is on the heap.

5-132 Chapt Draft Revision: 2.3

PBS IDS Batch Server

ATR_TYPE_LIST
the data is list of other structures. Each member of the list is on the heap.

ATR_TYPE_ACL
the data is an Access Control List. It is maintained as an array of strings,
ATR_TYPE_ARST, but marked differently to aid in the saving to/recovery from disk.

Privilege to access an attribute is defined by the bit wise "inclusive or" of the following as set
in the attribute definition:

ATR_DFLAG_USRD
readable (status can be obtained) by a non-privileged user client.

ATR_DFLAG_USWR
writtable (can be set) by a non-privileged user client.

ATR_DFLAG_OURD
Reserved.

ATR_DFLAG_OUWR
Reserved.

ATR_DFLAG_OPRD
readable by a client with operator privilege.

ATR_DFLAG_OPWR
writtable by a client with operator privilege.

ATR_DFLAG_MGRD
readable by a client with manager privilege.

ATR_DFLAG_MGWR
writtable by a client with manager privilege.

ATR_DFLAG_SvRD
readable (will be sent to) another server or the scheduler.

ATR_DFLAG_SVWR
writtable (can be set by) another server or the scheduler.

ATR_DFLAG_MOM
Sent to MOM with the job when it is to be run. Those and only those attributes (and re-
sources) so marked are sent to MOM. Applies to Job attribute/resources only.
The following bit wise flags are used by the Server, they are set in the attribute definition
structure:

ATR_DFLAG_ALTRUN
the job attribute or resource can be altered while the job is running.

ATR_DFLAG_NOSTAT
the attribute is returned to a client only on specific request for this attribute. Can be
used to shorten the list seen with a “gstat -f”.

ATR_DFLAG_SELEQ
in a select operation, see gselect(1), the only legal operations are equal (.eq.) and not-
equal (.ne).

ATR_DFLAG_RASSN
the job resource entry is to summed on the the server’s resources_used attribute when
the job is placed into execution, and subtracted when the job terminates.

ATR_DFLAG_RMOMIG
currently not used.

The following flags are maintained by the server in the attribute (value) structure:

ATR_VFLAG_SET
the attribute/resource is set, i.e. the value has meaning.

Chapt Draft Revision: 2.3 5-133

Batch Server PBS IDS

ATR_VFLAG_MODIFY
the attribute/resource has been modified either by a decode or set operation.

ATR_VFLAG_DEFLT
the value is set to a system defined default value. The value is neither saved nor sent
to another server as the default may be different.

5.3.13.2. resource.h

This header file contains the definitions and declarations for resources. As discussed earlier,
resources are a special case of an attribute, a linked list of attribute values headed in an at-
tribute such as resource_list. Resources use similiar structures as attributes. Certain types,
type related functions, and flags may differ between the two.

Within the resource structure, the value is contained in an attribute substructure, this is
done so the various attribute decode and encode routines can be "reused".

Unlike "attributes" which are typically identical between servers within an administrative
domain, resources vary between systems. Hence, the resource instance has a pointer to the
resource definition rather than depending on a predefined index. Three routines are declared
within the header file that are useful in finding or adding resources:

find_resc_def()
returns a pointer to the resource definition structure for a given resource name.

find_resc_entry()
returns a pointer to a resource entry in a resource list which points to the the supplied
resource definition. Null is returned if no such entry exists within the list.

add_resource_entry()
will add an unset entry to the list.

All the flags and permission bits discussed under attribute.h apply to resources.

5.3.13.3. batch_request.h

This file contains the giant union into which all batch request are converted. Where possible,
the fields are fixed length so the structure can be malloc-ed in one piece.

5.3.13.4. credential.h

This file contains the structures and constants used in producing a PBS authentication cre-
dential.

5.3.13.5. job.h

This header file contains the structure definition used by the Server and MOM to hold the job
information. Note that there two parts to the job structure: the interior portion, sub-struc-
ture jobfix, contains the fixed length data for each job that is saved to disk; the remainder of
the structure contains data that can be reconstructed and need not be saved.

A note on the Job State and Substate, the State is a gross indication of the job state which is
returned to the user. The Substate is the actual state of the “job state engine.”

5.3.13.6. list_link.h

This file contains the structure definitions, function prototypes, and access macros for man-
aging a doubly linked list. The structures defined are:
list_link
This structure contains the forward and backward pointer for each list entry. It is typi-
cally placed as the first sub-structure of the structure defining the list entry.
typedef struct list_link {
struct list_link *Il_prior;

5-134 Chapt Draft Revision: 2.3

PBS IDS Batch Server

struct list_link *ll_next;
void *[|_struct;
} list_link;

list_head

A list_head is identical to a link_link structure with member Il_struct set to NULL.
The macros CLEAR_LINK and CLEAR_HEAD are defined in this header file. The macros
GET_NEXT and GET_PRIOR as also defined here. They expand either to in-line code or a
function call depending on the setting of the symbol {NDEBUG}.

5.3.14. Site Modifiable Files

The files and functions described in this section provide a site the ability to customize PBS to
meet special requirements. The supplied version of the ¢ source files may be found in the
src/lib/Libsite directory and are linked via the libsite.a library. How to modify these files is
discussed in the IDS chapter on libsite.a. In addition, there are a set of header files, loaded
into the target tree include directory which provide the capability to add new attributes.

5.3.14.1. site_allow _u.c
The file src/lib/Libsite/site_allow_u.c contains the following function:

site_allow_u()

int site_allow_u(char *user, char *host)

Args:

user The name of the user making a connection to the server.

host The name of the host from which the user is making a connection.
Returns:

zero If the user is to be allowed access, zero (0) is returned. This is the default.

non-zero
If the user is to be denied access, a non-zero error code, typically [PBSE_PERM]
should be returned.

The provided version always returns zero. A site may add code to perform whatever checks
it wishes. Realize however, that this will be called on every new connection. A procedure
that takes time will impact performance.

5.3.14.2. site_alt _rte.c
The file src/lib/Libsite/site_alt_rte.c contains the following function:

site_alt_router()

int site_alt_router(job *pjob, pbs_queue *pque, long retry)

Args:

Chapt Draft Revision: 2.3 5-135

Batch Server PBS IDS

pjob pointer to job to be routed.
pque pointer to queue in which the job currently resides.
retry next route retry time.

Returns:

zero if job is still alive (in queue or being routed), an PBS error code, [PBSE_ROUTEREJ],

if the job has been rejected by all; the job will be killed.

As provided, this routine just calls the default router function, default_router(). A site may
replace this function and “activate” it for a queue by setting the queue attribute QR_ATR_AI-
tRouter (alt_router) to true. Please study the default router, default_router() to understand

the required procedures which must be performed:

Destinations
are listed in the queue attribute QR_ATR_RouteDestin.

svr_movejob()
should be used to perform the route. It will return:

-1 if the destination rejected the job for a reason which is considered permanent; the

destination should not be retried.

0 The route succeeded. This implies the route was to a local queue, see next return

entry.

2 The route to a remote queue is under way (sending the job). The job will have been
placed in Transiting state. When the sending completes, either (a) the job will have
been moved and deleted locally, (b) the move failed and the destination added to the
bad list, or (c) it can be retired, job requeued in route queue in a state other than

Transiting.
1 The route (local) failed, but can be retried later.

5.3.14.3. site_check u.c

The file src/lib/Libsite/site_check_u.c contains the following functions:

site_acl_check()

int site_acl_check(job *pjob, pbs_queue *pque)

Args:
pjob pointer to the job structure.
pque pointer to the candidate queue

Returns:
0 if job is allowed into the queue
non-zero

if job is not allowed into the queue

This routine determines if a job is allowed into a certain queue.

site_check_user_map()

int site_check_user_map(job *pjob, char *luser)

5-136

Chapt Draft Revision: 2.3

PBS IDS Batch Server

Args:
pjob pointer to the job structure.
luser the local user name.
Returns:
0 if user allowed to execute as login described by password entry.
-1 if user not allowed.

This routine determines if the job owner is privileged to execute as the user described by a
password entry. The local user name is the login name selected by geteusernam() from the
user-list attribute of the job in question.

The PBS default distribution module determines privilege by:

1. If the submitting host is the current host and the job owner name is the same as the lo-
gin name selected, the privilege is granted.

2. If the hosts are different, privilege is granted by calling ruserok(3N).

This is not strictly POSIX conforming as POSIX does not define ruserok(). Howev-
er until 1003.22 actually has a standard for distributed security...

5.3.14.4. site_map_user.c
The file src/lib/Libsite/site_map_user.c contains the following function:

site_map_user()

char *site_map_user(char *user, char *host)

Args:
user The user name on the specified host.
host The host name.

Returns:

pointer
to to the mapped user name.

This function provides a place holder for a mapping of a user name on one system to the user
name on a common reference system. Given a user name and a host name, this routine will
return a “mapped” or “common” user name. It is used for mapping in two situations:

- Authorization of requests — A site may run with users having different login names on
different systems. If a user submits a job from system A and wishes to status it from
system B where he has a different name, there must be some means to map the two
users to a common name.

- Mapping job owner to execution user name where the submitting (gsub) host and the
execution host have different name spaces for users.

The routine as supplied assumes a common name across all systems. Therefore it just re-
turns the user name as given.

This function is called from the routine svr_chk_owner() in pbs_server which is used to deter-
mine if the requestor is the job owner, and from geteusernam() to determine the local execu-
tion name.

A site is free to modify this routine to map as required. No input data should be modified. If
a different name is to be returned, it should be saved in a static character array of size
{PBS_MAXUSER} as defined in pbs_ifl.h.

Chapt Draft Revision: 2.3 5-137

Batch Server PBS IDS

5.3.14.5. Adding Attributes to PBS

A site can add attributes to the server, to queues, or to jobs. Three sets of header files are
provided for this purpose. The files are copied from empty (except for comments) template
files (*.ht) in the src/include directory to the object (target) include directory when the target
tree is set up. They are named site_* attr_*.h . The first asterisk stands for one of
svr (server), que (queue), or job ; and the second asterisk stands for enum or def . An addi-
tional two files, named site_gmgr_*_print.h are provided for including the server and
gueue attributes in the output of the gmgr “print” sub-command.

The .ht files in the source tree should not be modified. Any modifications there may be lost
with the next release of PBS. The .h files placed in the target/include directory will not be
over written.

Files:
site_svr_attr_def.h
site_svr_attr_enum.h
site_gmgr_svr_print.h

Together, these files provide the ability to add attributes to the server. The attribute itself is
defined in site_svr_attr_def.h and an enumerated index is added in site_svr_attr_enum.h.
Attribute is defined by adding structures of the following form in site_svr_attr_def.h:
{ "attribute_name",

decode_*,

encode_*,

set_*,

comp_*,

free_*,

action_*,

perm_flags,

ATR_TYPE_#,

PARENT_TYPE_SERVER

2

The quote marks and commas are required as shown. The asterisk (*) and pound sign (#) are
replaced with the data type as found in attribute.h. The common data types are:

Data Type * # free *
Boolean b LONG free _null
Long int | LONG free null

A character c CHAR free _null
String str STR free_str
Array of strings arst ARST free arst
Size size SIZE free_null

Within a single attribute definition, the routines and data types must agree.

The enumeration with in site_svr enum.h can be any name, but a name of the form:
SVR_SITE_ATR_name is recommend to prevent name space conflicts. For each attribute ele-
ment added (one set of stuff with in the braces) in site_svr_attr_def.h, there MUST BE one
enumeration lable added in site_svr_attr enum.h

The attribute names, as given in the site_svr_attr_def.h entries, may be added in site_gm-
gr_svr_print.h. If added, these attributes will be included in the output of a print server
gsub sub-command. The format is:

"name_one",

"name_two",

5-138 Chapt Draft Revision: 2.3

PBS IDS Batch Server

For example, to add two new attributes named foo (a boolean) and bar (a string), the follow-
ing are added:

In site_svr_attr_def.h
{ "foo",

decode_b,
encode_b,
set_b,
comp_b,
free_null,
NULL_FUNC,
NO_USER_SET,
ATR_TYPE_LONG,
PARENT_TYPE_SERVER

{ "bar",
decode_str,
encode_str,
set_str,
comp_str,
free_str,
NULL_FUNC,
NO_USER_SET,
ATR_TYPE_STR,
PARENT_TYPE_SERVER

2

In site_svr_attr_enum.h:
SVR_SITE_ATR_foo,
SVR_SITE_ATR bar,

And in site_gmgr_svr_print.h:
"foo",
"bar",

Files:
site_que_attr_def.h
site_que_attr_enum.h
site_gmgr_que_print.h

The same information as given for the server attributes apply to defining queue attributes.
The exception (there has to be at least one, right) is the parent type can be PAR-
ENT_TYPE_QUE_ALLfor an attributes that applies to both execution and routing queues,
PARENT_TYPE_QUE_EX&r execution queues only, or PARENT_TYPE_QUE_RTbr routing
gueues only.

Files:
site_job_attr_def.h
site_job_attr_enum.h

Again the same information holds. The parent type is PARENT_TYPE_JOB There is no gmgr
header file for job attributes.

Chapt Draft Revision: 2.3 5-139

Batch Server PBS IDS

[This page is blank.]

5-140 Chapt Draft Revision: 2.3

PBS IDS Batch Server

6. Job Scheduler

The Job Scheduler is a daemon that is run in conjunction with the PBS server. The Job
Scheduler determines which job(s) to run, suspend, hold, or terminate based on a set site-
specific policy.

PBS provides several implementations of a scheduler. A site may choose to use the Yacc/Lex
based procedural language scheduler known as the BASL scheduler, the Tcl based scheduler,
or to develop their own scheduler using the C framework which is provided.

6.1. The BASL Scheduler

The BASL language is a C-like procedural language. It provides a number of constructs and
predefined functions that facilitate dealing with scheduling tasks. The idea behind BASL is
that a scheduler writer writes a very simple program in BASL, compiles it, and then runs it.
BASL is a high level language optimized for scheduler development. This language allows to
user to write a simple or intermediate complexity in about 30-100 lines of code.

6.1.1. BASL Scheduler Overview

BASL consists of three major parts: (1) BASL language grammar, (2) Pseudo-compiler, and a
(3) set of assist functions or helper functions. The idea behind BASL(2) is that a scheduler
writer writes the main part of the scheduling code (sched_main()) in a pseudo-C language
called BASL, then translates the code into C via basl2c, and finally, integrates the code with
the PBS libraries by using a C compiler to produce the actual scheduler executable:
pbs_sched. sched_main() will be called after each scheduling iteration and when the com-
mand received from the server is not one of: SCH _QUIT, SCH_ERROR, SCHED_NULL,
SCHED_RULESET, SCHED_CONFIGURE, SCHED_RULESET.

The resulting pbs_sched will be able to accept the following arguments in the commandline:
[-L logfile] [-S port] [-d home] [-p print_file] [-a alarm] [-c configfile]

where -S is for specifying the scheduler port to use when talking to the local server, and
alarm is for setting the time in seconds to wait for a schedule run to finish (default: 180s).
Just like the other PBS schedulers, this BASL-written scheduler takes care of setting up lo-
cal socket to communicate with the server running on the same machine, cd-ing to the priv
directory, opening log files, opening configuration file (if any), setting up locks, forking the
child to become a daemon, initializing a scheduling cycle (i.e. get node attributes that are
static in nature), setting up the signal handlers, and finally sitting on a loop waiting for a
scheduling command from the server. When an appropriate scheduling command is received,
sched_main() (whose body was initially written in BASL), is called. Another view of BASL
scheduling system is shown in figure 6-2.

Chapt Draft Revision: 2.3 6-1

SCHEDULER PBS IDS

BASL program
(sched_main)

Assist (Helper)

Functions

Pseudo-Compiler

Lexer

: Symbol
Parser -
Table
Semantic Analyzer | =——
Code Generator |~
r
C
pbs_sched.c Compiler/Linker

PBS
. a pbs_sched
Libraries

Figure 6 - 3 : BASL Software Architecture

6.1.2. Grammar

The Basl grammar subsystem consists of 5 parts: (1) Lexer, (2) Parser, (3) Symbol Table, (4)
Semantic analyzer, and (5) Code Generator. Lexer is in charge of scanning an input file for
valid tokens (input strings). Parser takes care of putting/combining the tokens together in a
usable way. Semantic analyzer deals with checking to make sure that variables and opera-
tors are used in a consistent way. Symbol table holds information about matched tokens.
Code generator is in charge of translating BASL statements into C statements.

6-2 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Lex/yacc is used to specify and generate the code for the Lexer and Parser. The source codes
involved in the grammar are found in the subdirectory ParLex.

6.1.2.1. Lexer

The files involved with the Lexer subsystem are Lexer.fl, ParLexGlob.h, Lexer.h, Lexer.c.
Lexer.fl is the lex specification file that contains a set of patterns which lex match against the
input. ParLexGlob.h, Lexer.h and Lexer.c contain various data structures and functions that
assist lex in the scanning for input.

6.1.2.1.1. File: Lexer.fl

The tokens that will be matched by the BASL lexer are: sched_main, Void, Int, Float, Day-
ofweek, DateTime, String, Server, Que, Job, CNode, Size, Set, Range, while, if, else, return,
print, for, foreach, in, switch, case, break, continue, exit, Fun, EQ, NEQ, LT, LE, GT, GE,
MIN, MAX, AND, OR, default, MON, TUE, WED, THU, FRI, SAT, SUN, ++, --, [+-]?[0-9]+,
[+-1?[0-9]+[kmgtpKMGTP]?[bwBW], OP_EQ, OP_NEQ, OP_LE, OP_LT, OP_GE, OP_GT,
OP_MAX, OP_MIN, SYNCRUN, ASYNCRUN, DELETE, RERUN, HOLD, RELEASE, SIG-
NAL, MODIFYATTR, MODIFYRES, SUCCESS, FAIL, SERVER_ACTIVE, SERVER_IDLE,
SERVER_SCHED, SERVER_TERM, SERVER_TERMDELAY, QTYPE_E, QTYPE_R,
SCHED_DISABLED, SCHED_ENABLED, FALSE, TRUE, TRANSIT, QUEUED, HELD,
WAITING, RUNNING, EXITING, CNODE_OFFLINE, CNODE_DOWN, CNODE_FREE,
CNODE_RESERVE, CNODE_INUSE_EXCLUSIVE, CNODE_INUSE_SHARED, CN-
ODE_TIMESHARED, CNODE_CLUSTER, CNODE_UNKNOWN, NULLSTR, NOSERVER,
NOQUE, NOJOB, NOCNODE, EMPTYSETSERVER, EMPTYSETQUE, EMPTYSETJOB,
EMPTYSETCNODE, ASC, DESC [+-]?[0-9]+[.][0-9]*, ["][""0*["], [a-zA-Z]+[a-zA-Z0-9_]*, //.*,
0*, [1+,..

6.1.2.1.2. File: ParLexGlob.h

This contains the following structure to hold information about each of the tokens that the
lexer has recognized during scanning for input:

struct MYTOK

{
char lexeme[LEXEMSZ];
int line;
int len;
int type;
int varFlag;
¥

lexeme contains the matched string, line is where in the input file the matched string was
found, len is the string length of the matched token, type is some classification assigned to the
token. This can be: {UNKNOWN, INTTYPE, FLOATTYPE, STRINGTYPE, STATUSTYPE, DAYOFWEEKTYPE,
SERVERTYPE, QUETYPE, JOBTYPE, SIZETYPE, INTRANGETYPE, FLOATRANGETYPE, DAYOFWEEKRANGETYPE,
SERVERSETTYPE, QUESETTYPE, JOBSETTYPE, SIZESETTYPE, PARAMTYPE, FUNTYPE, SERVERSTATETYPE,
QUESTATETYPE, JOBSTATETYPE, SIZESTATETYPE, DATETIMETYPE, CNODETYPE, VOIDTYPE, DATE-
TIMERANGETYPE, CNODESETTYPE, SIZERANGETYPE, GENERICTYPE, KEYWORDTYPE.} and varFlag gives
some indication on whether or not the matched token is indeed a constant, variable, or some
other thing.

6.1.2.1.3. File: Lexer.c

Chapt Draft Revision: 2.3 6-3

SCHEDULER PBS IDS

Lexerlnit

void Lexerlnit(void)

Initializes the lexer by simply writing a simple startup message into the lexer stdout stream.

LexerTokenPut

void LexerTokenPut(char *lexem, int lin, int len, int typ, int varFlag)

This just fills up the MYTOK structure with values given in the parameter list.

LexerPrintToken

void LexerPrintToken(int linenum, char *yytext, int yylen)

if there’s a lexer stdout stream, and the lexer debug flag is turned on, then the values to the
given parameters are printed.

LexerPutDF

void LexerPutDF(int df)

Sets the lexer debug flag to df.

LexerCondPrint

void LexerCondPrint(char *str)

Prints str if there’s a lexer stdout stream and the lexer debug flag is turned on.

LexerErr

void LexerErr(int e)

If there’s a lexer stdout stream, print the message string associated with the error number
given by e. This will issue an exit to the program.

6-4 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

6.1.2.2. Parser

The files involved with the Parser subsystem are Parser.b, Parser.h, and Parser.c. Parser.b is
the yacc specification file describing valid "sentences" in the BASL grammar. Parser.h and
Parser.c contain various data structures and functions that assist yacc in the parsing for cor-
rect grammar.

6.1.2.2.1. File: Parser.b

The following is the syntax definition for the Batch Scheduler Language (BASL) used by the
PL (procedural language) job scheduler program. Some notes concerning the semantics ana-
lyzer and code generator are also added.

prog::= defsl globAssign "sched_main" blockWithDefs

blockWithDefs::= '{’ defs stats '}’

NOTE:
A variable’'s scope, which determines in what functions the variable has been de-
fined/declared, is kept track via the ParserVarScope global variable. Whenever a
function block is entered, ParserVarScope is incremented by 1.

block::="'{ stats '} /* no definition */

defsl:= ” [* empty */
| defsl defFun
| defsl def
NOTE:
Any global variable declared (ParserLevel == 0) will get a "static" keyword at-

tached to it during BASL-to-C translation so that the variable will only be accessi-
ble from the local sched_main file, minimizing the chance of name collision when
the translated code is compiled and linked with the PBS libraries.

globAssign::=" [* empty */
| globAssign statAssign
defFun::="Int" identifier ‘(" params ")’ blockWithDefs
"Float" identifier ‘(" params ’)’ blockWithDefs
"Void" identifier '(" params ’)’ blockWithDefs

"Dayofweek" identifier ("’ params ")’ blockWithDefs
"DateTime" identifier '(" params ’)’ blockWithDefs

"String" identifier ‘(" params)’ blockWithDefs
"Size" identifier ‘(" params ')’ blockWithDefs
"Server" identifier ‘(" params ’)’ blockWithDefs
"Job" identifier ‘(" params ")’ blockWithDefs
"CNode" identifier '(" params ’)’ blockWithDefs

"Set Server" identifier '(" params ")’ blockWithDefs

"Set Que" identifier ‘(" params ')’ blockWithDefs

"Set Job" identifier ‘(" params ")’ blockWithDefs

"Set CNode" identifier (" params’)’ blockWithDefs
NOTE: In the definition of functions, the identifier (function name) must be unique.
On the generated code, identifier will be prefixed with "basl_" to avoid possible name
conflict when the code is compiled and linked with other libraries like PBS.

I
I
I
I
I
I
I
| "Que" identifier '(" params ’)’ blockWithDefs
I
I
I
I
I
I

Chapt Draft Revision: 2.3 6-5

SCHEDULER

params:i=

paramDeclare::=

PBS IDS

/* empty */

| paramDeclare moreParams

moreParams::= "

"Int" identifier

"Float" identifier

"Void" identifier
"Dayofweek" identifier
"DateTime" identifier
"String" identifier

"Size" identifier

"Server" identifier

"Que" identifier

"Job" identifier

"CNode" identifier

"Set Server" identifier
"Set Que" identifier

"Set Job" identifier

"Set CNode" identifier
"Range Int" identifier
"Range Float" identifier
"Range Dayofweek" identifier
"Range DateTime" identifier
"Range Size" identifier
"Fun Int" identifier

"Fun Float" identifier

"Fun Void" identifier

"Fun Dayofweek" identifier
"Fun DateTime" identifier
"Fun String" identifier
"Fun Size" identifier

"Fun Server" identifier
"Fun Que" identifier

"Fun Job" identifier

"Fun CNode" identifier
"Fun Set Server" identifier
"Fun Set Que" identifier
"Fun Set Job" identifier
"Fun Set CNode" identifier

| ', paramDeclare moreParams

NOTE:
The identifiers that appear in the list of parameters must be unique.

defs::="

def::=

[* empty */

defs def

"Int" identifier ’;’

"Float" identifier '’
"Dayofweek" identifier ’;’
"DateTime" identifier ;'
"String" identifier ’;’
"Size" identifier ’;’
"Server" identifier ’;’

Chapt Draft Revision: 2.3

"Que" identifier ’;’

"Job" identifier ’;’
"CNode" identifier *;’
"Set Server" identifier *;’
"Set Que" identifier *;’

"Set CNode" identifier ’;’
"Range Int" identifier ’;’
"Range Float" identifier '}’

PBS IDS

"Range Dayofweek" identifier ’;’
"Range DateTime" identifier '}’

I
I
I
I
I
| "Set Job" identifier ’;’
I
I
I
I
I
I

"Range Size" identifier ’;’
NOTE:

SCHEDULER

The identifier used must be unique; no other identifier in the same level of the
same name must have been declared.

During code generation, the following translations occur:

Int identifier;

Float identifier;

Dayofweek identifier;
DateTime identifier;

String identifier;

Size identifier;

Server identifier;

Que identifier;

Job identifier;

CNode identifier;

Set Server identifier;

Set Que identifier;

Set Job identifier;

Set CNode identifier;
Range Int identifier;
Range Float identifier;
Range Dayofweek identifier;
Range DateTime identifier;
Range Size identifier;

stats::= [* empty */

| stats stat
stat::="; /* empty statement */
expr
statlf
statAssign
statPrint ’;’
statFor
statSwitch
statForeach
statWhile
statContinue '}’
statBreak ’;’
statREturn
statExit

Chapt Draft Revision: 2.3

-> int identifier;
-> double identifier;
-> Dayofweek identifier;
-> DateTime identifier;
-> char *identifier = NULLSTR,;
-> Size identifier;
-> Server identifier = NOSERVER,;
-> Que identifier = NOQUE;
-> Job identifier = NOJOB;
-> CNode identifier = NOCNODE;
-> SetServer *identifier = EMPTYSETSERVER;
-> SetQue *identifier = EMPTYSETQUE;

-> struct SetJobElement *identifier = EMPTYSETJOB;

-> SetCNode *identifier = EMPTYSETCNODE;

-> IntRange identifier;

-> FloatRange identifier;

-> DayofweekRange identifier;
-> DateTimeRange identifier;
-> SizeRange identifier;

SCHEDULER

| block

statAssign::= identifier eqs expr ’;’

NOTE:

1.

Compatible assignment types:

identifier expression
Int Int, Float
Float Int, Float
Dayofweek Dayofweek
DateTime DateTime
String String
Size Size

Que Que

Job Job
CNode CNode
Server Server

Range Dayofweek
Range DateTime

Range Dayofweek
Range DateTime

Range Size Range Size
Server Server

Que Que

Job Job

CNode CNode
Range Int Range Int
Range Float Range Float

If identifier is of string type, generate code to modify the identifier’s scope to
reflect actual scope, and also generate code that will free up any temporarily
allocated strings during the assignment operation.

If identifier is of Que type, generate code that will modify the scope of the
identifier only if it is not already of global scope (mallocTableSafeModScope).
Then free up any temporarily allocated Que structures (those with scope of
-1).

statWhile:: = "while" (" expr ')’ block

NOTE:

1.
2.

expr’s type must be INTTYPE or FLOATTYPE.

A global variable called inLoop exists to keep track on whether or not the
parser is currently inside a loop construct. As the parser is inside the while
loop, the inLoop counter is incremented. Leaving the loop will cause the in-
Loop counter to be decremented.

statForeach::= "foreach” '(’ identifier "in" identifier)’ block

NOTE:

1. The valid types of identifiers are:

1st identifier

2nd identifier

Server Set Server

Chapt Draft Revision: 2.3

expr:=

PBS IDS

Que
Job
CNode

expr '+ expr
| expr’-" expr
| expr* expr
| expr’l" expr
| expr %’ expr
| - expr
| '+ expr
| exprTerms EQ exprTerms
| exprTerms NEQ exprTerms
| exprTerms LT exprTerms
| exprTerms LE exprTerms
| exprTerms GT exprTerms
| exprTerms GE exprTerms
| expr AND expr
| expr OR expr
| 'V expr
| identifier postop
| 'C expr’)y

| exprTerms
Consistent types for +:

left expression type

Set Que
Set Job
Set CNode

right expression type

SCHEDULER

STRINGTYPE
SIZETYPE
INTTYPE or FLOATTYPE

Consistent types for -, *, /.

left expression type

STRINGTYPE
SIZETYPE
INTTYPE or FLOATTYPE

right expression type

SIZETYPE
INTTYPE or FLOATTYPE

Consistent types for modulus (%):

left expression type

SIZETYPE
INTTYPE or FLOATTYPE

right expression type

INTTYPE

INTTYPE

Consistent types for unary minus (-) and unary plus (+):

expression type

INTTYPE
FLOATTYPE
SIZETYPE

Consistent types for EQ, NEQ, LT, LE, GT, GE:

Chapt Draft Revision: 2.3

SCHEDULER

left expression type

PBS IDS

right expression type

Dayofweek Dayofweek
DateTime DateTime
String String
Size Size
Server Server
Que Que
Job Job
CNode CNode
Server Server
Que Que
Set Job Set Job
Set CNode Set CNode
Int, Float Int, Float
6. Consistent types for AND, OR:
left expression type right expression type
INTTYPE or FLOATTYPE INTTYPE or FLOATTYPE
7. Consistent types for lexpr:
expression type
INTTYPE
FLOATTYPE
8. Consistent types for post operators ++ and --:
expression type
INTTYPE
FLOATTYPE
9. After every expression, if the expr’s type is String, then code to free up temporari-
ly allocated strings (scope -1) is generated. Same with Que type.
exprTerms::= consts
| identifier '(" args’)’
| identifier
NOTE:

1.

For function calls, "identifier(args)", identifier must have been previously de-

clared. Also, the arguments’ types must match the proto types except in spe-
cial functions like the following:

a.

Job QueJobFind(Que que, Fun <ReturnType> function(Job job), {EQ,

NEQ, GE, GT, LE, LT}, <ReturnType> value)

MIN})

C. Que QueFilter(Que que,
{EQ,NEQ,GE,GT,LE,LT}, <ReturnType> value)

Job QueJobFind(Que que, Fun <ReturnType> function(Job job), {MAX,

Fun <ReturnType> function(Job job),

Que QueFilter(Que que, Fun Job function(Job job), {MAX, MIN})

For the above functions, CodeGenBuffSaveQueJobFind() and CodeGen-

6-10

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

BuffSaveQueFilter() are called to generate code. In forms (a) and (c),
the <ReturnType> of arguments 2 and 4 must match, and the code gen-
erated depends on the <ReturnType>.

2. Functions are classified into 2 category: internally-defined (or built-ins), and
externally-defined (as defined by the scheduler writer). If identifier refers to
a function that has been externally defined, then a "basl_" prefix is added to
the function name during code generation so as to avoid name collision when
the code is linked with system, PBS libraries.

3. Any identifier used must have been previously declared.

statPrint::= "print" ’(’ identifier)’
| "print"’(’ consts’)’
1. Allowed types for identifier, consts:

TYPE

Int

Float
Dayofweek
String

Size

Que

Job

CNode

Server

Range Int
Range Float
Range Dayofweek
Range DateTime
Range Size

statFor::= "for" '(" statForAssign ';" identifier cprOp expr ™'
statForAssign)’ block
NOTE:

1. Upon entering the for loop, inLoop counter is incremented,; it is decremented
upon exit.

statForAssign: identifier eqs expr
| identifier postop
NOTE:
1. In the first form, identifier and expr must be of type INTTYPE or FLOAT-
TYPE.

2. In the second form, identifier must be of type INTTYPE or FLOATTYPE.

statlf::= "if* (" expr ')’ block
| "if*'(expr’) block "else" block
NOTE: expr’s return type is either INT or FLOAT.

statReturn::= "return” ’(identifier ')’
| "return"’(’ consts’)’
| llreturnll 1(1 1)1

Chapt Draft Revision: 2.3 6-11

SCHEDULER

NOTE:

PBS IDS

The type returned by identifier and consts must match the calling function’s
return type.

if the identifier is of string type, then generate code that will modify its scope
to be -1 (become a temporary string) so that the malloc-ed storage for it does
not get cleared up yet upon return. It will get freed on the next call to varstr-
Free() to free up temporary strings, which takes place after an expression in-
volving the function call is executed.

if the identifier is of Que type, then generate code that will modify its scope
to be -1 (a temporary queue) only if its current scope is not global (mallocTa-
bleSafeModScope). This is so that malloc-ed storage for the Que identifier
does not get cleared up yet. It will get freed on the next call to mallocTable-
FreeByScope() of temporary queue variables, which takes place after an ex-
pression involving the function call is executed.

The third form "return()" is allowed if the return type of the enclosing func-
tion is of type Void.

statSwitch::= "switch" ’(’ identifier ')’ '{" caseList defCase '}

NOTE:

1.

2.
caselist:;:="

caseElement::=

defCase::=
NOTE:
1.
2.
3.
6-12

The identifier’s type cannot be of type Void.

inSwitch variable keeps track of whether or not the parser is currently in-
side a switch construct. CurrSwitchVar holds the switch variable token. So
when the parser enters the switch statement, ParserLevel and inSwitch
variables are incremented, and CurrSwitchVar is set appropriately. Decre-
ment ParserLevel, inSwitch upon leaving.

| caseList caseElement

"case" intConst """ block

| "case" floatConst " block

| "case" dayofweekConst '’ block
| "case" datetimeConst "’ block

| "case" sizeConst " block
| "case" stringConst " block

| "case" serverConst " block

| "case" queConst "’ block
| "case" jobConst " block
| "case" cnodeConst "’ block
| "case in" constRange "’ block

| "case in"identifier '’ block

| 'default’ "’ block

The identifier's type in statSwitch must match the type given in caseEle-
ment.

The case labels are not allowed to be duplicated.

The allowed constRange and identifier types in "case in" depends on the
identifier’s type on the "switch" statement as follows:

Chapt Draft Revision: 2.3

switch identifier type

PBS IDS SCHEDULER

constRange, identifier type

SERVERTYPE
QUETYPE
JOBTYPE
CNODETYPE
INTTYPE
FLOATTYPE
DAYOFWEEKTYPE
DATETIMETYPE
SIZETYPE

statContinue::= "continue" ’;’
NOTE: The continue statement must have been invoked within a loop. This is done by
checking to see if inLoop counter is > 0.

statBreak::= "break" ’;’
NOTE: The break statement must have been invoked within a loop. This is done by
checking to see if inLoop counter is > 0.

statExit::= "exit" '(" intConst ’)" '}’
NOTE: Before the "exit" statement is generated, generate code also that will free up
storage allocated at the current variable scope.

consts::= intConst

constRange:

floatConst
dayofweekConst
datetimeConst
stringConst
sizeConst
cprOp
constRange
'MAX’

'MIN’
serverConst
gueConst
jobConst
cnodeConst
setServerConst
setQueConst
setJobConst
setCnodeConst
stringConst

intConstRange

| floatConstRange

| dayofweekConstRange
| datetimeConstRange

| sizeConstRange

intConst::= [+-]?[0-9]+

| "SUCCESS"

| "FAIL"

| "SERVER_ACTIVE"
| "SERVER_IDLE"

Chapt Draft Revision: 2.3

SERVERSETTYPE
QUESETTYPE
JOBSETTYPE
CNODESETTYPE
INTRANGETYPE
FLOATRANGETYPE
DAYOFWEEKRANGETYPE
DATETIMERANGETYPE
SIZERANGETYPE

6-13

SCHEDULER

PBS IDS

"SERVER_SCHED"
"SERVER_TERM"
"SERVER_TERMDELAY"
"QTYPE_E"

"QTYPE_R"
"SCHED_DISABLED"
"SCHED_ENABLED"
"FALSE"

"TRUE"

"TRANSIT"

"QUEUED"

"HELD"

"WAITING"

"RUNNING"

"EXITING"
"CNODE_OFFLINE"
"CNODE_DOWN"
"CNODE_FREE"
"CNODE_RESERVE"
"CNODE_INUSE_EXCLUSIVE"
"CNODE_INUSE_TIMESHARED"
"CNODE_TIMESHARED"
"CNODE_CLUSTER"
"CNODE_UNKNOWN"
"SYNCRUN"
"ASYNCRUN"
"DELETE"

"RERUN"

"HOLD"

"RELEASE"

"SIGNAL"
"MODIFYATTR"
"MODIFYRES"

"OP_EQ"

"OP_NEQ"

"OP_LT"

"OP_LE"

"OP_GE"

"OP_GT"

"OP_MAX"

"OP_MIN"

floatConst::= [+-]?[0-9]+[.][0-9]*

dayofweekConst::= "SUN"

datetimeConst::=

6-14

| "MON"
| "TUE"
| "WED"
| "THU"
| "FRI"
| "SAT"

‘(" intConst ’|" intConst ’|" intConst)’
| 'C intConst " intConst "’ intConst ’)’

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER
| 'C intConst’|’ intConst |’ intConst '@’ intConst "’ intConst "’ in

serverConst::= NOSERVER
queConst::= NOQUE

jobConst::= NOJOB

cnodeConst::= NOCNODE
setServerConst::= EMPTYSETSERVER
setQueConst::= EMPTYSETQUE
setJobConst::= EMPTYSETJOB
setCnodeConst::= EMPTYSETCNODE

stringConst::= NULLSTR
NOTE:

1. Atime constant (hh:mm:ss) must satisfy the condition:
0<=hh <=23,0<=mm <=59, 0 <=ss <=61.

2. A date constant (mon]day|]year) must satisfy the condition:
1<=mon<=12,1<=day<=31, 0 <=year.

3. Atime/date constant (mon]day|year@hh:mm:ss) must satisfy 1) and 2).
stringConst::= ["][a-zA-Z0-9 0*["]

sizeConst::= [+-]?[0-9]+[kmgtpKMGTP]?[bwBW]

intConstRange::="(’ intConst ', intConst ’)’
NOTE: For an int constant range, the 1st part must be <= 2nd part.

floatConstRange::='(’ floatConst ', floatConst ’)’
NOTE: For a float constant range, the 1st part must be <= 2nd part.

dayofweekConstRange::= (" dayofweekConst ', dayofweekConst ')’
NOTE: For a dayofweek constant range, the 1st part must be <= 2nd part.

datetimeConstRange::= (" datetimeConst ’,” datetimeConst ')’
NOTE: For a datetime constant range, if both the 1st part and 2nd part are the full
date/time construct, then 1st part <= 2nd part.

sizeConstRange::="(’ sizeConst’,’ sizeConst ')’
NOTE: The 1st part must be <= 2nd part.

cprOp::= "LE"
| "LT"
| "GE"
| "GT"
| "EQ"
| "NEQ"
args::= "

| arg argList

Chapt Draft Revision: 2.3 6-15

SCHEDULER PBS IDS

argList:= "
| ’, arg argList
arg::= identifier
| consts
egs::= =
NOTE:

When '{" has been encountered, ParserLevel variable is incremented. When '} is
encountered, if the block contains any kind of String type variable, then code is
generated to call varstrFreeByScope to free up strings that have been malloc-ed at
that block (scope is determined via the variable ParserVarScope). Also, if the block
that the parser is in is sched_main()’s, then code for varstrFreeByScope(-1) is gen-
erated to free up all temporary malloc-ed strings. Also if the block contains decla-
rations for Que type variables, then code to free up malloc-ed storage for the tem-
porary Que structures is generated.

Code to free up malloc-ed storage (varstrFree(), mallocTableFree(), varstrMod-
Scope(), mallocTableSafeModScope()) are generated appropriately before a return
statement, exit statement, or level 1 right curly bracket.

"generated appropriately” means that if any string has been declared at level 1 in
the enclosing function, then varstrFree() code will be generated along with the ap-
propriate variable scope to free; similarly, mallocTableFree() code will be generat-
ed if any Que type entity has been declared at level 1 in the enclosing function.

6.1.2.2.2. File: Parser.c

yyerror

void yyerror(char *ep)

A slightly modified version of the yacc’s yyerror() call where addition message about linenum
is printed out to the parser’s stdout stream.

Parserlnit

void Parserlnit(void)

Initializes variables ParserLevel (keeps track of program nestings) and ParserVarScope
(keeps track of variable’s readability within a BASL program).

ParserPrintToken

void ParserPrintToken(char *lexeme, int lin, int len, int typ)

If there's a parser stdout stream and the parser debug flag is turned on, then print out the
values of the given parameters.

6-16

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ParserPutDF

void ParserPutDF(int df)

Set the parser debug flag to the given df value.

ParserLevellncr

void ParserLevellncr(void)

Increments the ParserLevel variable, and sends a message to parser stdout stream saying
that it has done so.

ParserLevelDecr

void ParserLevelDecr(void)

Decrement the ParserLevel variable, and sends a message to parser stdout stream saying
that it has done so.

ParserLevelGet

int ParserLevelGet(void)

Returns the value to the ParserLevel variable.

ParserVarScopelncr

void ParserVarScopelncr(void)

Increments the ParserVarScope variable, and sends a message to parser stdout stream say-
ing that it has done so.

ParserVarScopeGet

int ParserVarScopeGet(void)

Returns the value to the ParserVarScope variable.

Chapt Draft Revision: 2.3 6-17

SCHEDULER PBS IDS

ParserCondPrint

void ParserCondPrint(char *str)

Prints str to parser stdout stream (if any) and if the parser debug flag is turned on.

ParserErr

void ParserErr(int e)

Prints the message string associated with error e to parser stdout stream (if any).

ParserCurrFunPtrPut

void ParserCurrFunPtrPut(Np np)

Makes np be the current pointer to a node containing a function token.

ParserCurrFunPtrGet

Np ParserCurrFunPtrGet(void)

Returns the current pointer to the node containing a function token.

ParserCurrFunParamPtrPut

void ParserCurrFunParamPtrPut(Np np)

Makes np be the current pointer to a node that is holding a function parameter token.

ParserCurrFunParamPtrGet

Np ParserCurrFunParamPtrGet(void)

Returns the current pointer to a node that is holding a function parameter token.

ParserCurrSwitchVarPut

void ParserCurrSwitchVarPut(struct MYTOK token)

6-18 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Makes token be the switch variable.

ParserCurrSwitchVarGet

struct MYTOK ParserCurrSwitchVarGet(void)
Returns the current switch variable token.

6.1.2.3. Symbol Table

The symbol table contains data structures that are accessed by the Lexer, Parser, Semantic
analyzer, and code generator in order to perform various tasks leading to the translation of
BASL code into C. The symbol table stores the variable and structure names, labels, and all
other names used in the program. The files involved with the symbol table are Node.h,
Node.c, List.h, List.c, SymTabGlob.h, SymTab.h, and SymTab.c.

6.1.2.3.1. File: Node.h

The main data structure manipulated by the routines in this file is the Node class shown in
the following:

struct FUNDESCR

{
int paramCnt;
struct Node *paramPtr;
¥
struct Node
{
char lexeme[LEXEMSZ];
int type; /* Semantic type */
int lineDef;
int level;
int funFlag;
struct FUNDESCR funDescr;
struct Node *rptr;
}

typedef struct Node *np;

6.1.2.3.2. File: Node.c

NodeNew

Np NodeNew(char *lexem, int typ, int lin, int leve, int funFla)

Args:
lexem A match token string.
type Internal data type of lexem.
lin The line number in the program input file where the lexem was found.

Chapt Draft Revision: 2.3 6-19

SCHEDULER PBS IDS

leve The nesting level of the matched token.
funFla The flag that says whether or not the lexem is part of a function definition.

Create a new Node structure by malloc-ing its storage, and then fill it with values given by
the function arguments. A pointer to this Node structure is returned.

Nodelnit

void Nodelnit(Np nx, char *lexem, int typ, int lin, int leve, int funFla)

Args:
nx A pointer to an existing node structure.
lexem A match token string.
type Internal data type of lexem.
lin The line number in the program input file when the lexem was found.

leve The nesting level of the matched token.
funFla The flag that says whether or not the lexem is part of a function definition.
Fill an existing Node structure with values given by the function arguments.

NodePrint

void NodePrint(Np nx)

Args:
nx A pointer to an existing node structure.
Print out to the Node stdout stream (if any) the values of the given Node structure.

NodeFunDescrPrint

void NodeFunDescrPrint(Np nx)

Args:
nx A pointer to an existing node structure.
Just print the function description values for the given Node structure.

NodeFunDescrFindByLexeme

Np NodeFunDescrFindByLexeme(Np nx, char *lexem)

Args:
nx A pointer to an existing node structure.

6-20 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

lexem The token to match.

Return the pointer to the node that is a parameter pointer structure, whose lexeme value is
the one given in this function’s argument.

NodeCmp

int NodeCmp(Np nx, char *lexem)

Args:
nx A pointer to an existing node structure.
lexem The token to match.

Compares the Node nx’s lexem with that of the argument lexem (given). Returns 1 if the for-
mer is > latter, -1 if the former is < latter, O if they are the same.

NodeErr

void NodeErr(int e)

Args:
e error number.
Prints the error message associated with error number e.

NodeCondPrint

void NodeCondPrint(char *str)
Args:

str The string message to print out.
If Node debug flag is on and if there’'s a Node stdout stream, then print the given message.

NodePutDF

void NodePutDF(int df)

Args:
df The new debug flag value.
Updates the Node debug flag value to df.

NodeGetLexeme

Chapt Draft Revision: 2.3 6-21

SCHEDULER PBS IDS

char *NodeGetLexeme(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the lexeme attribute value of nxp.

NodeGetType

int NodeGetType(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the type attribute value of nxp.

NodeGetLineDef

int NodeGetLineDef(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the lineDef attribute value of nxp.

NodeGetLevel

int NodeGetLevel(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the level attribute value of nxp.

NodeGetFunFlag

int NodeGetFunFlag(Np nxp)

Args:
nxp A pointer to a Node structure.

Returns the funFlag attribute value of nxp.

NodeGetParamPtr

6-22

Chapt Draft Revision: 2.3

PBS IDS

Np NodeGetParamPtr(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns pointer to the Node nxp’s 1st parameter.

NodeGetLexeme

char *NodeGetLexeme(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the lexeme attribute value of nxp.

NodeGetType

int NodeGetType(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the type attribute value of nxp.

NodeGetLineDef

int NodeGetLineDef(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the lineDef attribute value of nxp.

NodeGetLevel

int NodeGetLevel(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the level attribute value of nxp.

NodeGetFunFlag

Chapt Draft Revision: 2.3

SCHEDULER

6-23

SCHEDULER PBS IDS

int NodeGetFunFlag(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns the funFlag attribute value of nxp.

NodeGetParamPtr

Np NodeGetParamPtr(Np nxp)

Args:
nxp A pointer to a Node structure.
Returns pointer to the Node nxp’s 1st parameter.

NodePutLexeme

void NodePutLexeme(Np nxp, char *lexem)

Args:
nxp A pointer to a Node structure.
lexem new lexem value.

Makes lexem be the new nxp lexeme value.

NodePutType

void NodePutType(Np nxp, int type)

Args:
nxp A pointer to a Node structure.
type The new type for the Node’s lexeme.
Replaces the type attribute value of nxp to the given argument.

NodePutLineDef

void NodePutLineDef(Np nxp, int lin)

Args:
nxp A pointer to a Node structure.
lin The new line for the Node’s lexeme.
Replaces the lineDef attribute value to the given argument.

6-24 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

NodePutLevel

void NodePutLevel(Np nxp, int level)

Args:
nxp A pointer to a Node structure.
level The new level for the Node’s lexeme.
Replaces the level attribute value of nxp to the given argument.

NodePutFunFlag

void NodePutFunFlag(Np nxp, int funFla)

Args:
nxp A pointer to a Node structure.
funFla The new function flag for the Node’s lexeme.
Replaces the funFlag attribute value of nxp to the given argument.

NodePutParamPtr

void NodePutParamPtr(Np nxp, Np paramPtr)

Args:
nxp A pointer to a Node structure.
paramPtr

A pointer to a Node’s paramPtr structure.
Replaces the pointer value to the Node nxp’s 1st parameter to the given argument.

NodePutParamCnt

void NodePutParamCnt(Np nxp, int paramCnt)

Args:
nxp A pointer to a Node structure.
paramCnt

of parameters to the function node.
Replaces the paramCnt attribute of Node nxp to the given argument.

NodeParamCntlncr

void NodeParamCntlncr(Np nxp)

Chapt Draft Revision: 2.3 6-25

SCHEDULER PBS IDS

Args:
nxp A pointer to a Node structure.
Increments the paramCnt attribute of Node nxp.

NodeParamCntDecr

void NodeParamCntDecr(Np nxp)

Args:
nxp A pointer to a Node structure.
Decrements the paramCnt attribute of Node nxp.

6.1.2.3.3. File: List.c

ListPutDF

void ListPutDF(int df)

Args:
df the new debug flag value.
Set the List debug flag value to df.

ListCondPrint

void ListCondPrint(char *str)
Args:

str The message to print out.
If List debug flag is on, and there’s a List stdout stream, then print out the message str.

ListIsEmpty

int ListiIsEmpty(List L)
Args:

L A pointer to the head of the list of Nodes.
Returns 1 if the L is NULL; O otherwise.

ListPrint

6-26 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

void ListPrint(List L)

Args:
L A pointer to the head of the list of Nodes.
Prints every member of a list of Nodes.

ListinsertFront

List ListinsertFront(List L, Np nxp)

Args:
L A pointer to the head of the list of Nodes.
nxp A new node to insert into the list.

Insert the Node nxp in front of L, and returns nxp.

ListParamLink

void ListParamLink(Np funNp, Np parNp)

Args:
funNp A pointer to the head of the list of Nodes.
parNp A new node to insert into the list.
Inserts parNp at the end of function Node funNp's parameter list.

ListInsertSortedN

List ListinsertSortedN(List L, Np nxp)

Args:
L A pointer to the head of the list of Nodes.
nxp A new node to insert into the list.

Insert the Node nxp into the List L in a way that the increasing lexicographical ordering of
lexemes is maintained.

ListInsertSortedD

List ListinsertSortedD(List L, char *lexem, int typ, int lineDe, int leve, int funFla)

Args:
L A list of Nodes.

Chapt Draft Revision: 2.3 6-27

SCHEDULER PBS IDS

lexem A lexeme for the new Node.

type A type for the new Node.

lineDe The line # where the lexeme was found.
level The nesting level of the Node.

funFla The function flag of the Node.

Creates a new Node with the given values, and insert the Node into the list in a sorted man-
ner. Returns the pointer to the new List.

ListlIsMember

int ListisMember(List L, Np nxp)

Args:
L A list of Nodes.
nxp A Node pointer.
Returns 1 if nxp is a member of the List of Nodes L; 0, otherwise.

ListGetLast

Np ListGetLast(List L)
Args:

L A list of Nodes.
Returns the last node in the List of Nodes L.

ListGetSucc

Np ListGetSucc(List L, Np nxp)

Args:
L A list of Nodes.
nxp A Node pointer.
Returns the next Node element after nxp.

ListDeleteNode

List ListDeleteNode(List L, Np nxp)

Args:
L A list of Nodes.

6-28 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

nxp A Node pointer.
Deletes the node pointed by nxp, and free up any malloc-ed storage for it.

ListDelete

List ListDelete(List L)

Args:
L A list of Nodes.
Deletes the entire List of Nodes L. Malloc-ed areas are freed.

ListDeleteLevel

List ListDeleteLevel(List L, int leve)

Args:
L A list of Nodes.
leve A Node level.
Deletes all Nodes in List L that have a level leve. Return a new List L.

ListFindNodeByL exeme

Np ListFindNodeByLexeme(List L, char *lexeme)

Args:
L A list of Nodes.
lexeme A lexeme to look for.
Returns the Node in the List of Nodes that contains the given lexeme.

ListFindNodeByLexemelnLevel

Np ListFindNodeByLexemelnLevel(List L, char *lexeme, int leve)

Args:
L A list of Nodes.
lexeme A lexeme to look for
leve A level to look for.
Returns the Node in the List of Nodes that contains the given lexeme and level.

Chapt Draft Revision: 2.3 6-29

SCHEDULER PBS IDS

ListFindNodeByLexemelnLine

Np ListFindNodeByLexemelnLine(List L, char *lexeme, int line)

Args:
L A list of Nodes.
lexeme A lexeme to look for
line A line to look for.
Returns the Node in the List of Nodes that contains the given lexeme and line.

ListMatchNodeByLexemelnLine

Np ListMatchNodeByLexemelnLine(List L, char *lexeme, int line)

Args:
L A list of Nodes.
lexeme A lexeme to look for
line A line to look for.
Returns the Node in the List of Nodes that match the given lexeme and line.

ListFindNodeBeforeLexemelnLine

Np ListFindNodeBeforeLexemelnLine(List L, char *lexeme, int line)

Args:
L A list of Nodes.
lexeme A lexeme to look for
line A line to look for.

Returns the Node in the List of Nodes that is before the node containing the given lexeme
and line. If the node found that contain the lexeme and line does not have a previous node
(head of List), then that node itself is returned.

ListMatchNodeBeforeLexemelnLine

Np ListMatchNodeBeforeLexemelnLine(List L, char *lexeme, int line)

Args:
L A list of Nodes.
lexeme A lexeme to look for
line A line to look for.

6-30 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Returns the Node in the List of Nodes that is before the node matching the given lexeme and
line. If the node found that match the lexeme and line does not have a previous node (head of
List), then that node itself is returned.

ListFindNodeByLexemeAndTypelnLevel

Np ListFindNodeByLexemeAndTypelnLevel(List L, char *lexeme, int leve,
int line, int (*compare_func)())

Args:
L A list of Nodes.
lexeme A lexeme to look for
level A level to look for.
line A line to look for.

compare_func
The compare function to use when comparing lexemes.

Returns the Node in the List of Nodes that contains lexeme, leve, and line. compare_func is
used to determine whether or not the Node contains lexeme.

ListFindAnyNodelnLevelOfType

Np ListFindAnyNodelnLevelOfType(List L, int leve, int type)

Args:
L A list of Nodes.
leve A level to look for.
type A type to look for.
Returns any Node in the List of Nodes that contains leve with 'type’.

ListErr

void ListErr(int e)

Args:
e error number.
Prints out the message associated with error number e.

6.1.2.3.4. File: SymTab.c
The symbol table is nothing more but a linked List.

SymTablnit

Chapt Draft Revision: 2.3 6-31

SCHEDULER PBS IDS

void SymTablnit(void)

Calls SymTabKeywordslInit() to initialize the symbol table.

SymTabPutDF

void SymTabPutDF(int df)

Args:
df new debug flag value.
Sets the Symbol table debug flag to the value of the given argument.

SymTabCondPrint

void SymTabCondPrint(char *str)

Args:
str The message string to print out.

Prints out to Symbol table output stream (if any) the message 'str’ only if the debug flag is
set.

SymTablsEmpty

int SymTablsEmpty(void)

Returns 1 if the symbol table is empty (head of the list is NULL).

SymTabPrint

int SymTabPrint(void)

Prints to stdout stream the entire symbol table.

SymTablnsertFront

void SymTablnsertFront(STEP nxp)
Args:

nxp The node to insert in front of the symbol table.
Puts the node pointed to by 'nxp’ at the head of the symbol table.

6-32 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SymTabParamLink

void SymTabParamLink(STEP funNp, Np parNp)

Args:
funNp Pointer to the function node.
parNp Pointer to a parameter node.
Inserts the node parNp at the end of function node funNp’s parameter list.

SymTablnsertSortedN

void SymTablnsertSortedN(STEP nxp)

Args:
nxp A pointer to the node to be inserted into the symbol table.

Inserts the node nxp into the symbol table, maintaining the lexicographical ordering of the
nodes’ lexemes.

SymTablnsertSortedD

void SymTablnsertSortedD(char *lexem, int typ, int lineDe, int leve, int funFla)

Args:
lexem A node lexeme value.
typ A lexeme’s type.
lineDe A lexeme’s lineDef value.
level A lexeme’s level value.
funFla A lexeme’s function flag value.

Creates a new node with values (lexem, typ, lineDe, leve, funFla), and this new node is in-
serted into the symbol table in a manner in which the lexicographical ordering of the nodes’
lexemes is maintained.

SymTablsMember

int SymTablsMember(STEP nxp)
Args:

nxp A pointer to a node.
Returns 1 if node 'nxp’ is one of the nodes in the symbol table; 0 otherwise.

Chapt Draft Revision: 2.3 6-33

SCHEDULER PBS IDS

SymTabGetLast

STEP SymTabGetLast(void)

Returns the last element of the symbol table.

SymTabGetSucc

STEP SymTabGetSucc(STEP nxp)

Args:
nxp A pointer to a node.

Returns the node that comes after 'nxp’ in the symbol table.

SymTabDeleteNode

void SymTabDeleteNode(STEP nxp)

Args:
nxp A pointer to a node.
Removes the node 'nxp’ from the symbol table.

SymTabDelete

void SymTabDelete(void)

Removes all the node elements from the symbol table.

SymTabFindFunProtoByL exemelnProg

STEP SymTabFindFunProtoByLexemelnProg(char *lexeme)

Args:
lexeme Lexeme to search for.
Returns the function node that contains 'lexeme’.

SymTabFindNodeByL exemelnProg

STEP SymTabFindNodeByLexemelnProg(char *lexeme)

6-34

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
lexeme Lexeme to search for.
Returns the node that contains 'lexeme’.

SymTabFindNodeByLexemelnLevel

STEP SymTabFindNodeByLexemelnLevel(char *lexeme, int level)

Args:
lexeme Lexeme to search for.
level Level value to look for.
Returns the node that contains 'lexeme’ and 'level’.

SymTabFindNodeByL exemeAndTypelnLevel

STEP SymTabFindNodeByLexemeAndTypelnLevel(char *lexeme, int level,
int type, int (*compare_func)())

Args:
lexeme Lexeme to search for.
level Level value to look for.
type Type value to search for.

compare_func
Compare function to use when comparing the given ’'lexeme’ with the lexemes
on the symbol table.

Returns the node that contains 'lexeme’ (compared via 'compare_func’), 'level’, and 'type’.

SymTabFindAnyNodelnLevelOfType

STEP SymTabFindAnyNodelnLevelOfType(int level, int type)

Args:
level Level value to look for.
type Type value to search for.
Returns any node that in ’level’ that is of 'type’.

SymTabDeletel evel

STEP SymTabDeleteLevel(int leve)

Chapt Draft Revision: 2.3 6-35

SCHEDULER PBS IDS

Args:
leve Level value whose nodes will be deleted.
Remove nodes whose level is 'leve’.

SymTabKeyWordslnit

void SymTabKeyWordslInit(void)

Initializes the symbol table by creating an "endmarker" node.

SymTabGetOrigin

STEP SymTabGetOrigin(void)

Returns the first node in the symbol table.

SymTabErr

void SymTabErr(int e)

Args:
e An error number.
Prints out to symbol table stdout stream the message string associated with error 'e’.

6.1.2.4. Semantic Analyzer

The files involved with the Semantic analyzer subsystem are Semantic.h, and Semantic.c.
The semantics analyzer is responsible for checking to make sure that tokens are used togeth-
er in a consistent and valid way.

6.1.2.4.1. File: Semantic.c

Semanticlnit

void Semanticlnit(void)

Initializes any internal variables used by the semantics analyzer.

SemanticPutDF

void SemanticPutDF(int df)

6-36 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
df The new debug flag value
Sets the semantics debug flag to the 'df’ value.

SemanticCondPrint

void SemanticCondPrint(char *str)

Args:
str The message to print out.
Prints to semantics stdout (if any) the 'str’ message only if the semantics debug flag is on.

SemanticErr

void SemanticErr(int e)

Args:
e Error number.
Prints the message associated with error number 'e’.

SemanticStatAssignCk

void SemanticStatAssignCk(struct MYTOK var, struct MYTOK expr)

Args:
var An identifier token to be assigned a new value.
expr An expression token whose value will be assigned to 'var’.

So this semantically checks the BASL grammar: var = expr. See grammar specification for
consistent types for 'var’ and 'expr’.

SemanticPlusExprCk

void SemanticStatPlusExprCk(struct MYTOK left_expr, struct MYTOK right_expr)

Args:
left_expr The left expression in a '+ arithmetic expression.
right_expr The right expression in a’+' arithmetic expression.

This semantically checks the BASL grammar: left_expr + right_expr. Allowed types to be
added are String, Size, Int, and Float. See grammar specification for mutually consistent
types for 'left_expr’ and 'right_expr’.

Chapt Draft Revision: 2.3 6-37

SCHEDULER PBS IDS

SemanticMinusExprCk

void SemanticStatMinusExprCk(struct MYTOK left_expr, struct MYTOK right_expr)

Args:
left_expr The left expression in a -’ arithmetic expression.
right_expr The right expression in a -’ arithmetic expression.

This semantically checks the BASL grammar: left_expr - right_expr. Allowed types to be
subtracted are Size, Int, and Float. See grammar specification for mutually consistent types
for 'left_expr’ and 'right_expr’.

SemanticStatMultDivExprCk

void SemanticStatMultDivExprCk(struct MYTOK left_expr, struct MYTOK right_expr)

Args:
left_expr The left expression in a’'*', '/’ arithmetic expression.
right_expr The right expression in a '*’, '/" arithmetic expression.

This semantically checks the BASL grammar: left_expr * right_expr or left_expr / right_expr.
Allowed types to be multiplied or divided are Size, Int, and Float. See grammar specification
for mutually consistent types for ’left_expr’ and 'right_expr’.

SemanticStatModulusExprCk

void SemanticStatModulusExprCk(struct MYTOK left_expr, struct MYTOK right_expr)

Args:
left_expr The left expression in a '%’ arithmetic expression.
right_expr The right expression in a '%’ arithmetic expression.

This semantically checks the BASL grammar: left_expr % right_expr. Allowed type to be re-
maindered is Int. See grammar specification for mutually consistent types for 'left_expr’ and
‘right_expr’.

SemanticStatCompExprCk

void SemanticStatCompExprCk(struct MYTOK left_expr, struct MYTOK right_expr)

Args:
left_ expr The left expression in a logical expression involving EQ, NEQ, LE, LT, GE,
GT.
right_expr The right expression in a logical expression involving EQ, NEQ, LE, LT, GE,
GT.

6-38 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

This semantically checks the BASL grammar: left_expr <logical_op> right_expr. Allowed
types to be logically operated are: Int, Float, Dayofweek, DateTime, String, Size, Server, Que,
Job, CNode, Set Server, Set Que, Set Job, Set CNode. See grammar specification for mutual-
ly consistent types for 'left_expr’ and 'right_expr’.

SemanticStatAndOrExprCk

void SemanticStatAndOrExprCk(struct MYTOK left_expr, struct MYTOK right_expr)

Args:
left_expr The left expression in a logical expression involving AND, OR.
right_expr The right expression in a logical expression involving AND, OR.

This semantically checks the BASL grammar: left_expr <AND]OR> right_expr. Allowed
types to be AND/OR-ed are: Int, Float. See grammar specification for mutually consistent
types for 'left_expr’ and 'right_expr’.

SemanticStatNotExprCk

void SemanticStatNotExprCk(struct MYTOK expr)

Args:
expr The expression in a unary expression: lexpr.

This semantically checks the BASL grammar: !lexpr. Allowed types to the ! operator are: Int,
Float.

SemanticStatPostOpExprCk

void SemanticStatPostOpExprCk(struct MYTOK expr)

Args:
expr The expression in a unary expression: expr++, expr--.

This semantically checks the BASL grammar: expr++, expr--. Allowed types to the ++, -- op-
erators are: Int, Float.

SemanticStatUnaryExprCk

void SemanticStatUnaryExprCk(struct MYTOK expr)

Args:
expr The expression in a unary expression: +expr, -expr.

This semantically checks the BASL grammar: +expr, -expr. Allowed types to the unary oper-
ators are: Int, Float, Size.

Chapt Draft Revision: 2.3 6-39

SCHEDULER PBS IDS

SemanticStatPrintTailCk

void SemanticStatPrintTailCk(struct MYTOK expr)

Args:
expr The expression in a return statement: return(expr).

This semantically checks the BASL grammar: return(expr). Allowed types to the return expr
are: Int, Float, Dayofweek, DateTime, String, Size, Que, Job, CNode, Server, Range Int,
Range Float, Range Dayofweek, Range DateTime, Range Size.

SemanticStatWhileHeadCk

void SemanticStatWhileHeadCk(struct MYTOK expr)

Args:
expr The expression in a while statement.

This semantically checks the BASL grammar: while(expr) { ... }. Allowed types to the expr
are: Int, Float.

SemanticStatlfHeadCk

void SemanticStatlfHeadCk(struct MYTOK expr)

Args:
expr The expression in an if statement.

This semantically checks the BASL grammar: if(expr) { ... }. Allowed types to the expr are:
Int, Float.

SemanticStatReturnTailCk

void SemanticStatReturnTailCk(struct MYTOK expr)

Args:
expr The return expression to check.

This semantically checks the BASL grammar: return(expr). 'expr’ must match the en-
closing function’s return type. Allowed expr types are: Dayofweek, DateTime, String,
Size, Server, Que, Job, CNode, Int, Float.

This semantically checks the BASL grammar: if(expr) { ... }. Allowed types to the expr are:
Int, Float.

SemanticVarDefCk

6-40 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

void SemanticVarDefCk(struct MYTOK var)

Args:
var The variable to check.

This semantically checks the variable definition construct in a BASL grammar.
'var’ must have not been previously declared.

SemanticForHeadCk

void SemanticForHeadCk(struct MYTOK exp6, struct MYTOK exp8)

Args:
exp6 An expression to semantically check.
exp8 An expression to semantically check.

This semantically checks the for head construct in a BASL grammar: for(statForAssign; exp6
cprOp exp8; statForAssign) ... exp6 and exp8 must have types that are either Int or Float.

SemanticForAssignCk

void SemanticForAssignCk(struct MYTOK expl, struct MYTOK exp2)

Args:
expl An expression to semantically check.
exp2 An expression to semantically check.

This semantically checks the statForAssign statement found in a for head construct: exprl =
expr2. expl and exp2 must have types that are either Int or Float.

SemanticForPostAssignCk

void SemanticForAssignCk(struct MYTOK exp)

Args:
exp An expression to semantically check.

This semantically checks the post-operated assignment statement that can be found in a for
head construct in a BASL grammar. exp must have type that is either Int or Float.

SemanticForeachHeadCk

void SemanticForeachHeadCk(struct MYTOK vall, struct MYTOK val2)

Args:

Chapt Draft Revision: 2.3 6-41

SCHEDULER PBS IDS

vall The first identifier in a foreach statement.
val2 The second identifier in a foreach statement.

This semantically checks to make sure that vall is one of {Server, Que, Job, CNode} and that
they match up 1:1 with val2 values {Set Server, Set Que, Set Job, Set CNode}.

SemanticParamVarCk

int SemanticParamVarCk(struct MYTOK val)

Args:

val The parameter variable to check.
This semantically checks a particular parameter that appears in a function call. If the pa-
rameter value matches with its prototype type, then that type is returned. Predefined func-

tions (type: YES_INT) and user-defined functions appearing (type: YES) as a parameter are
considered the same.

SemanticParamConstsCk

int SemanticParamConstsCKk(struct MYTOK val)

Args:
val The parameter variable to check.

This semantically checks a particular parameter that appears in a function call. If the pa-
rameter constant type matches with its prototype type, then that type is returned.

SemanticCaselnVarCk

void SemanticCaselnVarCk(struct MYTOK var)

Args:
var The parameter variable to check.

This semantically checks the type of the var appearing in a "case in var" switch body. Var
must have one of the following types: Range Int, Range Float, Range Dayofweek, Range
DateTime, Range Size, Set Server, Set Que, Set Job, Set CNode.

SemanticCaseTypeCk

void SemanticCaseTypeCk(struct MYTOK val)

Args:
val The case value to check.

6-42 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

This semantically checks the type of the case value (label) against the switch variable. Given
"switch(var) { case val: ... }", the var type must be the same as the val type.

SemanticCaselnTypeCk

void SemanticCaselnTypeCk(struct MYTOK val)

Args:
val The case value to check.

This semantically checks the type of the "case in" value (label) against the switch variable.
Given "switch(var) { case in val: ... }", val can be one of {Set Server, Set Que, Set Job, Set CN-
ode, Range Int, Range Float, Range Dayofweek, Range DateTime, Range Size} and must
match 1:1 with one of the following switch variable’s types: {Server, Que, Job, CNode, Int,
Float, Dayofweek, DateTime, Size}.

SemanticTimeConstCk

void SemanticTimeConstCk(struct MYTOK h, struct MYTOK m, struct MYTOK s)

Args:
h The hour entity in a time constant string.
m The minute entity in a time constant string.
S The seconds entity in a time constant string.

Given a time constant string, (h:m:s), this function checks to make sure that 0 <= h <=23,0
<=m<=59,0<=s<=61.

SemanticDateConstCk

void SemanticDateConstCk(struct MYTOK m, struct MYTOK d, struct MYTOK y)

Args:
m The month entity in a date constant string.
d The day entity in a date constant string.
y The year entity in a date constant string.

Given a date constant string, (m]d]y), this function checks to make sure that 1 <=m <= 12,
l<=d<=31,0<=vy.

SemanticlntConstRangeCk

void SemanticIntConstRangeCk(struct MYTOK lo, struct MYTOK hi)

Chapt Draft Revision: 2.3 6-43

SCHEDULER PBS IDS

Args:
lo The low value (left) in a Range Int constant.
hi The high value (right) in a Range Int const.
Given a Range Int constant, (low, high), this function checks to make sure that low <= high.

SemanticFloatConstRangeCk

void SemanticFloatConstRangeCk(struct MYTOK lo, struct MYTOK hi)

Args:
lo The low value (left) in a Range Float constant.
hi The high value (right) in a Range Float const.

Given a Range Float constant, (low, high), this function checks to make sure that low <=
high.

SemanticDayofweekConstRangeCk

void SemanticDayofweekConstRangeCk(struct MYTOK lo, struct MYTOK hi)

Args:
lo The low value (left) in a Range Dayofweek constant.
hi The high value (right) in a Range Dayofweek constant.

Given a Range Dayofweek constant, (low, high), this function checks to make sure that low
<= high.

SemanticDateTimeConstRangeCk

void SemanticDateTimeConstRangeCk(struct MYTOK lo, struct MYTOK hi)

Args:
lo The low value (left) in a Range DateTime constant.
hi The high value (right) in a Range DateTime constant.

Given a Range DateTime constant, (low, high), this function checks to make sure that low <=
high if at least one of the values contain a date portion. If both low and high contain time
portions only, then they will go through a different algorithm in some other function such as
automatically filling in the missing time or date portions.

SemanticSizeConstRangeCk

void SemanticSizeConstRangeCk(struct MYTOK lo, struct MYTOK hi)

6-44 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
lo The low value (left) in a Range Size constant.
hi The high value (right) in a Range Size constant.
Given a Range Size constant, (low, high), this function checks to make sure that low <= high.

6.1.2.5. Code Generator

The files involved with the code generator subsystem are CodeGen.h, and CodeGen.c. The
code generator is responsible for translating BASL statements into C statements. The code
generator maintains 2 data structures, a stack (St) and a list (CodeGenBuff) containing the
various translated C tokens. The stack is used to properly evaluate postfix arithmetic and
logical expressions, and the CodeGenBuff holds the resulting C statements.

6.1.2.5.1. File: CodeGen.c

CodeGenStackNew

St CodeGenStackNew(Np np)

Args:
np The node to be placed as the first element of the stack.

Initializes a Stack data type (St) used by the code generator, giving it a node 'np’ value. The
top of the new stack is returned.

CodeGenStackPush

void CodeGenStackPush(Np np)

Args:
np A Node pointer to put into the stack.
Adds a new element to the stack St and this element contains 'np’.

CodeGenStackPop

void CodeGenStackPop(void)

This returns the element that is at the top of the stack, and removes that element of the
stack. The stack element’s malloc-ed storage is freed; the node that it contains is not freed
since it maybe part of another list that contains the free routine.

CodeGenStackClear

void CodeGenStackClear(void)

Chapt Draft Revision: 2.3 6-45

SCHEDULER PBS IDS

This removes all the elements from the stack.

CodeGenStackPrint

void CodeGenStackPrint(void)

This prints all the elements on the stack.

CodeGenlnit

void CodeGenlnit(void)

This initializes all internal variables accessed by the code generator.

CodeGenPutDF

void CodeGenPutDF(int df)

Args:
df The new debug flag.
Set the code generator debug flag to 'df’.

CodeGenCondPrint

void CodeGenCondPrint(char *str)

Args:
str The new string to print out.

Prints out the message 'str’ to the code generator stdout stream (if any) if the code generator
debug flag is on.

CodeGenPrint

void CodeGenPrint(void)

Prints some information about the code generator like the descriptors to the generator buffer.

CodeGenErr

void CodeGenErr(int e)

6-46 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
e An error number.
Prints the message associated with error ’e’.

CodeGenBuffClear

void CodeGenBuffClear(void)

Removes all the elements in CodeGenBuff.

CodeGenBuffPrint

void CodeGenBuffPrint(void)

Prints out the contents of the CodeGenBuff list.

CodeGenBuffEmit

void CodeGenBuffEmit(void)

Prints out the lexemes in CodeGenBuff into the C output file stream. Necessary amount of
indentation is added for blocks of statements. After printing the lexemes, the CodeGenBuff
is flushed (cleared).

CodeGenBuffSwitchEmit

void CodeGenBuffSwitchEmit(void)

Same as CodeGenBuffEmit() except the amount of indentations in the output is 1 less.

CodeGenLastDef

void CodeGenLastDef(char *lexeme)

Args:
lexeme The lexeme to match.

Returns the last instance (maximum lineDef value) of 'lexeme’ on the CodeGenBuff table.
Lexemes that contain "(" or ")" are matched with any lexemes containing "(" or ")" no matter
what the leading or trailing characters are. For example, if the lexeme is "str(", then all en-
tries in the CodeGenBuff that contain the left and right parenthesis will match.

Chapt Draft Revision: 2.3 6-47

SCHEDULER PBS IDS

CodeGenBuffGetNp

void CodeGenBuffGetNp(char *lexeme, int lineDef)

Args:
lexeme The lexeme to match.
lineDef The lineDef value to match.
Returns the pointer to the node containing 'lexeme’ with 'lineDef’.

matchPairs

static void matchPairs(char *leftsym, int rightsym)

Args:
leftsym The left pair symbol.
lineDef The right pair symbol.

Go through the elements of CodeGenBuff, and match ’leftsym’ with 'rightsym’. For 'leftsym’
that matches, push the corresponding node onto the code generator stack (St); for 'rightsym’
that matches, remove node that is at the top of the stack (presumably this is the match), and
update the rightsym's lineDef value in the CodeGenBuff buffer to that of the matching ’left-
sym’. So matching leftsym and rightsym will have the same unique lineDef value.

CodeGenBuffSaveFirst

void CodeGenBuffSaveFirst(char *str)

Args:
str The string to insert into CodeGenBuff.

Inserts 'str’ into CodeGenBuff making it the first entry. If 'str’ contains a '(' or a ')’, then the
CodeGenBuff entries are modified so that all matching leftsym and rightsym have the same
lineDef value.

CodeGenBuffSave

void CodeGenBuffSave(char *str)

Args:
str The string to insert into CodeGenBuff.

Appends 'str’ to CodeGenBuff making it the last entry. If 'str’ contains a '(" or a ’)’, then the
CodeGenBuff entries are modified so that all matching leftsym and rightsym have the same
lineDef value.

6-48 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

CodeGenBuffSaveBefore

void CodeGenBuffSaveBefore(char *str, char *lexeme, int inst)

Args:
str The string to insert into CodeGenBuff.
lexeme The succeeding lexeme.
inst The lexeme’s lineDef value.

Insert 'str’ before the node containing 'lexeme’ with ’inst’ lineDef value in CodeGenBuff. If
'str’ contains a (" or a’)’, then the CodeGenBuff entries are modified so that all matching left-
sym and rightsym have the same lineDef value.

CodeGenBuffSaveAfter

void CodeGenBuffSaveAfter(char *str, char *lexeme, int inst)

Args:
str The string to insert into CodeGenBuff.
lexeme The preceding lexeme.
inst The lexeme’s lineDef value.

Insert 'str’ after the node containing 'lexeme’ with 'inst’ lineDef value in CodeGenBuff. If 'str’
contains a '(" or a’)’, then the CodeGenBuff entries are modified so that all matching leftsym
and rightsym have the same lineDef value.

CodeGenBuffDelete

void CodeGenBuffDelete(char *lexeme, int inst)

Args:
lexeme A lexeme value.
inst The lexeme’s lineDef value.
Deletes the node in CodeGenBuff containing 'lexeme’ with 'inst’ lineDef value.

CodeGenBuffSaveFunFirst

void CodeGenBuffSaveFunFirst(char *str)

Args:
str The string to insert into CodeGenBuff.

Same as CodeGenBuffSaveFirst() except the node containing 'str’ will have a function flag in-
dicator on it.

Chapt Draft Revision: 2.3 6-49

SCHEDULER PBS IDS

CodeGenBuffSaveFun

void CodeGenBuffSaveFun(char *str)

Args:
str The string to insert into CodeGenBuff.

Same as CodeGenBuffSave() except the node containing 'str’ will have a function flag indica-
tor on it.

CodeGenBuffSaveFunBefore

void CodeGenBuffSaveFunBefore(char *str, char *lexeme, int inst)

Args:
str The string to insert into CodeGenBuff.
lexeme The succeeding lexeme.
inst The lexeme’s lineDef value.

Same as CodeGenBuffSaveBefore() except the node containing 'str’ will have a function flag
indicator on it.

CodeGenBuffSaveFunAfter

void CodeGenBuffSaveFunAfter(char *str, char *lexeme, int inst)

Args:
str The string to insert into CodeGenBuff.
lexeme The preceeding lexeme.
inst The lexeme’s lineDef value.

Same as CodeGenBuffSaveAfter() except the node containing 'str’ will have a function flag in-
dicator on it.

CodeGenStatPrint

void CodeGenStatPrint(void)

Adds a "printf" to CodeGenBuff.

CodeGenStatPrintTail

void CodeGenStatPrintTail(struct MYTOK expr)

6-50 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
expr Some expression entity.

Generates the code for 'print(expr) BASL statement in CodeGenBuff. The corresponding
"printf()" statement will be generated based on the data type of 'expr’.

CodeGenBuffGetLast

Np CodeGenBuffGetLast(void)

Return the last node in CodeGenBuff.

CodeGenBuffSaveSpecOper

void CodeGenBuffSaveSpecOper(operstr)

Args:
operstr An special operator string: could be sizeAdd(, sizeMult(, sizeMinus(, sizeDiv(.

This checks to make sure ++, and -- operators are preceded by an identifier expression. Also,
this routine makes sure that the special operator string is placed in the right place in a heav-
ily nested arithmetic expression.

CodeGenBuffSaveStrAssign

void CodeGenBuffSaveStrAssign(void)

Given a BASL assignment statement, var = expr, with var being of String type, then gener-
ate the C statement "dynamic_strcpy(&var, expr);".

CodeGenBuffSaveForeach

void CodeGenBuffSaveForeach(struct MYTOK var, struct MYTOK svar)

Args:
var The 1st identifier in the foreach statement.
svar The 2nd identifier in the foreach statement.

Given a BASL assignment statement, foreach(var in svar) {}, the following C translations oc-
cur:

foreach(server in set_server) {} -->

for(server=set_server->head; server; server=server->nextptr) {}

foreach(cnode in set_cnode) {} -->
for(cnode=set_cnode->head; cnode; cnode=cnode->nextptr) {}

Chapt Draft Revision: 2.3 6-51

SCHEDULER PBS IDS
foreach(que in set_que) {} -->
for(que=set_que->head; que; que=que->nextptr) {}

foreach(job in set_job) {} -->
for(firstJobPtr(&set_job, set_job->first); (job=set_job->job); nextJobPtr(&set_job)) {}

CodeGenBuffSaveSwitch

void CodeGenBuffSaveSwitch(struct MYTOK switchVar)

Args:
switchVar
The variable at the head of the switch statement.

Given a BASL assignment statement, switch(switchVar) { case caseVal: ... }, BASL-to-C
translations occur resulting in "if(switchVar == caseVal) {}" or
"else if(switchVar == caseVal) {}" statements.

CodeGenBuffSaveSwitchlin

void CodeGenBuffSaveSwitchin(struct MYTOK switchVar, struct MYTOK caseVal)

Args:
switchVar
The variable at the head of the switch statement.
caseVal A value appearing in a case label of a switch statement.

Given a BASL assignment statement, switch(switchVar) { case in caseVal: ... }, BASL-to-C
translations occur resulting in "if(inXRange(switchVar, caseVal)) {}" or "else if(in-
XRange(switchVar, caseVal)) {}" statements.

CodeGenBuffSaveQueJobFind

void CodeGenBuffSaveQueJobFind(void)

The following translations occur:

QueJobFind(que, arg2(), cpr, arg4) --> QueJobFindInt(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == Int

QueJobFind(que, arg2(), cpr) --> QueJobFindInt(que, arg2(), cpr)
if arg2’s type == Int

QueJobFind(que, arg2(), cpr, arg4) --> QueJobFindStr(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == String

QueJobFind(que, arg2(), cpr) --> QueJobFindStr(que, arg2(), cpr)
if arg2’s type == String

6-52 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

QueJobFind(que, arg2(), cpr, arg4) --> QueJobFindSize(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == Size

QueJobFind(que, arg?2(), cpr) --> QueJobFindSize(que, arg2(), cpr)
if arg2's type == Size

QueJobFind(que, arg2(), cpr, arg4)
--> QueJobFindDateTime(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == DateTime
QueJobFind(que, arg2(), cpr) --> QueJobFindSize(que, arg2(), cpr)
if arg2’s type == DateTime

CodeGenBuffSaveQueFilter

void CodeGenBuffSaveQueFilter(void)

The following translations occur:

QueFilter(que, arg2(), cpr, arg4) --> QueFilterInt(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == Int

QueFilter(que, arg2(), cpr) --> QueFilterInt(que, arg2(), cpr)
if arg2's type == Int

QueFilter(que, arg2(), cpr, arg4) --> QueFilterStr(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == String
QuekFilter(que, arg2(), cpr) --> QueFilterStr(que, arg2(), cpr)
if arg2’s type == String

QueFilter(que, arg2(), cpr, arg4) --> QueFilterSize(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == Size

QueFilter(que, arg2(), cpr) --> QueFilterSize(que, arg2(), cpr)
if arg2's type == Size

QueFilter(que, arg2(), cpr, arg4)
--> QueFilterDateTime(que, arg2(), cpr, arg4)
if arg2’s type = arg4’s type == DateTime
QuekFilter(que, arg2(), cpr) --> QueFilterSize(que, arg2(), cpr)
if arg2’s type == DateTime

CodeGenBuffSaveSort

void CodeGenBuffSaveSort(void)

The following translations occur:

Sort(Set Job s, Int arg2(), Int arg3) --> SetJobSortint(s, arg2(), arg3)

Sort(Set Job s, String arg2(), Int arg3) --> SetJobSortStr(s, arg2(), arg3)

Sort(Set Job s, Size arg2(), Int arg3) --> SetJobSortSize(s, arg2(), arg3)

Sort(Set Job s, DateTime arg2(), Int arg3) --> SetJobSortDateTime(s, arg2(), arg3)

Chapt Draft Revision: 2.3 6-53

SCHEDULER PBS IDS

Sort(Set Job s, Float arg2(), Int arg3) --> SetJobSortFloat(s, arg2(), arg3)

Sort(Set CNode s, Int arg2(), Int arg3) --> SetCNodeSortint(s, arg2(), arg3)

Sort(Set CNode s, String arg2(), Int arg3) --> SetCNodeSortStr(s, arg2(), arg3)

Sort(Set CNode s, Size arg2(), Int arg3) --> SetCNodeSortSize(s, arg2(), arg3)

Sort(Set CNode s, DateTime arg2(), Int arg3) --> SetCNodeSortDateTime(s, arg2(), arg3)
Sort(Set CNode s, Float arg2(), Int arg3) --> SetCNodeSortFloat(s, arg2(), arg3)

Sort(Set Que s, Int arg2(), Int arg3) --> SetQueSortint(s, arg2(), arg3)

Sort(Set Que s, String arg2(), Int arg3) --> SetQueSortStr(s, arg2(), arg3)

Sort(Set Que s, Size arg2(), Int arg3) --> SetQueSortSize(s, arg2(), arg3)

Sort(Set Que s, DateTime arg2(), Int arg3) --> SetQueSortDateTime(s, arg2(), arg3)
Sort(Set Que s, Float arg2(), Int arg3) --> SetQueSortFloat(s, arg2(), arg3)

Sort(Set Server s, Int arg2(), Int arg3) --> SetServerSortint(s, arg2(), arg3)

Sort(Set Server s, String arg2(), Int arg3) --> SetServerSortStr(s, arg2(), arg3)

Sort(Set Server s, Size arg2(), Int arg3) --> SetServerSortSize(s, arg2(), arg3)

Sort(Set Server s, DateTime arg2(), Int arg3) --> SetServerSortDateTime(s, arg2(), arg3)
Sort(Set Server s, Float arg2(), Int arg3) --> SetServerSortFloat(s, arg2(), arg3)

6.1.3. Pseudo-Compiler

The source code for the pseudo-compiler front end basl2c is Basl2c.c. The compiler will take a
program in BASL and translate it into intermediate language (C code). The compiler will
check the structure and semantic correctness of the BASL program before generating the in-
termediate code.

6.1.3.1. File: Basl2c.c

loadUserAccessibleAssistFuncs

static void loadUserAccessibleAssistFuncs(void)

This is where predefined functions in BASL are loaded in order for the scheduler writer to
call them. This is the function to modify in case new functions are added or when deleting
functions from the list.

addIncludes

static void addIncludes(void)

This function defines the "#include" lines to be placed at the header of the resulting interme-
diate (C) code.

addMainSched

static void addMainSched(void)

6-54 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Attaches some calls like Systemlnit(), SystemStateRead() to the resulting intermediate code
in order for it to function as a daemon scheduler.

main

main(int argc, char **argv)

The sequence of execution are: (1) get command line arguments (see BASL ERS for format of
options), (2) initialize internal variables used by the Lexer, Parser, Symbol table, Semantic
analyzer, and Code Generator, (3) generate the #include lines, (4) load the predefined func-
tions’ prototypes, (5) start parsing the input file. At the end of the parsing stage, then (6)
delete the Symbol table, (7) close any opened output stream.

6.1.4. Assist Functions

The assist (helper) functions are made available to create scheduling constructs Job, Que,
CNode, Server, and ResMom. The functions can be found under the Assist subdirectory.

6.1.4.1. General Purpose Functions

The source code found under the Gen subdirectory contains general-purpose data structures
and functions that are used by the Lexer, Parser, Semantic analyzer, Code generator, and the
predefined functions. The files involved are af.h and af.c. The main data structures used are:
struct time_struct {

int h;

int m;

ints;
}

typedef struct time_struct Time;

struct date_struct {
int m;
int d;
inty;

}

typedef struct date_struct Date;

struct datetime_struct {
Time t;
Date d;

}

typedef struct datetime_struct DateTime;

struct size_struct {
long int num; [* numeric part */
unsigned int shift; /* K=10, M=20, G=30, T=40, P=50 */
unsigned int units; /* BYTES=0, WORD=1 */

}

typedef struct size_struct Size;
struct intRange_struct {

int lo;
int hi;

Chapt Draft Revision: 2.3 6-55

SCHEDULER PBS IDS

}

typedef struct intRange_struct IntRange;

struct floatRange_struct {
float lo;
float hi;

}

typedef struct floatRange_struct FloatRange;

struct dayofweekRange_struct {
float lo;
float hi;

}
typedef struct dayofweekRange_struct DayofweekRange;

struct datetimeRange_struct {
DateTime lo;
DateTime hi;

}

typedef datetimeRange_struct DateTimeRange;

struct sizeRange_struct {
Size lo;
Size hi;

}

typedef sizeRange_struct SizeRange;

struct IntRes {
struct IntRes *nextptr;
char *name;
int value;

}

struct SizeRes {
struct SizeRes *nextptr;
char *name;
Size value;

}

struct StringRes {
struct StringRes *nextptr;
char *name;
char *value;

}

struct dynamic_array {
void *ptr; [* pointer to the dynamic array */
int numeElems; /* # of elements in the array */

}

struct varstr_type {
int scope; [* variable’s scope */
void *pptr; [* variable’s parent ptr -

used to collectively free

6-56

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

up malloc-ed storage
linked to some main structure */
void *ptr; [* ptr to malloc-ed storage of a */
[* variable string */
}
#define VARSTRLEN 500
static struct varstr_type *varstr[VARSTRLEN];

struct varstrindex_type {
struct varstr_type *mptr;
struct varstrindex_type *link;

h

#define VARSTR_INDEX_LEN 480
static struct varstrindex_type *varstrindexVARSTR_INDEX_LEN];

struct varstrSublndex_type {
struct varstrindex_type *ptr;
struct varstrSublndex_type *link;

h

#define VARSTR_SUBINDEX_LEN 19
static struct varstrSublndex_type *varstrSublndex[VARSTR_SUBINDEX_LEN];

struct malloc_type {
int scope; [* variable’s scope */
void *pptr; [* variable’s parent ptr -
used to collectively free
up malloc-ed storage
linked to some main structure */
void *ptr; [* ptr to malloc-ed storage */
}
#define MALLOCLEN 500
static struct malloc_type *mallocTable[MALLOCLEN];

struct mallocindex_type {
struct malloc_type *mptr;
struct mallocindex_type *link;

h

#define MALLOC_INDEX_LEN 480
static struct mallocindex_type *mallocindexTable[MALLOC INDEX_LEN];

struct mallocSubindex_type {
struct mallocindex_type *ptr;
struct mallocSubindex_type *link;

h

#define MALLOC_SUBINDEX_LEN 19
static struct mallocSubindex_type *mallocSublindexTable[MALLOC _SUBINDEX_LEN];

dynamic_array is a table of dynamically allocated arrays. varstr hash table that holds in-
formation about malloc-ed strings, hashed according to ptr value. varstrindex is a hash
index table for the varstr table, hashed on the pptr attribute. varstrSublndex is another
hash index table for the varstr table, hashed on the scope attribute. mallocTable hash

Chapt Draft Revision: 2.3 6-57

SCHEDULER PBS IDS

table that holds information about malloc-ed non-string objects, hashed against the ptr val-

ue. mallocindexTable another hash table for the mallocTable, this time, hashed against
the pptr attribute. mallocSubindexTable another hash table for the mallocTable, this
time, hashed against the scope attribute. IntRes, SizeRes, StringRes hold various re-

source names and values that were obtained from a query of the Server.

6.1.4.1.1. File: af.c

varstrHash

static int varstrHash(unsigned long k)

Args:
k A hash key

Uses the multiplication method found in p. 228 of Cormen, Leiserson, Rivest book, "Introduc-
tion to Algorithms", to come up with a hashing function.

varstrindexHash

static int varstrindexHash(unsigned long k)

Args:
k A hash key

Uses the multiplication method found in p. 228 of Cormen, Leiserson, Rivest book, "Introduc-
tion to Algorithms", to come up with a hashing function.

varstrSublndexHash

static int varstrSublndexHash(unsigned long k)

Args:
k A hash key

Uses the multiplication method found in p. 228 of Cormen, Leiserson, Rivest book, "Introduc-
tion to Algorithms", to come up with a hashing function.

mallocTableHash

static int mallocTableHash(unsigned long k)

Args:
k A hash key

Uses the multiplication method found in p. 228 of Cormen, Leiserson, Rivest book, "Introduc-
tion to Algorithms", to come up with a hashing function.

6-58 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

malloclndexTableHash

static int mallocindexTableHash(unsigned long k)

Args:
k A hash key

Uses the multiplication method found in p. 228 of Cormen, Leiserson, Rivest book, "Introduc-
tion to Algorithms", to come up with a hashing function.

mallocSublndexTableHash

static int mallocSublndexTableHash(unsigned long k)

Args:
k A hash key

Uses the multiplication method found in p. 228 of Cormen, Leiserson, Rivest book, "Introduc-
tion to Algorithms", to come up with a hashing function.

varstrSublndexAdd

void varstrSublndexAdd(void *ptr)

Args:
ptr Pointer to varstrindex_type

Adds a new entry into the varstrSublndex table, hashed according to the ptr->mptr->scope
value.

varstrSublndexFree

void varstrSublndexFree(void *ptr)

Args:
ptr Pointer to varstrindex_type
Frees the varstrSublndex table entry that carries a 'ptr’ value.

varstrindexAdd

void varstrindexAdd(void *ptr)

Args:

Chapt Draft Revision: 2.3 6-59

SCHEDULER PBS IDS

ptr Pointer to varstr_type
Adds a new entry into the varstrindex table, hashed according to the ptr->pptr value.

varstrindexFree

void varstrindexFree(void *ptr)

Args:
ptr Pointer to varstr_type

Frees the varstrindex table entry that carries a 'ptr’ value. Also, frees up any varstr-
Sublndex table entry that hangs off of this entry.

varstrindexFreeNolndex

void varstrindexFreeNolndex(void *ptr)

Args:
ptr Pointer to varstr_type

Like varstrindexFree except only the varstrSublndex table entry that hangs off of this entry
is freed.

varstrindexFreeNoSublndex

void varstrindexFreeNoSubIndex(void *ptr)

Args:
ptr Pointer to varstr_type

Like varstrindexFree except only the varstrindex table entry that carries a
'ptr’ value is freed, not any varstrSublndex entry that hangs off it.

varstrAdd

void varstrAdd(void *ptr, int scope, void *pptr)

Args:

ptr Pointer to malloc-ed string.

scope Scope value of ptr.

pptr Some parent pointer in which 'ptr’ is somewhat related to.
Adds a new entry into the varstr table, hashed according to its 'ptr’ value.

6-60 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

varstrRemove

void varstrRemove(void *ptr)

Args:
ptr Pointer to malloc-ed string.

Frees up the slot occupied by 'ptr’ in the varstr table, as well as any varstrindex table entry
that hangs off it.

varstrModScope

void varstrModScope(void *ptr, int scope)

Args:
ptr Pointer to malloc-ed string.
scope The ptr's new scope.

Modifies a ptr's scope in the varstr table to the given value. The corresponding varstr-
Sublndex table entry is updated as well since that is hashed according to scope value.

varstrModPptr

void varstrModPptr(void *ptr, void *newpptr)

Args:
ptr Pointer to malloc-ed string.
newpptr ptr’'s parent pointer.

Modifies a ptr's pptr value in the varstr table to the given value. The corresponding
varstrindex table entry is updated as well since that is hashed according to parent ptr value.

inVarstr

int inVarstr(void *ptr)

Args:
ptr Pointer to malloc-ed string.
Returns 1 if 'ptr’ is in the varstr table; O otherwise.

varstrPrint

void varstrPrint(void)

Chapt Draft Revision: 2.3 6-61

SCHEDULER PBS IDS

Prints out the elements of the varstr table.

varstrFree

void varstrFree(void *ptr)

Args:
ptr Pointer to malloc-ed string.

Issues a free() to the malloc-ed storage allocate to 'ptr’, and clearing any varstrindex, varstr-
Sublndex table entries associated with it.

varstrFreeNolndex

void varstrFreeNolndex(void *ptr)

Args:
ptr Pointer to malloc-ed string.

Issues a free() to the varstr entry that carries 'ptr’, but do not free any varstrindex table en-
try associated with it.

varstrFreeNoSublndex

void varstrFreeNoSubindex(void *ptr)

Args:
ptr Pointer to malloc-ed string.

Issues a free() to the varstr entry that carries 'ptr’, but do not free any varstrSublndex table
entry associated with it.

varstrPrint

void varstrPrint(void)

Prints out the elements of the varstr, varstrindex, and varstrSublndex tables.

varstr2Free

void varstr2Free(void *ptr, void *ptr2)

Args:

6-62 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ptr Pointer to malloc-ed string.
ptr2 Pointer to another malloc-ed string.
An optimization attempt that allows 2 pointers to be freed all at once.

varstrFreeByScope

void varstrFreeByScope(int scope)

Args:
scope The scope of string(s) to free up.
Frees up all malloc-ed strings whose scope value is as given.

varstrFreeByPptr

void varstrFreeByPptr(void *pptr)

Args:
pptr The parent pointer of the string(s) to free up.
Frees up all malloc-ed strings whose pptr value is as given.

varstrinit

void varstrinit(void)

initializes the hash tables: varstr, varstrindex, varstrSublndex.

dynamic_strcpy

void dynamic_strcpy(char **strl_ptr, const char *str2)

Args:
strl_ptr Pointer to the string to copy a new value into.
str2 New value of the string.

Copies value of 'str2’ to the string pointed to by strl_ptr. If the latter is NULL, then a new
string is malloc-ed; otherwise, it will be realloc-ed. The newly alloc-ed or realloc-ed storage is
recorded in the varstr table. On realloc, any previous alloc-ed storage recorded in the varstr
table is removed. The varstr scope of the string is automatically global (0).

dynamic_strcat

void dynamic_strcat(char **strl1_ptr, const char *str2)

Chapt Draft Revision: 2.3 6-63

SCHEDULER PBS IDS

Args:
strl_ptr Pointer to the string to copy a new value into.
str2 value of a string to append.

Appends value of 'str2’ to the string pointed to by strl_ptr. If the latter is NULL, then a new
string is malloc-ed; otherwise, it will be realloc-ed. The newly alloc-ed or realloc-ed storage is
recorded in the varstr table. On realloc, any previous alloc-ed storage recorded in the varstr
table is removed. The varstr scope of the string is automatically global (0).

strTolnt

int strTolnt(char *str)

Args:
str String to convert.
Converts a 'str’ into an int value using the strtol() call. The int value is returned.

strToFloat

Float strToFloat(char *str)

Args:
str String to convert.
Converts a 'str’ into a float value using the strtod() call. The float value is returned.

strToDayofweek

Dayofweek strToDayofweek(char *str)

Args:
str String to convert.

Converts a 'str’ into a Dayofweek value, mapping "SUN"->SUN, "MON"->MON, etc... The re-
sulting value is returned.

strToDate

Date strToDate(char *str)

Args:
str String to convert.

Converts a 'str’ of the form: (m]d]y@h:m:s), or (m]d]y) into a Date value. {0, 0, 0} will be re-
turned if error was encountered during conversion.

6-64 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

strToTime

Time strToTime(char *str)

Args:
str String to convert.

Converts a 'str’ of the form: (m]d]y@h:m:s), or (h:m:s) into a Time value. {-1, -1, -1} will be
returned if error was encountered during conversion.

strToDateTime

DateTime strToDateTime(char *str)

Args:
str String to convert.

Converts a 'str’ of the form: (m|d]y@h:m:s), (h:m:s), or (m]d]y) into a DateTime value. {-1,
-1, -1, 0, 0, O} will be returned if error was encountered during conversion.

strToSize

Size strToSize(char *str)

Args:
str String to convert.
Converts a str’ of the form: "<numeric><suffix>" where <suffix> is:

[KIKIMIM]glGItITlplP] [b]w] into the corresponding Size struct. If an error occurred
during conversion such as BADVAL or BADSUFFIX, then {-1, 0, BYTES} Size struct is re-
turned. NOTE: The algorithm used in the conversion is the same as the routines found in
the server.

strsecsToDateTime

DateTime strsecsToDateTime(char *str)

Args:
val String to convert.

Converts a 'str’, containing some # of seconds since epoch, into a DateTime value. {-1, -1, -1,
0, 0, 0} will be returned if error was encountered during conversion.

strToBool

Size strToBool(char *str)

Chapt Draft Revision: 2.3 6-65

SCHEDULER PBS IDS

Args:
str String to convert.
Converts a 'str’, of the form: "True" or "False", to the int TRUE or FALSE.

strToSize

Size strToSize(char *str)

Args:
str String to convert.
Converts a str’ of the form: "<numeric><suffix>" where <suffix> is:

[KIKIMIM]glGItITlplP] [b]w] into the corresponding Size struct. If an error occurred
during conversion such as BADVAL or BADSUFFIX, then {-1, 0, BYTES]} Size struct is re-
turned. NOTE: The algorithm used in the conversion is the same as the routines found in

sizeToStr

void sizeToStr(Size sizeval, char *cvnbuf)

Args:
sizeval The Size value to convert.
cvnbuf The converted String.
Converts a 'sizeval’ into a string, placing the result in 'cvnbuf’.

strtimeToSecs

int strtimeToSecs(times)

Args:
times A time string of the form (hh:mm:ss[.ms]).

This returns the equivalent # of seconds for a given 'times’ string. 'ms’ can potentially be lost.
If conversion fails, this will return a -1.

datecmp

int datecmp(Date d1, Date d2)

Args:
di 1st Date value to compare.
d2 2nd Date value to compare.

Returns: <0ifdlis<d2;=0ifdl =d2; >0 ifdl >=d2.

6-66 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

timecmp

int timecmp(Time t1, Time t2)

Args:
tl 1st Time value to compare.
t2 2nd Time value to compare.

Returns: <0iftlis<t2;=0iftl =t2; > 0 if t1 >=t2.

datetimecmp

int datetimecmp(DateTime dt1, DateTime dt2)

Args:
dtl 1st DateTime value to compare.
dt2 2nd DateTime value to compare.

Returns: < 0 if dtl is < dt2; = 0 if dtl = dt2; > O if dtl1 >= dt2.

datetimeToSecs

int datetimeToSecs(DateTime dt)

Args:
dt DateTime value to convert.

Converts a DateTime structure into the # of seconds since epoch (1]1]1970@0:0:0). The
NOW time or date is substituted for missing time or date portions.

normalizeSize

int normalizeSize(Size *a, Size *b, Size *ta, Size *tb)

Args:
a 1st size value to normalize.
b 2nd size value to normalize.
ta Where the normalize value to 'a’ is placed.
tb Where the normalize value to 'b’ is placed.

Normalize 2 size value, a and b, adjusting them so that the shift counts are the same. The
new values are placed in ta and tb, respectively. The shift that is "lower" of the 2 becomes the
common denominator. Returns O if successful; -1 otherwise.

Chapt Draft Revision: 2.3 6-67

SCHEDULER PBS IDS

sizecmp

int sizecmp(Size a, Size w)

Args:
a 1st size value to compare.
w 2nd size value to compare.

Compares 2 Size structures, aand w, and returns +1 ifa>w,0ifa==w, -l ifa<w.

hashptr

static long int hashptr(void *ptr)

Args:
ptr A pointer whose hash index to d_array will be obtained.
Returns a possible hash index for 'ptr’. Formula: ptr % MAXDARRAY.

getHashValue

static int getHashValue(void *ptr)

Args:
ptr A pointer whose hash actual value to d_array will be obtained.
Returns the hash value for 'ptr’, with hash collisions automatically resolved.

getHashValueToStore

static int getHashValueToStore(void *ptr)

Args:
ptr A pointer that will be stored in system array d_array.
Returns the hash value where 'ptr’ could be stored in d_array.

dynamicArraySize

static int dynamicArraySize(void *array)

Args:
array A dynamic array.
Returns # of elements in 'array’.

6-68 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

initDynamicArray

void *initDynamicArray(size_t numElems, size_t elementSize)

Args:
numElems
of elements in the array to be created.

elementSize
The size of each element in the array to be created.

Used calloc to create an array containing 'numElems’ with each element of size 'elementSize’.
A pointer to the newly-created array is returned, and also recorded in the 'd_array’ table.

extendDynamicArray

void *extendDynamicArray(void *array, size_t minNumElems, size_t elementSize)

Args:
array A dynamic array to expand.

minNumElems
of elements in the array to be created.

elementSize
The size of each element in the array to be created.

Expands the 'array’ so that the minNumElems can at least fit. If 'array’ is NULL, then init-
DynamicArray(minNumElems, elementSize) will be called. Information about the newly re-
alloc-ed 'array’ is recorded in the 'd_array’ table (removing the previous old pointer), and the
pointer to this newly- realloc-ed storage is also returned.

freeDynamicArray

void freeDynamicArray(void *array)

Args:
array A dynamic array to free up.

Free up the malloc-ed storage allocated to 'array’, and remove its entry from the 'd_array’
table.

printDynamicArrayTable

void printDynamicArrayTable(void)

Prints out the contents of the 'd_array’ table.

Chapt Draft Revision: 2.3 6-69

SCHEDULER PBS IDS

datePrint

void datePrint(Date d)
Args:

d The Date structure to print out.
Print out 'd’ in a human readable format.

timePrint

void timePrint(Time t)

Args:
t The Time structure to print out.
Print out 't’ in human readable format.

datetimePrint

void timePrint(DateTime dt)
Args:

dt The DateTime structure to print out.
Print out 'dt’ in human readable format.

sizePrint

void sizePrint(Size s, int readable)

Args:
S The Size structure to print out.
readable The format of output flag.

Print out ’s’ in human readable format if 'readable’ flag is set to 1; otherwise, just print out
the elements of the structure.

intRangePrint

void intRangePrint(IntRange r)

Args:
r The IntRange structure to print out.

6-70 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Print out 'r’ in human readable format.

floatRangePrint

void floatRangePrint(FloatRange r)

Args:
r The FloatRange structure to print out.
Print out 'r’ in human readable format.

dayofweekPrint

void dayofweekPrint(Dayofweek dow)

Args:
dow The Dayofweek structure to print out.
Print out 'dow’ in human readable format.

dayofweekRangePrint

void dayofweekRangePrint(DayofweekRange r)

Args:
r The DayofweekRange structure to print out.
Print out 'r’ in human readable format.

dateRangePrint

void dateRangePrint(DateRange d)

Args:
d The DateRange structure to print out.
Print out 'd’ in human readable format.

timeRangePrint

void timeRangePrint(TimeRange t)

Args:

Chapt Draft Revision: 2.3 6-71

SCHEDULER PBS IDS

t The TimeRange structure to print out.
Print out 't’ in human readable format.

datetimeRangePrint

void timeRangePrint(DateTimeRange dt)

Args:
dt The DateTimeRange structure to print out.
Print out 'dt’ in human readable format.

sizeRangePrint

void sizeRangePrint(SizeRange s, int readable)

Args:
S The SizeRange structure to print out.
readable The format of output flag.

Print out s’ in human readable format if 'readable’ flag is set to 1; otherwise, just print out
the elements of the Size structure.

strTolntRange

IntRange strTolntRange(char *str)

Args:
str The string to convert: "(low Int, high Int)"
Converts 'str’ into an IntRange structure, returning the latter.

strToFloatRange

FloatRange strToFloatRange(char *str)

Args:
str The string to convert: "(low Float, high Float)"
Converts 'str’ into a FloatRange structure, returning the latter.

strToDayofweekRange

DayofweekRange strToDayofweekRange(char *str)

6-72 Chapt Draft Revision: 2.3

PBS IDS

Args:
str The string to convert: "(low dow, high dow)"
Converts 'str’ into a DayofweekRange structure, returning the latter.

strToDateRange

DateRange strToDateRange(char *str)

Args:
str The string to convert: "(low date, high date)"
Converts ’str’ into a DateRange structure, returning the latter.

strToTimeRange

DateRange strToTimeRange(char *str)

Args:
str The string to convert: "(low time, high time)"
Converts 'str’ into a TimeRange structure, returning the latter.

strToDateTimeRange

DateRange strToDateTimeRange(char *str)

Args:
str The string to convert: "(low datetime, high datetime)"
Converts 'str’ into a DateTimeRange structure, returning the latter.

sizeRangecmp

int sizeRangecmp(SizeRange rl, SizeRange r2)

Args:
ri 1st SizeRange structure to compare.
r2 2nd SizeRange structure to compare.

SCHEDULER

Compares 2 size ranges, rl and r2, and returns 0 if they're the same; 1, otherwise.

sizeStrcmp

int sizeStrcmp(char *a, char *w)

Chapt Draft Revision: 2.3

6-73

SCHEDULER PBS IDS

Args:
a 1st string to compare with format "<number><suffix>".
w 2nd string to compare with format "<number><suffix>".

Compares 2 size-formatted strings, a and w, and returns +1 ifa>w, O ifa==w, and -1 ifa <
W.

sizeRangeStrcmp

int sizeRangeStrcmp(char *a, char *w)

Args:
a 1st string to compare with format "(<number><suffix>, <number><suffix>)".
w 2nd string to compare with format "(<number><suffix>, <number><suffix>)".

Compares 2 sizeRange-formatted strings, a and w, and returns +1 ifa>w, 0 if a==w, and -1
ifa<w.

tolntRange

IntRange tolntRange(int i1, int i2)

Args:
il 1st number in the range.
i2 2nd number in the range.
Converts the 2 given numbers into an IntRange structure.

toFloatRange

FloatRange toFloatRange(double f1, double f2)

Args:
fl 1st number in the range.
2 2nd number in the range.

Converts the 2 given numbers into a FloatRange structure.

toDayofweekRange

DayofweekRange toDayofweekRange(Dayofweek dow1, Dayofweek dow?2)

Args:
dowl 1stentity in the range.

6-74 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

dow2 2nd entity in the range.
Converts the 2 given entities into a DayofweekRange structure.

toDateRange

DateRange toDateRange(Date d1, Date d2)

Args:
di 1st entity in the range.
d2 2nd entity in the range.

Converts the 2 given entities into a DateRange structure.

toTimeRange

TimeRange toTimeRange(Time t1, Time t2)

Args:
tl 1st entity in the range.
t2 2nd entity in the range.

Converts the 2 given entities into a TimeRange structure.

toDateTimeRange

DateTimeRange toDateTimeRange(DateTime dt1, DateTime dt2)

Args:
dtl 1st entity in the range.
dt2 2nd entity in the range.
Converts the 2 given entities into a DateTimeRange structure.

toSizeRange

SizeRange toSizeRange(Size sz1, Size sz2)

Args:
szl 1st entity in the range.
sz2 2nd entity in the range.
Converts the 2 given entities into a SizeRange structure.

Chapt Draft Revision: 2.3 6-75

SCHEDULER PBS IDS

sizeAdd

Size sizeAdd(Size a, Size w)

Args:
a left operand.
w right operand.

Adds 2 Sizes together, returning the result. For values of different suffixes, normalization
will take place; the suffix in the final result is the suffix that is the smaller of the two. If
adding the two values would result in an overflow during the normalization step, then -1b is
returned.

sizeSub

Size sizeSub(Size a, Size w)

Args:
a left operand.
w right operand.

Subtracts 2 Sizes together, returning the result. For values of different suffixes, normaliza-
tion will take place; the suffix in the final result is the suffix that is the smaller of the two. If
adding the two values would result in an overflow during the normalization step, then -1b is
returned.

sizeMul

Size sizeMul(Size a, Size w)

Args:
a left operand.
w right operand.

Multiplies 2 Sizes together, returning the result. For values of different suffixes, normaliza-
tion will take place; the suffix in the final result is the suffix that is the smaller of the two. If
adding the two values would result in an overflow during the normalization step, then -1b is
returned.

sizeDiv

Size sizeDiv(Size a, Size w)

Args:
a left operand.

6-76 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

w right operand.

Divides 2 Sizes together, returning the result. For values of different suffixes, normalization
will take place; the suffix in the final result is the suffix that is the smaller of the two. If
adding the two values would result in an overflow during the normalization step, then -1b is
returned.

sizeUminus

Size sizeUminus(Size sz)

Args:
sz A Size operand.
Multiplies the numeric part of 'sz’ by -1, returning the result.

strCat

char *strCat(char *strl, char *str2)

Args:
strl left operand.
str2 right operand.

Concatenates 2 malloc-ed strings into one string, returning the result. The returned string is
a pointer to a malloc-ed area whose scope in the varstr table will be -1. So, calling a varstr-
FreeByScope(-1) will clean up the temporary storage.

mallocSublndexTableAdd

void mallocSubindexTableAdd(struct mallocindex_type *ptr)

Args:
ptr The pointer value to add.

Adds a new entry (content is as given) to the mallocSublndexTable, hashed against
ptr->mptr->scope.

mallocSublndexTableFree

void mallocSubindexTableFree(struct mallocindex_type *ptr)

Args:
ptr associated ptr value
Free up the entry of mallocSublndexTable whose ptr value is 'ptr’.

Chapt Draft Revision: 2.3 6-77

SCHEDULER PBS IDS

malloclndexTableAdd

void mallocindexTableAdd(struct malloc_type *ptr)

Args:
ptr The pointer value to add.
Adds a new entry (content is as given) to the mallocindexTable, hashed against ptr->pptr.

malloclndexTableFree

void mallocindexTableFree(struct malloc_type *ptr)

Args:
ptr associated ptr value

Free up the entry of mallocindexTable whose associated ptr value is 'ptr’, and also frees up
any mallocSublndexTable entry that hangs off it.

malloclndexTableFreeNolndex

void mallocindexTableFreeNolndex(struct malloc_type *ptr)

Args:
ptr associated ptr value

Like mallocIndexTableFree() except only the associated mallocSublndexTable entry value is
freed.

malloclndexTableFreeNolndex

void mallocindexTableFreeNoSublndex(struct malloc_type *ptr)

Args:
ptr associated ptr value

Like mallocIndexTableFree() except only the associated mallocindexTable entry value is
freed, and not any mallocSublndexTable entry associated with it.

mallocTableAdd

void mallocTableAdd(void *ptr, void *pptr, int scope)

Args:

6-78 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ptr The pointer value to add.
pptr The parent pointer to assign 'ptr’.
scope The scope value to assign 'ptr’.
Adds a new entry (content is as given) to the mallocTable, hashed against 'ptr’.

mallocTablePrint

void mallocTablePrint(void)

Prints out the contents of mallocTable, mallocindexTable, mallocSublndexTable

inMallocTable

int inMallocTable(void *ptr)

Args:
ptr A pointer value to look for in the mallocTable.
Returns 1 if 'ptr’ is one of the entries on the mallocTable; 0, otherwise.

mallocTablelnit

int mallocTablelnit(void)

Initializes the mallocTable, mallocindexTable, mallocSublndexTable entries.

mallocTableFree

void mallocTableFree(void *ptr)

Args:
ptr A pointer value in the mallocTable to free up.

Free up the malloc-ed storage occupied by 'ptr’, and also remove its entry from the mal-
locTable. Also, frees up any associated mallocindexTable and mallocSublndexTable entries.

mallocTableFreeNolndex

void mallocTableFreeNolndex(void *ptr)

Args:

Chapt Draft Revision: 2.3 6-79

SCHEDULER PBS IDS

ptr A pointer value in the mallocTable to free up.
Like mallocTableFree except associated mallocindexTable entry is not freed.

mallocTableFreeNoSublndex

void mallocTableFreeNoSublndex(void *ptr)

Args:
ptr A pointer value in the mallocTable to free up.
Like mallocTableFree except associated mallocSublndexTable entry is not freed.

mallocTableFreeNoSublndex2

void mallocTableFreeNoSublndex2(void *ptr)

Args:
ptr A pointer value in the mallocTable to free up.

Like mallocTableFree except associated mallocSublndexTable entry is not freed, as well as
the 'ptr’ itself is not freed.

mallocTableFreeByPptr

void mallocTableFreeByPptr(void *pptr)

Args:
pptr A parent pointer value in the mallocTable.

Free up pointers to storage associated with 'pptr’ (parent pointer value of
'‘pptr’) and remove the corresponding slots from mallocTable. Also, any mallocTableSublndex
entry is freed.

mallocTableFreeByScope

void mallocTableFreeByScope(int scope, void (*freefunc)())

Args:
scope A scope value to look for in mallocTable.
freefunc The free function to use when freeing storage associated with 'scope’.

Free up pointers to storage associated with 'scope’ value and remove the corresonding slots
from mallocTable. Also, update the associated mallocSublndexTable entry.

6-80 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

mallocTableModScope

void mallocTableModScope(void *ptr, int newscope)

Args:
ptr A pointer value to look for in mallocTable.
newscopeThe new scope for 'ptr’.

Modify 'ptr's scope value to 'newscope’. Appropriately update the mallocindexTable() that
hangs off of this.

mallocTableSafeModScope

void mallocTableSafeModScope(void *ptr, int newscope)

Args:
ptr A pointer value to look for in mallocTable.
newscopeThe new scope for 'ptr’.

Modify ptr's scope value to 'newscope’ IF the current scope value is != 0. Appropriately up-
date the mallocSublndexTable() that hangs off of this.

inIntRange

int inIntRange(int i, IntRange range)

Args:

i An integer value.

range A range of numbers.
Returns 1 if i is in 'range’; 0 otherwise.

inFloatRange

int inFloatRange(double f, FloatRange range)

Args:

f A float value.

range A range of numbers.
Returns 1 if f is in 'range’; 0 otherwise.

Chapt Draft Revision: 2.3 6-81

SCHEDULER PBS IDS

inDayofweekRange

int inDayofweekRange(Dayofweek dow, DayofweekRange range)

Args:

dow A float value.

range A range of days of week.
Returns 1 if dow is in 'range’; O otherwise.

inDateRange

int inDateRange(Date d, DateRange range)

Args:
d A Date value.
range A range of Dates.
Returns 1 if d is in 'range’; 0 otherwise.

inTimeRange

int inTimeRange(Time t, TimeRange range)

Args:

t A Time value.

range A range of Times.
Returns 1 if tis in 'range’; 0 otherwise.

inDateTimeRange

int inDateTimeRange(DateTime dt, DateTimeRange range)

Args:
t A DateTime value.
range A range of DateTimes.
Returns 1 if dt is in 'range’; 0 otherwise.

NOTE: If date/times contain only time portions (i.e. hh:mm:ss) and low > hi, then adjust
hi by 1 day.

inSizeRange

6-82 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

int inSizeRange(Size sz, SizeRange range)

Args:

sz A DateTime value.

range A range of DateTimes.
Returns 1 if 'sz’ is in 'range’; 0 otherwise.

IntResCreate

static struct IntRes *IntResCreate(void)

Creates/mallocs a new IntRes structure, returning the pointer to it.

IntResValueGet

int IntResValueGet(struct IntRes *head, char *name)

Args:
head The 1st element in a list of IntRes structures.
name The resource name to look for in the list.
Return 'value’, given the 'name’ in the IntRes list.

IntResListPrint

void IntResListPrint(struct IntRes *head, char *descr)

Args:
head The 1st element in a list of IntRes structures.
descr Additional string description to print out.

Prints out the elements of IntRes list whose 1st element is 'head’. Print the message 'descr’
along with the list output.

IntResValuePut

struct IntRes *IntResValuePut(struct IntRes *head, char *name, int value,
void *pptr)

Args:
head The 1st element in a list of IntRes structures.
name The resource name.

Chapt Draft Revision: 2.3 6-83

SCHEDULER PBS IDS

value The new resource value.
pptr The parent pointer to associate malloc-ed storage on the IntRes list.

If a resource 'name’ is matched in IntRes list, then the matching element is updated so that
its resource value is set to 'value'. If no such element exists, then a new entry is malloc-
ed/created. Information about malloc-ed areas that were created as a result of this call will
be recorded in the mallocTable and varstr table, with parent pointer values set to 'pptr’.

IntResListFree

void IntResListFree(struct IntRes *head)

Args:
head The 1st element in a list of IntRes structures.
Frees up the element of an IntRes list starting with 'head'.

SizeResCreate

static struct SizeRes *SizeResCreate(void)

Creates/mallocs a new SizeRes structure, returning the pointer to it.

SizeResValueGet

int SizeResValueGet(struct SizeRes *head, char *name)

Args:
head The 1st element in a list of SizeRes structures.
name The resource name to look for in the list.
Return 'value’, given the 'name’ in the SizeRes list.

SizeResListPrint

void SizeResListPrint(struct SizeRes *head, char *descr)

Args:
head The 1st element in a list of SizeRes structures.
descr Additional string description to print out.

Prints out the elements of SizeRes list whose 1st element is 'head’. Print the message 'descr’
along with the list output.

6-84 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SizeResValuePut

struct SizeRes *SizeResValuePut(struct SizeRes *head, char *name, int value,
void *pptr)

Args:
head The 1st element in a list of SizeRes structures.
name The resource name.
value The new resource value.
pptr The parent pointer to associate malloc-ed storage on the SizeRes list.

In SizeRes list, this function modifies an existing element which matches

'name’, updating its resource value to 'value'. If no such element exists, then a new entry is
malloc-ed/created. Information about malloc-ed areas that were created as a result of this
call will be recorded in the mallocTable and varstr table, with parent pointer values set to

‘pptr’.

SizeResListFree

void SizeResListFree(struct SizeRes *head)

Args:
head The 1st element in a list of SizeRes structures.
Frees up the element of a SizeRes list starting with 'head'.

StringResCreate

static struct StringRes *StringResCreate(void)

Creates/mallocs a new StringRes structure, returning the pointer to it.

StringResValueGet

int StringResValueGet(struct StringRes *head, char *name)

Args:
head The 1st element in a list of StringRes structures.
name The resource name to look for in the list.

Return 'value’, given the 'name’ in the StringRes list.

StringResListPrint

Chapt Draft Revision: 2.3 6-85

SCHEDULER PBS IDS

void StringResListPrint(struct StringRes *head, char *descr)

Args:
head The 1st element in a list of StringRes structures.
descr Additional string description to print out.

Prints out the elements of StringRes list whose 1st element is 'head’. Print the message 'de-
scr’ along with the list output.

StringResValuePut

struct StringRes *StringResValuePut(struct StringRes *head, char *name, int value,
void *pptr)

Args:
head The 1st element in a list of StringRes structures.
name The resource name.
value The new resource value.
pptr The parent pointer to associate malloc-ed storage on the StringRes list.

In StringRes list, this function modifies an existing element which matches

'name’, updating its resource value to 'value'. If no such element exists, then a new entry is
malloc-ed/created. Information about malloc-ed areas that were created as a result of this
call will be recorded in the mallocTable and varstr table, with parent pointer value set to 'pp-
tr.

StringResListFree

void StringResListFree(struct StringRes *head)

Args:
head The 1st element in a list of StringRes structures.
Frees up the element of a StringRes list starting with 'head’.

6.1.4.2. ResMom

The source code found under the ResMom subdirectory contains data structures and func-
tions that are used by the PBS ResMom (resource monitor) abstraction. ResMom responds to
resource queries such as "loadave",
"numCpus", and so on. The files involved are af_resmom.h and af_resmom.c. The main data
structure used is:
struct resmom_struct {

char *inetAddr;

int portNumber;

int connectFd;

}

typedef struct resmom_struct ResMom;

6-86 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

6.1.4.2.1. File: af_ resmom.c

ResMomlnetAddrGet

char *ResMominetAddrGet(ResMom *mom)

Args:
mom Pointer to a ResMom structure.
Returns the official host name assigned to 'mom’.

ResMomPortNumberGet

int ResMomPortNumberGet(ResMom *mom)

Args:
mom Pointer to a ResMom structure.

Returns the network port number assgned to 'mom’.

ResMomConnectFdGet

int ResMomConnectFdGet(ResMom *mom)

Args:
mom Pointer to a ResMom structure.
Returns the connect file descriptor assgned to 'mom’.

ResMomlnetAddrPut

void ResMomInetAddrPut(ResMom *mom, char *mom_name)

Args:
mom Pointer to a ResMom structure.

mom_name
A name for 'mom’.

Assigns (mallocs) mom_name to 'mom’. The string name has a global scope of 0.

ResMomPortNumberPut

void ResMomPortNumberPut(ResMom *mom, int port)

Chapt Draft Revision: 2.3 6-87

SCHEDULER PBS IDS

Args:
mom Pointer to a ResMom structure.
port Port number to 'mom’.

Assigns port as port number to ‘'mom’.

ResMomConnectFdPut

void ResMomConnectFdPut(ResMom *mom, int fd)

Args:

mom Pointer to a ResMom structure.

fd New connect file descriptor to 'mom’.
Assigns fd as connect file descriptor to 'mom’.

ResMomOpen

int ResMomOpen(ResMom *mom)

Args:
mom Pointer to a ResMom structure.

Opens a connection to the resource monitor using the "openrm()" call, and returns the result-
ing file descriptor. The 'connectFd’ attribute of 'mom’ is updated accordingly.

ResMomClose

int ResMomClose(ResMom *mom)

Args:
mom Pointer to a ResMom structure.

Closes a connection to the resource monitor using the "closerm()" call. Returns 0 if closerm()
was successful; non-zero otherwise.

ResMomWrite

int ResMomWrite(ResMom *mom, char *buffer)

Args:
mom Pointer to a ResMom structure.
buffer A query string to send out to 'mom’.

Sends 'buffer’ query to ‘'mom’ using the addreq() call. Returns 1 if successful, non-zero other-
wise.

6-88 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ResMomRead

char *ResMomRead(ResMom *mom)

Args:
mom Pointer to a ResMom structure.
Returns the result of a previous resource query to sent to 'mom’, using the getreq() call.

ResMomPrint

void ResMomPrint(ResMom *mom)
Args:

mom Pointer to a ResMom structure.
Prints out the elements of 'mom’.

ResMomlInit

void ResMominit(ResMom *mom)
Args:

mom Pointer to a ResMom structure.
Initializes 'mom’.

ResMomFree

void ResMomFree(ResMom *mom)

Args:
mom Pointer to a ResMom structure.
Frees up all malloc-ed storage associated with 'mom’ structure.

6.1.4.3. CNode

The source code found under the CNode subdirectory contains data structures and functions
that are used by the CNode abstraction. CNode stands for computational node, consisting of
a shared memory, single OS image, and a set of CPUs. The files involved are af_cnode.h and
af_cnode.c, af_cnodemap.h, af_cnodemap.c. The main data structures used are:
struct IODevice {
struct IODevice *nextptr;

char *name; [* unique identitiy of the device */
Size spaceTotal; /* total space on the device */

Size spaceAvail; [* space available on the device */
Size spaceReserved; [* space reserved for the jobs */

Chapt Draft Revision: 2.3 6-89

SCHEDULER PBS IDS

int inBw; /* read bandwidth (bytes/s) or swap in rate */
int outBw; /* write bandwidth (bytes/s) or swap out rate */

h

struct Network {
struct Network *nextptr;
char *type; /* type of network - hippi, fddi, ... */
int bw; /* network bandwidth - in bytes/sec */

h

struct Memory {
struct Memory *nextptr;

char *type; /* could be physical or virtual Mem */
Size total, /* total memory size */
Size avail; [* available memory */

h

struct cnode_struct {
struct cnode_struct *nextptr;

ResMom name; /* the MOM representing the node */
char *properties; [* comma-separated list of alias hostnames */
char *vendor; [* system name */

char *os; [* string describing the OS version */

int numcCpus; /* number of processors */

int state; /* node state */

int type; /* node type */

int queryMom; [* flag */

int idletime; [* time since last keystroke/mouse movement */
int cpuPercentldle; /* % of idletime experienced by all processors */
int cpuPercentSys; /* % of time that all processors have spent */

/* running kernel code */
int cpuPercentUser; /* % of time that all processors have spent */
/* running user code */
int cpuPercentGuest; /* % of time that all processors have spent */
/* running a guest operating system */
double loadave; /* load average of all cpus in the node */
struct Memory *mem; /* memory */
struct Network *network; /* list of network devices and their properties */
struct IODevice *swap; /* list of swap devices and their properties */

struct IODevice disk; /* list of disk devices and their properties */
struct IODevice tape; /* list of tape devices and their properties */
struct IODevice srfs; /* list of srfs devices and their properties */
int multiplicity; /* during node requests, this is the # */

/* of nodes of this type requested */

h

typedef struct cnode_struct CNode;

struct SetCNode_type { /* a Set of CNodes abstraction */
CNode *head;
CNode *tail;
int numAuvail;
int numAlloc;
int numRsvd;
int numDown;

6-90 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

¥
typedef struct SetCNode_type SetCNode;

struct CNodeAttrinfo {
char *name; /* name of a CNode struct member */
int type; [* attribute type */
void (*attrPutFunc)(); /* CNodePut function for attribute */

¥

struct Resource {
char *archType;
char *nodeAttr;
char *hostQuery_keyword;

6.1.4.3.1. File: af cnode.c

10DeviceCreate

static struct IODevice *IODeviceCreate(void)

Mallocs a new struct 10Device structure, initializes the values of its elements, and then re-
turns the pointer to the structure.

10DeviceSpaceTotalGet

static Size I0DeviceSpaceTotalGet(struct IODevice *iod_head, char *name)

Args:
iod_headlst device in the device list.
name Name assigned to the device.

Returns the spaceTotal attribute value of a device named 'name’ as found in the list of de-
vices.

10DeviceSpaceAvailGet

static Size I0DeviceSpaceAvailGet(struct IODevice *iod_head, char *name)

Args:
iod_headlst device in the device list.
name Name assigned to the device.

Returns the spaceAvail attribute value of a device named 'name’ as found in the list of de-
vices.

Chapt Draft Revision: 2.3 6-91

SCHEDULER PBS IDS

10DeviceSpaceReservedGet

static Size I0DeviceSpaceReservedGet(struct I0ODevice *iod_head, char *name)

Args:
iod_headlst device in the device list.
name Name assigned to the device.

Returns the spaceReserved attribute value of a device named 'name’ as found in the list of
devices.

10DevicelnBwGet

static int IODevicelnBwGet(struct IODevice *iod_head, char *name)

Args:
iod_headlst device in the device list.
name Name assigned to the device.
Returns the inBw attribute value of a device named 'name’ as found in the list of devices.

10DeviceOutBwGet

static int IODeviceOutBwGet(struct IODevice *iod_head, char *name)

Args:
iod_headlst device in the device list.
name Name assigned to the device.
Returns the outBw attribute value of a device named 'name’ as found in the list of devices.

10DeviceListPrint

static void I0DeviceListPrint(struct IODevice *iod_head, char *descr)

Args:
iod_headlst device in the device list.
descr A message string to print out.
Prints out the values of the list of 10 devices headed by 'iod_head'.

10DeviceSpaceTotalPut

static struct I0Device *IODeviceSpaceTotalPut(struct IODevice *iod_head,
char *name, Size total, void *pptr)

6-92 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
iod_headlst device in the device list.
name Name of the device.
total New spaceTotal attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the spaceTotal attribute value of the device named by 'name’. A new 10Device struc-
ture is created if no device named 'name’ exists. For any newly malloc-ed area, an association
with 'pptr’ is established. This function returns non-NULL if there’'s a new head of the list
(takes place when a new device is added to the list); NULL otherwise.

10DeviceSpaceAvailPut

static struct IODevice *IODeviceSpaceAvailPut(struct IODevice *iod_head,
char *name, Size avalil, void *pptr)

Args:
iod_headlst device in the device list.
name Name of the device.
avail New spaceAvail attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the spaceAvail attribute value of the device named by 'name’. A new 10Device struc-
ture is created if no device named 'name’ exists. For any newly malloc-ed area, an association
with 'pptr’ is established. This function returns non-NULL if there’'s a new head of the list
(takes place when a new device is added to the list); NULL otherwise.

10DeviceSpaceReservedPut

static struct IODevice *IODeviceSpaceReservedPut(struct IODevice *iod_head,
char *name, Size reserve, void *pptr)

Args:
iod_headlst device in the device list.
name Name of the device.
reserve New spaceAvail attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the spaceReserved attribute value of the device named by 'name’. A new I0ODevice
structure is created if no device named 'name’ exists. For any newly malloc-ed area, an asso-
ciation with 'pptr’ is established. This function returns non-NULL if there’s a new head of
the list (takes place when a new device is added to the list); NULL otherwise.

10DeviceSpacelnBwPut

static struct I0Device *IODevicelnBwPut(struct IODevice *iod_head,

Chapt Draft Revision: 2.3 6-93

SCHEDULER PBS IDS

char *name, int inBw, void *pptr)

Args:
iod_headlst device in the device list.
name Name of the device.
inBw New inBw attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the inBw attribute value of the device named by 'name’. A new 10Device structure
is created if no device named 'name’ exists. For any newly malloc-ed area, an association
with 'pptr’ is established. This function returns non-NULL if there’'s a new head of the list
(takes place when a new device is added to the list); NULL otherwise.

10DeviceSpaceOutBwPut

static struct I0Device *IODeviceOutBwPut(struct I0Device *iod_head,
char *name, int outBw, void *pptr)

Args:
iod_headlst device in the device list.
name Name of the device.
outBw New outBw attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the outBw attribute value of the device named by 'name’. A new I0Device structure
is created if no device named 'name’ exists. For any newly malloc-ed area, an association
with 'pptr’ is established. This function returns non-NULL if there’'s a new head of the list
(takes place when a new device is added to the list); NULL otherwise.

NetworkCreate

static struct Memory *NetworkCreate(void)

Mallocs a new struct Network structure, initializes the values of its elements, and then re-
turns the pointer to the structure.

NetworkBwGet

static int NetworkBwGet(struct Network *net_head, char *name)

Args:
net_headlst network device in the device list.
name Name assigned to the network device.

Returns the bw attribute value of a network device named 'name’ as found in the list of de-
vices.

6-94 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

NetworkListPrint

static void NetworkListPrint(struct IODevice net_head)

Args:
net_headlst network device in the device list.

Prints out the various network names and respective bandwidths in the list of network de-
vices.

NetworkBwPut

static struct I0ODevice *NetworkBwPut(struct IODevice *net_head,
char *type, int bw, void *pptr)

Args:
net_headlst network device in the device list.
type Type of the network device.
bw New bw attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the bw attribute value of the network device named by 'type’. A new Network struc-
ture is created if no network device named 'type’ exists. For any newly malloc-ed area, an as-
sociation with 'pptr’ is established. This function returns non-NULL if there’s a new head of
the list (takes place when a new device is added to the list); NULL otherwise.

MemoryCreate

static struct Memory *MemoryCreate(void)

Mallocs a new struct Memory structure, initializes the values of its elements, and then re-
turns the pointer to the structure.

MemoryTotalGet

static Size MemoryTotalGet(struct Memory *mem_head, char *type)

Args:

mem_head
1st memory device in the device list.

type Name assigned to the memory device (i.e. physical or virtual).

Returns the total attribute value of a memory device hamed 'type’ as found in the list of de-
vices. -1B is returned if no such device is found.

Chapt Draft Revision: 2.3 6-95

SCHEDULER PBS IDS

MemoryAvailGet

static Size MemoryAvailGet(struct Memory *mem_head, char *type)

Args:

mem_head
1st memory device in the device list.

type Name assigned to the memory device (i.e. physical or virtual).

Returns the avail attribute value of a memory device named 'type’ as found in the list of de-
vices. -1B is returned if no such device is found.

MemoryListPrint

static void MemoryListPrint(struct Memory *mem_head)

Args:

mem_head
1st memory device in the device list.

Prints out the various memory types and respective attributes in the list of memory devices.

MemoryTotalPut

static struct Memory *MemoryTotalPut(struct Memory *mem_head,
char *type, Size newTot, void *pptr)

Args:

mem_head
1st memory device in the device list.

type Type of the memory device.
newTot New total attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the total attribute value of the memory device named by 'type’. A new Memory is
created if no memory device named 'type’ exists. For any newly malloc-ed area, an associa-
tion with 'pptr’ is established. This function returns non-NULL if there’s a new head of the
list (takes place when a new device is added to the list); NULL otherwise.

MemoryAvailPut

static struct Memory *MemoryAvailPut(struct Memory *mem_head,
char *type, Size newAvalil, void *pptr)

Args:

6-96 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

mem_head
1st memory device in the device list.

type Type of the memory device.
newAvailNew avail attribute value.
pptr Some parent pointer to associate a device’s malloc-ed storage.

Modifies the avail attribute value of the memory device named by 'type’. A new Memory is
created if no memory device named 'type’ exists. For any newly malloc-ed area, an associa-
tion with 'pptr’ is established. This function returns non-NULL if there’s a new head of the
list (takes place when a new device is added to the list); NULL otherwise.

CNodeResMomInetAddrGet

ResMom *CNodeResMomGet(CNode *node)

Args:
node Pointer to a CNode structure.

Returns the ResMom structure representing 'node’.

CNodeNameGet

char *CNodeNameGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the official name of the 'node’.

CNodePropertiesGet

char *CNodePropertiesGet(CNode *node)
Args:

node Pointer to a CNode structure.
Returns the properties attribute of the 'node’.

CNodeOsGet

char *CNodeOsGet(CNode *node)
Args:

node Pointer to a CNode structure.
Returns the os attribute of the 'node’.

Chapt Draft Revision: 2.3 6-97

SCHEDULER PBS IDS

CNodeNumCpusGet

int CNodeNumCpusGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the numCpus attribute of the 'node’.

CNodeMemTotalGet

Size CNodeMemTotalGet(CNode *node, char *type)

Args:
node Pointer to a CNode structure.
type Type of memory.
Returns the mem[type]->total attribute of the 'node’. -1B if undefined.

CNodeMemAvailGet

Size CNodeMemAvailGet(CNode *node, char *type)

Args:
node Pointer to a CNode structure.
type Type of memory.
Returns the mem[type]->avail attribute of the 'node’. -1B if undefined.

CNodeStateGet

int CNodeStateGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the state attribute of the 'node’.

CNodeTypeGet

int CNodeTypeGet(CNode *node)

Args:
node Pointer to a CNode structure.

6-98 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Returns the type attribute of the 'node’.

CNodeQueryMomGet

int CNodeQueryMomGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the queryMom attribute of the 'node’.

CNodeldletimeGet

int CNodeldletimeGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the idletime attribute of the 'node’.

CNodeLoadAveGet

double CNodeLoadAveGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the loadAve attribute of the 'node’.

CNodeNetworkBwGet

int CNodeNetworkBwGet(CNode *node, char *type)

Args:
node Pointer to a CNode structure.
type type of network.
Returns the network[type]->bw attribute of the 'node’.

CNodeDiskSpaceTotalGet

Size CNodeDiskSpaceTotalGet(CNode *node, char *name)

Chapt Draft Revision: 2.3 6-99

SCHEDULER PBS IDS

Args:
node Pointer to a CNode structure.
name name of a disk device.
Returns the disk[name]->spaceTotal attribute of the 'node’.

CNodeDiskSpaceAvailGet

Size CNodeDiskSpaceAvailGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a disk device.
Returns the disk[name]->spaceAvail attribute of the 'node’.

CNodeDiskSpaceReservedGet

Size CNodeDiskSpaceReservedGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a disk device.

Returns the disk[name]->spaceReserved attribute of the 'node’.

CNodeDiskInBwGet

int CNodeDiskinBwGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a disk device.
Returns the disk[name]->inBw attribute of the 'node’.

CNodeDiskOutBwGet

int CNodeDiskOutBwGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a disk device.
Returns the disk[name]->outBw attribute of the 'node’.

6-100

Chapt Draft Revision: 2.3

PBS IDS

CNodeSwapSpaceTotalGet

Size CNodeSwapSpaceTotalGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a swap device.
Returns the swap[name]->spaceTotal attribute of the 'node’.

CNodeSwapSpaceAvailGet

Size CNodeSwapSpaceAvailGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a swap device.
Returns the swap[name]->spaceAvail attribute of the 'node’.

CNodeSwapSpaceReservedGet

Size CNodeSwapSpaceReservedGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a swap device.
Returns the swap[name]->spaceReserved attribute of the 'node’.

CNodeSwapInBwGet

int CNodeSwapInBwGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a swap device.
Returns the swap[name]->inBw attribute of the 'node’.

CNodeSwapOutBwGet

int CNodeSwapOutBwGet(CNode *node, char *name)

Chapt Draft Revision: 2.3

SCHEDULER

6-101

SCHEDULER PBS IDS

Args:
node Pointer to a CNode structure.
name name of a swap device.
Returns the swap[name]->outBw attribute of the 'node’.

CNodeTapeSpaceTotalGet

Size CNodeTapeSpaceTotalGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a tape device.
Returns the tape[name]->spaceTotal attribute of the 'node’.

CNodeTapeSpaceAvailGet

Size CNodeTapeSpaceAvailGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a tape device.
Returns the tape[name]->spaceAvail attribute of the 'node’.

CNodeTapeSpaceReservedGet

Size CNodeTapeSpaceReservedGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a tape device.

Returns the tape[name]->spaceReserved attribute of the 'node’.

CNodeTapelnBwGet

int CNodeTapelnBwGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a tape device.
Returns the tape[name]->inBw attribute of the 'node’.

6-102

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

CNodeTapeOutBwGet

int CNodeTapeOutBwGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of a tape device.
Returns the tape[name]->outBw attribute of the 'node’.

CNodeSrfsSpaceTotalGet

Size CNodeSrfsSpaceTotalGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of an srfs device.
Returns the srfs[name]->spaceTotal attribute of the 'node’.

CNodeSrfsSpaceAvailGet

Size CNodeSrfsSpaceAvailGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of an srfs device.
Returns the srfs[name]->spaceAvail attribute of the 'node’.

CNodeSrfsSpaceReservedGet

Size CNodeSrfsSpaceReservedGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of an srfs device.
Returns the srfs[name]->spaceReserved attribute of the 'node’.

CNodeSrfsInBwGet

int CNodeSrfsinBwGet(CNode *node, char *name)

Chapt Draft Revision: 2.3 6-103

SCHEDULER PBS IDS

Args:
node Pointer to a CNode structure.
name name of an srfs device.
Returns the srfs[name]->inBw attribute of the 'node’.

CNodeSrfsOutBwGet

int CNodeSrfsOutBwGet(CNode *node, char *name)

Args:
node Pointer to a CNode structure.
name name of an srfs device.

Returns the srfs[name]->outBw attribute of the 'node’.

CNodeCpuPercentldleGet

int CNodeCpuPercentldleGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the cpuPercentldle attribute of the 'node’.

CNodeCpuPercentSysGet

int CNodeCpuPercentSysGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the cpuPercentSys attribute of the 'node’.

CNodeCpuPercentUserGet

int CNodeCpuPercentUserGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the cpuPercentUser attribute of the 'node’.

CNodeCpuPercentGuestGet

6-104

Chapt Draft Revision: 2.3

PBS IDS

int CNodeCpuPercentGuestGet(CNode *node)

Args:
node Pointer to a CNode structure.
Returns the cpuPercentGuest attribute of the 'node’.

CNodeResMomPut

void CNodeResMomPut(CNode *node, ResMom *mom)

Args:
node Pointer to a CNode structure.
mom New mom structure.

Sets node->mom attribute value to *mom.

CNodePropertiesPut

void CNodePropertiesPut(CNode *node, char *properties)

Args:
node Pointer to a CNode structure.

properties
New properties

Sets node->properties attribute value to 'properties’.

CNodeVendorPut

void CNodeVendorPut(CNode *node, char *vendor)

Args:
node Pointer to a CNode structure.
vendor New vendor name.

Sets node->vendor attribute value to 'vendor'.

CNodeOsPut

void CNodeOsPut(CNode *node, char *0s)

Args:
node Pointer to a CNode structure.

Chapt Draft Revision: 2.3

SCHEDULER

6-105

SCHEDULER PBS IDS

0S New os type.
Sets node->o0s attribute value to 'os’.

CNodeNumCpusPut

void CNodeNumCpusPut(CNode *node, int ncpus)

Args:
node Pointer to a CNode structure.
ncpus Number of cpus.

Sets node->NumCpus attribute value to 'ncpus’.

CNodeMemTotalPut

void CNodeMemTotalPut(CNode *node, char *type, Size pmem)

Args:
node Pointer to a CNode structure.
type A type of memory.
pmem New memory total value.
Sets the node’s mem[type]->total attribute value to 'pmem’.

CNodeMemAvailPut

void CNodeMemAvailPut(CNode *node, char *type, Size pmem)

Args:
node Pointer to a CNode structure.
type A type of memory.
pmem New memory total value.
Sets the node’s mem[type]->avail attribute value to 'pmem’.

CNodeStatePut

void CNodeStatePut(CNode *node, int state)

Args:
node Pointer to a CNode structure.
state New state attribute value.

Sets the node’s state attribute value to 'state’.

6-106

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

CNodeTypePut

void CNodeTypePut(CNode *node, int type)

Args:
node Pointer to a CNode structure.
type New type attribute value.

Sets the node’s type attribute value to 'type’.

CNodeQueryMomPut

void CNodeQueryMomPut(CNode *node, int queryMom)

Args:
node Pointer to a CNode structure.

queryMom
New queryMom attribute value.

Sets the node’s queryMom attribute value to 'queryMom’.

CNodeldletimePut

void CNodeldletimePut(CNode *node, int idletime)

Args:
node Pointer to a CNode structure.
idletime New idletime attribute value.
Sets the node’s idletime attribute value to 'idletime’.

CNodeLoadAvePut

void CNodeLoadAvePut(CNode *node, double loadave)

Args:
node Pointer to a CNode structure.
loadave New loadave attribute value.
Sets the node’s loadAve attribute value to 'loadave’.

CNodeDiskSpaceTotalPut

void CNodeDiskSpaceTotalPut(CNode *node, char *name, Size size)

Chapt Draft Revision: 2.3 6-107

SCHEDULER PBS IDS

Args:
node Pointer to a CNode structure.
name Name of a disk device to update info on.
size New size value to spaceTotal attribute.
Sets the node’s disk[name]->spaceTotal attribute value to 'size’.

CNodeDiskSpaceAvailPut

void CNodeDiskSpaceAvailPut(CNode *node, char *name, Size size)

Args:
node Pointer to a CNode structure.
name Name of a disk device to update info on.
size New size value to spaceAvail attribute.
Sets the node’s disk[name]->spaceAvail attribute value to 'size’.

CNodeDiskSpaceReservedPut

void CNodeDiskSpaceReservedPut(CNode *node, char *name, Size size)

Args:
node Pointer to a CNode structure.
name Name of a disk device to update info on.
size New size value to spaceReserved attribute.
Sets the node’s disk[name]->spaceReserved attribute value to 'size’.

CNodeDiskInBwPut

void CNodeDiskinBwPut(CNode *node, char *name, int bw)

Args:

node Pointer to a CNode structure.

name Name of a disk device to update info on.

bw New bandwidth value to inBw attribute.
Sets the node’s disk[name]->inBw attribute value to 'bw'.

CNodeDiskOutBwPut

void CNodeDiskOutBwPut(CNode *node, char *name, int bw)

6-108 Chapt Draft Revision: 2.3

PBS IDS

Args:

node Pointer to a CNode structure.

name Name of a disk device to update info on.

bw New bandwidth value to outBw attribute.
Sets the node’s disk[name]->outBw attribute value to 'bw'.

CNodeSwapSpaceTotalPut

void CNodeSwapSpaceTotalPut(CNode *node, char *name, Size swaptot)

Args:
node Pointer to a CNode structure.
name Name of a swap device to update info on.
swaptot New value to spaceTotal attribute.
Sets the node’s swap[name]->spaceTotal attribute value to 'swaptot’.

CNodeSwapSpaceAvailPut

void CNodeSwapSpaceAvailPut(CNode *node, char *name, Size swapavail)

Args:
node Pointer to a CNode structure.
name Name of a swap device to update info on.

swapavail
New value to spaceAvail attribute.

Sets the node’s swap[name]->spaceAvail attribute value to 'swapavail'.

CNodeSwapSpaceReservedPut

void CNodeSwapSpaceReservedPut(CNode *node, char *name, Size swapres)

Args:
node Pointer to a CNode structure.
name Name of a swap device to update info on.
swapres New value to spaceReserved attribute.
Sets the node’s swap[name]->spaceReserved attribute value to 'size’.

CNodeSwaplnBwPut

void CNodeSwapInBwPut(CNode *node, char *name, int bw)

Chapt Draft Revision: 2.3

SCHEDULER

6-109

SCHEDULER PBS IDS

Args:

node Pointer to a CNode structure.

name Name of a swap device to update info on.

bw New bandwidth value to inBw attribute.
Sets the node’s swap[name]->inBw attribute value to 'bw'.

CNodeSwapOutBwPut

void CNodeSwapOutBwPut(CNode *node, char *name, int bw)

Args:

node Pointer to a CNode structure.

name Name of a swap device to update info on.

bw New bandwidth value to outBw attribute.
Sets the node’s swap[name]->outBw attribute value to 'bw’.

CNodeTapeSpaceTotalPut

void CNodeTapeSpaceTotalPut(CNode *node, char *name, Size size)

Args:
node Pointer to a CNode structure.
name Name of a tape device to update info on.
size New value to spaceTotal attribute.
Sets the node’s tape[name]->spaceTotal attribute value to 'size'.

CNodeTapeSpaceAvailPut

void CNodeTapeSpaceAvailPut(CNode *node, char *name, Size size)

Args:
node Pointer to a CNode structure.
name Name of a tape device to update info on.
size New value to spaceAvail attribute.
Sets the node’s tape[name]->spaceAvail attribute value to 'size’.

CNodeTapeSpaceReservedPut

void CNodeTapeSpaceReservedPut(CNode *node, char *name, Size size)

6-110 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
node Pointer to a CNode structure.
name Name of a swap device to update info on.
size New value to spaceReserved attribute.
Sets the node’s tape[name]->spaceReserved attribute value to 'size’.

CNodeTapelnBwPut

void CNodeTapelnBwPut(CNode *node, char *name, int bw)

Args:

node Pointer to a CNode structure.

name Name of a tape device to update info on.

bw New bandwidth value to inBw attribute.
Sets the node’s tape[name]->inBw attribute value to 'bw'.

CNodeTapeOutBwPut

void CNodeTapeOutBwPut(CNode *node, char *name, int bw)

Args:

node Pointer to a CNode structure.

name Name of a tape device to update info on.

bw New bandwidth value to outBw attribute.
Sets the node’s tape[name]->outBw attribute value to 'bw'.

CNodeSrfsSpaceTotalPut

void CNodeSrfsSpaceTotalPut(CNode *node, char *name, Size size)

Args:
node Pointer to a CNode structure.
name Name of an srfs device to update info on.
size New value to spaceTotal attribute.
Sets the node’s srfs[name]->spaceTotal attribute value to 'size’.

CNodeSrfsSpaceAvailPut

void CNodeSrfsSpaceAvailPut(CNode *node, char *name, Size size)

Chapt Draft Revision: 2.3 6-111

SCHEDULER PBS IDS

Args:
node Pointer to a CNode structure.
name Name of an srfs device to update info on.
size New value to spaceAvail attribute.
Sets the node’s srfs[name]->spaceAvail attribute value to 'size’.

CNodeSrfsSpaceReservedPut

void CNodeSrfsSpaceReservedPut(CNode *node, char *name, Size size)

Args:
node Pointer to a CNode structure.
name Name of an srfs device to update info on.
size New value to spaceReserved attribute.
Sets the node’s srfs[name]->spaceReserved attribute value to 'size’.

CNodeSrfsinBwPut

void CNodeSrfsinBwPut(CNode *node, char *name, int bw)

Args:
node Pointer to a CNode structure.
name Name of an srfs device to update info on.
bw New bandwidth value to inBw attribute.
Sets the node’s srfs[name]->inBw attribute value to 'bw'.

CNodeSrfsOutBwPut

void CNodeSrfsOutBwPut(CNode *node, char *name, int bw)

Args:

node Pointer to a CNode structure.

name Name of an srfs device to update info on.

bw New bandwidth value to outBw attribute.
Sets the node’s srfs[name]->outBw attribute value to 'bw'.

CNodeCpuPercentldlePut

void CNodeCpuPercentldlePut(CNode *node, int percent)

6-112 Chapt Draft Revision: 2.3

PBS IDS

Args:
node Pointer to a CNode structure.
percent New value to cpuPercentldle attribute.
Sets the node’s cpuPercentldle attribute value to 'percent’.

CNodeCpuPercentSysPut

void CNodeCpuPercentSysPut(CNode *node, int percent)

Args:
node Pointer to a CNode structure.
percent New value to cpuPercentSys attribute.
Sets the node’s cpuPercentSys attribute value to 'percent’.

CNodeCpuPercentUserPut

void CNodeCpuPercentUserPut(CNode *node, int percent)

Args:
node Pointer to a CNode structure.
percent New value to cpuPercentUser attribute.
Sets the node’s cpuPercentUser attribute value to 'percent’.

CNodeCpuPercentGuestPut

void CNodeCpuPercentGuestPut(CNode *node, int percent)

Args:
node Pointer to a CNode structure.
percent New value to cpuPercentGuest attribute.
Sets the node’s cpuPercentGuest attribute value to 'percent’.

CNodeFree

void CNodeFree(CNode *node)
Args:

node Pointer to a CNode structure.
Free up all malloc-ed storage associated with 'node’.

Chapt Draft Revision: 2.3

SCHEDULER

6-113

SCHEDULER PBS IDS

CNodelnit

void CNodelnit(CNode *node)
Args:

node Pointer to a CNode structure.
Initialized the values of the 'node’ members to something that are consistent.

CNodePrint

void CNodePrint(CNode *node)

Args:
node Pointer to a CNode structure.
Print out the values of the 'node’ members.

send_queries

static int send_queries(CNode *node, char *arch, int typeOfData,
struct CNodeAttrinfo **buf)

Args:
node Pointer to a CNode structure.
arch Some unique classification of a node (could be its name or os type)

typeOfData
type of query to send out (i.e. STATIC_RESOURCE or DYNAMIC_RESOURCE)
buf an array of information describing each of the resource queries to be sent out.

Description includes name of the corresponding CNode attribute, its type, and a
pointer to the function that handles assigning the query result to the CNode at-
tribute.

The algorithm is as follows:
if typeOfData is STATIC_RESOURCE
then

foreach of the the known static attributes
do
get the corresponding resource query for the attribute based on a
matching 'arch’ value,
fill the 'buf’ array with relevant information,
send out the query.
reset the value of the corresponding attribute to some default value
so that we can tell if if the query fails
update the numSends count.
done
else if typeOfData is DYNAMIC_RESOURCE
foreach of the the known dynamic attributes

6-114 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

do
get the corresponding resource query for the attribute based on a
matching 'arch’ value.
fill the 'buf’ array with relevant information,
send out the query.
update the numSends count.
done

NOTE: Information about the queries are listed in the array in the order
that they were sent.

Return the number of queries sent.

put_default_val

static int put_default_val(CNode *node, char *attrib, int type, void (*putfunc)())

Args:
node Pointer to a CNode structure.
attrib a CNode attribute name.
type data type for the attribue

putfunc The put function that will store the default value.

if 'type’ is INT_TYPE, then put a value of -1

if 'type’ is SIZE_TYPE, then put a value of -1.0b

if 'type’ is FLT_TYPE, then put a value of -1.0

if 'type’ is STR_TYPE, then put a value of NULLSTR

recv_responses

static int recv_responses(CNode *node, struct CNodeAttrinfo **buf)

Args:
node Pointer to a CNode structure.

buf an array of information describing each of the resource queries received. De-
scription includes name of the corresponding CNode attribute, its type, and a
pointer to the function that handles assigning the query result to the CNode at-
tribute.

foreach of the query results received,

do
update the corresponding 'node’ structure by using information provided
in the 'buf’ array.

done

Return the number of query results received.

Chapt Draft Revision: 2.3 6-115

SCHEDULER PBS IDS

CNodeStateRead

void CNodeStateRead(CNode *node, int typeOfData)

Args:
node Pointer to a CNode structure.
typeOfData
The type of data to get for 'node’ (i.e. STATIC_RESOURCE, DYNAMIC_RE-
SOURCE)

Don't proceed if CNodeQueryMomGet(node) is set to 0.

open a connection to the node’'s ResMom.

get the node’s ResMom name. Use this name to send resource queries that
apply only to this name.

get the ResMom'’s responses to the queries.

If nodetype is CNODE_UNKNOWN, then update the node’s state value: CNODE_FREE,
CNODE_DOWN,
close connection to the ResMom.

foreach of the query results received,

do
update the corresponding 'node’ structure by using information provided
in the 'buf’ array.

done

SetCNodelnit

void SetCNodelnit(SetCNode *scn)

Args:
scn Pointer to a Set of CNode structure.

Initializes the 'scn’ structure so that point the head of the set and the tail of set are pointing
to NOCNODE. Also, initialize the attributes numAvail, numAlloc, numRsvd, humDown to
-1.

SetCNodeAdd

void SetCNodeAdd(SetCNode *scn, CNode *cn)

Args:
scn Pointer to a Set of CNode structure.
cn A new node to add.

Adds 'cn’ to the set of CNodes.

6-116 Chapt Draft Revision: 2.3

PBS IDS

SetCNodeFree

void SetCNodeFree(SetCNode *scn)

Args:
scn Pointer to a Set of CNode structure.
Free up all malloc-storage associated with scn.

SetCNodeFindCNodeByName

CNode *SetCNodeFindCNodeByName(SetCNode *scn, char *node_name)

Args:
scn Pointer to a Set of CNode structure.
node_name

A node_name to search for.

Return the node in the set of CNode, 'scn’, whose name matches 'node_name’.

SetCNodePrint

void SetCNodePrint(SetCNode *scn)
Args:

scn Pointer to a Set of CNode structure.
Print out the structures associated with 'scn’.

inSetCNode

int inSetCNode(CNode *cn, SetCNode *scn)

Args:
cn A node to look for.
scn Pointer to a Set of CNode structure.

Returns 1 if 'cn’ is a member of the set of nodes, 'scn’; 0 otherwise.

CNodePartition

int CNodePartition(struct CNodeSortArgs *A, int p, int r)

Args:

Chapt Draft Revision: 2.3

SCHEDULER

6-117

SCHEDULER PBS IDS

A stuff of information needed to reorder the elements of a set of CNodes.
p the "leftmost" element of a set of CNodes.
r the "rightmost" element of a set of CNodes.

This is the Partition() function in the well-known Quicksort() sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

CNodeQuickSort

void CNodeQuickSort (struct CNodeSortArgs *A, int p, int r)

Args:
A stuff of information needed to reorder the elements of a set of CNodes.
p the "leftmost" element of a set of CNodes.
r the "rightmost" element of a set of CNodes.

This is the Quicksort() function in the well-known quicksort sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

SetCNodeSortInt

int SetCNodeSortint (SetCNode *s, int (*key)(), int order)

Args:
S the set of CNodes to reorder.
key the function to apply to each member of the set of CNodes whose int value will

be used to reorder the set of CNodes.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of CNodes in a dynamic array, and then run CNodeQuicksort()
function on the array, which also rearranges the pointers representing the set of CNodes.

SetCNodeSortStr

int SetCNodeSortStr (SetCNode *s, char *(*key)(), int order)

Args:
S the set of CNodes to reorder.
key the function to apply to each member of the set of CNodes whose char* value

will be used to reorder the set of CNodes.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of CNodes in a dynamic array, and then run CNodeQuicksort()
function on the array, which also rearranges the pointers representing the set of CNodes.

6-118 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SetCNodeSortDateTime

int SetCNodeSortDateTime (SetCNode *s, DateTime (*key)(), int order)

Args:
S the set of CNodes to reorder.
key the function to apply to each member of the set of CNodes whose DateTime val-

ue will be used to reorder the set of CNodes.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of CNodes in a dynamic array, and then run CNodeQuicksort()
function on the array, which also rearranges the pointers representing the set of CNodes.

SetCNodeSortSize

int SetCNodeSortSize (SetCNode *s, Size (*key)(), int order)

Args:
S the set of CNodes to reorder.
key the function to apply to each member of the set of CNodes whose Size value will

be used to reorder the set of CNodes.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of CNodes in a dynamic array, and then run CNodeQuicksort()
function on the array, which also rearranges the pointers representing the set of CNodes.

SetCNodeSortFloat

int SetCNodeSortFloat (SetCNode *s, double (*key)(), int order)

Args:
S the set of CNodes to reorder.
key the function to apply to each member of the set of CNodes whose double value

will be used to reorder the set of CNodes.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of CNodes in a dynamic array, and then run CNodeQuicksort()
function on the array, which also rearranges the pointers representing the set of CNodes.

6.1.4.3.2. File: af_cnodemap.h

This file defines 2 special variables called static_attrinfo_map and dynamic_attrin-
fo_map which are arrays of struct CNodeAttrinfo recording the various pointers to func-
tions that update attribute values, attributes’ types, and names of the respective CNodeGet
functions. Update these data structure accordingly if a new CNodeGet() function has been
added. Place those functions under static_attrinfo_map if the type of resource being mapped
by the CNodeGet() function in question is STATIC in nature; otherwise, place them in dy-
namic_attrinfo_map.

Chapt Draft Revision: 2.3 6-119

SCHEDULER PBS IDS

6.1.4.3.3. File: af_cnodemap.c

nodeAttrCmpNoTag

int nodeAttrCmpNoTag(char *attrl, char *attr2)

Args:
attrl 1st attribute name to compare.
attr2 2nd attribute name to compare.

Compares 2 attribute names (ignoring tags in vector attributes), and returns 0 if they are of
the same name. Note that a no-tag CNodeDiskSpaceReservedGet[] will match a tagged CN-
odeDiskSpaceReservedGet[$FASTDIR] (example).

parseAttrForTag

char *parseAttrForTag(char *attName)

Args:
attNameAn attribute name to parse.

Given an attribute name of the form, "name[tag]", return the "tag" part. If no tag, then re-
turn NULL.

getAttrType

int *getAttrType(char *attName)

Args:
attNameAn attribute name.
Given an attribute name, return its type. If 'attName’ does not exist, then return -1.

getAttrPutFunc

void (*getAttrPutFunc(char *attName))()

Args:
attNameAn attribute name.

Given an attribute name, return its CNodePut() function. If 'attName’ does not exist, then
return NULL.

6-120 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

getStaticAttrAtindex

char *getStaticAttrAtindex(int index, int *type, void (**putfunc)())

Args:
index An index value to the static_attrinfo_map array.
type Type of the attribute.
putfunc CNodePut() function of the attribute described by 'attName’.

Looks into the static_attrinfo_map[] array and return the name, type and putfunc informa-
tion of the entry at 'index’.

getDynamicAttrAtindex

char *getDynamicAttrAtindex(int index, int *type, void (**putfunc)())

Args:
index An index value to the dynamic_attrinfo_map array.
type Type of the attribute.
putfunc CNodePut() function of the attribute described by 'attName’.

Looks into the dynamic_attrinfo_map[] array and return the name, type and putfunc infor-
mation of the entry at 'index’.

attrinfoMapPrint

void attrinfoMapPrint(void)

Prints out the entries of the static_attrinfo_map and dynamic_attrinfo_map.

addRes

int addRes(char *archType, char *nodeAttr, char *hostQuery)

Args:
archType A class type of the resource (could be a node nhame or os type)
nodeAttr A node attribute (or even CNodeGet function)
hostQuery A query string to send to a MOM.

Adds a 3-type (archType, nodeAttr, hostQuery) into the internal Res table. If (archType,
nodeAttr, ...) is duplicated, then only the hostQuery portion is updated.

findResPtrGivenNodeAttr

Chapt Draft Revision: 2.3 6-121

SCHEDULER PBS IDS

static int findResPtrGivenNodeAttr(struct Resource **resptrs, char *nodeAttr)

Args:
resptrs Ptr to a table of Resource pointers.
nodeAttrA node attribute (or even CNodeGet function)
Returns the index to resptrs that contain 'nodeAttr’. Otherwise, -1 is returned.

getResPtr

static struct Resource **getResPtr(char *archType, char *nodeAttr)

Args:
archType A class type of a resource (could be a node name or os type)
nodeAttr A node attribute (or even CNodeGet function)

Returns an array of pointers to the internal Resource table, Res containing entries that
match (archType, nodeAttr,,) with a non-NULLSTR or non-"" entry for hostQuery_keyword.
This will also match any "*" entry for 'archType.

getNodeAttrGivenResPtr

char *getNodeAttrGivenResPtr(struct Resource *resptr)

Args:
resptr A pointer to a struct Resource entry.
Returns 'nodeAttr’ value of the entry pointed to by 'resptr’.

getHostQueryKeywordGivenResPtr

char *getHostQueryKeywordGivenResPtr(struct Resource *resptr)

Args:
resptr A pointer to a struct Resource entry.
Returns 'hostQuery_keyword’ value of the entry pointed to by 'resptr’.

ResPrint

void ResPrint(void)

Prints out the entries of the internal Resource table, Res.

6-122 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ResFree

void ResFree(void)
Free up all malloc-ed storage associated with the internal Resource table Res.

6.1.4.4. Job

The source code found under the Job subdirectory contains data structures and functions
that are used by the Job abstraction. The files involved are af_job.h and af _job.c. The main
data structures used are:
struct job_struct {

char *jobld;

char *jobName;

char *ownerName;

char *effectiveUserName; /* username to execute job under */

char *effectiveGroupName; /* group to execute job under */

int state;

int priority;

int rerunFlag; [* rerunnable attribute */

int interactiveFlag; /* is job interactive ? */

DateTime dateTimeCreated,;

char *emailAddr; [* for notification of job status */

char *stageinFiles;

char *stageoutFiles;

struct IntRes *intResReq;

struct SizeRes *sizeResReq;

struct StringRes *stringResReq;

struct IntRes *intResUse;

struct SizeRes *sizeResUse;

struct StringRes *stringResUse;

void *server; /* needed in order to run a job; need to */
[* instruct the appropriate server to run */
/* the job it owns */

void *queue; /* needed in order to accumulate */
/* certain Que resources based on */
/* resource value for job. */

int refCnt; [* # of link references to this struct - only */
/* used to determine if this job struct should be */
[* freed */
%
typedef struct job_struct Job;

struct SetJobElement {
struct SetJobElement *nextptr;
struct SetJobElement *first; /* pointer to the first element in Set */

h

struct setJob_struct {

struct SetJobElement *head;

struct SetJobElement *tail; /* non-NULL tail */
h
typedef struct setJob_struct SetJob;

Chapt Draft Revision: 2.3 6-123

SCHEDULER PBS IDS

6.1.4.4.1. File: af_job.c

JobldGet

char *JobldGet(Job *job)
Args:

job A pointer to a Job object.
Returns ’jobld’ attribute value of job'.

JobNameGet

char *JobNameGet(Job *job)

Args:
job A pointer to a Job object.
Returns ’jobName’ attribute value of ’job'.

JobOwnerNameGet

char *JobOwnerNameGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'ownerName’ attribute value of ’job’.

JobEffectiveUserNameGet

char *JobEffectiveUserNameGet(Job *job)

Args:
job A pointer to a Job object.

Returns 'effectiveUserName’ attribute value of ’job'.

JobEffectiveGroupNameGet

char *JobEffectiveGroupNameGet(Job *job)

Args:

6-124

Chapt Draft Revision: 2.3

PBS IDS

job A pointer to a Job object.

Returns 'effectiveGroupName’ attribute value of ’job'.

JobStateGet

int JobStateGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'state’ attribute value of 'job’.

JobPriorityGet

int JobPriorityGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'priority’ attribute value of 'job’.

JobRerunFlagGet

int JobRerunFlagGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'rerunFlag’ attribute value of 'job'.

JoblnteractiveFlagGet

int JobInteractiveFlagGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'interactiveFlag’ attribute value of 'job’.

JobDateTimeCreatedGet

DateTime JobDateTimeCreatedGet(Job *job)

Chapt Draft Revision: 2.3

SCHEDULER

6-125

SCHEDULER PBS IDS

Args:
job A pointer to a Job object.
Returns 'dateTimeCreated’ attribute value of ’job’.

JobEmailAddrGet

char *JobEmailAddrGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'emailAddr’ attribute value of ’job’.

JobServerGet

void *JobServerGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'server’ attribute value of ’job'.

JobRefCntGet

int JobRefCntGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'refCnt’ attribute value of ’job'.

JobStageinFilesGet

char *JobStageinFilesGet(Job *job)

Args:
job A pointer to a Job object.
Returns 'stageinFiles’ attribute value of ’job’.

JobStageoutFilesGet

char *JobStageoutFilesGet(Job *job)

6-126

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
job A pointer to a Job object.
Returns 'stageoutFiles’ attribute value of ’job’.

JoblIntResReqGet

int JobIntResReqGet(Job *job, char *name)

Args:
job A pointer to a Job object.
name A resource name.
Returns 'intResReqg->name’ attribute value of ’job'.

JobSizeResReqGet

Size JobSizeResReqGet(Job *job, char *name)

Args:
job A pointer to a Job object.
name A resource name.
Returns 'sizeResReg->name’ attribute value of ’job’.

JobStringResReqGet

char *JobStringResReqGet(Job *job, char *name)

Args:
job A pointer to a Job object.
name A resource name.
Returns 'stringResReq->name’ attribute value of ’job’.

JobIntResUseGet

int JobIntResUseGet(Job *job, char *name)

Args:
job A pointer to a Job object.
name A resource name.
Returns 'intResUse->name’ attribute value of ’job'.

Chapt Draft Revision: 2.3 6-127

SCHEDULER PBS IDS

JobSizeResUseGet

Size JobSizeResUseGet(Job *job, char *name)

Args:
job A pointer to a Job object.
name A resource name.
Returns 'sizeResUse->name’ attribute value of ’job’.

JobStringResUseGet

char *JobStringResUseGet(Job *job, char *name)

Args:
job A pointer to a Job object.
name A resource name.

Returns 'stringResUse->name’ attribute value of ’job’.

JobldPut

void JobldPut(Job *job, char *jobld)

Args:
job A pointer to a Job object.
jobld Ajobid.

Set job->jobld attribute value to ’jobld’.

JobNamePut

void JobNamePut(Job *job, char *jobName)

Args:
job A pointer to a Job object.
jobNameA job name.

Set job->jobName attribute value to ’jobName’.

JobOwnerNamePut

void JobOwnerNamePut(Job *job, char *ownerName)

6-128

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
job A pointer to a Job object.
ownerName

A job’s ownername.
Set job->jobOwner attribute value to 'ownerName'.

JobEffectiveUserNamePut

void JobEffectiveUserNamePut(Job *job, char *euser)

Args:
job A pointer to a Job object.
ownerName

A job’s effective username.
Set job->effectiveUserName attribute value to 'euser’.

JobEffectiveGroupNamePut

void JobEffectiveGroupNamePut(Job *job, char *groupName)

Args:
job A pointer to a Job object.
groupName

A job’s effective groupname.
Set job->effectiveGroupName attribute value to 'groupName’.

JobStatePut

void JobStatePut(Job *job, int state)

Args:
job A pointer to a Job object.
state A job’s state.

Set job->state attribute value to 'state’.

JobPriorityPut

void JobPriorityPut(Job *job, int priority)

Args:

Chapt Draft Revision: 2.3 6-129

SCHEDULER PBS IDS

job A pointer to a Job object.
priority A job’s priority.
Set job->priority attribute value to 'priority’.

JobRerunFlagPut

void JobRerunFlagPut(Job *job, int rerunFlag)

Args:
job A pointer to a Job object.
rerunFlag

A job’s priority.
Set job->rerunFlag attribute value to 'rerunFlag’.

JoblnteractiveFlagPut

void JobRerunFlagPut(Job *job, int interactiveFlag)

Args:
job A pointer to a Job object.

interactiveFlag
Is job interactive?

Set job->interactiveFlag attribute value to 'interactiveFlag'.

JobDateTimeCreatedPut

void JobDateTimeCreatedPut(Job *job, DateTime cdate)

Args:
job A pointer to a Job object.

interactiveFlag
Is job interactive?

Set job->dateTimeCreated attribute value to 'cdate’.

JobEmailAddrPut

void JobEmailAddrPut(Job *job, char *emailAddr)

Args:
job A pointer to a Job object.

6-130

Chapt Draft Revision: 2.3

PBS IDS

emailAddr
Email address to notify of job status.

Set job->emailAddr attribute value to 'emailAddr’.

JobServerPut

void JobServerPut(Job *job, void *server)

Args:
job A pointer to a Job object.
server Server owner of the job.

Set job->server attribute value to 'server’.

JobRefCntPut

void JobRefCntPut(Job *job, int refCnt)

Args:

job A pointer to a Job object.

refCnt # of link references to the Job struct.
Set job->refCnt attribute value to 'refCnt’.

JobStageinFilesPut

void JobStageinFilesPut(Job *job, char *stagein)

Args:
job A pointer to a Job object.
stagein The list of files to stagein.
Set job->stageinFiles attribute value to 'stagein’.

JobStageoutFilesPut

void JobStageoutFilesPut(Job *job, char *stageout)

Args:
job A pointer to a Job object.
stageoutThe list of files to stageout.
Set job->stageoutFiles attribute value to 'stageout’.

Chapt Draft Revision: 2.3

SCHEDULER

6-131

SCHEDULER PBS IDS

JoblIntResReqPut

void JobIntResReqPut(Job *job, char *name, int value)

Args:
job A pointer to a Job object.
name A resource name.
value A resource value.
Set intResReg->name attribute value of ’job’ to 'value'.

JobSizeResReqPut

void JobSizeResReqPut(Job *job, char *name, Size value)

Args:
job A pointer to a Job object.
name A resource name.
value A resource value.
Set sizeResReg->name attribute value of 'job’ to 'value'.

JobStringResReqPut

void JobStringResReqPut(Job *job, char *name, char *value)

Args:
job A pointer to a Job object.
name A resource name.
value A resource value.
Set stringResReq->name attribute value of ’job’ to 'value’'.

JobIntResUsePut

void JobIntResUsePut(Job *job, char *name, int value)

Args:
job A pointer to a Job object.
name A resource name.
value A resource value.
Set intResUse->name attribute value of ’job’ to 'value'.

6-132

Chapt Draft Revision: 2.3

PBS IDS

JobSizeResUsePut

void JobSizeResUsePut(Job *job, char *name, Size value)

Args:
job A pointer to a Job object.
name A resource name.
value A resource value.
Set sizeResUse->name attribute value of 'job’ to 'value'.

JobStringResUsePut

void JobStringResUsePut(Job *job, char *name, char *value)

Args:
job A pointer to a Job object.
name A resource name.
value A resource value.
Set stringResUse->name attribute value of ’job’ to 'value’'.

Joblnit

void Joblnit(Job *job)

Args:
job A pointer to a Job object.

Initialize the members of the Job object to consistent values.

JobPrint

void JobPrint(Job *job)

Args:
job A pointer to a Job object.
Prints out the values to the members of the ’job'.

JobFree

void JobFree(Job *job)

Chapt Draft Revision: 2.3

SCHEDULER

6-133

SCHEDULER PBS IDS

Args:
job A pointer to a Job object.
Frees up malloc-ed areas associated with ’job’.

SetJoblnit

void SetJoblnit(SetJob *sjob)

Args:
sjob A pointer to a set of jobs.

Initializes the set of jobs, 'sjob’, adding a NOJOB end of list record, and forcing the head and
tail pointers to point to this end record.

SetJobAdd

void SetJobAdd(SetJob *sjob, Job *job)

Args:
sjob A pointer to a set of jobs.
job A pointer to a Job object.
Adds ’job’ to the set of jobs pointed to by 'sjob’.

SetJobUpdateFirst

void SetJobUpdateFirst(SetJob *sjob, struct SetJobElement *first)

Args:
sjob A pointer to a set of jobs.
first A pointer to a set of jobs element.

Go through each element of 'sjob’ and update each one’s first attribute value to 'first’.

SetJobRemove

void SetJobRemove(SetJob *sjob, Job *job)

Args:
sjob A pointer to a set of jobs.
job A pointer to a Job object.
Delete ’job’ from the set of jobs, 'sjob’. The ’job’ itself is malloc freed if its refCnt is O.

6-134 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SetJobFree

void SetJobFree(SetJob *sjob)
Args:

sjob A pointer to a set of jobs.
Free up all malloc-ed areas associated with 'sjob’.

SetJobPrint

void SetJobPrint(struct SetJobElement *sje)

Args:
sje A pointer to a set of jobs element.
Prints out the members of 'sje’.

inSetJob

int inSetJob(Job *job, struct SetJobElement *sje)

Args:
job A pointer to a Job object.
sje A pointer to a set of jobs element.
Returns TRUE or FALSE depending on whether or not ’job’ is in 'sje’.

strToJobState

int strToJobState(char *val)

Args:
val A string containing: "Q", "R", "T", "H", "E", "W", "D"
Returns the following:
string value
"Q" QUEUED
"R" RUNNING
"T" TRANSIT
"H" HELD
"E" EXITING
A WAITING
"D" DELETED

Chapt Draft Revision: 2.3 6-135

SCHEDULER PBS IDS

firstJobPtr

void firstJobPtr(struct SetJobElement **sjeptr, struct SetJobElement *first)

Args:
sjeptr pointer to a pointer to a set of Jobs.
sje A pointer to a Job element.

Updates the *sjeptr to "first", and then continues to reassign the value of *sjeptr to
*sjeptr->nextptr until encountering a non-DELETED Job record.

nextJobPtr

void nextJobPtr(struct SetJobElement **sjeptr)

Args:
sjeptr pointer to a pointer to a set of Jobs.

Updates the *sjeptr to *sjeptr->nextptr, and then continues to reassign the value until en-
countering a non-DELETED Job record.

JobPartition

int JobPartition(struct JobSortArgs *A, int p, int r)

Args:
A stuff of information needed to reorder the elements of a set of Jobs.
p the "leftmost" element of a set of Jobs.
r the "rightmost" element of a set of Jobs.

This is the Partition() function in the well-known Quicksort() sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

JobQuickSort

void JobQuickSort (struct JobSortArgs *A, int p, int r)

Args:
A stuff of information needed to reorder the elements of a set of Jobs.
p the "leftmost" element of a set of Jobs.
r the "rightmost" element of a set of Jobs.

This is the Quicksort() function in the well-known quicksort sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

6-136 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SetJobSortint

int SetJobSortint (struct SetJobElement *sje, int (*key)(), int order)

Args:
S the set of Jobs to reorder.
key the function to apply to each member of the set of Jobs whose int value will be

used to reorder the set of Jobs.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Jobs in a dynamic array, and then run JobQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Jobs.

SetJobSortStr

int SetJobSortStr (struct SetJobElement *sje, char *(*key)(), int order)

Args:
S the set of Jobs to reorder.
key the function to apply to each member of the set of Jobs whose char*

value will be used to reorder the set of Jobs.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Jobs in a dynamic array, and then run JobQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Jobs.

SetJobSortDateTime

int SetJobSortDateTime (struct SetJobElement *sje, DateTime (*key)(), int order)

Args:
S the set of Jobs to reorder.
key the function to apply to each member of the set of Jobs whose DateTime value

will be used to reorder the set of Jobs.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Jobs in a dynamic array, and then run JobQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Jobs.

SetJobSortSize

int SetJobSortSize (struct SetJobElement *sje, Size (*key)(), int order)

Args:

Chapt Draft Revision: 2.3 6-137

SCHEDULER PBS IDS

S the set of Jobs to reorder.

key the function to apply to each member of the set of Jobs whose Size value will be
used to reorder the set of Jobs.

order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Jobs in a dynamic array, and then run JobQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Jobs.

SetJobSortFloat

int SetJobSortFloat (struct SetJobElment *sje, double (*key)(), int order)

Args:
S the set of CNodes to reorder.
key the function to apply to each member of the set of Jobs whose double value will

be used to reorder the set of Jobs.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Jobs in a dynamic array, and then run JobQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Jobs.

6.1.4.5. Que

The source code found under the Que subdirectory contains data structures and functions
that are used by the Que abstraction. The files involved are af_que.h and af_que.c. The main
data structures used are:
struct que_struct {
struct que_struct *nexptr; /* to maintain a list of ques */

char *name; /* name of a queue */
int type; [* type of queue: execution or routing */
int numJobs;
int priority; [* priority of this queue against all other */
/* queues */
int maxRunJobs; /* maximum # of jobs allowed to be selected */

[* from this queue */

int maxRunJobsPerUser;

int maxRunJobsPerGroup;

int state; /* can jobs from this queue be scheduled for */
[* execution? */

struct IntRes *intResAvalil;

struct IntRes *intResAssign;

struct SizeRes *sizeResAvail;

struct SizeRes *sizeResAssign;

struct StringRes *stringResAvail;

struct StringRes *stringResAssign;

SetJob jobs; /* pointer to head of the job */

¥

typedef struct que_struct Que;
struct SetQue_type {

Que *head;
Que *ail;

6-138 Chapt Draft Revision: 2.3

PBS IDS

¥
typedef struct SetQue_type SetQue;

6.1.4.5.1. File: af_que.c

QueNameGet

char *QueNameGet(Que *que)

Args:
que A pointer to a Que object.
Returns 'name’ attribute value of 'que’.

QueTypeGet

int QueTypeGet(Que *que)

Args:
que A pointer to a Que object.
Returns 'type’ attribute value of 'que’.

QueNumJobsGet

int QueNumJobsGet(Que *que)

Args:
que A pointer to a Que object.
Returns 'numJobs’ attribute value of 'que’.

QuePriorityGet

int QuePriorityGet(Que *que)

Args:
que A pointer to a Que object.
Returns 'priority’ attribute value of 'que’.

QueMaxRunJobsGet

int QueMaxRunJobsGet(Que *que)

Chapt Draft Revision: 2.3

SCHEDULER

6-139

SCHEDULER PBS IDS

Args:
que A pointer to a Que object.
Returns 'maxRunJobs’ attribute value of 'que’.

QueMaxRunJobsPerUserGet

int QueMaxRunJobsPerUserGet(Que *que)

Args:
que A pointer to a Que object.

Returns 'maxRunJdobsPerUser’ attribute value of 'que’.

QueMaxRunJobsPerGroupGet

int QueMaxRunJobsPerGroupGet(Que *que)

Args:
que A pointer to a Que object.

Returns 'maxRunJobsPerGroup’ attribute value of 'que’.

QueStateGet

int QueStateGet(Que *que)

Args:
que A pointer to a Que object.
Returns 'state’ attribute value of 'que’.

QuelntResAvailGet

int QuelntResAvailGet(Que *que, char *name)

Args:
que A pointer to a Que object.
name A resource name.

Returns 'intResAvail->name’ attribute value of 'que’.

QuelntResAssignGet

int QuelntResAssignGet(Que *que, char *name)

6-140

Chapt Draft Revision: 2.3

PBS IDS

Args:
que A pointer to a Que object.
name A resource name.
Returns 'intResAssign->name’ attribute value of 'que’.

QueSizeResAvailGet

Size QueSizeResAvailGet(Que *que, char *name)

Args:
que A pointer to a Que object.
name A resource name.
Returns 'sizeResAvail->name’ attribute value of 'que’.

QueSizeResAssignGet

Size QueSizeResAssignGet(Que *que, char *name)

Args:
que A pointer to a Que object.
name A resource name.
Returns 'sizeResAssign->name’ attribute value of 'que’.

QueStringResAvailGet

char *QueStringResAvailGet(Que *que, char *name)

Args:
que A pointer to a Que object.
name A resource name.

Returns 'stringResAvail->name’ attribute value of 'que’.

QueStringResAssignGet

char *QueStringResAssignGet(Que *que, char *name)

Args:
que A pointer to a Que object.
name A resource name.

Returns 'stringResAssign->name’ attribute value of 'que’.

Chapt Draft Revision: 2.3

SCHEDULER

6-141

SCHEDULER PBS IDS

QueJdobsGet

SetJobElement *QueJobsGet(Que *que)

Args:
que A pointer to a Que object.
Returns ’jobs.head’ attribute value of 'que’.

QueNamePut

void QueNamePut(Que *que, char *queue_name)

Args:
que A pointer to a Que object.

gueue_name
A new gueue name.

Sets the 'name’ attribute value to 'queue_name’.

QueNumJobsPut

void QueNumJobsPut(Que *que, int numJobs)

Args:
que A pointer to a Que object.
numJobsThe # of PBS jobs.

Sets the 'numJobs’ attribute value to 'numJobs’.

QueMaxRunJobsPut

void QueMaxRunJobsPut(Que *que, int maxRunJobs)

Args:
que A pointer to a Que object.

maxRunJobs
Some # of PBS jobs.

Sets the 'maxRunJobs’ attribute value to 'maxRunJobs’.

QueMaxRunJobsPerUserPut

void QueMaxRunJobsPerUserPut(Que *que, int maxRunJobsPerUser)

6-142 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
que A pointer to a Que object.

maxRunJobsPerUser
Some # of PBS jobs.

Sets the 'maxRunJobsPerUser’ attribute value to ‘'maxRunJobsPerUser’.

QueMaxRunJdobsPerGroupPut

void QueMaxRunJobsPerGroupPut(Que *que, int maxRunJobsPerGroup)

Args:
que A pointer to a Que object.

maxRunJobsPerGroup
Some # of PBS jobs.

Sets the 'maxRunJobsPerGroup’ attribute value to ‘'maxRunJobsPerGroup’.

QuePriorityPut

void QuePriorityPut(Que *que, int priority)

Args:

que A pointer to a Que object.

priority Priority value of queue against all other queues.
Sets the 'priority’ attribute value of 'que’ to 'priority’.

QueStatePut

void QueStatePut(Que *que, int state)

Args:
que A pointer to a Que object.
state State of queue.
Sets the 'state’ attribute value of 'que’ to 'state’.

QuelntResAvailPut

void QuelntResAvailPut(Que *que, char *name, int value)

Args:
que A pointer to a Que object.

Chapt Draft Revision: 2.3 6-143

SCHEDULER PBS IDS

name A resource name.
value New resource value.
Sets the 'intResAvail->name’ attribute value of 'que’ to 'value’.

QuelntResAssignPut

void QuelntResAssignPut(Que *que, char *name, int value)

Args:
que A pointer to a Que object.
name A resource name.
value New resource value.
Sets the 'intResAssign->name’ attribute value of 'que’ to 'value’.

QueSizeResAvailPut

void QueSizeResAvailPut(Que *que, char *name, Size value)

Args:
que A pointer to a Que object.
name A resource name.
value New resource value.
Sets the 'sizeResAvail->name’ attribute value of 'que’ to 'value'.

QueSizeResAssignPut

void QueSizeResAssignPut(Que *que, char *name, Size value)

Args:
que A pointer to a Que object.
name A resource name.
value New resource value.

Sets the 'sizeResAssign->name’ attribute value of 'que’ to 'value'.

QueStringResAvailPut

void QueStringResAvailPut(Que *que, char *name, char *value)

Args:
que A pointer to a Que object.

6-144

Chapt Draft Revision: 2.3

PBS IDS

name A resource name.
value New resource value.
Sets the 'stringResAvail->name’ attribute value of 'que’ to 'value’.

QueStringResAssignPut

void QueStringResAssignPut(Que *que, char *name, char *value)

Args:
que A pointer to a Que object.
name A resource name.
value New resource value.
Sets the 'stringResAssign->name’ attribute value of 'que’ to 'value’.

Quelnit

void Quelnit(Que *que)
Args:

que A pointer to a Que object.
Initialize the members of 'que’ to have consistent values.

QuePrint

void QuePrint(Que *que)
Args:

que A pointer to a Que object.
Prints out the members of the Que structure.

QueFree

void QueFree(Que *que)

Args:
que A pointer to a Que object.

Frees up malloc-ed areas associated with 'que’.

QueJoblnsert

Chapt Draft Revision: 2.3

SCHEDULER

6-145

SCHEDULER PBS IDS

void QueJoblinsert(Que *que, Job *job)

Args:
que A pointer to a Que object.
job A pointer to a Job object.
Insert ’job’ into the set of jobs pool of 'que’.

QueJdobDelete

void QueJobDelete(Que *que, Job *job)

Args:

que A pointer to a Que object.

job A pointer to a Job object.
Deletes 'job’ from the set of jobs pool of 'que’.

intExpr

static Job *intExpr(Job *j, Que *q, int (*func)(), Comp operator,
int value, Job **maxj, Job **minj)

Args:
j A pointer to a Job object.
que A pointer to a Que object.
func A pointer to a function returning an integer value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN.

value Some integer value.
maxj Holder of a return max Job value.
minj Holder of a return min Job value.

Runs a "func(j) operator value" and if it returns TRUE, then return j. Otherwise, the return
value is NOJOB. If operator is OP_MAX, or OP_MIN, then run func() on each job in q, sav-
ing in maxj the job with the largest return value, or saving in minj the job with the minimum
return value.

StrExpr

static Job *strExpr(Job *j, Que *q, char *(*strfunc)(), Comp operator,
char *valuestr, Job **maxj, Job **minj)

Args:
j A pointer to a Job object.

6-146 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

que A pointer to a Que object.
strfunc A pointer to a function returning a string value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN

valuestr Some string value.
maxj Holder of a return max Job value.
minj Holder of a return min Job value.

Runs a "strfunc(j) operator strvalue" and if it returns TRUE, then return j. Otherwise, the
return value is NOJOB. If operator is OP_MAX, or OP_MIN, then run strfunc() on each job
in g, saving in maxj the job with the lexicographically largest return value, or saving in minj
the job with the lexicographically minimum return value.

dateTimeExpr

static Job *dateTimeExpr(Job *j, Que *q, DateTime *(*datetfunc)(),
Comp operator, DateTime datet, Job **maxj, Job **min;)

Args:
j A pointer to a Job object.
que A pointer to a Que object.
datetfuncA pointer to a function returning a DateTime value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN

datet Some DateTime value.
maxj Holder of a return max Job value.
minj Holder of a return min Job value.

Runs a "datetfunc(j) operator datet" and if it returns TRUE, then return j. Otherwise, the
return value is NOJOB. If operator is OP_MAX, or OP_MIN, then run datetfunc() on each
job in g, saving in maxj the job with the largest return value, or saving in minj the job with
the minimum return value.

sizeExpr

static Job *sizeExpr(Job *j, Que *q, Size (*sizefunc)(),
Comp operator, Size size, Job *maxj, Job **minj)

Args:
j A pointer to a Job object.
que A pointer to a Que object.
sizefunc A pointer to a function returning a Size value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN

size Some Size value.

Chapt Draft Revision: 2.3 6-147

SCHEDULER PBS IDS

maxj Holder of a return max Job value.
minj Holder of a return min Job value.

Runs a "sizefunc(j) operator size" and if it returns TRUE, then return j. Otherwise, the re-
turn value is NOJOB. If operator is OP_MAX, or OP_MIN, then run sizefunc() on each job in
g, saving in maxj the job with the largest return value, or saving in minj the job with the
minimum return value.

QueJdobFindInt

Job *QueJobFindInt(Que *que, ...)

Args:
que A pointer to a Que object.
Variable list of arguments, could be: int (*func)(), Comp operator, int value.
This is basically the front end (user interface) to intExpr().

QueJdobFindStr

Job *QueJobFindStr(Que *que, ...)

Args:
que A pointer to a Que object.

Variable list of arguments, could be: char *(*strfunc)(), Comp operator, char
*valuestr.

This is basically the front end (user interface) to strExpr().

QueJdobFindDateTime

Job *QueJobFindDateTime(Que *que, ...)

Args:
que A pointer to a Que object.

Variable list of arguments, could be DateTime (*datefunc)(), Comp operator,
DateTime datet.

This is basically the front end (user interface) to dateTimeExpr().

QueJobFindSize

Job *QueJobFindSize(Que *que, ...)

Args:

6-148 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

que A pointer to a Que object.
Variable list of arguments, could be Size (*sizefunc)(), Comp operator, Size size.
This is basically the front end (user interface) to sizeExpr().

QueFilterint

Que *QuekFilterint(Que *que, int (*func)(), Comp operator, int value)

Args:
que A pointer to a Que object.
func A pointer to a function returning an integer value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN.

value Some integer value.

This is another front end (user interface) to intExpr(), but this creates a new queue of jobs
that satisfy "func(job) operator value" expression for each job in 'que’.

QueFilterStr

Que *QuekFilterStr(Que *que, char *(*strfunc)(), Comp operator, char *valuestr)

Args:
que A pointer to a Que object.
strfunc A pointer to a function returning a string value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN.

valuestr Some string value.

This is another front end (user interface) to strExpr(), but this creates a new queue of jobs
that satisfy "strfunc(job) operator valuestr" expression for each job in 'que’.

QueFilterDateTime

Que *QuekFilterDateTime(Que *que, DateTime (*datefunc)(),
Comp operator, DateTime datet)

Args:
que A pointer to a Que object.
datefuncA pointer to a function returning a DateTime value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN.

datet Some DateTime value.

Chapt Draft Revision: 2.3 6-149

SCHEDULER PBS IDS

This is another front end (user interface) to dateTimeExpr(), but this creates a new queue of
jobs that satisfy "datefunc(job) operator datet" expression for each job in 'que’.

QueFilterSize

Que *QuekFilterSize(Que *que, Size (*sizefunc)(),
Comp operator, Size size)

Args:
que A pointer to a Que object.
sizefunc A pointer to a function returning a Size value.

operatorA compare operator: OP_EQ, OP_NEQ, OP_GT, OP_GE, OP_LE, OP_LT,
OP_MAX, OP_MIN.

size Some Size value.

This is another front end (user interface) to sizeExpr(), but this creates a new queue of jobs
that satisfies "sizefunc(job) operator size" expression for each job in 'que’.

SetQuelnit

void SetQuelnit(SetQue *sq)
Args:

sq A pointer to a set of queues object.
Initializes 'sq’ so that both head and tail of the list are pointing to NOQUE.

SetQueAdd

void SetQueAdd(SetQue *sq, Que *q)

Args:
sq A pointer to a set of queues object.
o} New queue to add to the set.

Adds 'q’ to the set of queues, 'sq’. Malloc table is updated since 'q’ is a malloc-ed area.

SetQueFree

void SetQueFree(SetQue *sq)
Args:

sq A pointer to a set of queues object.
Frees up all storage associated with 'sq’ and then re-initializes it.

6-150 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SetQueFindQueByName

Que *SetQueFindQueByName(SetQue *sq, char *queue_name)

Args:
sq A pointer to a set of queues object.

gueue_name
A name of a queue to search for.

Returns the que in 'sq’ whose name is 'queue_name’.

SetQuePrint

void SetQuePrint(SetQue *sq)
Args:

sq A pointer to a set of queues object.
Prints out the elements in the set of queues, 'sq'.

inSetQue

int inSetQue(Que *que, SetQue *sq)

Args:
que A queue to search for.
sq A pointer to a set of queues object.

Returns 1 if 'que’ is a member of 'sq’; 0 otherwise.

QuePartition

int QuePartition(struct QueSortArgs *A, int p, intr)

Args:
A stuff of information needed to reorder the elements of a set of Ques.
p the "leftmost" element of a set of Ques.
r the "rightmost" element of a set of Ques.

This is the Partition() function in the well-known Quicksort() sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

QueQuickSort

void QueQuickSort (struct QueSortArgs *A, int p, int r)

Chapt Draft Revision: 2.3 6-151

SCHEDULER PBS IDS

Args:
A stuff of information needed to reorder the elements of a set of Ques.
p the "leftmost" element of a set of Ques.
r the "rightmost" element of a set of Ques.

This is the Quicksort() function in the well-known quicksort sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

SetQueSortint

int SetQueSortint (SetQue *s, int (*key)(), int order)

Args:
s the set of Ques to reorder.
key the function to apply to each member of the set of Ques whose int value will be

used to reorder the set of Ques.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Ques in a dynamic array, and then run QueQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Ques.

SetQueSortStr

int SetQueSortStr (SetQue *s, char *(*key)(), int order)

Args:
s the set of Ques to reorder.
key the function to apply to each member of the set of Ques whose char*

value will be used to reorder the set of Ques.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Ques in a dynamic array, and then run QueQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Ques.

SetQueSortDateTime

int SetQueSortDateTime (SetQue *s, DateTime (*key)(), int order)

Args:
S the set of Jobs to reorder.
key the function to apply to each member of the set of Ques whose DateTime value

will be used to reorder the set of Ques.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Ques in a dynamic array, and then run QueQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Ques.

6-152 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

SetQueSortSize

int SetQueSortSize (SetQue *s, Size (*key)(), int order)

Args:
s the set of Ques to reorder.
key the function to apply to each member of the set of Ques whose Size value will be

used to reorder the set of Ques.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Ques in a dynamic array, and then run QueQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Ques.

SetQueSortFloat

int SetQueSortFloat (SetQue *s, double (*key)(), int order)

Args:
s the set of Ques to reorder.
key the function to apply to each member of the set of Ques whose double value will

be used to reorder the set of Ques.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Ques in a dynamic array, and then run QueQuicksort() func-
tion on the array, which also rearranges the pointers representing the set of Ques.

6.1.4.6. Server

The source code found under the Server subdirectory contains data structures and functions
that are used by the Server abstraction. The files involved are af server.h and af_server.c.
The main data structures used are:
struct server_struct {
struct server_struct *nexptr; /* to maintain a list of servers */
char *inetAddr; [* hosthname of the server */
int portNumberOneWay; /* scheduler <-- server */
/* if set to 0, use PBS_SCHEDULER_SERVICE_PORT */
int portNumberTwoWay; /* scheduler <-> server */
/* if set to 0, use PBS_BATCH_SERVICE_PORT_DIS */

int socket; [* socket file descriptor */

int fdOneWay; /* fd to use when only receiving messages from */
[* the Server */

int fdTwoWay; /* fd to use when sending messages to and */

/* receiving messages from the Server. -1 if */
/* not connected. */

int state;

int maxRunJobs; [* on this server */

int maxRunJobsPerUser;

int maxRunJobsPerGroup;

char *defQue; /* server’s default queue */

struct IntRes *intResAvail;

struct IntRes *intResAssign;

Chapt Draft Revision: 2.3 6-153

SCHEDULER PBS IDS

struct SizeRes *sizeResAvail;
struct SizeRes *sizeResAssign;
struct StringRes *stringResAvail;
struct StringRes *stringResAssign;
SetQue queues; /* queues managed by the server */
SetCNode nodes;
¥

typedef struct server_struct Server;

struct SetServer_type {
Server *head,;
Server *localhost;
Server *talil;
¥
typedef struct SetServer_type SetServer;

SetServer AllServers; /* list of Servers known to the system */

6.1.4.6.1. File: af server.h

In this file, the special structures node_alist, serv_alist, que_alist, job_alist

hold the attribute values that will be queried from the Server. ServerAttrinfo hold the
mappings for the job attribute names and Job*Put() functions. accumTable hold the list of
resources that must be accumulated and Job*Put() functions.

6.1.4.6.2. File: af server.c

pbserror

static char *pbserror(void)

This returns the message string associated with the current value of the global variable
pbs_errno.

socket_to_conn

static int socket_to_conn(int sock)

Args:
sock A socket number.
Updates some internal table to convert opened 'sock’ into a connection.

get_4byte

static int get_4byte(int sock, unsigned long *val)

Args:

6-154 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

sock A socket to read from.
val The return integer from socket.

Read and return a 4 byte integer from the network. Returns the (unsigned long) integer in
*val. The function return is 0 for EOF, +1 for success, or -1 if error.

updateServerJoblnfo

static void updateServerJoblnfo(Job *job, char *name, char *res, char *value)

Args:
job the job
name name of an attribute to update for job.
res name of a resource to update for job.
value new value of attribute, resource for job.

This function consults the ServerAttrinfo[] table for updating the appropriate attribute,re-
source=value for Job.

inAccumTable

int inAccumTable(char *resName)

Args:
resNamename of a resource.

This function consults the accumTable[] and return TRUE if resName is in the table; other-
wise, returns FALSE.

accumRes

int accumRes(Job *job)

Args:
job Pointer to a job structure.

This functions looks into the resources_required.* resources, and for any resource name that
is found in accumTable[], the corresponding values for Server and Queue (those owning the
job) are updated.

ServerlnetAddrGet

char *ServerlnetAddrGet(Server *server)

Args:

Chapt Draft Revision: 2.3 6-155

SCHEDULER PBS IDS

server A pointer to a Server object.
Returns inetAddr attribute value of 'server’.

ServerDefQueGet

char *ServerDefQueGet(Server *server)

Args:
server A pointer to a Server object.
Returns defQue attribute value of 'server’.

ServerSocketGet

int ServerSocketGet(Server *server)

Args:
server A pointer to a Server object.
Returns socket attribute value of 'server’.

ServerPortNumberOneWayGet

int ServerPortNumberOneWayGet(Server *server)

Args:
server A pointer to a Server object.
Returns portNumberOneWay attribute value of 'server’.

ServerPortNumberTwoWayGet

int ServerPortNumberTwoWayGet(Server *server)

Args:
server A pointer to a Server object.
Returns portNumberTwoWay attribute value of 'server’.

ServerFdTwoWayGet

int ServerFdTwoWayGet(Server *server)

6-156 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
server A pointer to a Server object.
Returns fdTwoWay attribute value of 'server’.

ServerFdOneWayGet

int ServerFdOneWayGet(Server *server)

Args:
server A pointer to a Server object.
Returns fdOneWay attribute value of 'server’.

ServerStateGet

int ServerStateGet(Server *server)

Args:
server A pointer to a Server object.
Returns state attribute value of 'server’.

ServerMaxRunJobsGet

int ServerMaxRunJobsGet(Server *server)

Args:
server A pointer to a Server object.
Returns maxRunJobs attribute value of 'server’.

ServerMaxRunJobsPerUserGet

int ServerMaxRunJobsPerUserGet(Server *server)

Args:
server A pointer to a Server object.
Returns maxRunJobsPerUser attribute value of 'server’.

ServerMaxRunJobsPerGroupGet

int ServerMaxRunJobsPerGroupGet(Server *server)

Chapt Draft Revision: 2.3 6-157

SCHEDULER PBS IDS

Args:
server A pointer to a Server object.
Returns maxRunJobsPerGroup attribute value of 'server’.

ServerQueuesGet

int ServerQueuesGet(Server *server)

Args:
server A pointer to a Server object.

Returns the pointer to server->queues attribute of 'server’.

ServerJobsGet

int ServerJobsGet(Server *server)

Args:
server A pointer to a Server object.
Returns the jobs.head value of 'server’.

ServerIntResAvailGet

int ServerintResAvailGet(Server *server, char *name)

Args:
server A pointer to a Server object.
name A resource name.
Returns intResAvail->name attribute value of 'server’.

ServerIntResAssignGet

int ServerintResAssignGet(Server *server, char *name)

Args:
server A pointer to a Server object.
name A resource name.
Returns intResAssign->name attribute value of 'server’.

ServerSizeResAvailGet

6-158

Chapt Draft Revision: 2.3

PBS IDS

Size ServerSizeResAvailGet(Server *server, char *name)

Args:
server A pointer to a Server object.
name A resource name.
Returns sizeResAvail->name attribute value of 'server’.

ServerSizeResAssignGet

Size ServerSizeResAssignGet(Server *server, char *name)

Args:
server A pointer to a Server object.
name A resource name.
Returns sizeResAssign->name attribute value of 'server’.

ServerStringResAvailGet

char *ServerStringResAvailGet(Server *server, char *name)

Args:
server A pointer to a Server object.
name A resource name.
Returns stringResAvail->name attribute value of 'server’.

ServerStringResAssignGet

char *ServerStringResAssignGet(Server *server, char *name)

Args:
server A pointer to a Server object.
name A resource name.
Returns stringResAssign->name attribute value of 'server’.

ServerlnetAddrPut

void ServerlnetAddrPut(Server *server, char *server_name)

Args:
server A pointer to a Server object.

Chapt Draft Revision: 2.3

SCHEDULER

6-159

SCHEDULER PBS IDS

server_name
Name of the server.

Sets the inetAddr attribute value to 'server_name’.

ServerDefQuePut

void ServerDefQuePut(Server *server, char *queue_name)

Args:
server A pointer to a Server object.

server_name
Name of the default queue.

Sets the defQue attribute value to 'queue_name’.

ServerPortNumberOneWayPut

void ServerPortNumberOneWayPut(Server *server, int port)

Args:
server A pointer to a Server object.
port Port number.
Sets the portNumberOneWay attribute value to 'port'.

ServerPortNumberTwoWayPut

void ServerPortNumberTwoWayPut(Server *server, int port)

Args:
server A pointer to a Server object.
port Port number.
Sets the portNumberTwoWay attribute value to 'port’.

ServerSocketPut

void ServerSocketPut(Server *server, int fd)

Args:
server A pointer to a Server object.
fd A file descriptor.

Sets the socket attribute value to 'fd".

6-160

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ServerFdTwoWayPut

void ServerFdTwoWayPut(Server *server, int fd)

Args:
server A pointer to a Server object.
fd A file descriptor.

Sets the fdTwoWay attribute value to 'fd'.

ServerFdOneWayPut

void ServerFdOneWayPut(Server *server, int fd)

Args:
server A pointer to a Server object.
fd A file descriptor.

Sets the fdOneWay attribute value to 'fd'".

ServerStatePut

void ServerStatePut(Server *server, int state)

Args:
server A pointer to a Server object.
state A server state.
Sets the state attribute value of 'server’ to 'state’.

ServerMaxRunJobsPut

void ServerMaxRunJobsPut(Server *server, int maxRunJobs)

Args:
server A pointer to a Server object.

maxRunJobs
of jobs.

Sets the maxRunJobs attribute value of 'server’ to 'maxRunJobs’.

ServerMaxRunJobsPerUserPut

void ServerMaxRunJobsPerUserPut(Server *server, int maxRunJobsPerUser)

Chapt Draft Revision: 2.3 6-161

SCHEDULER PBS IDS

Args:
server A pointer to a Server object.
maxRunJobsPerUser
of jobs.

Sets the maxRunJobsPerUser attribute value of 'server’ to 'maxRunJobsPerUser’.

ServerMaxRunJobsPerGroupPut

void ServerMaxRunJobsPerGroupPut(Server *server, int maxRunJobsPerGroup)

Args:
server A pointer to a Server object.
maxRunJobsPerGroup
of jobs.

Sets the maxRunJobsPerGroup attribute value of 'server’ to 'maxRunJobsPerGroup’.

ServerIntResAvailPut

void ServerIintResAvailPut(Server *server, char *name, int value)

Args:
server A pointer to a Server object.
name Resource name.
value Resource value.
Sets the intResAvail->name attribute value of 'server’ to 'value'.

ServerIntResAssignPut

void ServerIntResAssignPut(Server *server, char *name, int value)

Args:
server A pointer to a Server object.
name Resource name.
value Resource value.
Sets the intResAssign->name attribute value of 'server’ to 'value’.

ServerSizeResAvailPut

void ServerSizeResAvailPut(Server *server, char *name, Size value)

6-162 Chapt Draft Revision: 2.3

PBS IDS

Args:
server A pointer to a Server object.
name Resource name.
value Resource value.
Sets the sizeResAvail->name attribute value of 'server’ to 'value'.

ServerSizeResAssignPut

void ServerSizeResAssignPut(Server *server, char *name, Size value)

Args:
server A pointer to a Server object.
name Resource name.
value Resource value.
Sets the sizeResAssign->name attribute value of 'server’ to 'value'.

ServerStringResAvailPut

void ServerStringResAvailPut(Server *server, char *name, char *value)

Args:
server A pointer to a Server object.
name Resource name.
value Resource value.
Sets the stringResAvail->name attribute value of 'server’ to 'value'.

ServerStringResAssignPut

void ServerStringResAssignPut(Server *server, char *name, char *value)

Args:
server A pointer to a Server object.
name Resource name.
value Resource value.
Sets the stringResAssign->name attribute value of 'server’ to 'value'.

ServerPrint

void ServerPrint(Server *server)

Chapt Draft Revision: 2.3

SCHEDULER

6-163

SCHEDULER PBS IDS

Args:
server A pointer to a Server object.
Prints out values to the Server structure.

Serverlnit2

static void Serverlnit2(Server *server)

Args:
server A pointer to a Server object.

Initializes all members of the server structure except inetAddr, the port numbers, socket, and
file descriptors.

Serverlnit

void Serverlnit(Server *server)

Args:
server A pointer to a Server object.
Initializes all members of the server structure.

ServerOpenlnit

int ServerOpenlnit(Server *server)

Args:
server A pointer to a Server object.
The algorithm is as follows:

get network address of 'server’.

create a new socket.

bind the socket to a local port.

listen to the local port for incoming messages/request.
Update the socket attribute of the 'server’.

Return 0 if everything’s okay; 1 otherwise.

ServerOpen

int ServerOpen(Server *server)

Args:
server A pointer to a Server object.

6-164 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

The algorithm is as follows:

get the socket of the 'server’ (set in the 'socket’ attribute).
If socket is not a valid value (no socket exists),
then
send a pbs_connect() call using the server name alone.
Use the file descriptor value obtained from pbs_connect() as the new value
to fdTwoWay attribute.
else
accept() a request from the server using the socket.
Check to make sure that the request came from a trusted host.
Use the descriptor value returned by accept() call as the new value to
fdOneWay().
Call socket_to_conn() to obtain another descriptor to be used as the
value of the fdTwoWay attribute.

Return 0 if everything’s ok; 1 otherwise.

ServerRead

int ServerRead(Server *server)

Args:
server A pointer to a Server object.
Get a scheduling command from the 'server’.

ServerWriteRead

int ServerWriteRead(Server *server, int msg, void *param)

Args:
server A pointer to a Server object.
msg Type of message to send to the server.
param Additional parameters to accompany the message to send to the server.

If msg is STATNODE, then issue a pbs_statnode() call using the fdTwoWay
attribute value as file descriptor.

If msg is STATSERYV, then issue a pbs_statserver() call using the fdTwoWay
attribute value as file descriptor.

If msg is STATQUE, then issue a pbs_statque() call using the fdTwoWay
attribute value as file descriptor.

If msg is STATJOB, then issue a pbs_statjob() call using the fdTwoWay
attribute value as file descriptor.

ServerClose

int ServerClose(Server *server)

Chapt Draft Revision: 2.3 6-165

SCHEDULER PBS IDS

Args:
server A pointer to a Server object.

Issues a pbs_disconnect() on the descriptor given by the fdTwoWay attribute. Returns the
value obtained from pbs_disconnect().

ServerCloseFinal

void ServerCloseFinal(Server *server)

Args:
server A pointer to a Server object.

Get any opened socket for the 'server’. Clean up any remaining request on it. Then close the
socket.

getNodeslInfo

static int getNodesInfo(Server *server)

Args:
server A pointer to a Server object.

Issue a ServerWriteRead() using node_alist as param value. Get the results, and fill out the
appropriate member of the CNode structure, and add it to the set of nodes known to 'server’.
Returns 0 if successful; non-zero otherwise.

getServerinfo

static int getServerinfo(Server *server)

Args:
server A pointer to a Server object.

Issue a ServerWriteRead() using serv_alist as param value. Get the results and fill out the
appropriate member of the Server structure. Returns 0 if successful; non-zero otherwise.

getQueuesinfo

static int getQueuesinfo(Server *server)

Args:
server A pointer to a Server object.

Issue a ServerWriteRead() using que_alist as param value. Get the results and fill out the
appropriate member of the Server structure. Returns 0 if successful; non-zero otherwise.

6-166 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

getJobsinfo

static int getJobsInfo(Server *server)

Args:
server A pointer to a Server object.

Issue a ServerWriteRead() using job_alist as param value. Get the results and fill out the ap-
propriate member of the Server structure. Returns 0 if successful; non-zero otherwise.

ServerFree2

static void ServerFree2(Server *server)

Args:
server A pointer to a Server object.

Free up all temporary strings associated with 'server’. Free up malloc-ed areas associated
with ’server’. Free up all dynamic strings, and job structures associated with the ’server’s
queues.

ServerFree

static void ServerFree(Server *server)

Args:
server A pointer to a Server object.
Free up the entire Server structure, and any malloc-ed areas associated with it.

ServerStateRead

void ServerStateRead(Server *server)

Args:
server A pointer to a Server object.

Deallocates all queuest and jobs associated with 'server’. If fdTwoWay attribute valid is in-
valid, then issue a ServerOpen(). Get server, nodes, queues, and jobs info from the 'server’.

AllNodesGet

SetCNode *AlINodesGet()

Args:

Chapt Draft Revision: 2.3 6-167

SCHEDULER PBS IDS

Returns ServerNodesGet(AllServersLocalHostGet))

AllNodesLocalHostGet

SetCNode *AlINodesLocalHostGet()

Args:
Returns the CNode associated with the local host.

ServerNodesGet

SetCNode *ServerNodesGet(Server *server)

Args:
server A pointer to a Server object.
Returns the set of nodes managed by ’server’.

ServerNodesAdd

CNode *ServerNodesAdd(Server *server, char *name, int port, int queryMom)

Args:
server A pointer to a Server object.
name name of a node to add.
port port number of the associated MOM

gueryMomflag as to whether or not to query the corresponding MOM.

If node with 'name’ is already in the set of nodes managed by 'server’, then
no need to add.
Otherwise,
create a new CNode object, initialize it, propagate any resmom information,
and add the new oobject to the list of nodes known to the 'server’.

ServerNodesHeadGet

CNode *ServerNodesHeadGet(Server *server)
Args:

server A pointer to a Server object.
Returns the first CNode object in the list of nodes known to 'server’.

6-168 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

ServerNodesTailGet

CNode *ServerNodesTailGet(Server *server)

Args:
server A pointer to a Server object.
Returns the last CNode object in the list of nodes known to 'server’.

ServerNodesQuery

int ServerNodesQuery(Server *server, char *spec)

Args:
server A pointer to a Server object.
spec A nodes specification

Calls pbs_rescquery() to issue a request to 'server’ to query for

availability of resources as specified in 'spec’. After getting the

results, this calls ServerNodesNumAvailPut(), ServerNodesNumAllocPut(),
ServerNodesNumRsvdPut(), and ServerNodesNumDownPut().

Then, it will return SUCCESS or FAIL depending on the results.

ServerNodesReserve

int ServerNodesReserve(Server *server, char *spec, int resld)

Args:
server A pointer to a Server object.
spec A nodes specification
resild A handle to the reservation

Calls pbs_rescreserve() to issue a request to 'server’ to reserve resources
specified in 'spec’. If 'resld’ is zero, then this is for a new reservation.
Otherwise, it is for an existing or partial reservation.

Then, it will return SUCCESS or FAIL depending on the results.

ServerNodesRelease

int ServerNodesRelease(Server *server, int resid)

Args:
server A pointer to a Server object.

Chapt Draft Revision: 2.3 6-169

SCHEDULER PBS IDS

resld A handle to the reservation

Calls pbs_rescrelease() to ssue a request to 'server’ to release resources
from a previous reservation session whose handle is 'resid’.

Then, it will return SUCCESS or FAIL depending on the results.

ServerNodesNumAuvailGet

int ServerNodesNumAvailGet(Server *server)

Args:
server A pointer to a Server object.
Return the numAuvail attribute value of the nodes attribute of 'server’.

ServerNodesNumAllocGet

int ServerNodesNumAllocGet(Server *server)

Args:
server A pointer to a Server object.
Return the numAlloc attribute value of the nodes attribute of 'server’.

ServerNodesNumRsvdGet

int ServerNodesNumRsvdGet(Server *server)

Args:
server A pointer to a Server object.
Return the numRsvd attribute value of the nodes attribute of 'server’.

ServerNodesNumDownGet

int ServerNodesNumDownGet(Server *server)

Args:
server A pointer to a Server object.
Return the numDown attribute value of the nodes attribute of 'server’.

ServerNodesNumAuvailPut

void ServerNodesNumAvailPut(Server *server, int numAvail)

6-170 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
server A pointer to a Server object.
numAvail # of nodes available
Update the numAvail value of the nodes attribute of 'server’ to 'numAuvail’.

ServerNodesNumAllocPut

void ServerNodesNumAllocPut(Server *server, int numAlloc)

Args:
server A pointer to a Server object.
numAlloc # of nodes allocated
Update the numAlloc value of the nodes attribute of 'server’ to 'numAlloc’.

ServerNodesNumRsvdPut

void ServerNodesNumRsvdPut(Server *server, int numRsvd)

Args:
server A pointer to a Server object.
numRsvd # of nodes reserved
Update the numRsvd value of the nodes attribute of 'server’ to 'numRsvd’.

ServerNodesNumDownPut

void ServerNodesNumDownPut(Server *server, int numDown)

Args:
server A pointer to a Server object.
numDown # of nodes down
Update the numDown value of the nodes attribute of 'server’ to 'numDown’.

JobAction

int JobAction(Job *job, Action action, void *params)

Args:
job Pointer to a job object.

action Action to perform on the job: SYNCRUN, ASYNCRUN, DELETE, RERUN,
HOLD, RELEASE, SIGNAL, MODIFYATTR, and MODIFYRES.

Chapt Draft Revision: 2.3 6-171

SCHEDULER PBS IDS

params Additional parameters to the action.

Depending on the action specified, issue the appropriate PBS API call:
If SYNCRUN, then pbs_runjob(), update the job’s state to RUNNING,

accumulate the resources.

If ASYNCRUN, then pbs_asyrunjob(), update the job’s state to RUNNING,

accumulate the resources.
If DELETE, then pbs_deljob(), update the job’s state to DELETED.
If RERUN, then pbs_rerunjob(), update the job’s state to QUEUED.
If HOLD, then pbs_holdjob(), update the job’s state to HELD.
If RELEASE, then pbs_rlsjob(), update the job’s state to RELEASE.

If SIGNAL, then pbs_sigjob(),

If MODIFYRES or MODIFYATTR, then pbs_alterjob(), and update the value

for the appropriate resource or attribute.

Returns SUCCESS (1) if operation was completed successfully; otherwise,

it return FAIL (0).

SetServerlnit

void SetServerlnit(SetServer *ss)

Args:
ss A set of server structures.

Initialize the set of servers 'ss’ so that both head and tail are pointing to NOSERVER.

SetServerAdd

void SetServerAdd(SetServer *ss, Server *s)

Args:
ss A set of server structures.
S A pointer to a Server object.

Add Server 's' to the set of servers, 'ss'.

SetServerFree

void SetServerFree(SetServer *ss)

Args:
ss A set of server structures.

Free up malloc-ed areas associated with ’ss’.

SetServerPrint

6-172

Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

void SetServerPrint(SetServer *ss)

Args:
Ss A set of server structures.
Prints out the elements in the set of servers 'ss'.

inSetServer

int inSetServer(Server *s, SetServer *ss)

Args:
S Pointer to a Server object.
ss A set of server structures.

Returns 1 if's’ is a member of 'ss’; 0 otherwise.

AllServersAdd

int AllServersAdd(char *name, int port)

Args:
name A node name.
port Network port number for the new Server.

Creates a new Server(name, port) object, and adds it (if not a duplicate) to the internal Set-
Server variable, AllServers.

AllServersinit

void AllServersinit(void)

Initializes the internal SetServer variable, AllServers to a consistent value.

AllServersGet

void AllServersGet(void)

Returns a pointer to the internal SetServer variable, AllServers.

AllServersFree

void AllServersFree(void)

Chapt Draft Revision: 2.3 6-173

SCHEDULER PBS IDS

Frees up malloc-ed storage associated with internal variable, AllServers.

ServerPartition

int ServerPartition(struct ServerSortArgs *A, int p, intr)

Args:
A stuff of information needed to reorder the elements of a set of Servers.
p the "leftmost" element of a set of Servers.
r the "rightmost" element of a set of Servers.

This is the ServerPartition() function in the well-known Quicksort() sorting algorithm. (see
"Introduction to Algorithms" by Cormen, et al) pp. 153-156).

ServerQuickSort

void ServerQuickSort (struct ServerSortArgs *A, int p, intr)

Args:
A stuff of information needed to reorder the elements of a set of Servers.
p the "leftmost" element of a set of Servers.
r the "rightmost" element of a set of Servers.

This is the Quicksort() function in the well-known quicksort sorting algorithm. (see "Intro-
duction to Algorithms" by Cormen, et al) pp. 153-156).

SetServerSortint

int SetServerSortint (SetServer *s, int (*key)(), int order)

Args:
S the set of Servers to reorder.
key the function to apply to each member of the set of Servers whose int value will

be used to reorder the set of Servers.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Servers in a dynamic array, and then run ServerQuicksort()
function on the array, which also rearranges the pointers representing the set of Servers.

SetServerSortStr

int SetServerSortStr (SetServer *s, char *(*key)(), int order)

Args:

6-174 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

S the set of Servers to reorder.

key the function to apply to each member of the set of Servers whose char*
value will be used to reorder the set of Servers.

order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Ques in a dynamic array, and then run ServerQuickSort()
function on the array, which also rearranges the pointers representing the set of Servers.

SetServerSortDateTime

int SetServerSortDateTime (SetServer *s, DateTime (*key)(), int order)

Args:
S the set of Servers to reorder.
key the function to apply to each member of the set of Servers whose DateTime val-

ue will be used to reorder the set of Servers.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Servers in a dynamic array, and then run ServerQuicksort()
function on the array, which also rearranges the pointers representing the set of Servers.

SetServerSortSize

int SetServerSortSize (SetQue *s, Size (*key)(), int order)

Args:
s the set of Ques to reorder.
key the function to apply to each member of the set of Servers whose Size value will

be used to reorder the set of Servers.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Servers in a dynamic array, and then run ServerQuickSort()
function on the array, which also rearranges the pointers representing the set of Servers.

SetServerSortFloat

int SetServerSortFloat (SetServer *s, double (*key)(), int order)

Args:
S the set of Servers to reorder.
key the function to apply to each member of the set of Servers whose double value

will be used to reorder the set of Servers.
order the order of sort: ASCending or DESCending.

Holds the pointers to the set of Servers in a dynamic array, and then run ServerQuicksort()
function on the array, which also rearranges the pointers representing the set of Servers.

Chapt Draft Revision: 2.3 6-175

SCHEDULER PBS IDS

6.1.4.7. System

The source code found under the System subdirectory contains data structures and functions
that are used in order to build the resulting scheduler daemon. It is under this abstraction
where the main() part of the program exists. The files involved are af_config.h, af_config.c,
af_system.h, and af_system.c.

6.1.4.7.1. File: af_config.c
This contains functions related to the scheduler configuration file.

badconn

void badconn(char *msg, struct sockaddr_in saddr)

Args:
msg A message to attach to the PBS log file regarding a bad connection.
saddr The bad address that attempted to connect to the scheduler.

Sends a message to the PBS log file regarding a bad connection involving
'saddr’.

addClient

int addClient(char *name)

Args:
name A name to add to the list of okClients.

If not a duplicate, add the host address of 'name’ to the list of addresses allowed to connect to
the scheduler. The list is maintained via the internal variable, okClients. Returns O if suc-
cessful; non-zero otherwise.

validateClient

int validateClient(void *saddr)

Args:
saddr A host address to validate.
Returns 0 if saddr’s host address appears on the okClients list; otherwise, return non-zero.

freeClients

void freeClients(void)

Free up the malloc-ed storage associated with okClients.

6-176 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

freeConfig

void freeConfig(void)

Free up the malloc-ed storage associated with various arrays filled as a result of reading the
configuration file.

getNextToken

static char *getNextToken(char *line)

Args:
line If non-NULLSTR, a new line to read. Otherwise, continue from previous call.

Returns the next token flagged by a previous call to strtok(). Returns NULL if no more to-
kens or if an error has occurred.

readConfig

int readConfig(char *file)

Args:
file File to read.

Read and process the lines in the configuration file. Valid lines format are:
$clienthost <hostname>
$momhost <hostname> <port>
$node <node_name> <CNodeGet() function name> <hostQuery_keyword>

6.1.4.7.2. File: af_config.c

lock out

static void lock_out(int fds, short op)

Args:
fds The padlock.
op Lock type.

Prevents other daemons from accessing the file represented by 'fds’.

die

static void die(int sig)

Chapt Draft Revision: 2.3 6-177

SCHEDULER PBS IDS

Args:
sig The signal number.
Causes the scheduler to exit after shutting down the system and closing PBS log file.

initSchedCycle

static void initSchedCycle(void)

Get all the static resource values for all the known CNodes.

addDefaults

static void addDefaults(void)

Loads the okClients, and Res internal variables with some default values.

toolong

static void toolong(int sig)
Args:

sig A signal number.
Parent re-execs itself, while child process attempts to dump core if no core file exists.

restart

static void restart(int sig)

Args:
sig A signal number.

The algorithm is as follows:

Save some information about the local Server such as PortNumberOneWay,
PortNumberTwoWay, socket, and fdOneWay.

Free up all malloc-ed storage filled in when the configuration file was read.

Add the local server again to the list of known Servers. The saved values of
PortNumberOneWay, PortNumberTwoWay, socket, and fdOneWay are reloaded into
the local Server structure.

Add default values to the internal variables okClients and Res.

Re-read the configuration file.

Initialize a scheduling cycle.

6-178 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

getArgs

static void getArgs(int argc, char *argv([])

Args:
argc # of arguments.
argv list of the actual arguments.

This function takes care of reading the command line arguments. See BASL ERS for the for-
mat of the commandline.

cdToPrivDir

static void cdToPrivDir(void)

Checks to make sure that the priv directory is not group and other-writeable before cd-ing to
it. Pbs_environment file is also checked for security.

secureEnv

static void secureEnv(void)

Set up a secure executing environment for the scheduler daemon.

signalHandleSet

static void signalHandleSet(void)

Sets signal handlers for SIGHUP, SIGALRM, SIGINT, and SIGTERM.

SystemlInit

static void Systemlnit(int argc, char *argv([])

Args:
argc # of arguments.
argv A list of arguments.

The algorithm for this function is as follows:
Check to make sure that effective user id and user id are set to root (when
not under DEBUG mode)
Get the local hostname.
Initialize the set of servers known to the system. Add the local hostname to
this set.

Chapt Draft Revision: 2.3 6-179

SCHEDULER PBS IDS

Get command line arguments (via the supplied argc, argv parmeters).

go to the privilege directory (sched_priv).

create a secure executing environment.

Open the PBS sched log file.

Get a socket from the local server.

Add defaults to internal Resource variable Res.

Initialize the set of nodes known to the system.

Read the configuration file (if set).

Attempt to open the lock file. If successful, prevent other daemons from
accessing the file.

Kill the parent process, causing the child process to be become stand-alone
daemon.

Direct stdout/stderr to some debug file (sched_out or as specified in -p)

Get current process id of the child.

Close any stdin of the process.

Write a message to the sched lock file the process id of the daemon.

Lock the daemon into memory if PLOCK_DAEMONS variable is set appropriately.

Set up things for DIS data encoding/decoding.

Set up the signal handlers.

Initialize a scheduling cycle.

Write a message to the PBS sched log file indicating that the daemon has
started.

SystemStateRead

void SystemStateRead(void (*sched_main)())

Args:
sched_main
A function to invoke during a scheduling cycle.

The algorithm for this function is as follows:
Get the local server’s socket.
Listen on it for messages. If a message has arrived, then go get it.
if the message received is one of
{SCH_SCHEDULE_NEW, SCH_SCHEDULE_TERM, SCH_SCHEDULE_TIME,
SCH_SCHEDULE_RECYC, SCH_SCHEDULE_CMD, SCH_SCHEDULE_FIRST}, then
begin
set up an alarm for 'alarm_time’
Get data for all servers known to the system.
Get DYNAMIC_RESOURCE data for all nodes known to the system.
Call sched_main()
Then disconnect opened connections (2-way channels) to the servers.
Reset alarm time.
listen for the next scheduling message
end
else if message received is one of
{SCH_CONFIGURE, SCH_RULESET}, then
begin
Issue a restart() call which will re-read the configuration file.
listen for the next scheduling message
end
else if message received is one of

6-180 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

{SCH_CONFIGURE, SCH_RULESET}, then
begin
Issue a restart() call which will re-read the configuration file.
end
else if message received is SCH_QUIT, then
return from this function.
else if message received is one of
{SCH_ERROR, SCH_SCHEDULE_NULL},
listen for the next scheduling message
end

SystemCloseServers

void SystemCloseServers(void)

For all the Servers known the the system, close their fdTwoWay file descriptor.

SystemClose

void SystemClose(void)

Close all file descriptors associated with the Servers known to the system. Free up all mal-
loc-ed areas filled in when the configuration file was read.

6.2. The Tcl Scheduler

The second provided scheduler is based on the Tcl language developed by John K. Ouster-
hout. Tcl stands for Tool Control Language.

6.2.1. Tcl Scheduler Overview

The Tcl Scheduler contains a number of functions which act as wrappers for existing PBS li-
brary calls. The main() routine opens a logfile, processes the command line arguments, and
sets up signal handling. After that, a Tcl interpreter is created and Tcl_CreateCommand() is
called for each of the function wrappers. The initialization script is run if it exists and the
body script is read into memory. A socket is set up to get connections from the server and a
loop is entered to process wakeup calls from the server. Each wakeup contains a command
from the server. If the command is SCH_SCHEDULE_NEW, SCH SCHEDULE_TERM,
SCH_SCHEDULE_TIME, SCH_SCHEDULE_RECYC, or SCH_SCHEDULE_CMD the
function Tcl_Eval() is called with the saved body script. If the result from this is not
TCL_OK an error message is logged and the process aborts.

6.2.2. File: pbs_tclWrap.c

The purpose of the wrapper routines is to check the legality of the parameters passed from a
Tcl command and call a library function. The sched_tcl man page describes each Tcl func-
tion in detail. The following is a list of their names with arguments and any special process-
ing that they need to do.

Chapt Draft Revision: 2.3 6-181

SCHEDULER PBS IDS

OpenRM()

int OpenRM(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "openrm" and calls the PBS resource monitor li-
brary function openrm().

CloseRM()

int CloseRM(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "closerm" and calls the PBS resource monitor li-
brary function closerm().

DownRM()

int DownRM(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "downrm™ and calls the PBS resource monitor li-
brary function downrm().

ConfigRM()

int ConfigRM(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "configrm"” and calls the PBS resource monitor li-
brary function configrm().

AddREQ()

int AddREQ(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "addreq" and calls the PBS resource monitor li-
brary function addreq().

AIIREQ()

int AIREQ(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "allreq" and calls the PBS resource monitor library
function allreq().

6-182 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

GetREQ()

int GetREQ(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "getreq" and calls the PBS resource monitor library
function getreq().

FlushREQ()

int FlushREQ(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "flushreq" and calls the PBS resource monitor li-
brary function flushreq().

ActiveREQ()

int ActiveREQ(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "activereq" and calls the PBS resource monitor li-
brary function activereq().

FullResp()

int FullResp(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "fullresp” and calls the PBS resource monitor li-
brary function fullresp().

attrlist()

char* attrlist(struct attrl *ap)

This function takes a list of attrl's and creates a Tcl list from them. For each attrl,
Tcl_Merge() is called to create a list with two elements. The first is the name and resource if
it exists, separated by a colon. The second is the value. Tcl_Merge() is called again to com-
bine all the name/value pairs into one list. The functions PBS_StatServ(), PBS_StatJob(),
PBS_SelStat(), and PBS_StatQue() all use this to create their return lists.

PBS_StatServ()

int PBS_StatServ(ClientData, Tcl_Interp *, int, char *[])

Chapt Draft Revision: 2.3 6-183

SCHEDULER PBS IDS

This function is bound to the Tcl function "pbsstatserv" and calls the PBS interface library
function pbs_statserv(). The single batch_status struct which is returned is combined using
Tcl_Merge() to form a list element with the batch_status struct’'s name, attribs and text form-
ing the three sublists. The routine attrlist() is called to form the second sublist out of the at-
tribs. The temporary storage used to create the list is free'ed.

PBS_StatJob()

int PBS_StatJob(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsstatjob” and calls the PBS interface library
function pbs_statjob(). The list of batch_status struct’s which are returned are looped
through with an array of three char *'s being setup to pass to Tcl_Merge() to form a list ele-
ment with the batch_status struct's name, attribs and text forming the three sublists. The
routine attrlist() is called to form the second sublist out of the attribs. All the above list ele-
ments are combined in a final call to Tcl_Merge() and the temporary storage used to create
the lists is free'ed.

PBS_SelStat()

int PBS_SelStat(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsselstat" and calls the PBS interface library
function pbs_selstat() with a list of attropl struct’s giving the attributes to select. To get only
the "runnable" jobs from the server, the attropl's are setup to only return jobs with
"queue_type=E" and "job_state=Q". The list of batch_status struct’s which are returned are
looped through with an array of three char *’s being setup to pass to Tcl_Merge() to form a
list element with the batch_status struct’s name, attribs and text forming the three sublists.
The routine attrlist() is called to form the second sublist out of the attribs. All the above list
elements are combined in a final call to Tcl_Merge() and the temporary storage used to create
the lists is free'ed.

PBS_StatQue()

int PBS_StatQue(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsstatque” and calls the PBS interface library
function pbs_statque(). The list of batch_status struct's which are returned are looped
through with an array of three char *'s being setup to pass to Tcl_Merge() to form a list ele-
ment with the batch_status struct's name, attribs and text forming the three sublists. The
routine attrlist() is called to form the second sublist out of the attribs. All the above list ele-
ments are combined in a final call to Tcl_Merge() and the temporary storage used to create
the lists is free'ed.

PBS_RunJob()

6-184 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

int PBS_RunJob(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsrunjob” and calls the PBS interface library
function pbs_runjob().

PBS_AsyRunJob()

int PBS_AsyRunJob(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsasyrunjob™ and calls the PBS interface library
function pbs_asyrunjob().

PBS_MoveJob()

int PBS_MoveJob(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsmovejob". A call to the fuction get_server() is
made, followed by a call to the PBS interface library function pbs_movejob().

PBS_DelJob()

int PBS_DelJob(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsdeljob” and calls the PBS interface library
function pbs_deljob().

PBS_HoldJob()

int PBS_HoldJob(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsholdjob” and calls the PBS interface library
function pbs_holdjob().

PBS_QueueOp()

int PBS_QueueOp(ClientData, Tcl_Interp *, int, char *[], struct attropl *)

This function is called by PBS_EnableQueue(), PBS_DisableQueue(), PBS_StartQueue() and
PBS_StopQueue(). It is not bound to any Tcl function directly. It calls the PBS interface li-
brary function pbs_manager() with the second and third parameters of MGR_CMD_SET and
MGR_OBJ_QUEUE respectively, and a struct attropl * supplied by the calling routine de-
pending on what action is to be done.

Chapt Draft Revision: 2.3 6-185

SCHEDULER PBS IDS

PBS_EnableQueue()

int PBS_EnableQueue(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsgenable™" and calls PBS_QueueOp().

PBS_DisableQueue()

int PBS_DisableQueue(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsqdisable” and calls PBS_QueueOp().

PBS_StartQueue()

int PBS_StartQueue(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsgstart” and calls PBS_QueueOp().

PBS_StopQueue()

int PBS_StopQueue(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "pbsgstop” and calls PBS_QueueOp().

PBS_AlterJob()

int PBS_AlterJob(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "pbsalterjob” and calls the PBS interface library
function pbs_alterjob(). The Tcl function Tcl_SplitList() is called to separate each of the at-
tributes to be altered. Then a loop is entered to create a attrl structure for each attribute.

DateTime()

int DateTime(ClientData, Tcl_Interp *, int, char *[])

This function is bound to the Tcl function "datetime"”. A switch statement is entered for the
number of arguments. The time format requested is determined and the result calculated by
using the POSIX time() , mktime() and localtime() functions.

6-186 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

StriFtime()

int StrFtime(ClientData, Tcl_Interp *, int, Tcl_Obj *CONST [])

This function is bound to the Tcl function "strftime" and calls the POSIX function strftime() .
It requires two arguments. The first is a format string. The format conventions are the
same as those for the POSIX function strftime(). The second argument is POSIX calendar
time in seconds.

add_cmds()

void add_cmds(Tcl_Interp *interp)

Call Tcl_CreateCommand() for each of the new commands. Also call site_cmds() so any site-
specific processing will be done.

6.2.3. File: pbs_sched.c
This file contains main() and the loop which reads and processes commands from the server.

start_tcl()

void start_tcl(void)

The function Tcl_Createlnterp() is called to create a Tcl interpreter. Then, add_cmds() is
called to create the additional commands. The initialization script is run if it exists and the
body script is read into memory.

restart()

void restart(int sig)

This is the signal handler for SIGHUP. The Tcl interpreter is deleted by calling Tcl_Deleteln-
terp(). Then a new one is started by calling start_tcl().

server_command()

int server_command(int socket_number)

This function waits for a server wakeup and reads the command. A call to accept() is made
followed by a read() to get the four byte command. The command is returned.

Chapt Draft Revision: 2.3 6-187

SCHEDULER PBS IDS

6.2.4. File: site_tclWrap.c

This file is provided as a holder for any site-specific code which needs to be included. It con-
tains one routine which is called from add_cmds().

site_cmds()

void site_cmds(Tcl_Interp *interp)

As delivered, this function just returns. Use it to add commands to Tcl that solve your prob-
lems in scheduling better, faster and cheaper!

6.3. The C Scheduler

The third provided scheduler is not a complete program. To use this will require the largest
initial effort but will yield the most flexablity and quickest runtime of all the other sched-
ulers. It is recommended that a site use either the Basl or Tcl scheduler to to try out policies
and move to use the C scheduler only after having firmly settled on something that will not
be changed quickly.

There are two functions that must be provided by the scheduler writter. The first is

int schedinit(int argc, char *argv[])

The parameters passed are the same as those passes to main from the command line. If this
function returns a non-zero value, this is considered a failure and the scheduler exits. The
second function is

int schedule(int cmd)

The parameter is the command from the server. If this function returns a non-zero value,
this is considered a failure and the scheduler exits. The global variable

int connector
must be defined and is setup with the PBS connection handle when schedule is called.

If a resource mom connection is to be used in the scheduler, the global variable pbs_rm_port
should be used as the default port.

6.3.1. File: pbs_sched.c

The C Scheduler has a provided main routine which processes the command line arguments,
and sets up signal handling before going into a loop reading scheduler commands.

toolong()

void toolong(int sig)

This is the routine setup as the alarm signal handler. This carries over from the Tcl sched-
uler as a error recovery method if the schedule run takes too long. An error message is
logged and the network is shutdown. The process forks and the parent simply re-exec’s itself
to do a clean startup. The child calls abort() if no core file exists already and exits. File:

6-188 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

restart()
void restart(int sig)

This is the routine setup as the HUP signal handler. It logs a message and calls schedule()
with the argument SCH_CONFIGURE.

server_command()

int server_command(int socket_number)

Call accept() to get a new socket from the socket specified by socket humber. Then convert
the new socket to a connection via socket_to_conn().

6.3.2. FIFO Sample C scheduler

Scheduling policies differ greatly from site to site. They differ to such a degree that it is
impossible to guess all the different parts that everyone will want in their scheduler. This
sample scheduler was meant as a jumping off point into a useful scheduling policy. It would
be useful to know where to change the code. In making this scheduler several assumptions
were made which will probably be wrong.

To make the scheduler gather more data from the pbs_server:

1. add the variable to the correct data structure in data_types.h i.e. job_info /
queue_info / server_info / node_info

2. edit the appropriate file and change the query_*_info() function. These functions
will loop though a batch_status structure which is returned from the server.
There is a large if/else statement block comparing the current element in the list
to information that is wanted. Add a new statement to the end block. All the
symbolic constants for the attributes are in src/include/pbs_ifl.h.

3. Add the initialization of the new variable in the new_*_info() function, and free it
in the free_*_info() function. Also add a print statement to print_*_info() if you
plan to use that for debugging.

To have the scheduler check more/different resources:

There is a variable in globals.c which tells the scheduler which variables to check aginst
jobs in the scheduling cycles. Change the array res_to_check.

Format: { resource_name, comment_msg, debug_msg }
- resource_name is the name of a resource how PBS views it. Ex: ncpus, cput, mem

- comment_msg is what the comment of the job will bet set to if there is a insufficient
amount of this resource

- debug_msg is what will be logged if there is an insufficient amount of this resource

Chapt Draft Revision: 2.3 6-189

SCHEDULER PBS IDS

To add a new sorting method:
1. add a new element to the sort_type enum in constants.h

2. write the compare function used by gsort the prototype: int func(const void *v1,
const void *v2)

The compare function should return

-1 ifvli<v2
0: ifvl==v2
1: ifvl>v2

The current compare functions are in the file sort.c.
NOTE: multi_sort uses the global array, so it will automatically work with the
new sort.

3. add to the sorting_info array in globals.c

Format: { sort_type, config_name, cmp_func_ptr }
- sort_type: the element in the enum sort_type

- config_name: string: The name of the sort which is used in the scheduling poli-
cy config file

- cmp_func_ptr: pointer to compare function
int (*cmp_func_ptr) (const void*, const void*)

To add a global sort i.e. one that happens with every sort:

There is one entry point into the sorting compare function. Currently it is sorting on
sch_priority and if equal to call the requested sorting function. Modify this function to
change the sorting globally.

To change how the scheduler picks the next job candidate to run:

This is decided in the next_job() function. Currently there are 3 choices Round Robin,
By Queue, or neither. If another choice is added, a bit should be added to the config
strucuture and scheduling policy config file should be updated.

To change how the scheduler decides if a job can fit into the system.

All the checks for a job are in check.c is_ok_to_run_in_queue() is run once per schedul-
ing cycle for each queue. Any any queue check which needs to be checked but wont
change within a scheduling cycle should be added to this fuction. Any check which
needs to be checked once for each job should be added to is_ok_to_run_job().

To add to the scheduling config file:

6-190 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

1. add a variable to the config structure and possibily status structure in da-
ta_types.h. If what is being added is going to change between prime and non-
prime, the status structure needs to be changed. If it will change with prime and
non-prime time, make sure to change the init functions (see below).

2. add a symbolic constant in config.h which will hold the name which will appear in
the config file. The prefix for the symbolic constant is PARSE.

3. change the parse_config function in parse.c There is an if/else block which checks
each config word from the file. This block needs to be expanded. The variable con-
fig_name contains the name on the left side of the colen(:) in the config file. If the
value is boolean or numeric, the num variable will hold its value. In any case the
variable config_value will hold the string value.

Find a good place in the if/else structure to add your new item. It should be if(
Istrcemp(config_name, PARSE_symbolic_constant))

If an error is detected set the variable error to 1, and it will be printed if there is an
error.

To have something happen at the start of primetime or nonprimetime

There are two functions in the file prime.c. Init_non_prime_time() and
init_prime_time().

These functions are called in the beginning of primetime and nonprimetime. Add all
the necessary code in those functions. The status structure is updated in theses func-
tions.

To change information gathered by MOM Information is picked up from mom for nodes.

1. edit globals.c and add an element to the array res_to_get. This will cause the
scheduler to query mom for the resource.

2. edit data_types.h and add new members to the node_info structure.

3. edit the function talk_with_mom() in node_info.c. Near the end of the function
there will be an if/else block. This is where the answers from mom are converted
into the data for the node.

NOTE: If you are running a single timeshared system, set up a nodes file with your one
system and mark it timeshared(:ts).

To change how load balencing is done:

The load balencing policy is done in 2 functions. The first checks to see if there is a timeshar-
ing node available to run on, is_node_available(). The second finds the best timesharing node
to run on, find_best_node().

To change how starving jobs are helped:

Job starvation is done by setting a internal scheduler priority variable sch_priority. This is
done in the function update_starvation(). It is called in init_scheduling_cycle() to make sure
it will be updated every cycle. Currently, all which is done is to set the priority to the am-
mount of times it has waited the max_starve time.

Chapt Draft Revision: 2.3 6-191

SCHEDULER PBS IDS

The seconds half of the job starvation code is how to allow jobs to run while there is a starv-
ing job. There is a function in check.c which only allows the most starving job to run. The
function knows which job is most starving, since it is stored in the scheduling cycle status
variable, stat.

6.3.2.1. File: globals.c

This file defines the necessary global variables for the scheduler. Most of the variables are
constant.

res_to_check
This is the list of resources the scheduler will check inorder to see if a job can run.
The Format: name, comment_msg, debug_msg

namethe name of the resource as PBS knows it

comment_msg
If the job can not run, the comment attribute of the job will be changed to this
message.

debug_msg
If the job can not run, this debug message will be logged

sorting_info
This variable holds all the information about the different sorts which can be done on
the jobs.
The Format:
sort_type, sort_name, cmp_func

sort_type
element from the enum sort_type

sort_name
The name of the sort that will appear in the scheduling policy config file i.e. short-
est_job_first

cmp_func
the function pointer to gsort compare function

num_res
This is the number of elements in the res_to_check array

num_sorts
This is the number of elements in the sorting_info array

conf This is the global config structure. This holds all the run time config info read in from
the scheduling policy config file. This information does not change during the runtime
of the scheduler.

stat This is the global scheduling cycle status structure. This holds all the configuration in-
formation which changes during the runtime of the scheduler.

6.3.2.2. File: check.c

The functions in this file deal with checking if a job can run on the system at the current
time.

6-192 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

The main check functions

is_ok_to_run_in_queue

intis_ok_to_run_queue(queue_info *qinfo)

Args:
ginfo the structure holding the queue information
Returns:

SUCCESS
if is possible to run jobs in the queue

QUEUE_NOT_STARTED
if the queue is not started

QUEUE_NOT_EXEC
if the queue is not an execution queue

IN_DED_TIME
if it is dedicated time and the queue is not a dedicated time queue

This function is called on each queue to see if jobs in the queue can be run. It checks first to
see if the queue’s started attribute is set to 'true’ and then it checks to see if the queue is a
execution queue. It also will check to see if it is currently dedicated time and if the queue is
a dedicated time queue or if we are not in dedcated time. If all the conditions are true then
jobs can run in the queue.

NOTE: this function gets called once per queue each scheduling cycle, other queue related
variables that can change doing the scheduling cycle are checked in is_ok_to_run_job().

is_ok_to_run_job

intis_ok_to_run_job(server_info *sinfo, queue_info *qinfo, job_info *jinfo)

Args:
sinfo the server the job resides in
ginfo the queue the job resides in
jinfo the job to check

Returns:

SUCCESS
if the job is OK to run

QUEUE_GROUP_LIMIT_REACHED
if the queue’s max_group_run limit has been reached

QUEUE_USER_LIMIT_REACHED
if the queue’s max_user_run limit has been reached

QUEUE_JOB_LIMIT_REACHED
if queue’s max_running limit has been reached

Chapt Draft Revision: 2.3 6-193

SCHEDULER PBS IDS

SERVER_GROUP_LIMIT_REACHED
if the server’s max_group_run limit has been reached

SERVER_USER_LIMIT_REACHED
if the server’s max_user_run limit has been reached

SERVER_JOB_LIMIT_REACHED
if the server’s max_running limit has been reached

NOT_QUEUED
if the job is not in the queued state

CROSS_INTO_DED_TIME
if the job would cross a dedicated time boundry

NOT_ENOUGH_NODES_AVAIL
if the there are not enough of the right type of nodes available

return_code
from what check_avail_resources()

This function will check the queues max_running, max_user_run, and max_group_run attributes,
and the servers max_running, max_group_run, and max_user_run attributes. It will also check if
the job is queued. It will check of the job would cross a dedicated time boundry. There is a
check to see if there are enough nodes of the right type of nodes available to run the job. Fi-
nally, it will it will call check_avail_resources() to see if the job is able to run within the serv-
er’s resources.

Helper Functions

check_avail_resources

int check_avail_resources(server_info *sinfo, queue_info *qinfo,
job_info *jinfo)

Args:
sinfo the server the job resides in
ginfo the queue the job resides in
jinfo the job

Returns:

SUCCESS
if job is within the resources left on the system

index
of the res_to_check array for the resource which was lacking.

This function will check to see if the there are enough resources available to run the job. The
resources are specified in the global array res_to_check. If the resource is not found or set to
infinity, the check is skipped.

check _server_max_user_run

int check_server_max_user_run(server_info *sinfo, char *account)

6-194 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
sinfo the server

account
account name of the owner of the job

Returns:
0 if user is within server’s max_user_run limit

SERVER_USER_LIMIT_REACHED
if user is above server’s max_user_run limit

This function counts the number of running jobs on the server which are owned by account. If
that less then the max_user_run attribute on the server then {TRUE} is returned. If max_us-
er_run is not set, then this function does not count.

check_queue_max_user_run

int check_queue_max_user_run(queue_info *qginfo, char *account)

Args:
ginfo the queue
account
account name of the owner of the job
Returns:

0
if the user is within queue user run limits

QUEUE_USER_LIMIT_REACHED
if the user is above queue user run limits

This function counts the number of running jobs the user has running in the queue and
checks it against the max_user_run of the queue. Nothing is done if max_user_run is not set

check_queue_max_group_run

int check_queue_max_group_run(queue_info *qinfo, char *group)

Args:
ginfo information about the queue
groupthe group name

Returns:

0
if the group is within their queue group run limits

QUEUE_GROUP_LIMIT_REACHED
if the group is above their queue group run limits

This function counts the number of running jobs the group has in the queue and checks that
against the max_group_run of the queue. Nothing is done if max_group_run is not set.

Chapt Draft Revision: 2.3 6-195

SCHEDULER PBS IDS

check_server_max_group_run

int check_server_max_group_run(server_info *sinfo, char *group)

Args:
sinfo the server
groupgroup name
Returns:

0
if the group is within their server group run limits

SERVER_GROUP_LIMIT_REACHED
if the group is above their server group run limits

This function counts the number of running jobs the group has on the server and checks that
against the max_group_run of the server. Nothing will be done if max_group_run is not set

dynamic_avail

long int dynamic_avail(resource *res)

Args:
res the resource

Returns:
the remaining availability of the resource

This function will return the remaining unallocated amount of a resource. The server will
return the maximum amount of a resource(resources_max). It will also return the amount
which is available for the scheduler to use (resources_available). If the resources_available at-
tribute of the server is set, the amount available at the current time is resources_available - re-
sources_assigned. If it is not set, the maximum is used: resources_max - resources_assigned.

count_by user

int count_by user(job_info **jobs, char *user)

Args:
jobs an array of jobs
user the user name

Returns:
The number of jobs the user owns in the array

This function counts the number of jobs the user owns in the array of jobs, jobs.

6-196 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

count_by group

int count_by group(job_info **jobs, char *group)

Args:
jobs an array of jobs
group the group name

Returns:
The number of jobs the group owns in the array

This function counts the number of jobs the group owns in the array of jobs.

check_ded_time_boundry()

int check_ded_time_boundry(job_info *jinfo)

Args:
jinfo The job to check

Returns
0: if the job will not cross into dedicated time

CROSS_DED_TIME_BOUNDRY:
if the job will cross either dedicated time boundry (start or finish)

This function will check if the job will cross either dedtime boundry (start or finish). If it is
currently dedtime the function will check if the job will complete before dedtime is over. If it
is not currently dedtime, the function will check if the job will finish before dedtime starts.

check_ded_time_queue()

int check_ded_time_queue(queue_info *ginfo)

Args
ginfo The queue to check

Returns
0 if it is dedtime and the queue is a didtime queue or if it is not dedtime and the
gqueue is not a dedtime queue
DED_TIME
otherwis

Chapt Draft Revision: 2.3 6-197

SCHEDULER PBS IDS

This function will check if it is an approprate time to run jobs in the queue If it is dedtime
only dedtime queues can run jobs. If it is not dedtime make sure no jobs are run out of ded-
time queues.

check_nodes()

int check_nodes(int pbs_sd, job_info *jinfo)

Args

pbs_sd
the connection descriptor to the pbs server

jinfo the job to check

ninfo_arr
Array of nodes
Returns
0 if the job can run

NOT_ENOUGH_NODES_AVAIL
if there are not suficient nodes of the correct type to run the job

SCHD_ERROR
on error

First, this function will check what type of nodes the job needs. If the job needs cluster
nodes, the function will make a pbs_rescquery() call to see if there are sufficent nodes to be
able to run the job. If the job needs timesharing nodes a call to is_node_available will be
made and its value returned.

check_node_availability()

int check_node_availability(job_info *jinfo, node_info **ninfo_arr)

Args
jinfo
The job to check if there is a node available for
ninfo_arr
The array if nodes to check if the job will fit
Returns
0 if the node is available

NO_AVAILABLE_NODE
if the node is not available

This function is used to find out if a node exists which the job can be run on. Currently the
function will check if the arch of the job and the machine match, the memory is not more

6-198 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

then the max physmem of the machine, and that the load avereage wont raise above the max
load ave for a node.

check_starvation

int check_starvation(job_info *jinfo)

Args:
jinfo the current job to check

Returns

0
If jinfo is the starving job or there are no starving jobs or starving jobs are not be-
ing helped

JOB_STARVING
if jinfo is not the starving job and there are starving jobs

This function will allow only the starving job to run if there are starving jobs and the sched-
uler is helping starving jobs.

6.3.2.3. File: fairshare.c

This file contains all the functions dealing with the fairshare algorithm. The functions to
create the group_info structures, and to create the resource group tree. Also the functions to
collect usage, and to select the next best job to be considered to be run.

add_child

void add_child(group_info *ginfo, group_info *parent)

Args:
node The group_info to add to the tree

parent
The parent of the group_info to be added to the tree

The function adds ginfo onto the resource group tree. The parent of where the node should
be is passed in. It connects the group_info, and sets the resgroup.

add_unknown

void add_unknown(group_info *node)

Chapt Draft Revision: 2.3 6-199

SCHEDULER PBS IDS

Args:
node the node to add

The function will add the node onto the "unknown" group. It also recalculates the fair share
percentages for the unknown group since they will have changed.

find_group_info

group_info *find_group_info(char *name, group_info *root)

Args:
nameThe name of the group_info to find
root the root of the tree

Returns
the found group_info or {NuULL}

This is a recursive function which runs through the fair share tree trying to find the
group_info whose name is passed in.

find_alloc_ginfo

group_info *find_alloc_ginfo(char *name)

Args:
namethe name of the group_info to find or allocate

Returns
The group if it is found, or the new group if it is created

This function will either find the specified group_info, or allocate an new group_info with the
specified name and add it to the "unknown" group.

new_group_info

group_info *new_group_info()

Returns
a point to the new group_info struct

6-200 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Allocate and initialize a group_info structure

parse_group

Args:
int parse_group(char *fname)

fnamethe name of the file to parse

Returns
success/failure

This function opens and parses the the resource_group file. It will take each line of the file
and either add a new group_info to the tree or print an error. The function does rudimentary
error checking.

free_group_tree

void free_group_tree(group_info *root)

Args:
root The root of the resource group tree

This is a recursive function which will free all the group_info structures in the resource
group tree.

preload_tree

int preload_tree()

Returns:
success/failure

This function loads the "root" group and the "unknown" group into the resource group tree.
This function should be called after parse_config(because it uses the unknown_shares value
from the config file.

Chapt Draft Revision: 2.3 6-201

SCHEDULER PBS IDS

count_shares

int count_shares(group_info *grp)

Args:

grp
Returns
the number of shares in the group

This function will count the number of shares in a resource group. It will go down a sibling
chain and count the shares.

calc_fair_share_perc

int calc_fair_share_perc(group_info *root, int shares)

Args:
root The root of the current subtree

shares
The total number of shares in the group or UNSPECIFIED if the value is unknown

Returns
success/failure

This function recurses down the resource group tree calculating the percentange of the ma-
chine a user gets. A user is defined as a leaf of the tree. The function that is used: par-
ent_percentage * (shares/total_group_shares). The percentage of the "root" group is 1.0.
When a child link is taken to a new group is taken, the shares of that group is counted.

test_perc

float test_perc(group_info *root)

Args:
root The root of the current subtree

Returns:
total percentage (hopefully 1.0)

This is a debugging function to test the percentages calculated from the resource group tree.
It recursivly traverses the tree and adds the percentages for the leaves (users). The target
number is 1.0.

6-202 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

update_usage_on_run

void update_usage_on_run(job_info *jinfo)

Args:
jinfo The job which was just run

This function will add the entire jobs usage to the job temporarly. It will last for this cycle
only.

calculate_usage value

long calculate_usage_value(resource_req *resreq)

Args:
resreqThe resources to calculate the usage value from

Returns
The calculated value

This function takes all the usage into account which is stored in the resource_req struct
passed in. This function is to be modified how the scheduling policy wants to collect the us-
age. Currently it only accumulates cput. An example of another method would be to accu-
mute cput * 100000 + mem. This would make cput much more important them memory us-
age, but memory usage would come into effect also.

decay_fairshare_tree

void decay_fairshare_tree(group_info *root)

Args:
root the root of the current subtree

This function decays the resource group tree. Since the algorighm calls for a half life, the
function decays the information by 50%. If the usage decays to zero, it is reset to the default
value of one. The function is recursive. The tree gets decayed in a post order traversal.

extract_fairshare

job_info *extract_fairshare(job_info **jobs)

Chapt Draft Revision: 2.3 6-203

SCHEDULER PBS IDS

Args:
jobs The array of jobs to extract from

Returns:
the job with the max fairshare value

This is a extract max function for the fair share algorithm. The function extracts the job
with the max value of the function percentage / usage. The value which is returned will be
first job of the user with the max value. Usage defaults to one and will not decay below that,
so0 no division by zero error can happen. The function runs in O(n) time.

print_fairshare

void print_fairshare(group_info *root)

Args:
root The root of the current subtree

This function will print out the fair share tree in a preorder traversal.

write_usage

int write_usage()

Returns:
success/failure

This function opens the usage file and calls rec_write_usage() to write out the resource group
tree.

rec_write_usage

void rec_write_usage(group_info *root, FILE *fp)

Args:
root The root of the current subtree
fp file pointer of the usage file

This function copies the usage and name of a group_info struct into a group_node_usage
struct. The smaller struct is written out to the file. Nodes with usage equal to one are not
written out, since the default value for usage is one. The function writes out in a preorder
traversal.

6-204 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

read_usage

int read_usage()

Returns
success/failure

This function reads in the usage information into the usage file. It will find the correct
group_info and assign the usage information into the group_info. find_alloc_ginfo() is called
to find the group_info, so if the user is not in the tree already, a group_info will be added to
the "unknown" group.

6.3.2.4. File: job_info.c

This file contains all the functions which have to deal with jobs. The functions which create
the job_info structures, and the resource_req structures

qguery_jobs

job_info **query_jobs(int pbs_sd, queue_info *qginfo)

Args:

pbs_sd
the connection descriptor to the pbs server

ginfo information about the queue

Returns:
a {NuLL} terminated array of jobs that reside in the queue

This function will query all the jobs from the server that reside in the queue. It will then
count the jobs so the correct ammount of space can be allocated. After allocation is done, it
will call query_job_info on each of the batch_status structs that the server returned. It puts
the sentinel value {NuLL} at the end of the array. The group_info in the resource group tree is
found and assigned into the job structure. Finally, frees up the batch_status list.

guery_job_info

job_info *query_job_info(struct batch_status *job, queue_info *queue)

Args:
job the job information returned from the server

queue
information about the queue the job resides in

Returns:
A pointer to a job_info struct of the processed data about the jobs

Chapt Draft Revision: 2.3 6-205

SCHEDULER PBS IDS

This function collects the data out of the linked list of values in the batch_status structure
and puts that data into a job_info structure. It checks for {ATTR_p} (priority), {ATTR_gtime} (time
job was queued), {ATTR_state} (State of job), {ATTR_comment} (job comment), {ATTR_euser} (user-
name of owner), {ATTR_egroup} (group name of owner), {ATTR_exechost} (host the job is executing
on), {ATTR_I} (resource requested), and {ATTR_used} (resource used)

new_job_info

job_info *new_job_info()

Returns:
Pointer to newly allocated and initialized job_info struct

This function allocates and initializes a job_info struct

new_resource_req

resource_req *new_resource_req()

Returns:
Pointer to newly allocated and initialized resource_req struct

This function allocates and initializes a resource_req struct

find_alloc_resource_req

resource_req *find_alloc_resource_req(char *name, resource_req *reqlist)

Args:
name

name of resource to look for
reqlist

resource_req list to look in

Returns:
Pointer to found or newly allocated resource_req

This function will attempt to find the resource_req struct with the name passed in. If it is
found, it is returned. If it can not be found, a new resource_req is allocated and the name
field is assigned.

free_job_info

void free_job_info(job_info *jinfo)

6-206 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
jinfo the job_info structure to free
This function will free all the memory used by a job_info struct.

free_jobs

void free_jobs(job_info **jarr)

Args:
jarr array of jobs to free

This function calls free_job_info all each element in the array. Finally, it will free the array it-
self

find_resource_req

resource_req *find_resource_req(resource_req *reglist, const char *name)

Args:

reglist
the resource_req linked list to search through

namethe name to look for

Returns:
Found resource_req or {NuLL} if the resource can not be found

This function will search through the resource_req list looking for a resource_req with the
specified name.

free_resource_req_list

void free_resource_req_list(resource_req *list)

Args:
list the resource_req list to free

Frees up memory used by a resource_req linked list.

print_job_info

void print_job_info(ob_info *jinfo, char brief)

Chapt Draft Revision: 2.3 6-207

SCHEDULER PBS IDS

Args:
jinfo job_info to print
brief boolean

This function will print out the job info to stdout. It is meant for debugging purposes. If the
brief flag is true, only the name of the job is printed.

set_state

void set_state(char *state, job_info *jinfo)

Args:
state the state of the job
jinfo job information which needs one of the state bits set

Returns:
jinfo is passed in by reference

This function will set one of the following state bits: is_queued, is_running, is_held, is_transit,
is_exiting, is_waiting.

update_job_on_run

void update_job_on_run(int pbs_sd, job_info *jinfo)

Args:

pbs_sd
connection descriptor to the pbs server

jinfo the job which was just run
This function updates the state bit from is_queued to is_running.

update_job_comment

int update_job_comment(int pbs_sd, job_info *jinfo, char *comment)

Args:

pbs_sd
connection descriptor to the pbs server

jinfo job to update

comment
the comment string

Returns:
Success or Failure. Use pbs_errno for more information

6-208 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

The function first checks if the comment of the job is the same of what it is being set to. If it
is, the comment will not be updated. If the comment is not the same, the old space for the
comment in jinfoi is freed in order to update it. Lastly pbs_alterjob is called to update the
comment on the server

translate_job_fail_code()

void translate_job_fail_code(int fail_code, char *comment_msg, char *log_msg)

Args:
fail_code
the return code from the check functions
comment

string passed by reference

This function will translate the failure code from is_ok_to_run_job() to both a comment mes-
sage and a log error message. They are copied into buffers supplied by the caster. Any code
which is less then {RET_BASE} is considered to be an index into the res_to_check array. The de-
fault action is the clear the comment message. The symbolic constants are defined in con-
fig.h

update_jobs_cant_run

void update_jobs_cant_run(int pbs_sd, job_info **jinfo_arr, job_info *start,
char *comment, int start_where)

Args:

pbs_sd
connection descriptor to the pbs server

jinfo_arr
array of jobs to update comments for
start the job to start updating comments or NULL: start at the front of the array

comment
the comment to update the jobs

start_where
where to start relative to the job start

Returns:
nothing - updates comments of jobs in jinfo_arr

This function will update all the comments in a job_info array. It will start before, at, or af-
ter the job in start depending on the start where parameter. The function will also set the
job_can_not_run bit.

Chapt Draft Revision: 2.3 6-209

SCHEDULER PBS IDS

job_filter

job_info **job_filter(job_info** jobs, int size, int (*filter_func) (job_info*, void*), vo

Args:
jobs an array of jobs
size size of the array

filter_func
pointer to a function that will do filtering

arg extra arg to pass to filter_func

Returns:
Pointer to the head of the newly allocated filtered array

This function will filter through the jobs in an array. It will call filter_func on each job in the
array. If the function returns non-zero, the job is kept, if it returns 0, the job is not kept. A
new array is allocated and is up to the user to free.

NOTE: Only an array of pointers has been allocated. The jobs are not copied.

6.3.2.5. File: misc.c
This file contains miscellaneous functions which are used everywhere in the scheduler

string_dup

char *string_dup(char *str)

Args:
str the string to duplicate

Returns:
Pointer to a newly allocated copy of str

This function will allocate a new string and copy the parameter into the newly allocated
space.

NOTE: This function was used instead of strdup() because it is not in the POSIX.1 standard

log

void log(int event, int class, char *name, char *text)

Args:
IP event
the event type

6-210 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

class
The event class of the log

name
the name of the object

text
the text of the log message

This function will first check if the event type is being filtered. If it isn’t log the record using
log_record().

res_to_num

long int res_to_num(char *res_str)

Args:

res_str
the string returned by the server as a resource

Returns:
The numeric resource in kilobytes or kilowords for memory, or in seconds
for time

This function will convert a string in the form of HH:MM:SS into a number corresponding to
the total number of seconds. It will also convert a memory string into the corresponding
number of Kilobytes. Symbolic constants {MEGATOKILO}, {GIGATOKILO}, and {TERATOKILO} are
used in the conversions. The constant {SIzE_OF_WORD} is used in converting words to bytes.

skip_line

int skip_line(char *line)

Args:

line the line from a config file
Returns:

1 skip the line

0 parse the line

This function will return 1 if the line is a comment(starting with # or *) or a blank line of
only white space.

6.3.2.6. File: parse.c
This file contains functions which read in and parse the scheduling policy configuration file.

Chapt Draft Revision: 2.3 6-211

SCHEDULER PBS IDS

parse_config

int parse_config(char *fname)

Args:
fnamea string containing the filename

Returns:
success/failure and the global conf will be assigned

This function will open the scheduling policy config file and parse it. The global config vari-
able conf will be assigned with the correct values parsed from the file. The format of the file
is:

name : value

The scanner is a little lax on scanning. It will skip over white space and the ":'. The parser
has rudimentary error detection and recovery. If an error is detected, a message is printed to
stderr and the line is skipped.

init_config

int init_config()

Returns:
success/failure

This function will initialize the global config structure, conf.

reinit_config

int reinit_config()

Returns:
success/failure

Frees up memory used by the conf config structure and frees the resource group tree.
init_config() is called to do the initialization.

6.3.2.7. File: queue_info.c
This file contains the functions to create and handle the queue_info structures.

query_queues

gueue_info **query_queues(int pbs_sd, server_info *sinfo)

6-212 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:

pbs_sd
connection descriptor to the pbs server

sinfo information about the server

Returns:
Pointer to an array of queue_info structures

This function does a pbs_statque() to get the information about all the queues on the server.
It will then count the queues and allocate an array of pointers to point at queues. Next, it
will call query_queue_info() on each queue and assign them into that array. The jobs are
gueried from the server by query_jobs(). The function is_ok_to_run_queue() is called on each
job and is_ok to_run is set. If it is not OK to run, all the job comments for the jobs in the
gueue are changed. The job states are counted in the queues. Finally, the list of running
jobs is created and general cleanup is done.

guery_queue_info

gueue_info *query_queue_info(struct batch_status *queue, server_info *sinfo)

Args:
gqueuethe batch_status struct returned from the server
sinfo information about the server the queue resides in

Returns:
Pointer to newly allocated and assigned queue_info struct or {NULL} on error

This function takes information out the the linked list in the batch_status struct and puts it
into a queue_info struct. The following attributes are converted: {ATTR_start} (Started),
{ATTR_maxrun} (max_running), {ATTR_maxuserrun} (max_user_run), {ATTR_maxgrprun}
(max_group_run), {ATTR_p} (priority), and {ATTR_qgtype} (Queue_type)

new_queue_info

gueue_info *new_queue_info()

Returns:
Pointer to a newly allocated and initialized queue_info

This function allocates a new queue_info struct and initializes it.

print_queue_info

void print_queue_info(queue_info *qinfo, char brief, char deep)

Args:

Chapt Draft Revision: 2.3 6-213

SCHEDULER PBS IDS

ginfo the queue to print info about
brief only print queue name
deep print info about jobs in queue also

This function will print out a queue_info structure. It is mainly used for debugging. If brief is
true, then only the name of the queue is printed. If deep is true, all the jobs in the queue will
be printed. brief is passed to print_job_info()

update_queue_on_run

void update_queue_on_run(queue_info *qinfo, job_info *jinfo)

Args:
jinfo the job which was run
ginfo the queue jinfo is in
This function updates the state counts in the queue

free_queues

void free_queues(queue_info **qarr, char free_jobs_too)

Args:
garr an array of queues

free_jobs_too
free the jobs in the queues also

This function will call free_queue_info on each queue in the array and then finally free the
array. If free_jobs_too is true, free_jobs is called on the job arrays within the queues.

free_queue_info

void free_queue_info(queue_info *ginfo)

Args:
ginfo pointer to a queue_info structure to free
This function will free all the memory used by a queue_info struct

6.3.2.8. File: server_info.c

This file contains all the functions to create, handle, and free the server_info and the re-
source structures.

6-214 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

query_server

server_info *query_server(int pbs_sd)

Args:
pbs_sd
connection descriptor to the pbs server

Returns:
A newly allocated server_info struct

This function calls pbs_statserver() to get batch_status struct about the server. It calls
qguery_server_info() to collect all the server information. The nodes are querried by a call to
qguery_nodes(). It calls query_queues() to get all the info about the queues (which gets the info
about the jobs). It then counts the number of queues and collects all the state counts. It will
then allocate a job_info array and copy into it pointers to all the jobs. Finally it will set run-
ning_jobs by filtering out all but running jobs. Timesharing nodes are also set in a simular
way.

guery_server_info

server_info *query_server_info(struct batch_status *server)

Args:
server
batch_status struct returned from the server

Returns:
pointer to newly allocated and assigned server_info struct

This function will allocate a new server_info struct. It will then fill it with the information
from the linked list within server. It checks the following: {ATTR_dfitque} (default_queue),
{ATTR_maxrun} (max_running), {ATTR_maxuserrun} (max_user_run), {ATTR_maxgrprun}
(max_group_run), {ATTR_rescavail} (resources_available), {ATTR rescmax} (resources_max),
{ATTR_rescassn} (resources_assigned) It will combine the resources_available, resources_max, and
resources_assigned into one resource structure

find_alloc_resource

resource *find_alloc_resource(resource *resplist, char *name)

Args:

resplist
resource list to search

nameresource name to search for in the list

Returns:
pointer to found resource a newly allocated resource

Chapt Draft Revision: 2.3 6-215

SCHEDULER PBS IDS

This function will search through the the resplist. If it find the resource, it returns it. If it is
not found, then a new resource is allocated and added to the resplist. The name field is also
set.

find_resource

resource *find_resource(resource *reslist, const char *name)

Args:
reslist
resource list to search through

namethe name to search for

Returns:
pointer to found resource or {NULL}

This function searches through the reslist for the resource specified.

free_server_info

void free_server_info(server_info *sinfo)

Args:
sinfo the server to free
This function frees all the memory associated with a server_info structure

new_server_info

server_info *new_server_info()

Returns:
newly allocated and initialized server_info struct

This function allocates and initializes a new server_info struct

new_resource

resource *new_resource()

Returns:
newly allocated and initialized resource struct

6-216 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

This function allocates and initializes a new resource struct

print_server_info

void print_server_info(server_info *sinfo, char brief)

Args:
sinfo information about the server
brief if true only print the server name

This function will print all the fields in a server_info struct. If brief is true, it will only print
the name.

free_server

void free_server(server_info *sinfo, int free_queues_too)

Args:
sinfo the server to free

free_queues_too
if true, will call free_queues() on the queues

This function will call free_server_info() to free the server, and if free_queues_too is true, will
call free_queues() to free the queues and jobs.

update_server_on_run

void update_server_on_run(server_info *sinfo, queue_info *qinfo, job_info *jinfo)

Args:
sinfo server to update
ginfo queue the job was in
jinfo the job which was run

This function updates the information in a server_info structure when one of its jobs has
been run. First the function will update the running and queued counts, and then update
the resources that were assigned to the job.

set_jobs

void set_jobs(server_info *sinfo)

Chapt Draft Revision: 2.3 6-217

SCHEDULER PBS IDS

Args:

sinfo
the server

This function will create an array of all the jobs on the server from the arrays contined in the
gueues. The array will be a list of pointers to the jobs. The jobs themselves are not copied.

check_run_job

int check_run_job(job_info *job, void *arg)

Args:

job the job to check

arg optional argument
Returns:

1 if the job is running

0 if the job is not running

This function is used by job_filter to keep only running jobs. i.e. return 1 if the job is run-
ning.

6.3.2.9. File: state_count.c
This file contains all the functions to handle state _count structures

print_state count

void print_state_count(state_count *sc)

Args:
sc state_count to print
This function prints all the fields of a state_count struct. It is mainly used in debugging.

init_state_count

void init_state_count(state_count *sc)

This function initializes the state count passed in as a parameter

6-218 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

count_states

void count_states(job_info **jobs, state_count *sc)

Args:
jobs array of jobs
sc state count passed in as reference

Returns:
sc is passed in by reference

This function will loop through the jobs in the array and count the amount in each state.
Then total is set by adding the counts together.

total_states

void total_states(state_count *scl, state_count *sc2)

Args:
scl state count struct which gets accumulated into
sc2 state_count which gets added into scl

Returns:
scl is passed by reference

Basically this function does scl += sc2; all the fields of sc1 are added with the like field in sc2
and stored in scl

6.3.2.10. File: fifo.c

This file contains the most important functions in the scheduler. The two main functions
which are called for by pbs_sched.c, schedule() and schedinit(). Schedule() will handle the
scheduling command, and call scheduling_cycle() to handle a normal cycle. It calls the rest
of the functions in order to run the jobs.

schedinit

int schedinit(int argc, char *argv[])

Args:
argc number of arguments passed into the program on the command line.
argv the arguments passed into the program on the command line.

Returns:
success/failure

This function calls several functions to parse the config files to set up the scheduler for opera-
tion.

Chapt Draft Revision: 2.3 6-219

SCHEDULER PBS IDS

init_scheduling_cycle

int init_scheduling_cycle(server_info *sinfo)

Args:
sinfothe server/queue/job info structure

Returns:
success/failure

This function takes care of things that need to before happen every scheduling cycle. If fair-
share is turned on, it will collect the usage information by finding the difference between the
current resources_used minus the last cycles resources_used. A check to see if it is time to
decay is done. It is possible it should have happened in the past, so the last_decay variable
will be set to when it should have happened. A check to see if it is time to sync the usage
happens also. If the queues need to be sorted, they are sorted by priority, and the jobs are
sorted if a sort was selected. It also calls next_job(1) to initialize the scheduling policy.

schedule

int schedule(int cmd, int sd)

Args:
cmd The reason why schedule was called
sd connection descriptor to the pbs server

Returns:
success/failure

This is the function which gets called to start a scheduling cycle. A switch will be done on
cmd to see what needs to be done. {SCH_ERROR}, {SCH_SCHEDULE_NULL}, {SCH_RULESET},
{SCH_SCHEDULE_RECYC} are ignored. {SCH_SCHEDULE_RECYC} is ignored because it is meant for
a type of scheduler which will only run one job at a time. The server will send a recycle com-
mand to the scheduler if only one job is run. There is no reason to run another scheduling
cycle if this occurs.

{SCH_SCHEDULE_NEW}, {SCH_SCHEDULE_TERM}, {SCH_SCHEDULE_FIRST}, {SCH_SCHEDULE_CMD},
{scH_scHEDULE_TIME} will cause a scheduling cycle to be run. The function scheduling_cycle()
is called.

{scH_coNFIGURE} will cause the scheduler to reinitialize its self. The usage information will
be written to disk. The config structure will be reinitialized, and the config files will be
reread. Lastly the usage info is read back from disk.

{scH_quiT} returns 1 from schedule() which will cause the scheduler to exit nicely.

by default return zero which will cause the scheduler to wait for its next cycle to be started.

6-220 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

update_cycle_status

void update_cycle_status()

This function will update all the status bits in the beginning of every scheduling cycle. It
checks for dedicated time, chage in primetime, and sets the status them.

scheduling_cycle

int scheduling_cycle(int sd)

Args:
sd the connection descriptor to the PBS server

This is the main function which controls the scheduling cycle. It will first call query_server()
to set up the server/queue/job info structure. Then it will call schedule_init() to initialize the
scheduling cycle. Finally it gets into the main loop. This loop is controlled by successive
calls to next_job(). Once next_job() returns the next job to run, the function will call
is_ok_to_run_job() to see if it is within server and queue limits to run. If it can be run, the
job will be passed to run_update _job() to run the job and to update the internal information
(server/queues/jobs). Finally the running jobs are saved and the server / queue / job struc-
ture is freed up.

update_last_running

int update_last_running(server_info *sinfo)

Args:
sinfo the server info

Returns
success/failure

This function frees up the jobs pointed to by the global variable last_running, and it will create
a new array from the current running jobs.

run_update_job

int run_update_job(int pbs_sd, server_info *sinfo, queue_info *qinfo, job_info *jinfo)

Args:

Chapt Draft Revision: 2.3 6-221

SCHEDULER PBS IDS

pbs_sd
connection descriptor to the pbs server

sinfo information about the server the job resides in
ginfo information about the queue the job resides in
jinfo the job which needs to run

Returns:
success/failure - see pbs_errno for more details

This function will first run the job and then call the necessary update functions to update the
information kept about the jobs in this scheduling cycle. This is done so the server does not
need to be consulted every time a job is run. If load balencing is on, the function will call
find_best_node() to find the best node to run the job on. If pbs_runjob() fails, the job com-
ment will be updated to the PBS error message.

next_job

job_info *next_job(server_info *sinfo, int init)

Args:
sinfo the server to find the next job to run
init Whether or not to initialize

Returns:
The next job to run

This is the main function which controls the scheduling policy. It finds the next job to be con-
sidered for running. There are currently three deciding places in this function, whether the
jobs should be run round robin, by queue, or just in server order. Several static variables
help out. The variables are last_job, last_queue, and cjobs.

If the jobs are to be run in round robin order, the init section will allocate an array of an ar-
ray of jobs, cjobs. This will be used to cycle through the queues. If strict fifo is set and a job
could not run, that queue in the array, cjobs, will be set to {NULL} to insure no more jobs will
run from that queue. If fairshare is turned on, instead of picking the next job in the queue to
run, extract_fairshare() is called to find the next job to run.

If the jobs will be running by queue, the variable last_job and last_queue are used to index into
the sinfo -> queues][] -> jobs[] arrays. If fairshare is turned on, sinfo -> queues[] -> jobs][] is passed
into exract_fairshare() for the next job to be picked. Lastly if the jobs are to be run in queue
order, the sinfo -> jobs[] array is used along with the last_job variable. If fairshare is turned on,
"sinfo -> jobs[]" is passed into the e If fairshare is turned on, "sinfo -> jobs[]" is passed into
the extract_fairshare() function for the next job to be found.

update_starvation()

job_info *update_starvation(job_info **jobs);

6-222 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
jobs The jobs to update their sch_priority

Returns
The most starving job

This function will go through all the jobs and set their sch_priority. It will be set to gtime /
max_starve. Which means every time the job waits a max_starve period of time, thier sch_prior-
ity goes up by one.

6.3.2.11. File: prime.c
This file contains all the functions dealing with primetime.

is_prime_time

enum prime_time is_prime_time()

Returns
PRIME
if it is primetime
NONPRIME

if it is non-primetime

This function checks to see if it is primetime or not. It uses the information in the global con-
fig struct. It will first check if it is a holiday. Holidays are nonprimetime. It will then call
check_prime() to see whether or not it is primetime.

check_prime

enum prime_time check_prime(enum days d, struct tm *t)

Args:
d the day to check: SATURDAY SUNDAY or WEEKDAY
t the current time in a struct tm

Returns
PRIME or NONPRIME

The function will return PRIME or NONPRIME depending on the status of primetime
The function first checks for all or none status. It will nextly check if primeime does not
cross a day boundry (i.e. primetime is 0700-1800). It will then check if primetime is
less then one hour. Finally a check if primetime crosses a day boundry(i.e. 2200-0400).

Chapt Draft Revision: 2.3 6-223

SCHEDULER PBS IDS

is_holiday

int is_holiday(int jdate)

Args:
jdate the julien date

Returns:
True if it is a holiday

This function looks though the holiday list to see if today is a holiday

parse_holidays

int parse_holidays(char *fname)

Args
fnamethe name of the file to parse

Returns
success/failure

This function will read in and parse the holidays file. It will first check for the first word to
be 4 numbers. This will be the year for prime/nonprime. Next it will check for YEAR, to set
teh current year. It will then check for weekday/saturday/sunday to set primetime/nonprime
(different format the above). Finally it will read in the holidays. The parser will ignore the
string "HOLDAYFILE_VERSION1" It is part of the spec for the UNICOS 8 holidays format.

load_day

int load_day(enum days d, enum prime_time pr, char *tok)

Args:
d the day to load
pr PRIME/NONPRIME
tok the time or "all" or "none"

Returns:
success(0) / failure(-1)

This function will set a primetime or nonprimetime values for a day.

6-224 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

init_prime_time

void init_prime_time()

This function is called at the beginning of prime time. currently it only changes the schedul-
ing policy bits and the sort to the primetime values.

init_non_prime_time

void init_non_prime_time()

This function is called at the beginning of non prime time. Currently it only changes the pol-
icy bits and the sort to the nonprimetime value.

6.3.2.12. File: prev_job_info
This file contains all the functions for creating and destorying prev_job_info structs.

create_prev_job_info

prev_job_info *create_prev_job_info(job_info **jinfo_arr, int size)

Args:
jinfo_arr
array of jobs
size size of the array or {UNSPECIFIED} if unknown

Returns:
newly created and filled prev_job_info array

This function will allocate a new prev_job_info array and fill it with the jobs in jinfo_arr. If
size is set to {UNSPECIFIED} the jobs will be counted. The name, resused, and account fields in jin-
fo_arr will be cleared so they will not be freed at the end of the scheduling cycle.

free_prev_job_info

void free_prev_job_info(prev_job_info *pjinfo)

Args:

Chapt Draft Revision: 2.3 6-225

SCHEDULER PBS IDS

pjinfojob to free

This function frees all the memory used by a prev_job_info struct. Note that it does not free
the structure its self. That is part of an arary and will be freed later.

free_pjobs

void free_pjobs(prev_job_info *pjinfo_arr, int size)

Args:

pjinfo_arr
the array to free

size the size of the array
This function calls free_prev_job_info() on every job in pjinfo_arr and then frees the array.

6.3.2.13. File: dedtime.c
This file has all the functions which are specific to dedicated time support

parse_ded_file

void parse_ded_file(char *filename)

Args:
filename
The name of the file to parse

This function will parse a dedicated time file in the format of

MM/DD/YYYY HH:MM MM/DD/YYYY HH:MM

If the two digit format is used(which is the wrong format) and the year 2000 is shortened to
00, it is smart enough to turn that into the correct date. It does this by checking if it is
smaller then some year in the past (90... why 90? why not?), and adding 100 to it. Note this
will break if the year 2100 is shortened to 00.

The function will use mktime to turn the date into a UNIX time_t and store it in the global

config data structure. Finally it will sort the dedicated times. Zero is a non valid dedtime, it
is sorted to the end of the array.

is_ded_time

6-226 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Returns
1 if it is dedicated time
0 if it is not dedicated time

This function checks if it is dedicated time.

6.3.2.14. File: node_info.c

This file contains all the functions which create, handle, and free node_info structures. It al-
so contains some functions to handle load balencing.

qguery_nodes()

node_info **query_nodes(int pbs_sd, server_info *sinfo)

Args:
pbs_sd
communication descriptor to the pbs server

sinfo
The server the nodes are associated with

Returns
An array of nodes which are associated with the server

This function will call pbs_statnode() and then convert the batch_status which is returned
into an array of nodes. It does this by looping through the linked list returned by pbs_statn-
ode() and counting the elements. It will use that count to allocate the array for the nodes. It
will then loop through the linked list a second time calling query_node_info() on each ele-
ment. Also, it will call talk_with_mom() to get all the information from the resource monitor
on the node.

qguery_node_info()

node_info *query_node_info(struct batch_status *node, server_info *sinfo)

Args:
node
The batch_status node returned from the pbs server

sinfo
The server the node is associated with

Returns
a node_info with all the information from the batch_status

Chapt Draft Revision: 2.3 6-227

SCHEDULER PBS IDS

This function will loop through the attributes in the batch_status struct and set the appor-
prite values in the node_info.

new_node_info()

node_info *new_node_info()
Returns

New node_info struct

This function will create a new node_info struct and initialize the values

free_nodes()

void free_nodes(node_info **ninfo_arr)

Args

ninfo_arr
The array of nodes to free

Call free_node_info() on every member of the array and then free the array itself.

free_node_info()

void free_node_info(node_info *ninfo)

Args

ninfo
The node to free

Free all the memory used bu a node_info structure

set_node_type()

int set_node_type(node_info *ninfo, char *ntype)

6-228 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

Args:
ninfo
The node to set type

ntype
The node type

Returns
NnonN-zero on error

This function will set one of the nodes type fields (is_timeshare or is_cluster).

set_node_state

int set_node_state(node_info *ninfo, char *state)

Args:

ninfo
The node to set state

state
The State

Returns
Nnon-zero on error

This function will set the state bits on the node by breaking the state string by commas and
then setting the correct state bit for each state listen in the string.

talk_with_mom()

int talk_with_mom(node_info *ninfo)

Args:
ninfo
The node to get information from its mom

Returns
Nnon-zero on error

This function will connect to the nodes mom and get the resources that are defined in the
global res_to_get. The information is then processed and converted into the correct types and
assigned to the node.

Chapt Draft Revision: 2.3 6-229

SCHEDULER PBS IDS

node_filter

node_info **node_filter(node_info **nodes, int size,
int (*filter_func) (node_info*, void*), void *arg)

Args:
nodes
the array of nodes to filter
size
the number of nodes in the array

filter_func
a pointer to a function which will be used to filter the nodes

arg
an optional arg to be passed to the filter_func

Returns
filtered array

This function will call the filter function each element in the array. If the filter function re-
turns a non-zero value, the element is included in the new array. The array is initially allo-
cated to the entire size of the original array, and then realloced to the final size after the new
array is complete.

is_node_timeshared

int is_node_timeshared(node_info *node, void *arg)

Args

node
the node to check if it is timeshared or not

arg
Unused

Returns
1 if the node is timeshared
2 If the node is not timeshared

This function checks if a node is timeshared or not. It is used in conjuction with node_filter

find_best_node

6-230 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

node_info *find_best_node(job_info *jinfo, node_info **ninfo_arr)

Args
jinfo
The job to find the best node for

ninfo_arr
The array of nodes to find the best node for the job

Returns
the best node to run the job on

This function will search through all the nodes to find a node which the job has requested the
same arch and the node has enough memory. It will find the first node which the added load
will not raise the node above the ideal load level. If no such node exists, then find the first
node which the added load will not raise it above its max load. The best node is returned.

find_node_info()

node_info *find_node_info(char *nodename, node_info **ninfo_arr)

Args

nodename
the node to find

ninfo_arr
the array of nodes to look in

Returns
the found node or NULL if not found

Look in the node array and see if the node exists. If it does, return it, if it doesnt, return
NULL

Chapt Draft Revision: 2.3 6-231

SCHEDULER PBS IDS

[This page is blank.]

6-232 Chapt Draft Revision: 2.3

PBS IDS SCHEDULER

7. Resource Monitor

The Resource Monitor is an adjunct to the Job Scheduler. The Resource Monitor daemon pro-
vides the scheduler with information about resources on the local system.

7.1. Resource Monitor Overview

The Resource Monitor is part of pbs_mom. It listens for input on a specified socket, and re-
sponds with a list of resource names and values. The resource monitor can respond to re-
guests from many process, but the socket used is privileged so only a root process can con-
nect.

Note that pbs_mom no longer deals with allocation of execution nodes. That func-
tion has been moved to pbs_server as part of the full parallel awareness features
introducted in release 1.1.12.

7.2. Packaging

This chapter of the IDS only discusses the parts of pbs_mom which retain to the Resource
Monitor function. The other pieces of pbs_mom are related to job execution. These are dis-
cussed in the following chapter entitled MOM - Machine Oriented Miniserver.

7.3. Program: pbs_mom

The Resource Monitor portion of pbs_mom consists of an initialization section and shares a
single main loop. During the initialization phase, pbs_mom processes the input line and calls
init_network() to begin listening for clients. The main loop consists of waiting for a message
from a client by calling wait_request() which will read the input and call a routine to process
the request. This routine will obtain the required resource values, then send the information
back to the client.

The Resource Monitor may also respond to a reconfiguration command by reading a specified
resource file.

7.3.1. Configuration File

The configuration file provides a means to add resource names to the Resource Monitor and
also cause functions to be called. This is described in the pbs_mom man page.

7.3.2. External Interfaces

The Resource Monitor communicates with the Job Scheduler using the Reliable Packet Pro-
tocol (RPP) routines in the PBS net library. Communication from the scheduler to the re-
source monitor consists of a list of resource names. The resource monitor responds with a list
of name/value pairs.

- All information is passed as strings.

- All numeric values are in decimal.

- Time values are in seconds.

- Size (memory/disk) values are in kilobytes with the “kb” appended.

7.3.2.1. Scheduler to Resource Monitor communication

Scheduler to Resource Monitor messages consist of a header, followed by a message body.
The format of the message is:

header, containing command:
{RM_CMD_CLOSE}, {RM_CMD_REQUEST}, {RM_CMD_CONFIG} Or {RM_CMD_SHUTDOWN}

Chapt Draft Revision: 2.2 7-1

RESOURCE MONITOR PBS IDS

command body

The body of the message has a different usage for each command. For the RM_CMD_CLOSE
and RM_CMD_SHUTDOWN commands, the body is ignored and should be zero length.

For the RM_CMD_REQUEST command, the body consists of a number of strings listing re-
source requests. Each string has the following format:

name[qualifier=value][qualifier=value]
The qualifier/value pairs are enclosed in square brackets and are optional.

For the RM_CMD_CONFIG command, the body should have a single string containing the
full path name of a configuration file to read.

7.3.2.2. Resource Monitor to Scheduler communication

Resource Monitor to Scheduler messages consist of a header, followed by a message body.
The format of the message is:

header, containing result: [RM_RSP_OK] or [RM_RSP_ERROR]
response body

If the command received was RM_CMD_CLOSE, no response will be returned. If the com-
mand received was RM_CMD_REQUEST, the response body will consist of the same list of
resources which was sent in the command body with each one followed by an equal sign (=)
and a value. Each line in the response body has the form resource=value . If no value can
be returned, the character following the equal sign is a question mark (?) followed by a space
and an error number: [RM_ERR_UNKNOWN], [RM_ERR_BADPARAM], [RM_ERR_NOPARAM],
[RM_ERR_EXIST], or [RM_ERR_SYSTEM].

If the value is a single entity, the character following the equal sign will not be a space. If
the value is a list, the character following the equal sign will be a space and each list entity
will be separated from the next with another space.

If any other command was received, the response body will be zero length.

7.3.2.3. Communication Library

To simplify communication with the resource monitor, a Resource Monitor (RM) library has
been provided to handle the details of the protocol described above. The Reliable Packet Pro-
tocol (RPP) and Data Is Strings (DIS) librarys are used as well.

7.3.2.4. Signal Handling

The Resource Monitor, pbs_mom, can be commanded to re-read the configuration file which
was last read by sending it a SIGHUP signal. If no configuration file has ever been read, no
action will take place. An orderly shutdown of the Resource Monitor, pbs_mom, will take
place if a SIGINT or SIGTERM signal is received. Several other signals may be defined that
also cause an orderly shutdown. These are SIGXCPU, SIGXFSZ, SIGCPULIM,
SIGSHUTDN, and SIGINFO.

7.3.3. File: resmon.h

This file defines several structures which will be used throughout the code as well as some
constant values such as error codes.

The rm_attribute structure is used to pass name/value pairs from square bracket enclosed
strings in a request to lower level routines in a convenient form.

struct rm_attribute {
char *a_qualifier;
char *a_value;

7-2 Chapt Draft Revision: 2.2

PBS IDS RESOURCE MONITOR

The field a_qualifier points to the name to the left of the equal sign. For example, the string
[proc=1234] could be sent as a qualifier for the mem request. Here, a_qualifier would point
to the string proc and a_value would point to 1234 .

The config structure is used to save a name to be used as a key for searching and a value or
function call to provide an "answer" for the name in question.

typedef char*(*confunc) _A((struct rm_attribute *));
struct config {
char *c_name;
union {
confunc c_func;
char *c_value;
} cu;

h

For example, suppose the name Informix is found in the config file followed by the value
4.10.UD2 for the version. In this case, ¢c_hame would point to Informix and c¢_value would
point to 4.10.UD2 . In the case of a name that will have a routine provide a value, the field
c_func is used to provide a pointer to the function.

7.3.4. File: mom_main.c

This file contains the routines needed for communication and processing an array of configu-
ration elements (names and values).

main()

main(int argc, char **argv)

Description:

Process command line arguments, and call read_config() to read any config files specified.
Set up to ignore or catch signals. Call dep_initialize() to perform initialization process-
ing based on machine type. Initialize the network communications by calling init_net-
work() in the PBS net library. Enter an infinite processing loop which calls wait_re-
quest() with get_request() given as the routine to call to handle a request. Each time a
network event or timeout takes place, the routine end_proc() is called to do periodic pro-
cessing. The only machine that takes advantage of this feature right now is the C90.
Others just have a stub.

read_config()

int read_config(char *file)

Returns:
0 on success or 1 on failure.

Description:
If the value for the parameter file is not NULL, save the string it points to as the last
seen configuration filename. If file is NULL, use the previously saved configuration file-
name. Open and read the configuration file. Save the names and values in a linked list
so we can count the number of entries and allocate an array to hold them. If the name

Chapt Draft Revision: 2.2 7-3

RESOURCE MONITOR PBS IDS

starts with a dollar sign ($), this is an entry which should be found in an internal table
and result in a function call. After reading the file, create an array, copy the list ele-
ments to the array and free the list.

addclient()

int addclient(char *name)

Args:name is the hostname to be added to the list of hosts which will be allowed to make re-
quests of Mom. The routine gethostbyname() is called and the IP address of the host is
stored in the array okclients.

setlogevent()

static u_long setlogevent(char *value)

Args:value in either decimal or hex to which the log event mask is set.

Sets the external long integer log_event_mask to the value. Returns O if an error in the value
such as an illegal character; returns 1 if ok.

restricted()

static u_long restricted(char *name)

Args:name is the name of a host.

The named host is allowed to query internal or static resources, but not any that require the
execution of a script. This was provied to allow xpbsmon to obtain information about nodes
in a cluster. The name is added to the maskclient array. A connecting host is check against
this array in bad_restrict().

cputmult()

static u_long cputmult(char *value)
Args:valueis

The multipler is used to adjust the measured/charged cput against a faster or slower base
system.

wallmult()

static u_long wallmult(char *value)

7-4 Chapt Draft Revision: 2.2

PBS IDS RESOURCE MONITOR

Args:valueis

The multipler is used to adjust the measured/charged wall time against a faster or slower
base system.

usecp()

static u_long usecp(char *value)

value is a string containing two tokens seperateh by white space.

This routine parses the $usecp config file entry. Value is broken into the two tokens. The
first token is of the form hostname:/file/path . The second token is /alternate/path

The host name is seperated from the /file/path and the (now) three parts are stored in an ar-
ray of structures. This array is used by told_to_cp() on behalf of local_or_remote() to deter-
mine if /bin/cp or rcp should be used to copy files.

rm_search()

struct config *rm_search(struct config *where, char *what)

Args:The where pointer is the beginning of an array of config structures which are to be
searched. The what pointer is a character string which is the name to search for.

Description:
Enter a loop to check each config entry in where. If one is found with a name field that
matches what, return that entry. If no match is found, return a NULL pointer.

dependent()

char *dependent(char *resource, struct rm_attribute *attr)

Args:The resource character array is the name of the resource to search for. The attr pointer
specifies a qualifier/value pair in an rm_attribute structure.

Description:
This is the routine which will report back values for resources. The search() routine is
used to search the array dependent_config of type struct config contained in the depen-
dent code. If the search returns a match, the function in the dependent code pointed to
by the matching entry in the array is called with attr as the parameter.

Return:
A string with the value returned from the dependent function. If no match was found,
return a NULL.

initialize()

void initialize();

Chapt Draft Revision: 2.2 7-5

RESOURCE MONITOR PBS IDS

Description:

cleanup()

Setup the common_config array with the entries for "avail”, "reserve", "totpool" and "use-
pool”. Then call read_nodes() and dep_initialize().

void cleanup();

Description:

get_request()

Free all the memory for the node list and call dep_cleanup().

void get_request(int fd);

Description:

getattr()

Read the socket to get a request. Check to see if there is any previously saved input
from this socket. If there is, add the buffer just read to the saved input. Check to see if
this input has an end of packet mark. If not, return to wait to complete the packet. If
so, format the reply and write it back. If the request is for a resource list, increment the
counter regnum so the dependent routine can tell which "packet number" it is process-
ing. Next, call getattr() to read the first parameter, if any. If any other parameters are
needed by the dependent routine, it can call getattr() with a NULL pointer argument.

struct rm_attribute *getattr(char *str);

Description:

arch()

Get an rm_attribute structure from a string. Remember the str character pointer in a
static variable. If a NULL pointer is passed for the string, use the previously remem-
bered pointer. If the rm_attribute name is "tag:", continue to the next attribute. This al-
lows the use of a special attribute which will be ignored. For this feature to work cor-
rectly, the "tag:" attribute must be the first one on the line for a request. This is because
getattr() saves the strings for the name and value in static strings which will be